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Abstract

Sea level change could have profound impacts on our society. We report here on three related

sea level change problems. First, a variety of regression models have predicted different rates

for global mean sea level rise over the past century. Some of these models are accelerating and

others are not. We ask whether we can distinguish between these using a new nonparametric

noise model that we have developed. Simulations show that we can, and further imply

that GMSL is rising at an accelerating rate. Second, historical global mean sea level is

reconstructed from tide gauges that are located along coastlines and islands, but over the

past 25 years we also have data from satellite altimeters that give global coverage. This

raises the question as to whether there are differences between coastal and open-ocean sea

level trends. Linear sea level trends from tide gauges, with and without vertical land motion

corrections, are compared with the trends derived from altimetric observations in the nearby

open ocean. The globally averaged trend difference is not significant, but at the regional scale

there are possibly significant differences in some areas. These trend comparisons highlight

the importance of having accurate estimates of vertical land motion for correcting tide gauge

records. Finally, in contrast to global mean sea level change, which reflects ocean volume

changes, regional sea level variations are mostly associated with water volume redistribution.

Earlier work in the Northeast Pacific suggests that wave propagation and local damping

are the two main mechanisms that might account for large-scale, low-frequency sea level

variability, but these studies have reached conflicting conclusions. We develop a novel sea

level model driven by wind, buoyancy and eddy forcing and including both mechanisms

to examine their relative roles in the Northeast Pacific. The diagnosis demonstrates that
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temporal damping is more important to the sea level response than propagation over most

of the Northeast Pacific, while propagation plays a role in the southwest portion of the study

region where the stresses associated with mesoscale eddies dominates.
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Chapter 1

Introduction

Sea surface height (SSH), often called sea level, is a measure of water volume that depends on

the density profile and the water mass loading in the water column. SSH rises with decreased

density or addition of water to water column, and decreases with increased density or removal

of water from water column. It changes on a range of spatiotemporal scales owing to a

number of factors such as sea surface buoyancy and momentum flux, tides, ocean dynamic

adjustments, geological processes, and so on. For example, wind stress over the ocean surface

not only generates small-scale gravity waves lasting from seconds to minutes, but also induces

downwelling or upwelling under the influence of the Coriolis force resulting in low-frequency

SSH anomalies. Tides induced by the gravity effects of the sun and the moon show semi-

diurnal, diurnal and other long-period sea level oscillations. Heat and fresh water flux over

the ocean surface cause expansion or contraction, which result in a seasonal cycle of sea level.

In addition, SSH anomalies may propagate a long distance via ocean dynamic adjustment

such as propagation of Kelvin and Rossby waves. Besides redistribution of water mass

within the ocean, water exchange between the land and ocean leads to sea level variations

on seasonal or longer timescales. Proxy records also show that sea level underwent large

fluctuations due to water exchange between the land and ocean and other tectonic processes

in the past. Consequently, a full understanding and accurate projection of sea level change

require significant continuing observation and study.

Understanding how sea level evolves across time and space is critical to our society.

As more greenhouse gases are released into the atmosphere, the Earth gets warmer due to
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the greenhouse effect. One of the consequences is a rising global mean sea level (GMSL)

with a possible accelerating rate (e.g. Church and White (2011) [1]. Superimposed on the

rising GMSL are nonuniform sea level rising rates that vary geographically around the global

ocean. For example, the rising rate of sea level between 1992 to present over the west tropical

Pacific is three times as high as the global mean, whereas it is close to zero and even negative

over the east Pacific. Our society, especially low-lying coastal and island communities, are

becoming increasingly concerned about the threats of sea level rise. As high tide, wave and

mean sea level are superimposed, large extreme sea level events are more likely to happen,

causing damages. At the end of this century, GMSL is projected to be tens of centimeters

higher than the present level (Church et al., 2013 [2]), which will be a big challenge for the

environment and management of coastal areas. Since SSH can approximately reflect heat

content and ocean dynamic processes, it is also a substantial variable for studying ocean

dynamics and climate change. For example, SSH measured by satellite altimeter provides

opportunities of investigating global Rossby waves and eddies (e.g. Chelton and Schlax, 1996

[3]; Chelton et al., 2011 [4]). Sea level can also be used to calculate ocean surface circulation

and heat transport, giving us more insights into ocean physics (e.g. Bonjean and Lagerloef,

2002 [5]; Kelly et al., 2014 [6]). Therefore, it is critical to understand how global and regional

sea level changed in the past and what processes drove the changes, which help us improve

projections of the future sea level and provide more scientific information of sea level change

for the society and policy makers.

This study is focused on low-frequency sea level variations during the period with con-

tinuous and long instrumental sea level records, approximately from the late 19th century

to present. There are two sets of instrumental observation of sea level being exploited to

reveal how sea level changed globally and regionally. The earliest instrumental observations

of sea level came from tide gauges dating back to the 18th century in Europe. Today the

number of tide gauge has increased to thousands, and they are mainly located along the

continental coasts with a few at open-ocean islands. The network of tide gauges provides
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researchers with sea level records more than one hundred years long at some tide gauges,

which allow studies of the long-term sea level variability on global mean or at individual

station. However, they are limited by station sparsity with most of the open ocean not

sampled. Satellite altimeter TOPEX/Poseidon (T/P) ushered in the era of continuous and

nearly global measurement of sea level with high precision and resolution. T/P and the

following missions, Jason-1, Jason-2, Jason-3 and other missions (e.g. European Remote

Sensing (ERS)) have produced more than 25 years data, from which GMSL estimates more

accurate than the previous estimates from tide gauges alone can be calculated. The dense

data coverage over the global ocean makes it available to study large-scale, low-frequency

variability over the open ocean. Based on these observations, this study consists of three

projects: long-term change of GMSL; sea level trend differences between the coastal and

open ocean; and low-frequency variability of SSH in the Northeast Pacific (NP). The three

projects range from long-term change (on secular time scale) of GMSL to low-frequency (on

interannual to decadal time scale) variations of regional sea level, with the eventual goal of

giving more insights of how sea level has changed globally and regionally over roughly the

past 100 years.

In the first project we note that GMSL has been rising since the late of 19th century,

reflecting an integrated result of the global climate change. The rise of GMSL and how its

rate changed in the past are a serious concern in a warmer climate, and will be investigated in

the first project. The change of GMSL is determined by globally averaged density variation

associated with temperature and salinity anomalies, and water mass variation related to

water exchange between the ocean and land, with a small contribution from glacial isostatic

adjustment (GIA). The long records at tide gauges are valuable for detecting the long-term

variation such as the secular trend. The secular rising rates may differ from station to station

and are accompanied by significant decadal and multi-decadal variations. When grouped by

their locations and then averaged over the global ocean, these long sea level records yield

a smoothed mean sea level that, however, could be biased by the sparse sampling. To take
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regional variations of sea level into account, more complex statistical techniques such as

EOF reconstruction are applied to derive GMSL (e.g. Church and White, 2006 [7]). GMSL

derived either by the arithmetic average or by a complex statistical technique possesses a

secular trend and low-frequency variations. Although the derived GMSL time series are not

always consistent with each other because of differences in statistical techniques and the

number of tide gauges used, it rose at a rate of about 1.7mm/year in 20th century, and

rose at a larger rate in 21st century, indicating a possible acceleration (e.g. Merrifield et al.,

2009 [8]). The accompanying low-frequency variations could either represent a change of the

secular trend due to climate change or a multi-decadal natural oscillation.

It is common to use regression models to extract signals from noisy data. To extract

long-term sea level variations, various models, including a quadratic model, a linear trend

with a harmonic cycle, and piecewise trend model have been used, but no agreement has

been reached as to how the rising rate changed in the past. In other words, it is unclear which

model would more accurately describe long-term sea level change. An important question

is whether we can distinguish these regression models used to explain long-term sea level

change; if the answer is yes, then it comes to which model is the best one; if the answer is

no, we cannot say which model is preferred. The traditional regression model comparison

methods, such as the F test and J test, require that time series be independent or the

regression model be nested when using F test. To overcome these limitations, a general

noise model that captures the autocorrelation structure of noise in time series is needed

to distinguish these GMSL models using Monte Carlo simulations. In this first project, a

nonparametric noise model is developed based on a maximum likelihood estimator, and this

model is used to distinguish between different regression models for GMSL.

In the second project we consider that GMSL trends over the last century are mainly

derived from sea level records of tide gauges that are mostly located on the global coast, which

casts doubt as to whether this reconstructed GMSL is able to represent the true GMSL that

is predominantly determined by sea level in the open ocean (Holgate and Woodworth, 2004
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[9]; White et al., 2005 [10]). Since the open-ocean wind stress and current can induce sea level

change on the coast (Hong et al., 2000 [11]; Sallenger et al. 2012 [12]), the mechanisms of

sea level variability on the coast might be different from those acting in the open ocean. For

instance, the along-coast wind stress and coastal waves have been suggested to largely cause

sea level changes along the coast (Enfield and Allen, 1980 [13]). In contrast, steric effects

dominate sea level change in the open ocean ( e.g. Suzuki and Ishii, 2011 [14]; Forget and

Ponte, 2015 [15]). It is thus essential to know whether there are sea level trend differences

between the coastal and open ocean.

In this second project, global and regional sea level trend differences of the coastal and

nearby open ocean are investigated. Altimetry data close to the coast is likely contaminated

by land, even though it has high precision in the open ocean. For now, sea level records

on the coast mainly rely on tide gauge measurements that have been used to derive GMSL

before the altimeter era. The estimate of GMSL from tide gauges largely represents coastal

mean sea level (CMSL) that may deviate from the true GMSL for the global ocean. The

decadal trend of CMSL was suggested to be larger than that of GMSL in the late 1990s.

There are also some periods, such as the late 1970s and 1980s, when CMSL rose slower than

GMSL. As the time series lengthens, the trend difference between CMSL and GMSL tends

to decrease and is close to zero. It is recognized that sea level changes at tide gauges are

induced by both water volume changes and vertical land movements (VLMs). VLMs are

generated by GIA due to the post glacial rebound, tectonic activities, fluid extraction from

underground and other factors. Few observations of VLMs existed during the time of these

studies, so numerical simulations of GIA were often used to account for VLMs. However,

GIA is no longer valid where the tectonic activities or other factors dominate VLMs. Position

measurements at GPS stations collocated with tide gauges are now available for estimate of

VLMs. The increasing number of GPS stations and longer records enable us to correct tide

gauge sea level for VLMs. With the coastal sea level from tide gauges corrected for VLMs and

sea level observed by satellite altimeters in the nearby open ocean, sea level trend differences
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are investigated globally and regionally. Moreover, ocean processes probably responsible for

regional sea level trend differences are examined.

In the third project, we turn to the regional sea level variations that are as important

as GMSL for local communities and are more associated with water volume redistribution

in the ocean. Altimetry observations enable us to examine low-frequency climate variations

that have profound fingerprints in sea level. El Niño-Southern Oscillation (ENSO) is one the

most prominent climate modes that has global influences through ocean pathways and the

atmosphere teleconnection. Studying the regional low-frequency sea level variability is an

important way to understand climate modes, favoring sea level projections. This project is

focused on the eastern North Pacific (NP) where there are two primary climate modes that

influence climate and ecosystem, which are the Pacific Dedadal Oscillation (PDO) and the

North Pacific Gyre Oscillation (NPGO). These are represented by the first and second EOF

modes of the SSH field, respectively (Cummins et al., 2005 [16]; Di Lorenzo et al., 2008 [17]).

Local wind stress forcing via Ekman pumping, buoyancy forcing via altering water den-

sity, and eddy activities all contribute to sea level variations. The roles of external forcing

and internal modes are suggested to be nonuniform over the ocean with one or multiple

factors dominating in a specific region (Vivier eta al., 1999 [18]; Cabanes et al., 2006 [19]).

Views on the source of the low-frequency variability in the NP ocean are highly divided due

to the teleconnection between tropical and extratropical regions and the coupling of ocean

and atmosphere. Regardless of the source of wind stress anomalies, previous researchers

have simulated the SSH variability with a linear damping model (Lagerloef, 1995 [20]), a

first-mode baroclinic Rossby wave model (Qiu, 2002 [21]), and a model including both the

damping and the Rossby wave (Cummins and Lagerloef, 2004 [22]; Capotondi et al., 2005

[23]; Capotondi et al., 2009 [24]). Most of the previous studies show similar performances,

and no single model has an advantage over the others, which leads to the following ques-

tion. What are the relative roles of wave propagation and linear damping in controlling

low-frequency sea level variations?

6



Although wind stress can account for a large fraction of variability in the interior NP, it

failed to account for sea level variations over some regions. Buoyancy and eddy momentum

fluxes are shown to play important roles in the subtropical North Pacific and in the North

Pacific drift, respectively (Thompson and Ladd 2004 [25]; Qiu et al., 2015 [26]). Therefore,

the relative roles of each external forcing, wave propagation and linear damping are open to

question. In this third project, a novel diagnostic framework is developed to examine the

mechanisms of low-frequency variability of SSH in the NP.

In summary, tide gauge and altimeter sea level data are exploited to study long-term sea

level variations ranging from global mean secular changes to regional low-frequency varia-

tions. In chapter 2, regression models predicting long-term GMSL change are statistically

distinguished based on a newly developed noise model. In chapter 3, sea level trend differ-

ences between the coastal and open ocean are examined and the ocean processes responsible

for the regional trend differences are examined as well. In chapter 4, a novel sea level di-

agnostic model is developed to reveal the roles of wave propagation, linear damping and

external forcing in driving the large-scale, low-frequency sea level variations in the NP.
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Chapter 2

Distinguishing between Regression Models of Global Mean Sea Level Reconstructions

2.1 Introduction

As an indicator of climate change, global mean sea level (GMSL) rises under a warming

climate, causing an environmental concern for coastal communities. Before the satellite

altimeter era, sea level records are mainly from tide gauges located along continental coasts

and on islands, and multiple statistical methods have been applied to reconstruct GMSL for

the last century (Douglas, 1991 [27]; Chambers et al., 2002 [28]; Holgate and Woodworth,

2004 [9]; Jevrejeva et al., 2008 [29]; Wöppelmann et al., 2009 [30]; Church and White, 2011

[1]; Ray and Douglas, 2011 [31]; Calafat et al., 2014 [32]; Hay et al., 2015 [33]). The rate

seems to change through the record, however, no consensus on how it has changed has been

reached from the analysis of the models mentioned above.

As I said, a variety of regression models have been used to describe sea level variability

in the literature. Generally, there are three types of regression models used to account for

the long-term rate change in GMSL of more than one century. The first one typically used is

the quadratic polynomial model. Fitting a quadratic model to GMSL yields an acceleration

since the 19th century (Church and White, 2006 [7]; Jevrejeva et al., 2008 [29]; Church and

White, 2011 [1]; Woodworth et al., 2011 [34]; Jevrejeva et al., 2014 [35]). The change of

sea level rising rate is not necessarily uniform throughout the period. The second type of

model is a stepwise trend model that includes several knots at which linear trend changes its

value. Previous studies show that GMSL may have experienced three rate changes since the
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late 19th century, an increasing rate in 1930s, a decreasing rate in 1960s, and an increasing

rate in 1990s (Church and White, 2006 [7]; Jevrejeva et al., 2006 [36]; Holgate, 2007 [37];

Jevrejeva et al., 2008 [29]; Woodworth et al., 2009 [38]; Merrifield et al., 2009 [8]). These

relatively high and low rates are respectively ascribed to the low-level volcanic activities

in the first half 20th century and large volcanic eruptions since 1960s that offset some of

the acceleration (Church et al., 2005 [39]; Church and White, 2006 [7]). The acceleration

after 1990 was due to a transfer from out-of-phase to in-phase variation in the tropical and

southern oceans (Merrifield et al., 2009 [8]). These rate changes may, however, reflect a

natural oscillation and the third type of model is a linear trend plus a long-term harmonic

oscillation. Chambers et al. (2012) [40] examined long records from tide gauges with this

model, suggesting the possible existence of a quasi 60-year oscillation in GMSL. The fast sea

level rise from 1920 to 1950 is also suggested to be caused by a combination of a peaking

of the 60-year cycle with the low-level volcanic activity (Jevrejeva et al., 2008 [29]). The

three types of models imply distinct physical processes and desire an examination of their

differences. Distinguishing sea level models commonly used in literatures can give us insight

of how GMSL changed in the past century and enable better projections of future sea level.

Accurate uncertainty estimates of the regression coefficients and comparisons between

regression models require knowledge of the background noise (for a recent review see Bos

et al., 2014 [41]). Data points in observed time series are often not independent but se-

rially correlated. Chambers et al., 2002 [28] showed significant low-frequency variabilities

superimposed on the long-term trend in GMSL. The low-frequency components such as El

Niño-Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) can obscure the

real long-term sea level change and contribute to short-term trend (Calafat and Chambers,

2013 [42]; Hamlington et al., 2013 [43]; Haigh et al., 2014 [44]). With the large low-frequency

variations in the time series, the significance of the acceleration of the GMSL rate should

be accessed with caution (Beckley et al., 2007 [45]; Hamlington et al., 2013; [43] Jord, 2014

[46]). Consequently, autocorrelation should be carefully evaluated instead of simply assum-
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ing a white noise model. Autocorrelation functions such as the first order Markov function

or a Gaussian function are commonly used to characterize noise (Nerem and Mitchum, 2002

[47]). In addition, the noise can also be characterized by its frequency spectrum, described by

a number of functions, such as power-law function (Mao et al., 1999 [48]; Becker et al.,2014

[49]), autoregressive function of order one (AR(1)) (Ghil et al, 2002 [50]), Autoregressive-

Integrated-Moving average (ARIMA) class of models (Ocana et al., 2016 [51]), or a com-

bination of white and colored spectrum (Williams and Willis, 2006 [52]). An advantage of

using the noise frequency spectrum is that it can be easily used to generate noise realizations

for Monte Carlo simulations. Although the power-law and autoregressive noise models are

most often better noise models than white noise, the spectral shape may vary from series

to series. For example, the sea level residual spectrum at one tide gauge fits well to an

AR(1) model, while the spectrum of one GPS residual time series has the shape of power

law (Doran, 2010 [53]). Choosing the wrong noise model could cause an overestimation or

underestimation of the error variance by a factor of 5 or more (Doran, 2010 [53]). Hughes

and Williams (2010) [54] also point out that the assessment of the statistical error depends

on the amplitude of variability and the assumed shape of noise spectrum. So comparing

regression models that describe GMSL also requires an accurate noise model estimation,

which we suggest is an unsolved problem. In this chapter, however, we suggest a novel

approach to this problem and apply this new method to address the question of whether

accelerating versus non-accelerating regression models for GMSL can be distinguished, and

further, whether different types models in each of these two classes can be separated.

In addition to the problem of not knowing the correct shape of the noise spectrum,

caution must be taken when deriving the noise spectrum from the residual of a regression

model. Applying a regression model to a time series, like subtracting a trend, changes the

temporal correlation structure (Diggle, 1990 [55]). Some variance is removed from the noise

by regression models at frequencies where the regression model has spectral power. This

problem was referred to as overfitting by Doran (2010) [53], who showed that it causes an
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underestimation bias of true noise. Traditional noise models do not address this overfitting

problem.

A nonparametric noise model, taking into account overfitting problem, is developed,

providing basis for regression model comparisons. Data and method are presented in the

next section. Fitting procedures of the nonparametric model are described in detail in

section 2.3, and model performance is compared with a parametric model as well as other

traditional noise models via Monto Carlo simulations, demonstrating the advantages of the

new noise model. In the section 2.4, six regression models predicting reconstructed GMSL

are distinguished by Monto Carlo simulations based on the new nonparametric noise model.

Conclusions and discussions are presented in the last section.

2.2 Data and method

2.2.1 Data

In this study, GMSL reconstructed by Church and White (2011) [1] is used, which is down-

loaded from http://www.cmar.csiro.au/sealevel/sl data cmar.html. The monthly GMSL

time series from 1880 to 2013 was reconstructed by combining tide gauge sea level with

spatial functions estimated from altimeter observed sea level, providing us a sea level record

long enough for studying long-term rate change.

2.2.2 Method

A set of samples of one process is typically composed of signal and noise. Noise could arise

from a variety of sources, like sampling or instrument error, and often is characterized by

spectrum. On one hand, the shape of noise spectrum is unknown. On the other hand, the

temporal correlation structure of noise can be changed by data processing like regression

(Diggle, 1990 [55]) or smoothing. The reduction of noise variance by fitting regression model

is also reported and referred to as overfitting by Doran (2010) [53]. An approach of estimating

11

http://www.cmar.csiro.au/sealevel/sl_data_cmar.html


noise spectrum based on maximum likelihood is developed, with the influence of regression

model on noise taken into account.

2.2.2.1 Maximum likelihood estimate based on noise periodogram

First, we consider the simple case without involving regression models. The Fourier transform

of a random, stationary time series, xn, with a Gaussian distribution, is defined as

G(xn) = Xk + iYk

with

Xk =
∑
n

xncnk

Yk =
∑
n

xnsnk

and cnk, snk are the cosine and sine terms defined by

cnk = cos
2πnk

N

snk = sin
2πnk

N

where n is time index, k is frequency index, and N is data length.

Since a linear combination of normal variables is itself normally distributed (Priestley,

1981 [56]), Xk and Yk are also Gaussian variables. If Xk and Yk have the same variance and

an orthogonality relation that is

Xk = N(0, σ2
k)

Yk = N(0, σ2
k)

cov(Xk, Yk) = 0
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the periodogram, Pk = X2
k + Y 2

k , normalized by the variance has a chi-square distribution,

i.e.

Pk
σ2
k

∼ χ2
2

When k = n
2

and n is even, Yk is equal to zero with zero variance, resulting in

Pk
σ2
k

∼ χ2
1

For simplicity, this situation is nevertheless ignored here because the noise energy at the

highest frequency is so small that it is negligible, and χ2
2 distribution hold at all frequencies.

Given E(Pk) = Sk where Sk is the noise spectrum and mean value of χ2
2 being equal to two,

it follows that

σ2
k =

Sk
2

hence,

2Pk
Sk
∼ χ2

2

It is common to convert periodogram and spectrum into logarithmic form (Lee and Wong,

2003 [57]), and the probability density function (PDF) of lnPk
Sk

is

g

(
ln(

Pk
Sk

)

)
= exp

{
ln(

Pk
Sk

)− Pk
Sk

}
.

Given a PDF, the measure of likelihood or probability of obtaining a set of data could be

approximated as
∏
k

gk∆, where g is PDF and ∆ is a constant that can be ignored. Maximum

likelihood estimates of parameters in PDF are those that maximize the likelihood function,

which is equivalent to minimizing the minus log-likelihood

l = −
∑
k

ln(gk).
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Based on this probability density function, the log-likelihood of log-spectrum is

l(ln(S)) =
∑
k

{
Pk
Sk
− ln(

Pk
Sk

)

}
.

which is the merit function consistent with that described by Ruddick et al.(2000) [58]. Given

noise periodogram P , spectrum S is estimated by minimizing the merit function l(ln(S)).

2.2.2.2 Maximum likelihood estimate based on Fourier coefficients of model residual

Since our knowledge of background noise is usually retrieved from the residual of regression

model, now we consider the case involving regression models. In matrix form, one regression

model can be expressed as

Z = AL+ E

where Z is observation vector with elements of xn, A is regression matrix, L is regression

coefficient vector, and E is noise vector. In addition to true signals, part of noise variance

is treated as signal and removed by regression. To utilize Doran’s (2010) [53] derivation

of spectrum estimation from residual spectrum, an arbitrary linear regression matrix, A, is

orthogonalized by Gram-Schmit process into an matrix Q times an upper triangular matrix

R. Regression model becomes

Z = QRL+ E = QB + E

where B is regression coefficient vector when regression matrix is Q, and can be transformed

back to L by L = R−1B. The resulting residual x̂n of the regression model that is elements

in E, is written as

x̂n = xn −
∑
i

βifni,
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where βi are errors of fit coefficients in B, and fni are orthonormal basis functions in Q. The

Fourier transform of x̂n is written as

G(x̂n) = X̂k + iŶk

where X̂k and Ŷk are defined by the same way as Xk and Yk.

Fitting regression model to noise not only reduces power spectrum density at frequencies

where the regression model has impacts, but also changes covariance of X̂k, Ŷk. For instance,

the trend model has the biggest influence at the lowest frequency, and 2Pk
Sk

at that frequency

no longer follows χ2 distribution.

Doran (2010) [53] developed a relationship between the residual spectrum Ŝk and the

true noise spectrum Sk, written as

Ŝk = Sk +
1

N2

∑
p

Sp
∑
i

∑
j

Sijk S
ij
p −

2

N
Sk
∑
i

Siik

where i, j are basis function index, p is also frequency index and

Sijk = Re(FkiF
∗
kj)

Siik = FkiF
∗
ki

where F is Fourier transform of basis function f , and is defined by the same way as G; asterisk

symbol represents complex conjugate. Doran applied an iteration method to estimate Sk

from Ŝk but with some errors.

Here a solution with a compact form is given. Define Ŝ ≡ [Ŝ1 Ŝ2 · · · Ŝ2]T , S ≡

[S1 S2 · · · Sk]
T , and C a symmetric k × k matrix with elements

Ckp ≡ [1− 2

N

∑
i

Siik ]δkp +
1

N2

∑
i

∑
j

Sijk S
ij
p
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where δkp is the Kronecker delta defined as

δkp =


1 k = p

0 k 6= p

This allows us to write

Ŝ = CS

and thus

S = C−1Ŝ

assuming that the inverse exists.

Figure 2.1 demonstrates an example of how S and Ŝ are related. 10000 surrogate data

are generated from a power-law noise, and a linear trend model is fitted to these data. The

residual spectrum is estimated as the mean of the 10000 residual periodogram. It is apparent

to see a lowered energy at the lowest frequency. The reduced variance in residual spectrum

is successfully recovered by multiplying Ŝ with the inverse of C determined by the linear

trend model.

Here two features are noticed. First, the residual and true spectrum are smooth and

represented by expectation values of periodogram. One residual periodogram could also be

corrected for overfitting by this relationship, but the correction is unstable with some negative

values generated owing to noisy features of periodogram. The iteration method proposed by

Doran (2010) [53] can give an approximate correction to the residual periodogram that is

less accurate but stable. Second, if harmonic terms are included in a regression model, the

correction is unstable because the inverse of C tends to be singular.

Because realizations of background noise, xn, are random and independent from each

other, Fourier transforms of fitted signal and residual are also random and independent.

Since Fourier coefficients of noise, Xk and Yk, are Gaussian variables, Fourier coefficients of

fitted signal and residual are also Gaussian distributed. The Gaussian distribution is further
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Figure 2.1: Power-law spectrum (black line), residual spectrum (blue line) from residuals of
a linear trend model and corrected spectrum (red line) .

verified by Monte Carlo simulations. Seven regression models are fitted to 1000 realizations

of 100-point noise generated from a noise model. The Fourier coefficients of residuals of

the seven regression models are tested against the hypothesis that they follow the Gaussian

distribution by using Kolmogorov-Smirnov (KS) test, Lilliefors test, Jarque-Bera test, and

Shapiro-Wilk test. The null hypothesis is that the distribution shape of X̂k or Ŷk has a

Gaussian shape, and the hypothesis is tested for X̂k and Ŷk separately. Additionally, the

true noise realizations are tested against the Gaussian distribution for comparison. Red bars

in Figure 2.2 and 2.3 show the cases that the hypothesis is rejected for the residual but not

rejected for the true noise. Only few cases failed to pass the tests. Fourier coefficients of
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model residual, X̂k and Ŷk, both follow Gaussian distribution at significance level of 5%.

Royston’s and Henze-Zirkler’s multivariate normality tests further demonstrate that the real

and imaginary parts of Fourier coefficients at each frequency derived from the residuals have

a bivariate normal distribution at significance level of 5% (Figure 2.4). Figure 2.4, same as

Figure 2.2 and 2.3, shows the cases that the bivariate normality hypothesis is rejected for the

residual but is not rejected for the true noise, indicating that X̂k and Ŷk follow a bivariate

distribution.

These tests verify that X̂k and Ŷk both follow Gaussian distribution and they follow

bivariate normality distribution with their variance and covariance shown as:

X̂k = N(0, σ2
X̂k

)

Ŷk = N(0, σ2
Ŷk

)

cov(X̂k, Ŷk) 6= 0

Next we derive expressions relating variance and covariance of X̂k and Ŷk to the background

noise spectrum, Sk.

Taking Fourier transform of the residual gives

G(x̂n) = G(xn)−
∑
i

βiFki

where Fki is the Fourier transform of fni. This is equivalent to:

X̂k = Xk −
∑
i

βi Re(Fki)

Ŷk = Yk −
∑
i

βi Im(Fki)
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Figure 2.2: Gaussian distribution test of real part of Fourier transforms of 7 regression model
residuals with four methods: KS test, Lilliefors test, Jarque-Bera test, and Shapiro-Wilk test.
Red bars denote rejection of the null hypothesis.

Taking square on both sides of the two equations and multiplication of the two equations

respectively yield

X̂2
k = X2

k − 2Xk

∑
i

βi Re(Fki) +
∑
i

∑
j

βiβj Re(Fki) Re(Fkj)

Ŷ 2
k = Y 2

k − 2Yk
∑
i

βi Im(Fki) +
∑
i

∑
j

βiβj Im(Fki) Im(Fkj)

X̂kŶk = XkYk −Xk

∑
i

βi Im(Fki)− Yk
∑
i

βi Re(Fki) +
∑
i

∑
j

βiβj Re(Fki) Im(Fkj)
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Figure 2.3: Same as Figure 2.2 but for imaginary part of Fourier transforms.

Expectation values, E[X̂2
k ], E[Ŷ 2

k ], and E[X̂kŶk], are variance and covariance, i.e.

σ2
X̂k

= E[X̂2
k ]

σ2
Ŷk

= E[Ŷ 2
k ]

σX̂kŶk = E[X̂kŶk]
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Figure 2.4: Multivariate normality test of Fourier transforms of 7 regression model residuals
with two methods: Royston test, Henze-Zirkler test. Red bars denote rejection of the null
hypothesis.

where σX̂kŶk denotes the covariance, cov(X̂k, Ŷk).

We have already known that

E[X2
k ] = E[Y 2

k ] = σ2
k =

Sk
2

E[XkYk] = 0

By taking expectation for the three equations, it follows that

σ2
X̂k

=
Sk
2
− 2

∑
i

E[Xkβi] Re(Fki) +
∑
i

∑
j

E[βiβj] Re(Fki) Re(Fkj)

σ2
Ŷk

=
Sk
2
− 2

∑
i

E[Ykβi] Im(Fki) +
∑
i

∑
j

E[βiβj] Im(Fki) Im(Fkj)

σX̂kŶk = −
∑
i

E[Xkβi] Im(Fki)−
∑
i

E[Ykβi] Re(Fki) +
∑
i

∑
j

E[βiβj] Re(Fki) Im(Fkj)

According to Doran’s derivation, the three following equations hold.

E[Xkβi] =
1

N
Sk Re(Fki)

E[Ykβi] =
1

N
Sk Im(Fki)

E[βiβj] =
1

N2
SkS

ij
k
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Substituting them into the variance and covariance equations gives

σ2
X̂k

=
Sk
2
− 2

N
Sk
∑
i

Re(Fki) Re(Fki) +
1

N2

∑
p

Sp
∑
i

∑
j

Re(Fki) Re(Fkj)S
ij
p

σ2
Ŷk

=
Sk
2
− 2

N
Sk
∑
i

Im(Fki) Im(Fki) +
1

N2

∑
p

Sp
∑
i

∑
j

Im(Fki) Im(Fkj)S
ij
p

σX̂kŶk = − 2

N
Sk
∑
i

Re(Fki) Im(Fki) +
1

N2

∑
p

Sp
∑
i

∑
j

Re(Fki) Im(Fkj)S
ij
p

Define σ2
X̂
≡ [σ2

X̂1
σ2
X̂2

· · · σ2
X̂k

]T , σ2
Ŷ
≡ [σ2

Ŷ1
σ2
Ŷ2
· · · σ2

Ŷk
]T ,

σX̂Ŷ ≡ [σX̂1Ŷ1
σX̂2Ŷ2

· · · σX̂kŶk ]
T as variance and covariance vectors. CX̂ , C Ŷ , CX̂Ŷ are

square matrices with elements

CX̂
kp = [

1

2
− 2

N

∑
i

Re(Fki) Re(Fki)]δkp +
1

N2

∑
i

∑
j

Re(Fki) Re(Fkj)S
ij
p

C Ŷ
kp = [

1

2
− 2

N

∑
i

Im(Fki) Im(Fki)]δkp +
1

N2

∑
i

∑
j

Im(Fki) Im(Fkj)S
ij
p

CX̂Ŷ
kp = [− 2

N

∑
i

Re(Fki) Im(Fki)]δkp +
1

N2

∑
i

∑
j

Re(Fki) Im(Fkj)S
ij
p

Then we obtain

σ2
X̂

= CX̂S

σ2
Ŷ

= C Ŷ S

σX̂Ŷ = CX̂Ŷ S

X̂ and Ŷ have a bivariate normal distribution with PDF

f(X̂k, Ŷk) =
1

2πσX̂kσŶk

√
1− ρ2

k

exp

{
−1

2(1− ρ2
k)

[
X̂2
k

σ2
X̂k

+
Ŷ 2
k

σ2
Ŷk

− 2ρk
X̂kŶk
σX̂kσŶk

]}

where ρk is correlation

ρk =
σX̂kŶk
σX̂kσŶk
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The PDF also can be written as

f(X̂k, Ŷk) =
1

2π|Λ| 12
exp

−1

2

X̂k

Ŷk

Λ−1

[
X̂k Ŷk

]

where covariance matrix Λ =

 σ2
X̂k

ρkσX̂kσŶk

ρkσX̂kσŶk σ2
Ŷk

 is positive definite, |Λ| is its determi-

nant, and σX̂k > 0, σŶk > 0, |ρ| ≤ 1.

The minus log-likelihood based on the bivariate normal distribution is

l = −
∑
k

ln(fk)−
∑
k

ln(∆)

= −
∑
k

ln(∆) +
∑
k

ln(2π) +
1

2

∑
k

{
ln(σ2

X̂k
σ2
Ŷk
− σ2

X̂kŶk
) +

X̂2
kσ

2
Ŷk

+ Ŷ 2
k σ

2
X̂k
− 2X̂kŶkσX̂kŶk

σ2
X̂k
σ2
Ŷk
− σ2

X̂kŶk

}
.

Neglecting the first two terms that are constant and the constant factor of the last term

on the right hand side, the minus log-likelihood is simplified as

l =
∑
k

{
ln(σ2

X̂k
σ2
Ŷk
− σ2

X̂kŶk
) +

X̂2
kσ

2
Ŷk

+ Ŷ 2
k σ

2
X̂k
− 2X̂kŶkσX̂kŶk

σ2
X̂k
σ2
Ŷk
− σ2

X̂kŶk

}
.

Substituting the equations of σ2
X̂k

, σ2
Ŷk

, and σX̂kŶk related to noise spectrum into the equation

of l yields

l =
∑
k

{
ln([CX̂

k S][C Ŷ
k S]− [CX̂Ŷ

k S]2) +
X̂2
k [C Ŷ

k S] + Ŷ 2
k [CX̂

k S]− 2X̂kŶk[C
X̂Ŷ
k S]

[CX̂
k S][C Ŷ

k S]− [CX̂Ŷ
k S]2

}
. (2.1)

This result is a generalization of section 2.2.2.1 in the sense that, if there is no fitting,

i.e. Xk and Yk have the same variance equal to S
2

and correlation between them is zero, then

one retrieves the result of log-likelihood of log-spectrum in section 2.2.2.1.

23



2.3 Procedures of maximum likelihood estimation of noise spectrum and simulation tests

First, a parametric model that combine white noise, power-law noise, and AR(1) noise is

described by a function with six parameters:

St = S0(r1 ∗ Sw + r2 ∗ Spl(ν) + r3 ∗ Sar1(ρ)) (2.2)

where S0 is amplitude, r1, r2, r3 are proportion parameters for each component, ranging

from 0 to 1 and constrained by r1+r2+r3 = 1; St is the true spectrum; Sw is the normalized

white noise spectrum; Spl is the normalized power-law spectrum as a function of log-spectrum

slope, ν; Sar1 is the normalized AR(1) spectrum as a function of first order parameter, ρ.

This parametric model 2.2 is used to generate six types of noise (Table 2.1). Additionally,

the parametric model 2.2, anticipated to be capable of comprehensively characterize the

generated noise, will be fitted to these realizations to estimate the true spectrum. A new

nonparametric model of spectrum is proposed and will be compared with the parametric

one. Details of the two spectrum models and their fitting procedures will be described in

the following sections.

If no regression model is involved, noise spectrum is estimated by minimizing the merit

function with CX̂ , C Ŷ being 0.5 times identity matrix, and CX̂Y being zero matrix. If one

regression model is fitted to a time series, noise spectrum is estimated from the residual of

regression model with matrix C, CX̂ , C Ŷ , and CX̂Y in the merit function determined by the

regression matrix. Because zero variance of periodogram is not allowed in the merit function,

the frequencies at which nearly no energy is left are not considered in the fitting procedure.

As a result, the frequencies where

∣∣∣∣∣∑
p

Ckp

∣∣∣∣∣ < 10−6

are not considered in the merit function.
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In practice, it is common to preprocess raw data, for example, by smoothing, which

tends to change spectrum features. The scenario that data is smoothed with 7-point moving

average is considered to examine how smoothing changes model performance. Goodness of

fitted spectrum with respect to the true spectrum are measured by root mean squared error

(RMSE), which is defined by:

RMSE =

√√√√〈{Sfit(k)− St(k)

St(k)

}2
〉

where angle bracket denotes taking average over realizations. RMSE represents the extent

to which fitted spectrum deviates from true spectrum.

Table 2.1: Noise types for simulation tests

Noise type Noise parameters
r1, r2, r3, ν, ρ are randomly drawn from uniform distribution

Random for each realization.
0 <= r1, r2, r3 <= 1, −1.5 <= ν <= −0.5, 0.8 <= ρ <= 0.95

White noise
White r1 = 1, r2 = r3 = 0

Power-law noise
PL05 r1 = r3 = 0, r2 = 1, ν = −0.5

Power-law noise
PL15 r1 = r3 = 0, r2 = 1, ν = −1.5

AR(1) noise
AR108 r1 = r2 = 0, r3 = 1, ρ = 0.8

AR(1) noise
AR1095 r1 = r2 = 0, r3 = 1, ρ = 0.95

2.3.1 Nonparametric model

A nonparametric model with monotonic and smooth shape is presented, and detailed pro-

cedures of estimating noise spectrum with the nonparametric model are described in this

section.
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2.3.1.1 Genetic algorithm

Since no analytical solution of spectrum exists, noise spectrum will be estimated by minimiz-

ing the merit function with genetic algorithm in natural logarithm space. The nonparametric

model is a monotonic cubic spline calculated with Fritsch and Carlson’s algorithm (1980)

[59]. Spectrum values at spline knots are unknown parameters bounded by assigned upper

and lower boundaries. Upper boundary is the maximum value of periodogram, and lower

boundary is the minimum value of periodogram smoothed by five-point moving average. If

regression model is involved, these upper and lower boundaries are from the residual peri-

odogram corrected for overfitting with Doran’s (2010) [53] iteration method. 5000 guesses of

monotonic spline values at the spline knots are randomly generated from a uniform distribu-

tion within the given boundaries to yield spline function values at all frequencies. They are

used in the calculation of the merit function, keeping the 20% guesses possessing the least

merit function values. Then a new upper and lower boundary of spectrum are determined

from these survived guesses. This process is repeated until spline values at the knots reach

the criteria that ranges of spline values are less than 1‰of initial ranges. The final estimated

noise spectrum is the one that minimize the merit function.

2.3.1.2 Knots selection

To find a proper knot number of spline, one million spectrum curves with 50 and 500 frequen-

cies are generated using function 2.2 by randomly drawing parameters, r1, r2, r3 between 0

and 1, ν between -2 and 0, ρ between 0.5 and 0.99, from a uniform distribution. Monotonic

cubic splines with 2 to 6 knots evenly located at log-frequency are fitted to these monoton-

ically descending curves. Because the spline with more knots has a more flexible shape to

match the true curve, the mean fitting error over all frequencies decreases with knot number.

When the spline comprises two knots taking a shape of straight line in logarithmic space,

most of the fitted curve have an error larger than 10% of the true. When the knot number

is equal to or larger than 5, the error is smaller than 10% for all the curves with 50 frequen-
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cies, and for more than 99% of the curves with 500 frequencies. To compromise between a

smooth curve with small degree of freedom and small fitting error, five knots are chosen for

this nonparametric model.

Although the five evenly spaced knots at log-frequency are able to account for spectrum

variations at low frequency part, only two and four Fourier frequencies are located between

the first two knots for spectrum curves with 50 frequencies and 500 frequencies, respectively.

Knot positions should be adjusted to include an appropriate number of Fourier frequencies in

the low frequency band for a more accurate spectrum estimation. One knot position scheme

at log-frequency space, with a parameter δ, is designed as

knot = ln(
N

2
) ∗ [0, 0.25 + δ, 0.5 +

δ

2
, 0.75 +

δ

4
, 1]− ln(N)

where δ represents deviation of inner knots from the evenly spaced inner knots, and will be

determined by a set of numerical simulations.

1000 realizations of time series are generated for each type of noise listed in Table 2.1.

In this numerical experiment, no regression model is involved with CX̂ , C Ŷ equal to 0.5 times

identity matrix, and CX̂Y being zero matrix. A set of δ value, [0, 0.05, 0.1, 0.15, 0.2, 0.25],

representing the amount of adjustment of the second knot position that varies from the sec-

ond to third evenly spaced knot, is explored for the knot position scheme. Figure 2.5 and 2.6

show RMSE at the first frequency for cases with data length of 100 and 1000, respectively.

RMSE decreases with increasing value of δ for some noise types like white and power-law

noise, stays nearly unchanged with δ value larger than 0.15 for the AR(1) noise with data

length of 100, or increases with δ for AR1095 noise with data length of 1000. Based on these

results, a moderate value of δ, 0.125, is chosen for the knot position scheme.
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Figure 2.5: RMSE at the first frequency with different δ value representing different knot
schemes; data length is 100.
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Figure 2.6: Same as Figure 2.5, but data length is 1000.
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2.3.2 Parametric model

The fitting procedure of the parametric model is described as follows. Similar to the non-

parametric model, five unknown parameters in the parametric model are solved by genetic

algorithm with the searching range of r1, r2, r3 from 0 to 1, ν from -2.5 to 0, and ρ from 0

to 1. By solving the normal equation,

dl

dS0

= 0

we can obtain

S0 = 0.5 ∗
∑
k

w(k)

{
X̂2
k [C Ŷ

k S1] + Ŷ 2
k [CX̂

k S1]− 2X̂kŶk[C
X̂Ŷ
k S1]

[CX̂
k S][C Ŷ

k S]− [CX̂Ŷ
k S]2

}/∑
k

w(k).

where S1 = r1∗Sw + r2∗Spl(ν)+ r3∗Sar1(ρ), w(k) is a weight function described below. To

be consistent with the nonparametric model, spectrum obtained by fitting parametric model

is constrained by the upper and lower boundary of periodogram.

2.3.3 Weighted fitting

As low frequency bands are most critical, the merit function in 2.2.2.2 is multiplied by a

weight function defined by

w(k) = ln(
k + 1

k
)

where k is frequency index. The weight function is designed to give more weight to low

frequency band and less weight to high frequency band. This weight function gives ap-

proximately equal weight to each log-frequency bin evenly split. The merit function to be

minimized for spectrum estimation follows

l =
∑
k

w(k)

{
ln([CX̂

k S][C Ŷ
k S]− [CX̂Ŷ

k S]2) +
X̂2
k [C Ŷ

k S] + Ŷ 2
k [CX̂

k S]− 2X̂kŶk[C
X̂Ŷ
k S]

[CX̂
k S][C Ŷ

k S]− [CX̂Ŷ
k S]2

}
.

(2.3)
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The impact of weighting on spectrum fitting is illustrated in a number of simulations.

Realizations of the six types of noise are generated, and spectrum is estimated by minimizing

merit function 2.1 and 2.3 respectively with both parametric and nonparametric model.

Weighting has more influence on the parametric model for all types of noise. Figure 2.7

shows error comparison for the case of AR1095 noise, demonstrating smaller error at low

frequencies and higher error at high frequencies when weighted merit function 2.3 is used.

The performance of the parametric model changes because more weights are put at low

frequencies and the parametric model is likely sensitive to weight changes. Because the

noise energy is larger at low frequencies, the low frequencies are more important and are

the focus of this study. So we still prefer the weighted fitting of spectrum that gives smaller

error at low frequencies even though higher errors are found at high frequencies in some

noise cases. The error of fitted spectrum changes less than 0.1 at all the frequencies for the

nonparametric model. The scenarios that data smoothing or regression is involved are also

investigated. Regression models are listed in table 2.2 in the next section. Figure 2.8 and

2.9 shows similar error reduction at low frequency part except the first frequency for the

parametric model when either smoothing or regression model is used for data processing.

When both smoothing and regression are applied to time series, the nonparametric model

with imposed weight has smaller error at low frequencies than the fitting without weighting

(Figure 2.10). The large spikes in Figure 2.8 and 2.10 are related to the average smoothing

because the average smoothing causes spectrum wiggles at some high frequencies but the

modeled spectrum is monotonic. Since our focus is on the low frequencies in this study,

the spectrum estimation in the following sections is based on minimizing the weighted merit

function 2.3.

31



Figure 2.7: RMSE of fitted spectrum using merit function without (Blue) and with (Red)
weight for parametric and nonparametric model. Dashed red line denotes knot position.

Figure 2.8: Same as Figure 2.7, but time series is smoothed with 7-point moving average.

2.3.4 Simulation tests of spectrum models

The new nonparametric model is going to be tested and compared with the parametric model

by means of Monte Carlo simulations. Both parametric and nonparametric models are fitted

to the Fourier coefficients of time series in cases without and with regression.

2.3.4.1 Cases without regression

If no regression model is involved, CX̂ , C Ŷ are 0.5 times identity matrix, and CX̂Y is zero

matrix in the merit function 2.3, which is equivalent to that described in section 2.2.2.1.
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Figure 2.9: Same as Figure 2.7, but spectrum is estimated from residual of linear trend
model.

Figure 2.10: Same as Figure 2.7, but time series is smoothed with 7-point moving average
and spectrum is estimated from residual of linear trend model.

Few nonparametric noise models are available, one of which is Ebisuzaki model [60]. The

error and mean value of spectrum estimated by the parametric and nonparametric model are

exhibited together with those of periodogram used by Ebisuzaki for the six types of noise.

Periodogram has error as big as true noise spectrum itself, which is expected from the fact

that periodogram follows χ2
2 distribution.

When no smoothing is applied to data, the nonparametric model exhibits error less

than 50% except at the first frequency where error could reach as large as 80%. Error of
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Figure 2.11: RMSE and mean spectrum from parametric (Blue), nonparametric model (Red),
and Ebisuzaki model (Green). The mean value of true spectrum is represented by black line.
Dashed red line denotes knot position.
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Figure 2.11: Continued.
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the nonparametric model is consistent among all types of noise, having a decreasing trend

from low to high frequency with wiggles around spline knots (Figure 2.11). The difference

between the mean fitted spectrum and the true spectrum is an estimate of the bias error.

The parametric model has comparable performance as the nonparametric model at the low

frequency band and provides a level of model performance that the nonparametric model

can achieve at best. Nevertheless, the parametric model is more sensitive to the weighting

function of merit function in that, spectrum fitting at high frequencies is greatly affected by

the merit function value at low frequencies, and vice versa. Large error and bias appear at

high frequencies in cases of extremely red noise such as PL15 and AR1095. This experiment

indicates that, at low frequencies, the nonparametric model is as good as the parametric

model from which time series of noise are drawn, and have better performance for some

types of noise at high frequencies in the situation when less weight is assigned to high

frequencies.

When smoothing is used in data processing, spectrum characteristics are modified, with

reducing variance at high frequencies. The Ebisuzaki model still has a uniform error of

approximately 100% at all frequencies. As the spectrum response function of the 7-point

smoothing fluctuates at high frequencies and is close to zero at some frequencies, the non-

parametric and parametric models that are monotonic gives large error at frequencies larger

than about 0.1 (Figure 2.12). Since the low frequency part is most critical for statistical

analysis and is the focus of this study, the error at high frequencies is not regarded as a

serious concern. In this experiment, our attention is on the relatively low frequencies smaller

than around 0.1. Because the shape of spectrum is modified by smoothing, error of the

parametric model gets larger than those in cases without data smoothing. In contrast, the

nonparametric model can deal with shape change of spectrum with a performance as good

as that in cases without data smoothing and have smaller error than parametric model in

many frequencies, for example, between the second and third knot. This experiment shows

36



Figure 2.12: Same as Figure 2.11, but time series is smoothed with 7-point moving average.
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Figure 2.12: Continued.
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the advantage of nonparametric model against the parametric model in the ability of flexibly

adjusting spectrum shape in a frequency bin without greatly affecting fitting in other bins.

2.3.4.2 Cases with regression

In experiments with regression, two regression models listed in Table 2.2 are fitted to noise

realizations. The nonparametric and parametric model are fitted to Fourier coefficients of

residual of regression model.

Table 2.2: Two regression models for the test

Model 1 y = a+ bt
Model 2 y = a+ bt+ ct2

Residual periodogram used in Ebisuzaki model shows reduced energy at the first fre-

quency (Figure 2.13, 2.14), which is the overfitting by regression model. Residual peri-

odogram error at the first few frequencies is smaller than 1 in all cases with regression,

confirming the change of periodogram distribution. The new noise models taking into ac-

count the change of periodogram distribution can recover the lost energy back, although it

gives rise to larger error at the first frequency that can reach more than 100%. Without

data smoothing, the nonparametric model is as good as the parametric model at the low

frequency part. When data smoothing is involved, the nonparametric model outperforms

parametric model for most types of noise with the evidence of smaller RMSE and better

match between fitted and true spectrum at some low frequencies(Figure 2.15; 2.16).

Noise spectrum plays an important role in statistical analysis, for instance, in estimat-

ing uncertainties of regression coefficients. One traditional way of calculating variance of

regression coefficients is through Monte Carlo simulations, specifically, by fitting regression

model to time series that is generated based on noise spectrum and taking variance of these

obtained coefficients. A new way was proposed by Doran (2010) [53] who derived a formula

relating variance of regression coefficients of orthonormal basis functions to Fourier transform
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Figure 2.13: Same as Figure 2.11, but regression model 1 is fitted to time series.
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Figure 2.13: Continued.
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Figure 2.14: Same as Figure 2.11, but regression model 2 is fitted to time series.
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Figure 2.14: Continued.
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Figure 2.15: Same as Figure 2.11, but regression model 1 is fitted to smoothed time series.
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Figure 2.15: Continued.
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Figure 2.16: Same as Figure 2.11, but regression model 2 is fitted to smoothed time series.
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Figure 2.16: Continued.
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of basis functions and noise spectrum. Variance of coefficients for regular linear regression

is transformed back from that for orthonormal regression model by

E[(L− L̄)(L− L̄)T ] = E[(R−1B −R−1B̄)(R−1B −R−1B̄)T ]

= E[(R−1(B − B̄)(B − B̄)(R−1)T ]

= R−1E[βiβj](R
−1)T

=
1

N2
R−1(

∑
k

SkS
ij
k )(R−1)T

where R is the triangular matrix produced during orthogonalization of regression matrix as

shown in section 2.2.2.2; Sk is spectrum at each frequency; Sijk is the term related to Fourier

transform of the orthonormal basis functions; the variance of coefficient is obtained when

i = j and the covariance between coefficients is obtained when i 6= j.

In this simulation test, coefficient variances of two linear models listed in Table 2.2

are calculated by substituting spectrum estimated with the nonparametric and parametric

model into this formula. For the purpose of comparison, two conventional spectrum models,

power-law and AR(1) model, are fitted to the residual of regression model, and the coef-

ficient variances are estimated by means of Monte Carlo simulations. Standard deviation

of coefficient that is square root of variance is examined in the following analysis. Loga-

rithm of RMSEs of coefficient standard deviation derived from the new and traditional noise

models are displayed for the six types of noise in Figure 2.17. Power-law model only has

good performance for power-law and white noise, while gives large error for AR(1) noise.

In contrast, AR(1) model has good performance for AR(1) and white noise, but gives large

error for power-law noise. Performances of power-law and AR(1) noise model depend on

true noise type that is not known in most circumstances. The new parametric, nonparamet-

ric and Ebisuzaki model show a stable error regardless of noise type. When smoothing is

used before fitting a regression model, power-law and AR(1) model have worse performances
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for most cases because the noise features have already been modified by smoothing (Figure

2.18). The new noise models and Ebisuzaki model still stay at a relatively stable error level.

Error ratio of nonparametric model to parametric model is close to one, suggesting a

comparable performance (Figure 2.19). With data smoothing, nonparametric model is still

as good as and even better than parametric model in some cases. Error ratio of nonparametric

model to Ebisuzaki model is smaller than 1 for all cases (Figure 2.20), implying that the

nonparametric model gives more accurate estimate of coefficient uncertainty owing to smaller

error of spectrum at most frequencies and the ability of taking into account the reduced

variance by overfitting.

In summary, although the spectrum estimated with the nonparametric model has rela-

tively large error at the first frequency, the nonparametric model shows its advantage over

conventional models in better dealing with different noise characteristics and recovering the

reduced energy induced by regression’s overfitting. This nonparametric model will be applied

to distinguish regression models predicting the reconstructed GMSL.

2.4 Distinguishing between regression models used for reconstructed GMSL

GMSL reconstructed from historical tide gauge data has shown a rising sea level since the

late 19th century but with a possibly nonuniform rate across this period. A number of

regression models have been chosen in previous studies for detecting sea level rising signals,

making different conclusions on how sea level changed in the long term (e.g. Church and

White, 2011 [1]; Chambers et al., 2012 [40]; Woodworth et al., 2009 [38]). Here, six different

models, including a linear trend (Model 1), quadratic trend (Model 2), linear trend plus a

harmonic oscillation (Model 3), stepwise trends (Model 4, 5), and exponential trend (Model

6) are explored to investigate the GMSL time series (Table 2.3). In model 3, T is unknown

period ranging from 5 to 80 years. In model 4, T1 and T2 are unknown times when sea

level trend could change, and are bounded between 1920 and 1940, between 1970 and 2000,

respectively. In model 5, three rate changes happen at T1, T2, and T3 that are unknown
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Figure 2.17: Logarithm of RMSE of coefficient standard deviation estimated from five noise
spectrum models for six types of noise.
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Figure 2.18: Same as Figure 2.17, but time series is smoothed with 7-point moving average.
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Figure 2.19: RMSE ratio of nonparametric model to parametric model.
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Figure 2.20: RMSE ratio of nonparametric model to Ebisuzaki model.
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but between 1920 and 1940, between 1950 and 1970, between 1980 and 2000, respectively.

Every temporal segment separated by T1, T2, or T3 in model 4 and 5 is designed to be

equal to or larger than 15 years. The six models are fitted to the GMSL reconstructed by

Church and White (2011) [1], as shown in Figure 2.21. These models capture the rising

trend but differ in how the rising rate changes with time. Model 2 gives an acceleration of

0.012 mm/yr2; model 3 shows an oscillation with period of 57 years superimposed on a linear

trend; In model 4, sea level trend changed from 1.1 mm/yr to 1.7 mm/yr at 1933 and then

to 3.9 mm/yr at 1999; model 5 shows an increased rate at 1937, a decreased rate at 1952,

and an increased rate at 1998; model 6 demonstrates an acceleration as well. The residual

variance from model 1 to 6 is 136.6 mm2, 66.2 mm2, 112.1 mm2, 49.8 mm2, 48.4 mm2, and

63.6 mm2 respectively, showing that model 5 accounts for the most variance of long-term

sea level change and is close to model 4, that model 2 is as good as model 6, and that model

1 (linear trend) is the worst among the six models. Different models will have considerably

different predictions of future sea level. It is therefore critical to ask whether these model

differences are significant. We address this question using the novel noise model that we

have developed.

The nonparametric noise model that we have developed in the previous sections has been

shown to have advantages over conventional methods. It can therefore serve to provide an

accurate estimate of background noise for comparisons of sea level models and to help us

identify which model accounts for the most variance. Nevertheless, one caveat of this noise

model is that regression models when involved in data processing should be linear. Model

3, 4, 5, and 6 used in our study are, however, nonlinear models. Here, we first estimate

regression coefficients, and then make the nonlinear regression model linear by substituting

fitted parameters into it, so that noise spectrum can be estimated in cases with either linear

or nonlinear regression models. This is essentially a generalization of our noise model from

linear to nonlinear regression models.
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Noise spectra estimated from the residuals of all six models are displayed in Figure 2.22.

Model 1 and 3 show similar spectrum, while model 2, 4, 5 and 6 give similar estimates.

Consistent with the smaller residual variances, spectra estimated from the residuals from

models 2, 4, 5 and 6 have smaller variances than those derived from the residual of model 1

and 3. The reason is that models 1 and 3 may treat part of the signal as noise, resulting in

an overestimation of the true noise.

Table 2.3: Regression models for GMSL

Model 1 y = a+ bt
Model 2 y = a+ bt+ ct2

Model 3 y = a+ bt+ c cos
(

2πt
T

)
+ d sin

(
2πt
T

)
Model 4 y =


a+ bt; t ≤ T1

a+ bt+ c(t− T1); T1 < t < T2

a+ bt+ c(t− T1) + d(t− T2); t ≥ T2

Model 5 y =


a+ bt; t ≤ T1

a+ bt+ c(t− T1); T1 < t < T2

a+ bt+ c(t− T1) + d(t− T2); T2 < t < T3

a+ bt+ c(t− T1) + d(t− T2) + e(t− T3); t ≥ T3

Model 6 y = y0 + a exp(bt)

A total of 15 model pairs from the six sea level models are compared via Monto Carlo

simulations. For any two models being compared, the noise spectrum with the least residual

variance of the two models is used to generate noise realizations. Choosing the noise spec-

trum in this way reduces the potential of underestimating the underlying true signal. Since

our noise model can consider the overfitting but not the underestimation of the regression

signal, the noise spectrum with the least residual variance should be closer to the true one.

The two models in any given pair are fitted to the noise realizations, and then the variance of

model difference obtained from each noise realization is computed. Histogram of variances of

the model difference obtained by simulations is shown with the observed value (Figure 2.23).

Model 1 is significantly different from other models except model 3, suggesting the existence

of an acceleration in the long-term GMSL rate. Model 2 is significantly different from all
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Figure 2.21: Reconstructed GMSL and fitted sea level with six models.
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Figure 2.22: Noise spectrum estimated from the residual of six sea level models.

other models except model 6, indicating that we can not distinguish between quadratic and

exponential change in the reconstructed GMSL. The quadratic and exponential models ac-

count for nearly the same sea level variance but deviate away from each other in the future

prediction. Longer time series are needed to distinguish the two models. Model 3 is signif-

icantly different from other models except model 1, showing that the reconstructed GMSL

may not have a harmonic oscillation. Model 4 with two rate changes is not significantly

different from model 5 with three rate changes, but is different from other models. Stepwise

change of sea level rising rate can significantly explain more sea level variance than other

models. Model 5 and 6 can not be distinguished at the 5% significance level.
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Figure 2.23: Histogram of simulated variances of model difference between every model pair;
the observed value is denote by red line.

2.5 Conclusion and Discussion

GMSL has been rising since the late 19th century, owing to increased heat content stored

in the ocean and water transfer from glaciers and ice sheets to the ocean. The rising rate

is probably not constant through the period with instrumental sea level observation, but
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Figure 2.23: Continued.

determining this from data and models is not established. Different models implicate distinct

physical processes and would lead to dramatically different predictions of future sea level

change. Hence, distinguishing between these different sea level models is necessary, but this

depends on an accurate estimation of the background noise.

In most circumstances, noise characteristics are unknown and may be modified by data

processes such as regression or smoothing. When no regression model is fitted to time series,

the noise periodogram follows a χ2
2 distribution. When a regression model is involved, we

show that the Fourier coefficients of the model residual follow a bivariate normal distribution,

which allows us to derive a maximum likelihood estimator for the noise spectrum. A more

general form of merit function incorporating the influence of regression model is derived

with the noise spectrum being the only unknown parameter. A nonparametric noise model

is proposed to estimate the noise spectrum by minimizing the weighted merit function.
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Figure 2.23: Continued.

The (simplified) result of these calculations is that these results indicate that we can

distinguish between accelerating and non-accelerating solutions, with the accelerating solu-

tion being better fits to the data, but we cannot distinguish between different accelerating

models.

Although the nonparametric model outperforms the parametric and other conventional

models on average, the error at the the first few frequencies is still large and in some cases can
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reach more than 100% at the first frequency. The relatively large error may come from several

sources. First, the spectrum fitting in the first frequency bin depends on a limited number

of Fourier frequencies. Another possible error source comes from the distorted estimation of

the covariance matrix Λ embodied in the probability density function described in section

2.2.2.2. The covariance matrix of the Fourier coefficients is related to the noise spectrum and

has two dimensions and one sample size at each frequency, giving rise to a ratio of dimension

over sample size equal to 2. At the frequencies significantly affected by the regression model,

the maximum likelihood estimate of Λ tend to have large error when the ratio of dimension

over sample size is high (e.g. Won et al., 2013 [61]). More effort is needed to reduce the large

error at the first frequency, but this is left for future work. With a more accurate estimate

of the background noise, we will have an improved ability to distinguish between regression

models of GMSL.
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Chapter 3

Comparison of Coastal and Open Ocean Sea Level Trends

3.1 Introduction

Sea level records from tide gauges are the data source used to estimate global mean sea level

(GMSL) over roughly the last one hundred years. Tide gauges are mostly distributed along

the continental coasts and ocean islands and have limited spatial sampling, which raises a

debate about whether coastal mean sea level (CMSL) derived from tide gauges can represent

GMSL. Holgate and Woodworth (2004) [9] showed that the CMSL trend was significantly

in excess of GMSL trend calculated from altimeter sea level over the period of 1993 to 2002.

White et al. (2005) [10] presented a similar result that decadal trends of CMSL were bigger

than those of GMSL calculated from sea level reconstructions around 1970 and during the

1990s and were smaller during the late 1970s and 1980s, but their trends over a whole 51-

year period were nearly consistent. Over the time span from 1993 to 2007, the CMSL trend

was found to be in good agreement with altimetry derived GMSL trend (Prandi et al. 2009

[62]). The trend difference between CMSL and GMSL in short records was attributed to

the biased trend estimation resulting from the interannual variabilities. Despite a smaller

difference between CMSL and GMSL trend over longer time span, model projections of sea

level rise in the 21th century suggest that water mass redistribution is the dominant effect

for rising sea level over the coast region, while steric changes are largest over the deep ocean,

and that the sea level rise on shallow shelf area in the 21th century may be 5-6% larger than

the global mean (Richter et al., 2013 [63]; Yin et al., 2010 [64]). It is therefore essential to
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thoroughly examine the global and regional sea level trend differences between the coastal

and open ocean.

Coastal sea level can differ from the nearby open-ocean sea level on multiple time scales

because the mechanisms responsible for sea level change over the coastal and open ocean can

be different (Bingham and Hughes, 2009 [65]; Hughes and Williams ,2010 [54]; Vinogradov

and Ponte, 2010 [66]; Vinogradov and Ponte 2011 [67]; Bingham and Hughes, 2012 [68];

Calafat et al., 2012 [69]; Andres et al., 2013 [70]; Woodworth et al., 2014 [71]). Linear trend

differences in sea level between the coastal and nearby open ocean are the primary concern

in this study. On the one hand, sea level change on the coast is largely controlled by coastal

ocean dynamics (Enfield and Allen, 1980 [13]), while in the open ocean steric effects induced

by wind stress curl, buoyancy flux anomalies prevail (Suzuki and Ishii, 2011 [14]; Forget and

Ponte, 2015 [15]). Offshore mean sea level can only represent the coastal sea level in areas

where the shelf is narrow, such as the Florida Straits, and the relationship varies with the

shelf geometry (Higginson et al., 2015 [72]). On the other hand, large-scale ocean circulation

variations in the open ocean can induce sea level changes along the coast. Sallenger et

al. (2012) [12] identified a hotspot of sea level rise along the Northeast American coast

that was possibly caused by the slowdown of Atlantic Meridional Overturning Circulation

(AMOC). Some model studies have showed that global sea level derived from tide gauges can

substantially overestimate the true global mean value due to dynamic adjustment (Hsieh and

Bryan, 1996 [73]; Zhai et al., 2011 [74]). More observational evidence is needed to determine

whether the difference is significant.

Instrumental observations of sea level by altimeters and tide gauges have been used in

previous studies to examine global and regional variations in sea level rise (e.g. Holgate and

Woodworth (2004) [9]; Uchida and Imawaki, 2008 [75]; Sterlini et al., 2017 [76]), but they

have their own advantages and drawbacks. Sea level in the open ocean can only be observed

by altimeters, but it is likely contaminated by land when approaching to the coast. Sea

level on the coast can be measured by tide gauges that, however, are subject to vertical land
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motion (VLM). The land where tide gauges sit undergoes vertical motions caused by many

phenomena including postglacial rebound, tectonic and volcanic activities, underground fluid

pumping, and so on. To obtain coastal sea level changes related to ocean processes, VLM

must be estimated and subtracted from tide gauge data. If the main geological process is

Glacial Isostatic Adjustment (GIA) due to ice melting at the end of last ice age, the numerical

estimate of GIA is a good approximation for VLM (Peltier 2004 [77]), which is a typical way

of correcting land motions of tide gauges (Holgate and Woodworth 2004 [9]; White et al.,

2005 [10]; Prandi et al., 2009 [62]). However, in locations where other geological processes,

such as tectonics, are important, then GIA is no longer a useful VLM estimate.

Two independent and reliable VLM estimation methods were adopted by Mitchum (2000)

[78], and these were referred to as the internal and external estimates. The internal method

employs only the tide gauge data to estimate VLM, while the external method uses Global

Positioning System (GPS) data to directly estimate VLM. The internal VLM is calculated

as the true GMSL trend minus the relative sea level trend of each tide gauge record over the

overlapping period. For such reason as paucity of data, estimated GMSL may deviate from

the true GMSL, causing biased error of the internal land motion. Besides, sea level change

at each tide gauge differs from the global mean value as regional change has geographic

variation, which also contributes to the internal land motion error. Another method of

making land motion estimate is the external method by using direct measurements of vertical

position with GPS or Doppler Orbitography and Radiopositioning Integrated by Satellite

(DORIS). Wöppelmann et al. (2009) [30] presented that GPS analysis has reached the

maturity to provide useful information for separating VLM from changes of ocean volume

recorded by tide gauges. As the number of GPS stations colocated with tide gauges is

increasing and data records are lengthening, VLM of more and more tide gauges can be

estimated from GPS data, so the external method is used in this study.

We will compare linear trends of sea level at tide gauges with and without VLM cor-

rection to trends at nearby altimeter points in the open ocean and ask whether there are
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significant differences in global ocean and regional areas. To illustrate the importance of

accurate estimation of VLM, VLM estimated by GPS and modeled GIA are both used for

sea level correction at tide gauges. The data and methods are described in section 3.2. Com-

parisons of global and regional sea level trends are performed in section 3.3. Where we find

significant trend differences, possible ocean processes responsible for them are investigated

using simplified models in section 3.4. The last section presents our conclusions.

3.2 Data and method

3.2.1 Data

The tide gauge sea level data are from the monthly revised local reference (RLR) dataset of

Permanent service for mean sea level (PSMSL). There are 1508 records that were downloaded

from http://www.psmsl.org/data (Holgate et al., 2013 [79]; PSMSL, 2018). VLM derived

from position data at GPS stations and model estimates of GIA are used for VLM correction

of sea level trend at tide gauges, respectively. The vertical GPS velocities and their uncer-

tainties for 493 stations are from University la Rochelle and were downloaded from http:

//www.sonel.org (Santamaŕıa-Gómez et al., 2017 [80]). The GPS series are required to have

at least 3 years length without discontinuities and data gaps are not allowed to exceed 30%.

For the purpose of comparison, GIA induced VLM estimated with model ICE-6G C (VM5a)

(Peltier et al., 2015 [81]) are used in this study and downloaded from http://www.atmosp.

physics.utoronto.ca/∼peltier/data.php. Altimeter along-track data are from Brian Beck-

ley’s MEaSUREs (Making Earth Science Data Records for Use in Research Environments

) record with 9.9 days interval, located at https://podaac.jpl.nasa.gov/dataset/MERGED

TP J1 OSTM OST CYCLES V42?ids=Platform&values=Jason-3, DOI: 10.5067/ALTCY-

TJ142. A 7-point moving average is applied to the altimeter sea level time series to remove

energy in a narrow frequency band centered on a 60-day period. There is a well-known error

in the altimeter series with nearly this periodicity, but the cause is not entirely clear. In a

recent review, Zawadzki et al. (2016 [82]) examined multiple non-tidal effects and concluded
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that while they could not rule out these causes, the most likely cause was errors in the models

used to remove tides from the altimetry data.

Tide gauges that have a GPS station within 10 km and have at least 80% of data over

the period from September 1992 to December 2017 are selected and shown as filled circles in

Figure 3.1. The distance scale of 10 km between a tide gauge and GPS station is determined

according to the correlation of internal and external VLM rates (Doran, 2010 [53]). For later

study, they are classified into groups based on their locations and are denoted by different

colors. Specifically, red filled circles represent island stations and other filled circles are

coastal stations along the continents. If multiple GPS stations are within 10 km away from

a tide gauge, the GPS station nearest to the tide gauge is selected. Each tide gauge is paired

with altimeter along-track points in the nearby open ocean that are less than 500 km away,

have at least 80% valid data over the period of September 1992 to December 2017, and have

a water depth exceeding 2000 m. The paired satellite along-track points are represented by

black dots as shown in Figure 3.1. Any tide gauge whose number of paired altimeter points

is less than 30 is rejected. One tide gauge at South America, Antofagasta, has vertical GPS

velocity exceeding 30 mm/yr that is not found in nearby stations and is an extreme outlier in

the GPS rates. When corrected with this GPS land motion rate estimate, the sea level trend

at this tide gauge is close to 30 mm/year which is not found either in the altimeter data or

the tide gauges around it, so the GPS rate at this station is believed to be unrealistic, and

this tide gauge is also rejected. This selection procedure ultimately results in a total of 109

tide gauges for following studies.

For diagnostic studies of the ocean processes in section 3.4, monthly wind stress at the

sea surface is derived from the Cross-Calibrated Multi-Platform (CCMP) gridded product

(V2.0) with a temporal resolution of six hour and a spatial resolution of 0.25◦, which is

provided by Remote Sensing Systems (RSS) (www.remss.com). Linear trends of wind stress

and Ekman vertical velocity derived from the wind stress are computed. Sea level pressure is

used to calculate the inverse barometer response to atmosphere pressure at the tide gauges,
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Figure 3.1: Selected tide gauges (filled and colored circles) and nearby satellite along-track
points(black dots).

but the trend of this quantity is only used in the calculation of meridional gradient of sea level

trend on the coast in section 3.4. The monthly sea level pressure with a spatial resolution

of 2.5◦ from NCEP reanalysis derived products is provided by the NOAA/OAR/ESRL PSD

and downloaded from https://www.esrl.noaa.gov/psd/.

3.2.2 Method

The sea level difference between one tide gauge and the nearby open ocean is expressed as:

∆η = ηALT − ηTG = δo + λ

where ∆η is the difference between sea level in the nearby open ocean from satellite altimeter,

ηALT , and at the paired tide gauge, ηTG. The difference is therefore composed of the sea level

differences due to ocean processes, δo, and VLM of tide gauge, λ, as shown in the second
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equality. Rearranging the above equation yields

δo = ηALT − ηTG − λ (3.1)

A regression model that includes mean, trend, annual and semiannual cycle is fitted to

the sea level at the selected tide gauges and the associated altimeter points. The uncertainty

of tide gauge trend, σTG, is determined by model residual and its lag-1 autocorrelation ρ:

σTG = σf

√
1 + ρ

1− ρ

where σf is the trend uncertainty for independent data commonly referred to as the formal

error. The altimetry trend and its uncertainty, σALT , are respectively calculated as the

average and standard deviation of trends at the altimeter points surrounding the tide gauge.

Sea level trend differences with and without VLM correction are used to investigate the

influence of VLM on the trend difference, to investigate whether there is a significant global

mean trend difference, and to determine which regions, if any, have large trend differences.

By propagation of error and neglecting correlation between the trend uncertainties, the

uncertainty of ∆η trend is calculated as

σ∆η =
√
σ2
TG + σ2

ALT

Similarly, the uncertainty of δo trend is calculated as

σδo =
√
σ2
TG + σ2

ALT + σ2
V LM

where σV LM is the uncertainty of the VLM trend. The trend uncertainty of the GPS VLM

is provided in the dataset, but the GIA uncertainty is not available and is assumed to be
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zero here. These uncertainties are used in significance tests of the trend difference via Monto

Carlo simulations.

3.3 Global and regional mean sea level trend difference between the coast and the open

ocean

VLM is a significant component of relative sea level measured by tide gauges, so the absolute

sea level caused by ocean processes must be estimated by using a VLM correction. GIA due

to the last deglaciation is one of the most commonly applied estimates of VLM, but it does

not necessarily measure VLM since other processes can be larger on the time scales that we

are interested in. So we should first compare VLM observed by GPS with these due to GIA

at the selected tide gauges. Figure 3.2 demonstrates that GPS VLM rates are more scattered

with a larger variance than those of GIA VLM although the mean values of -0.27 mm/year

and -0.48 mm/year, respectively, are close to the 1:1 line. The discrepancies between the

two sets of VLM rates that were also described by previous studies (King et al., 2012 [83];

Ostanciaux et al., 2012 [84]; Hamlington et al., 2016 [85]) may lead to opposite conclusions

on sea level trend comparisons. Differences between GPS and GIA VLM will be shown to

have remarkably different consequences for the trend comparisons on the regional scale, such

as along the Northeast Pacific coast.

Figure 3.3 shows altimetry trends versus tide gauge trends, most of which range from

0 to 10mm/year. Regressing tide gauge trends without VLM correction, with GPS VLM

correction, and with GIA VLM correction on altimetry trends, respectively, give regression

coefficient of 1.02, 0.87, and 0.86, implying a linear correspondence between altimetry and

tide gauge sea level trends of similar magnitude.

Global average of sea level trends from tide gauges and altimeters, as well as their cor-

relations, are calculated (Table 3.1; Table 3.2). The tide gauge and altimetry trends have

similar global average of about 3mm/year with a slight difference. Altimetry mean trend is

lower than tide gauge mean trend without VLM correction, but is higher after applying VLM
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Figure 3.2: GIA VLM rates versus GPS VLM rates (mm/year).

corrections to tide gauge trends. The absolute value of global mean difference decreases as

tide gauge trends are corrected for GPS VLM but increases as GIA VLM are applied. The

statistical significance of the mean trend difference will be tested via Monte Carlo simula-

tions. Given the large degree of freedom of trend pairs, tide gauge and altimetry sea level

trends are significantly correlated, although the correlation is not high. It’s interesting to

note that, as VLM corrections are applied, the correlation is decreased. Our focus in this

study is on sea level trend differences as defined by formula 3.1.

Distributions of trend differences for cases with and without VLM corrections generally

show a Gaussian pattern, but demonstrate some changes from the blue to red one (Figure

3.4). Application of GPS VLM corrections results in a narrower histogram with a smaller
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Figure 3.3: Altimetry trends versus tide gauge trends (mm/year). Cases where tide gauge
trends are without, with GPS, and GIA VLM correction are denoted by blue, red and green
asterisk, respectively.

Table 3.1: Global mean and scatter of sea level trends (mm/yr)

Alimetry Tide gauge
w/o VLM

Tide gauge
w/ GPS VLM

Tide gauge
w/ GIA VLM

Mean 2.86 3.04 2.77 2.55
Scatter 1.46 2.28 1.71 2.27

standard deviation and mean. In contrast, applying GIA VLM corrections to tide gauge

trends makes the distribution shift toward right with more positive values and less negative

values, which is consistent with the change of global mean trend as shown in table 3.1. Given

the scatter of the histogram, is the global mean value significantly different from zero?
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Table 3.2: Correlation and difference scatter (mm/yr) between sea level trends from altimetry
and tide gauges

Tide gauge
w/o VLM

Tide gauge
w/ GPS VLM

Tide gauge
w/ GIA VLM

Altimetry
(Correlation)

0.55 0.4 0.46

Altimetry
(Difference scatter)

1.92 1.75 2.06

Figure 3.4: Histograms of sea level trend differences for cases without VLM correction de-
noted by blue bars, with GPS (left panel) and GIA (right panel) VLM correction denoted
by red bars.

The significance is tested by Monte Carlo simulations. Ten thousands of random numbers

are generated for each station with zero mean, and with standard deviation equal to σ∆η

and σδo for cases without and with VLM correction, respectively. By taking average over all

stations, ten thousands simulated global mean trend difference are obtained.

Figure 3.5 shows the distribution of simulated global mean trend differences together

with the observed value. Mean trend difference of sea level in three cases are not significant,

one of which with GIA VLM correction has an elevated trend difference resulting from more

negative GIA rates. Tide gauges paired with altimeter points are presumed independent,
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Figure 3.5: Histogram of simulated global mean trend difference (mm/year). The red line is
the real observed global mean trend difference. Green lines give 95% confidence interval. The
lower right panel shows histogram of VLM rates from GPS (red) and GIA (blue) respectively.

which is not always true. If we take into account correlation between them, 95% confidence

interval would get wider. Although global mean trend difference with GIA VLM correction

is close to 95% confidence level, it is safe to say there is no significant mean trend difference

between global tide gauges and points in the nearby open ocean. The average VLM rates

from GPS and GIA is -0.27 mm/year and -0.48 mm/year, respectively, indicating an overall

subsidence of the selected tide gauges. Even though no significant mean difference is found

over the selected global tide gauges, selection of tide gauges could impact conclusions because

both regional sea level rising rates and VLM rates have geographic variations. Reconstructed
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Figure 3.6: Same as Figure 3.5, but only using gauges with record of 60 years or more.

GMSL in the last century relies on long sea level records from tide gauges that are mainly

located along North America and West Europe coasts. Additional examinations of mean

trend difference obtained from gauges with record of 60 years or more show that mean

trend difference is not significant for the case without VLM correction or with GPS VLM

correction but is significant for the case with GIA VLM correction (Figure 3.6). At the tide

gauges with long records, GIA VLM have more negative values than GPS VLM, that is,

more gauges are experiencing subsidence induced by GIA. When comparing global mean sea

level trend between coastal and open ocean using long records, this case underscores the
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importance of non-GIA geological processes that have been highlighted by a recent study of

GMSL (Hamlington et al., 2016 [85]).

Trend difference averaged over the global stations is not significant, but may demonstrate

regional patterns because ocean processes controlling the coastal and open ocean might vary

from region to region. Now we turn our attention to regional mean of trend difference. There

are some worries about sea level variation across coast that is different around islands. As

shown in Figure 3.1, tide gauges are split into coastal and island stations for separate inves-

tigations. Mean trend difference at islands is calculated and shown in Figure 3.7. Without

VLM correction, sea level trend is significantly lower in the open ocean than at the island

gauges at the 95% confidence level. Applying VLM correction gives rise to nonsignificant

trend difference. Histogram of GPS VLM reveals that islands undergoing subsidence are

more than those undergoing uplift. Land subsidences at Hawaii islands and other Pacific

islands like Easter island have been reported in previous studies (Caccamise et al., 2005 [86];

Bouin and Wöppelmann, 2010 [87]; Becker et al., 2012 [88]). VLM predicted by GIA model

are close to zero at most islands, which results in large though nonsignificant mean trend

difference in the case with GIA VLM correction. Unlike island stations, the mean trend

difference for coastal stations without VLM correction is not significantly different from zero

(Figure 3.8). GPS VLM at coastal gauges are distributed around zero contributing little to

the mean trend difference, while GIA VLM are predominantly negative at coastal gauges,

which once corrected to tide gauge sea level result in a significantly larger trend in the open

ocean than in the coastal ocean. Compared to island stations, using GIA to correct tide

gauge sea level has a more significant impact at coastal stations where most long sea level

records are from, in agreement with the test for the case using long record stations (Figure

3.6). Mean trend difference at coastal and island stations are further compared by taking

difference using trend differences as shown in Figure 3.8 and 3.7. The case with GIA VLM

corrections implies a substantial difference, while the case with GPS VLM correction indi-

cates no significant difference between island and coastal stations (Figure 3.9). It’s also noted
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that island and coastal stations are mostly located in low and high latitude respectively. As

anticipated, the mean trend differences at low latitudes (equatorward of 30◦) and high lat-

itudes (poleward of 30◦) resemble these at island and coastal stations, respectively (Figure

3.10 and 3.11). The difference between island and coastal stations could be interpreted as

latitudinal variation as well. Taking difference between mean trend difference at high lati-

tudes and low latitudes still yields a contrasting result for the cases with GPS and GIA VLM

correction (Figure 3.12). Based on observed VLM, no significant variation of mean trend

difference between coastal and island stations or between high and low latitudes is found in

our simulation tests. An opposite conclusion is drawn with GIA VLM correction, potentially

resulting from model errors of GIA and large contributions from non-GIA processes.

Among these coastal regions (Figure 3.1), the mean trend difference along the Northeast

Atlantic, the Northwest Atlantic and the Northeast Pacific coasts with enough tide gauges

for statistical analysis are examined as well. On the Northeast Atlantic coast, where a slight

subsidence on average is seen in both GPS and GIA VLM, the mean trend difference in all the

cases with or without VLM correction is not significantly different from zero (Figure 3.13).

In the Northwest Atlantic, the mean trend difference gets larger though nonsignificant after

applying GPS VLM correction, but it becomes significant by applying GIA VLM correction

(Figure 3.14). The larger trend difference is attributed to taking into account the subsidences

at most of tide gauges which are consistent with the GPS observation and GIA modeling

by Frederikse (2017 [89]). GIA is able to explain part of VLM along the Northwest Atlantic

coast. In contrast, VLM estimated from GIA and GPS yield opposite sign for most of the

stations along the Northeast Pacific coast (Figure 3.15). Correcting land subsidence induced

by GIA gives rise to a significantly larger trend in the open ocean than on the coast, while

correcting land uplift measured by GPS results in a significant lower mean trend in the open

ocean which is opposite to that in the Atlantic coast. The discrepancy between GIA and

GPS observation is possibly related to underestimation of the uplift of the western North

America by GIA model and due to the active tectonics across the Cascadia subduction zone
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Figure 3.7: Same as Figure 3.5 but only using island stations.

(Bouin and Wöppelmann, 2010 [87]; Montillet et al., 2018 [90]). VLM estimated by GIA

model and GPS measurements lead to different understandings of sea level trend, illustrating

the importance of VLM at tide gauges in either global or regional sea level study. These

large mean trend differences with VLM corrections observed in the Northwest Atlantic and

Northeast Pacific may reflect physical processes acting between coastal and open ocean,

which will be investigated in the next section.

77



Figure 3.8: Same as Figure 3.5 but only using coast stations.

3.4 Ocean processes causing trend difference along the North America coast

Along the North America coasts, large and even significant trend difference between the

coast and nearby open ocean is observed by correcting tide gauge sea level for VLM. The

median position of altimeter points paired for each tide gauge is found and shown with

the tide gauges along the North America coast in Figure 3.16, implying that the sea level

difference between the tide gauge at the continental coast and the nearby open ocean is

largely in the across-shore direction. Both local ocean processes, including alongshore wind

stress and density variation, and remote ocean processes, such as Rossby and coastal wave

78



Figure 3.9: Histogram of simulated mean trend difference at coastal stations minus that at
island stations (mm/year). The red line is the real observed value. Green lines give 95%
confidence interval.

propagations, can lead to sea level difference in the across-shore direction. Although other

dynamics such as boundary current variation that is closely related to forcing in the interior

ocean play important roles in the western and eastern boundary, two local and one remote

ocean processes are explored in an attempt to qualitatively diagnose the possible mechanisms

responsible for sea level difference between the coastal and open ocean.

First, alongshore wind stress gives rise to Ekman transport across the coast, forming

alongshore current with high sea level on the right-hand side when facing downstream in the

Northern Hemisphere. Geostropic balance holds in across-shore direction, while alongshore
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Figure 3.10: Same as Figure 3.5 but only using stations equatorward of 30◦.

wind stress is approximately balanced by bottom friction in alongshore direction (Sandstorm,

1980 [91]; Hong et al., 2000 [11]; Li and Clarke, 2005 [92]; Andres et al., 2013 [70]; Piecuch

et al., 2016 [93]). One such simplified barotropic model in the across-shore and alongshore

direction follows

−fv = −g ∂η
∂x

τ yw
ρH

=
τ ybot
ρH
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Figure 3.11: Same as Figure 3.5 but only using stations poleward of 30◦.

where f is the Coriolis parameter, v is alongshore velocity, g is the gravity acceleration, τ yw

and τ ybot are alongshore wind stress and bottom stress respectively, ρ is sea water density,

H is water depth. τ ybot is parameterized as τ ybot = ρrv where r is friction coefficient with a

typical value of 4×10−4 m/s (Gill, 1982 [94]). Sea level difference between coast and offshore

is derived as

δo1 =
f

ρgr

∫ offshore

coast

τ ywdx

which relates the sea level trend difference to the trend of alongshore wind stress.
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Figure 3.12: Histogram of simulated mean trend difference in the region poleward of 30◦

minus that in the region equatorward of 30◦ (mm/year). The red line is the real observed
value. Green lines give 95% confidence interval.

Second, baroclinic processes causing density variation from coast to offshore can con-

tribute to across-shore sea level difference (e.g. Liu and Weisberg, 2007 [95]). At tide gauges,

water is too shallow for obvious sea level changes to be generated by density variations. As

water becomes deeper in the open ocean, the density variation may take effect in changing

sea level. Since no long-term hydrographic observations over the vast boundary regions are

available, Ekman pumping in the open ocean is used to represent the local baroclinic process

with the impact of density variation to sea level change at tide gauges neglected.
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Figure 3.13: Same as Figure 3.5 but only using the Northeast Atlantic stations.

Third, Rossby waves propagating from the open ocean to the western boundary and

subsequent propagation of coastal waves can lead to sea level difference between the western

boundary and interior ocean (Hong et al., 2000 [11]; Minobe et al., 2017 [96]). By this

mechanism, the sea level difference across the western boundary is linked to sea level gradient

along the coast (Minobe et al., 2017 [96]).

ηW − ηI =
f

β

∂ηW
∂y
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Figure 3.14: Same as Figure 3.5 but only using the Northwest Atlantic stations .

where ηW and ηI are sea level in the western boundary and interior ocean, respectively, β is

meridional derivative of the Coriolis parameter.

Similarly, as sea level variation at the eastern coast generated locally or remotely radi-

ates westward, a sea level difference between the eastern boundary and interior ocean can

emerge. By comparing contributions from local and remote wind forcing, Thompson et al.,

(2014 [97]) suggested that the decreased rate of sea level on the northeast Pacific coast is

largely determined by tropical variability that is communicated poleward through coastal

waveguides. Based on the derivations by Minobe et al., (2017 [96]) using a reduced gravity

model in the western boundary, the mass conservation equation is integrated westward from
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Figure 3.15: Same as Figure 3.5 but only using the Northeast Pacific stations.

the eastern coast to the eastern end of interior ocean. Same derivation procedures for bound-

ary sea level applied by Minobe et al., (2017 [96]) are followed in this study except that the

boundary being used is the eastern boundary. Consequently, sea level at one location on the

eastern coast can be expressed as

ηE(xE(y), y, t) =
f

f(yS)
η(xE, yS, t)− f

∫ y

yS

β

f 2
η(xI(y

′), y′, t)dy′

where xE(y), xI(y) are the point on the eastern boundary and in the interior ocean, respec-

tively; yS is coastal point to the south of xE(y); ηE is sea level on the eastern boundary,
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Figure 3.16: Tide gauge locations (green and blue solid circles) and median positions of
altimeter points in the nearby open ocean (black solid circles) along the North America
coast.

having a combined contribution from sea level to the south and westward radiation of sea

level signals via Rossby waves.

Taking derivative of the above equation yields

ηE − ηI =
f

β

∂ηE
∂y

Either on the western or the eastern boundary, the sea level difference induced by Rossby

and coastal wave propagations can therefore be expressed as

δo2 = −f
β

∂(ηTG + λ)

∂y

where ηTG + λ is sea level at tide gauges corrected for VLM. A numerical model study by

Huthnance (2004 [98]) showed that transmission of sea level signal across the coast happens

when the alongshore scale is large relative to the decay distance for coastal trapped mode

1, implying that tide gauges are effective monitors of sea level variations only on the large
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Figure 3.17: Sea level trend (mm/year) corrected for inverse barometric effect and GPS VLM
(blue) and fitted curve (red) along the Northwest Atlantic and Northeast Pacific coast.

scale of thousands of kilometers. As a consequence, δo2 tends to be manifested on relatively

large scale. However, tide gauges are not evenly distributed along the coast where sea level

variation could be dominated by local forcing such as wind stress. Here one cubic polynomial

is fitted to the coastal sea level trend corrected for inverse barometric effect. When corrected

with GPS VLM, coastal sea level trend exhibits a trough around 32◦N and a peak around

40◦N along the Northwest Atlantic coast, and a decreasing trend with latitude along the

Northeast Pacific coast (Figure 3.17). When corrected with GIA VLM, coastal sea level

trend demonstrates a decreasing trend with latitude along both coasts (Figure 3.18). The

fitted curves will be used in the computation of meridional gradient of sea level trend along

the coasts.

The three dynamic processes are investigated individually on the Northwest Atlantic

coast as shown in Figure 3.19. Meridional variation of sea level trend differences seems to

track the trend of alongshore wind stress. Mean trend difference caused by this process is

0.07 mm/year that is much smaller than the observed value of 1.46 mm/year in the case with

GPS VLM correction. Trends of Ekman vertical velocity with an inverted sign are averaged

in the same nearby open-ocean domain embracing altimeter points paired to each tide gauge.
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Figure 3.18: Same as Figure 3.17, but coastal sea level is corrected for inverse barometric
effect and GIA VLM.

Ekman pumping likely contributes to the observed trend difference south of 37◦N , whereas

contradicts the observation north of 37◦N , with an average negative value. As a result, the

overall effect of Ekman pumping in the nearby open ocean is opposite to the observed mean

trend difference. The remote forcing via Rossby and coastal wave propagations is shown

unable to explain the observed δo. Although the three processes are qualitatively diagnosed,

none of these can fully account for the observed trend difference. In the Northeast Pacific,

the three processes are not compatible with the observed trend difference with an overall

opposite sign, suggesting that none of these processes are responsible for the trend difference

in the Northeast Pacific (Figure 3.20).

The dynamics controlling sea level difference between the coastal and open ocean is more

complex than our simplified models. For instance, the costal wave propagation and sea level

variations can be impacted by the continental shelf geometry (Ezer, 2017 [99]), which may

be one of the reasons that the sea level differences predicted by the wave model markedly

depart from the observation along both coasts. It is noted that, on the Northeast Pacific

coast, all three processes yield mean trend difference opposite to the observation, which

imply the possibility that there is some error in the observation. One error source may come
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from GPS VLM rates. GPS time series have shorter length than sea level observation, with

average length in the Northeast Pacific coast and Northwest Atlantic coast equal to 13 years

and 8.6 years, respectively. If VLM varied nonlinearly over the study period, the linear

trend of VLM derived from a shorter time series would invalidate the GPS VLM correction.

When GIA VLM are used to correct the coastal sea level, modeled trend difference resulting

from wave propagations is closer to the observed δo on the Northwest Atlantic coast. In

addition, the alongshore wind stress has a larger correlation with the observed δo with GIA

VLM correction and contributes to trend difference north of 42◦N on the Northeast Pacific

coast. Longer GPS observations are needed to examine the possibility of inherent error in

GPS VLM rates over a short period.

Apart from the three processes studied here, other ocean processes may play roles in

causing sea level difference. Basin boundary current is an alternative driver of sea level tilt

along the coast such as on the south coast of Japan (Lin et al., 2015) and on the Northwest

Atlantic boundary (Ezer et al., 2013 [100]; Yin and Goddard 2013 [101]; Thompson and

Mitchum, 2014 [102]). Boundary current variability is more related to forcing in the interior

ocean, which is beyond the scope of our study. Moreover, sea level signals induced by

Greenland ice melting or originated from the Labrador Sea likely propagate southward to

impact coast sea level (Stammer, 2008 [103]; Frederikse, 2017 [89]). Numerical model is an

alternative way to investigate the sea level trend difference induced by more complex ocean

processes.

3.5 Conclusions

Sea level records from tide gauges are the main resource of estimating GMSL for the period

before the satellite altimeter era. Most of tide gauges sit along the coast, casting doubt on

whether global or regional sea level rising rates measured by tide gauges can represent that

in the open ocean. The combination of tide gauge sea level, VLM measured by GPS and

modeled by GIA model, and satellite altimeter sea level are used to investigate the sea level
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Figure 3.19: Sea level trend difference corrected for VLM (blue curve) with modeled value
caused by alongshore wind stress and wave propagations (red curve) and Ekman vertical
velocity inverted (red curve), along the Northwest Atlantic coast. Left panel is for the case
with GPS VLM corrected; right panel is for the case with GIA VLM corrected.
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Figure 3.20: Same as Figure 3.19, except along the Northeast Pacific coast.
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trend difference between the coastal and nearby open ocean, which is defined as altimetry

sea level trend minus tide gauge sea level trend corrected for VLM. Discrepancies between

GPS and GIA VLM are observed, which have profound impacts to inferring absolute sea

level change at tide gauges. For comparison, both GPS and GIA VLM are used to correct

the relative sea level observed by tide gauges.

By Monte Carlo simulations, no significant global mean trend difference is found from

the selected tide gauges with GPS VLM corrected. Owing to different geographic settings,

tide gauges are further grouped into several coastal regions and open ocean islands. After

applying GPS VLM corrections, the mean trend difference of sea level between the coastal

and open ocean is not significant either in the coastal group of stations or in the group of

island stations. The mean trend difference in the coastal stations is not significantly different

from that in island stations. As most island and coastal stations are located at low and high

latitudes respectively, the mean trend differences at low and high latitudes are not significant,

in agreement with the results for island and coastal groups. Among the global coastal regions,

the North America coast and Northeast Atlantic coast have the majority of tide gauges with

long records and enough gauges for statistical analysis of mean trend difference. The mean

trend difference is not significant on the Northeast Atlantic coast. After correcting GPS

VLM at tide gauges, a relatively large positive mean trend difference close to the 95%

confidence level is found on the Northwest Atlantic coast, while a significant negative mean

trend difference is observed on the Northeast Pacific coast. However, different inferences are

drawn from the cases with GIA VLM instead of GPS VLM corrections when using the tide

gauges with long record, coastal tide gauges, high-latitude tide gauges, especially gauges

along the Northeast Pacific coast. These results highlight the potential problem of using

VLM estimated by GIA models to correct relative sea level measured by tide gauges and the

importance of non-GIA geological processes for sea level comparisons.

The large and even significant sea level difference over the Northwest Atlantic and North-

east Pacific coast are qualitatively diagnosed with alongshore wind stress, Ekman pumping
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in the nearby open ocean, and Rossby and coastal wave propagations. On the Northwest

Atlantic coast, alongshore wind stress tracks the sea level difference but contributes a small

amount to the mean trend difference. Local Ekman pumping shows contrasting contribution

to trend difference over the regions separated by 37◦N . Rossby wave and subsequent coastal

wave propagations can not explain the observation either. On the Northeast Pacific coast,

none of these simple models can account for the sea level difference, implying that more

complex dynamics are likely involved. Nevertheless, we can not exclude the possibility of

inherent error in GPS VLM rates over a short period.
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Chapter 4

Diagnosis of Large-scale, Low-frequency Sea Level Variability in the Northeast Pacific Ocean

4.1 Introduction

Ocean variables such as sea surface temperature (SST) have demonstrated considerable large-

scale, low-frequency variability in the North Pacific, with the primary modes being the

Pacific Decadal Oscillation (PDO) (Mantua et al., 1997 [104]) and the North Pacific Gyre

Oscillation (NPGO) (Di Lorenzo, et al., 2008 [17]). These modes have profound impacts

on climate, fishery, ocean ecosystem and so on. As a result, it is important to understand

mechanisms of the low-frequency variability. Compared to the PDO derived from SST, sea

surface height (SSH) gives a smoother pattern and a time index linked more closely to ocean

interior processes (Cummins et al., 2005 [16]). In this study, the climate variability in the

Northeast Pacific (NP) is examined through diagnosis of large-scale, low-frequency sea level

variability.

Sea level variability responds to external forcing, of which wind stress is one of the domi-

nant forcings. Wind stress anomalies in the NP could be the result of local ocean-atmosphere

interaction or be connected to the tropical Pacific through atmospheric teleconnection. De-

spite the ambiguity of the source of wind stress anomalies, the resulting Ekman pumping

gives rise to sea level and thermocline change. Linear damping of wind forcing can account

for the interdecadal variations of dynamic height in the North Pacific (Lagerloef 1995 [20]).

This stochastic model (Markov model) with a damping timescale of 1-2 years also accounts

for the interdecadal variation of the depth of main pycnocline over the North Pacific (Cum-
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mins and Lagerloef 2002 [105]). Capotondi et al. (2005) [23] attributed the success of the

local Ekman pumping model in explaining a large fraction of pycnocline variability to the

standing character of the pycnocline anomalies. In addition to the local forcing, sea level

also changes in response to ocean adjustments via wave propagations. For example, Kelvin

waves propagate eastward in the tropical Pacific and then northward along the East Pacific

coast. The SSH anomalies originating from the tropical Pacific together with these locally

produced in the NP propagate westward as Rossby waves.

Another mechanism for low-frequency variability, therefore, involves Rossby waves that

integrate oceanic response to the atmospheric forcing along the Rossby wave trajectory (Qiu,

2002 [21]). Cummins and Lagerloef (2004) [22] modeled interannual variability of SSH both

by the reduced-gravity, quasi-geostrophic model and by the Markov model. The quasi-

geostrophic model including the baroclinic Rossby wave did not show apparent advantages

over the Markov model. However, Fu and Qiu (2002) [106] applied the same linear model

but with a weak damping coefficient and demonstrated high correlation between observed

and modeled SSH that rely on the propagation of Rossby waves. These studies suggest that

ocean damping and Rossby wave propagation can individually account for low-frequency

variations without reference to the other process, which raises the question of what are the

relative roles of ocean damping and Rossby wave in causing the large-scale, low-frequency

sea level variability.

Thompson (2012) [107] presented a method to diagnose the relative importance of the

two dynamic mechanisms, using a linear model with both Rossby wave propagation and

linear damping included. An integral solution to the linear model, derived by Method of

Characteristics (MOC), was fitted to SSH anomalies from observation and numerical model.

Given ranges of the fitting model coefficients, the optimized coefficients were obtained by

minimizing the differences between the fitted SSH and real SSH in a least-squares sense.

The best fitted SSH anomalies account for substantial amounts of variance of the real SSH

anomalies. This model has a good performance over the central NP area, but is limited by a
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poor performance over the area off the eastern coast of North Pacific and over the open ocean

west of dateline. Besides wind forcing, other dynamic processes, such as eddy forcing and

buoyancy forcing that are not included in this linear model, can contribute to low-frequency

sea level variability. The North Pacific is rich in mesoscale eddies with large amplitudes

(Chelton et al., 2007 [108]; Chelton et al., 2011 [4]). Mesoscale eddies with horizontal scale

of tens and hundreds kilometer have similar western propagating phase speed as Rossby

waves but are generated by different physical mechanisms such as current instability. The

eddy momentum flux is shown to generate low-frequency variability in the North Pacific

(Qiu et al.,2015 [26]). Model studies showed that Ekman pumping dominates the first-

mode response, while buoyancy forcing results in the second-mode response in the North

Pacific (Thompson and Ladd, 2004 [25]; Thompson and Dawe, 2007 [109]). In the south

tropical Atlantic and Pacific, part of SSH anomalies are caused by surface buoyancy fluxes

and westward propagations under the framework of first-mode Rossby wave model (Piecuch

and Ponte, 2012 [110]; Piecuch and Ponte, 2013 [111]). A better model of sea level evolution

should include the nonlinear momentum flux (Reynold stress) and buoyancy forcing.

When large-scale, low-frequency sea level variability responding to external forcing is

studied, the quasi-geostrophic (QG) approximation is usually made and the resulting equa-

tions are often solved by a vertical normal mode expansion followed by a MOC solution for

each vertical mode (Gill 1982 [94]). Through projections of sea level onto vertical modes

determined by ocean mean density, it is suggested that both the first and second modes, and

even higher modes are important for the sea level variability (Suzuki an Ishii, 2011 [14]).

Although the first mode as an approximation of vertical structure of main thermocline is

often used to study sea level variability, it may deviate from true process significantly and

cannot explain some phenomena (Perkins and Holbrook, 2001 [112]; Li and Clarke, 2007

[113]; Maharaj et al., 2007 [114]; Maharaj et al., 2009 [115]). A more complete description

of ocean processes is often given by ocean general circulation model (OGCM) making ap-

proximations of the primitive governing equation (e.g. Aoki et al., 2009 [116]). Nevertheless
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interpretation of which mechanism drives sea level variability is difficult as most of the ocean

dynamics are mixed together in the OGCM.

A simplified dynamical model that does not resort to a vertical normal mode expansion

is developed here to enable a better understanding of the sea level response. The relative

roles of local and remote forcing in driving SSH anomalies and how different external forcings

contribute to sea level variations in the NP are investigated with this diagnostic sea level

model. Data and methods are described in section 4.2, and the questions raised above are

addressed in section 4.3. Conclusions are presented in the last section.

4.2 Data and methods

4.2.1 Data

Daily sea level anomalies from January 1993 to December 2016 on 0.25◦ grids are obtained

from the Ssalto/Duacs altimeter products, which are produced and distributed by the

Copernicus Marine and Environment Monitoring Service (CMEMS) (http://www.marine.

copernicus.eu). Mean dynamic topography was produced by the CLS Space Oceanography

Division and distributed by Aviso, with support from CNES (http://www.aviso.altimetry.

fr/). The mean sea level and sea level anomalies are used to calculate eddy forcing in the fol-

lowing analysis. Wind stress is derived from the Cross-Calibrated Multi-Platform (CCMP)

gridded surface winds (V2.0). The product has a temporal resolution of 6 hours and a

spatial resolution of 0.25◦ degrees, and are produced by Remote Sensing Systems (RSS)

(www.remss.com). Monthly means of net shortwave radiation flux, net longwave radiation

flux, sensible heat flux, and latent heat flux, precipitation rate are computed from the NCEP

reanalysis provided by NOAA/OAR/ESRL PSD (http://www.esrl.noaa.gov/psd/). These

are used to calculate buoyancy flux. The climatology fields of in situ temperature and salin-

ity from the World Ocean Atlas version 2 (WOA13 V2) on 1◦ grids are used for calculations

of mean density, and are downloaded from https://www.nodc.noaa.gov/OC5/woa13/. The

sea level anomalies and the three forcing fields are smoothed spatially by a two-dimensional
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Guassian filter with half amplitude response at 450 km, and are smoothed temporally by a

filter with half amplitude response at 5 months. The smoothed anomalies are interpolated

to 1◦ × 1◦ grids. Seasonal signals and linear trends are removed from these filtered data.

4.2.2 Methods

The governing equations are the Boussinesq horizontal momentum equations, the continuity

equation, hydrostatic balance, and the linearized equation of state:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
− fv +

∂

∂x

(
p

ρ0

)
=

∂

∂z

(
τx

ρ0

)
− λu

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
+ fu+

∂

∂y

(
p

ρ0

)
=

∂

∂z

(
τ y

ρ0

)
− λv

∂p

∂z
+ ρg = 0

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0

∂ρ

∂t
− ρ0

g
N2w =

∂B

∂z
− λρ

where ρ0 is constant density, ρ is density deviation from ρ0, p is pressure deviation from the

reference pressure p0 associated with ρ0, τx and τ y are zonal and meridional stress forcing

components, N is buoyancy frequency, B is buoyancy flux that is positive upward, λ is the

Rayleigh damping coefficient in the momentum equation, which also serves as a Newtonian

damping coefficient in the equation of state. At the surface, τ is the wind stress, denoted by

τ0, and the surface buoyancy flux is expressed as,

B(0) = −αTQ
Cp

+ βS(E − P )S

where αT = −1
ρ
∂ρ
∂T

is the thermal expansion coefficient, βS = 1
ρ
∂ρ
∂S

is the salinity contraction

coefficient, Cp is the specific heat of water, Q is surface heat flux (positive downward), E is

evaporation, P is precipitation, and S is surface salinity.
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From the equation of state, vertical velocity w scales as W ∼ ∆ρUH
∆ρ0L

, where ∆ρ, ∆ρ0,

U, H, L are scales for the density perturbation, mean density variation from the surface

to bottom ocean, velocity, depth and horizontal length, respectively. Then the scale ratio

of w ∂u
∂z

to u∂u
∂x

is ∆ρ
∆ρ0

, which is of order of 10−1. Analogously, the two vertical momentum

advection terms are small compared to the horizontal advection parts and are neglected in

the following analysis.

The velocity components u, v, and w are expanded in an asymptotic series with the small

number ε, written as u = ug + εua + · · · , v = vg + εva + · · · . The Coriolis parameter f is

expanded to f = f0 +βy, where β = ∂f
∂y

. These are substituted into the governing equations.

To the order of O(ε0), momentum and continuity equations follow

−f0vg +
∂

∂x

(
p

ρ0

)
= 0

f0ug +
∂

∂y

(
p

ρ0

)
= 0

∂ug
∂x

+
∂vg
∂y

= 0

To order O(ε1), the momentum and continuity equations are

∂ug
∂t
− f0va − βyvg =

∂

∂z

(
τx

ρ0

)
− ug

∂ug
∂x
− vg

∂ug
∂y
− λug

∂vg
∂t

+ f0ua + βyug =
∂

∂z

(
τ y

ρ0

)
− ug

∂vg
∂x
− vg

∂vg
∂y
− λvg

∂ua
∂x

+
∂va
∂y

+
∂w

∂z
= 0

where the momentum advection terms are moved to the right side.

The horizontal momentum and continuity equations are combined to form

(
∂

∂t
+ λ

)(
∂vg
∂x
− ∂ug

∂y

)
− f0

∂w

∂z
+ βvg =

1

ρ0

∂

∂z
(∇× ~τ)− 1

f0

E
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where ~τ = ~iτx +~jτ y, E = (~ug · ∇)∇2
(
p
ρ0

)
, and ~ug = ~iug +~jvg. For large scale motions,(

∂
∂t

+ λ
)(∂vg

∂x
− ∂ug

∂y

)
is small compared to βvg, and is therefore neglected. The equation

becomes

β

f0

∂

∂x

(
p

ρ0

)
− f0

∂w

∂z
=

1

ρ0

∂

∂z
(∇× ~τ)− 1

f0

E (4.1)

The hydrostatic balance and the equation of state are combined to give

(
∂

∂t
+ λ

)
∂

∂z

(
p

ρ0

)
+N2w = − g

ρ0

∂B

∂z
(4.2)

These two equations are often solved by a vertical normal mode expansion followed by

MOC solution for each vertical mode. The resulting sea level equation for nth mode is

expressed as

∂hn
∂t

+ cn
∂hn
∂x

= −αWn W0 + αEnL
2
nE0 − αBnB0 − λhn (4.3)

where subscript n is mode number, c is wave propagation velocity; αW , αE, αB are forcing

coefficients related to mode eigenvector and vertical structure of forcing. W0 = ∇× ~τ0
ρ0f0

,

E0 = (~u0 · ∇)∇2h, B0 = B(0)
ρ0

are surface Ekman pumping velocity, vorticity advection term,

and buoyancy forcing, respectively; Ln = c2n
f0

is wave deformation radius for nth mode. In the

case of first mode (n = 1), αWn can be approximated by ∆ρ
ρ

on the order of 10−3; L2
n is on

the order of 103km2 with a deformation radius Ln = 30km; αEn and αBn are on the order of

1; λ−1 ranges from one year to six years or longer.

An alternative approach is adopted in this study partly in order to avoid the vertical mode

expansion. Integratating (4.1) from the ocean bottom −H(x, y) to depth z with w(−H) = 0,

we obtain

β

f0

∫ z

−H

∂

∂x

(
p

ρ0

)
dz′ − f0w =

∫ z

−H

∂

∂z

(
∇× ~τ

ρ0

)
dz′ − 1

f0

∫ z

−H
E dz′ (4.4)
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Summation of (4.2) and N2

f0
× (4.4) yields

(
∂

∂t
+ λ

)
∂

∂z

(
p

ρ0

)
+
βN2

f 2
0

∫ z

−H

∂

∂x

(
p

ρ0

)
dz′ = N2

∫ z

−H

∂

∂z

(
∇× ~τ

ρ0f0

)
dz′−

N2

f 2
0

∫ z

−H
E dz′ − g

ρ0

∂B

∂z

Assuming ~τ → 0 as z = −H and using the Leibniz rule, we have

(
∂

∂t
+ λ

)
∂

∂z

(
p

ρ0

)
+
βN2

f 2
0

∂

∂x

(∫ z

−H

p

ρ0

dz′
)
− βN2

f 2
0

∂H

∂x

p(−H)

ρ0

= N2W − N2

f 2
0

∫ z

−H
E dz′ − g

ρ0

∂B

∂z

(4.5)

where W =∇× ~τ
ρ0f0

.

Integrating (4.5) vertically from −H to 0 and again using the Leibniz rule gives

(
∂

∂t
+ λ

)
p(0)

ρ0

−
(
∂

∂t
+ λ

)
p(−H)

ρ0

+
β

f 2
0

∂

∂x

∫ 0

−H
N2

∫ z

−H

p

ρ0

dz′dz−

β

f 2
0

∫ 0

−H

∂N2

∂x

∫ z

−H

p

ρ0

dz′dz − β

f 2
0

∂H

∂x

[
N2

∫ z

−H

p

ρ0

dz′
]
−H
−

β

f 2
0

∂H

∂x

p(−H)

ρ0

∫ 0

−H
N2 dz =

∫ 0

−H
N2Wdz − 1

f 2
0

∫ 0

−H
N2

∫ z

−H
E dz′dz − gB(0)

ρ0

The fifth term on the left side of the above equation is zero, and the fact that p(−H)
ρ0

is small

compared to p(0)
ρ0

enables us to neglect terms associated with p(−H)
ρ0

, leading to

(
∂

∂t
+ λ

)
p(0)

ρ0

+
β

f 2
0

∂

∂x

∫ 0

−H
N2

∫ z

−H

p

ρ0

dz′dz−

β

f 2
0

∫ 0

−H

∂N2

∂x

∫ z

−H

p

ρ0

dz′dz =

∫ 0

−H
N2Wdz − 1

f 2
0

∫ 0

−H
N2

∫ z

−H
E dz′dz − gB(0)

ρ0

(4.6)
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Define

p

ρ0

= gh(x, y, t)ψp(x, y, z)

W = W0(x, y, t)ψτ (x, y, z)

E = gE0(x, y, t)ψE(x, y, z)

where h is sea level variable, ψp, ψτ , ψE are respectively vertical structure functions for

pressure, stress, and vorticity advection with ψp(x, y, 0) = 1, ψτ (x, y, 0) = 1, ψE(x, y, 0) = 1.

W0 =∇× ~τ0
ρ0f0

and E0 = (~u0 · ∇)∇2h are surface wind forcing and surface vorticity advection

term called eddy forcing in this study, respectively, which are already defined in the sea level

mode solution (4.3) together with buoyancy forcing B0 = B(0)
ρ0

.

Substitution of the above definitions into (4.6) gives

(
∂

∂t
+ λ

)
gh+

β

f 2
0

∂

∂x

(
gh

∫ 0

−H
N2

∫ z

−H
ψpdz

′dz

)
−

β

f 2
0

gh

∫ 0

−H

∂N2
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∫ z

−H
ψpdz

′dz = W0
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−H
N2ψτdz −

gE0

f 2
0
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−H
N2
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−H
ψEdz

′dz − gB0

Define

c(x, y) =
β

f 2
0

∫ 0

−H
N2

∫ z

−H
ψpdz

′dz

Aτ (x, y) =
1

g
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−H
N2ψτdz

AE(x, y) = − 1

f 2
0
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−H
N2

∫ z

−H
ψEdz

′dz

AB(x, y) = −1

It follows, then, that

(
∂

∂t
+ λ

)
h = −c∂h

∂x
− h ∂c

∂x
+
βh

f 2
0

∫ 0

−H

∂N2

∂x

∫ z

−H
ψpdz

′dz + AτW0 + AEE0 + ABB0
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To estimate scales for the first three terms on the right side of the above equation, a

simplified case with constant stratification is examined. For a constant N2, the first-mode

eigenvector is cos
(
πz
H

)
. With the eigenvector representing ψp, we obtain

c =
β

f 2
0

∫ 0

−H
N2

∫ z

−H
ψpdz

′dz = −2βH2N2

f 2
0π

2

β

f 2
0

∫ 0

−H

∂N2

∂x

∫ z

−H
ψpdz

′dz = −2βH2

f 2
0π

2

∂N2

∂x

indicating that the term βh
f2
0

∫ 0

−H
∂N2

∂x

∫ z
−H ψpdz

′dz has same scale as h ∂c
∂x

.

The scale ratio of h ∂c
∂x

to c∂h
∂x

is expressed by

h ∂c
∂x

c∂h
∂x

∼
1
c
∂c
∂x

1
h
∂h
∂x

=

1(
∆ρ0
ρ0

) ∂
∂x

(
∆ρ0

ρ0

)
1
h
∂h
∂x

∼ Lh
Lc

where Lh is the zonal length scale of the sea level variation derived from the low-passed

SSH anomalies, and Lc is a zonal length scale for the wave speed associated with density

changes from the ocean surface to bottom normalized by the mean density that is derived

from WOA13 version 2. The zonal scale is calculated using a Fourier Transform.

Sea level, h and its zonal derivative ∂h
∂x

are written as

h =
∑
k

ake
ifkx

∂h

∂x
= i
∑
k

fkake
ifkx

The variances are scaled as

var(h) ∼
∑
k

|ak|2

var(
∂h

∂x
) ∼

∑
k

|fkak|2
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Figure 4.1: Ratio of zonal scale of SSH anomaly, Lh, to zonal scale of wave speed, Lc.

Then zonal length scale Lh is

Lh =

( ∑
k |ak|2∑
k |fkak|2

) 1
2

Lh is calculated in a zonal moving bin of 21◦ length. The length scale for the wave speed

is calculated in the same way. The scale ratio, Lh
Lc

, is shown to be less than 0.4 at all grid

points and be less than 0.1 at more than half of the grid points (Figure 4.1).

As a result, the following inequality relations hold.

h
∂c

∂x
� c

∂h

∂x
βh

f 2
0

∫ 0

−H

∂N2

∂x

∫ z

−H
ψpdz

′dz � c
∂h

∂x
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And with the two small terms neglected, we have

(
∂

∂t
+ λ

)
h = −c∂h

∂x
+ AτW0 + AEE0 + ABB0 (4.7)

which gives the same form as the traditional mode equation (4.3), but presents a novel

framework for interpreting the modal equations in terms of an integral solution. As is

common in modal solutions, c, λ, Aτ , and AE can be treated as unknown parameters. AB,

which is −1 in theory, is also allowed to vary because of uncertainties in calculated buoyancy

forcing.

The sea level equation (4.7) can be solved by the common MOC method. Following the

derivation procedure by Thompson (2012, [107]), the sea level solution is

h(x, t) =
h(x0, t0) +

∫ x0

x
q(x′, t′)e

∫ x0
x′ κ(x′′)dx′′dx′

e
∫ x0
x κ(x′)dx′

(4.8)

where t0 is initial time, x0 is eastern boundary, and q, κ and t are respectively defined as

q =
AτW0 + AEE0 + ABB0

c

κ =
λ

c

t = t0 +

∫ x0

x

c−1(x′)dx′

Sea level variability in this solution is obtained by integrating three external forcings along

wave characteristics.

The alternative approach developed here is to find the optimal solution at each point in

space. In the new method, the zonal gradient of sea level is treated like a forcing term and

is calculated from the SSH observations. Multiplying eλt on both sides of (4.7), integrating
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it from t0 to t and then multiplying e−λt on both sides yield

e−λt
∫ t

t0

∂

∂t

(
heλt

)
dt′ = −ce−λt

∫ t

t0

∂h

∂x
eλt

′
dt′ + Aτe

−λt
∫ t

t0

W0e
λt′dt′+

AEe
−λt
∫ t

t0

E0e
λt′dt′ + ABe

−λt
∫ t

t0

B0e
λt′dt′

Rearranging the above equation gives

h(t) = h(t0)e−λt − c
∫ t

t0

∂h

∂x
e−λ(t−t′)dt′ + Aτ

∫ t

t0

W0e
−λ(t−t′)dt′+

AE

∫ t

t0

E0e
−λ(t−t′)dt′ + AB

∫ t

t0

B0e
−λ(t−t′)dt′

(4.9)

The sea level variability in this alternative integration is seen to be a damped local response

to the forcings, or equivalently, a one-sided smoothing of the forcings, with the damping

coefficient taking the role of the smoothing coefficient.

Before exploiting this new method, the approximate order of magnitude of c, Aτ , and AE

are estimated. Given a constant N2, the related first-mode eigenvector cos
(
πz
H

)
representing

ψp and assuming ψE = ψ2
p, the orders of magnitude of c, Aτ and AE follow

c =
β

f 2
0

∫ 0

−H
N2

∫ z

−H
cos
(zπ
H

)
dz′dz = −2βH2N2

f 2
0π

2

∼ 10−11× 107× 10−5

10−8× 10
m/s = 10−2 m/s

Aτ =
N2

g

∫ 0

−H
ψτdz ∼

∆ρ

ρ0

∼ 10−3

AE = − 1

f 2
0

N2

∫ 0

−H

∫ z

−H
cos2(

zπ

H
)dz′dz ∼ H2N2

4f 2
0

∼ 106× 10−5

10−8
m2 = 103 km2

The estimated scales are consistent with those shown in mode equation (4.3). Propagation

is dominantly westward so that c is negative; Ekman upwelling with positive W0 induces low

sea level, while Ekman downwelling with negative W0 induces high sea level, indicating that

the sign of Aτ is negative; positive vorticity advection with positive E0 causes high sea level,
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Table 4.1: Range of model parameters for MOC solution

Parameter Domain Interval
Wind forcing coefficient −5× 10−3 <= Aτ <= 0 0.5× 10−3

Eddy forcing coefficient 0 <= AE <= 1.5L2
1 0.25L2

1

where L1 is first-mode
Rossby deformation radius

Buoyancy forcing coefficient −2 <= AB <= 0 0.5
Propagation velocity 3cR <= c < 0 0.25cR

where cR is standard first-mode
Rossby wave velocity

Damping coefficient 1
72
month−1 <= λ <= 1month−1 1

6
month−1

while negative vorticity advection with negative E0 causes low sea level, indicating that the

sign of AE is positive.

4.3 Results

4.3.1 Sea level solution by MOC

With the unknown forcing coefficients, propagation velocity, and damping coefficient, the

sea level solution by MOC (equation 4.8) is fitted to observed SSH anomalies, following

the fitting approach proposed by Thompson (2012, [107]). Based on typical magnitudes

of these parameters, searching domains of model parameters are given in Table 4.1, and

only meridional variation of parameters is allowed in the fitting. The modeled sea level and

optimal parameters are found by minimizing variance of sea level difference between model

and observation at each latitude. The model performance is measured by correlation and

ratio of unexplained sea level variance to observed sea level variance.

Figure 4.2 shows high correlation and low unexplained sea level variance largely in a band

extending from southwest to northeast. Although the model solution has better performance

in the southwest corner of NP than the model results obtained by Thompson (2012, [107]),

sea level variability in the southeast and northwest of NP cannot be accounted for by this
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Figure 4.2: Correlation between observed and modeled sea level anomalies (left); Ratio
of variance of difference between modeled and observed sea level anomalies to variance of
observation (right). Contours represent variance of observed sea level anomalies. The model
is solved by MOC method.

Figure 4.3: Same as Figure 4.2, but modeled sea level anomalies result from the eastern
boundary.

model solution. The contribution to modeled sea level from each forcing component is then

calculated based on the optimal parameters.

Higher correlation and less unexplained sea level variance are also observed along the

eastern boundary, but the sea level anomalies originating from the eastern boundary are

mainly limited to within few degrees away from the eastern boundary with minor influence

away from the boundary (Figure 4.3). This resembles the spatial correlation pattern owing to

the boundary-driven Rossby waves in the study by Fu and Qiu (2002 [106]). Away from the

eastern boundary, however, the sea level variability is overwhelmed by the external forcing
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Figure 4.4: Same as Figure 4.2, but modeled sea level anomalies result from wind, buoyancy
and eddy forcing respectively.

terms. The roles of wind, buoyancy and eddy forcing in driving sea level variations are

exhibited in Figure 4.4. Wind and eddy forcings are the dominant driving forcings in a band
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from the central to northeast part of NP and in the southwest corner of NP, respectively,

while buoyancy forcing does not have any substantial contribution in this solution.

The failure of the MOC solution over some regions is probably related to two factors.

First, the MOC solution needs wave propagation to integrate external forcing, which might

fail in places where wave propagation is not important. Second, zonal variation of model

parameters is not used in the fitting because Thompson (2012, [107]) showed that this did not

improve the results. Our new sea level solution (equation 4.9) via local temporal integration

(LTI) is examined in the next section to see if we can improve on the MOC results.

4.3.2 Sea level solution by LTI

The LTI solution (equation 4.9), presented above, has the form of a regression model with the

observed SSH as the dependent variable, the integration terms being independent variables,

and the forcing coefficients and the wave speed being the model parameters. Given a damping

coefficient, the model parameters are obtained by least square fitting and the best fit is

obtained by varying the damping coefficient to find the global minimum solution. The LTI

solution gives spatial patterns of the model parameters and includes both traveling and

standing sea level signals, while MOC solution only allows traveling signal.

With the wind, buoyancy, eddy forcing and sea level zonal gradient derived from obser-

vation, the LTI solution 4.9 is fitted to the observed sea level anomalies at every grid point,

yielding modeled sea level, propagation velocity, damping and forcing coefficients. The so-

lution performance is again described by the correlation and the unexplained variance ratio

as shown in Figure 4.5. At more than 87% of grid points with valid data, the correlation

between fitted and observed sea level exceed 0.6, suggesting good performance of the regres-

sion model. At the points with a correlation larger than 0.6, more than 50% of variance can

be accounted for by the model solution. Comparing Figure 4.2 and Figure 4.5 suggests that

the LTI solution gives better model performances than the MOC solution in both correlation

and explained variance.
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Figure 4.5: Same as Figure 4.2, but the model is solved by the LTI method.

Figure 4.6: Same as Figure 4.5, but the model parameters are smoothed.

It is possible that the improved performance of the LTI solution might result from over-

fitting because the model parameters can be different from point to point in space. To test

this idea, the parameters are then smoothed with the same filter with half-amplitude scale

at 450 km as that used to smooth SSH anomalies and forcing in the MOC solution, which

should result in the same or fewer number of degrees. With the smoothed parameters, the

LTI solution still shows model performance that is generally superior to the MOC solution

(Figure 4.6), suggesting a robust result. We would argue that the LTI solution is worthy of

further diagnosis of the large-scale, low-frequency sea level variability in the NP.

Maps of the magnitude of the smoothed forcing coefficients, propagation velocity and

damping time are shown in Figure 4.7. Spatial variations of model parameters indicate that

each forcing component contributes to the sea level variation in different regions. Relatively
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large magnitude of the wind forcing coefficient extends from southwest to northeast, whereas

the magnitude is small in the northwest and southeast region, suggesting weak response to

wind forcing. The eddy forcing coefficient is most prominent in the west int he region effected

by the North Pacific current. The buoyancy forcing coefficient is mostly close to zero but

has relatively large magnitude confined to the southeast region. The resulting propagation

is slow and even approaches zero in the east and north, but it is faster in the southwest.

The optimal damping timescale, which is the inverse of the damping coefficient λ, is below

36 months at more than 90% of grid points, whereas large values area only found in the

southeast corner around 220◦E and the south of Alaska Peninsula where the model is less

successful. The propagation speed generally decreases with latitude, as expected, and from

west to east, which has implications for the role of propagating signals.

The LTI solution shows that the low-frequency sea level response can be described as

the summation of the local damping of wind, eddy, buoyancy forcing and propagation term,

but the interpretation is complicated if there are correlations between the forcing terms.

Figure 4.8 shows that correlations between the forcing terms are small at the majority of

grid points, except for the eddy forcing and propagation term. Although wind forcing can

correlate with the buoyancy forcing and the propagation term, the correlations are less than

0.5 and in relatively small areas. On the other hand the eddy forcing and the propagation

term are correlated over a large region with correlations greater than 0.5 in smaller regions.

In these regions the propagation is likely more important. The high correlation between

eddy forcing and propagation term suggests that they cannot be separated when analyzing

their contributions to sea level variability.

In order to show the contribution to sea level variation from each forcing components,

the correlation between each sea level contribution and the total modeled sea level and the

unexplained variance ratio are shown in Figure 4.9. Local wind forcing is the dominant

driving force from the central to northeast NP. The correlation pattern agrees well with that

found in previous studies using the first-mode Rossby wave model or local one-dimension
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Figure 4.7: Smoothed coefficient magnitude of wind forcing (Aτ , unitless), eddy forcing (AE,
km2), buoyancy forcing (AB, unitless), propagation speed (c, km/day), and damping time
(λ−1, month).
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Figure 4.8: Correlations between every pair of forcing terms.
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damping model (e.g. Fu and Qiu, 2002 [106]; Cummins and Lagerloef, 2004 [22]). The local

response of sea level anomalies to the wind stress curl replicates most variability obtained

with the more general model that includes wave propagation. In addition to wind stress

curl, buoyancy forcing was suggested to be a driving force of sea level anomalies in earlier

studies (Thompson and Ladd, 2004 [25]; Thompson and Dawe, 2007 [109]). In this study,

a local response of sea level to buoyancy forcing is seen in the southeast portion of the NP

between 210◦E and 230◦E. A relatively weak response at midlatitudes around 190◦E is also

observed.

4.4 Conclusion

Large-scale, low-frequency sea level variability in the Northeast Pacific is investigated with

a newly developed diagnostic sea level model driven by wind, buoyancy and eddy force that

does not require a vertical normal mode expansion. This sea level model is solved both by

the traditional method of characteristics method and by a new method, which we refer to

as a local temporal integration (LTI). The LTI solution simulates the data better than the

MOC model.

Wind stress curl, buoyancy and eddy forcing all contribute to sea level variability but

play dominant roles in different regions. Sea level anomalies are primarily controlled by local

wind forcing in the central to northeast of portion of our study region, by local buoyancy

forcing in the southeast region between 210◦E and 230◦E, and by eddy forcing and wave

propagation in the west of NP.

Over most of our study area, the new diagnostic model suggests that local damping

rather than Rossby wave propagation does a better job of accounting for the observed sea

level changes. One exception is in the southeast portion of our study region where it appears

that eddy stresses associated with propagating eddies are reproduced better with the MOC

model that depends on propagation. An interesting subject for future work is why our new

model, which includes propagation, fails in this region.
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Figure 4.9: Correlation between sea level contributions and total modeled sea level (left);
Ratio of variance of difference between sea level contribution and total modeled sea level
to variance of observation (right). The upper, middle and bottom panel is for the sea
level contributions from wind forcing, buoyancy forcing, eddy and wave propagation forcing,
respectively.
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