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ABSTRACT 
 
 

Coastal water turbidity is a key environmental factor that influences the relative 

clarity of the water, which therefore reduces sunlight penetration. The comprehensive 

spatial and temporal coverage of remote sensing allows mapping of water turbidity near 

the coast. Even in locations where time-consuming and expensive conventional turbidity 

monitoring programs exist, local technological limitations prevent complete coverage. 

Traditional optical satellite techniques using the visible band also have limitations in 

monitoring turbidity due to non-optimal observing conditions such as clouds, sun-glint, 

and thick aerosols. In this study, in order to complement the daytime satellite 

measurements, I used the data from Visible Infrared Imaging Radiometer Suite Day-

Night-Band (VIIRS DNB), which provides 750 m spatial resolution for a wide band (500 

– 900 nm) during nighttime imaging. There were two objectives in this study: (1) 

Determine the contribution that the nighttime DNB data would provide for estimating 

turbidity, compared to the VIIRS daytime contribution. (2) Quantify turbidity from the 

nighttime DNB data in the coastal region. In the Northern Gulf of Mexico, the results 

showed that the mean monthly nighttime DNB data over the two years can contribute 

42.9% of the total usable day and night water pixels. The nighttime DNB data can 

provide 32.5% of total day and night water pixels that can be used to estimate turbidity, 

within ±4 days of a full moon. The VIIRS nighttime DNB reflectance data showed a poor 

relationship with daytime estimated turbidity (R2=0.61) with a standard error of 7.4 FNU. 
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The mean relative bias and error were 53.5% and 82.3%. The method used in this study 

shows promise, but currently still has high uncertainties and errors. Several reasons for 

these uncertainties and errors were discussed. This study suggests that nighttime DNB 

data might be useful if uncertainties are reduced through further algorithm development. 

If so, then during the week of a full moon, nighttime DNB data could be used to 

calculate nighttime turbidity. 
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1. Introduction and Background 

     

The main purpose of this study is to determine if coastal water turbidity at night 

can be quantified using data from a satellite optical observing system, specifically the 

VIIRS DNB, which stands for Visible Infrared Imaging Radiometer Suite Day-Night-

Band. Here turbidity is an optically measured concentration of suspended particles. The 

suspended particles, including organic and inorganic detritus, can aggregate and be 

resuspended by wind/wave and tidal currents (Jones et al. 1998). These processes 

increase the turbidity and the residence time of the suspended particles in water. 

Traditionally, water turbidity is measured through the “static” or “dynamic” method 

(Anderson 2005). The “static method” measures a water sample removed from the 

source with benchtop meters, while the “dynamic” method uses sensors in the water for 

instantaneous or continuous monitoring. According to different designs, instruments 

using the “static method” are preferably used in the lab or on the bigger boats if the 

conditions allow (e.g., Eutech TB1000 and HACH 2100AN). The instruments designed 

with the “dynamic” method can be used in the lab with flow-through chambers or in the 

field with direct measurements (e.g., Rosemount Analytical Clarity II and YSI 

Environmental 6136). Generally, the measurements taken with these two methods differ. 

Because the “static” method cannot fully reflect the natural movement of particles, the 

difference becomes significant when more coarse particles, such as sand, are in the 

water samples. Through different instruments have different optical designs (Omar and 
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MatJafri, 2009), the fundamental theory of operation – measuring the amount of 

scattered light in a sample cell - remains the same (i.e., measure how much light is 

scattered in a sample cell). There are two turbidity units used by the United States 

Environmental Protection Agency (US EPA) and European agencies, the Nephelometric 

Turbidity Unit (NTU) and the Formazin Nephelometric Unit (FNU). The former uses a 

white light or broadband wavelength with a peak around 400-680 nm. The latter uses 

monochrome light, which is typically a near-infrared wavelength. Although NTU and 

FNU are interchangeable (i.e., 1 NTU = 1 FNU), it is recommended that one uses the 

same instrument design (and unit) for continuous measurements (Anderson 2005). 

Mapping turbidity using remote sensing is useful to monitor and assess water 

quality (Nechad et al. 2010). Due to the comprehensive spatial and temporal coverage, 

remote sensing can provide important information regarding inland and coastal waters, 

especially when conventional monitoring programs are hindered by time, cost, and 

technological limitations (Navalgund et al. 2007). To calculate water turbidity from 

remote sensing data, a good relationship between in situ turbidity and the reflectance of 

visible red bands is needed. In the Bay of Biscay, Petus et al. (2010) showed a good 

result in using the 645 nm band from Moderate Resolution Imaging Spectroradiometer 

(MODIS) in Aqua to model turbidity with a polynomial equation. The R2 coefficient 

determined between the calculated turbidity and the in situ turbidity was 0.96. In Tampa 

Bay, Florida, a good relationship was found (R2=0.73) between remote sensing 

reflectance at 645 nm [Rrs(645)] versus in situ turbidity, when using multiple scattering 

atmospheric corrections (Chen et al. 2007). The in situ data for their project were 

collected in June 2004, October 2004, and December 2005. The effects of Colored 
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Dissolved Organic Matter (CDOM) were not significant in Tampa Bay, except for 

Hillsborough Bay in the wet season (Chen et al. 2007). In southern Finland during 1996-

1998, airborne and simulated MEdium Resolution Imaging Spectrometer (MERIS) data 

(validated by in situ data) obtained 79% classification accuracy for five turbidity classes 

(Koponen et al. 2002). However, optical satellite data still have some limitations. Clouds 

and sun-glint often block or mask the ocean color data. For example, with nearly full 

daily coverage, MODIS only provided 19 valid daytime retrievals in a year from a 

coastal site in the Northern Gulf of Mexico (Chen and Hu 2017). Cloud cover is always 

an issue for optical satellites since ~68% of ocean is generally blocked by clouds 

(Eastman et al. 2011; Rossow and Schiffer, 1999). An alternative measurement is 

needed to obtain more data from the ocean. 

VIIRS is one of the five sensors carried on the National Polar-orbiting Partnership 

(also known as Suomi NPP or S-NPP) Satellite, which is a new generation USA 

environmental satellite in the (JPSS) Joint Polar Satellite System (Lee et al. 2006; 

Schueler et al. 2002). VIIRS has 22 channels from the visible band to the long wave IR 

band. It is also equipped with a panchromatic (DNB) Day/Night Band to provide data 

under extremely low-levels of radiation at night (Lee et al. 2010). The DNB has a 750-m 

spatial resolution at nadir and a 3000 km swath width. VIIRS DNB is not the first 

nighttime radiance provider in the visible spectrum. The (OLS) Operational Linescan 

System of the U.S. Air Force’s Defense Meteorological Satellites was the first night time 

data provider of the entire planet during 1974-1984 (Croft 1978; Sullivan 1989). 

However, as a proof-of-concept sensor, the sensitivity of the OLS was rather low. In 

contrast, VIIRS DNB has better resolution and sensitivity than OLS (Lee et al. 2010), 
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with a noise floor of 5 x 10-7 W m-2 sr-1, and a minimum detectable signal of ~3 x 10-5 W 

m-2 sr-1.  

In general, wavelengths from 400 nm to 750 nm are the most useful in 

determining constituents in water. The absorption and backscattering of light by 

constituents influence the water-leaving radiance. Water strongly absorbs light in the 

long wavelengths (>750 nm), while phytoplankton and CDOM strongly absorb in the 

blue wavelengths (Matthews 2011). Water turbidity correlates well with reflectance in 

red bands (Hellweger et al. 2007; Lathrop Jr and Lillesand 1986). Since the DNB covers 

a wavelength range of 500-900 nm with the central wavelength at 700 nm, VIIRS DNB 

should be able to quantify coastal water turbidity under sufficient moonlight illumination 

(Miller et al. 2013). The ability of DNB to detect coastal turbidity dynamics and algal 

blooms at night has been demonstrated in three case studies of the La Plata River 

Estuary, Argentine coast, and East China Sea (Shi and Wang 2018). Their study 

explored the diurnal movement of sediment fronts using DNB radiance ratios in these 

three different areas.  

  

1.1 Research Objectives  

Following the previous studies mentioned above, some unknowns still need 

attention. For example, there is no study determining the frequency of the available 

nighttime DNB turbid pixels (i.e., water pixels over a turbidity pattern) over different time 

spans of days, weeks, months, seasons, or years. Additionally, even though DNB 

nighttime data allow detection of coastal water turbidity events (Shi and Wang 2018), 

there is no algorithm developed to retrieve and quantify water turbidity at night. This 
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study therefore focused on developing an algorithm as explained in the following two 

objectives. 

1) The first objective was to compare the amount of usable water pixels from the 

night radiance maps with the usable pixels from the daytime data. This comparison 

assesses whether there is sufficient benefit in working with nighttime DNB data to 

measure turbidity, with regards to increasing overall temporal resolution, to pursue the 

second objective. The study regions are located near the Mississippi River Delta and 

the Atchafalaya Bay (see boxes in Figure 1). These regions were chosen, because they 

are near the most significant river plume in the Northern Gulf of Mexico. 

2) The second objective was to use DNB nighttime data to quantify turbidity at 

night by comparing it to daytime turbidity maps. Previous studies show that visible red 

bands correlate well with water turbidity (Hellweger et al. 2007; Lathrop Jr and Lillesand 

1986). The bandwidth of the DNB data, however, covers a greater wavelength range of 

500-900 nm, which includes the red band and the near-IR (infrared) band. The final step 

of this objective is to develop an algorithm to use the DNB data to quantify nighttime 

turbidity. 

These objectives addressed the following questions: 

a) How much do the DNB nighttime data provide in terms of increased 

observations of turbidity compared to the observations of turbidity from daytime data? 

b) Assuming the DNB night radiance pixels have sufficient quality and quantity, 

how can these pixels be used to estimate coastal water turbidity at night and for how 

many nights can they be retrieved within a lunar cycle? 
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2. Research Methods 

 

The different data types are reviewed and a short overview of the data 

processing is provided in section 2.1. Detailed step-by-step methods for the first and 

second objectives (sections 2.2 and 2.3) then follow.  

 

2.1 Data Overview 

VIIRS nighttime DNB data were used to detect coastal water turbidity events at 

night. These data were assessed to develop an algorithm to calculate nighttime water 

turbidity values. VIIRS DNB data can be blocked or obscured by clouds, smoke, and 

fog. Daytime turbidity maps were calculated from VIIRS remote sensing reflectance at 

671 nm and 862 nm (i.e., Rrs(671) and Rrs(862)). To help identify turbidity events, 

VIIRS true color images were obtained directly from VIIRS Level 1 data. The VIIRS 

Level 1 and Level 2 data used here are from the NASA Ocean Color Web 

(https://oceancolor.gsfc.nasa.gov/). Cloud detection at night can be determined by the 

differences in thermal temperature. The VIIRS IR M15 band, from 10.26 µm to 11.26 

µm, was used for the identification of high clouds. The M13 band, from 3.97 µm to 4.13 

µm, is important for low cloud and fog detection, due to its smaller wavelength (Ellrod 

1995; Eyre et al. 1984; Hunt 1973). VIIRS DNB and IR data are available through 

NOAA CLASS (https://www.class.noaa.gov/). In order to improve the cloud masking 

method, VIIRS sea surface temperature (SST) and VIIRS cloud data, such as Cloud 

https://oceancolor.gsfc.nasa.gov/
https://www.class.noaa.gov/
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Optical Depth, Cloud Effective Particle Size, Cloud Top Temperature, Cloud Top Height, 

and Cloud Top Pressure, were entered into custom computer programs to help identify 

clouds. The two-minute Gridded Global Relief Data (ETOPO2) v2 (National Geophysical 

Data Center, 2006) were used to mask the land pixels. 

The data for this study were downloaded and processed using SeaDAS and 

ENVI/IDL computer programs developed in-house. I focused on the Northern Gulf of 

Mexico as a region to map turbidity, because the Mississippi River plume is known to 

have significant turbidity events. Two years of VIIRS nighttime DNB reflectance maps 

(from January 2016 through December 2017) were used in this study. The maps with 

extensive cloud cover were not discarded if there are distinguishable pixels within the 

maps.  

Figure 1 shows the two study regions as red boxes near the mouths of the 

Mississippi River and Atchafalaya Bay. The coastal waters continuously receive 

continental waters from the outflow plume of the Mississippi River, making the Northern 

Gulf of Mexico ideal for studying water turbidity. The distance between Atchafalaya Bay 

and Mississippi River Delta is about 250 kilometers. The water and sediments in each 

region come from different local river systems. The sediments from the Atchafalaya Bay 

are from the Atchafalaya River, a branch of Mississippi River. For the Mississippi River 

Delta study area, the water and sediments are directly from the distal end of the 

Mississippi River. 

Figure 2 shows a systematic flow chart for data processing and data analyses. In 

section 2.2 (first objective), the nighttime DNB reflectance maps were characterized 

using ENVI software, where they were color stretched to enhance the contrast between 
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the bright targets (i.e., clouds and land) and the adjacent water. This step determined if 

the reflectance maps were usable for documenting turbidity. The valid pixels were then 

counted in a computer algorithm to estimate the nighttime DNB contribution. In section 

2.3 (second objective), valid nighttime DNB reflectance maps were selected to extract 

water pixels to match with the derived daytime water turbid pixels. The detailed methods 

are described below. 

 

2.2 First Objective 

A. The Top-Of-Atmosphere (TOA) moonlight irradiance (Fo) for each pixel was 

calculated using the lunar irradiance model (Miller and Turner 2009), from which the 

TOA nighttime DNB reflectance was calculated as Rt = Lt/[Focos(o)], where o is the 

lunar zenith angle, Lt is the VIIRS DNB nighttime radiance, and Fo is integrated to the 

bandwidth of VIIRS DNB and weighted according to the VIIRS relative spectral 

response functions (https://ncc.nesdis.noaa.gov/). The Miller and Turner (2009; online 

supplement) lunar model was used to obtain Fo. These above steps converted VIIRS 

nighttime DNB radiance maps to reflectance maps. The boundary used here was 86o - 

93oW and 27o - 31oN (Figure 1), which contains both study regions shown in the red 

boxes. 

B. The land and cloud pixels were removed from daytime Rrs(671) reflectance 

maps and from the nighttime DNB reflectance maps to obtain water pixels. Land pixels 

were identified from ETOPO2 v2 data. Cloud pixels were obtained through my IDL 

algorithm and VIIRS standard cloud mask data. Note that due to a change in data 

processing by NOAA, there are two cloud-masking techniques used in this study. The 

https://ncc.nesdis.noaa.gov/
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first is my IDL algorithm that was used for data collected before March 2017. The other 

is the VIIRS standard cloud mask data from NOAA, which was used for data collected 

after March 2017.  

C. The following steps describe my IDL algorithm: (i) Cloud data were used to 

identify and remove most cloud pixels. This step removes most of the high clouds, like 

cirrus and cirrocumulus. To remove other types of high clouds, a combination of 

different cloud data, such as Cloud Optical Depth and Cloud Effective Particle Size, 

were used to identify and remove more cloud pixels near the boundary of identified high 

clouds. (ii)  Next, invalid sea surface temperature pixels (as indicated by SST Flags) are 

treated the same as cloud pixels. (iii) Some middle cloud and low cloud pixels can be 

identified and removed by comparing the VIIRS IR M15 & M13 radiance maps and 

nighttime DNB reflectance maps, with each other to obtain a removal threshold. After 

several comparisons using ENVI software, the removal threshold obtained was 0.20 of 

DNB reflectance. Note that, for turbid water, the nighttime DNB reflectance ranges from 

0.06 to 0.17, which makes 0.20 a reasonable threshold to use. This step also removes 

most of the thin clouds. However, there were still some cloud pixels difficult to remove 

using the above steps, especially the cloud pixels along the edge of nimbostratus and 

cumulus type clouds. (iv) Following several trials, the box-sieving algorithm described 

below was used to remove those remaining cloud pixels. A moving-box of 25 x 25 pixels 

over a nighttime DNB reflectance map was used to identify the number of identified 

cloud pixels from above. If the number is greater than 10, then the remaining pixels that 

had a reflectance value > 0.05 within that box were considered cloud pixels. Although 

this algorithm can remove up to 90% of the cloud pixels, it can also accidently remove 
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some water pixels. A comparison between the VIIRS cloud mask data and my algorithm 

is shown in the Results Section and discussed in the Discussion Section. 

D. Another box-sieving algorithm was used to filter out the pixels that contain 

unusually high reflectance from the light originating from boats and oil platforms. These 

pixels show abnormally high nighttime DNB reflectance > 1, which were easily removed 

from the nighttime DNB reflectance maps. Note that these pixels still include moon-glint 

pixels. After this step, the remaining water pixels in the nighttime DNB reflectance maps 

were considered valid VIIRS DNB nighttime water pixels. 

E. Daytime water pixels were directly culled from counting pixels from the VIIRS 

Rrs(671) maps, which represent the remote sensing reflectance values at 671 nm 

obtained from daytime measurements. Note that the daytime land and cloud pixels were 

already filtered out in the VIIRS Rrs(671) maps acquired from the NASA ocean color 

website. Note that these daytime water pixels include sun-glint pixels. 

F. To calculate the nighttime DNB contribution in estimating water pixels, 

including pixels over turbidity patterns, the following equation was applied: 

 

      𝐷𝑁𝐵 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 (%) = 100 ×
𝑉𝐼𝐼𝑅𝑆 𝐷𝑁𝐵 𝑛𝑤𝑝

𝑉𝐼𝐼𝑅𝑆 𝑅𝑟𝑠(671) 𝑝𝑖𝑥𝑒𝑙𝑠+𝐷𝑁𝐵 𝑛𝑤𝑝
                    (1) 

 

where VIIRS Rrs(671) pixels represent daytime water pixels and nwp stands for 

nighttime water pixels. These daytime and nighttime water pixels include all types of 

water, but no cloud or land pixels. If there was more than one map of data collected on 

a certain day, the pixels from each map that overlie each other were added together to 

count the entire contribution for that day. For example, if there were three VIIRS 
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nighttime DNB reflectance maps (N1, N2, & N3) and two VIIRS daytime Rrs(671) maps 

(D1 & D2) in one day, equation (1) would be: 

 

    𝐷𝑁𝐵 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 (%) =
100 × 𝑉𝐼𝐼𝑅𝑆 𝐷𝑁𝐵 𝑛𝑤𝑝 (𝑁1+𝑁2+𝑁3)

𝑉𝐼𝐼𝑅𝑆 𝑅𝑟𝑠671 𝑝𝑖𝑥𝑒𝑙𝑠 (𝐷1+𝐷2)+𝐷𝑁𝐵 𝑛𝑤𝑝 (𝑁1+𝑁2 +𝑁3)
           (2) 

  

The DNB contribution (%) was calculated for each single 24-hour day (from 0000 

GMT to 2359 GMT) using equation (2). The daily DNB contribution (%) values were 

then averaged into a monthly mean. The monthly means were plotted as a time series 

over two years, with the x-axis representing the month, and the y-axis representing the 

monthly mean of the DNB contribution over the Northern Gulf of Mexico area defined by 

86o - 93oW and 27o - 31oN (shown in Figure 1). 

G. After calculating the DNB contribution in estimating water pixels, the number 

of water pixels that could be used to estimate water turbidity were calculated. For both 

day and night, the water pixels were considered valid only if a turbidity pattern was 

visible on the corresponding map. All the daytime water pixels were considered valid 

because turbidity events should always be observable during the day. For nighttime, the 

valid water pixels are restricted to the best illumination surrounding the time of a full 

moon.  

H. Turbidity events from VIIRS nighttime DNB reflectance maps were labeled as 

valid cases (“y” cases in Table 2) if a turbidity pattern could be clearly observed or 

distinguished from partial cloud cover. If a turbidity pattern was not completely 

distinguishable from cloud coverage or there was partial moon-glint, the turbidity events 

were labeled as potentially valid cases (“y/n” cases in Table 2). If there were no 
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observable turbidity patterns, the nighttime DNB reflectance maps were discarded and 

not included in Table 2.  

I. Once a turbidity pattern was identified, all the water pixels from the map were 

used in the calculation. The equation for the nighttime DNB contribution of turbidity 

estimates is: 

 

            𝐷𝑁𝐵 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑡𝑢𝑟𝑏𝑖𝑑𝑖𝑡𝑦 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 (%) = 100 ×
𝐴

𝐴+𝐵
                 (3) 

 

where A represents VIIRS DNB nighttime water pixels (from the maps with visible 

turbidity patterns – the “y” cases in Table 2) and B represents VIIRS daytime Rrs(671) 

water pixels. The results from this calculation are shown in the Results Section. 

J. This study also examines whether wind speed is an important factor for 

turbidity events in the nighttime DNB data, as it is for daytime turbidity. Wind speed data 

from buoys in the Northern Gulf of Mexico were acquired from the National Data Buoy 

Center (https://www.ndbc.noaa.gov/). Four buoys were chosen to represent the 

Mississippi River Delta and the Atchafalaya Bay. These buoys provide continual data 

during 2016-2017 and are cover the two study regions. Stations BURL1 (89.428oW, 

28.905oN) and LOPL1 (90.025oW, 28.885oN) are in the Mississippi River Delta. Stations 

MRSL1 (92.061oW, 29.441oN) and EINL1 (91.384oW, 29.373oN) are in the Atchafalaya 

Bay. The wind speed data from buoys are 6-minute or hourly measurements. The wind 

speed data, measured each hour surrounding the satellite pass time, are averaged at 

both stations and then with each other. For example, if the satellite pass is at 0717 

GMT, then the wind speed from both buoys at 0700 and 0800 GMT were averaged. The 

https://www.ndbc.noaa.gov/
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same occurred if the satellite pass time was at 0700 GMT. However, if the pass time 

were 0659 GMT then wind speed from the two buoys would be averaged from 0600 and 

0700 GMT. The comparison between wind speed and nighttime turbidity is shown in the 

Results Section. 

 

2.3 Second Objective 

To estimate daytime water turbidity from remote sensing data, a single band 

algorithm was used in this study. This objective focuses on the two study regions shown 

in Figure 1, the Mississippi River Delta and Atchafalaya Bay. Following the work of 

Dogliotti et al. (2015), the turbidity algorithm can be applied to all coastal and estuary 

waters with a mean relative error of 13.7% and bias of 4.80%. According to Dogliotti et 

al. (2015), the definition of turbidity follows the International Standard Organization ISO 

7027 (ISO 1999). The turbidity unit they used was the Formazin Nephelometric Unit 

(FNU).  

A. The following steps were used to calculate daytime turbidity (T) from remote 

sensing data of VIIRS Rrs(671) and Rrs(862). 

1) The theoretical basis for the single band turbidity algorithm was based on the 

work from Dogliotti et al. (2014) and Nechad et al. (2009). The Turbidity term, T,  is 

described as: 

                                     𝑇 =
𝐴𝑇

𝜆   𝜌𝑤(𝜆)

(1−  𝜌𝑤(𝜆) 𝐶𝑇
𝜆⁄ )

                                        (4) 

 

where   𝜌𝑤(𝜆) is defined as the water-leaving reflectance, 𝐴𝑇
𝜆  and 𝐶𝑇

𝜆  are wavelength-

dependent calibration coefficients, and 𝜆 is wavelength. 
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2) The same 𝐶𝑇
𝜆  calibration coefficient from their study was also used in this 

study.  It was calibrated using standard inherent optical properties (Nechad et al. 2009), 

as follows. 𝐶𝑇
𝜆 is dimensionless, as shown: 

 

                                 𝐶𝑇
𝜆 = 𝛾

𝑏𝑏𝑝𝑇
∗

𝑎𝑝𝑇
∗ + 𝑏𝑏𝑝𝑇

∗    [𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠]                           (5) 

 

The absorption and backscattering variables ( 𝑎 & 𝑏𝑏 ) were calculated from the 

combination of particulate matter (p) and non-particulate matter (np) as follows: 

 

                               𝑎 = 𝑎𝑝 + 𝑎𝑛𝑝,    𝑏𝑏 = 𝑏𝑏𝑝 + 𝑏𝑏𝑛𝑝  [𝑚−1]                       (6) 

 

Dogliotti et al. (2014) and Nechad et al. (2009) assumed that the non-particulate 

backscatter is negligible with respect to particulate backscatter in turbid waters so that 

𝑏𝑏𝑛𝑝=0. The turbidity-specific particulate absorption and turbidity-specific backscattering 

variables were defined as: 

 

                              𝑎𝑝𝑇
∗ =

𝑎𝑝

𝑇
 , 𝑏𝑏𝑝𝑇

∗ =  
𝑏𝑏𝑝

𝑇
   [𝑚−1𝐹𝑁𝑈−1]                             (7) 

 

where 𝑎𝑝𝑇
∗ = 𝑎𝑝

∗443𝑒(−0.0123(𝜆−443))  and 𝑎𝑝
∗443 = 0.036 𝑚2 𝑔⁄  (Babin et al. 2003b). The 

turbidity-specific backscattering variable was defined as follows: 𝑏𝑏𝑝𝑇
∗ =

0.02 𝑏𝑝
∗555𝑏𝑝

𝜆 𝑏𝑝
555⁄ , where 0.02 is from Mobley (1994) and 𝑏𝑝

∗555 = 0.51 𝑚2 𝑔⁄  as 

described in Babin et al. (2003a) for coastal waters. The ratio, 𝑏𝑝
𝜆 𝑏𝑝

555⁄ , was tabulated 
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for case 1 and case 2 water (both from 412 to 715 nm) for the Atlantic Ocean, 

Mediterranean Sea, North Sea, Baltic Sea, and the English Channel in Babin et al. 

(2003a). Note that the case 1 water is different from case 2 water because its optical 

properties are dominated by phytoplankton, whereas the case 2 water is any water 

except for water dominated by phytoplankton (Morel and Prieur, 1977). 

3) The calibration coefficient 𝐴𝑇
𝜆  was calibrated using onsite data through non-

linear regression analysis (Nechad et al. 2009). The equation is shown as follows: 

 

                                          𝐴𝑇
𝜆 =

𝑎𝑛𝑝

𝛾𝑏𝑏𝑝𝑇
∗    [𝐹𝑁𝑈]                                    (8) 

where 𝐴𝑇
𝜆  is tabulated in Dogliotti et al. (2014) and Nechad et al. (2010).  

4) In this study, the water-leaving reflectance,  𝜌𝑤(𝜆), is substituted by the VIIRS 

Rrs(671) multiplied by π. The two calibration coefficients, 𝐴𝑇
𝜆  and 𝐶𝑇

𝜆, were taken from 

Dogliotti et al. (2014) and Nechad et al. (2010) and used to calculate turbidity maps 

from VIIRS Rrs(671) data. 

5) The equation for high turbidity values (Dogliotti et al. 2015) was used in this 

study because the typical turbidity value in coastal inshore waters of the Louisiana Shelf 

are in the range of 70-120 FNU and the peak value can reach 150 FNU over inland 

water sites (data from the USGS office in Morgan City, located in the lower Atchafalaya 

River area - https://waterdata.usgs.gov/usa/nwis/uv?site_no=07381600). Specifically: 

 

                                    T = (1−w)T671 + wT862                   (9) 



16 
 

where w is a weighting parameter from 0 to 1 to match when the water-leaving 

reflectance (671 nm) was between 0.05 and 0.07. T671 and T862 represent the turbidity 

calculated from the water-leaving reflectance at 671 and 862 nm, respectively. The 

mean relative error of this equation was reported to be about 13.7% for the Dogliotti et 

al. (2015) study. 

B. The following steps describe the details of calculating VIIRS nighttime DNB 

reflectance (Rs). 

1) As addressed in the first objective, the TOA nighttime DNB reflectance was 

calculated as Rt = Lt /[Focos(o)], where o is the lunar zenith angle and Lt is VIIRS 

DNB nighttime radiance. Fo is integrated to the bandwidth of VIIRS DNB and weighted 

to the VIIRS relative spectral response functions (https://ncc.nesdis.noaa.gov/). To 

remove aerosol contribution and Rayleigh reflectance, the nearest-neighbor approach 

(Hu et al. 2000) was used in this study. Because only one spectral band is available, it 

was impossible to carry out the traditional atmospheric correction using two near-

infrared bands (NIR) (Gordon and Wang 1994). The nearest neighbor method assumes 

that the type of aerosol is homogeneous in a relatively small area. The unclear-water 

pixels were obtained through identified turbidity events in VIIRS nighttime DNB 

reflectance maps using ENVI software. The clear-water pixels were distinguished from 

the same maps also using ENVI software. Next, the clear-water pixels close to the 

turbidity patterns were chosen to calculate a median of Rt. Then, this calculated median 

of Rt was subtracted from all the Rt values of the unclear-water pixels to create Rs 

values, which represent the DNB surface reflectance values with respect to clear-water. 

https://ncc.nesdis.noaa.gov/
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Note that this step also assumes that the moon-glint values of the two nearest pixels do 

not vary significantly.  

VIIRS moon-glint data were calculated from satellite zenith and azimuth angles, 

moon zenith and azimuth angles, and wind speed. The azimuth and zenith angles were 

obtained from NOAA CLASS. The wind speed data were acquired from National Center 

for Environmental Predictions (NCEP) Reanalysis 2 (Kanamitsu et al. 2002) provided by 

the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA (https://www.esrl.noaa.gov/psd/). 

In the comparison of several turbidity events, the moon-glint values of the chosen clear 

and unclear-water pixels rarely change more than 0.001 sr-1 under typical illumination 

conditions. These Rs values should generally not be affected by the moon-glint values 

because most of the moon-glint values should have been removed. However, there 

were some remaining turbidity pixels with very obvious moon-glint. This was probably 

due to the moon-glint varying significantly between the remaining pixels (contrary to the 

assumption above). Those cases were identified and removed using ENVI software and 

were not used in the nighttime turbidity algorithm. 

C. The following steps describe how to establish a nighttime turbidity algorithm 

using nighttime DNB reflectance. 

1) The nighttime turbidity events obtained from the first objective are listed in 

Table 2. Next, the following steps describe how to cull usable events for calculating 

nighttime turbidity. (i) All “y/n” cases were discarded because their turbidity patterns 

were hard to distinguish from clouds. (ii) Some “y” cases were discarded if there was 

sun-glint in the daytime Rrs(671) map or moon-glint in the nighttime DNB reflectance 

map. (iii) Some “y” cases were discarded because there were no usable daytime 

https://www.esrl.noaa.gov/psd/
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turbidity maps during the same day to compare to a nighttime turbidity event. These 

steps generate the usable turbidity cases. Each case contained one daytime mapped 

turbidity and one nighttime mapped DNB reflectance. There were 53 out of 86 turbidity 

cases culled for developing the turbidity algorithm for nighttime DNB reflectance. 

2) To extract usable pixels, both the culled DNB reflectance maps and daytime 

turbidity maps were processed using ENVI software to select the same region of 

interest (ROI) over the same turbidity pattern in the study region. Note that some pixels, 

with a larger satellite view angle (> 60o), were discarded from both daytime and 

nighttime data maps. Like MODIS, VIIRS has a wide swath ~3000 km. The effects of 

view angle for VIIRS data could be significant. Image distortion becomes an issue as 

the view angle away from the nadir view increases (CRCSI, 2017; Xin et al. 2012). This 

study did not use an algorithm to resolve this issue. Therefore, pixels with a larger 

satellite view angle are simply discarded.  

3) The derived daytime turbidity was used to match with the nighttime VIIRS 

DNB reflectance. Instead of establishing a pixel-by-pixel relationship, a histogram 

matching method was used to match these two data sets, according to the cumulative 

frequency of the data. The method is resilient to slight turbidity pattern shifts between 

day and night. The number of bins was set to 5000 in order that the bin size could be 

very small (e.g., 0.0001). After histogram matching, each turbidity event had its own line 

pattern. Note that the developed algorithm focuses on the major part of the turbidity 

patterns rather than the extreme values. Therefore, the lowest and highest 1% of the 

nighttime DNB reflectance data and daytime turbidity estimates were removed. 
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4) The line patterns from histogram matching were considered a collection of 

non-linear equations. This study uses the non-linear equations from the Statistical 

Analysis System (SAS) software to fit the turbidity cases. There were four equations 

selected by visual inspection (human eye). The best four (out of 19) equations were 

selected by how well the equations fitted the histogram matching pattern of nighttime 

DNB reflectance values and daytime turbidity values. These four equations are shown 

in the Results Section.   

5) The following ten equations (10-19) were used to compare the four different 

equations from step 4 above. The coefficient of determination (R2) was calculated as: 

 

                                   𝑅2 = 1 −
∑ (𝑌𝑜𝑏𝑠

𝑖 −𝑌𝑝𝑟𝑒𝑑
𝑖 )

2
𝑁
𝑖=1

∑ (𝑌𝑜𝑏𝑠
𝑖 −�̅�𝑜𝑏𝑠

𝑖 )
2𝑁

𝑖=1

                                     (10)                 

 

where 𝑌𝑜𝑏𝑠
𝑖  is the daytime turbidity, 𝑌𝑝𝑟𝑒𝑑

𝑖  is the nighttime turbidity, �̅�𝑜𝑏𝑠
𝑖  is the average of 

𝑌𝑜𝑏𝑠
𝑖 , and N is the number of data points. The R2 gives the goodness of fit for an 

equation or how well the predicted values match the true data. An R2=1 means a perfect 

fit. 

The Adjusted R2 value was calculated as follows: 

 

                              𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2 = 1 −
(𝑁−1)

(𝑁−𝑝−1)
(1 − 𝑅2)                         (11) 

 

where p is the total number of fitted variables in an equation. The adjusted R2 is usually 

less than or equal to R2. This value can be used to compare different equations, when 
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there are a different numbers of variables in the equations. The R2 can be misleadingly 

large when there are more variables in one of the equations being compared to, 

whereas the adjusted R2 does not vary as much. This makes the adjusted R2 a more 

objective value for comparing different regression equations that have different number 

of variables. 

The Residual variance (unexplained variance), a term that describes the variance 

that cannot be explained by an equation, was calculated as follows: 

 

                                          𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =
∑ (𝑌𝑜𝑏𝑠

𝑖 −𝑌𝑝𝑟𝑒𝑑
𝑖 )

2
𝑁
𝑖=1

𝑁−𝑝
                        (12) 

 

The Standard error of the estimate term was calculated as follows:  

 

           𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑒𝑟𝑟𝑜𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 =  √∑ (𝑌𝑜𝑏𝑠
𝑖 −𝑌𝑝𝑟𝑒𝑑

𝑖 )
2

𝑁
𝑖=1

𝑁−𝑝
                    (13) 

 

This term measures the dispersion between the observations and the regression line. 

Note that a standard deviation is the dispersion between the observations and the mean 

of the observations. 

The Reduced chi-square (Spiess and Neumeyer, 2010) was calculated as 

follows: 

                           𝜒𝑣
2 =

𝜒2

𝑁−𝑝
      ,   and 𝜒2 = ∑

(𝑌𝑜𝑏𝑠
𝑖 −𝑌𝑝𝑟𝑒𝑑

𝑖 )
2

𝜎𝑖
2

𝑁
𝑖=1                                  (14) 
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where 𝜒𝑣
2 is the reduced chi-square and 𝜎𝑖

2 is the uncertainty of 𝑌𝑜𝑏𝑠
𝑖 . In this study, I used 

13.7% and 22% from Dogliotti et al. (2015) for equation (14). The 𝜒𝑣
2 term approaches 1 

when a chosen equation fits the observations well. If the term is much larger or smaller 

than 1, then it means that the true uncertainty of the observations is larger or smaller 

than the published uncertainties that were used (13.7% and 22%).  

The Mean Relative Bias (MRB) and Mean Relative Error (MRE) were calculated 

as follows: 

 

                                     𝑀𝑅𝐵 = 100 ×
1

𝑁
∑

(𝑌𝑜𝑏𝑠
𝑖 −𝑌𝑝𝑟𝑒𝑑

𝑖 )

𝑌𝑜𝑏𝑠
𝑖

𝑁
𝑖=1                                     (15) 

                                      𝑀𝑅𝐸 = 100 ×
1

𝑁
∑

|𝑌𝑜𝑏𝑠
𝑖 −𝑌𝑝𝑟𝑒𝑑

𝑖 |

𝑌𝑜𝑏𝑠
𝑖

𝑁
𝑖=1                                     (16) 

 

where both mean relative bias and mean relative error show the average bias and 

errors between the observations and predictions. 

The 95% of Prediction Interval (PI) term was calculated as follows: 

 

              𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑜𝑓 𝑃𝐼 =  𝑌𝑝𝑟𝑒𝑑
𝑖 + 𝑡𝑐𝑟𝑖𝑡 × 𝑆𝐸𝑖                            (17) 

              𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑜𝑓 𝑃𝐼 =  𝑌𝑝𝑟𝑒𝑑
𝑖 − 𝑡𝑐𝑟𝑖𝑡 × 𝑆𝐸𝑖                             (18) 

              𝑆𝐸𝑖  = 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑒𝑟𝑟𝑜𝑟 × √1 +
1

𝑁
+

(𝑋𝑝𝑟𝑒𝑑
𝑖 −�̅�𝑜𝑏𝑠)

2

∑ (𝑋𝑝𝑟𝑒𝑑
𝑖 −�̅�𝑜𝑏𝑠)

2
𝑁
𝑖=1

                  (19) 
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where 𝑡𝑐𝑟𝑖𝑡 is the t-statistic at 95%, 𝑋𝑝𝑟𝑒𝑑
𝑖  is the given VIIRS nighttime DNB reflectance 

in an equation, and the �̅�𝑜𝑏𝑠 is the average of the VIIRS nighttime DNB reflectance from 

the measurements in the turbidity events. Note that a prediction interval (PI) differs from 

a confidence interval (CI). The fitted regression line changes when different amounts of 

data are sampled from a population (i.e., line 1 from sample 1, line 2 from sample 2, 

etc.). A 95% CI tells that there is a 95% probability that the true best-fit line of that 

population is within the interval. In contrast, a 95% PI gives a range in which there is a 

95% probability that a future measurement from that population will be within that same 

range (Neter and Wasserman, 1977). Therefore, PI is usually larger than CI and is 

better to describe the range of true turbidity values at a given DNB reflectance.  

6) Two comparisons of daytime turbidity versus nighttime turbidity were made by 

using one valid example and all of the valid examples shown in Table 2. The daytime 

turbidity was calculated by equation (9) for each valid pixel from the VIIRS Rrs(671) and 

Rrs(862) maps. To get the corresponding nighttime turbidity, the nighttime turbidity 

algorithm used the nighttime DNB reflectance value for that same pixel. The result is 

then shown in a pixel-by-pixel comparison on an XY plot. 
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3. Results 
     
 
 
Preliminary inspection of the nighttime DNB radiance maps under different 

quarter phases of the moon was encouraging. Figure 3 shows that, under enough 

moonlight (84% illumination from the moon for September 9 and 65% for September 11, 

2017), turbidity patterns from the Atchafalaya Bay and Mississippi River plumes are 

observable. The two panels in Figure 3 represent results 3 and 5 days after the full 

moon. Note that the day of the full moon (100% moon illumination) was on September 

6. Red arrows in Figure 3 show the river plumes, comprised primarily of suspended 

particulate matter. The nighttime DNB radiance unit is µW cm-2 sr-1. The lunar 

irradiances for the two time periods are 0.048 and 0.022 µW cm-2 respectively, as 

calculated from a lunar model. Figure 3 also shows examples that could be usable 

turbidity events. The following sections describe the results of the first objective and 

second objective. 

 

3.1 First Objective 

This objective is to estimate the VIIRS DNB nighttime contribution of turbidity 

estimates. The first step is to count valid water pixels in the night and day data maps, as 

described in the Research Methods section. By comparing the valid nighttime and 

daytime water pixels, it can be shown that the monthly VIIRS DNB nighttime data 

contribution ranges from a minimum of 30.6% to a maximum of 62.5% of the total 
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daytime and nighttime water pixels available from 2016 to 2017 (Table 1). The monthly 

mean in 2016 and 2017 are 36.3% and 49.6%, respectively. Overall, nighttime DNB 

data contributes 42.9% of total water pixel detection, which is a significant increase of 

potential observations of possible water turbidity. 

Figure 4 shows the data in Table 1 as a time series. By plotting the data, it is 

clear that nighttime DNB contribution is different before and after March 2017. The 

~13% difference (i.e., 36.3% in 2016 and 49.6% in 2017) is due to the different 

approaches used to remove cloud pixels, as previously stated in the Research Methods 

Section. The lower DNB contribution suggests that the nighttime DNB water pixel 

contribution could be underestimated before March 2017. The calculation of my 

algorithm may have been overly aggressive, as shown in Figure 5. The average 

difference of DNB water pixel contribution in 2017, when using the two methods in cloud 

masking, is 17.8% (Figure 5). This result is discussed further in the Discussion Section. 

After determining the DNB water pixel contribution, the next step was to estimate 

nighttime DNB’s ability in detecting turbidity events, as compared to daytime Rrs(671) 

data. First, the identified turbidity events are shown in Table 2. The data shown in Table 

2 consist of 86 events indicated as “y” and 47 events are “y/n”. The “y” means that the 

turbidity pattern was identifiable and the water pixels over the turbidity pattern were able 

to be separated from the nearby cloud pixels. However, if the water pixels were difficult 

to distinguish from clouds over a turbidity pattern, the events were labeled as “y/n”. The 

“y/n” cases also include moon-glint events.  

All the data in Table 2 have been organized and quantified according to the day 

and corresponding moon phases in Figure 6. Over the two-year period (2016-2017), 
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there were 133 nighttime turbidity events (“y” & “y/n” cases) ranging from full moon -10 

days to full moon + 6 days. To narrow down the range, there were 119 out of 133 

events in the range of full moon ±4 days. Note that there were total of 381 valid and 

invalid events (i.e., including those reflectance maps that do not show turbidity patterns) 

in the range of full moon ±4 days during 2016-2017. DNB data contribution can be 

classified as “y” and “y/n” using the one criterion that a turbidity event can be seen on a 

nighttime DNB reflectance maps. The results of this classification suggest that turbidity 

patterns during the week of a full moon could be observed in about 31% of all the 

nighttime DNB mapped reflectance data. In my study area, there were total of 42 

reflectance maps when a full moon occurs. Note that sometimes, there can be up to 3 

nighttime DNB reflectance maps obtained during any given night in the Northern Gulf of 

Mexico, due to the S-NPP satellite’s orbital period of 1.7 hours. Only 22 out of the 42 

maps showed turbidity patterns, i.e., about 52% of total reflectance maps, including “y” 

and “y/n” cases, turbidity patterns could be seen during this period of sufficient 

moonlight illumination. 

To inspect whether wind speed is also an important factor for nighttime DNB’s 

turbidity events, wind speed data from National Data Buoy Center are used. There are 

two primary questions. Does wind speed correlate with nighttime turbidity events? 

Figure 7 shows the wind speed measurements during 2016-2017, with the 

corresponding “y” and “y/n” turbidity cases from Table 2. Wind is usually a cause of 

strong waves and re-suspension of sediment from shallow depths leading to high water 

turbidity. During the turbidity cases in the Mississippi River Delta, the wind speed 

ranged from 3.2 to 10.6 m s-1. There were 19 out of 83 cases with the speed less than 5 
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m s-1. For cases in the Atchafalaya Bay, it is from 2.6 to 7.1 m s-1. There were 49 out of 

101 cases with the speed less than 5 m s-1. In Figure 7, the “y” and “y/n” turbidity cases 

are scattered in a wide range of wind speed. The weakest wind speed observed with a 

turbidity case was 2.6 m s-1 while the strongest wind was 10.6 m s-1. Through VIIRS 

nighttime DNB data, turbidity cases were revealed during both weak wind and strong 

wind conditions. Those turbidity cases were mostly visible in the range of full moon ± 4 

days. This result shows that the wind speed does not appear to correlate with turbidity 

during time of visible VIIRS nighttime DNB turbidity cases. 

The second question is focused on the pattern of turbidity. Is the wind speed an 

important factor in the size of turbidity patterns? Figure 8 shows consecutive nighttime 

DNB reflectance maps in the Atchafalaya Bay and the Mississippi River Delta. In (a) 

through (d), the figure panels are 3 to 6 days past the full moon. The turbidity patterns, 

shown in (a) through (c), change significantly (as can be seen in the color changes 

representing reflectance values), whereas (c) and (d) are similar. The wind speed in 

panels (a)-(d) are 4.9, 4.8, 5.1, and 5.3 m s-1, which vary less than 0.5 m s-1 variation 

over the same period. Thus, the changes in the turbidity pattern (a)-(d) occur during 

relatively constant wind speeds, which do not vary more than ~10%.  In fact, the small 

increase in wind speed shows a decrease in the size of turbidity pattern (Figure 8). In 

(e) through (g), three maps are shown from the Mississippi River Delta although the 

image on June 22 is excluded because of clouds cover. The maps are 1~4 days past 

the full moon and the wind speeds are 4.2, 3.7, and 3.8 m s-1. In comparison to the size 

of the turbidity pattern just outside the delta, the turbidity pattern in (e) and (g) is more 

scattered than in (f). The wind speed in (e), (f), and (g) remains relatively constant (i.e., 



27 
 

varies less than 14%). However, the analysis is very rough here. The limitations of 

these results are addressed in the Discussion Section. 

The steps to estimate the nighttime DNB’s contribution of usable water pixels for 

turbidity estimation follows. Only “y” cases in Table 2 were selected. First, to obtain the 

DNB’s contribution, the nighttime water pixels in the “y” cases were divided by daytime 

water pixels during the whole month. The results are shown in Table 3. The DNB 

monthly contribution to estimate water turbidity ranges from 2.7% to 39.9%. The 

monthly variation in Table 3 is due to different amounts of cloud cover in each month. 

Although most of the contribution is from daytime data, the mean of nighttime DNB 

monthly contribution in 2016 and 2017 is 14.3% and 16.9%, which is significant. Over 

the two years, the mean nighttime DNB data contribution is 15.6%. 

Second, it is clear that most of the “y” cases were near the full moon phase within 

the range of ± 4 days, as shown in Figure 6. Table 4 shows the calculated contribution 

only during this 9-day period (for both daytime and nighttime data). After the data were 

selected in the range of the full moon ± 4 days, nighttime DNB monthly contributions 

can range from 6.32% to 57.8%. Compared to the result in Table 3, the mean 

contribution in 2016 and 2017 is doubled to approximately 30.3% and 34.7%, 

respectively. The monthly variation in Table 4 is due to different amounts of cloud cover 

during the full moon phase each month. For 2016 and 2017, the 30.3% and 34.7% 

contribution from nighttime DNB contribution suggest that the DNB could be useful in 

estimating turbidity close to and during the full moon phase. Over the two years, the 

mean nighttime DNB contribution is 32.5%. 
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Figure 9 shows the results of same calculation, but focuses on the Atchafalaya 

Bay and the Mississippi River Delta study areas during ± 4 days of each moon. The 

DNB contribution can be over 50% from March to May as shown in Figure 9. For the 

rest of year, it is below 50%, probably due to increased cloud cover. For the Mississippi 

River Delta, the mean contribution is 32.8%, and 36.0% for the Atchafalaya Bay. The 

highest value reached is 83.4%, and the lowest is ~6%. The large range of percentages 

is due to the variations of cloud cover. When zooming in on smaller regions (i.e., these 

two smaller study areas), clouds become more important. The nighttime DNB mapped 

reflectance can be completely cloud free and then become blocked by clouds that arrive 

quickly the following day. Overall, the mean of the two study regions combined is 34.4% 

during 2016-2017. 

 

3.2 Second Objective 

This objective was to derive an algorithm to estimate water turbidity at night. 

Daytime derived satellite turbidity estimates were then compared to the VIIRS nighttime 

DNB reflectance. The result of this objective can be used as an approach to estimate 

water turbidity in estuaries. To accomplish this, daytime VIIRS data, including Rrs(671) 

and Rrs(865), were processed to derive daytime turbidity using the Dogliotti et al. (2015) 

method of estimating water turbidity, which has been validated in many areas around 

the world, such as Southern North Sea, French Guyana, Scheldt, Gironde, and Río de 

la Plata estuaries. Although the algorithm from Dogliotti et al. (2015) has not been 

tested in the Northern Gulf of Mexico, I used their mean relative error and mean bias 

from their other studies, which is about 13.7% and 4.8%, respectively. Figure 10 shows 
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an example of a comparison with a VIIRS true color image, VIIRS Rrs(671), and a 

derived VIIRS daytime turbidity map in the Northern Gulf of Mexico. As shown in Figure 

10, the turbidity pattern in the derived daytime turbidity map is very close to Rrs(671) 

and the true color image. Therefore, the derived daytime turbidity can then be used to 

match with the VIIRS nighttime DNB reflectance data to approach nighttime water 

turbidity.  

There are 86 identified nighttime turbidity events (i.e., labeled as “y” in Table 2) 

that were the combination of cases in Atchafalaya Bay and the Mississippi River Delta. 

Note that some cases showed turbidity events in the both regions in the same day. 

Figure 11 shows a distribution pattern based on the value and frequency of the daytime 

turbidity from 86 turbidity maps derived from VIIRS Rrs(671) and Rrs(862). The majority 

of the calculated turbidity values range from 0 to ~20 FNU. These turbidity values are 

located near and away from the coastal regions. Close to the inland regions, the 

turbidity value can reach up to ~60 FNU. However, this value is less than the in situ 

measurements that can reach up to ~120 FNU [e.g., data from the USGS office in 

Morgan City (https://waterdata.usgs.gov/usa/nwis/uv?site_no=07381600), located in the 

lower Atchafalaya River area]. This influence is addressed in the Discussion.  

Before using histogram matching method, a pixel-by-pixel matching was used to 

see the correlation. Figure 12 shows a scatter plot of six cases from the Atchafalaya 

Bay and the Mississippi River Delta. Figure 12 does not show a good fit of the paired 

data, which makes it difficult to develop a linear equation. This is mainly caused by the 

variation in the turbidity pattern over a ~ 12-hour period from day to night. Therefore, an 

https://waterdata.usgs.gov/usa/nwis/uv?site_no=07381600
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alternative strategy, a cumulative histogram matching method, was used in order to look 

for a better correlation.  

Next, Figure 13 shows the cases of the histogram matching method, which was 

then used to draw a new scatter plot. The selected pixels are shown in the right panels 

as the XY plot of the nighttime DNB reflectance and turbidity, based on the cumulative 

frequency of the left panels. The result in Figure 13 is much better than in Figure 12 

because the line patterns do not spread out and seem to be more stable. Therefore, by 

using histogram matching method, a more stable relationship can be derived than by 

using the pixel-by-pixel matching method. 

As addressed in the Research Methods Section, 53 usable cases were culled 

from 86 cases in Table 2. The nighttime DNB reflectance and daytime turbidity data are 

visible in both study regions. Note that these cases have not been completely separated 

according to their location in Figure 14a. For example, there are some cases that the 

turbidity patterns can be seen in both the Atchafalaya Bay and Mississippi River Delta in 

Figure 14a. However, in Figure 14b they were separated by their location. Figure 14a 

shows all 86 cases before sieving. Figure 14b indicates the 53 cases, which are culled 

and separated into two study regions. These 53 cases include 34 cases in the 

Atchafalaya Bay and 19 cases in the Mississippi River Delta. They were drawn together 

in Figure 14b and were the result of removing the lowest and highest 1% of the data 

from the nighttime DNB reflectance and daytime turbidity estimates as previously 

mentioned in the methods section. As shown in Figure 14, the difference between 

sieving is obvious (a vs. b), and thus b is a better selection to develop the nighttime 

turbidity algorithm. 
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Figure 15 is similar to Figure 14b. The purpose of Figure 15 is to see if there is 

a big difference between the two study regions. Figure 15 shows that the matched 

results from histogram matching are nonlinear. The daytime turbidity appears to 

increase exponentially with increasing nighttime DNB reflectance. Each case in the two 

study regions shows a different type of exponential shape. When comparing the 

patterns between the Mississippi River Delta and the Atchafalaya Bay, the overall 

patterns are similar. Both the data patterns in the two study regions are less scattered 

when nighttime DNB reflectance is below 0.04 and daytime turbidity is less than 15 

FNU. When nighttime DNB reflectance is above 0.04, the data patterns in Figure 15 

become more scattered. Although it is possible to develop two different algorithms for 

the two study regions, the purpose of this study is to develop one algorithm to estimate 

nighttime water turbidity in both study regions. Therefore, I combined the 53 cases in 

the Mississippi River Delta and the Atchafalaya Bay to develop one algorithm. 

Four equations were chosen from a group of non-linear equations in SAS 

software to fit the data relationship Figure 14b, as detailed in the Research Methods 

Section. Figure 16 shows the density plot of the 53-paired data, the fitted regression 

curves resulting from the four equations, and some of the statistics from Table 5 and 

Table 6, such as the error bars and the 95% prediction intervals. 

Equation number 1 was chosen as the equation that best fits the data (Figure 

16). In Table 5, the standard error of the estimate is around 7.4 FNU for the four 

equations. In Table 6, the standard error significantly increases as the given nighttime 

DNB reflectance increases. This was determined by calculating all dispersion points at a 

given nighttime DNB reflectance. The standard deviation of the turbidity and the 
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standard error of the estimate show that, after 0.04 of nighttime DNB reflectance, the 

predicted turbidity has a greater uncertainty. Neither the standard deviation nor 

standard error can give a range of the prediction. The 95% prediction interval in Figure 

16 and Table 6 shows that, at a given nighttime DNB reflectance, there is 95% 

probability that the true nighttime turbidity will lie within the interval (i.e., predicted 

turbidity ± 14.5 FNU). 

The adjusted R2 in Table 5 shows that these four equations could only interpret 

60-61% of turbidity changes. In comparison of the four equations, they show a close 

number of the standard error of estimate and the adjusted R2, while only equation 1 has 

a better result regarding relative mean bias and uncertainty. The reduced chi-square is 

also a measurement that helps decide which equation is better (Rhinehart 2016; Spiess 

and Neumeyer 2010). In an effort to assign an uncertainty to the reduced chi-square 

calculation (Spiess and Neumeyer 2010), recall that two published uncertainty values of 

13.7% and 22.0% were used. The former uncertainty is the published mean value from 

Dogliotti et al. (2015). The latter uncertainty is from the Southern North Sea, which is an 

area with a similar turbidity range as the Northern Gulf of Mexico (Dogliotti et al. 2015). 

Typically, the reduced chi-square would be close to 1 when the equation fits the data 

well. When the reduced chi-square is over 10, it shows that no equations fit the data 

well, as mentioned in the Research Methods Section. Table 5 shows the chi-square 

values when using both uncertainties. Table 5 clearly shows that none of these 

equations, with either uncertainty, fit daytime derived turbidity data. Because the data 

are too scattered to fit by these different equations, they are not useful to accurately 

interpret the data. However, equation 1 shows the best lower mean relative bias and 
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error (i.e., 53.5% and 82.3%) out of the four equations considered. Therefore, the 

equation 1 is better than other equations and was chosen to calculate a rough estimate 

of the nighttime turbidity. 

Figure 17 shows a comparison between histogram matching and pixel-to-pixel 

matching methods, which both use the same type of equation as equation 1. Figure 17 

shows that the pixel-to-pixel matching relationship is poor probably because the 

matched pixels are too incompatible to match. The adjusted R2 for the histogram 

matching method is 0.61, while it is only 0.26 for the pixel-to-pixel matching method. 

This comparison indicates that the histogram matching method is preferred over the 

pixel-to-pixel matching method. Table 7 is a summary comparison between daytime 

turbidity and nighttime turbidity in equation 1 in Figure 16. In Table 7, there were 27 

cases with mean relative error less than 50.0%, while there were 26 cases that signified 

more than 50.0%. When comparing cases in the Atchafalaya Bay with cases from the 

Mississippi River Delta, the cases from the Atchafalaya Bay had a relatively lower error 

than the cases from the Mississippi River Delta. As shown in Table 7, the highest mean 

relative error is 433% in the Mississippi River Delta and lowest value is 13.9% in the 

Atchafalaya Bay. 

Figure 18 shows one example of a selected case showing different mean 

relative uncertainties on the Louisiana Shelf (i.e., 17.3% in the Atchafalaya Bay & 71.4% 

in the Mississippi River Delta). In Figure 18, the daytime turbidity and estimated 

nighttime turbidity are different because equation 1 can only fit 61.0% of turbidity 

changes (Figure 16). There are some uncertainties in both calculated daytime turbidity 

and nighttime DNB reflectance. Although the estimated nighttime turbidity estimates do 
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not match with daytime turbidity values well, the nighttime DNB estimated turbidity could 

still be used as a very rough approximate estimate of nighttime turbidity when daytime 

data are not available. More detailed are discussed in the next section. 
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4. Discussion 

 

4.1 DNB Contribution 

VIIRS nighttime DNB imagery has been found to have the potential to 

complement daytime data. The method of cloud masking used in this study was 

performed in two ways: my own algorithm, and the VIIRS standard cloud mask product 

method, which became available later within the time frame being studied. As detailed 

in the Research Methods Section, the algorithm I used combines the bad pixels 

indicated in VIIRS SST Flag product with the valid pixels in VIIRS cloud products. 

However, this method can only remove pixels with strong contrast of infrared radiance. 

The final step of the box sieving was also performed to filter the remaining cloud pixels. 

However, the DNB values of pixels over low clouds and turbidity patterns are very 

similar in many cases, where my algorithm might filter valid water pixels and thus be too 

aggressive in attempting to filter out pixels with low cloud cover. VIIRS cloud mask data, 

which became available in March 2017, shows a difference compared to my algorithm 

(Figure 5). My cloud mask algorithm caused an average underestimate, 17.8%, from 

March 2017 to December 2017. Additionally, a second sieving was done to mask the 

lights from fishing boats and oil platforms at night. The sieving was based on nighttime 

DNB reflectance to remove one or two pixels with extremely high reflectance over the 

background value. This sieving was not applied to the daytime pixels, which is a 

possible reason that nighttime DNB data shows a lower contribution. 
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A major limitation for VIIRS nighttime DNB detection of turbidity patterns is the 

amount of available moon light (or intensity). It is clear that from Table 2 most turbidity 

events are ±4 days of the full moon. Generally, turbidity events are visible in almost 

every daytime map when it is not blocked by clouds while the nighttime DNB data only 

reveal turbidity events when there is sufficient moon light and cloud-free skies. Note that 

even during the full moon ±4 days with a cloud-free sky, the nighttime DNB data 

occasionally could not reveal turbidity patterns. In using nighttime DNB data, it is clear 

that the turbidity cases need to be determined on a case-by-case basis. It is possible 

that part of missing data from the remapping of nighttime DNB images (Hillger et al. 

2014) could play a role for DNB’s relatively low contribution. 

Another limitation of detecting turbidity patterns at night is the variation of clouds 

from the day to night. The monthly climatology observations between the boundaries of 

land and ocean, shows that generally there are more clouds/precipitation occurs at night 

than during the day along the Louisiana and Mississippi offshore regions (Hill et al. 

2010). In general, the heat capacity of land and ocean is different, which leads to the 

variance of surface temperatures through a 24-hour cycle in which the temperatures 

over land change faster than over water. Specifically, the surface temperature on land is 

usually higher than the ocean during the day, leading to more chance of clouds 

developing over land during the day and vice versa (i.e., the land temperature becomes 

cooler than the water temperature, leading to cloud formation over the water at night). 

This diurnal difference of the temperature causing the reverse of wind direction along 

the coastal areas is a well-known climatology phenomenon, known as sea and land 

breezes. However, it would be too simplistic to state that sea and land breeze is the 
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main reason leading to more clouds in my study regions. A developed regional 

numerical weather model is needed to investigate the contribution of other factors, such 

as tropical storms, cold fronts, and mesoscale convective systems. 

The preliminary inspection of the influence from wind speed is a qualitative 

attempt to search for correlation between wind speed and nighttime DNB data derived 

turbidity. Theoretically, high wind can influence water turbidity by introducing larger 

waves and re-suspension of sediment from shallow depths. However, it is hard to 

determine if these wind conditions influenced turbidity patterns, as shown in Figure 8 

and Figure 9. The identified nighttime turbidity events tend to become clearer when 

closer to time of the full moon. The size of turbidity patterns at night appears to depend 

on amount (intensity) of moon light. For nighttime DNB data, moonlight intensity is the 

most important factor to detect nighttime turbidity. This preliminary investigation of 

nighttime wind speed patterns versus nighttime turbidity patterns did not show any 

correlation. The nighttime turbidity changed while the winds remained similar. More 

information, such as wind direction, the duration of wind, in situ measurements of 

turbidity, and an air-sea interaction model will be need to conduct a more detailed 

investigation on the effect of wind speed over nighttime water turbidity. 

 

4.2 DNB Estimated Turbidity 

A single band turbidity algorithm used in this study was to assess DNB’s ability to 

estimate water turbidity at night. To retrieve water turbidity, Dogliotti et al. (2015) 

suggested the use of 645 nm (MODIS band) for low to medium turbidity and 859 nm 

(MODIS band) for medium to high turbidity. In this study, the two wavelength-dependent 
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calibration coefficients, AT and CT, are adopted from MODIS bands in Dogliotti et al. 

(2015). The results from this step in my study suggests a possible nighttime bias in 

estimating turbidity, even though the two wavelengths used in VIIRS and MODIS sensor 

systems are relatively close to each other.  

The use of water reflectance on 862 nm in my study to estimated medium to high 

turbidity might be questionable because Dogliotti et al. (2015) has not clearly 

demonstrated which atmospheric correction was used in their study. In this study, the 

Level 2 VIIRS Rrs(671) and Rrs(862) data were downloaded from NASA Ocean Color 

website (https://oceancolor.gsfc.nasa.gov/), which uses the Near-Infrared (NIR) bands 

for atmospheric correction. The method assumes that NIR water-leaving radiance is 

negligible, which is suitable for clean open water. However, Short-Wave-Infrared 

(SWIR) bands for atmospheric correction is usually recommended (Pahlevan et al. 

2017; Vanhellemont and Ruddick 2015) for very turbid waters, because the negligible 

NIR assumption can be invalid and cause an overcorrection when removing the 

atmospheric effects (Siegel et al. 2000). The use of the NIR assumption for atmospheric 

corrections in daytime turbidity may lead to additional uncertainties for the derived 

daytime turbidity, as discussed next. 

In Figure 11, the derived daytime turbidity from VIIRS Rrs(671) and Rrs(862) 

reaches up to a maximum ~60 FNU while the in situ measurements from the USGS 

office in Morgan City can reach ~120 FNU. This leads to some unknowns in the derived 

daytime turbidity. Additionally, in the VIIRS Rrs(671) and Rrs(862) reflectance maps, 

some coastal areas were masked as the missing data, as shown in Figure 10. These 

missing data are described as “Moderate sun glint contamination” and “Failure in any 

https://oceancolor.gsfc.nasa.gov/
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product” in the online document (https://oceancolor.gsfc.nasa.gov/atbd/ocl2flags/) from 

NASA Ocean Color website. The reason for the missing data is likely due to their use of 

the NIR atmospheric correction method (and assumption). However, these missing data 

were identified as turbid pixels in the true color images and were likely to have high 

turbidity values. For example, when the observations are closer to coastal regions, 

higher turbidity is usually observed. These missing daytime data suggest that the 

derived turbidity algorithm for nighttime DNB reflectance will be more useful in a lower 

turbidity range because of the algorithm’s dependence in matching to the daytime 

turbidity. How to retrieve these higher missing daytime turbidity values will need further 

inspection, and if resolved, may lead to an improved nighttime estimate of turbidity.  

There are also some uncertainties in VIIRS nighttime DNB water reflectance 

data. There is no atmospheric correction for VIIRS nighttime DNB data. To get water 

reflectance in this study, a nearest-neighbor approach (Hu et al. 2000) was used to 

remove influence from aerosols and Rayleigh scattering. However, the accuracy of this 

approach is unknown when applied to the nighttime DNB data. It is important to find 

valid non-turbid pixels in the DNB data images for comparisons. In the Louisiana Shelf, 

water is rarely clear because of the large degree of suspended sediment directly or 

indirectly arriving from the Mississippi River. Any non-clear water pixel can lead to 

higher surface reflectance and cannot represent a valid clear water pixel. The path 

radiance is also different if the selected non-turbid pixels are far from the region of 

interest. It is obvious that this approach can result in some uncertainties calculating 

nighttime DNB water reflectance in this study. Perhaps a future study using large 

holding tanks or retention ponds that can allow the sediment to settle or be filtered out 

https://oceancolor.gsfc.nasa.gov/atbd/ocl2flags/
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and, in turn, may help reduce this uncertainty of what represents a true clear water pixel 

in this area. 

Another uncertainty is the lack of true nighttime water turbidity data measured in 

situ. The daytime derived turbidity from VIIRS Rrs(671) and Rrs(862) was used to 

approximate the true daytime water turbidity. The nighttime DNB water reflectance over 

turbidity patterns is supposed to allow an estimation of the nighttime water turbidity. The 

histogram matching method helped develop a good fit between nighttime DNB 

reflectance data and daytime turbidity data when the turbidity pattern slightly shifts 

between day and night. However, the uncertainty of this approach is not well known. 

The time gap between day and night observations is about 12 hours. During such time 

gaps, significant changes to the water properties and cloud cover can occur, especially 

when considering the general surface water speed is around 0.54 m s-1 in the two study 

areas (https://www.nps.gov/miss/riverfacts.htm). Tides and strong winds are the primary 

factors, which drive coastal water motion. The lateral resolution of the DNB data is 

about 1 kilometer. The irregular flow of the river plumes outside Atchafalaya Bay and 

the Mississippi River Delta is expected to result in uncertainties. Additional attention in 

determining these uncertainties would be helpful. 

Figure 19 is an example of how sediment moves in the four consecutive maps. 

The sediment front is labeled in (b), (c), and (d), as a red, green, and blue line. 

Considering the minimum linear distance along the black solid line (i.e., labeled in (d)) to 

the closest point at shore, the offshore distances are: 13.6 km for the red line in (b), 

24.4 km for the green line in (c), and 16.1 km for the blue line in (d). Compared with the 

time interval, the mean speed of the sediment front along the black solid line was ~0.24 

https://www.nps.gov/miss/riverfacts.htm
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m s-1. The speed can also be calculated along the white solid line in (d), as ~0.23 m s-1. 

Figure 19 shows a good example of DNB’s ability to detect the relocation of a sediment 

front. When daytime data are not available, the nighttime DNB data can be used to 

estimate or predict sediment fronts in coastal models. However, it is noticeable that 

nighttime DNB reflectance can give a broad estimate, but not as accurate as the 

daytime data, which are shown in (a) and (c) of Figure 19.  

Prior to this study, Shi and Wang (2018) developed an approach by using a ratio 

(DNB radiations ratio) between the target radiance and the reference radiance to 

assess ocean diurnal environmental changes with VIIRS DNB data. Note that their 

method was able to filter background noise and improve the signal to noise ratio of the 

original DNB observations. For the method used in this study, the lunar illumination of is 

the key to observe and estimate nighttime turbidity. Figure 20 illustrates the difference 

between the two methods. The DNB radiations ratio method used in their study seems 

to be more straightforward in enhancing DNB observations over ocean waters, but it is 

limited to cloud free sky or maps with sporadic isolated cloud conditions, as shown in (a) 

of Figure 20. The advantage of the nighttime DNB reflectance used in this study is that 

cloud pixels, fishing boats, and oil platforms can be mostly removed and yet leave 

useful pixels for analysis. The resulting reflectance maps can be used to estimate 

nighttime water turbidity, as shown in (b), (c), and (d) of Figure 20. The original map (b) 

has the pixels associated with clouds and lights from oil platforms and boats removed 

from it and shown as (c) which leaves the final processed map (d).  Note that there is 

some clustering of removed pixels surrounding the cloud edges shown in Figure 20c, 
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which may not be lights from boats or oil platforms, but rather remaining cloud pixels 

that were not properly masked. 

Both methods of estimating nighttime turbidity are influenced by moon-glint and 

lack of lunar illumination. Since both methods can be used to observe turbidity patterns, 

they could be used to assess and compare their relative error and bias if the nighttime 

in situ turbidity data are available in the future. One item of note in these two methods is 

that the diffuse glow from city lights in coastal regions was found to add to the nighttime 

DNB data. This additional light source will likely be a problem by increasing uncertainty 

when estimating nighttime turbidity because it is hard to separate the contribution of 

artificial light from moon light. Perhaps city lights may provide sufficient light for 

alternative uses of the DNB nighttime data, such as monitoring shallow urban coastal 

waters. Clearly more research is needed to improve the use and accuracy of nighttime 

DNB water reflectance data for nighttime measurements, especially near suburban 

areas.  

One example of the comparison of nighttime and daytime turbidity is shown in 

Figure 21. The R2 is 0.69, while the slope is 0.4. Assuming that water turbidity did not 

change between day and night, the data show that the nighttime turbidity is 

underestimated above 30 FNU daytime turbidity. A comparison of all 53 usable cases 

from Table 7 is illustrated in Figure 22. The overall average trend shows lower 

nighttime turbidity when daytime turbidity is greater than 10 FNU. The reason is unclear, 

but probably due to a systematic error in the algorithm.  Other potential sources of error 

might be related to some of the assumptions discussed earlier, the wide bandwidth of 

the DNB data versus the two single bands used in the VIIRS data, or perhaps to the 
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moon phase as it waxes to and wanes from a full moon. The DNB data have a wide 

wavelength range and the DNB data spectral response function is not 100% in all its 

spectral wavelengths (Miller et al. 2013). The relative response gradually increases from 

500 nm, peaks at 700 nm, and then drops to 900 nm. Both the relative spectral 

response from the 671 nm and 865 nm wavelengths are about 0.85-0.9, whereas it is 

about 1.0 from the 700 nm wavelengths (Miller et al. 2013). Therefore, it is speculated 

that the uneven spectral response might lead to this underestimate. Future work would 

be necessary to investigate all the potential sources for these errors. 
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5. Conclusions 

 
In this study, VIIRS nighttime DNB data were assessed in two ways. The first is 

to estimate how much they can contribute to water pixel measurements over a 2-year 

period from January 2016 to December 2017. In general, the monthly DNB data 

contribute 42.9% of total water pixel detection. The second is to investigate their 

contribution in estimating water turbidity patterns over two years. The VIIRS nighttime 

DNB data contribute 32.5% during ±4 days of the full moon. The average number for 

the Atchafalaya Bay and the Mississippi River Delta is 34.4%. The main uncertainty is 

from the variation of clouds. Two cloud masking methods were compared in this study. 

The result shows that the DNB contribution underestimate 17.8% during March 2017 to 

December 2017, most likely due to two different cloud masking algorithms being used. 

The analysis in this study suggests that, under appropriate illumination, DNB nighttime 

data can be a useful complement especially when daytime turbidity estimates are not 

possible due to daytime cloud coverage. The algorithm developed in this study shows 

that only about 61% variation of turbidity can be interpreted. The standard error of the 

estimate is ~7.4 FNU. The 95% prediction interval shows that any true turbidity value at 

a given nighttime DNB reflectance will lie with the predicted turbidity ±14.5 FNU. The 

main limitation of the method and equation used is that it is currently restricted to 

coastal regions where turbidity variation is relatively larger than the range of ±14.5 FNU. 

This study has discovered some potential errors in using the nighttime DNB data that, if 
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addressed, may serve usefully as a launching point for the future development of more 

accurate algorithms to calculate nighttime turbidity.  
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7. Tables 
 
 
Table 1. Summary of monthly water pixel contribution. The table shows data on the 
Louisiana Shelf during the day and night, calculating valid water pixels in all images. 
The method is described in the equation (1) of the Research Methods Section. 
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Table 2. Summary of turbidity events (2016-2017). The table shows the turbidity 
events found during 2016 and 2017. The columns from the left to right indicate date, 
GMT time, turbidity pattern, and moon phase as days within the full moon. “y” = yes and 
“y/n” = maybe. The last column from the right shows where the turbidity pattern was 
found. “afa” = Atchafalaya Bay, “miss” = Mississippi River Delta, and “afa+miss”=both 
regions. In summary, there are 86 “y” cases and 47 “y/n” cases. 
 

Date GMT Turbidity Pattern Moon Phase Region 

20160121 0749 y/n Full Moon - 2 afa 

20160123 0851 y Full Moon afa 

20160123 0714 y Full Moon afa+miss 

20160124 0651 y Full Moon + 1 afa+miss 

20160124 0833 y Full Moon + 1 afa+miss 

20160129 0700 y Full Moon + 4 afa+miss 

20160212 0740 y/n Full Moon - 10 miss 

20160214 0659 y/n Full Moon - 8 miss 

20160216 0801 y/n Full Moon - 6 miss 

20160220 0827 y/n Full Moon - 2 afa+miss 

20160223 0729 y/n Full Moon + 1 miss 

20160224 0712 y/n Full Moon + 2 miss 

20160225 0654 y Full Moon + 3 afa+miss 

20160225 0831 y Full Moon + 3 afa+miss 

20160226 0813 y Full Moon + 4 afa+miss 

20160227 0756 y Full Moon + 5 afa 

20160228 0738 y Full Moon + 6 afa 

20160321 0723 y Full Moon - 2 afa+miss 

20160322 0843 y Full Moon - 1 afa 

20160322 0706 y Full Moon - 1 afa+miss 

20160323 0825 y/n Full Moon afa 

20160324 0808 y Full Moon + 1 afa 

20160325 0750 y Full Moon + 2 afa+miss 

20160421 0744 y Full Moon - 1 miss 

20160423 0703 y Full Moon + 1 afa+miss 

20160423 0846 y Full Moon + 1 afa 

20160424 0646 y Full Moon + 2 afa+miss 

20160426 0748 y Full Moon + 4 afa+miss 

20160427 0730 y Full Moon + 5 miss 

20160521 0822 y Full Moon afa 

20160523 0742 y Full Moon + 2 miss 

20160524 0724 y Full Moon + 3 miss 
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Table 2. (Continued). Summary of valid cases. 
 

Date GMT Turbidity Pattern Moon Phase Region 

20160620 0718 y Full Moon miss 

20160621 0701 y Full Moon + 1 miss 

20160621 0838 y Full Moon + 1 miss 

20160622 0820 y Full Moon + 2 afa 

20160623 0803 y Full Moon + 3 miss 

20160624 0745 y/n Full Moon + 4 afa+miss 

20160625 0722 y Full Moon + 5 afa+miss 

20160626 0704 y/n Full Moon + 6 afa 

20160719 0814 y/n Full Moon afa+miss 

20160721 0739 y/n Full Moon + 2 afa+miss 

20160814 0643 y/n Full Moon - 4 miss 

20160818 0710 y Full Moon miss 

20160819 0835 y/n Full Moon + 1 afa+miss 

20160820 0812 y/n Full Moon + 2 afa+miss 

20160821 0754 y Full Moon + 3 afa 

20160822 0737 y Full Moon + 4 afa 

20160824 0656 y/n Full Moon + 6 afa 

20160915 0823 y Full Moon - 1 afa 

20160916 0806 y/n Full Moon afa+miss 

20160918 0731 y Full Moon + 2 afa 

20160919 0713 y Full Moon + 3 afa 

20160919 0850 y Full Moon + 3 afa 

20160920 0650 y/n Full Moon + 4 afa 

20160920 0833 y Full Moon + 4 afa 

20161014 0742 y Full Moon - 2 afa 

20161015 0725 y Full Moon - 1 afa 

20161016 0707 y Full Moon afa 

20161016 0844 y Full Moon afa 

20161017 0644 y Full Moon + 1 afa 

20161018 0809 y Full Moon + 2 afa 

20161020 0728 y/n Full Moon + 4 afa+miss 

20161114 0803 y Full Moon afa 

20161117 0705 y Full Moon + 3 afa 

20161117 0847 y Full Moon + 3 afa 

20161211 0757 y Full Moon - 2 afa 
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Table 2. (Continued). Summary of valid cases. 
 

Date GMT Turbidity Pattern Moon Phase Region 

20170110 0830 y/n Full Moon - 2 afa 

20170111 0812 y Full Moon - 1 afa+miss 

20170114 0714 y/n Full Moon + 2 afa+miss 

20170114 0720 y Full Moon + 2 afa+miss 

20170116 0822 y/n Full Moon + 4 miss 

20170210 0851 y Full Moon - 1 afa 

20170210 0708 y Full Moon - 1 afa+miss 

20170211 0651 y Full Moon miss 

20170211 0833 y Full Moon miss 

20170212 0816 y Full Moon + 1 miss 

20170213 0753 y/n Full Moon + 2 miss 

20170214 0735 y/n Full Moon + 3 afa+miss 

20170216 0700 y/n Full Moon + 4 afa+miss 

20170216 0837 y/n Full Moon + 4 afa+miss 

20170315 0654 y Full Moon + 3 afa+miss 

20170316 0813 y Full Moon + 4 afa+miss 

20170317 0756 y Full Moon + 5 afa+miss 

20170407 0758 y Full Moon - 4 afa 

20170408 0741 y Full Moon - 3 afa+miss 

20170409 0723 y Full Moon - 2 afa+miss 

20170411 0643 y/n Full Moon miss 

20170411 0825 y/n Full Moon miss 

20170413 0750 y Full Moon + 2 afa+miss 

20170507 0700 Y Full Moon - 3 miss 

20170508 0819 y Full Moon - 2 afa 

20170509 0802 y Full Moon - 1 miss 

20170510 0744 y Full Moon miss 

20170511 0721 y/n Full Moon + 1 miss 

20170512 0703 y/n Full Moon + 2 miss 

20170512 0846 y/n Full Moon + 2 afa 

20170513 0646 y Full Moon + 3 afa 

20170513 0828 y Full Moon + 3 afa 

20170514 0805 y Full Moon + 4 afa+miss 

20170515 0748 y Full Moon + 5 afa+miss 

20170516 0730 y Full Moon + 6 afa+miss 
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Table 2. (Continued). Summary of valid cases. 
 

Date GMT Turbidity Pattern Moon Phase Region 

20170608 0657 y Full Moon - 1 afa+miss 

20170609 0640 y/n Full Moon miss 

20170609 0817 y Full Moon afa+miss 

20170610 0759 y Full Moon + 1 afa+miss 

20170611 0742 y/n Full Moon + 2 miss 

20170706 0811 y/n Full Moon - 3 afa 

20170707 0753 y/n Full Moon - 2 afa+miss 

20170708 0736 y/n Full Moon - 1 afa+miss 

20170709 0718 y Full Moon afa+miss 

20170710 0837 y/n Full Moon + 1 afa 

20170710 0655 y/n Full Moon + 1 afa 

20170711 0638 y/n Full Moon + 2 miss 

20170712 0802 y/n Full Moon + 3 afa+miss 

20170807 0814 y/n Full Moon afa+miss 

20170808 0757 y/n Full Moon + 1 miss 

20170904 0751 y/n Full Moon - 2 afa+miss 

20170909 0754 Y Full Moon + 3 afa+miss 

20170911 0719 Y Full Moon + 5 afa+miss 

20171004 0646 y/n Full Moon - 1 afa+miss 

20171004 0829 y Full Moon - 1 afa 

20171005 0806 y Full Moon afa 

20171006 0748 y Full Moon + 1 afa 

20171102 0742 y Full Moon - 2 afa+miss 

20171104 0707 y/n Full Moon afa 

20171105 0644 y/n Full Moon + 1 afa 

20171105 0827 y Full Moon + 1 afa 

20171106 0809 y Full Moon + 2 afa 

20171202 0821 y Full Moon - 1 afa 

20171209 0749 y Full Moon + 6 afa 

20171230 0757 y/n Full Moon - 2 miss 
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Table 3. Summary of monthly water pixel contribution (selected DNB cases). The table 
shows water turbidity estimation in the Northern Gulf of Mexico (Figure 1) during day 
and night. The nighttime DNB contribution is calculated from water pixels in the turbidity 
events (“y” cases in Table 2), while the daytime contribution is calculated from the 
images in the whole month. 
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Table 4. Summary of monthly water pixel contribution (Full moon ±4 days) in 
estimating turbid pixels. The data counts the water pixels in the turbidity events (“y” 
cases in Table 2). Both the DNB contribution and the daytime contribution were 
calculated within ± 4 days of full moon. 
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Table 5. Summary of the four different equations in Figure 16. See Research Methods 
Section for details. 
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Table 6. Summary statistics of the four equations used to fit data. The standard error 
of the predicted nighttime turbidity, lower limit, and upper limit of the 95% prediction 
interval are shown in Figure 16. See Research Methods Section for details. 
 

 
* Nighttime DNB reflectance was given at five difference values: 0.02-0.1 
* Mean daytime turbidity was calculated from the daytime turbidity maps in the 53 

usable cases at the given nighttime DNB reflectance value. For example, when 
nighttime DNB reflectance = 0.02, there are 33541 turbid pixels from the 53 events to 
calculate the mean daytime turbidity. 

* Standard deviation of daytime turbidity was calculated from the daytime turbidity maps 
in the 53 usable cases at the given nighttime DNB reflectance. 

* Number of daytime turbid pixels was obtained from the daytime turbidity maps in the 
53 usable cases at the given nighttime DNB reflectance. 

* Predicted nighttime turbidity was derived from the equation at the given nighttime DNB 
reflectance in the first column. 

* Standard error of the predicted nighttime turbidity was calculated using the equation 
(13) in the Research Methods Section. 

* Lower limit and upper limit of the 95% prediction interval were calculated from the 
equation (17) & (18) in the Research Methods Section. 
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Table 7. Summary statistics of 53 valid cases with mean relative bias and error. See Research Methods Section for 
details.  

Date GMT 
DNB Reflectance (Unitless) Day Turbidity (FNU) Predicted Turbidity (FNU) Mean Relative 

Bias (%) 
Mean Relative 

Error (%) Min Max Mean STD Min Max Mean STD Min Max Mean STD 

20160123 0714 0.0023 0.0672 0.0348 0.0187 4.99 57.28 23.95 15.21 0.56 28.16 13.47 8.09 -45.10 45.10 

20160124 0833 0.0016 0.091 0.0463 0.0258 3.55 38.09 16.20 8.87 0.37 40.07 18.86 11.66 6.40 27.50 

20160225 0831 0.0022 0.0633 0.0328 0.0176 6.72 54.05 26.99 16.37 0.54 26.25 12.57 7.53 -54.80 54.80 

20160226 0813 0.0019 0.0716 0.0368 0.0201 5.01 55.67 19.36 15.69 0.44 30.32 14.39 8.77 -20.60 28.30 

20160227 0756 0.0015 0.0651 0.0333 0.0184 2.54 52.37 16.11 12.64 0.33 27.14 12.83 7.87 -17.30 17.30 

20160228 0738 0.0027 0.076 0.0394 0.0211 1.89 52.64 10.75 11.47 0.68 32.46 15.56 9.31 81.30 89.60 

20160325 0750 0.0011 0.0827 0.0419 0.0236 0.95 44.25 14.58 11.09 0.24 35.83 16.79 10.46 17.10 26.60 

20160423 0703 0.0022 0.07 0.0361 0.0196 3.00 58.75 23.68 20.29 0.53 29.54 14.09 8.50 -19.10 37.40 

20160622 0820 0.0022 0.0592 0.0307 0.0165 1.02 25.88 7.17 5.35 0.52 24.29 11.64 6.97 70.80 72.60 

20160915 0823 0.0024 0.061 0.0317 0.0169 5.10 28.01 16.64 6.47 0.58 25.14 12.08 7.20 -35.00 35.00 

20160919 0713 0.0021 0.0557 0.0289 0.0155 2.38 25.40 10.46 6.56 0.50 22.63 10.86 6.49 1.90 15.10 

20160920 0833 0.0023 0.0622 0.0323 0.0173 0.75 18.55 7.33 5.74 0.56 25.74 12.35 7.38 99.80 100.20 

20161016 0707 0.0019 0.0374 0.0197 0.0103 2.06 17.62 8.08 4.73 0.44 14.25 6.92 4.04 -17.70 17.70 

20161018 0809 0.0014 0.0542 0.0278 0.0153 1.73 26.90 12.00 6.88 0.32 21.93 10.41 6.34 -18.40 18.40 

20161114 0803 0.0011 0.0436 0.0224 0.0123 1.72 18.69 10.38 5.63 0.25 17.01 8.07 4.92 -26.80 26.80 

20161117 0705 0.0024 0.0451 0.0237 0.0123 1.10 14.20 5.95 4.11 0.58 17.68 8.62 5.00 58.50 60.70 

20161211 0757 0.0019 0.043 0.0225 0.0119 3.67 40.18 16.20 11.32 0.45 16.76 8.10 4.77 -47.70 47.70 

20170111 0812 0.0014 0.0287 0.0151 0.0079 3.97 33.17 13.93 7.67 0.31 10.48 5.08 2.98 -65.50 65.50 

20170114 0720 0.0016 0.043 0.0223 0.012 2.16 23.21 11.46 5.84 0.35 16.76 8.03 4.81 -35.70 35.70 

20170210 0708 0.0016 0.0511 0.0264 0.0143 4.64 17.32 10.89 4.00 0.36 20.47 9.76 5.89 -19.80 24.40 

20170316 0813 0.0017 0.0615 0.0316 0.0173 1.29 33.24 10.53 8.29 0.38 25.40 12.06 7.34 28.10 35.80 

20170317 0756 0.0033 0.0701 0.0367 0.0193 1.59 54.57 15.59 14.57 0.85 29.57 14.32 8.41 17.00 32.50 

20170407 0758 0.0042 0.071 0.0376 0.0193 3.84 41.81 14.12 9.46 1.12 30.00 14.71 8.44 4.60 21.80 

20170413 0750 0.0043 0.0431 0.0237 0.0112 2.66 31.62 11.36 7.09 1.16 16.79 8.57 4.56 -22.80 22.80 

20170508 0819 0.0039 0.0969 0.0504 0.0269 0.86 53.70 18.72 18.52 1.01 43.06 20.71 12.32 95.40 107.00 

20170514 0805 0.0033 0.0739 0.0386 0.0204 1.75 35.55 10.03 8.37 0.85 31.43 15.20 8.95 70.60 73.70 

20170609 0817 0.0035 0.0723 0.0379 0.0199 1.41 43.25 17.28 13.60 0.91 30.63 14.86 8.70 5.70 26.20 

20170610 0759 0.0011 0.0682 0.0347 0.0194 0.64 62.45 20.98 19.72 0.24 28.62 13.45 8.34 5.20 46.30 

20170909 0754 0.0018 0.0386 0.0202 0.0106 2.38 17.56 8.93 4.48 0.41 14.79 7.16 4.21 -26.00 26.00 

20170911 0719 0.0029 0.0624 0.0327 0.0172 6.75 24.26 14.13 5.36 0.74 25.81 12.51 7.34 -19.90 21.60 

20171005 0806 0.0036 0.0414 0.0225 0.0109 5.96 29.62 15.59 7.47 0.93 16.02 8.07 4.40 -51.00 51.00 

20171105 0827 0.0014 0.0424 0.0219 0.0118 0.69 19.35 9.21 6.00 0.31 16.47 7.87 4.74 -10.40 13.90 

20171106 0809 0.0013 0.0445 0.0229 0.0125 0.96 24.40 9.11 6.33 0.29 17.43 8.30 5.02 -5.80 15.80 

20171209 0749 0.0036 0.0878 0.0457 0.0243 4.12 39.45 16.01 9.27 0.94 38.40 18.49 10.97 9.40 22.10 

* List of 34 cases in the Atchafalaya Bay 
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Table 7. (Continued). Summary of 53 valid cases with mean relative bias and uncertainty. 
 

Date GMT 
DNB Reflectance (dimensionless) Day Turbidity (FNU) Predicted Turbidity (FNU) Mean Relative 

Bias (%) 
Mean Relative 

Error (%) Min Max Mean STD Min Max Mean STD Min Max Mean STD 

20160123 0714 0.0023 0.0543 0.0283 0.015 8.60 29.47 16.10 5.15 0.56 21.95 10.59 6.27 -40.40 40.40 

20160129 0700 0.0059 0.1187 0.0623 0.0326 1.45 52.12 17.41 17.85 1.65 54.56 26.49 15.48 142.90 143.10 

20160226 0813 0.0027 0.0803 0.0415 0.0224 0.88 37.34 12.03 11.09 0.67 34.64 16.56 9.96 115.40 116.30 

20160227 0756 0.0018 0.0601 0.031 0.0168 0.96 36.22 10.41 9.55 0.42 24.74 11.78 7.13 63.60 71.40 

20160228 0738 0.0022 0.0704 0.0363 0.0197 1.05 21.90 7.09 5.67 0.54 29.71 14.17 8.55 137.30 138.60 

20160621 0701 0.0022 0.0747 0.0384 0.0209 0.38 22.16 8.07 6.29 0.52 31.83 15.15 9.18 137.00 137.00 

20161117 0705 0.0017 0.0394 0.0205 0.0109 0.10 8.97 2.84 2.52 0.38 15.13 7.30 4.32 273.10 273.10 

20161216 0801 0.0019 0.0547 0.0283 0.0152 1.43 23.42 7.13 6.08 0.43 22.14 10.59 6.36 63.50 69.10 

20170114 0720 0.0009 0.084 0.0425 0.024 0.85 52.36 20.35 14.18 0.19 36.51 17.06 10.68 -14.00 14.50 

20170210 0708 0.0013 0.0568 0.0291 0.016 0.18 60.08 16.99 17.32 0.30 23.16 10.96 6.71 29.90 65.20 

20170316 0813 0.0034 0.0835 0.0435 0.0231 0.09 28.53 9.61 8.91 0.88 36.25 17.45 10.36 369.10 369.10 

20170413 0750 0.0007 0.0414 0.0211 0.0117 0.14 9.68 3.57 2.49 0.15 16.02 7.54 4.66 160.40 160.40 

20170507 0700 0.0047 0.1128 0.0588 0.0312 1.16 36.86 12.24 11.77 1.27 51.44 24.78 14.69 200.00 200.00 

20170509 0802 0.0016 0.0669 0.0343 0.0188 0.12 47.91 14.30 15.08 0.37 28.00 13.26 8.11 94.90 113.60 

20170608 0657 0.002 0.0696 0.0358 0.0195 0.12 29.57 8.46 9.14 0.49 29.30 13.95 8.45 433.30 433.40 

20170909 0754 0.0017 0.0389 0.0203 0.0107 0.25 10.66 3.1 3.33 0.39 14.89 7.19 4.25 363.5 363.5 

20170911 0719 0.0027 0.0691 0.0359 0.0192 0.28 23.07 8.56 7.34 0.68 29.08 13.98 8.32 191.0 191.0 

20171102 0742 0.0014 0.0378 0.0196 0.0105 0.17 10.33 3.93 3.38 0.3 14.43 6.91 4.14 214.2 214.2 

20171106 0809 0.0013 0.0277 0.0145 0.0076 0.17 7.51 2.77 2.28 0.27 10.05 4.86 2.86 132.2 132.2 

* List of 19 cases in the Mississippi River Delta 
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8. Figures 
 

 
 
Figure 1. The two study regions shown in the Northern Gulf of Mexico and as an inset 
from Google Earth, which displays land and bathymetry of the Gulf of Mexico. The 
region shown in the left red box is defined by 91o - 92.5oW and 28.5o - 30oN while the 
other study region is defined 88.5o - 90.5oW and 28o - 29.5oN, which encompass the 
river mouths of the Atchafalaya Bay and Mississippi River Delta, respectively. 
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Figure 2. The overall flow chart for systematic data processing and analysis. See 
Research Methods Section for details.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



63 
 

 
 
Figure 3. VIIRS nighttime DNB radiance maps in the Northern Gulf of Mexico. The two 
example images show turbidity events, as indicated via red arrows, in the Atchafalaya 
Bay and Mississippi River Delta on September 9 and 11, 2017. The nighttime DNB 
radiance maps show the examples before the land and cloud mask. 
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Figure 4. A monthly time-series plot of Table 1. The blue region represents the 
nighttime DNB water pixel contribution and the orange region is the daytime water pixel 
contribution. The X-axis is month of the year and Y-axis is percentage. The black line 
separates 2016 and 2017. The mean nighttime DNB contribution is 36.3% in 2016 and 
49.6% in 2017. From 2016 to 2017, the mean nighttime DNB contribution is 42.9% and 
the standard deviation is 9.5%. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



65 
 

 
 
Figure 5. A comparison between the two cloud masking methods. The orange line 
indicates the nighttime DNB contribution using the cloud masking developed in this 
study, while the black line is using VIIRS cloud mask data. After March 2016, the mean 
difference shows that DNB contribution was underestimated about 17.8% through my 
cloud mask algorithm. 
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Figure 6. A plot from data in Table 2. The X-axis shows the number of days before or 
after the full moon. The two Y-axes are the number if turbidity events and nighttime 
DNB radiance, corresponding to the blue bars and orange line, respectively. The 
nighttime DNB radiance was calculated from the average of DNB mapped radiance in 
the turbidity events in the Northern Gulf of Mexico. 
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Figure 7. 2016-2017 time series of wind speed in the study regions. (a) and (b) show 
the records in the Atchafalaya Bay and the Mississippi River Delta, respectively. The 
black line indicates the variation of wind speed during 2016 and 2017. The wind speed 
data are from National Data Buoy Center and already smoothed with a boxcar average 
of 9 points. The triangle symbols mark all turbidity events in Table 2, according to their 
regions. The “y” cases are indicated in blue color and the “y/n” cases are in red. 
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Figure 8. Selected VIIRS nighttime DNB reflectance maps for wind analysis. The cases were selected in the Atchafalaya 
Bay and the Mississippi River Delta. (a)~ (d) are four consecutive figures in the Atchafalaya Bay from February 25 to 27, 
2016. (e) ~ (g) are in the Mississippi River Delta from June 21 to 24, 2016. The GMT time is labeled in the bottom right 
corner of each panel. The unit of nighttime DNB reflectance is dimensionless. The corresponding wind speeds provided 
by National Data Buoy Center are annotated in the bottom left corner of each panel. In these 7 panels, turbidity patterns 
are greenish and light reddish. In (g), this map did not have the cloud mask because of the step of box sieving in my 
algorithm, which masked the entire map. Some cloud pixels are remained and indicated as the dark red color while 
turbidity patterns are greenish. (g) is a typical “y/n” case listed in Table 2.  
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Figure 9. Monthly mean water pixels contribution for turbidity estimation. The data 
counts the valid water pixels in the nighttime DNB reflectance maps and daytime 
Rrs(671) maps from the turbidity events. The data are from Table 4, and separated into 
the two study regions. The blue line indicates the Mississippi River Delta and the orange 
line is the Atchafalaya Bay. The mean nighttime DNB contribution is 32.8% in the 
Mississippi River Delta and 36.0% in the Atchafalaya Bay during 2016 and 2017. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



70 
 

 

 
 
Figure 10. A sample comparison between Rrs(671) and daytime turbidity. (a) True color 
image, (b) Rrs(671), and (c) the derived daytime turbidity image (c) from Feb 28, 2016 
over the two study areas. The unit of Rrs(671) is per steradian and the turbidity unit is 
FNU. The light grey area indicates land and the dark grey area marks clouds or sun-
glint contaminated pixels. These grey areas are shown as the missing value in the 
Rrs(671) data. The missing value is labeled as “Moderate sun-glint contamination” and 
“Failure in any product” in the l2 flags. The detail is in the Discussion Section. 
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Figure 11. A distribution analysis of pixel values of daytime turbidity. The X-axis 
indicates turbidity value and the Y-axis is the percentage. The data are collected from 
the daytime turbid pixels in the 53 usable turbidity events in Table 2, which are then 
shown in Table 7. 
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Figure 12. The scatter plot of a few cases from Table 2 (using the Chen et al. (2007) x, 
y convention from their Figure 6). The X-axis is nighttime DNB reflectance and the Y-
axis is VIIRS daytime turbidity. The data are paired using their location, which is a pixel-
by-pixel correlation. The R2 is labeled in the upper left corner of each panel. The red line 
is the best fitting line. All six figures show a poor linear correlation. 
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Figure 13. Examples of histogram matching. The two left panels show the cumulative 
histogram of nighttime DNB reflectance (blue) and VIIRS daytime turbidity (red), with 
the corresponding y-axis in the left. The two right panels are the scatter plot based on 
the frequency in the left panels. The black lines are the results of the histogram 
matching. The 4 panels correspond to the two of the six cases in Figure 12. Note that 
the FNU range of y-axis is different in the right and left panels. This is because, in the 
left panels, the y-axis only plots nighttime DNB reflectance with frequency 0.01-0.99. 
The y-axis changes the range according to the maximum turbidity value. For the right 
panels, all frequencies of data are plotted. 
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 Figure 13. (Continued). Examples of histogram matching. 
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Figure 13. (Continued). Examples of histogram matching. 
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Figure 14. The scatter plots of the 86 cases (“y” cases) in Table 2 and 53 culled cases 
in Table 7. The x, y pairing follows that of Figure 12. The X-axis is nighttime DNB 
reflectance (dimensionless) and the Y-axis indicates daytime turbidity. The black lines 
are the paired results of the histogram matching. (a) shows all data corresponds to 
Table 2 (i.e., all “y” cases), and has not had any sieving and not separated into two 
study regions. For example, some lines contain the data from both study regions, as 
labeled “afa+miss” in Table 2. (b) shows the 53 cases, filtered by the satellite view 
angle (<600), sun-glint and moon-glint, study regions. Each line in (b) only represents 
the data from either the Atchafalaya Bay or the Mississippi River Delta. 
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Figure 15. The comparison of the scatter plots of 53 cases (x, y pairing follows that of 
Figure 12). The blue and the yellow lines are the result of the histogram matching. (a) 
shows the valid 19 cases in the Mississippi River Delta, and (b) represents 34 cases in 
the Atchafalaya Bay after sieving. 
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Figure 16. The comparison of the four equations fitting the 53 cases. The data is same 
as Figure 14b. The x, y pairing follows that of Figure 12. The x-axis is nighttime DNB 
reflectance and y-axis is daytime turbidity. The color bar in the right indicates the 
density of data. The black shaded area is with the largest amount of data. The light blue 
line is the best fitting line. The error bars represent the standard error of estimate. The 
dark blue dashed lines are the 95% prediction interval. The four equations are labeled in 
the upper left corner of each panel. The statistics can be checked in Table 5 and Table 
6. 
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Figure 17. The comparison of two different matching methods. The x, y pairing follows 
that of Figure 12. The x-axis is nighttime DNB reflectance and y-axis is daytime 
turbidity. The color bar in the right indicates the density of data. The black shaded area 
is with the largest amount of data. The light blue line is the best fitting line. The error 
bars represent the standard error of estimate. The dark blue dashed lines are the 95% 
prediction interval. The equation is shown in the upper left corner of each panel. (a) is 
the equation 1 (Figure 16). (b) is fitted with the pixel-by-pixel matching method that 
strongly correlates with their locations.  
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Figure 18. A case comparison of calculated daytime and nighttime turbidity. The 
daytime turbidity is calculated from Rrs(671) & Rrs(862). The nighttime turbidity is 
calculated from equation 1 (Figure 16). (a) shows the calculated daytime turbidity and 
(b) shows the calculated nighttime turbidity on February 27, 2016. Note that the 
nighttime calculations precede daytime calculations within a given GMT day. The two 
white boxes correspond to the two study regions in Figure 1. The figure shows the 
mean relative error in both study regions, with 17.3% in the Atchafalaya Bay and 71.4% 
in the Mississippi River Delta, respectively. The grey shaded pixels near the coastal 
regions are missing data. The missing data are labeled as “Moderate sun glint 
contamination” and “Failure in any product” in the l2 flags. The detail is in the 
Discussion Section. 
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Figure 19. The changes of a sediment front position observed from daytime and 
nighttime data. The 4 panels illustrate an example of where a sediment front relocates 
in the Mississippi River mouth from May 8 to 10, 2017. (a) is the daytime Rrs(671) map 
on May 8, 2017 at 1936 GMT. (b) shows the nighttime DNB reflectance map on May 9, 
2017 at 0802 GMT. The red solid line indicates the sediment front in the map. (c) shows 
the daytime Rrs(671) map on May 9, 2017 at 1918 GMT. The solid green line denotes 
the sediment front. (d) shows the nighttime DNB reflectance map on May 10, 2017 at 
0744 GMT. The blue line denotes the sediment fronts for this time that is shown with 
respect to the previous red (b) and green (c) sediment front positions. The black and 
white solid lines in (d) show the minimum linear distance that the front moved. Note that 
May 10, 2017 is a full moon date. 
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Figure 20. A comparison 
between nighttime DNB ratio 
and nighttime DNB reflectance. 
The chosen maps are at the 
same time of March 22, 2016. 
(a) is nighttime DNB radiance 
ratio map. The color shaded 
area in the coastal regions 
indicates the turbidity pattern. 
(b) is nighttime DNB 
reflectance. (c) indicates land, 
cloud pixels (grey), boats, and 
oil platforms (red). Note that 
some red pixels are also 
clouds, as labeled in the 
bottom of (c). (d) is the 
nighttime DNB reflectance 
map, where lands, clouds, 
fishing boats and oil platforms 
have been removed and 
labeled in grey color. The 
greenish and reddish areas 
near the shoreline show the 
turbid regions. 
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Figure 21. One example of nighttime versus daytime turbidity from Table 7. The case is 
on June, 10, 2017 at 0759 GMT in the Atchafalaya Bay. The light blue dashed-line 
marks a 1:1 match. The dark blue line is the linear fit by the equation shown. The linear 
equation and R2 are labeled in the upper left corner. 
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Figure 22. The nighttime turbidity versus daytime turbidity in all 53 valid cases from 
Table 7. The light blue dashed-line marks a 1:1 match. The dark blue line is the linear fit 
by the equation shown. The linear equation and R2 are labeled in the upper left corner. 
Note that the apparent vertical boundary at 20 FNU for daytime turbidity is due to the 
data distribution shown in Figure 11. 
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