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ABSTRACT

Statistical learning is a set of tools for modeling and understanding complex datasets.

It is a recently developed area in statistics and blends with parallel developments in computer

science and, in particular, machine learning.

The classification of biomedical non-stationary signals such as Electroencephalogram

(EEG) is always a challenging problem due to their complexity. The low spatial resolution on

the scalp, curse of dimensionality, poor signal-to-noise ratio are disadvantages of working with

biomedical signals. EEG signals are unstructured data which needs preprocessing steps to

extract informative features which are measurable and predictive. In the first two chapters

of this dissertation, EEG signals that are recorded in 14 different locations on the scalp

are utilized to detect random eye state change. We investigate this EEG data from two

perspectives i.e., classification of raw data with and without feature extraction. In one of

the methods, we bypass the feature extraction phase. SPI index, which is a transformation

adapted from meteorology sciences, is implemented to transform data into a more appropriate

space. Then, a Bayesian analysis of non-homogeneous Poisson process (NHPP) in a presence

or absence of a change-point (open to close or vice versa) is developed using MCMC. We

apply the power-law function as intensity function of NHPP models. The final classifier is
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a model selection process between two NHPP models. In each time frame the best model,

which fits to the data better, is selected. The accuracy of 74% is the best performance of

the-state-of-art model.

In the second method, some features are extracted from EEG data based on fast

Fourier transformation. We take into consideration all of the aforementioned difficulties and

developed a three-layer classifier which is capable of solving the complexity of EEG signals

(high dimensionality, noise, and poor spatial information) one by one in each step. Reduction

of the number of signals from 14 to 5, with an accuracy 96% on one-second on reframed data

in less than 3 seconds as well as extracting useful information from all channels (even those

that seem uninformative in the first look) are main contributions of this method.

In addition to EEG data, the health-related problems are also explored in this disser-

tation in terms of their impact on the quality of life. The data consists of socio-demographic

information as well as psychological background of 1080 individuals from different regions

of Italy. This data is analyzed using supervised and unsupervised learning. The supervised

learning method is a combination of classical non-parametric and machine learning methods

to predict the general quality of life with an accuracy of 83%. The developed model is very

informative and useful for either individual to monitor and improve their quality of life or for

the administrative group to distribute their sources wisely and directly to the right target

group.

In unsupervised learning, the group of people is clustered to three different categories

according to their similarity in socio-demographic, health, and psychological information.
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The implemented model is based on the K-medoids clustering. Such clusters can be used to

have better understanding of the population for further analysis.
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CHAPTER 1 : INTRODUCTION

The subject study consists of four chapters and given below are brief introductions.

1.1 Change-Point Detection of Biomedical Signals Using non-Homogeneous

Poisson Process

This chapter is the continuation of the previous chapter on EEG signal processing

and classification. One of the most important and challenging steps of supervised learning,

in either classification or regression, is feature engineering. The main two hidden difficulties

in this process are to extract informative as well as easy to access and measurable features.

This step can be difficult specially for analyzing unstructured data such as noisy and high

dimensional biomedical signals. A variety of methods have been used to solve this problem

including (Sabancı and Koklu [1], Saghafi et al. [2], Rösler and Suendermann [3], Arvaneh

et al. [4]) which are heavily dependant on feature extraction. However, in this chapter, we

proposed the-state-of-the-art model to detect abnormality and classify raw EEG signal with-

out implementing any feature engineering. In our model, we bypass the feature extraction

by transforming the data into another space. The model has three main steps. In the first
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step, the data points in the raw data are separated using Standardized Precipitation Index

(SPI) transformation (McKee et al. [5], Wambua et al. [6]). The SPI has application in the

detection of drought period in meteorology science. A peak point in EEG signal is simi-

lar to the drought time in climate data. In the next step, the signal is divided into equal

frames. Then, two sub-models are developed. The first sub-model considers a hypothetical

random change point and two non homogeneous Poisson process models (NHPP) with two

parameters before and after the change-point. The second sub-model is a NHPP without

any change-point. In the last step, two models are fitted to signals and the model with

lower Deviance Information Criterion (DIC) is selected and as a result any change-point is

detected. All the parameters are estimated using Bayesian method and GIBS sampling. The

accuracy of 74% and no feature extraction are major results of the proposed model. The

anomaly detection is real-time with maximum 2 seconds delay.

1.2 Ensemble Learning of Biomedical Signals Using Fast Fourier Transforma-

tion

The electrical activity of the brain is monitored by means of electroencephalogram

(EEG) signals. It has substantial application in diagnosis of the abnormalities related to the

brain such as epilepsy, sleep disorders, depth of anesthesia, coma, encephalopathy, and brain

death. The amount of information captured by EEG signals makes the time of analysis a

challenging problem for scientists. The main target is to detect abnormality by investigation

of EEG signals via classification method. The classification of these types of signals has

2



been studied from different perspectives (Townsend et al. [7], Ghosh-Dastidar and Adeli

[8], Wang et al. [9]). Instance-based and frame-based are the two major approaches to

detect abnormalities, but the time of analysis has been investigated with less attention than

achieving the best accuracy of classifiers. On the other hand, the curse of dimensionality and

noisy data are the two main challenges in the analysis of EEG data. The signal-to-noise of

ratio EEG data is very poor which makes it difficult to extract useful information to address

the subject of interest. Another challenge with EEG signals is the non-exact spatial problem

which refers to difficulty in locating the exact spot on the cerebrum that generates the signal.

One of the fields that has attracted attention recently is eye status detection and drowsiness

monitoring which has significant application in designing an effective warning system in

sensitive fields such as safe driving, among others. Most studies in this field deal with one

or two of the aforementioned difficulties of EEG signals, for example the accuracy of the

developed model (Subasi and Ercelebi [10], Subasi and Gursoy [11]), dimension reduction

and accuracy (Arvaneh et al. [4]), handling noise (Xu et al. [12]), and dealing with poor

spatial resolution (Edlinger et al. [13], Burle et al. [14]). However, in this chapter, different

methods are incorporated to tackle the all issues of working with EEG signals. In our novel

model, different methods have been utilized either in preprocessing of data or in the analysis

phase to optimize the result as well as reduce the time of analysis.

Multi-status EEG signals contain some change-points (mostly random points) in

which the status of the signal is different before and after. Normal-Non-normal (Guo et al.

[15]) and open-close eyes (Saghafi et al. [2]) are binary examples, and Normal-ictal-spike
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(Vincent et al. [16]) is an example of three-status signal.

The EEG eye state corpus from UCI Machine Learning Repository created by (Frank

[17]) is utilized in this study. It contains 14 sensors distributed symmetrically on the scalp.

One column in this data is considered as ground truth labeled by an expert. This label is

either 0 (open eyes) or 1 (closed eyes). Several models have been developed on this data

to acquire maximum accuracy such as (Sabancı and Koklu [1], Saghafi et al. [2], Rösler and

Suendermann [3]).

The developed model in this dissertation consists of two layers namely training a

pool of base classifiers and then ensemble of them to improve the accuracy. The first step

focuses on solving the curse of dimensionality by means dividing each raw signal to equal-

length frames. Then, each frame is filtered using a frequency band that can give the most

informative features based of spectral density. The result of first layer is the best classifier

and best frequency band for each signal. In the next step the issues of signal-to-noise ratio

and non-exact spatial are resolved through developing a set of tree-based classifiers. Finally,

the result of five most accurate signals are combined to increase the accuracy of a single

signal. The accuracy of 96% on one-second frames obtained in less than 3 seconds is the

best result of the-state-of-the-art method.
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1.3 Quality of Life: Statistical Analysis and Modeling of Psychological General

Well-being Index via Supervised Learning

The quality of life (QoL) is defined by World Health Organization (WHO) as an

individual’s perception of their position in life in the context of culture and value systems in

which they live and in relation to their goals, expectations, standards, and concerns (Group

et al. [18]). The prediction of QoL is necessary to monitor a society well-being while helping

individuals in achieving their goals with the maximum satisfaction. A reliable and well-

trained model can assist people to correct their path by calibrating their risk factors based

on their goals. The QoL can be divided into two main branches, health related quality of life

(HRQoL) and general quality of life (QoL). In this chapter, our main focus is on the later

type .

For decades, several studies focused on different aspect of QoL. The researchers at-

tempted to answer a spectrum of questions from the definition to scaling and measuring the

Qol (Diener [19], Harrington and Loffredo [20], Aaronson [21], Casellas et al. [22], Grossi

et al. [23], Veit and Ware [24], Diener et al. [25], Lundgren-Nilsson et al. [26], Compare et al.

[27]).

The HRQoL which is not our main concentration, has also received a huge amount of

interest. Different studies tried to extract and rank the risk factors contributing to a specific

diseases (Yazdi-Ravandi et al. [28], [29], [30], Karlsen et al. [31], D’alisa et al. [32], Logsdon

et al. [33], Fenn et al. [34]). However, in this chapter, we developed a predictive model based

on machine learning methods which can be implemented for monitoring everyday QoL. The
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data utilized in this study is based on Psychological General Well Being Index (PGWBI)

survey. The PGWBI questionnaire has been used for several decades as a measure for

evaluating the state of mental health by means of a summary score. The data for this study

has been collected from 1080 individuals from three different regions in Italy. Different

methods such as regression and ANOVA have been implemented to analyze such surveys

(Bianchi et al. [35], [36]). But in this chapter, we used several non-parametric methods to

bypass assumptions of parametric methods and also to handle the large number of categorical

variables in the data. To obtain a better understanding of the subject data and to answer

some relevant questions in this regard, we performed non-parametric analysis, the Kruskal-

Wallis test and the modern ML method of Random Forest. More specifically, this study tries

to investigate how an individuals’ socio-demographic information can be interconnected to

the QoL measured by PGWBI score.

From the developed model, the quality of life index can be predicted with high ac-

curacy from demographic information and health background alone. The accuracy of 0.83

and ranking of the risk factors contributing to the quality of life index from two different

perspectives are the strong results of this study. According to developed model, age, income,

education, occupation, region of living, and health background including sciatica, arthritis,

and hypertension have the highest contribution to PGWBI score.
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1.4 Quality of Life: Unsupervised Machine Learning of Social Data Analysis

and Statistical Modeling

Sociological theory and phenomena are often hypothesis-driven in which explaining

the cause of the problem is the core of the analysis (Rudin [37]). Sociological events are

not very clear to be explained if the population is non-homogeneous. Therefore, it is more

advantageous to divide the whole population to sub-populations with more similarities and

less variability. Clustering analysis is an appropriate tool to explore such data and find

similarities.

Clustering of social data is a useful tool for administrative purpose especially gov-

ernment and insurance companies. The appropriate clustering can facilitate a government’s

task to allocate limited source of funds to the proper group of people which have similar

characteristics in a society. Moreover, insurance companies can create clusters of individuals

with similar risk factors for better cost predictions.

Data mining and clustering methods have been widely applied to find hidden patterns

in mixed social data. Researchers use clustering method to find a similarity among small

producers in six cities in the northeast of Brazil (Maione et al. [38]). The social network is

another interesting subject for researchers. The clustering of people in a social network using

K-means clustering is a good judgmental tool to find users with similar behavior (Singh et al.

[39]). In a human behavior study, the authors study the human social behavior to find similar

patterns by means of clustering methods (Ferrara et al. [40]). However, in the most of social

experimental design a representative data is collected in form of hybrid data, i.e., continuous
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and categorical variables, and this restrains the usage of K-means clustering which is one of

the most applicable method in data mining and clustering. K-medoids, the combination of

Gower distance (Gower [41]) and K-means, can be used to handle the clustering of hybrid

data. This method has a growing popularity among researchers in different areas of interest,

(Velmurugan and Santhanam [42], Arora et al. [43]). In the present chapter, we investigate

social data clustering using K-medoids clustering with Gower distance to find the similarity

among individuals from different regions of Italy which has been used in the previous chapter.

In the present chapter, we conclude a separation of individuals into three groups with similar

characteristics that it can be a good source of information for government to make critical

decisions about different groups of people. Also, our results are very important for individuals

to recognize their similarities based on the risk factors on which the clusters have been

created. Also, with high accuracy (95%), the QoL index is predicted after creating the

similar groups.
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CHAPTER 2 : CHANGE-POINT DETECTION OF BIOMEDICAL SIGNALS

USING NON-HOMOGENEOUS POISSON PROCESS

2.1 Introduction

Biomedical signals such as Electroencephalogram (EEG) records electrical activity of

the brain. The human brains is estimated to have 86 billion neurons in average(Azevedo

et al. [44]) which makes it very complex to analyze. EEG signals have been investigated

for decades from different perspectives (Pijn et al. [45], Dauwels et al. [46], Dement and

Kleitman [47]).

Different models and methods have been implemented on EEG data to extract in-

formation to address a certain problem. Working with raw EEG data are experienced with

several difficulties such as time of analysis due to its high dimensional data, etc. Therefore,

transforming the raw data to another space is necessary to be able to solve the problem in a

shorter time. The main challenge in mining the information from EEG data is to extract a

set of relevant features to address the subject of interest (Ting et al. [48], Jenke et al. [49]).

Various approaches have been proposed in the literature to achieve higher classi-

fication accuracy, such as embedded hidden Markov models (Qin et al. [50]), time series
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classification (Wang et al. [51]), pattern recognition (Estévez et al. [52]), and machine learn-

ing methods (Rösler and Suendermann [3]; Sabancı and Koklu [1]; Saghafi et al. [2]), among

others.

In this chapter, the goal is to detect change point in the EEG status which is a

classification problem. The novel analytical proposed model in this chapter can capture the

change-point in EEG data without performing any feature engineering on the raw dataset.

There are several studies on dataset used in this chapter that majority of them implemented a

preprocessing and feature engineering methods to extract features(Rösler and Suendermann

[3], Wang et al. [51], Sabancı and Koklu [1], Saghafi et al. [2]).

In our analytical model, after transforming the raw data using a transformation sim-

ilar to SPI-index, the novel proposed classifier will develop two models on the signals after

dividing the signals to sub signals of equal distances. One of the models considers a random

change-point in the signal and the second model considers no change point in the data. The

two statistical models are Non-homogeneous Poisson process models where their parame-

ters are estimated using Bayesin method and Gibs sampling. The accuracy of 74% without

any feature extraction are our major results of the study and the average time delay in

change-point detection is only 1.5 seconds.

2.2 Data Pre-processing using SPI index

Anomaly in non-stationary signals can be detected as spike or inter-spike events

over time. Therefore, a family of probability distributions such Gamma, Beta, and Normal
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distributions can explain the probabilistic behaviour of this type of data. SPI, Standardized

Precipitation Index, is used to quantify rainfall for a long-term climate data. The SPI values

represents the level of drought in the under study region. There are two main reasons that

the biomedical signals data are correlated to climate data; First, the nature of spikes in the

biomedical signals are the same as drought in rainfall data which is an abnormal event in

the climate data. And, secondly the spike or inter-spike happens gradually over a short time

interval and not completely abrupt. SPI was first developed by McKee et al. [5]. Also, the

details of the SPI calculation process described by Wambua et al. [6] are necessary, since

understanding the threshold of drought season and its modification to biomedical signals

is a key part of the classification and failure time definition in our study. The selection

of probability distribution is the first step. In this study, the selected distribution is the

Gamma probability distribution expressed by its probability density function as:

g(x) =
1

βαΓ(α)
xαe

−x
β , for x > 0, (2.1)

where α, β are shape and scale parameters, and x is the raw data. Γ(α) is the integral

constant calculated by means of:

Γ(α) =

∫ ∞
0

yα−1e−ydy, (2.2)
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where y is the output function defined in equation 2.1.

In the next step, the cumulative probability distribution of equation 2.1 is given by:

G(y) =

∫ y

0

xα−1e
−x
β dx. (2.3)

Equation 2.1 is defined only for positive values. If there exist any zero value in the data, it

can be solved by re-scaling the cumulative probability distribution as follow:

H(x) = q + (1 + q)G(x;α, β), (2.4)

which H(x) is the Cumulative probability and q is the probability of a zero value in the data.

The cumulative probability was then transformed into a standard normal distribution using

an approximate transformation as:

SPI = −(k − c0 + c1k + c2k
2

1 + d1k + d2k2 + d3k3
), for 0 < H(x) ≤ 0.5 (2.5)

and

SPI = +(k − c0 + c1k + c2k
2

1 + d1k + d2k2 + d3k3
), for 0.5 < H(x) < 1 (2.6)

where k is attained by:

k =

√
ln(

1

H(x)2
), for 0 < H(x) ≤ 0.5 (2.7)
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and

k =

√
ln(

1

1−H(x)2
), for 0.5 < H(x) < 1 (2.8)

where; c0 = 2.55517, c1 = 0.802853, c2 = 0.010328, d1 = 1.432788, d2 = 0.189269, and d3 =

0.001308. In the study of rainfall data, the SPI values were calculated using a monthly or

3,6,12,24,48 months time step and the threshold criterion as presented in Table 2.1, below.

Table 2.1: Drought classification based on SPI

State Criterion Drought classification

1 2.00 or more Extremely wet
2 1.50 to 1.99 Very wet
3 1.00 to 1.49 Moderate wet
4 0.99 to -0.99 Near normal
5 -1.00 to -1.49 Moderate drought
6 -1.50 to -1.99 Severe drought
7 -2.00 or less Extreme drought

In the present study the Table 2.1 will be modified based on the biomedical signals

critical values and inter-spike and it will be discussed in section 3.5.

2.3 Model Description

In the previous section, we state that the nature of failure time in the climate data

which can be generalized to biomedical signals. In this section the model to capture the

failure (spike to inter-spike) is presented. This model can be applied on any data which has

binary label. The core idea behind the model is non-homogeneous Poisson process(NHPP)

with power law function its intensity function.
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2.3.1 NHPP-Power Law Process

The probability of attaining n failures of a system in time interval (0, t) can be

expressed as

P (x = n|t) =
e−

∫ t
0 λ(x)dx{

∫ t
0
λ(x)dx}n

n!
, for t > 0. (2.9)

There are a variety of choices for the intensity function, λ(t), such as power law(PLP),

the Musa-Okumoto(MOP), Musa and Okumoto [53], The Goel-Okumoto(GOP), Goel and

Okumoto [54], among others. For simplicity, power law will be used in this study as the

intensity function. PLP, Power Law Process, intensity function is defined as below:

λ(PLP )(t|α, β) =
α

β
(
t

β
)α−1, for t, α, β > 0, (2.10)

and the mean value function which is λ(t|α, β) = d
dt
m(t|α, β), is defined by:

m(PLP )(t|α, β) = (
t

β
)α, for t, α, β > 0. (2.11)

It is observable from the definition of λ(t) that the status of the system is a function of α

which can be constant, decreasing, or increasing if α = 1, α < 1 or α > 1, respectively.

Another model which is generalized from PLP is NHPP with one change-point in the

time interval of study. This change-point is the time that there is a significant change in the

nature of failures. Therefore, two NHPP is combined, one before change-point and one after.

In this new model, the change-point is considered as a random variable which should be
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estimated in the parameter estimation phase. All in all, if we consider power law as intensity

function for each of NHPP in this model, thus five parameter should be estimated.

The discussion can be summarized mathematically as follow:

Suppose there exists one change-point over the time range (0, T ), it means there is a single

change-point η making a shift from a NHPP to another. The intensity function of the overall

process is defined by,

λ(t; θ) =


λ1(t), 0 ≤ t ≤ η

λ2(t), t > η,

(2.12)

where λj(t) = λ(t; θj), j = 1, 2 is the intensity functions before and after the change-

point respectively and θ = (α1, β1, η, α2, β2) is the vector of parameters. By substitution of

equation 2.10 in the overall PLP equation 2.12, the intensity function is given by:

λ(t; θ) =


α1

β1
( t
β1

)α1−1, 0 ≤ t ≤ η

α2

β2
( t
β2

)α2−1, t > η,

(2.13)

with the corresponding mean value function extracted from equation 2.11 is:

m(t; θ) =


( t
β1

)α1 , 0 ≤ t ≤ η

( η
β1

)α1 + ( t
β2

)α2 − ( η
β2

)α2 , t > η.

(2.14)

Because of the number of parameters for estimation and the amount of uncertainty, the

maximum likelihood estimation is not applicable and therefore Bayesian estimation is used
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to acquire estimation of the parameters. In Bayesian parameter estimation, the prior in-

formation about the unknown parameters is combined with the current data to have better

estimation of the parameters. Bayesian inference derives from three probabilities, prior,

likelihood, and posterior which linked by:

p(θ|DT ) ∝ p(θ)L(θ|DT ), (2.15)

where p(θ) denotes the joint prior distribution and L(θ|DT ) is the likelihood function and

DT = {n; t1, ..., tn;T} denotes the set of n failure times of the NHPP in (0, T ) and tis are in

increasing order. In an iterative process, the posterior probability distribution is substituted

with the prior to have better approximate estimation of unknown parameters.

The likelihood function for θ assuming the truncated conditional probability distribution

function is given by (Cox and Lewis [55], Tsokos [56]) can be expressed as follow:

L(θ;DT ) =
n∏
i=1

λ(ti)e
−m(T ) (2.16)

The equation 2.16 is the likelihood function for the NHPP without any change and by

combining the random change-point with two likelihood functions, the likelihood function

for the model with the presence of the change-point can be given by:

L(θ;DT ) =

N(η)∏
i=1

λ1(ti)× e−m1(η) ×
N(T )∏

i=N(η)+1

λ2(ti)× e[−m2(T )+m2(η)] (2.17)
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where N(η) is the number of failures before the change-point, η.

2.3.2 Proposed Model

The proposed model consists of three main steps, failure definition, NHPP model

fitting and model selection. The diagram 2.1, below, illustrates all of three steps. In the

first step, the raw data is converted to SPI described in section 2.2, to be appropriate for

further analysis. In the next step, the new signal is divided for a set of equal-length frames.

For model fitting, because of the number of parameters in the models, two in no-change and

five in one-change model, and non-existence closed form for the probability distributions,

the Bayesian estimation of parameters described in equations 2.15,2.16,2.17 is applied using

Markov Chain Monte Carlo (MCMC) methods. In the middle of dashed loop, there are two

models, no-change and one-change models. In the case of no-change model, there is not any

prior information about the two parameters of intensity function defined in equations 2.10,

2.16. A uniform distribution in the interval U[0,100] is considered for the parameters α and

β to have approximately non-informative priors. As mentioned, since there is no closed form

for the joint posterior probability distribution of θ, the simulated samples are obtained from

this distribution using standard MCMC methods.
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Figure 2.1: NHPP models in detection of change-point

That is , the sample is extracted from the full conditional posterior distribution

p(θi|θ1, . . . , θi−1, θi+1, . . . , θn, DT ) for i = 1, . . . , n (Gelfand and Smith [57]).

In the second model with one change-point where properties are described by equa-

tions 2.13, 2.14, and 2.17, the joint posterior probability distribution of five parameters is
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sampled by means of MCMC. The prior distribution for the intensity function parameters,

α1, α2, β1, β2 are non-informative priors, that is ,U [0, 100] and the same for change-point but

on different interval U(0, T ), which T is the last failure time of the data.

In the last step in section 2.1, the best model is selected based on a Bayesian adequacy

measures such as the Deviance Information Criterion (DIC) (Spiegelhalter et al. [58]) which

is an approximation estimator of Bayes factor. The Smaller DIC is led to a better model.

Finally , the dashed lines around the two models denote that the process is repeated for all

the frames until the end of the signal.

2.4 Analysis of Eye EEG Signal

The EEG eye state corpus from the UCI Machine produced by Frank [17] is employed

in this study. The dataset was created using Emotive EPOC shown in figure 2.2.

Figure 2.2: Emotive EPOC headset

The corpus contains 14980 instances(1/128 second) of 15 attributes which 14 of them
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denote signals captured from locations on different part of scalp represented in figure 2.3.

Figure 2.3: Scalp location covered by Emotiv EPOC

The last attribute denotes the eye state (open/closed). The duration of the experi-

ment was 117 seconds recorded at 128 Hz sampling frequency during the individual involved

in test opened/closed their eyes at will. The only data preprocessing accomplished on this

data is removing 4 instances marked as outlier. These instances were 899, 10387, 11510,and

13180. The models in Figure 2.1 has been developed on raw dataset after one transformation

and without any filtering which is common in signal processing.

The core idea of this study is framed on NHPP. In the first step of the analysis, it

is necessary to define the failure time according to the proposed data. Every instance in

transformed data which is greater than 1 or less than -1 is considered as a failure time. In

the next step, the signal is divided into 13 equal-length sub-signals of 3 seconds which they

are fed into the proposed model sequentially. The choice of 3 seconds is due to the long-term

data which is necessary for SPI analysis ,that is, for each sub-signal, there exists 384 data

instance which is enough comparing with climate data analysis transformed by SPI. The first
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2000 instances (approximately 15 seconds) of all signals are shown by Figure 2.4. The red

vertical lines are division of the signals in 3 seconds and the black vertical line is the random

change in the status of the participant’s eyes. Therefore in the first 3 seconds interval, there

is one change almost in the middle of the interval , in the second one no-change, in the third

one, there is one change at the beginning and so on, so forth. The y-label in the all of the

subplots of Figure 2.4, the y-axis values are SPI. From Figure 2.4, it is observable that some

of the signals such as AF3, AF4, F7, FC6, F4 are more informative to capture the spikes or

eye state change which they are defined as failure, than other signals which are located in

the middle of the scalp.
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Figure 2.4: The illustration of 15 attributes and 3 seconds signals. SPI>1 and SPI<-1 are
considered as failure time. The black vertical lines in Label graph are changing time in eye
status.

2.5 Result

All of parameters of interests in this study are τ , α and β which α and β are vectors

of parameters if the model with one changes is considered. Another parameter of interest
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is the threshold for defining the failure time in signals. The Table 2.1 shows the thresholds

for climate and drought data and therefore for implementation of our model is necessary to

define a threshold for EEG signal. The cut-off point for biomedical signals is attained by

means of 5-fold cross-validation on signals. The best cut-off point which give us the best

result is 1 which means every point below -1 and above 1 is considered as failure point.

As a sample, we shows the performance of the proposed model on a three-second

frame from F7 channel. Figure 2.5, 2.6 are the distributions of different parameters of the

model. In the first row of Figure 2.5, the first graph is the distribution of the deviance

information criterion which is an approximation for the Bayes factor and is used for model

selection. The second and third graphs of the distributions of the two unknown parameters.

Figure 2.6 consists of three rows and two columns, deviance and parameters’ distributions.

In this frame, there is a change-point at T = 188(1.47seconds). In terms of model selection

in the proposed classifier, DIC of the model with one-change is 345 and for model without

change point is 548 and therefore the earlier model is the best for this frame. This model

predict a change-point at T = 155(1.21seconds) which is very close to actual change point.
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Figure 2.5: The analysis of one 3-frame signal with no change
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Figure 2.6: The analysis of one 3-frame signal with one change
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Table 2.2: The result of classifier on AF3 channel

Time frame (3s) Predicted label Predicted CP True label True CP
"1" "Change-point" "215" "Change-point" "188"
"2" "No-change" "-" "No-change" "-"
"3" "Change-point" "818" "Change-point" "872"
"4" "Change-point" "1349" "Change-point" "1336"
"5" "Change-point" "1595" "Change-point" "1638"
"6" "Change-point" "2179" "Change-point" "2176"
"7" "Change-point" "2588" "Change-point" "2633"
"8" "Change-point" "2884" "Change-point" "2900"
"9" "Change-point" "3301" "Change-point" "3342"
"10" "Change-point" "3703" "No-change" "-"
"11" "No-change" "-" "No-change" "-"
"12" "Change-point" "4343" "Change-point" "4352"
"13" "Change-point" "4784" "No-change" "-"
"14" "Change-point" "5194" "Change-point" "5244"
"15" "No-change" "-" "No-change" "-"
"16" "Change-point" "5958" "Change-point" "5928"
"17" "Change-point" "6222" "No-change" "-"
"18" "Change-point" "6714" "Change-point" "6653"
"19" "Change-point" "6964" "No-change" "-"
"20" "Change-point" "7357" "No-change" "-"
"21" "Change-point" "7739" "No-change" "-"
"22" "Change-point" "8419" "No-change" "-"
"23" "Change-point" "8523" "No-change" "-"
"24" "Change-point" "9131" "Change-point" "9054"
"25" "Change-point" "9472" "No-change" "-"
"26" "Change-point" "9743" "No-change" "-"
"27" "Change-point" "10130" "No-change" "-"
"28" "Change-point" "10660" "No-change" "-"
"29" "Change-point" "10880" "Change-point" "11104"
"30" "Change-point" "11217" "No-change" "-"
"31" "Change-point" "11683" "No-change" "-"
"32" "Change-point" "11927" "Change-point" "12074"
"33" "Change-point" "12504" "No-change" "-"
"34" "Change-point" "12736" "Change-point" "12726"
"35" "Change-point" "13310" "No-change" "-"
"36" "No-change" "-" "No-change" "-"
"37" "Change-point" "14166" "No-change" "-"
"38" "Change-point" "14325" "Change-point" "14214"
"39" "Change-point" "14687" "Change-point" "14956"
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Table 2.2 is the result of running Figure 2.1 algorithm on one of the signals, AF3.

The first column is the index of the time frame which is three-second frames. The next

column is the predicted label of that frame. If the model with the presence of a change point

is selected, then the Changed-point means there is a changing point in this frame either

from open-close or close-open. In the next column the predicted time of change-point (τ)

is shown which is the predicted time of change in raw data which it can be converted to

seconds by dividing by 128. The fourth column is the true label of frame in the data and the

True CP is the actual change-point time in the raw data. By matching the predicted label

and actual label , the accuracy on this signal channel can be calculated. The accuracy on

this channel can be calculated by division of the number of correctly predicted frame by the

total number of frames, 39. The accuracy on AF3 56.41% which is close to a weak classifier.

We should add other results from the different signals to increase the accuracy. Also, from

the table 2.2, we can observe that the classifier is bias to classify the majority of frames as

change-point frame. Thus, by adding more signals, the baisness will be reduced.

The next step is the selection of a set of channels to increase the accuracy and decrease

the bias of the classifier. Since the channels are highly correlated, therefore only some of

them should be included in the final set of channels. The selection of channels is based on

their probabilistic behaviour in the first step of modeling procedure and the channels with

the similar distribution are clustered in the same group. Figure 2.7 shows the estimation

of Gamma distribution parameters in the first step. Each color in this table contains the

similar channels with respect to parameters of Gamma distribution. AF3 and AF4 have
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close shape and scale parameters. FC6, O1, FC5, and F3 have the same distribution and so

on, so forth.

We can deduce from Figure2.7 that five signals, one from each color, are utilized

for the final classifier. The final selection is done by choosing five channels randomly which

gives the maximum accuracy. The majority vote among 5 channels gives the accuracy of that

specific selection and after running this process 1000 times, the final selection and accuracy

are gained by the maximum accuracy of 1000 selections and its corresponding selection. The

final set of channels is AF4, FC6, T8, F4, P8 with max accuracy of 74%.

Signal alpha beta 

AF4 12851.0 0.33939 

AF3 12969.0 0.33166 

F7 17759.0 0.22578 

F8 19012.0 0.24227 

FC6 29477.0 0.14256 

O1 37938.0 0.10735 

FC5 38795.0 0.10626 

F3 39944.0 0.10675 

F4 45349.0 0.09436 

T8 45824.0 0.09234 

P8 55454.0 0.07576 

P7 62250.0 0.07422 

O2 63333.0 0.07288 

T7 65166.0 0.06662 

Figure 2.7: Gamma Parameter Estimation
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2.6 Contribution

We propose an analytical classifier to detect changes in the brain signals. The main

difference between the proposed analytical model and machine learning classifiers is to skip

feature engineering step which for EEG data is the main difficulty and generally in any data

mining problems. The EEG data are noisy, high dimensional, and has poor signal-to-noise

ratio which makes it difficult to extract features time-wise.

In the proposed statistical model, in the first step, we transformed the data using a trans-

formation similar to SPI-index adapted from meteorology and climate data analysis. This

transformation separates the raw data to be more readable and proceed to modeling. In the

second steps, the transformed data is fed into two sub models, a model that assumes there is

no change point in the data and the second statistical model considers a change-point in the

frame. The first model is a non Homogeneous Poisson Process with power law function as the

intensity function and has two unknown parameters for estimation. The second model has 5

parameters that consists of two parameters for model before change-point, two for after and

one for change-point itself. All of the unknown parameters are estimated using Bayesian and

GIBS sampling. The estimation is accomplished by sampling from joint posterior probability

distribution. The accuracy is 74% using cluster of five channels AF4, FC6, T8, F4, P8 with

1.5 seconds delay on the average detection and the main result of this classifier. The above

findings can be summarized as:

• Several Non-Homogeneous Poisson process, SPI index transformation from climate

data analysis and technique of signal processing are combined to create a classifier to
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detect changes in EEG data.

• The proposed analytical classifier is implemented on raw data and does not need any

feature engineering and extraction which is the most difficult step in data mining,

specifically for EEG data.

• The accuracy of 74% using a cluster of only five signals are the most important result

of the proposed analytical classifier
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CHAPTER 3 : ENSEMBLE LEARNING OF BIOMEDICAL SIGNALS

USING FAST FOURIER TRANSFORMATION

3.1 Introduction

EEG (Electroencephalography) is a monitoring method to record the electrical activ-

ity of the brain. It has extensive application to diagnose abnormalities related to the brain

behaviour such as epilepsy, sleep disorders, depth of anesthesia, coma, encephalopathies,

brain death and heart abnormalities. Despite some major disadvantages of EEG signals

such as high dimensionality, poor signal-to-noise ratio, and non exact spatial spots, EEG

recordings still play an important role in diagnosis of neurological illnesses by representing

the neuronal membrane potential with complicated and aperiodic time series.

The classification of these types of signals has been investigated from several perspec-

tives (Townsend et al. [7], Ghosh-Dastidar and Adeli [8], Wang et al. [9]). Instance-based

and frame-based are two main approaches to detect abnormalities in the signals, however

the time of analysis in the subject area has received less attention than accuracy of the clas-

sification method. Whereas, the time required for the analysis of the response is one of the

important factors that needs to be considered. The noise level and dimensionality of the data
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are two big obstacles during the analysis with respect to time. One of the most demanding

area of study is the eye status detection which has direct application in an effective designing

of the warning alarm system in sensitive fields such as autonomous vehicle and reliability of

driving behavior investigation, among others.

In order to extract relevant information from these signals, a variety of methods in

either preprocessing phase or in the analysis have been implemented. It will be very difficult

to handle all the the aforementioned problems which are the curse of dimensionality, high

volume noise, non-exact spatial and time, in one algorithm and with one unique method.

Most studies on EEG deals with one or two the aforementioned difficulties based on the goal

specified at the beginning of research. Several studies investigated the accuracy of models

developed on EEG signals (Subasi and Ercelebi [10], Subasi and Gursoy [11]), optimizing

the number of channels and accuracy at the same time (Arvaneh et al. [4]), handeling poor

signal-to-noise ratio (Xu et al. [12]) and dealing with poor spatial resolution (Edlinger et al.

[13], Burle et al. [14]).

Multi-status EEG signals contain some change-points (which mostly are random

points) in such a manner that the status of the signal before and after each point is dif-

ferent. Normal-Non-normal (Guo et al. [15]), open-close eyes (Saghafi et al. [2]) are binary

examples and [Normal-ictal-spike](Vincent et al. [16]) is an example of 3 status signal.

The EEG eye state corpus from UCI Machine Learning Repository created by (Frank

[17]) is utilized in this study. Several models have been developed on this data to acquire

maximum accuracy such as neural network (Sabancı and Koklu [1]), logistic regression with
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MEMD as features (Saghafi et al. [2]), k-star classifier on raw data(Rösler and Suendermann

[3]) which majority of them investigated the accuracy of the proposed model. However,

the developed model in this paper is targeted to cover all the disadvantages of EEG signals

analysis as well as giving the maximum accuracy. Our model consists of three layers which

in each layer, we implemented a state of art method to achieve to the final classifier. In the

next sections, we shall give a brief review and highlights of the methods that we use during

the process of developing our model.

3.2 Classifiers & Signal Processing Methods:

In developing the model in the subject area, we use a combination of classification

and signal processing techniques. Classification Algorithms used in the subject area include

K-Nearest Neighbors (KNN) Algorithm, Gradient Boosting, Random Forest and AdaBoost.

In signal processing techniques we shall use Butter Worth Filtering, Hann Window and Fast

Fourier Transform (FFT). Given below is a brief description of each of the methods used in

achieving our objective in the subject study.

3.2.1 K-Nearest Neighbors(KNN) Algorithm

k-nearest neighbor algorithm (KNN) is a non-parametric classification algorithm in

which input data are separated into several classes and the test sample is classified based on

k closest training examples in feature space. When predicting a new data point, the KNN

algorithm examines k-neighbors in the training set that have the maximum similarity to
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determine the proper class. While there are several similarity measures including Euclidean,

Manhattan and cosine similarity, we will use the Manhattan distance for our high dimensional

data (Aggarwal et al. [59]) showed that the Manhattan distance metric provides the best

discrimination in high-dimensional data spaces.

The Manhattan Distance is defined (for k=1) by:

Lk(x) =
d∑
i=1

(||Xi − Yi||k)
1
k , (3.1)

where x, y ∈ Rd, k ∈ Z and d is the dimensionality. Gradient Boosting Algorithm

Gradient Boosting is an algorithm which builds predictive models in the form of an ensemble

of weak learners. It can be interpreted as a numerical optimization problem where the loss

of the model is minimized. The model is built in a stage-wise fashion by adding one weak

learner at a time while leaving the existing weak learners unchanged.

Basically, there are three elements involved in the Gradient Boosting Algorithm: A loss

function to be optimized, a weak predictive model to make predictions and an additive

model to add weak models to minimize the loss function.

3.2.2 Random Forest

Random forest algorithm is a collection of decision trees where a random combination

of features is selected at very node for splitting, hence the name Random Forest. Lets

denote the training data set by D = (X1, Y1), (X2, Y2), ...., (Xn, Yn) and the feature vector

34



space by Xp = (xp1, xp2, ..., xpn) such that X ∈ D ∈ Rn. During the training process K

number of Bootstrap sample data sets are generated, with replacement, for K number of trees.

In order to depict the growth of each tree, Independently and Identically Distributed(IID)

random set of vectors {φ1, φ2, ..., φK } is also generated. Let each tree predictor be h(X,φ).

Then, the collection of such predictors h1, h2, ..., hk is the random forest(Patri and Patnaik

[60])

Random Forest Algorithm can be summarized as follows:

• Let the number of instances be denoted by N and the number of features by n

• Denote the number of features at a node of the decision tree by m ; where m <n

• Repeat the following steps for each decision tree:

– Set a subset of the training data with replacement to represent N instances and

the rest of the data to measure the error of the tree

– Repeat the following step for each node of the tree: To determine the decision

at the node and calculate the best split accordingly, select m features randomly.

Tree pruning is not allowed.

• End

3.2.3 AdaBoost

In the Adaptive Boosting (AdaBoost for short), observations are first weighted in

such a way that difficult to classify instances having more weight and well-handled instances
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having less weight. The model is sequentially built adding new weak learners with the focus

of training the instances which are difficult to classify.

3.2.4 Signal Processing: Butterworth Filter

One of the main disadvantages of working with biomedical signals, specifically EEG

signals is the poor signal to-noise ratio. To assist with this problem, the researcher should

remove some frequency bands from the signals. For example, in Eye signal, for detection

of drowsiness only frequency band less than 15Hz is necessary to be investigated. There-

fore, Butterworth bandpass filter is implemented on signals to remove all unwanted infor-

mation.The Butterworth Filter method, which was first introduced by physicist Stephen

Butterworth, is a signal processing filter useful in making a frequency response as flat as

mathematically possible in the passband. The range of frequencies that can pass through a

filter is known as passband.

The generalized equation for the frequency response of the nth order Butterworth filter is

given by,

Ha(jΩ) =
1√

1 + ( Ω
Ωc

)2M
(3.2)

where M represents the filter order and Ωc is the cut-off frequency. We shall use this filter

in the EEG signals that we are working with.
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3.2.5 Signal Processing: Hann Window

A mathematical function that is zero-valued after some chosen interval is known as

a window function. In digital signal processing, the Hann function is used as a window

function in order to select a series of samples to perform a Fourier Transform. The Hann

function is given by,

ω(n) =
1

2
(1− cos(

2πn

N − 1
)) (3.3)

3.2.6 Signal Processing:Fast Fourier Transformation(FFT)

The Fast Fourier Transform (FFT) is an efficient algorithm used to compute the

Discrete version of the Fourier Transform.FFT employs a mathematical approximation of

a given signal as an infinite combination of sin and cos waves to extract an approximation

of the Power Spectral Density (PSD). PSD illustrates the strength of the variations(energy)

of signal as a function of frequency[cite]. The FFT and PSD can be applied for feature

extraction purpose. If a long signal is divided into equal length signals, then the PSD of a

shorter signal can be extracted through the Short Fast Fourier Transform (SFFT). Then the

short signals can be compared according to their difference in PSD

3.3 EEG Data

The EEG eye data corpus is utilized in this study. The data has been collected in

UCI (University of California Irvine) Machine learning Repository by (Frank [17]). There are
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14,980 instances of 15 attributes which 14 of them represent the recorded brain activity from

different location on the scalp and one of the last attribute that determines the behaviour

of the eye state(closed/open). The experiment has been completed in 117 second at 128Hz

sampling frequency where each participant is asked to close their eyes randomly. Four

instances which have unusual values and are outside of the main trend of other observations

have been removed as outliers. These instances were at 899, 10,387, 11,510, and 13,180 time

of recording. Further data explanation and filtering will be presented in Experimental Result

section.

3.4 Methodology

As we previously mentioned in the introductory chapter, some of the main challenges

in analyzing EEG signals are curse of dimensionality and poor spatial and signal-to-noise

ratio. The steps taken to address each of these challenges and their justification are briefly

described below.

In our proposed methodology, we treat each signal captured from the electrical activity of

brain independently. In sleep disorder problems, frequencies ranging from 0-15 segmented

in the three frequency bands: Delta, Theta, and Alpha, have some signs of drowsiness and

closed eyes. This implies that to explain the maximum amount of information, we need to

consider a sub-interval in the frequency range 0-15. In this approach, the sub-interval with

maximum information is detected to increase amount of signal-to-noise ratio. The detail of

the detection of this interval will be presented in next section.
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As it is common in most of the studies related to biomedical signals, the amount of recorded

information is high which makes it complicated to analyze raw data. To address the curse

of dimensionality, we first implemented feature extraction prior to the analysis using Fast

Fourier Transformation (FFT). This allows us to transfer raw data into feature space and

frames. Spatial problem is another issue that arises when handling EEG signals. Specifically,

there are some instances where the experts working with EEG signals are not certain as to

which part of the brain generate the signals. We employ a cluster-based procedure to reduce

the number of sensors placed on the scalp. This enables us to identify the most informative

subsets of the recorded signals. Finally, we claim that it is not sufficient to consider only

one classifier for all signals. Thus, we select the best classifier for each specific signal from

a pool of classifiers which generates the highest degree of accuracy. The first layer of our

3-layer classification models is summarized in the Figure 3.1 which illustrates the procedure

to identify the best classifier and the corresponding frequency band.

In Figure 3.1, After feeding the raw EEG to a high-pass a 0.5Hz high-pass filter to

remove DC effect, the filtered signal is divided to sub-signals with equal length. In the next

step, the frames are labeled. In the dashed loop, two integers are selected randomly and the

signal is filtered with a mid-pass filter, then the signal is classified by means of extracted

features. The loop is iterated 1000 times for all 14 channels to find the best classifier and

the best lower and upper bound cut-off points for filtering.
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Figure 3.1: Description of the first layer of classifier

In the experimental section, we try to implement the figure 3.1 on the EEG data

described in section 4.2. The classification process can be summarized in these steps, Fil-

tering, Classifiers, Feature extraction, Layer 1, Layer 2 and Layer3.

3.4.1 Filtering

Figure 3.2: Different drowsiness frequencies in EEG signals
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According to figure 3.2, the frequency band ranges from 0 to 15 can normally be a

sign of drowsiness, sleeping or closing the eyes. In our method, the signals are filtered with

Butter-worth filter which is a bandpass filter described in section 3.2.4 to remove the noise

from the signals and prepare them for our purpose. However, the 14 signals are filtered

different from each other. In an iterative process, for each signal a subset of [0,15] will be

extracted such that the signal has the maximum information within that band or interval.

In other studies, all the signals filtered with one fixed frequency band. In our analysis, for

exampleAF3 will be filtered in [9.0, 12.5], AF4 in [4.5, 7.5] and etc. The result of filtering

band determination is summarized in Table 3.2.

Table 3.1: The result of the first layer of 1-second frames, p117

Channel Frequency Band Train Accuracy Classifier Test Accuracy
FC5 [4, 12.5] 0.712 KNN 0.727
F4 [2.5, 12.5] 0.704 KNN 0.727
AF3 [9.5, 13.5] 0.7 KNN 0.727
T7 [4.5, 12.5] 0.678 AdaBoost 0.727
F7 [2, 4.5] 0.691 KNN 0.681
AF4 [4.5, 8] 0.676 KNN 0.681
O1 [3, 7.5] 0.723 KNN 0.59
FC6 [7.5, 10] 0.651 KNN 0.59
O2 [1.5, 6.5] 0.724 KNN 0.545
P8 [8.0, 8.5] 0.69 AdaBoost 0.545
P7 [7.5, 10] 0.683 KNN 0.545
F3 [2, 8.5] 0.752 KNN 0.5
F8 [8, 9.5] 0.712 GBC 0.5
T8 [1, 2.5] 0.662 KNN 0.454
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3.4.2 Classifier

As mentioned , a set of classifiers will be trained in the proposed model. In section

?? these classifiers described with more details and also a short description of classifiers

in the pre-processing phase, the parameters of each specific classifier will be tuned by grid

search over different. Random Forest, AdaBoost, gradient boosting, and KNN with different

parameters are used to predict the true labels in our dataset. The number of neighbors

in KNN is set to 3 because it has better performance and the rest of the parameters used

without any change in the default values. For gradient boosting classifier, the number of

estimators adjust on 1000 and in Random Forest case the number of estimators will are set

on 50 and for prevention of over-fitting the maximum depth is adjusted on five and finally

for AdaBoost all of the parameters will leave on the default parameters.

3.4.3 Feature Extraction

A set of features are extracted to feed into the classifiers. For each signal in training

the learner, mean of signal, range, power of signal are the first three features which they are

extracted by calculation of the basic statistics of each signal. By transforming the signal

from time domain to frequency domain, another set of features are extracted. For each

signal, we proceed with the spectral analysis using discrete Fast Fourier Transform. Since

the maximum frequency of signal is 15, the first fifteen frequency bands will be used as filter.

The real and imaginary components of each band of the Fourier Transform were mixed into

a single magnitude. Therefore, 18 features (frequency bands, mean, range, and power) are
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obtained.

3.4.4 Pre-processing and Classification

We begin by dividing the major 117-second signals to three dataset of short signals

of 1-second, half-second, and quarter-seconds that we have 117, 234, and 468, respectively.

The division with 468 sub-signals are more closer to the real-time classification, but it has

less information in each frame which makes the classifier in danger of being less accurate.

Therefore, there is a trade-off between having sufficient information and being close to the

real-time classification(more accurate classifier). Each of the set of short signals will be used

in the first and second layer independently and in the third layer the results of two layers

are combined to each other by majority voting. After converting raw data to set of short

frame, the eighteen features described in section 3.4.3, are extracted for each frame. The only

problem is the label of each frame. Since closed eyes are more important than open, we label

the frame "open" if all raw data in that frame are open otherwise it will be labeled "close".

In the first layer, in an iterative process on each dataset extracted from 14 signals, the best

frequency band and the best classifier for each signal are acquired based on the maximum

accuracy on the test data. In the second layer, the frequency band and the classifier from the

first layer will be used to retrain the classifier again and a pool of base classifier is obtained.

Then, again in an iterative process a set of the best five signals are selected which they give

the maximum accuracy by majority vote. Figure 3.3 illustrates the general process of the

proposed model.
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Figure 3.3: The second layer classifier procedure and the final classifier

3.5 Experimental Results

As we have described it above, there are two layers with three different results. In the

last step of this procedure two problem will be solved, first the random nature of changing

and classification of different frames from the reduced data. P117, P234, and P468 are

three data set which are 117, 234, and 468 data frames, respectively. The pool of the base

classifiers trained for p117 in the first layer is illustrated in Table 3.2, below:
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Table 3.2: The result of the first layer of 1-second frames, p117

Channel Frequency Band Train Accuracy Classifier Test Accuracy
FC5 [4, 12.5] 0.712 KNN 0.727
F4 [2.5, 12.5] 0.704 KNN 0.727
AF3 [9.5, 13.5] 0.7 KNN 0.727
T7 [4.5, 12.5] 0.678 AdaBoost 0.727
F7 [2, 4.5] 0.691 KNN 0.681
AF4 [4.5, 8] 0.676 KNN 0.681
O1 [3, 7.5] 0.723 KNN 0.59
FC6 [7.5, 10] 0.651 KNN 0.59
O2 [1.5, 6.5] 0.724 KNN 0.545
P8 [8.0, 8.5] 0.69 AdaBoost 0.545
P7 [7.5, 10] 0.683 KNN 0.545
F3 [2, 8.5] 0.752 KNN 0.5
F8 [8, 9.5] 0.712 GBC 0.5
T8 [1, 2.5] 0.662 KNN 0.454

In Table 3.2 the first column is the 14 channels, the second column is the best fre-

quency band that the filtered signal under this band has the greatest accuracy given in the

third column and the signal is more informative in this interval. For training the classifiers

and choose the best one in the fourth column, 5-fold cross validation has been utilized on

80 percent of data. The last column is the accuracy on 20% of the data as test data. It is

observable from Table 3.2 that even with one channel such as FC5, F4, AF3, or T7 with

accuracy of almost 73% the change of eye status can be detected with the delay of maximum

1 second.

In the second layer, five channels will be selected randomly and the accuracy is calculated by

majority vote among them. After repeating of this process 1000 times the best combination

of channels are T7, O1, AF3, FC5, F7 which they generate the accuracy of 96%. This
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accuracy is on the test data which is 20% of one-second frames.

The Table 3.3 contains the result of the same procedure on the p234 and p468.

Table 3.3: The result of the first layer of half-second frames, p234

Channel Frequency Band Train Accuracy Classifier Test Accuracy
AF3 [3, 10.5] 0.669 AdaBoost 0.695
F7 [7, 11.5] 0.612 AdaBoost 0.695
P8 [0.5, 4] 0.628 GBC 0.608
O2 [3.5, 7.5] 0.601 KNN 0.586
F3 [5, 11] 0.649 GBC 0.565
F8 [0.5, 8] 0.64 GBC 0.565
F4 [8, 13] 0.637 GBC 0.565
O1 [9.5, 10.5] 0.616 GBC 0.521
T8 [9, 10] 0.578 KNN 0.521
FC5 [0.5, 7.5] 0.654 KNN 0.500
FC6 [5, 10.5] 0.616 KNN 0.500
AF4 [9, 13.5] 0.670 RF 0.456
T7 [12.5, 13.5] 0.628 AdaBoost 0.456
P7 [4, 4.5] 0.644 KNN 0.434

The result of the first layer classifier for the half-second frames are shown in Table 3.3

and the description is the same as Table 3.2, and it is observed that the obtained accuracy

on the last column even for two or three channels are reasonably acceptable, that is, for AF3,

F7 and P8. Another difference between this p117 and p234 are the type of classifier used

GBC and AdaBoost are more frequent than KNN that had better performance in p117. The

same procedure is repeated for the second layer of p234 and accuracy of 83% is acquired

from F8, O2, O1, F7, AF3.

Table 3.4 below, is a pool of base classifiers which illustrates the accuracy for the p468.
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Table 3.4: The result of the first layer of half-second frames, p468

Channel Frequency Band Train Accuracy Classifier Test Accuracy
FC5 [1, 11.5] 0.606 GBC 0.695
AF4 [0.5, 12] 0.611 RF 0.630
T7 [12.5, 13] 0.592 KNN 0.608
O1 [8, 12] 0.616 GBC 0.597
T8 [8, 11.5] 0.601 RF 0.586
AF3 [9.5, 11] 0.595 RF 0.565
F4 [13, 13.5] 0.585 KNN 0.565
F8 [7, 11.5] 0.600 GBC 0.554
O2 [9.5, 12] 0.582 AdaBoost 0.554
FC6 [4.5, 11.5] 0.608 KNN 0.543
F7 [4.5,7] 0.585 AdaBoost 0.543
F3 [12, 12.5] 0.628 RF 0.532
P7 [0.5, 4] 0.603 GBC 0.5
P8 [0.5, 11] 0.596 AdaBoost 0.5

and for the second layer of p468, we can obtain the accuracy of 75% by merging

the result of five channels FC5, AF3, T7, AF4, O1. The figure3.4 illustrates the five

significant channels for each dataset.

One-second frames
Acc: 96%

Half-second frames
Acc: 82%

Quarter-second frames
Acc: 75%

Figure 3.4: The optimized signals which create the maximum accuracy on test data. From
left: p117, p234, p468 have accuracy of 96%, 82%, 75%, respectively.
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3.6 Contribution

A method was developed on the EEG eye data to handle the disadvantages of an-

alyzing with EEG data. The results presented in the section 3.5, can be accomplished

on any dataset like EEG or ECG data. In our results, three different outputs are pre-

sented. Accuracy of the proposed classifier on one-second frames is 96%, half-second 82%

and quarter-second 75% . The ideal result is on the raw data at the end of the process, but

if the delay of maximum one second in detection of the abnormality in the signal is not a

big issue, then accuracy of 96% from the first data is enough and more plausible than raw

data. The longer frame in the classification process, the greatest accuracy is acquired. The

accuracy of 96% is higher than all models and feature extraction methods on this data set

(Wang et al. [9],Sabancı and Koklu [1], Saghafi et al. [2]) except the model trained by (Rösler

and Suendermann [3]) which took 20 minutes on all 14 signals. The proposed model can

detect the abnormality in EEG data with delay of maxim um one seconds. This chapter can

be summarized as:

• The curse of dimensionality, poor signal-to-noise ratio and low spatial resolution of

EEG signals are handled in the proposed model.

• Correlation among signals are handled using different classifiers such as Random Forest,

Adaboost, Gradient Boosting, and K-nearest neighbors.

• Informative features are extracted using Fast Fourier transform.
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• The accuracy of 96% on one-second frames, 82% on half-seconds, and 75% on quarter-

second frames makes the result of this study very close to real-time classification.
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CHAPTER 4 : QUALITY OF LIFE: STATISTICAL ANALYSIS AND

MODELING OF PSYCHOLOGICAL GENERAL WELL-BEING INDEX VIA

SUPERVISED LEARNING

4.1 Introduction

World Health Organization(WHO) defines the quality of life as an individual’s per-

ception of their position in life in the context of culture and value systems in which they live

and in relation to their goals, expectations, standards, and concerns Group et al. [18]. De-

veloping a general predictive model for QoL is necessary to monitor a community well-being

while aiding individuals in achieving their goals and missions with maximum satisfaction. A

well-defined and robust model can assist individuals to correct their path to have a happier

life. Health-related quality of life (HRQoL) and general quality of life are the two main

branches of QoL studies.

The quality of life has been an important aim of several studies for some decades

(Diener [19], Harrington and Loffredo [20]). Initially authors in (Aaronson [21]) introduced

some principal factors in how the quality of life scale should be developed. The main factors

introduced in that research are: generic vs disease-specific focus, level of data aggregation,
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interview vs questionnaire, and response scale. The well being-index is a tool which can be

used as a quantity to measure the quality of life (Casellas et al. [22], Grossi et al. [23], Veit

and Ware [24]). In (Diener et al. [25]), the authors created a new well-being measurement to

assess positive and negative feeling of participants. One of the most significant applications of

this measurement is to monitor patients’ quality of life before and after treatment (Lundgren-

Nilsson et al. [26], Compare et al. [27]). For example, the degree of recovery is a quantity

that experts and doctors try to maximize in a shorter time (Grebner et al. [61]).

One of the main questions in this area is what factors have the main contribution in

the prediction of quality of life. The generic and disease-based are the two domains that

experts concentrate for prediction and maximization of the quality of life. In Yazdi-Ravandi

et al. [28], the researchers consider self-efficacy, pain intensity, and pain duration as risk

factors in the quality of life prediction of patients with pain disorders. In ([29]), physical,

psychological and social components were recognized as main factors in predicting the quality

of life for older people.

In most of the studies, the participants have physical health defects. For example,

([30]) shows that the presence of depression, disability, postural instability and cognitive

impairment contribute the most in the quality of life for individuals with Parkinson disease.

In addition, the influence of clinical and demographic variables on the quality of life of par-

ticipants with Parkinson disease are also investigated in (Karlsen et al. [31]). In addition,

patients with sclerosis and Alzheimer’s diseases were also studied. (D’alisa et al. [32]) dis-

cussed the risk factors contributed in patient’s quality of life with sclerosis and (Logsdon
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et al. [33]) analyzed the quality of life of patients with Alzheimer. In another research,([34])

depicted the impact of financial inability for the patients with cancer. The authors took into

consideration the impact of the financial burden of cancer on the survivors’ quality of life.

Regression analysis which needs some predefined assumptions, is one choice to analyze infor-

mation extracted from this type of questionnaires or interviews (Bianchi et al. [35], ,D’alisa

et al. [32]). ANOVA is another popular approach for analyzing this type of data as imple-

mented in (Carotenuto et al. [36]) to compare the mean of quality of life index before and

after one month of living and working on the sea in five groups of workers.

In the present study, PGWBI is considered a measurement of the quality of life. This

index score is analyzed via two non-parametric methods, Kruskal-Wallis test, and decision

tree-based method. By implementing these methods, three main goals are achieved: identi-

fying which variables contribute to the quality of life index, second, ranking the attributable

variables as a function of their contribution and finding the most contributing variables.

Finally, developing a statistical model to predict the quality of life index without human

interference would be highly desirable. In most of the studies related to the quality of life,

there are three forms of information collected from individuals, that is, experience, demo-

graphic information, health background and PGWBI questionnaire, but on the contrary,

environmental and demographic conditions can have a direct influence on quality of life as

depicted by (Lawton [62]). In this study, a statistical model is developed to efficiently predict

the quality of life index for either administrative or governmental agencies or for individuals

interests in understanding and possibly increasing their quality of life.
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Our study is arranged as follows. In section 4.2, the collected raw dataset introduced

and prepared for the analysis and modeling. Section 4.3 introduces the methods imple-

mented in this study. In the first part, Kruskal-Wallis test and then Random Forest(RF) are

reviewed. In section 4.6, the results obtained from the two aforementioned sections are cor-

related and in Section ?? the models are implemented on data. Figure 4.1,below, illustrates

the process that use depicts the main trend of this study.

DATA

Visualization

To show the amount
of complexity among

risk factors.

Kruscal-Wallis Test Random Forest

To verify that risk
factors actually have
contribution to quality

of life index.

To support the result
of other methods.

To train a machine to
guess quality of life

index for a new
individual.

Goal Goal Goal

Figure 4.1: General trend of quality of life index

4.2 Description of Dataset

The original data was collected from different regions of Italy by Doxa, the Italian

branch of the Gallup International association. The size of the dataset used in this study

53



comes from 1080 individuals which describes demographic, health, and psychological back-

ground. The data also describes the health background and disabilities of each individual

and each individual is requested to fill out PGWBI questionnaire as well as demographic

information. PGWBI, Psychological General Well-Being Index, is a 22-question question-

naire developed by Harold J Dupuy in 1971 to measure the quality of well-being as a self-

representation of internal emotion[PGWI 1971](Ryff [63], Griffin [64]). Information obtained

from one individual is independent from another. PGWBI divides each individual’s internal

response into six categories: Anxiety, Depression, General Health, Self-control, Vitality, and

positive well-being. Each question in PGWBI pertains to one of the aforementioned cate-

gories and each category contains between three to five questions, with each question having

six ranks. Each rank describes how an individuals feels towards the particular question with

zero being the least and five the most favourable. In the end, all of the categories’ scores are

aggregated to generate one number between zero and 110 as the PGWB-Index. All of the

demographic information is in discrete format and PGWBI extracted as continuous variable.

The demographic information is given by 10 categorical variables describing the gen-

eral information. The ten variables are: region, municipal, amplitude, age, gender, educa-

tion, marital status,occupation, and income. Each region has three levels. Municipal has

two levels being capital or non-capital. Amplitude describes the size of the region from

"small" to "city". Age is converted to a categorical variable with seven levels of equal age

intervals. Education has five levels ranging from "none" to "university". Marital status

has four levels ranging from "single" to "widowed". Occupation contains seven levels con-
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taining "manager", "employee", "self-employed", "farmer", "retired", "unemployed", and

"student". Finally, income has five levels form "low" to "super".

The physical health background is collected by asking some Yes/No questions about

specific illnesses and disabilities. This background contains hypertension, heart attack, heart

failure, diabetes, angina, cancer, allergy, arthritis, sciatica, blindness, lungs problem, der-

matitis, deafness, weakness in arms, depression and mental disorder.

The target or dependent variable is obtained from PGWBI score. The quality of life

index or score is considered as a dependent variable where its value can be predicted based

on risk factors that have already been extracted.

4.2.1 Descriptive Statistics

In order to verify that there is a relationship between the risk factors and quality of

life index, basic statistics and visualization are highlighted.

According to Figure 4.2, all of the variables are considered categorical except for the

index being assumed continuous. The last three rows are the numbers generates from raw

dataset, the missing data and the size of dataset after cleaning, respectively. The missing

data is removed from the raw data set and the final version contains 1080 independent

individuals.
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Variable Class Description 

Region 3 North ,Center- South 

Municipal 2 Capital, Non-Capital 

Amplitude 5 Small, Medium, Big, Very big, City 

Class age 7 Seven equal size intervals from 15-93 

Gender 2 Male, Female 

Education 5 University, High School, Middle School, Elementary School, 
None 

Marital Status 4 Married, Single, Widow, Divorced 

Occupation 7 Manager, Employee, Home jobs, Farmer, retired, unemployed, 
Student 

Income 5 Low, Medium, Medium-High, High, Super 

Diseases class 5 0: no disease, 1: one disease , 2: two disease 3:  three or four 
diseases 4: more than four diseases 

Index Continuous Ranges from 0 to 110 

Number of  independent  
individuals 1129 

Missing data 49 

Size of data  1080 

 

Figure 4.2: Basic Summary of Data.
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4.2.2 Kruskal-Wallis Test

This section clarifies the selection of risk factors in this study by means of utilizing the

Kruskal-Wallis test. The non-parametric version of one-way ANOVA is the Kruskal-Wallis

test. This method is used to test the different contributions among the levels of the nominal

risk factor with respect to the continuous target variable, the quality of life index. The null

hypothesis of the Kruskal-Wallis test is that the mean ranks of the groups are the same. The

expected mean rank depends only on the total number of observations (for n observations,

the expected mean rank in each group is (n+1)/2). Since all of the risk factors are nominal

and the target value is continuous, conducting a KW-test on each nominal risk factor is

the best method to find its contribution. Table 4.1, displays the results of KW-test. From

the results in Table 4.1, below, and with a significant level,α=0.05, the null hypothesis of

KW-test will be rejected. Therefore, statistically speaking, there is a difference among the

levels of contribution of the risk factors. The result of this test supports the visualization

which has been done in the previous section. All of the variables used in this test are from

the prepared data set except for the variable, Diseases. The health data are binary variable

which they denote the existence of an illness. Diseases is the collection of health background

features formed by adding the number of health problems from each individuals.
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Table 4.1: Kruscal-Wallis Test Result.

Kruscal-Wallis Test

Variable P-Value Variable P-Value

Region 0.0002304 Cancer 0.02726

Municipal 0.004334 Allergy 0.01109

Amplitude 0.05754 Arthritis < 2.2e-16

Age Class 0.0006496 Sciatica < 2.2e-16

Gender 5.73e-09 Blindness 3.41e-05

Education 1.122e-05 Lungs 0.01093

Marital 0.0001179 Dermatitis 0.03757

Occupation 0.0003798 Deafness 0.0003482

Income 1.992e-08 Weak arms 6.481e-07

Hypertension 4.866e-09 Depression 4.618e-09

Heart.attack 0.0003932 Mental.disorder 0.002306

Heart.failure 3.921e-07 Diseases 5.264e-09

Angina 1.034e-05

4.2.3 Visualization

In any parametric and non-parametric analysis, understanding the nature of the

dataset is one of the most important parts of the analysis. For most of the parametric

analysis, independent risk factors are assumptions that should be checked before performing
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any analysis. This study illustrates the two-way and three-way interactions between different

risk factors to understand the complexity of the dataset. By having 10 risk factors, there

are a variety of choices to select interaction plots. A certain number of two-way and three

way interactions are selected and explained in detail.

Figure 4.3, shows the two-way interaction among the 9 out of 10 risk factors. Kruskal-

Wallis test was the first approval for actual contribution of risk factors in the quality of life

index. The different interaction graphs plotted on Figure 4.3, are the second confirmations on

the main effects of risk factors in this study.The complexity is obvious from the interaction

plot. This graph was only one sample of the numerous interaction plots which can be

generated. This plot visually proves that the nature of our dataset is very complicated and

classical methods are not suitable for this problem. On the other hand, in Table 4.2, the

analysis of uncertainty in the form of confidence interval of the mean effect of interactions

is outlined. All of the hypotheses tests on existence of meaningful interaction effects are

accepted at the level of α = 0.05. The vertical line on levels of factors are confidence

intervals calculated and shown in Table 4.2.
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Figure 4.3: Two-way interaction between risk factors
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Table 4.2: Uncertainty analysis of interactions .

Interaction Confidence Interval P-value

Gender-Age [2.3258 , 17.2376] 0.0539

Region-Education [-127.1427,-0.577] 0.00344

Diseases-Gender [-13.1839, -1.0035] 0.0515

Amplitude-Age [6.7080,15.58] 0.01697

Marital.status-Diseases [3.2584,123.777] 0.0276

Marital.status-Occupation [-105.4356,-7.5643] 0.038

Diseases-Education [-30.4936,-.3197] 0.051

Diseases-Occupation [0.4146 , 64.7696] 0.0577

Amplitude-Education [-29.9833,-1.8799] 0.00881

4.3 Methods

Supervised learning is the machine learning method that utilizes a known dataset

to make predictions. The supervised learning algorithms aims to develop a model that

can make predictions from the response values for a new dataset. The supervised learning

can be divided to into two main branches, regression for continuous response variable and

classification for discrete variables. Classification is implemented in the present study.
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The main goal is to train a machine to decide automatically on the response level of a new

variable without human interference. The explanation of a family of tree-based methods

are presented. The visualization and Kruskal-Wallis test sections proved that parametric

analysis cannot be applied to this type of data because of the amount of complexity and

interaction among risk factors. In this section, the two types of non-parametric analysis,

Decision Tree(DT) and Random Forest(RF) will be discussed with these two methods. A

predictive model is developed to predict the quality of life index. First, we will review the

tree-based methods.

4.3.1 Trees Based Analysis

Supervised or unsupervised learning are two families of methods which their signifi-

cant advantage over the classical methods is the ability to handle complex data. In supervised

learning, there are two main components, feature space and the target value. The feature

space is a collection of risk factors that may or may not have a direct contribution to the

target value which is the dependent variable in a classical approach. If the target value is

a categorical variable then the supervised learning is a classification problem, otherwise, it

is called a supervised regression. On the other hand, in unsupervised learning, there is no

target value and we try to find similarity between points . There are several methods which

can be applied in both supervised and unsupervised learning. Figure 4.4, below, illustrates

the supervised and unsupervised learning in details.
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Figure 4.4: The Machine Learning Categorization with respect to the presence of a target
value

The present study involves supervised learning. There are several methods which

can be applied in this area of machine learning such as linear regression, logistic regression,

decision tree, SVM(support vector machine), Naive Bayes, KNN, K-Means, Random For-

est, Dimensionality Reduction Algorithms, Gradient Boosting algorithms, GBM, XGBoost,

LightGBM, CatBoost, among other. These methods have different applications in the field

of study from sciences to engineering (Rabiei et al. [65],[66, 67, 68, 69], Saghafi et al. [2],

Jafarian et al. [70]). From the varieties of methods for supervised learning, the sequence

of complementary methods, Decision Tree, Bagging and Random Forest will be briefly ex-

plained. Figure 4.5, below, shows the general process of supervised learning. The next two

sections explain Decision Tree (DT) and Random Forest (RF) in some details.
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Figure 4.5: The General Process of Supervised Learning

4.4 Decision Tree

The Tree-Based methods partition the feature space into a set of rectangles and then

fit a simple model (like a constant) in each one (Hastie et al. [71]). For a growing Decision

Tree, DT, the training data is considered as the root node. Then by using a splitting criteria,

the risk factors space is divided into two or more sub-spaces. The splitting criterion can be

either a mis-classification error , a Ginni index, a cross entropy or deviance (Hastie et al.
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[71]). This process will be preceded until there is no more data to be split on. At this level,

the leaf nodes are generated and the decision is made.

Let X ∈n∗p be a set of observations of risk factors or features and y be the response

variable or , that is ,

X(input) =



x11 x12 ... x1p

x21 x22 ... x2p

.

.

.

xN1 x12 ... xNP



,y =



y1

y2

.

.

.

yN



(4.1)

each observation is in the form of (xi1, ..., xip, yi) ∈p+1, 1 ≤ i ≤ n. The main goal is to find

a function to predict the response value from a set of features automatically. Suppose that

there are partitions of R1, ..., Rm of p. We define

P̂ik =
1

Ni
Σxi∈i1yl∈Ri

(4.2)

the process of counting the proportion of class K observations in node i. The observations

are classified by majority vote in node i, that is,

K(i) = argmaxkp̂ik (4.3)

65



Mis-classification error is one of the measures used to determine how good a given partition

is (how to split) which is calculated by:

1

Ni
Σxl∈i1yl 6=k(i) = 1− P̂i,k(i) (4.4)

Generally the process is stopped for a given region, Ri, when there are less than five obser-

vations in that region.

One of the most important part of growing a tree is the size of it. A very large tree might

over-fit (almost zero error but poor prediction) the data, while a small tree might not capture

the important structure of the data. Thus, the size of a tree is a parameter which should

be tuned before, during the process or by iterating over different sizes. Figure 4.6, below,

describes the generation of a decision tree.
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Figure 4.6: The Feature Space (sample space) division in growing of a single tree

The DT’s offer several advantages and disadvantages. They are simple to understand,

interpret, and they can deal with any type of variables as well. Furthermore, they can be

combined with other decision methods to improve the result of modeling. On the other

hand, it has high variance and instability. Any small change in the data can lead to a large

change in the structure of the optimal Decision Tree. By combining several DT’s, two main

problems of a DT can be solved, high variance and inaccuracy. There exist several methods
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such as AdaBoost(Adaptive Boosting), Bagging(Bootstrap aggregation) and Random Forest

which can combine several DT’s to boost the result of a single decision tree. In the next

section, Random Forest (RF) is explained in some details.

4.5 Random Forest and Bagging

Random Forest was proposed by Hastie et al. [71]) is an extended version of Bagging

Method. Thus, before we discuss Random Forest, we shall give a a brief description of

Bagging. Bagging is usually used to decrease the variance of a single DT. A group of

Decision Trees are trained on a given set of training data by bootstrapping the train data

and at the end the results of all the trees are aggregated by a majority vote. The main

point and difference of Bagging and Random forest is in the training process. In Bagging, all

features (risk factors) are utilized to train each tree. Figure 4.7, below illustrates the general

process of Bagging Method.
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Figure 4.7: Bagging Method Training/Testing algorithm

Let Z = {(x1, y1), (x2, y2), ...., (xN , yN)} be the train data. Bagging averages this

prediction over a collection of bootstrap sample Z∗b, b = 1, ..., B, defined by

f̂bag(x) =
1

B

B∑
b=1

f̂ ∗b(x) (4.5)

In the random forest on the other hand, we are imported another level of randomness that

is added to the algorithm by selecting a random subset of features instead of all features.

The selection of the features makes the algorithm very robust against over fitting (Hastie

et al. [71]) . Also, the best number of random features for different trees in RF developing

are logn2 ,
√
n where n is the number of risk factors. The main advantage of RF is its user

friendliness. It means that the only parameters which should be determined prior to run the

algorithm are the number of trees and the number of random features.
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For building a RF, two steps are necessary: Algorithm:

1. For b=1 to B: (a) Draw a bootstrap sample Z∗ of size n from the training data.

2. Output the ensemble of trees Tb b=1,...,B

• Draw ntrees Bootstrap samples from the original data.

• For each of the Bootstrap samples, grow a tree. At each node, rather than choosing

the best split among all features, randomly sample mtry of them.

• By majority vote among trees, the final prediction is determined.

An estimate of the error rate can be obtained, based on the training data, by the following

procedure:(Liaw et al. [72])

1. At each bootstrap iteration, predict the data not in the bootstrap sample (what

Breiman calls âĂĲout-of-bagâĂİ, or OOB, data) using the tree grown with the boot-

strap sample.

2. Aggregate the OOB predictions. On the average, each data point would be out-of-bag

around 36 percent of the times, thus we aggregate these predictions. Calculate the

error rate, and call it the OOB estimate of error rate.

Visualization of RF is not as good as a single Decision tree, but two important pieces of

information can be extracted from a RF, Variable Importance and Proximity Measure.

The random forest algorithm estimates the variable importance by looking at how much

prediction error increases when the data for that variable is permuted tree by tree while
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other variables are left unchanged. The (i, j) element of the proximity matrix produced by

random forest is the fraction of trees in which elements i , j fall in the same terminal node.

This property can be used to identify the structure of the dataset. For further readings,

(Hastie et al. [71], Liaw et al. [72]) are good sources to clarify the details of this discussion.

4.6 Analysis of the Results

In the analysis part, we implement both DT and RF on the described data. DT is

applied in the preprocessing step which is explained in some details. The RF is developed

for the main body of analysis and ranking the importance of the variables. Thus, we can

summarize the analysis part into preprocessing the data, obtaining the results using RF and

conclusion.

4.6.1 Preprocessing of the data

We begin by considering all of the attributable variables as categorical variables with

different levels except for the target value, the quality of life index.

Since the goal of this study is a classification version of supervised learning, we convert

continuous the index to three levels. This conversion happens by means of DT. We de-

velop DT several times to find the best two points with the minimum error which can be

considered as the breaking point. The result of this process leads to this interpretation,

’0-50’ considered as Low quality of life, ’51-92’ Medium and ’93-110’ as High quality of life
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index. After discretization of the data, the resulting data is an imbalanced data, so by using

"Undersampling-Oversampling" method, we transfer the dataset into a balanced data.

Inspecting the dataset at the end, we can see that for the individuals under 18 years old

there are some responses to questions in the questionnaire which are not logical. In other

words, the oscillation in quality of life index is very high for people less than 18 years old.

Therefore we remove this part of the dataset to have a more logical and smoother data.

Figure 4.8, below illustrates this non-stationary plot of age versus the index.
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Figure 4.8: The change of quality of life index vs. age
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In this figure we can see zero at the beginning means 15 years old. So, the oscillation

at the beginning is completely traceable and also at the end, because of lack of data, the

behavior of the plot is not very smooth. So we can cut two ends of our dataset to have a

smoother dataset. Finally, we have age as a risk factor which ranges from 19 years old to 80

instead of 15-83. Figure 4.9, below summarizes the preprocessing step in one diagram.

Figure 4.9: Step1: Preprocessing of Quality of Life Index Data

4.6.2 Analysis and Results

The preprocessing of the data set is accomplished using WEKA 3.8.2. Then the

extracted dataset from WEKA is imported to Python 2.7 for further analysis. By using

SKlearn package in python, a Random forest with different number of iterations will be
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trained. The 60 percents of the dataset is separated as train data and the rest is kept as

test(20%) and validation data(20%) to validate the final model.

In the next step, we train the RF with a different number of trees as the base classifier and

examine them using the test data. The accuracy of the developed RF on test data after

1000 iterations is 83 percent. Figure 4.10 illustrates the normalized confusion matrix. The

confusion matrix shows that our model can capture correctly the High, Medium and Low

levels in 61, 94 and 80 percent of the points respectively, but the accuracy is not enough to

judge the method.
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Table 4.3,below shows the detail of classification process for each level of quality of

life index. Precision, recall, and F1-scores which the last one is the indicator of a trade-off

between Type I and Type II error are shown in this table.

This model can perfectly recall the three levels of the quality of life, Low, Medium, and High

in 80, 94 and 61 percent of points respectively and it is precise in 77, 90 and 69 percent of

recalled points, respectively. Therefore, on the average (F1-score is the harmonic average of

precision and recall) 78, 92 and 65 percent of recalled points are classified precisely.

Precision Recall F1-score

Low 0.77 0.80 0.78

Medium 0.90 0.94 0.92

High 0.69 0.61 0.65

Average 0.80 0.81 0.80

Table 4.3: Table of the result.
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The last and one of the most important table and graph resulted from Random Forest

is the Feature Importance Rank. Table 4.4 and Figure 4.11 given below, illustrate clearly

this importance. From these two plots, we can extract some important information. Each

factor should be interpreted independently or by combining other factors. Also, we can

investigate this model and its result from an individual point of view or a more broad view

such as an administrative unit such as government. We can see that income has the highest

contribution to quality of life, but a person who is in his/her late 60s is hard to change

income level or education. So instead they should concentrate on health background. From

a governmental point of view, since they have more power to change these risk factors, they

can decide more efficiently to allocate the limited sources of funds based on the rank of the

risk factors.
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Table 4.4: Variable importance

Feature Contribution Feature Contribution

Income 0.131 Marital status 0.046

Class-age 0.132 Depression 0.014

Education 0.119 Heart failure 0.012

Occupation 0.101 Weakness in arms 0.011

Region 0.090 Diabetes 0.009

Gender 0.071 Blindness 0.009

Sciatica 0.069 Angina 0.003

Arthritis 0.062 Heart attack 0.003

Municipality 0.057 Mental disorder 0.001

Hypertension 0.050
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4.7 Model Calibration and Validation

The calibration is a key entity in modeling prediction and validation. In classification,

finding the probability of the predicted label will increase confidence on the prediction. The

calibration allows us to predict the labels with more confidence on a new input. In other

word, a well-calibrated classifier is a probabilistic classifier for which the probability of a

label can be directly interpreted as a confidence level. The Sigmoid calibration is used for

calibration of the model. The Figure 4.12 shows the calibrated model developed by Random

Forest. When performing classification we often want not only to predict the class label,

but also obtain a probability of the respective label. This probability gives us some kind

of confidence on the prediction. The calibration module allows you to better calibrate the

probabilities of a given model, or to add support for probability prediction. For instance, a

well calibrated (binary) classifier should classify the samples such that among the samples

to which it gave a probability value close to 0.8, approximately 80% actually belong to the

positive class. Illustrated figure 4.12 is the standard 2-simplex, where the three corners

correspond to the three classes. Arrows point from the probability vectors predicted by an

uncalibrated classifier to the probability vectors predicted by the same classifier after Sigmoid

calibration on a hold-out validation set. Colors indicate the true class of an instance (red:

Low, green: Medium, blue: High). If this classifier is trained on all train data, it is overly

confident in its predictions and thus incurs a large log-loss. Calibrating the Random Forest

classifier, which was trained on train data, with method="sigmoid" on the validation data

set reduces the confidence of the predictions, i.e., moves the probability vectors from the
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edges of the simplex towards the center. This calibration results in a lower log-loss.

Figure 4.12: Calibration of Classifier Using Sigmoid Function

After the calibration process, the log loss is deducted almost 50% from the 0.807

to 0.487 which is the indication of a more reliable classifier. The reliability plot in Figure

4.12 shows that the probability of the predicted labels have been distributed uniformly after

calibration.

A sample from the dataset was considered as unseen data or test data to test the model. The
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receiver operating characteristic, ROC curve is plotted to illustrate the performance of the

model on the test data. The ROC curve illustrates the trade-off between recall, ability to find

all relevant instances in a dataset, and precision, the fraction of relevant instances among

the retrieved instances, which identifies the quality and power of the classifier, respectively.

Figure 4.13,below illustrates the performance of the classifier on each class of the response

variable. This graph confirms the excellent performance of the proposed model. This curve,

also gives us more information than accuracy alone, that is, the area under this curve is

another trade-off between true positive rate and false positive rate. Furthermore, we can

observe that all the curves in ROC curve are near to one which is an indicator of a decent

model.
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4.8 Contribution

In this study, we have demonstrated that several risk factors have a significant con-

tribution to the quality of life. Age, income, education, occupation, region of living, gender,

and existence of some of the health problems are the most important risk factors in predic-

tion of the quality of life. Working on the quality of life is an important issue for individuals

and governments. For a government, it is important to find the best factors to conduct the

source of funds to increase the quality of life. For individuals, we presented a list of risk

factors with different ranks that they can work to increase their quality of life. Probably for

an individual is not possible to change all of those risk factors but they may choose a subset

of them to change based on their abilities.

In this paper, we connected classical methods of statistical analysis with state-of-the-art ma-

chine learning models to find the best risk factors which have a contribution to the quality

of life index. The developed model using Random Forest can predict the index of a new

individual with 83 percent accuracy which can answer all of the questions which we wanted

to answer in this study. The model developed in this study was calibrated to reduce 50

percent of the log-loss value and gives more reliable classifier. The same process can be done

for a new data set to monitor the status of the quality of life for any specific region for a

long time and work on different risk factors found in this study to improve the quality of

life. The contribution of this section can be summarized as:

• We developed a calibrated 3-class(Low, Medium, High) predictive model with accuracy

of 83% to predict the general quality of life level.
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• The recall of 80% and 94% for Low and medium levels which means 80% of low quality

of life and 94% of medium level population can be detected by this model.

• The classical statistical models and test, Kruskal-Wallis test conjunction with machine

learning methods, Random Forest, are used to model the data.

• The developed model can be used both by administrative organizations such as insur-

ance companies and individuals to monitor the general quality of life over time.

4.9 Acknowledgement

The authors acknowledge the support of Dr. Enzo Grossi in providing us the experi-

mental data set.

83



CHAPTER 5 : QUALITY OF LIFE:LATEX ERROR: SOMETHING’SWRONG–

PERHAPS A MISSING

5.1 Introduction

Sociological theory and phenomena are often hypothesis-driven and explanation of the

reason of the problem is the core process of the analysis (Rudin [37]). The reasons behind

each sociological event is not straightforward procedure to explain if the population is non-

homogeneous. Therefore, it is appropriate to divide the whole population to sub-populations

with more similarity and less variability. One of the most appropriate tool for this purpose

is unsupervised learning (clustering) in machine learning to group similar individuals.

Machine learning and data mining methods have enormous applications in areas such

as medicine (Díaz-Uriarte and De Andres [73], Statnikov et al. [74]), engineering (Rabiei et al.

[65], [66],[2],[67],[68], [69]), finance (Jafarian et al. [70]), social science (Gutiérrez et al. [75],

Weng et al. [76]). Machine learning can be divided into two main categories, supervised and

unsupervised learning. Supervised learning is typically done in the context of classification or

regression. In either case, the output which is called the target value and a set of predictors

or features X acquired. The main idea is to define a function which maps X to y(target
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value), f(X) = y.

In unsupervised learning, the goal is to learn inherent structure within the data

without using explicitly provided labels. Clustering or cluster analysis is the process of

grouping a set of individuals or objects in such a way that each group contains the most

similar objects.

The combination of demographic, social and health data can be utilized to explain

the critical issues of society and predict the future in advance to have a better life. The

importance of demography lies in its contribution to helping government and society better

prepare to deal for the issues and demands of population growth, aging and more generally

improving the quality of life.

Clustering of social data is a useful tool for administrative purpose especially gov-

ernment and insurance companies. The appropriate clustering can facilitate a government’s

task to allocate limited source of funds to the proper group of people which have similar

characteristics in a society. Moreover, insurance companies can create clusters of individuals

with similar risk factors for better predictions.

Data mining and clustering methods have been widely applied to find hidden patterns

in mixed social data. Researchers use clustering method to find a similarity among small

producers in six cities in the northeast of Brazil (Maione et al. [38]). The social network

is another interesting subject for researchers. The clustering of people in a social network

using K-means clustering and the textual similarity is a good judgmental tool to find users

with similar behavior (Singh et al. [39]). In a human behavior study, the authors study the
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human social behavior which is a big data to find similar patterns by means of clustering

methods (Ferrara et al. [40]). The reduction of high density area of accidents using GIS,

Kernel density estimation, and K-means clustering are the main idea of studies in (Anderson

[77]). Relating mobility patterns to socio-demographic profiles highlights the importance of

finding patterns of movement for finding various administrative strategies (Liebig [78]).

However, in the most of social experimental design a representative data is collected

in form of hybrid data, continuous and categorical variables, and this restrain usage of K-

means clustering which is one of the most applicable method in data mining and clustering.

K-medoids, the combination of Gower distance (Gower [41]) and K-means, can be used to

handle the clustering process of hybrid data . This method has a growing popularity among

researchers in different areas of interest, (Velmurugan and Santhanam [42], Arora et al. [43]).

The authors(Khatami et al. [79]), utilize optimization method and K-medoids on images to

propose a new fire detection. A simple and fast version of K-medoids clustering and some

experimental results can be found in (Park and Jun [80]).

In the present study, we investigate social data clustering using K-medoids clustering

with Gower distance to find the similarity among individuals from different regions of Italy.

5.2 The Statistical Method

In this section, we will give a brief description of the K-means, K-medoids, Gower

distance and Johnson family of probabilistic distribution.

The K-means clustering (Park and Jun [80]) is a common method to partition a set
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of observation automatically into k groups. Given a set of observations x1, x2, ..., xn, where

each observation is a d-dimensional real vector, k-means clustering aims to separate the n

observations into k(<< n) sets S = {S1, S2, ..., Sk} so as to minimize the within-cluster sum

of squares (variance). Formally, the objective is to find the minimum variance:

arg minS

k∑
i=1

∑
x∈Si

||x− µi||2 = arg minS

k∑
i=1

|Si|V ar(Si)

, where µi is the mean of Si.

This is equivalent to minimizing the pairwise squared deviations of points in the same cluster,

that is,

arg minS

k∑
i=1

1

2|Si|
∑

x,y∈Si

||x− y||2.

The equivalence can be extracted from the identity

∑
x∈Si

||x− µi||2 =
∑

x 6=y∈Si

(x− µi)(µi − y).

Because the total variance is constant, also is equivalent to maximizing the sum of squared

deviations between points in different clusters, which follows the law of total variance. In K-

means clustering, the number of clusters, K, and the dataset are two inputs into algorithm.

The initial estimates for the K centroids are generated by the algorithm. The algorithm

iterated between two steps:

• Data assignment
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• Centroids Update

In the first step, each point is assigned to the closest centroids using the Euclidean distance,

that is,

argminci∈Cdist(ci, x)2. (5.1)

In the second step, the centroids are updated. This is accomplished by taking the mean of

all the data points assigned to that centroids cluster,

ci =
1

|Si|
∑
xi∈Si

xi. (5.2)

The algorithm iterates between these steps back and forth until a stopping criteria is met

and it is guaranteed to converge.

K-means clustering is not applicable for hybrid data which include categorical variables

because it needs to calculate the minimum Euclidean distance between two data points and

the Euclidean distance mostly has been utilized for continuous variables. Even by encoding

categorical variables to numeric values, the result of the analysis is difficult to interpret.

Thus, we need to use the K-medoids clustering for mixed data, which is a procedure analogous

to K-means clustering for finding similar groups when the data includes some categorical,

nominal or ordinal, variables.

The main difference is the definition of the distance that is computed between categorical

levels as well as the data of continuous columns. A categorical data can be nominal or

ordinal, in which either of them is treated differently in the clustering procedure. The
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Gower distance (Gower [41]) is the distance which can handle similarity in mixed data, such

as the data investigated in this study.

The Gower distance is a combination of two particular distance metrics, Manhattan

and Dice distance, that works quite well for any type of variable.

For quantitative(interval) variables, range-normalized Manhattan distance is calcu-

lated. Ordinal variables are first ranked, then Manhattan distance is applied with a special

adjustment for ties. Finally, nominal variables with k categories are first converted into k

binary columns and then the Dice coefficient is used. The Dice coefficient is equivalent to

F1 score in supervised learning (Gower [41]).

Each of these specific distances will be scaled to fall between 0 and 1. Then, a linear

combination of using some weights defined by the user (most usually an average) is calculated

to generate the final distance matrix. The Gower distance is sensitive to non-normality of

continuous variables.

We can summarize the Gower distance as follow:

Let X = (x1, x2, ..., xn), Y = (y1, y2, ..., yn) be two observations.

• Nominal/Binary: Simple matching coefficient d(i, j) = m
p
, where

m is the number of variables that object i in x and j in y mismatch and p is the number

of variables.

• Ordinal: we use normalized ranks, then like the continuous variables, Manhattan

distance can be applied
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• Continuous/Interval-scaled: For this type of variables, the normalized Manhattan

distance is applied,

d1(x,y) = ||x− y||1 =
n∑
i=1

|xi − yi|
R

, where R is the range of the variable.

• Gower Distance is defined by d(i, j) = 1
p

∑p
i=1 d

(f)
ij .

After introducing the distance matrix, the next step to select the clustering algorithm

that is applicable in this case. There are many algorithms that can handle a custom distance

matrix generated from the previous section using Gower distance. The method used in this

study is PAM, Partitioning Around Medoids, or simply K-Medoids. K-medoids is another

version of K-means which uses observations themselves as centers instead of centroids using

Euclidean distance. K-medoids can be summarized as follows:

1. Choose K random entities to become medoids.

2. Assign every entity to its closest medoid, using custom distance.

3. For each cluster, identify the observation that would yield the lowest average distance

if it were to be re-assigned as the medoid. If so, make this observation the new medoid.

4. If at least one medoid has changed, return to step 2. Otherwise, end the algorithm.
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A variety of metrics exist to help choose the number of clusters to be extracted in performing

a cluster analysis. Since the dataset in our study does not include any labels, then silhouette

width is the most appropriate metrics to evaluate the clustering analysis.

5.2.1 Silhouette Distance

Let x be an observation and AVG(x) be the mean distance between x and all other

data points within the same cluster. Also, let Inf(x) be the smallest mean distance of x to

all data points in any other cluster, of which x is not a member. Then silhouette distance is

defined as follow:

s(x) =
Inf(x)− AV G(x)

max{Inf(x), AV G(x)}
.

This metric can range from -1 to 1, where higher values are more desirable. The closer

s(x) is to 1, the better the cluster are resulted. In addition to the Silhouette Distance, the

validation of clusters is investigated by finding the probability distribution of the clusters

and making comparisons between the different clusters.

Another important entity in the present study in the Johnson family of probability

distributions. It is important to justify that all the clusters follow Johnson probability distri-

bution (Johnson [81]) with different parameters. The Johnson family of distributions include

three different equations: SU, SB, and log-normal. The subject probability distribution sup-

ports any specified measurement of the central tendency such as mean, standard deviation,

skewness and kurtosis as well. All together, they form a 4-parameter family of probability

distributions. The probability density function of Johnson SB is defined below. It is the best
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bounded probability distribution. The Johnson 4-parameter probability density is given by

f(x) =
δ

λ
√

2πz(1− z)
exp(−1

2
(γ + δ ln(

z

1− z
))2), (5.3)

where z ≡ x− ε
λ

, 0 ≤ z ≤ 1.

In the above pdf, δ and γ are shape parameters and ε , λ are location and scale parameters,

respectively. The most significant advantage of this pdf is a tight relation with Normal

probability distribution. This probability distribution is used as transformation to convert a

non-normal data set to normal, that will satisfy the basic assumption of using the appropriate

methodology. The Johnson Transformation is extracted from the above pdf and the result

will be in the form of:

y = γ + δln(
x− ε

λ+ ε− x
). (5.4)

In the defined form, x is the original raw data and y is transformed data. A histogram of

the data with the Johnson SB pdf is given by Figure 5.1.

5.3 The QoL Data

The original data which was collected from different regions of Italy by Doxa, the

Italian branch of the Gallup International Association, is the combination of two question-

naires. The first is the summary of demographic information of individuals involved in the

study as well as health background. The second form summarizes the internal feeling and

psychological background of units in the experiment. The latter information is extracted
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Figure 5.1: Data follow Johnson SB distribution

by asking individuals to fill out PGWBI, Psychological General Well-being Index, question-

naire, a 22-question questionnaire developed by Harold J Dupuy in 1971. PGWBI divides

each individual’s internal sense into six categories. Anxiety, depression, general health, self-

control, vitality, and positive well-being are six categories that constitutes the questionnaire.

Table 5.1 summarizes the basic properties of the subject data. In addition to six categories

that cab be extracted from the second category, one overall column as PGWBI index is

generated by aggregating all of six categories. The range of this column is from 0 to 110.

This column is utilized to validate the result of clustering. The Figure 5.1 is the distribution

of this column.
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Table 5.1: Description of Variables

Variable Type Levels

Region Nominal 3

Municipal Nominal 2

Amplitude Ordinal 5

Gender Nominal 2

Education Ordinal 5

Marital Status Nominal 4

Occupation Nominal 7

Income Ordinal 5

Age Continuous -

Anxiety Continuous -

Depression Continuous -

Welfare Continuous -

Self Control Continuous -

Health Continuous -

Vitality Continuous -

Diseases Binary 16 diseases and disabilities

Number of Observations 1027

Number of Attributable variables 31
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In Table 5.2, the basic statistics of all continuous variables is illustrated.

Table 5.2: Basic Statistics of Continuous Variables

Variable Mean SD Range

Age 45.83 16.53 [18, 93]

Anxiety 17.31 4.92 [1, 25]

Depression 12.37 2.64 [0, 15]

Welfare 11.81 3.97 [0, 20]

Self Control 11.89 2.76 [1, 15]

Health 11.05 3.11 [0, 15]

Vitality 13.42 3.97 [0, 20]

5.4 The Analysis

The algorithm which is based on PAM or K-medoids, is implemented for analyzing the

subject data. The first step is to determine the number of clusters, K. For this goal, a variety

of metrics exist to help choose the number of clusters to be extracted in a cluster analysis.

The silhouette width an internal validation metric which is an aggregated measure of how

similar an observation is to its own cluster compared with its closest neighboring cluster, is

implemented. Figure 5.2 illustrates the relationship between the number of clusters versus

the silhouette width. It shows that 3 clusters is the best choice for our dataset. The result

of cluster analysis using three clusters is visualized in Figure 5.3.
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There are some overlapping among the three clusters in Figure 5.3 which is confirmed

by the Silhouette graph plotted in Figure 5.2. The Silhouette coefficient is closer to zero

than one which it validates the result of cluster analysis but it shows some overlapping

among clusters. As it is observable the overlapping is negligible and the clusters are fairly

distinguishable. The results in the study have been programmed in R 3.5.0. PAM algorithm

can be implemented using the Daisy function (Maechler et al. [82]). This function can accept

all types of variables including continuous, nominal, and ordinal. As previously explained,

this function accepts the dissimilarity matrix using Gower distance.
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Table 5.3: Three Medoids of K-Medoids Clustering of the PGWBI Data

Risk factors/Medoids 164/cluster 1 618/ cluster 2 803/ cluster 3

Region 1 3 1

Municipal 2 2 2

Gender 2 1 1

Marital.status 2 1 2

Occupation 3 3 5

Amplitude 2 2 2

Education 2 2 4

Income 4 4 3

Hypertension 0 0 0

Heart attack 0 0 0

Heart failure 0 0 0

Diabetes 0 0 0

Angina 0 0 0

Cancer 0 0 0

Allergy 0 0 0

Arthritis 0 0 1

Sciatica 0 0 0

Blindness 0 0 0

Lungs 0 0 0

Dermatitis 0 0 0

Deafness 0 0 0

Weakness in arms 0 0 0

Depression 0 0 0

Mental disorder 0 0 0

Age 50 28 61

Anxiety 19 15 17

Depression 12 13 12

Welfare 13 14 11

Self control 13 13 14

Health 14 12 12

Vitality 20 12 15
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5.5 Interpretation and discussion

This section delves into each cluster in detail and investigate the contribution of each

risk factor introduced in Table 5.1. Table 5.3 shows three final and stable medoids, in which

all observations accumulated around them.

5.5.1 Cluster 1

Tables 5.4 and 5.5 and Figures 5.4, 5.5 describe the details of the cluster 1. Most of

the people are middle-age with average age of 44.57 year and standard deviation of 13.28.

Anxiety, depression and self-control are not major problems in this cluster. Welfare and

Health are two more important problems stated by individuals themselves. About 75% have

a feeling of welfare less than 15 out of 20.

Table 5.4: Basic Statistics of Continuous Variables of cluster 1

Variable Mean SD Range Q1 Q3

Age 44.57 13.28 [18, 82] 34 53

Anxiety 16.95 4.91 [1, 25] 14 20

Depression 12.31 2.61 [1, 15] 11 14

Welfare 11.75 4.01 [0, 20] 9 15

Self Control 11.84 2.72 [1, 15] 10 14

Health 11.15 3.00 [0, 15] 9 13

Vitality 13.33 3.98 [0, 20] 11 16
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The cluster 1 is the biggest of all clusters with 481 members that the majority,

60%,originates from the North. About 60% of the cluster originates from the North and

25% of the people come from the South Italy. The majority of individuals in this cluster

are female(86%), married(83%), employee(85%), earn below average salary(84%), and 90%

hold a degree less than high school. Hypertension (15%), arthritis (26%), allergy (15%),

sciatica (22%),and dermatitis (7%) are major health problems in this group. Heart failure,

blindness, deafness, and weakness in arms are other minor issues.
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Table 5.5: Summary of Categorical Variables in Cluster 1

Size of Cluster 1 = 481

Variables 0 1 2 3 4 5 6 7

region - 288 74 119 - - - -

municipal - 183 298 - - - - -

gender - 68 413 - - - - -

marital.status - 47 397 21 16 - - -

occupation - 24 93 318 4 20 10 12

amplitude 59 147 146 66 63 - - -

education - 49 185 142 104 1 - -

income - 18 60 125 180 98 - -

hypertension 409 72 - - - - - -

heart attack 479 2 - - - - - -

heart failure 476 14 - - - - - -

diabetes 469 12 - - - - - -

angina 479 2 - - - - - -

cancer 471 10 - - - - - -

allergy 411 70 - - - - - -

arthritis 357 124 - - - - - -

sciatica 375 106 - - - - - -

blindness 463 18 - - - - - -

lungs 460 21 - - - - - -

dermatitis 448 33 - - - - - -

deafness 463 18 - - - - - -

Weakness in arms 464 17 - - - - - -

depression 464 17 - - - - - -

mental disorder 474 7 - - - - - -

h
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Finally, this cluster is a collection of all sampled regions where married females are the

most questioned individuals. People are middle-age with some health problems specifically

arthritis, sciatica, and hypertension.

North South Center
Region

0.0
48.1
96.2
144.3
192.4
240.5
288.6
336.7
384.8
432.9
481.0

co
un

t

59.9%

24.7%
15.4%

Capital Non-Capital
Municipal

0.0
48.1
96.2
144.3
192.4
240.5
288.6
336.7
384.8
432.9
481.0

co
un

t

38.0%

62.0%

City Medium Small Big Very big
Amplitude

0.0
48.1
96.2
144.3
192.4
240.5
288.6
336.7
384.8
432.9
481.0

co
un

t

13.1%

30.6%

12.3%

30.4%

13.7%

Female Male
Gender

0.0
48.1
96.2
144.3
192.4
240.5
288.6
336.7
384.8
432.9
481.0

co
un

t

85.9%

14.1%

High school Middle schoolElementary school University None
Education

0.0
48.1
96.2
144.3
192.4
240.5
288.6
336.7
384.8
432.9
481.0

co
un

t

38.5%
29.5%

21.6%
10.2%

0.2%
Divorced Married Single Widow

Marital.status

0.0
48.1
96.2
144.3
192.4
240.5
288.6
336.7
384.8
432.9
481.0

co
un

t

3.3%

82.5%

9.8%
4.4%

Industerial Employee Manager Unemployed Retired Farmer Student
Occupation

0.0
48.1
96.2
144.3
192.4
240.5
288.6
336.7
384.8
432.9
481.0

co
un

t

66.1%

19.3%

5.0% 2.1% 4.2% 0.8% 2.5%

Medium-High High Super Medium Low
Income

0.0
48.1
96.2
144.3
192.4
240.5
288.6
336.7
384.8
432.9
481.0

co
un

t

26.0%
37.4%

20.4%
12.5%

3.7%

0
10
20
30
40
50
60
70
80
90

100

Fr
eq

ue
nc

y 
[%

]

0
10
20
30
40
50
60
70
80
90

100

Fr
eq

ue
nc

y 
[%

]

0
10
20
30
40
50
60
70
80
90

100

Fr
eq

ue
nc

y 
[%

]

0
10
20
30
40
50
60
70
80
90

100

Fr
eq

ue
nc

y 
[%

]

0
10
20
30
40
50
60
70
80
90

100

Fr
eq

ue
nc

y 
[%

]

0
10
20
30
40
50
60
70
80
90

100

Fr
eq

ue
nc

y 
[%

]

0
10
20
30
40
50
60
70
80
90

100

Fr
eq

ue
nc

y 
[%

]

0
10
20
30
40
50
60
70
80
90

100

Fr
eq

ue
nc

y 
[%

]

Figure 5.4: Cluster 1 Demographic Distribution
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Figure 5.5: Cluster 1 Health Major Problem Distributions

5.5.2 Cluster 2

Tables 5.7, 5.6 and Figures 5.6, 5.7 summarize the properties of categorical and con-

tinuous variables in cluster 2 respectively. Generally this cluster is the youngest among all

clusters. 75% of people are under 39 years old. From Table 5.6, we can observe that cluster 2

is the healthiest cluster psychologically. Anxiety has an average of 17.59 which is indication

of calmness and a good internal feeling. The majority of people have not experienced any

level of depression. As we mentioned above, this cluster is the healthiest one physically and
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psychologically. High vitality is another good aspect of this cluster.

Table 5.6: Basic Statistics of Continuous Variables of cluster 2

Variable Mean SD Range Q1 Q3

Age 32.31 11.19 [18, 70] 23 39

Anxiety 17.59 4.77 [3, 25] 15 21

Depression 12.69 2.40 [3, 15] 12 14

Welfare 12.37 3.89 [3, 20] 9 16

Self Control 12.2 2.62 [3, 15] 11 14

Health 12.17 2.41 [4, 15] 11 14

Vitality 14.12 3.62 [1, 20] 12 17

283 people (27%) out of 1027 of people in this experiment fall into cluster 2. Almost

60% of people come from south of Italy. The size of the cities where they live is mainly

medium or large. The majority of of people are single and male with at least high school

degree. About 75% of experimental units claimed that they have a salary higher than the

average. Major health problems are almost rare in this cluster. Only 8% reported hyperten-

sion, 13% allergy, 5% arthritis, and 6% dermatitis.
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Table 5.7: Summary of Categorical Variables in Cluster 2

Size of Cluster 2 = 283

Variables 0 1 2 3 4 5 6 7

region - 69 44 170 - - - -

municipal - 100 183 - - - - -

gender - 227 56 - - - - -

marital.status - 208 70 2 3 - - -

occupation - 21 68 96 4 7 27 60

amplitude 32 84 99 40 28 - - -

education - 78 117 75 13 0 - -

income - 22 44 90 82 45 - -

hypertension 260 23 - - - - - -

heart attack 279 4 - - - - - -

heart failure 279 4 - - - - - -

diabetes 279 4 - - - - - -

angina 280 3 - - - - - -

cancer 283 0 - - - - - -

allergy 246 37 - - - - - -

arthritis 269 14 - - - - - -

sciatica 261 22 - - - - - -

blindness 277 6 - - - - - -

lungs 279 4 - - - - - -

dermatitis 267 16 - - - - - -

deafness 279 4 - - - - - -

Weakness in arms 281 2 - - - - - -

depression 280 3 - - - - - -

mental disorder 280 3 - - - - - -
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All in all, this cluster in the youngest, healthiest, and well-educated group with a

high quality of life, and most of them are male originates from the south of Italy.
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Figure 5.6: Cluster 2 Demographic Distribution
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Figure 5.7: Cluster 2 Health Major Problem Distributions

5.5.3 Cluster 3

Tables 5.9, 5.10 and Figures 5.8, 5.9 present some statistical information regarding

cluster 3. On average, this cluster is the oldest cluster. The average age is 62.68 with

standard deviation of 11.24. The most self-confessed psychological problems in this cluster

are welfare, health, vitality. Almost 25% have a welfare level of less than 8 out of 20. On the

other hand, 50% of individuals have health status of less than 10 out of 15. Furthermore,

about 25% of people are not very energetic since they have a level of vitality less than 10

out of 20.
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Table 5.8: Basic Statistics of Continuous Variables of cluster 3

Variable Mean SD Range Q1 Q3

Age 62.68 11.24 [25, 93] 57 70

Anxiety 17.66 5.08 [2, 25] 14 22

Depression 12.16 2.92 [0, 15] 11 14

Welfare 11.3 3.92 [0, 20] 8 15

Self Control 11.63 2.97 [1, 15] 10 14

Health 9.67 3.42 [0, 15] 7 13

Vitality 12.83 4.20 [1, 20] 10 16

This cluster is the smallest group among all the clusters. The majority of people

originated from non-capital cities(62%) of northern(57%) Italy which is medium size in

population. Almost 76% of people are male. On the other hand, almost 76% of individuals

are retired. The big portion of this cluster(75%) consists of married male people. About

51% of individuals have only elementary school education. Salary-wise, this cluster has the

majority of the people below average(71%).

The least healthy cluster is cluster 3. 72% of people suffer from arthritis and 40% tolerate

sciatica. Moreover, at the same level of sciatica, people should control their hypertension.

Heart failure (16%), deafness(18%), allergy(14%), diabetes(13%), lungs’ problem (12%),

weakness in arms(11%) are other health problems, but they are not as common as the

aforementioned issues.
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Table 5.9: Summary of Categorical Variables in Cluster 3

Size of Cluster 3 = 263

Variables 0 1 2 3 4 5 6 7

region - 149 49 65 - - - -

municipal - 101 162 - - - - -

gender - 200 63 - - - - -

marital.status - 20 198 40 5 - - -

occupation - 8 16 27 7 199 6 0

amplitude 24 89 75 45 30 - - -

education - 22 50 58 131 2 - -

income - 32 45 91 64 31 - -

hypertension 157 106 - - - - - -

heart attack 242 21 - - - - - -

heart failure 220 43 - - - - - -

diabetes 230 33 - - - - - -

angina 244 19 - - - - - -

cancer 253 10 - - - - - -

allergy 227 36 - - - - - -

arthritis 76 187 - - - - - -

sciatica 157 106 - - - - - -

blindness 240 23 - - - - - -

lungs 232 31 - - - - - -

dermatitis 249 14 - - - - - -

deafness 217 46 - - - - - -

Weakness in arms 235 28 - - - - - -

depression 253 10 - - - - - -

mental disorder 260 3 - - - - - -
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Altogether, although this cluster is the smallest group, it is the least healthy and

oldest group of the people in this study. The majority of them originated from the north

with a medium level of salary. Most of the people are male and married.
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Figure 5.8: Cluster 3 Demographic Distribution
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Figure 5.9: Cluster 3 Health Major Problem Distributions

5.6 Validation of Cluster Analysis

The silhouette method was the first step of validation of the cluster analysis. In

this section, two more validation methods will be applied to support the result of silhouette

distance, supervised learning which consider clusters as labels and parametric analysis of
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Qol(quality of life index).

5.6.1 Parametric analysis of the Qol index

The Qol index was the final aggregation of six psychological categories extracted

from the PGWBI questionnaire. In the preprocessing phase, this index was excluded from

clustering analysis to be utilized for validation of cluster analysis.

In this section, Kruskal-Wallis test is applied to show that three clusters are originated from

three different populations. Then Kolmogorov-Smirinov goodness-of-fit tests is utilized to

find the best three distributions which fit to each cluster.

Figure 5.10 illustrates the result of Kruskal-Wallis and Kolmogorov-Smirinov goodness-of-

fit test. The p-value of Kruskal-Wallis test is 0.001893 and at the level of 0.05, the null

hypothesis is rejected and it is deduced that all clusters come from different distributions.

As a result, the Kolmogorov-Smirinov(KS) test uses to find the best three distributions fitted

to each clusters. Wakeby (Houghton [83]), Dagum (Dagum [84]), Johnson SB described in

section 5.2, and Generalized Extreme Value distributions are different distributions fitted

to clusters and the calculated p-value of KS test is greater than 0.05 and therefore the null

hypothesis, the distribution is fitted to data, is not rejected. It is observable from the Figure

5.10 that all the clusters follow different distributions or the same distribution, but different

parameters.
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Kruskal-Wallis test Result 
( Null Hypothesis :  all samples originated from the same population ) 

Kruskal-Wallis test Degree of Freedom P-value 

12.539 2 0.001893 

 Distribution 1 Distribution 2 Distribution 3 

C
lu

st
er

 1
 Wakeby (5 parameters) 

𝛼 = 299.64, 
𝛽 = 7.41, 
𝛾 = 25.07, 
𝛿 = −0.633,  
𝜁 = 25.994 
 

Dagum (4 parameters) 
𝜅 = 0.13272, 
𝛼 = 27.357, 
𝛽 = 97.495, 
𝛾 = 0  
 
 

Johnson SB(4 parameters) 
𝛾 =  −2.0337, 
𝛿 = 1.4713, 
𝜆 = 159.9 ,  
𝜁 =  −47.299   
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 2
 Wakeby (5 parameters) 

𝛼 = 271.72, 
𝛽 = 9.892, 
𝛾 = 35.999, 
𝛿 = −0.83053,  
𝜁 = 36.534 
 

Gen. Extreme Value 
𝜅 = −.52432, 
𝜎 = 17.539, 
𝜇 = 77.37 
 
 
 

Johnson SB(4 parameters) 
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Figure 5.10: Kruskal-Wallis test result and Kolmogorov-Smirinov Goodness-of-fit test of
clusters

5.6.2 Supervised learning: Classification

The second method for cluster analysis validation is classification. Classification is the

process of predicting the class of given data points. Classes are sometimes called as targets/

labels or categories. The predictive classification modeling is the task of approximating a

mapping function (f) from input variables (X) to discrete output variables (y). The accuracy
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of a classification model is the fraction of corrected predicted labels to the size of dataset.

This section is considered for two purposes, prediction of new data points and validation

of the cluster analysis. All the predictors considered for cluster analysis, are used as input

variables(X) and extracted clusters as labels or discrete outputs (y). Table 5.10 shows the

accuracy of the classifiers used to the aforementioned purposes. Random Forest, AdaBoost

, and Naive Bayes (Friedman et al. [85]) are applied as classifiers. The high accuracy of

classifiers shows the homogeneity and low variance within clusters. It shows that most of

similar units are in the same cluster.

Table 5.10: 10-fold cross validation Classification based on cluster labels

Classifier Accuracy F-measure

Random Forest 95.11 95.1

AdaBoost 79.84 79.1

Naive Bayes 82.08 82.1

5.7 Contribution

In present explanatory analysis, an investigation has been done to find similar groups

of individuals. In this study, the main target is to homogenize a group of people to have

better of understanding of different aspects of each individual’s life. The second objective

is to develop a predictive model according to the primary findings of this study to judge

about a new individual as well as a method to evaluate the result of the first part of the
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study. 1027 people have been involved in this study and we have demonstrated that three

clusters are able to explain the similarity and nature of the dataset with a good accuracy

using Silhouette width measurement.

First, the youngest and healthiest group is the first cluster. The majority of individ-

uals have a university degree and the number of males is greater than females. Second, the

third cluster is the smallest and contains the least healthy people in the experiment. The

majority of them are married males with some major health problems originated from south

and north. Almost seventy percent of individuals in this cluster suffer arthritis. Finally, the

second cluster is a group between the first and third.

Grouping people into similar clusters facilitates making decision. For instance, ad-

ministrative units like governments can allocate their limited source of funds with almost

accurate priority that they can extract from each cluster. Moreover, individuals can predict

their Qol by investigation of the cluster which is more similar to their characteristics.

The method proposed here is K-medoids method using Gower distance which can

handle mixed data appropriately. This method is validated with parametric analysis of Qol

index and several predictive models with the best one has accuracy of 95%. In our future

work, we are trying to define the new distance that can outline social big data with more

flexibility. The distance can measure and classify new data with more accuracy than Gower

distance. The result of clustering was validated using three different methods which all of

them verified the result of clustering and its applicability.
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CHAPTER 6 : FUTURE RESEARCH WORKS

6.1 Application of the developed model on Heart signal, ECG

My statistical method on analyzing the non-stationary brain signals will have a direct

applicability into the signals that result in heart abnormality detection and heart testing,

both regular tests and stress testing. The resulting signals need to be classified as normal

response, presence of disease A, presence of disease B, or both. Therefore the main goal

is to generalize this method to a problem of multi-class classification. The classifier assist

doctors and expert in this field to identify the problem easier and in earlier time. We are

in the process of obtaining such a information from medical clinical and other institute that

are working in the subject area. However, up to now we have not been very successful.

6.2 Monitoring Health using Qol as a time series

This study is the continuation of the quality of life prediction and monitoring. In this

study, we generate a huge number of signals from age of individuals. The quality of life of a

specific individual is not possible to be monitored for all of their life. In this study we look

at age in stochastic perspective. we consider target value as a random variable over age. It
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means, we assume that there is an abstract individual that we are going to find the best

signal, the rate of changing to the quality of life index, to this new individual. In the next

step, these short signals are clustered into several groups. By clustering, we can observe

approximately the change of the pattern of quality of life over age. An expert by looking

at this patterns can give more accurate advice to their patients how to change risk factor of

the patient life to be in the better cluster. The big challenge that we have in this process is

the number of generated signals. We need to design some filters in the preprocessing phase

to reduce the dimension of data to be suitable for further analysis.
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