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Abstract 
 

The world’s population is rapidly aging and the increasing demand for home and health 

care services from this aging population brings unprecedented challenges to the economy and 

society. Ambient-assisted smart homes, residences equipped with ambient sensors to monitor the 

resident’s daily activities in a continuous and unobtrusive way, present great potential to manage 

the growing care service needs of this older population segment, and enable them to age-in-place. 

Despite growing research, using ambient sensor data from private homes to monitor daily 

activities, health and wellness still faces significant challenges. To study ambient sensor data from 

private homes where annotated data is unavailable and sensor layouts are variable, we proposed a 

novel two-phase location and status estimation algorithm to monitor health and wellness related 

metrics from ambient sensor data. The proposed algorithm is highly accurate as validated by a 

mobile app that prompts participants with questions about the estimated time of their daily 

activities. The outputs of this algorithm facilitate the visualization and examination of older adults’ 

daily patterns and activities, and through case studies, we show that it has the potential to be used 

with a wide range of ambient sensor networks with any mix of motion sensor types.  

We also studied human mobility in private homes. Understanding human mobility is 

fundamental and critical for the design of context-aware assistive services in smart homes. We 

represent the resident’s movement trajectory based on ambient motion sensor data and use the 

entropy rate to quantify the regularity of the resident’s mobility patterns to estimate an upper bound 

of predictability. A change point detection algorithm based on penalized contrast function is used 
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to identify the time periods when the data does not completely reflect the resident’s activities due 

to the presence of visitors and sensors system faults. Experimental results using data collected 

from 10 private homes over periods of 178 to 713 days show that human mobility at home is not 

completely random but regular and highly predictable independent of variations in floor plans and 

individual daily routines, which is consistent with the conclusions about human mobility in 

outdoor environments.  

Finally, we summarize and analyze records in maintenance logs and bi-weekly assessments 

about changes and disruptions in ambient sensor data collected from private homes, and suggest 

potential research directions for the design of stable and reliable health and wellness monitoring 

systems using ambient sensor systems.  
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Chapter 1: Introduction 
 

1.1 Note to Reader 

Portions of Chapter 1 have been previously accepted by Health and Technology and have 

been reproduced with permission from Springer.  

1.2 Background 

The growth in the number and proportion of older adults is unprecedented in the history of 

the United States [1] and the world [2]. According to the United Nations [3], the population of 

adults over the age of 60 has quadrupled from 205 million in 1950 to almost 810 million in 2012 

worldwide. This segment of the population is expected to double in size again - reaching 2 billion 

persons (more than 20% of the world’s population) by 2050. In the US, nearly 1 in every 5 

Americans will be an older adult in 2030; and by 2050, more than 89 million Americans will be 

age 65 and older – double the number in 2010 [1].    

As people live longer, the prevalence of chronic conditions is also on the rise. At present, 

70 million older adults are suffering from one chronic condition, and 2/3 of adults over the age of 

65 are suffering from 2 or more [4]. Chronic diseases result in negative health consequences and 

“people living with one or more chronic diseases often experience a diminished quality of life, 

generally reflected by a long period of decline and disability associated with their illness” [5]. The 

nation’s expenditures for health care are already among the highest in developed countries, and, 

the costs are expected to increase by 55% over the next 10 years as chronic diseases affect the 

growing numbers of older adults [6]. Today, more than 2/3 of health care costs expended go to 
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treating chronic illnesses, and in older adults, chronic disease treatment accounts for 95% of health 

care expenditures [7]. 

The rises in projected health care costs are unsustainable and call for improving the ways 

in which we manage health [8]. Additionally, institutional health care systems are not prepared to 

meet the needs of the growing number of seniors, who have expressed a strong desire to “age in 

place” in their communities [9]. CDC [10] has defined aging in place as “The ability to live in 

one’s own home and community safely, independently, and comfortably, regardless of age, income 

or ability level”. Aging in place offers significant benefits including a reduction in health care costs 

through avoidance of institutionalization [11], improving quality of life [12], increasing 

independence [13], expanding/maintaining social networks [14], and reducing risks for cognitive 

decline and adverse mental health [15]. 

Recently, ambient-assisted smart homes — residences equipped with ambient sensors and 

computing technology that monitor the activities and well-being of occupants in their homes — 

are increasingly seen as facilitating innovative and supportive environments for enabling the 

healthy, safe, and independent aging desired by older adults [10], [16]–[25]. Technologies such as 

these offer a way to reduce healthcare costs by facilitating older adults’ ability to age safely at 

home in less restrictive, less expensive environments. Smart homes can facilitate health and self-

care activities by connecting older adults with primary and specialty health care providers, formal 

home health services, and informal caregivers, to facilitate early interventions and preventions for 

adverse health events, supporting effective long-term management of chronic conditions while 

aging in place. These technological solutions also provide an additional layer of safety by 

continuously monitoring for life and health-threatening situations – in effect, extending the health 

care workforce. 
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Domestically, programs such as the MAVHome at the University of Texas Arlington [26], 

The Aware Home at the Georgia Institute of Technology [27] and the Gator Tech Smart House at 

the University of Florida [28] have historically served as single-home-test-bed style environments. 

Internationally, the U-Health smart home project at POSTECH [29]–[31] integrates information 

from small-sized medical body sensors [32] with other ambient sensors to assist older adults in 

their homes. Other programs including the Place Lab at the Massachusetts Institute of Technology 

[33], the Tiger Place project at the University of Missouri-Columbia [34], the CASAS Smart 

Homes project at Washington State University [35] and the ORCATECH project of the Oregon 

Health and Science University [36] represent multi-unit smart home projects that are testing a 

variety of devices such as motion, floor, gait, bed, appliance, temperature, luminance, wearables, 

smartphone, web-portals, signaling devices, task aids, and other smart/connected devices as a 

means to impact health and well-being across varying program targets.  

1.3 Challenges of Using Ambient Data for Health Monitoring in Private Homes 

To date, many such projects are focused on limited user groups (i.e. persons with 

dementia), institutional settings (i.e. nursing homes), limited sensor types (i.e. contact and/or 

motion sensors) and/or are narrow in the scope of behaviors they monitor/target (i.e. activities of 

daily living (ADLs) e.g. bathing and eating, gait, and falls). In addition, the ability to perform long 

term health trend analysis and detect anomalies in an emergency remains limited.  

Using ambient sensor data from private homes to monitor health and wellness is further 

complicated by the following challenges.  Annotated data is lacking due to privacy concerns which 

preclude the use of cameras, and the well-documented difficulties associated with keeping accurate 

activity logs in long-term studies. Second, due to various floor plans, furniture arrangements and 

residents’ preferences, ambient networks installed in private homes have significant variation both 
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in terms of the types of sensors used and their deployment. Third, ambient sensor networks are not 

completely reliable and sensors need periodic maintenance due to malfunction or dead batteries, 

which results in incomplete observations of the residents' activities. In addition, smart home 

inhabitants have visitors including family members and friends staying with them from time to 

time. The activities of visitors trigger the ambient sensors as well as the resident’s activities. These 

changes in the environment, disruptions in the sensor networks, and the presence of visitors 

introduce data that are not representative of the resident’s normal daily activities and lead to an 

incorrect or incomplete understanding of the residents’ activities and wellness.  

HomeSense, an ambient health and wellness monitoring platform implemented in 

community dwellings, provides opportunities to study ambient-sensing solutions of health and 

wellness monitoring to address the above challenges that are encountered in the real living 

environments.   

1.4 HomeSense: An Ambient Sensing Platform for Health Monitoring 

Developed by researchers in the CREATE Health Lab at the University of South Florida, 

HomeSense is an ambient health and wellness monitoring platform for community-dwelling older 

adults living independently in their own homes [37]. All participants of HomeSense live alone 

without pets in their own homes and are recruited from a 55+ active retirement community. Since 

the start of the study in Aug 2016, 19 participants aged between 68 and 89 have participated for 

varying lengths of time ranging from 6 to 36+ months. These participants are asked to be available 

for bi-weekly phone interviews designed to collect self-reported information regarding major 

health and life events, travel and visitors.  

In each participant’s home, various wireless sensors are installed to collect information on 

the participant’s daily activities (Figure 1.1). For example, passive infrared (PIR) motion sensors 
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are installed in each room to monitor the occupant’s movement within the house, contact sensors 

attached to medicine boxes, kitchen cabinets and exit/entrance doors to sense the interactions with 

these items, power sensors attached to electrical household appliances such as coffee pots, washing 

machines, TVs and microwaves monitor the electricity usage, water sensors detect water usage in 

toilet tank, and various environmental sensors track changes in temperature, luminance, and 

humidity in various location in the home. No cameras or microphones are used in any of the 

deployments.  

As noted in Figure 1.2, an array of networked wireless devices are installed in each house 

and communicate using the Z-wave communication protocol [38]. A Raspberry Pi connected to 

the Internet acts as a gateway and sends the data from the sensor network to our HIPAA compliant 

main server using a light-weight machine-to-machine communication protocol MQTT [39]. In the 

case of Internet connectivity outages, data from the sensors are locally stored and sent to the main 

server once connectivity is re-established. The sensor data is collected 24/7 and permanently stored 

in a relational database on the main server. The main server supports communication with the 

gateways, sensor configuration, device tracking, data visualization, and data analysis activities for 

the HomeSense project.  

Built from the ground up on open source software, since its inception in the field in 2016, 

HomeSense has had 19 installations over its life course and collected more than 10 million hours 

of individual, time-stamped sensor data, with an average of 6500 sensor events per day per 

installation. 

1.5 Research Goal and Objectives 

Building on the extensive data collected in the HomeSense project, the goal of this research 

is to develop key indicators and methods to identify pattern changes and disruptions associated 
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with the sensor system itself e.g. sensor or device failures, changes in the environment from which 

the data is collected e.g. presence of visitors, and changes in the behaviors of the participants which 

may signal changes in health conditions. 

Specific research objectives within this goal are: 

1. Develop methods to estimate health and wellness indicators to track changes in overall 

health and wellness of the residents inhabiting in private homes. Monitoring of these indicators 

will facilitate the identification of changes that may signal underlying health issues providing 

actionable information to formal and informal caregivers. 

2. Understand and quantify the regularity and predictability of human mobility in private 

homes. Successful accomplishment of this objective will firmly ground research that builds on 

regularity and predictability of human activity in a wide range of applications including healthcare, 

sustainability, and automation. It will also facilitate the development of baseline normal patterns 

and subsequently the ability to identify changes and disruptions that deviate from these norms.  

3. Identify and quantify the impact of different types of changes on the aforementioned 

indicators by examining records about system changes and the presence of visitors from 

maintenance logs and bi-weekly assessments. This work will help us understand the characteristics 

of changes and inform the design of comprehensive metrics capable of detecting a broader range 

of disruptions in ambient-assisted technologies for health and wellness monitoring. 

1.6 Research Work and Contributions 

In this section, we briefly summarize the accomplished work for each research objective 

including the background, the research question, the work that has been completed, experiment 

results, and the contributions.  
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1.6.1 Health and Wellness Monitoring Using Ambient Sensor Networks 

This work has been published by Journal of Ambient Intelligence and Smart Environments 

[40]. 

In this study, we present a methodology that estimates occupants’ status as active, 

sedentary, in-bed, out-of-home and unobservable, their location in the house, and their daily 

activities related to overall health and wellness. The methodology is used to visualize and examine 

the daily patterns and activities of older adults living in their own homes and participating in a 

smart home research project. The proposed location and status estimation algorithm is highly 

accurate as validated by a mobile app that prompts participants with questions about the estimated 

time of their daily activities. A case study involving a significant health-related life event is 

presented where the participant’s account of changes in her patterns and activities through bi-

weekly interviews are shown to confirm inferences based on the results of the proposed 

methodology. 

 Details of this work are included in Chapter 2.  

1.6.2 An Entropy-based Approach to the Study of Human Mobility and Behavior in Private 

Homes 

This work has been submitted for review by IEEE Transactions on Human-Machine 

Systems. 

Understanding human mobility in outdoor environments is critical for many applications 

including traffic modeling, urban planning, and epidemic modeling. Using data collected from 

mobile devices, researchers have studied human mobility in outdoor environments and found that 

human mobility is highly regular and predictable. In this study, we focus on human mobility in 

private homes. Understanding this type of human mobility is essential as smart-homes and their 
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assistive applications become ubiquitous. We model the movement of a resident using ambient 

motion sensor data and construct a chronological symbol sequence that represents the resident’s 

movement trajectory. Entropy rate is used to quantify the regularity of the resident’s mobility 

patterns, and an upper bound of predictability is estimated. However, the presence of visitors and 

malfunctioning sensors result in data that is not representative of the resident’s mobility patterns. 

We apply a change-point detection algorithm based on penalized contrast function to detect these 

changes, and to identify the time periods when the data does not completely reflect the resident’s 

activities. Experimental results using the data collected from 10 private homes over periods of 178 

to 713 days show that human mobility at home is also highly predictable in the range of 70% 

independent of variations in floor plans and individual daily routines. 

Details of this work are included in Chapter 3.  

1.6.3 Analysis of Changes in Data Collection Environment in Ambient-assisted Private Homes  

Ambient sensor networks are not completely reliable and need periodic maintenance due 

to malfunction or dead batteries. In addition, smart home inhabitants have visitors including family 

members and friends staying in their house from time to time. These changes in ambient sensor 

system and disruptions in the data collection environment introduce data that are not representative 

of the resident’s normal daily activities and may lead to an incorrect or incomplete understanding 

of the residents’ activities and wellness. In this study, we examine and summarize the records 

about system changes and the presence of visitors from these three sources, i.e., the maintenance 

log, bi-weekly assessments, and binary information. We construct various metrics to describe the 

records and analyze the difference between the records that can be corroborated with the change-

point detection algorithm introduced in Chapter 3 and those that cannot. Experimental results 

indicate that the changes in daily entropy rate explain partial changes in sensor systems and the 
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presence of visitors. The records that result in significant changes in the probability distribution of 

sensor events are more likely to be detected by changes in daily entropy rate.  

Details of this work are included in Chapter 4.  

1.7 Intellectual Merit and Broader Impacts 

In this dissertation, we provide in-depth analyses of a one-of-a-kind dataset that entails 

thousands of hours of activity data from ambient sensors in 10 private homes.  We developed and 

validated two novel approaches to analyze this type of data; the first one to extract health-related 

information from ambient sensor data, and the second one to automatically detect disruptions in 

the sensor systems and the environment from which data is collected. Also in this work, we present 

a detailed treatment of regularity and predictability of human mobility in private homes. To our 

knowledge, this is the first time such an analysis has been conducted using data from private 

homes.  

The algorithms developed and tested in this dissertation are critical to the development of 

an effective ambient-sensing based health and wellness monitoring solutions to enable older adults 

to age in place. This is desired by both the older adults who wish to age in their own homes and 

the society that is facing tremendous challenges to maintain sustainable health care services. Smart 

homes provide information about older adults’ daily activities and life routines which can be 

shared with older adults to encourage them to lead a healthier lifestyle. Based on the collected 

ambient sensor data, adverse event detection such as fall detection, reminder assistance services 

such as medicine reminding, and context-aware intelligent services such as energy management, 

and device automation are developed to provide assistance in the older adults’ daily life to improve 

their quality of life. Information from such systems also provides opportunities to physicians and 

caregivers to assess and examine the older adults’ health status continuously, facilitating early 
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diagnosis and intervention. Overall, the low-cost ambient-sensing smart home technologies 

provide solutions to allow older adults to live independently in their own homes while aging 

without reducing their quality of life and reducing health care costs and social burden.  
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Figure 1.1 Sensor layout for a typical home in HomeSense. 
 
 

 

Figure 1.2 HomeSense system overview. 
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Chapter 2: Health and Wellness Monitoring Using Ambient Sensor Networks 
 

2.1 Note to Reader 

Chapter 2 has been previously published by Journal of Ambient Intelligence and Smart 

Environments [40] and has been reproduced with permission from IOS Press. The final publication 

is available at IOS Press through http://dx.doi.org/ 10.3233/AIS-200553. 

2.2 Introduction 

Longer life expectancy and aging baby-boomers are causing unprecedented shifts in the 

U.S. population demographics. The number of people aged 65 and older is projected to reach 83.7 

million, almost double that of 2012, making up 21% of the total population in 2050 [41]. This shift 

towards a predominantly older population is increasing the demand for home and health care 

services [41], leading to a shortage of skilled workers to provide these services [42], and increasing 

the informal caregiver burden on the society as a whole [43], [44]. 

Smart homes with ambient wireless sensors present great potential to manage the growing 

health care service needs of this older population segment, to improve their quality of life and to 

enable them to age-in-place [45]–[48], which an overwhelming majority of older adults desire 

[49]. Smart home projects such as MavHome [50], the Aware Home [51], the PlaceLab [33], 

CASAS [52], TigerPlace [53], ORCATECH [54], and CASALA [55] are notable research efforts 

in this direction. Researchers have been able to estimate health and wellness indicators such as 

movement levels [56], [58]–[61], time outside the home [58], [66], [74], [76], [78] sleep 

measurements [68]–[70], [72]–[78], walking speed [79] and sedentary activity [80]. The common 
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conclusion among these research efforts is that ambient sensor networks are an effective approach 

to continuously and unobtrusively monitor the health and wellness of older adults, and the data 

from these sensor networks are effective in measuring specific health indicators. 

Monitoring health and wellness using ambient sensor data can be broadly described in two 

main categories as sensor-data based and activity-based. In sensor-data based methods, 

information obtained directly from the sensor data, e.g. time spent in specific locations in the 

house, frequency of motion sensor firings, is used to detect changes in daily patterns, routines, and 

overall health and wellness status. Examples of such methods include; in [56] movement patterns 

based on time spent in specific rooms are used to detect deviations which imply unusual daily life 

events; in [57] the time spent in rooms and frequency of motion sensor firings are used to model 

the resident’s circadian behaviors, and deviations from this model are used as indicators of 

anomalies; in [58] the frequency of motion sensor firings per hour is used to construct the density 

maps to represent the resident’s movement patterns over time. The dissimilarity between two 

density maps are used to measure changes in movement patterns which may indicate health 

problems; and similarly, in [59] the density maps of the time spent instead of movement levels are 

used to track changes in the older adult’s activity and sleep patterns; and in [60], [61] human 

stigmergy [62] is used to model spatial-temporal evolution of the resident’s movements within the 

house. The deviations from the reference maps indicate potential changes in the resident’s activity 

routines; in [63] motion sensor data is linguistically summarized to assist clinicians in determining 

the overall wellness of the older adults. 

Activity-based methods, in contrast, focus on estimating health-related activities mostly 

associated with Activities of Daily Living (ADLs) [64], [65] domains such as outings, sleep 

patterns, feeding, toileting, and personal hygiene. Notable examples of such work include; in [66] 
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time out-of-home is estimated by a logistic regression model to assess the loneliness of the older 

adults; in [67] Markov models and a naïve Bayes classifier are used to model activities such as 

telephone use, hand washing, meal preparation, eating and medication use, and cleaning. These 

learned models are further used to evaluate the completeness and consistency of daily activities to 

determine older adults’ capability to live independently; in [68]–[70] an ADLs recognition 

algorithm [71] is utilized and aggregate statistics of the duration to perform these recognized 

activities and machine learning is used to predict clinical assessment scores, functional health 

scores, and symptoms relating to Alzheimer’s Disease; and in [72] a visual analytics tool is 

developed to identify abnormal activities based on these recognized activities; in [73] sleep 

behavior is modeled as a finite state machine with states defined as awake in the bed, asleep in the 

bed, or out of the bed. The transitions of the state machine characterize sleep behaviors such as 

bedtime, rise time, sleep latency, and time up at night; in [74] a location tracking algorithm is used 

to estimate bedtime and rise time based on movement levels and the status of light sensors, and a 

rule-based approach is used to estimate time out-of-home; in [75] a rule-based model is used to 

estimate bedtime, rise time and time in bed; in [76] rule-based models are used to estimate time 

out-of-home and sleep durations to examine older adults’ social isolation; in [77] a Bayesian 

switch-point model is used to identify sleep and wake periods; and in [78] RNNs are used to encode 

daily activities such as leave home, go to bed, prepare breakfast, use toilet, etc. The trained model 

is then used to detect deviations from normal daily routines to identify cognitive decline.  

In this paper, we present a combined approach to the use of the data collected from ambient 

wireless sensor networks using both sensor-data based and activity-based methods described 

above. We process the sensor data in phases gradually discovering information about the 

occupants’ patterns and activities. More specifically, we present a two-phase algorithm where the 
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initial phase estimates the location of the occupant inside the home and his/her status as active, 

sedentary and unknown using data from motion and contact sensors. The second phase of the 

algorithm further refines the status estimated in the first phase as in-bed and out-of-home and 

revises the estimated locations of the occupant. These status categories are selected based on the 

common metrics of interest reported in the literature as indicators of health and wellness. We show 

that raw sensor data converted to an information triplet of (Time, Status, Location) provides 

valuable insight into the daily patterns and activities of older adults and captures changes in their 

health and wellness. Unique to the approach described in this paper is that we consider refractory 

periods of motion sensors in estimating the location of the resident and the time spent in each 

location, and we use a rule-based algorithm built on information extracted from sensor-data based 

methods to estimate activities. 

The rest of the paper is organized as follows: Section 2.3 describes the data collection 

environment, the proposed location and status estimation algorithm, and the algorithm validation 

process. Section 2.4 presents and discusses the results of the algorithm validation process and the 

results of applying the location and status estimation algorithm to ambient sensor network data 

from private homes. Section 2.5 describes a case study involving a significant health-related event 

and how the outputs of the proposed algorithm support and verify a participant’s own account of 

changes in her daily patterns and activities. Finally, Section 2.6 presents conclusions, limitations 

of the work and future research directions. 



16 
 

2.3 Method 

2.3.1 Experimental Environment 

HomeSense is an ongoing smart home project at the University of South Florida that aims 

to use ambient home sensing to enable older adults to manage and coordinate their health care 

services and age-in-place as long as possible [37].  

All participants of HomeSense live alone without pets in their own homes and are recruited 

from a 55+ active retirement community. Since the start of the study in August 2016, 19 

participants aged between 68 and 89 have participated for varying lengths of time ranging from 6 

to 36+ months. The participants are asked to be available for bi-weekly phone interviews designed 

to collect self-reported information regarding major health and life events, travel and visitors. 

Further details regarding participant recruitment, consent and participation are outlined in IRB 

Protocol PRO 00020982. 

A typical sensor network deployed in HomeSense is shown in Figure 1.1. Passive infrared 

(PIR) motion sensors in each room sense movement, contact sensors attached to medicine box, 

kitchen cabinet or exit/entrance doors sense opening and closing of these items, power sensors 

attached to electrical household appliances such as coffee pots, washing machines, TVs and 

microwaves monitor the electricity usage, water sensors detect water usage in toilet tank, and 

various environmental sensors track changes in temperature, luminance, and humidity. No cameras 

or microphones are used in any of the deployments. 

The wireless sensors installed in each house communicate through the Z-wave 

communication protocol [38]. A Raspberry Pi connected to the Internet acts as a gateway and 

sends the data from the sensor network to our HIPAA compliant main server using a light-weight 

machine-to-machine communication protocol MQTT [39]. In case of Internet connectivity 
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outages, data from the sensors are locally stored and sent to the main server once connectivity is 

re-established. The sensor data is permanently stored in a relational database on the main server. 

The main server supports communication with the gateways, sensor configuration, device tracking, 

data visualization, and data analysis activities for the HomeSense project. 

2.3.2 Data Collection 

The data used in this study considers PIR motion sensors and door/window contact sensors 

which are the most common sensors used in ambient sensor networks. These are binary sensors 

that report two values as either ON or OFF. PIR motion sensors report ON when a thermal pattern 

change is detected in the sensor’s field of vision. If no thermal pattern change is detected after a 

refractory period, an OFF value is reported. Depending on the manufacturer and configuration of 

the sensors, the refractory periods may range from seconds to minutes. In HomeSense, three 

different types of motion sensors are used with refractory periods varying between 12 seconds and 

4 minutes. Contact sensors have two magnetic parts installed on the door and the door frame. When 

the door is opened, two magnetic parts are separated and the contact sensor reports an ON value. 

When the door is closed, two magnetic parts come together and the sensor reports an OFF value. 

While the variations in home layouts, furnishings, and personal preferences do not allow 

specific sensor installation procedures, our research team does follow general guidelines for 

installation of motion and contact sensors. Motion sensors are installed in every room such that 

the field of their vision covers the majority of the space in the room where the occupant may be 

active. In the case of open floor plans and spaces large enough to require more than one motion 

sensor, they are positioned to minimize the overlap of their field of vision.  Contact sensors are 

installed on all doors e.g. front and garage doors which allow entrance to and exit from the home. 
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2.3.3 Data Preprocessing 

Data preprocessing removes redundancies and standardizes binary data values to prepare 

the dataset for further analysis. A raw data sample from the sensor system prior to preprocessing 

is shown in Figure 2.1. Data preprocessing involves three steps: 

1. The data is grouped by sensor identity and sorted in ascending time. 

2. Sequential identical values reported by the same sensor are eliminated, and only the first 

(earliest) reported data is kept. 

3. Reported binary sensor values (0) and (255 or 1) are standardized to values of 0 and 1 

which represent the OFF or ON status respectively. 

Data preprocessing results in a sequence of alternating 1 (ON) and 0 (OFF) values in 

ascending time order for all sensors as shown in Figure 2.2. 

2.3.4 Location and Status Estimation Algorithm 

The objective of the Location and Status Estimation Algorithm (LSEA) is to estimate a 

participant’s status and location in the house based on the sequence of sensor events. The algorithm 

has two phases. Phase 1 assigns time segments between sensor events three status categories as 

active, sedentary and unknown at various locations in the house. The second phase further refines 

the status and location estimates from the first phase to include the out-of-home and in-bed status 

and location. The inputs to LSEA are the preprocessed sensor data for the time period of interest 

and mappings of these sensors to locations in the house where the sensors are installed. The outputs 

are estimates of time, status and location of the participant for the time period of interest. The 

LSEA algorithm steps are described next. 

In Phases 1, initial location and status are assigned.  
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Refractory periods of motion sensors and periods during which the participant is not 

observable by any of the motion sensors create time periods during which the status and location 

of the participant are not known directly from the sensor data. The rule-based approach in Phase 1 

is designed to minimize such time periods using the sequence of events from motion sensors. The 

rules described in this phase are independent of the house layout and sensor device manufacturer. 

 Step 1.1: Select two consecutive ON values. Denote the time of the first ON value 

reported by Sensor 1 as ON1, and the second ON value reported by Sensor 2 as ON2. 

The time segment between ON1 and ON2 is as assigned an initial status and location 

according to 4 conditional rules based on the OFF values reported between ON1 and 

ON2 as follows: 

 Rule 1: If there is no OFF1 event between ON1 and ON2, the time segment between 

ON1 and ON2 is assigned status active and location the install location of Sensor 1. 

(Note that this rule also covers cases where OFF events from sensors other than 

Sensor 1 are received between ON1 and ON2) 

 Rule 2A: If there is an OFF1 event between ON1 and ON2, then the time segment 

between ON1 and OFF1 is assigned status active and location the install location of 

Sensor 1. 

The status and location of the time segment between OFF1 and ON2 are assigned according 

to the presence and absence of OFF2 event as described in Rules 2B1 and 2B2. 

 Rule 2B1: If there is no OFF2 event between OFF1 and ON2, then the time segment 

between OFF1 and ON2 is assigned status unknown and location unknown. 
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 Rule 2B2: If there is an OFF2 event between OFF1 and ON2, then the time segment 

between OFF1 and ON2 is assigned status sedentary and location the install location 

of Sensor 2. 

Table 2.1 illustrates the status and location assignment rules in Step 1.1 for time segments 

between two consecutive ON events. 

 Step 1.2: Repeat Step 1.1 for all pairs of ON events where the first ON event is the 

second ON event of the previous pair. 

Phase 1 transforms the preprocessed data to a series of continuous-time segments with a 

location and an initial status as active, sedentary and unknown. During the time segments with 

status and location categorized as unknown, the participant may be outside of the home, he/she 

may be in areas of the home that are unobservable by any motion sensor, or the participant may be 

sedentary such as sitting in a chair or lying in bed. During the time segments with sedentary status, 

the participant may be sitting on a chair or lying in bed. Phase 2 of the algorithm further revises 

the sedentary and unknown status assignments. 

In Phase 2, the initial location and status assignments from Phase 1 are revised as out-of-

home, in-bed or unobservable based on specific rules. The purpose of these rules is to increase the 

robustness of the LSEA to variations in sensor types with varying refractory periods, variations in 

home layouts, and variations in sensor installations due to large pieces of furniture or preferences 

of the participants.  Steps 2.1 and 2.2 re-categorize specific unknown time segments as out-of-

home or sedentary. Step 2.3 re-categorizes specific unknown and sedentary time segments as in-

bed. Finally, Step 2.4 re-categorizes the remaining unknown time segments as unobservable since 

these do not satisfy any of the rules. 
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 Step 2.1: Iterate through assignments from Phase 1. Revise the status and location of 

the time segments with status sedentary and location Exit/Entrance as out-of-home 

(both for status and location). 

 Step 2.2: Iterate through assignments from Phase 1. Revise time segments with status 

unknown with the same locations before and after them based on the following two 

rules: 

 Rule 1: If the locations before and after are Exit/Entrance, revise the location and 

status as out-of-home. 

 Rule 2: If the locations before and after are not Exit/Entrance, revise the location 

as the location before or after and status as sedentary. 

 Step 2.3: Iterate through assignments from the previous steps. Revise time segments 

with status unknown or sedentary as in-bed (both for status and location) if one of the 

following rules are satisfied: 

 Rule 1: The duration of the time segment with unknown status is greater than a user-

defined threshold τ and the location of its next time segment is either a Master 

bedroom or Master bathroom. 

 Rule 2: The duration of time segments with sedentary status is greater than a user-

defined threshold τ and its location is either a Master bedroom or Master bathroom. 

Based on our observations of ambient sensor data from a variety of participants in 

HomeSense, long time durations with status unknown before a motion in Master bedroom or 

Master bathroom and long time durations with status sedentary and location Master bedroom or 

Master bathroom often occur during the night where the participant briefly gets up to go to the 

bathroom or other part of the house and proceeds to go back to bed. These two rules are designed 
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to categorize these cases as in-bed using a parameter τ which allows us to adjust the sensitivity of 

these rules. In our experience, a value of τ = 20 minutes works well across many homes and the 

LSEA outputs are robust to any τ value in the range of 10 to 30 minutes. 

 Step 2.4: The remaining time segments with status and location unknown which cannot 

be classified in the previous steps are revised as unobservable both for status and 

location. 

2.3.5 Illustrative Example 

To illustrate the LSEA, consider the preprocessed data in Figure 2.3. The locations of the 

motion sensors in the house are shown in Table 2.2. 

The output of Phase 1 using the preprocessed data of Figure 2.3 is shown in Figure 2.4. 

Between the first pair of ON events in rows 1 and 2, there is no OFF event pertaining to Sensor 1 

(sensor ID = 618). This condition satisfies Rule 1 so the time segment between these two ON 

events is assigned status active and location Living room as shown in row 1 in Figure 2.4. The 

same reasoning categorizes the time segment between the next pair of ON events in rows 2 and 3 

in Figure 2.3 as status active and location Living room in row 2 in Figure 2.4. The next iteration 

considers ON events in rows 3 and 7 in Figure 2.3. Since there is an OFF event for Sensor 1 (sensor 

ID = 568) in row 5 which occurs between these two ON events, based on Rule 2A the time segment 

between rows 3 and 5 is assigned status active and location Exit/Entrance and the time segment 

between rows 5 and 7 is assigned status and location unknown as shown in rows 3 and 4 in Figure 

2.4. For the pair of ON events in rows 13 and 17 in Figure 2.3, there is an OFF event for Sensor 1 

(sensor ID = 553) in row 15, and an OFF event for Sensor 2 (sensor ID = 565) in row 16. Based 

on Rule 2B2, the time segment between row 13 and row 15 is assigned status active and location 
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Master bathroom in row 10 and the time segment between row 15 and row 17 is assigned status 

sedentary and location Master bedroom in row 11 in Figure 2.4. 

Phase 2 refines the time segments with status unknown and sedentary from Phase 1 and the 

output is shown in Figure 2.5. Based on Rule 1 of Step 2.2, the time segment with status unknown 

in row 4 of Figure 2.4 is re-categorized as out-of-home both for status and location as shown in 

row 4 in Figure 2.5. Row 11 in Figure 2.4 is the time segment with status sedentary, location 

Master bedroom, and duration greater than τ = 20 minutes; row 13 and row 15 are time segments 

with status unknown, duration greater than τ = 20 minutes, and a location Master bathroom or 

Master bedroom after them. Therefore, the time segments in row 11, 13 and 15 based on Step 2.3 

are all re-categorized as in-bed both for status and location in Figure 2.5. Finally, the unknown 

time segment in row 17 in Figure 2.4 is re-categorized as status sedentary and location Master 

bedroom based Rule 2 of Step 2.2 in Figure 2.5. The remaining unknown time segment cannot be 

re-categorized using Step 2.1 to Step 2.3 and according to Step 2.4, it is re-categorized as 

unobservable both for status and location as shown in row 6 in Figure 2.5. 

2.3.6 Algorithm Validation 

In this study, we selected to validate the two most important location and status outputs of 

the LSEA, out-of-home and in-bed, both of which start and end with distinct activities of leaving 

home and returning home, and waking up and going to bed. These four activities happen less 

frequently than other activities that cause a change in the status categories and therefore are more 

recallable for the participants. 

To validate the estimated times of these four activities we developed a mobile app 

nicknamed AVA (Activity Validation App). The app sends participants simple questions in the 

form of push notifications and queries them about when they performed these activities. For 
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example, the question for the occupant going to bed and the possible responses to the question are 

shown in the screenshot of AVA in Figure 2.6. We have selected a 20-minute range approximately 

centered on the estimated time of the activity to balance precision and the participant’s ability to 

recall the approximate time of the activity. The estimated time of an activity is considered accurate 

if the participant responds by choosing the “Yes, I performed the activity …” 

Each participant is sent a maximum of two questions per day. The first question arrives at 

11:00 am and is about his/her activities between 6:00 pm the previous day and 11:00 am. The 

second question arrives at 6:00 pm and is about his/her activities between 11:00 am and 6:00 pm. 

The questions are randomly sequenced and true negative questions are sent to eliminate habituation 

[81] and social desirability [82] biases. Questions that are not answered the same day are deleted 

at midnight. 

Two questions “Did you leave home between …” and “Did you return home between …” 

are used to validate out-of-home status. When generating the validation questions for the out-of-

home status, we include the cases where the estimated out-of-home status is longer than 20 minutes. 

Once the appropriate time segment is identified, the start and end times of the segment are used to 

generate the questions to be sent to the participant. 

Two other questions “Did you go to bed between …” and “Did you get out of bed between 

…” are used to validate in-bed status. When generating the validation questions for the in-bed 

status, we focused on in-bed status overnight that occur between 6:00 pm and 11:00 am the next 

day. If the times between segments with in-bed status are less than 30 minutes these are considered 

as common sleep distributions such as visits to the bathroom. After filtering out these sleep 

disruptions, the beginning of the first in-bed status in the sequence and the end of the last in-bed 

status are estimated as the bed-time and wake-up time respectively.  In rare cases where multiple 
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such sequences are found, the sequence with the longest duration is chosen to generate the bed-

time and wake-up time. 

True negative questions were generated and sent to participants by selecting a random time 

during the appropriate time period and checking to make sure that it did not coincide with the time 

of any true positive questions. 

2.4 Results and Discussion 

2.4.1 Validation of Out-of-home and In-bed Status 

Between November 9, 2017 and March 31, 2018 a total of 518 questions were sent to the 

two participants who agreed to use AVA and participate in the validation of LSEA. Participant 10 

downloaded the app and used her own smartphone and Participant 13 used a tablet provided by 

our research group. The summary of responses by the participant and by question type are shown 

in Table 2.3. For the four true positive questions used to validate the estimates from the LSEA, the 

overall accuracy rates calculated as the ratio of number of “Yes” responses to the number of “Yes” 

or “No” responses, ranged between 90% and 98% with no significant variation by question type 

or participant showing excellent overall accuracy for the LSEA. For the true negative questions 

sent to the participants, 88% of the responses were “No, I did not perform this activity in this time 

range” with no significant variation by participant showing strong evidence that there is no social 

desirability or habituation bias in the validation process.  

2.4.2 LSEA Outputs 

The outputs of LSEA are an excellent source of information for visualizing daily patterns 

and activities of the occupant. For example, Figure 2.7 and Figure 2.8 illustrate the time segments 

and corresponding status estimates for each day over a 3-month period between December 1, 2017 
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and February 28, 2018 for two participants in the HomeSense project. These visualizations show 

daily patterns and reveal patterns that persist or change over time. 

Figure 2.7 shows that Participant 4 follows a fairly consistent sleep pattern waking up 

around 7:00 am and going to bed around 10:00 pm. On January 10, February 24 and February 27, 

the estimates indicate that the participant may have had restless nights as s/he has spent very early 

morning hours out of bed. The participant also has a tendency to leave his/her house late morning 

and early afternoon and usually returns home before 5:00 pm on most days. We can also see that 

the participant was away from home the night of February 16 returning the next day. 

The same type of visualization for Participant 8 is shown in Figure 2.8 for the same time 

period. This participant also has a fairly consistent sleep pattern however note the increased 

number and duration of sleep disruptions (yellow and green bars breaking up the blue in-bed status) 

compared with Participant 4. This participant typically has two outings in a day. The first one is 

usually around lunch hours and the other one usually occurs in the afternoon starting around 4:00 

pm. On average, this participant spends 25% of her day out of home compared with Participant 4 

who spends 11% of the day out of the home. We can also see that this participant was away from 

home from January 19 to January 21. 

Similarly, Figure 2.9 and Figure 2.10 show LSEA outputs for two more recent participants 

in the HomeSense project over a five-month period between January 1, 2019 and May 31, 2019. 

Participant 56 whose daily status is shown in Figure 2.9 has a steady job and is out of the house 

during business hours three to four days of the week which results in a clearly different pattern 

than those in Figure 2.7 and Figure 2.8. This participant is also on two short holidays over the five-

month period. Figure 2.10 depicts the daily activities of Participant 53 which seems similar to the 

daily activities of other participants with short to medium outings during the day and a slightly 



27 
 

higher number of sleep disruptions at night. The interesting point about this figure is that starting 

early in May, it seems like the participant does not leave the house at all. In fact, during this time 

period, even though the participant did leave the house, the contact sensor on the garage door was 

not working. Therefore, all out-of-home time durations were categorized as sedentary when the 

garage door was used to exit the house which is almost always the case with this participant. We 

discuss sensor malfunctions and other limitations of the LSEA algorithm in the Conclusions 

section.  

2.5 Case Study 

 During bi-weekly interviews, one of the participants disclosed details of a planned hip 

replacement surgery on March 21, 2017. The participant scheduled the surgery in January 2017 

when her symptoms were becoming unmanageable. After the surgery, the participant stayed in the 

hospital for four days and returned home on March 25, 2017. The participant indicated she had 

several visitors before and after the surgery and that she went to physical therapy outside of her 

home for eight weeks. Starting in June 2017, the participant stopped mentioning her hip surgery 

during the bi-weekly interviews. 

Figure 2.11 shows the daily status estimates of the LSEA for 14 months from September 

2016 to October 2017. The visualization provides useful insight into the participant’s activities. 

We can clearly see that the participant was away from home during Christmas Holidays and also 

at the end of March for her surgery. The increased active status estimates immediately after 

returning home from the surgery align with the presence of visitors/caregivers in the house. Also 

note that during the first month after surgery the participant’s time out-of-home is almost 

nonexistent and gradually increases over time returning to levels comparable to and exceeding 

those in September 2016. The overnight sedentary status estimations during the Christmas 
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Holidays and at the end of March after her surgery are caused by the presence of visitors. This is 

one of the limitations associated with a rule-based approach where the rules are designed for a 

single occupant and the presence of multiple occupants may cause misclassification of the 

occupant’s status. 

A comparison of monthly aggregates of status estimates confirms the observations from 

Figure 2.11. Figure 2.12 illustrates the monthly summary of the estimated time of the out-of-home 

and active status of the participant based on the LSEA over the same 14 month period. In Figure 

2.12 (a), there is a notable decrease in out-of-home time in the first 7 months which aligns with the 

worsening of the participant’s symptoms prior to surgery. In April 2017, immediately following 

the surgery, the participant has the lowest out-of-home time. Out-of-home time increases in the 

following 6 months as the participant presumably regains her mobility. 

Unlike out-of-home time which changes in accordance with the participant’s mobility, 

quartiles in box plots of active time in Figure 2.12 (b) reach surprisingly high levels in April after 

the surgery. This seems somewhat counter-intuitive considering the participants reduced mobility 

due to the surgery. Closer examination of active time based on specific locations in the house as 

shown in Figure 2.13. Figure 2.13 (a) reveals that active time is increased in the guest room in 

March and April which corresponds to the presence of visitors following the surgery. The effect 

of visitors on increased active time can also be seen in the month of December due to visitors 

during the holiday season. Figure 2.13 (b) which shows increased sedentary time in the guest room 

during these months also confirms the increased use of the guest room presumably by the visitors. 

2.6 Conclusion and Future Work 

In this paper, we introduce a novel methodology to analyze ambient sensor network data 

that estimates the status and location of older adults living in their private homes. The methodology 
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captures the daily patterns and activities of the occupant related to overall health and wellness. We 

demonstrate the potential applications of the methodology using data from private homes of older 

adults participating in an ongoing smart home research study HomeSense and demonstrate that the 

outputs of the location and status estimation algorithm are effective in visualizing and quantifying 

daily patterns and activities, and in investigating changes in overall health and wellness. 

Compared with other work in this area, our approach focuses on the totality of the data to 

estimate general information about the occupants’ patterns and activities as opposed to directly 

estimating particular health and wellness-focused metrics. More specifically, raw sensor data is 

converted to an information triplet (Time, Status, Location) which is subsequently processed by a 

rule-based algorithm to estimate the occupants’ patterns and activities. This methodology also 

takes into account inherent variability in the sensor data from ambient sensor networks, e.g. 

refractory periods, and relies only on the basic information reported by commonly available 

motion sensors in the market. In this manner, the proposed LSEA is designed to be used with a 

wide range of ambient sensor networks with any mix of motion sensor types. 

Our approach is not without limitations. The rule-based approach to estimating the status 

of the occupant has only been tested in homes with occupants living by themselves. The presence 

of long-term visitors causes deviations in the estimation of the occupant’s status and location. 

While these deviations are indicative of the presence of visitors, which itself is an important 

indicator related to the health and wellness of the occupant, estimates of location and status during 

such times are not representative of the occupant’s activities and patterns. Similarly, false sensor 

readings (rare but still present) or sensors which stop reporting data due to malfunction or dead 

batteries do present problems for the proposed approach. Particularly in ambient sensor networks 

installed in private homes, sensor failures may persist for several days or even weeks if access to 
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the premises to correct the problem is not possible. Finally, the unobservable status estimation of 

the proposed approach lacks any information regarding the occupants’ status and location. While 

it may not be possible to completely eliminate, the duration of time estimated as unobservable 

must be carefully managed through adjustments in sensor deployment and diligent sensor 

maintenance. 

Future work will focus on addressing limitations particularly with respect to imputing 

missing sensor data in the case of sensor failures to improve the LSEA estimates of the occupants’ 

location and status. 
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Row Sensor ID  Time  Value 
1 618 2017-01-01 22:09:14.223 1 

  2   576   2017-01-01 22:09:17.703 255 
3 576 2017-01-01 22:09:52.680 0 
4 576 2017-01-01 22:10:10.257 0 
5 618 2017-01-01 22:13:04.448 0 

  6   576   2017-01-01 22:36:54.375 255 
7 618 2017-01-01 22:36:56.299 1 

Figure 2.1 An example of raw sensor data in database server. 
 
 

Row Sensor ID  Time  Value 
1 618 2017-01-01 22:09:14.223 1 
2 576 2017-01-01 22:09:17.703 1 
3 576 2017-01-01 22:09:52.680 0 
4 618 2017-01-01 22:13:04.448 0 
5 576 2017-01-01 22:36:54.375 1 
6 618 2017-01-01 22:36:56.299 1 

Figure 2.2 The preprocessed form of the raw data in Figure 2.1. 
 
 

Table 2.1 
Location and status estimation algorithm 

Rule Sensor Events 
 

Location and Status Assignment 

1 [t1, t2] is assigned the location of 
Sensor 1 with active status. 

2A [t1, t2] is assigned location of 
Sensor 1 with active status; [t2, t3] 
is assigned an unknown location 
with unknown status. 

2B1 [t1, t3] is assigned location of 
Sensor 1 with active status; [t3, t4] 
is assigned an unknown location 
with unknown status. 

2B2 [t1, t2] is assigned location of 
Sensor 1 with active status; [t2, t4] 
is assigned location of Sensor 2 
with sedentary status. 
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Row Sensor ID Time Value 
1 618 2017-01-01 22:09:14.223 1 
2 576 2017-01-01 22:09:17.703 1 
3 568 2017-01-01 22:09:51.671 1 
4 576 2017-01-01 22:09:52.680 0 
5 568 2017-01-01 22:10:05.148 0 
6 618 2017-01-01 22:13:04.448 0 
7 568 2017-01-01 22:36:48.437 1 
8 568 2017-01-01 22:36:52.690 0 
9 576 2017-01-01 22:36:54.375 1 
10 618 2017-01-01 22:36:56.299 1 
11 576 2017-01-01 22:36:57.455 0 
12 565 2017-01-01 22:38:18.263 1 
13 553 2017-01-01 22:38:39.145 1 
14 618 2017-01-01 22:40:00.299 0 
15 553 2017-01-01 22:42:57.115 0 
16 565 2017-01-01 22:43:02.644 0 
17 565 2017-01-02 02:10:22.256 1 
18 565 2017-01-02 02:14:26.988 0 
19 553 2017-01-02 04:10:59.305 1 
20 553 2017-01-02 04:14:36.848 0 
21 565 2017-01-02 07:05:53.006 1 
22 565 2017-01-02 07:10:15.843 0 
23 565 2017-01-02 07:13:20.177 1 
24 576 2017-01-02 07:17:31.959 1 
25 618 2017-01-02 07:17:36.908 1 
    

Figure 2.3 An example of preprocessed data. 
 
 

Table 2.2 
The mapping of some ambient sensors to locations of a house 

Sensor ID Sensor Type Install Location 

553 Motion sensor Master bathroom 
565 Motion sensor Master bedroom 

568 Door/Window sensor Exit/Entrance 
576 Motion sensor Living room 
618 Motion sensor Living room 
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Row Start Time End Time Status Location 
1 2017-01-01 22:09:14.223 2017-01-01 22:09:17.703 Active Living room 
2 2017-01-01 22:09:17.703 2017-01-01 22:09:51.671 Active Living room 
3 2017-01-01 22:09:51.671 2017-01-01 22:10:05.148 Active Exit/Entrance 
4 2017-01-01 22:10:05.148 2017-01-01 22:36:48.437 Unknown Unknown 
5 2017-01-01 22:36:48.437 2017-01-01 22:36:52.690 Active Exit/Entrance 
6 2017-01-01 22:36:52.690 2017-01-01 22:36:54.375 Unknown Unknown 
7 2017-01-01 22:36:54.375 2017-01-01 22:36:56.299 Active Living room 
8 2017-01-01 22:36:56.299 2017-01-01 22:38:18.263 Active Living room 
9 2017-01-01 22:38:18.263 2017-01-01 22:38:39.145 Active Master bedroom 
10 2017-01-01 22:38:39.145 2017-01-01 22:42:57.115 Active Master bathroom 
11 2017-01-01 22:42:57.115 2017-01-02 02:10:22.256 Sedentary Master bedroom 
12 2017-01-02 02:10:22.256 2017-01-02 02:14:26.988 Active Master bedroom 
13 2017-01-02 02:14:26.988 2017-01-02 04:10:59.305 Unknown Unknown 
14 2017-01-02 04:10:59.305 2017-01-02 04:14:36.848 Active Master bathroom 
15 2017-01-02 04:14:36.848 2017-01-02 07:05:53.006 Unknown Unknown 
16 2017-01-02 07:05:53.006 2017-01-02 07:10:15.843 Active Master bedroom 
17 2017-01-02 07:10:15.843 2017-01-02 07:13:20.177 Unknown Unknown 
18 2017-01-02 07:13:20.177 2017-01-02 07:17:31.959 Active Master bedroom 
19 2017-01-02 07:17:31.959 2017-01-02 07:17:36.908 Active Living room 
     

Figure 2.4 The output of Phase 1 of the LSEA for the preprocessed data in Figure 2.3.  
 
 

Row Start Time End Time Status Location 
4 2017-01-01 22:10:05.148 2017-01-01 22:36:48.437 Out-of-home Out-of-home 
6 2017-01-01 22:36:52.690 2017-01-01 22:36:54.375 Unobservable Unobservable 
11 2017-01-01 22:42:57.115 2017-01-02 02:10:22.256 In-bed In-bed 
13 2017-01-02 02:14:26.988 2017-01-02 04:10:59.305 In-bed In-bed 
15 2017-01-02 04:14:36.848 2017-01-02 07:05:53.006 In-bed In-bed 
17 2017-01-02 07:10:15.843 2017-01-02 07:13:20.177 Sedentary Master bedroom 

     

Figure 2.5 The output of Phase 2 of the LSEA for the preprocessed data in Figure 2.3. 
 
 

 

Figure 2.6 An example question of AVA for the activity of ‘going to bed’. 
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Table 2.3 
LSEA validation results 

Participant Question 
Category 

Questions 
Sent 

Response 
Received 

Not 
Certain 

Yes 
Response 

No 
Response 

Accuracy 
Rate (%) 

10 Leave home 45 22 1 20 1 95 
 Return home 36 15 4 11 0 100 
 Go to bed 30 17 4 12 1 92 
 Get out of bed 25 13 0 13 0 100 
 True Negative 124 70 3 10 57 85 

13 Leave home 45 39 2 32 5 86 
 Return home 45 41 3 37 1 97 
 Go to bed 26 26 4 20 2 90 
 Get out of bed 30 30 2 25 3 89 
 True Negative 112 101 2 10 89 90 

Overall Leave home 90 61 3 52 6 90 
 Return home 81 56 7 48 1 98 
 Go to bed 56 43 8 32 3 91 
 Get out of bed 55 43 2 38 3 93 
 True Negative 236 171 5 20 146 88 

 
 

 

Figure 2.7 Daily estimates of five status categories for Participant 4. The average percentage of daily 
duration of active is 12%, sedentary 37%, in-bed 36%, out-of-home 11%, and unobservable 4%. 

 
 

 

Figure 2.8 Daily estimates of five status categories for Participant 8. The average percentage of daily 
duration of active is 8%, sedentary 20%, in-bed 41%, out-of-home 25%, and unobservable 6%. 
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Figure 2.9 Daily estimates of five status categories for Participant 56. The average percentage of daily 
duration of active is 18%, sedentary 11%, in-bed 37%, out-of-home 31%, and unobservable 3%. 

 
 

 

Figure 2.10 Daily estimates of five status categories for Participant 53. The average percentage of daily 
duration of active is 10%, sedentary 40%, in-bed 37%, out-of-home 11%, and unobservable 2%. 

 
 

 

Figure 2.11 Daily estimates of five status categories for Participant 13. The average percentage of daily 
duration of active is 17%, sedentary 28%, in-bed 35%, out-of-home 8%, and unobservable 12%. 
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Figure 2.12 Monthly summary of LSEA status estimations for Participant 13 over 14 months (excludes 
days when the participant was away overnight). (a) Out-of-home time. (b) Active time. 

 
 

 

Figure 2.13 Monthly summary of LSEA status and location estimations for Participant 13 over 14 
months. (a) Active time in the guest room. (b) Sedentary time in the guest room. 
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Chapter 3: An Entropy-based Approach to the Study of Human Mobility and Behavior in 

Private Homes  

 

3.1 Note to Reader 

Portions of Chapter 3 has been submitted for review by IEEE Transactions on Human-

Machine Systems.  

3.2 Introduction 

Human mobility is the movement of human beings in space and time and may pertain to 

an individual or a population [83]. Human mobility occurs in varying distance scales ranging from 

movement by foot within an indoor environment such as homes or buildings to long-distance travel 

by different modes of transport using cars, buses, and trains in outdoor environments. In recent 

decades, the pervasion of mobile devices has enabled the collection of large scale geolocation 

information related to outdoor human movement facilitating research aimed at gaining a deeper 

understanding of human mobility. Studies based on ubiquitous data such as call detail records 

(CDRs) [84], [85], GPS logs [86]–[88], WLAN logs [89], and transportation smart card records 

[90] have shown that human mobility is not completely random but potentially regular and 

predictable. Understanding human mobility benefits applications including but not limited to urban 

planning [91], [92], epidemic models [93], [94], and disaster response [95], [96].  

In indoor environments, a growing number of context-aware smart home applications 

including automation [26], [97], energy management [98], [99], abnormal situation diagnoses 

[100]–[102], and reminder assistance [103] characterized by their ability to be sensitive to 
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occupants’ location, movement, and activity are emerging. Smart homes are increasingly seen as 

facilitating innovative and supportive environments that provide intelligent services to enable the 

healthy, safe, and independent aging plan desired by older adults [104], [105]. Domestically, 

programs such as the MAVHome at the University of Texas Arlington [26], The Aware Home at 

the Georgia Institute of Technology [27] and the Gator Tech Smart House at the University of 

Florida [28] have historically served as single-home-test-bed style environments. Internationally, 

the U-Health smart home project at POSTECH [29]–[31] integrates information from small-sized 

medical body sensors [32] with other ambient sensors to assist older adults in their homes. Other 

programs including The Place Lab at the Massachusetts Institute of Technology [33], The Tiger 

Place project at the University of Missouri-Columbia [34], the CASAS Smart Homes project at 

Washington State University [35], the ORCATECH project of the Oregon Health and Science 

University [36], and HomeSense project at the University of South Florida [37] represent multi-

unit smart home projects that are testing a variety of devices as a means to impact health and well-

being across varying program targets. 

The study of human mobility in indoor environments based on ambient sensor data differs 

from the study of outdoor mobility based on geolocation information in the following five distinct 

ways.  

 Data collection infrastructure: In outdoor environments, mobility information is 

collected through common infrastructures such as mobile communication networks, 

GPS satellites, Wi-Fi access points, etc. While in indoor environments such as smart 

homes, the sensor layouts used to collect information differ from house to house due to 

different floor plans, sensor density and types, and occupant’s preferences. 
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Furthermore, ambient sensors are more prone to temporary outages due to power and 

usage-related issues resulting in intermittent loss of data. 

 Data generating frequency: In outdoor environments, data are collected when mobile 

devices are activated (making a call, accessing some location-related services, or 

connecting to a Wi-Fi access point), and therefore data generation frequency is sparser 

than that of ambient sensor networks where sensors are triggered passively without any 

intent by humans.  

 Data ambiguity: Mobile devices have unique identifiers linking them to a distinct 

moving object. On the other hand, data from simple ambient sensors cannot identify 

one distinct moving object from another. Therefore, visitors and residents in the home 

would generate a different mobility pattern than only the residents of the home.  

 Distinct location limits:  In outdoor environments, distinct locations humans can visit 

are essentially unconstrained. However, in smart home environments, the number of 

distinct locations is fixed and determined by the installed motion sensors.  

 The time period for trajectory construction: In outdoor environments, an individual’s 

movement over multiple days is modeled as a stationary stochastic process. Typically 

months of data are needed to capture all visited locations and a single sequence of 

movements is constructed for each individual in a large population. On the other hand, 

in smart home environments, a resident repeats routine behaviors on a daily basis. The 

data collected by ambient sensors facilitates the construction of multiple trajectories 

for different time periods and enables the study of the changes in human mobility over 

time.  
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The design and evaluation of context-aware smart home applications providing adaptive 

intelligent services for its residents must consider the regularity and predictability of human 

mobility and behavior at home. The only work we have come across which studies the regularity 

and predictability of human mobility at home is [106]. In this work, mobility is defined as the 

number of times an individual moves between different rooms in their home within a specified 

period of time without explicitly considering location information. The results indicate that while 

a common model across individuals is absent, a high degree of regularity and predictability of 

human mobility exists when contextual information e.g. walking speed, age, weather, 

socioeconomic status, etc. about individuals is taken into consideration. The authors conclude that 

in-home mobility is also highly stereotyped, albeit in a different way than outdoor mobility, and 

may have applications in predicting individual human health and functional status by detecting 

adverse events or trends, and in conducting more meaningful clinical trials. 

In this paper, we study human mobility in homes outfitted with ambient sensors. Our 

objective is to quantify the regularity and predictability of human mobility in private homes. We 

model an individual’s mobility as a stationary stochastic process and construct trajectories of the 

occupant by sequences of chronologically visited locations using data from ambient motion 

sensors. The entropy rate of the mobility is estimated from the sequences and represents a 

quantitative measure of the regularity and the limit of predictability of mobility is estimated using 

the entropy rate.  

The ambiguity associated with the mobility data collected from private homes and the 

unreliability in the data collection infrastructure introduce significant intermittent deviations to the 

assumed stationary stochastic process. To capture these unknown number of deviations, we model 

the time series of daily entropy rate as piecewise constant and estimate these change-points by 
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minimizing a penalized contrast function. [107] and [108] provide comprehensive reviews of 

methods for change-point estimation in sequential data considering variations in model 

assumptions. A penalized least-square estimator based on the Schwarz’s criterion [109] is 

introduced in [110] to estimate the unknown number of change-points. In this method, the 

unknown number of change-points is estimated by minimizing the sum of squares of the residuals 

combined with a penalty on the number of change-points. It is shown that this least-square 

estimator is a consistent estimator of the number of change-points under the assumption that the 

random variables are independent and normally distributed. [111], [112] expanded this work to a 

general context where the variables are not necessarily independent and proposed to estimate the 

unknown change-points by minimizing a penalized contrast function which converges to the true 

values with probability. This method has been used widely in many applications including but not 

limited to animal trajectory segmentation [113], EEG segmentation [114], CGH data analysis 

[115], and offset detection in GPS data [116]. In this study, we apply this method to segment the 

sequence of daily entropy rates to determine change-points.  

The rest of the paper is organized as follows: Section 3.3 introduces the theoretical 

background including the human mobility model, entropy and entropy rate, entropy rate 

estimation, and the limit of predictability of human mobility; Section 3.4 describes the data 

collection environment, data preprocessing, trajectory construction, and the dataset used in this 

study; Section 3.5 describes the methods including change-point detection algorithm, parameter 

setting, validation of change-points, and an illustrative example; Section 3.6 presents the results of 

the estimated entropy rate and predictability followed by Section 3.7 where discussion of the 

results and conclusions are presented. 
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3.3 Theoretical Background 

In this section, we introduce the theoretical fundamentals of human mobility and the 

background associated with the study of regularity and predictability of human mobility. The 

notations, definitions, and formulas follow those presented in [117] and [84] where entropy rate 

has been used to quantify the extent to which an individual’s travel patterns are regular and 

predictable. 

3.3.1 Human Mobility Model  

Human mobility is modeled as a stationary stochastic process ࢄ ൌ ሼ ܺሽ, where ܺ 

represents the random variable of the location at time ݐ , ݅ ൌ 1, 2, … ,݊. Let ࣲ be the set of all 

possible values of ܺ. For a stationary stochastic process, the joint distribution for any subset 

sequence of random variables in ሼ ܺሽ is invariant for any shift ݐ in time, i.e., 

Prሼ ଵܺ ൌ ଵ,ܺଶݔ ൌ ,ଶݔ … ,ܺ ൌ ሽݔ ൌ Pr	ሼܺ௧ାଵ ൌ ଵ,ܺ௧ାଶݔ ൌ ,ଶݔ … ,ܺ௧ା ൌ  ሽݔ

In our study,	ࣲ is the set of all motion sensors installed in a house, and  ܺ is a unique 

motion sensor in this set. 

A trajectory is a sample path of ࢄ and typically represented as a sequence of time-indexed 

locations. Let  ݈  represent the location update at time ݐ, a trajectory is then defined as a time series 

of locations ݈ଵ, ݈ଶ, … , ݈ with ݐଵ ൏ ଶݐ ൏ ⋯ ൏  . The duration at ݈ is the time difference betweenݐ

  .ାଵݐ  andݐ

3.3.2 Entropy and Entropy Rate  

 Let ܺ be a discrete random variable with the probability mass function ሺݔሻ ൌ

Prሺܺ ൌ ሻݔ , ݔ ∈ ࣲ. Entropy of ܺ, denoted as ܵሺܺሻ, is defined as 

ܵሺܺሻ ൌ െ ሻݔሺ log ሻݔሺ
௫∈ࣲ
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The unit of entropy is bit when the log is to base 2.  

Entropy measures the uncertainty of a single random variable. For a random variable with 

only one possible value, entropy equals 0 indicating there is no uncertainty with the realization of 

this random variable; while for a random variable with ݊	ሺ݊ ് 0ሻ  possible values which follows 

a uniform distribution, entropy equals log݊. Generally, a lower entropy implies lower uncertainty 

in the realization of a random variable. 

For a stochastic process ࢄ ൌ ሼ ܺሽ, ݅  0, i.e., a collection of random variables indexed by 

݅, entropy rate is defined as  

ܵሺࢄሻ ൌ lim
→ஶ

1
݊
ܵሺ ଵܺ,ܺଶ, … ,ܺሻ 

when the limit exists. In this definition, entropy rate represents the time-averaged entropy of ݊ 

random variables.  

Entropy rate can also be defined as  

ܵሺࢄሻ ൌ lim
→ஶ

1
݊
ܵ൫ ܺ| ܺିଵ, 	 ܺିଶ, 	… , 	 ଵܺ൯



ୀଵ

 

when the limit exists. This definition of entropy rate measures the uncertainty of the last random 

variable given historical information before it. For a stationary stochastic process, both limits exist 

and are equal [117]. 

Consider a stochastic process where all random variables are independent and identically 

distributed. Assume that each random variable is drawn from a uniform distribution with ܰ 

possible values. The entropy rate of this process is calculated as 

ܵௗ ൌ logଶ ܰ                                                           (1) 
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which equals the entropy of each random variable. This entropy rate is called random entropy. In 

the study of human mobility, ܵௗ measures the uncertainty of an individual’s next location 

assuming that this individual’s movement is totally random among ܰ possible locations.  

If the random variables in a stochastic process are independent and follow the same 

probability distribution ሺ݅ሻ, ݅ ൌ 1, 2, … ,ܰ, where ܰ  is the number of all possible locations visited 

by an individual, the entropy rate of this process is defined as  

ܵ௨ ൌ െ∑ ሺ݅ሻ logଶ ሺ݅ሻ
ே
ୀଵ                                                  (2) 

This entropy rate is referred to as the temporal-uncorrelated entropy. Note that all possible 

locations are equally likely visited when ሺ݅ሻ ൌ ଵ

ே
, ݅ ൌ 1, 2, … ,ܰ, which results in ܵ௨ ൌ

ܵௗ ൌ logଶ ܰ.  

The third entropy rate called the real entropy and denoted by ܵconsiders the frequency 

of visited locations and the order in which the locations are visited. It is calculated as 

ܵ ൌ െ∑ ܲሺܶᇱሻ logଶሾܲሺܶᇱሻሿ்ᇲ∈்                                           (3) 

where ܶ represents the sequence of the visited locations and ܶᇱ represents a subsequence of ܶ.  

Theoretically ܵ  ܵ௨  ܵௗ. It is important to emphasize that when the process is 

totally random, ܵௗ ൌ ܵ௨ ൌ ܵ, and when the process is not completely random but 

includes inherent repetitive patterns, ܵ is the smallest among the three entropy measures.  

3.3.3 Entropy Rate Estimation 

Given a sequence of length ݊ with ܰ distinct symbols in the sequence, the value of ܵௗ 

is calculated using (1). To calculate ܵ ௨ using (2), we need to estimate the probability distribution 

from the sequence. The probability of ݔ , ݅ ൌ 1, 2, … ,ܰ is estimated as ̂ሺݔሻ ൌ ܰ/݊, where ܰ is 

the total number of ݔ in the sequence. Instead of calculating ܵ  using (3), we estimate the value 
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of ܵ based on the Burrows-Wheeler block sorting transform (BWT) estimator which is easy to 

implement and is shown to be almost-sure convergent for stationary, ergodic random processes 

[118]  characteristic of movement trajectories considered in this work. 

3.3.4 The Limit of Predictability of Human Mobility 

Let ݄ିଵ ൌ ሼ ଵܺ,ܺଶ, … ,ܺିଵሽ be an individual’s locations at times ݐଵ through ݐ୬ିଵ and 

ܲሺ݄ିଵሻ be the probability of observing ݄ିଵ. Let ߨሺ݄ିଵሻ be the probability that an individual 

will be at his/her most likely location at time ݐ୬. The predictability of the ݊	݄ݐ location given the 

historical trajectory ݄ିଵ, denoted as Πሺ݊ሻ, is defined as   

Πሺ݊ሻ ≡  ܲሺ݄ିଵሻߨሺ݄ିଵሻ
షభ

 

Πሺ݊ሻ can be viewed as the highest accuracy to predict an individual’s ݊	݄ݐ location given 

the historical trajectory ݄ିଵ.  

Taking the limit, the overall predictability is defined as the averaged predictability over 

time:  

Π ≡ lim
→ஶ

1
݊
Πሺ݅ሻ




 

In [84], the upper bound of predictability Π, denoted as Π௫, is obtained by solving the 

equation 

ܵ ൌ െΠ௫logଶሺΠ௫ሻ െ ሺ1െ Π௫ሻlogଶሺ1െ Π௫ሻ  ሺ1െ Π௫ሻlogଶሺܰ െ 1ሻ        (4) 

where ܵ is the entropy rate and ܰ is the number of distinct symbols in the process. Π௫ is treated 

as the theoretical highest accuracy that a best designed predictive algorithm can achieve for the 

next location prediction problem. 
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3.4 Data Collection and Preparation 

 In this section, we introduce the data collection environment, data preprocessing, how 

trajectories are constructed from ambient sensor data, and the dataset used in this study. 

3.4.1 Data Collection Environment 

The data used in this study are collected from HomeSense, a smart home project at the 

University of South Florida that aims to apply ambient intelligence technologies in real living 

environments to help older adults age in place [37]. Participants of HomeSense are recruited from 

a retirement community, aged between 55 and 89 and live independently in their own homes. The 

participants are asked to be available for bi-weekly phone interviews designed to collect self-

reported information regarding major health and life events, travel and visitors. Further details 

regarding participant recruitment, consent and participation are outlined in IRB Protocol PRO 

00020982. 

A typical sensor network deployed in HomeSense is shown in Figure 1.1. Passive Infrared 

(PIR) motion sensors in each room sense movement, contact sensors attached to medicine box, 

pantry, fridge, and exit/entrance doors sense opening and closing of these items, power sensors 

attached to electrical household appliances such as coffee pots, washing machines, TVs and 

microwaves monitor the electricity usage, water sensors detect toilet usage, and environmental 

sensors report changes in temperature, luminance, and humidity. No cameras or microphones are 

used in any of the deployments. 

These wireless sensors installed in each house communicate through the Z-wave 

communication protocol [38]. A Raspberry Pi connected to the Internet acts as a gateway and 

sends the data from the sensor network to our HIPAA compliant main server using a light-weight 

machine-to-machine communication protocol MQTT [39]. In case of Internet connectivity 
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outages, data from the sensors are locally stored and sent to the main server once connectivity is 

re-established. The sensor data are permanently stored in a relational database on the main server. 

The main server supports communication with the gateways, sensor configuration, device tracking, 

data visualization, and data analysis activities for the HomeSense project. 

3.4.2 Data Preprocessing 

We only use the data from PIR motion sensors for this study. PIRs are installed in every 

room such that their field of vision covers the majority of the space in the room where the occupant 

is active. In the case of open floor plans and spaces large enough to require more than one motion 

sensor, multiple sensors are installed in a way that minimizes the overlap in their fields of vision.  

PIRs report two state values as either ON (1 or 255) or OFF (0). PIRs are triggered and 

report ON when a thermal pattern change is detected in the sensor’s field of vision. If no thermal 

pattern change is detected after a refractory period, an OFF value is reported. The refractory period 

varies between 12 seconds and 4 minutes depending on the manufacturer of these devices.  

The binary sensor data collected from PIR sensors is preprocessed to remove redundancies 

and standardized before further analysis. Data preprocessing involves three steps: (1) group data 

by sensor identity and sort them in ascending time; (2) eliminate sequential identical values 

reported by the same sensor, and only keep the first (earliest) reported data; (3) standardize 

reported binary sensor values as 0 or 1 which represent status OFF or ON respectively.  

3.4.3 Dataset 

The dataset includes all participants who were enrolled in HomeSense for at least five 

months between 2017-01-01 and 2018-12-31, who did not disclose family or friends staying with 

them long-term, and who did not report significant mental or physical impairments in the bi-

weekly assessment. In total 10 homes representing 3812 days of data are used in this study.   
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Subsequently, 21 more days were excluded from the dataset when the participants reported 

as being on vacation in bi-weekly interviews, and the days which were not reported by the 

participants but had fewer than 12 motion sensor events in a given day. This threshold was 

determined using the sensor data from the days where the participants reported as being on 

vacation. These events correspond to sensor errors and visitors who may have come to check on 

the house and are not representative of the participants’ typical activities. 

3.4.4 Trajectory Construction 

Daily motion trajectories are constructed based on the ON events from motion sensors that 

observe a resident’s movement within the house. Consider the motion sensor events in Figure 3.1. 

An ON event is reported by a motion sensor when a movement is detected in the field of the motion 

sensor’s view, and a sequence of chronological ON events represents the movement history. The 

sequence of ON events is transferred to a symbol sequence by replacing each of them by the 

symbol representation, for example, the sensor identity, to uniquely represent the motion sensor 

that reports an ON event, and thus we construct a symbol sequence representation of movement 

trajectory of the resident. For the motion sensor data in Figure 3.1 such a trajectory is constructed 

as ‘565 – 553 – 553 – 618 – 553 – 618 – 618’. 

3.4.5 Data Preparation 

Using the daily motion trajectories and the BWT entropy estimator described in Section 

3.3.3, we estimate the true daily entropy rate defined in (3) and construct a sequence of daily 

entropy rates for each home to describe the resident’s mobility over time. Similarly, we also 

calculate the limit of predictability for each day using (4). 

We define outliers as data points for which the estimated daily entropy rates are outside of 

the ሾܳଵ െ 1.5 ∗ ଷܳ,ܴܳܫ  1.5 ∗  ሿ range where ܳଵ and ܳଷ are the lower and upper quantile ofܴܳܫ
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the dataset respectively, and ܴܳܫ ൌ ܳଷ െ ܳଵ. Only outliers that do not have another outlier within 

(േ3 days) are removed from the dataset to ensure that temporary shifts are not removed from the 

dataset. Using this method, we exclude 19 data points reducing the dataset size to 3772 for all 

houses.  

Table 3.1 summarizes the resulting dataset size for each house, the minimum and the 

maximum number of unique symbols in the daily trajectories, and the minimum, the maximum, 

and the average length of the daily trajectories. The value of the maximum number of unique 

symbols denoted as ܰ ௫, varies between 8 and 12 as a consequence of the different sensor layouts 

in private homes. For houses with the same ܰ௫, the average length of daily trajectories also 

varies from house to house. For example, the average length of the daily trajectory of House 13 

(203) is almost twice as that of House 8 (112) while both of them have	ܰ௫ ൌ 10, implying that 

the average movement level of the participant in House 13 is higher than the participant in House 

8.  

3.5 Methodology  

As discussed in the Introduction section, changes in the data collection infrastructure such 

as addition or removal of sensors, temporary sensor malfunction which may last days or even 

weeks, and the presence of long-term visitors significantly alter the patterns in the motion sensor 

data from the residence and the regularity and predictability of the resident’s mobility estimated 

based on it. While such events are unavoidable during longitudinal data collection in private 

homes, identification and exclusion of such periods of time when the collected data is not truly 

representative of the resident’s normal daily activities will result in a more accurate and 

representative estimation of the regularity and predictability of the resident’s mobility. To 

accomplish this, we apply a change-point detection algorithm on the sequence of daily entropy 
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rates to identify segments of time where the sensor data may not be representative of the resident’s 

normal activity patterns. 

3.5.1 Change-point Detection Algorithm 

Denoting the sequence of daily entropy rate as ࢙ ൌ ሺݏଵ, ,ଶݏ … ,  ሻ where ݊ is the numberݏ

of days, we model this sequence of daily entropy as piecewise constant [119]  

ݏ ൌ ߤ  ߝ , 0 ൏ ߬ିଵ ൏ ݆  ߬ ൏ ݊, 1  ݇ ൏  (5)                                 ܭ

where ܭ is the total number of segments, ࣎ ൌ ሺ߬ଵ, ߬ଶ, … , ߬ିଵሻ with 0 ൏ ߬ଵ ൏ 	 ߬ଶ ൏ 	… ൏ ߬ିଵ ൏

݊	 is the sequence of change-points, ߤ is the mean of daily entropy in segment ݇  which is different 

for consecutive segments, and ߝ is the error item with a zero mean and a constant variance ߪଶ.   

To estimate the change-points in cases where the true number of change-points are 

unknown, [108] proposes a model selection via penalization approach where the optimal 

segmentation solution is obtained by minimizing a penalized contrast function 

,࣎ሺܬ ሻ࢙  ߚ ∗  ሻ࣎ሺ݊݁

where ܬሺ࣎,  ሻ is the contrast function used to measure the contrast between the segmentation࢙

marked by ࣎ and the sequence ݊݁ ,࢙ሺ࣎ሻ is the penalty term which increases as the number of 

change-points increases, and ߚ is the penalization parameter or tune parameter that adjusts the 

minimization of ܬሺ࣎,  ሻ. In the rest of this section, we describe the࣎ሺ݊݁ ሻ and the minimization of࢙

choice of ܬሺ࣎,  ሻ and an automatic procedure described in [114] to determine the penalized࣎ሺ݊݁ ,ሻ࢙

contrast estimate of change-points about the mean of a sequence in (5).  

Let ܷሺݏఛೖషభାଵ, … ,  ሻ be a contrast function to estimate the true value of the attributeߠ;ఛೖݏ

ߠ ∈ Θ of the data points between ݏఛೖషభାଵ,	and	ݏఛೖ e.g., mean or variance which doesn’t change 

within the segment ݇. For any segment, 1  ݇     satisfiesߠ the minimized contrast estimation , ܭ

ܷ൫ݏఛೖషభାଵ, … , ൯ߠ;ఛೖݏ  ܷ൫ݏఛೖషభାଵ, … , ߠ∀,൯ߠ;ఛೖݏ ∈ Θ 
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Let   

,ఛೖషభାଵݏ൫ܩ … , ఛೖ൯ݏ ൌ ܷ൫ݏఛೖషభାଵ, … ,  ൯ߠ;ఛೖݏ

Then,  ܬሺ࣎,  :over all segments ܩ ሻ is defined as the averaged summation of࢙

,࣎ሺܬ ሻ࢙ ൌ
1
݊
ܩ൫ݏఛೖషభାଵ, … , ఛೖ൯ݏ



ୀଵ

 

To estimate the changes in the mean, let  

ܷ൫ݏఛೖషభାଵ, … , ൯ߠ;ఛೖݏ ൌ  ሺݏ െ ሻଶߤ
ఛೖ

ୀఛೖషభାଵ

 

Then 

,ఛೖషభାଵݏ൫ܩ … , ఛೖ൯ݏ ൌ  ሺݏ െ ఛೖషభାଵ:ఛೖሻݏ̅
ଶ

ఛೖ

ୀఛೖషభାଵ

 

where ̅ݏఛೖషభାଵ:ఛೖ ൌ
ଵ


∑ ݏ
ఛೖ
ୀఛೖషభାଵ

, i.e., the estimate of the mean of data in segment ݇, 1  ݇   .ܭ

Thus, 

,࣎ሺܬ ሻ࢙ ൌ
1
݊
  ሺݏ െ ఛೖషభାଵ:ఛೖሻݏ̅

ଶ

ఛೖ

ୀఛೖషభାଵ



ୀଵ

 

For the penalty function, [114] suggests using the number of segments as the penalty 

function. Thus ݊݁ሺ࣎ሻ ൌ   .ܭ

When the number of true segments ܭ is known, the best estimate of ࣎ denoted as ࣎ො	is the 

sequence of change-points that minimizes the contrast function ܬሺ࣎,  is unknown, given ܭ ሻ. When࢙

an upper bound of ܭ denoted as ܭ௫, we can calculate  ࣎ො that minimizes the contrast function 

for all ܭ,  ௫ choices isܭ  among theseܭ denoted ,ܭ ௫. By definition, the best choice ofܭ…1

the one that minimizes the summation of the contrast function and the penalty terms ߚ ∗   .ሻ࣎ሺ݊݁
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[114] describes how ܭ varies with the choice of ߚ. For the points in the subset 

൛ሺ݊݁൫࣎൯, ො࣎൫ܬ , ,൯࢙ ݅  1ൟ	which is the convex hull of the set ሼሺ݊݁ሺࡷ࣎ሻ, ,ො࣎ሺܬ ܭ,ሻ࢙  1ሽ, the 

value of ܭሺߚሻ equals to ܭ which remains constant for any ߚ ∈ ሺߚ   ିଵሻ whereߚ,

ߚ ൌ
ො಼࣎ቀࡶ		 ො಼శభ࣎ቀࡶ		ቁି࢙, ቁ࢙,

ቀ಼࣎శభቁିቀ಼࣎ቁ
, ݅ 1 

[114] suggests choosing the largest ܭሺߚሻ  for which the length of the interval ሾߚ  ିଵሿ isߚ,

much larger than that of ሾߚ ݆ for any	 ିଵሿߚ,  ݅ as the estimation of the unknown number of 

segments to capture both significant and minor changes in the sequential data. The process of 

determining the unknown number of segments described in [114] is summarized as below: 

1. For ܭ ൌ 1, 2, … ܬ ො and࣎ ௫, computeܭ, ൌ ,ො࣎ሺܬ	   .ሻ࢙

2. Compute ܭ and ߚ for each ݅ and the length (݈) of the intervals (ሾߚ   .ିଵሿሻߚ,

3. Choose the biggest value of ܭ such that ݈ ≫ ݈ for ݆  ݅ as the estimation of the 

unknown number of segments, i.e., ࣎ොas the sequence of estimated change-points. 

We use the following automatic procedure described in [114] to calculate the unknown 

number of segments. 

1. Standardize ܬ ൌ ො࣎ሺܬ , ሻ  for any 1࢙  ܭ   ௫ byܭ

ሚܬ ൌ
ೌೣܬ

െ ܬ
ೌೣܬ

െ ଵܬ
ሺܭ௫ െ 1ሻ  1 

where ܬሚଵ ൌ ሚೌೣܬ ௫ andܭ
ൌ 1. 

2. For any 2  ܭ  ௫ܭ െ 1, calculate the second derivative ܦ ൌ ሚିଵܬ െ ሚܬ2   .ሚାଵܬ

ଵܦ ൌ ∞. Then the minimum penalized contrast estimate of ܭ is  

ܭ ൌ max	ሼ1  ܭ  ܦ such that	௫ܭ  ܵሽ 

where ܵ is a threshold. [114] suggests using ܵ ൌ 0.75 based on extensive experimental results.  
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After determining the number of change-points ܭ and its corresponding segmentation 

߬̂ଵ, … , ߬̂ିଵ, we estimate the mean and variance of the daily entropy in each segment using 

ߤ̂ ൌ
1

߬̂ െ ߬̂ିଵ
 ݏ

ఛොೖ

ୀఛොೖషభାଵ

, ߬̂ିଵ ൏ ݆  ߬̂, 1  ݇   ܭ

̂ߝ ൌ ݏ െ ,ߤ̂ ߬̂ିଵ ൏ ݆  ߬̂, 1  ݇   ܭ

3.5.2 Parameter Setting in the Change-point Detection Algorithm 

 Two parameters are required for the change-point detection algorithm; the minimum 

number of points in a segment ܮ, and an upper bound of the number of segments ܭ௫.  

In our experiment, we use ܮ ൌ 1 to ensure the detection of all possible change-points. 

For ܭ௫, usually a value 2 to 4 times the expected number of segments is suggested to give the 

algorithm some room to work but to avoid overestimating the number of segments [113], [120], 

[121]. In our study, the number of changes in the data collection environment and the sensor 

system, e.g. visitors, sensor system failures, tends to increase as the data collection time period 

increases. Therefore, longer time periods are more likely to have more change-points. In our 

experiments, we use the number of weeks contained in the sequential data as the value of ܭ௫. 

3.5.3 Validation of Change-points 

We validate the results of the change-point detection algorithm by checking whether the 

date of a change-point can be corroborated with the information from three sources; namely the 

bi-weekly assessments, the maintenance logs, and device battery information collected from the 

sensor network. We only consider information dated within two days of a change-point as 

corroborating evidence. 
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Bi-weekly assessments include information regarding long-term visitors from the 

participants. In most cases, this information pertains only to visitors who stay with the participant 

multiple days/weeks, and in many cases the start and end dates of the visit are approximations.  

Maintenance logs are used to record the team’s maintenance work on the sensor network. 

Logged maintenance activities include replacement of malfunctioning sensors, repositioning 

sensors, adding and removing sensors, and replacing batteries all of which impact the observed 

data. In most cases, to minimize the interruptions to the participants’ daily lives, multiple 

maintenance operations, such as adjusting sensors and replacing batteries, are completed during 

the same visit. 

The third source of information is the data collected from individual devices regarding their 

battery levels. We use this information to schedule maintenance visits to replace batteries before 

they are completely drained. If battery replacement is not completed in time and the batteries are 

completely drained, the device stops reporting data. In such cases, the observed data from the 

residence, and subsequently the estimates of entropy rates, are not representative of the resident’s 

normal activity patterns. 

The validation process entails using the corroborating information from the three sources 

for the start date of each segment to classify it into one of five categories: (1) Normal Operation 

when the sensor network is completely functional and system is observing only the participant’s 

activities; (2) System malfunction when one or more motion sensors malfunction and fail to report 

data including drained batteries; (3) System change when additional motion sensors are added to 

the system creating a new mode of normal operation; (4) Visitor presence when long-term visitors 

are present, and (5) Unknown when we were unable to find corroborating information from bi-

weekly assessments or maintenance logs to describe the segment.  
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3.5.4 Illustrative Example 

We use House 55 as an example to illustrate the application of the change-point-detection 

algorithm introduced in Section 3.5.1 on the sequence of daily entropy rates, and the validation of 

the detected change-points. The dataset for House 55 has 30 weeks of data. Thus we set the 

algorithm parameters as  ܭ௫ ൌ ܮ ,30 ൌ 1. Figure 3.2 shows the value of the contrast function 

 for 1ܬ  ܭ  30. 

The values of ܭ and their corresponding second derivative ܦ and ܬ for the data points in 

the convex hull set of ሺܭ,  ሻ is shown in Table 3.2. Using the automatic procedure and theܬ

threshold 0.75, we determine the largest ܭ for which ܦ is larger than the threshold 0.75 as the 

optimal number of segments, i.e., ܭ ൌ 5. Figure 3.3 illustrates the five segments of the sequence 

of daily entropy rates.  

Table 3.3 shows the segments and the results of the change-point validation process used 

to categorize each of the segments. The first segment which covers the dates between 2018-06-05 

and 2017-07-06 is categorized as ‘Normal_1’ based on our best judgment of the system state at 

that date using the totality of information from bi-weekly assessments and maintenance logs. This 

categorization is not based on the change-point detection algorithm as the starting point for this 

segment is the starting date of the dataset. For the second segment, there is no corroborating 

information for the change-point found at its start date, and thus it is categorized as ‘Unknown’. 

The start date of the third segment 2018-08-08 coincides with a maintenance visit where 

corrections were made to sensors that were not reporting data and therefore this segment is 

categorized as ‘Normal_1’.  The start date of the fourth segment coincides with visitor arrival and 

the segment is categorized as ‘Visitor-related’. The start date of the fifth segment could not be 
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corroborated with any record in the maintenance logs and bi-weekly assessments and therefore 

this segment is categorized as ‘Unknown’.   

This systematic approach to categorizing segments revealed interesting points of change, 

where the start of a number of ‘Unknown’ segments related to changes in the resident’s life patterns 

and marked behavioral changes. For example, compared with the fourth segment, sensor events 

reported by the motion sensors installed in the master bedroom and master bathroom were absent 

in early mornings starting on 2018-12-18. While this change in the motion sensor events could not 

be captured by the bi-weekly phone interviews or the maintenance logs, it is caused by the changes 

in the occupant’s behaviors which explain the change characterizing the fifth segment.   

We observe in Figure 3.3 that the mean of the entropy rate and the mean of the limit of 

predictability changes in successive segments. The mean of the daily entropy rates decreases from 

1.48 in Segment 1 to 1.18 in Segment 2 due to system malfunction with the predictability 

increasing from 0.74 to 0.80; and the mean of daily entropy rates increases from 1.46 in segment 

3 to 1.82 in segment 4 due to visitors’ activities with the predictability decreasing from 0.75 to 

0.67. We use Welch’s t-test [122] to determine if these differences are statistically significant. The 

p-values of the t-test for pairwise comparisons of the segments in Figure 3.3 are shown in Table 

3.4. We observe that the pairwise comparisons between the mean daily entropy rates and 

predictability of normal segments are significantly different at the 0.01 level than those of system-

malfunction and visitor-related categories, and the results are mixed in the comparisons with the 

‘Unknown’ category.  
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3.6 Results 

3.6.1 Overall Entropy Rate and Limit of Predictability 

 Table 3.5 shows the sample mean, the range of the random, temporal-uncorrelated, and 

true daily entropy rates over days, and the corresponding limits of predictability for each house. 

For the entropy measures, the sample mean of the real entropy ܵ̅ is lower than the mean of the 

temporal-uncorrelated entropy ܵ̅௨ and the mean of the random entropy ܵ̅ௗ, providing 

evidence that there are inherent repetitive patterns in the daily trajectories of the residents. Similar 

observations are made for the limit of predictability but with a reverse relationship where the mean 

of the limit of predictability for the real entropy Πഥ is the highest. Overall, the sample mean of 

the real entropy is between 0.48 and 2.36 with a mean of 1.60, and the corresponding limit of 

predictability is between 54% and 92% with a mean of 72%. The distribution of daily entropy rates 

and the corresponding limits of predictability for all houses are illustrated by box-plots in Figure 

3.4.  

3.6.2 Results from the Change-point Detection Algorithm  

The real entropy rate measures the extent to which movement patterns are regular. Changes 

in the regular movement patterns that are caused by changes in sensor system configuration or the 

visitors’ activities could introduce changes in the value of the real entropy rate. The results in this 

subsection pertain to the analysis of the sequence of daily real entropy rate for each house and use 

the change-point detection algorithm to examine how it changes over time. 

Table 3.6 shows the segments determined by the change-points obtained by the change-

point detection algorithm described in Section 3.5.1, and the segment categorizations using the 

validation process described in Section 3.5.3. There are 37 change-points that are detected over 10 

houses where 9 change-points are explained using the visitor-related information in the bi-weekly 
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assessments and 13 are explained using the information in the maintenance logs. In total, 22 out 

of 37 change-points can be validated by the records of bi-weekly assessment and the maintenance 

log.   

Table 3.7 below summarizes aggregate statistics by segment type from all homes. Note 

that around 50% of the segments containing 75% of the days correspond to normal behavior. 

‘Visitor-related’ and ‘System-malfunction’ type segments correspond to around 20% of the 

segments and less than 10% of the days. ‘Normal’ type segments are clearly longer containing a 

significantly higher number of days than those that correspond to visitors and system malfunction. 

30% of segments which contain 20% of the days were categorized as unknown. Another 

observation related to the results in Figure 3.7 is that the range of daily entropy rate of ‘Normal’ 

segments (0.81, 2.22) is much narrower than the range of all segments (0.48, 2.36) indicating that 

those days with uncharacteristically small and large daily entropy rates were not representative of 

the residents’ normal routines, but were associated with disruptions which involved presence of 

visitors or problems with the ambient sensor system. 

3.6.3 Comparison of Entropy Rates between Segment Types 

We compare the mean of daily entropy rate of different types of segments within each 

house to see if there are statistically significant differences between entropy rates of these 

segments. The results of the 99 pairs of comparisons using Welch’s t-test are summarized in Table 

3.8. All ‘Visitor-related’ segments have significantly different means from the ‘Normal’ segments 

and all nine ‘System-malfunction’ segments have significantly different means from the normal 

ones. As expected, the comparison of means with ‘Unknown’ segments has mixed results. 
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3.6.4 Analysis of Normal Days’ Entropy Rates 

  After isolating “Normal” segment types that capture the routine behavior of the residents, 

we proceeded to compare entropy rates of these days within and across homes to determine if there 

are meaningful subgroups or trends. We first compared entropy rates of weekdays with weekends 

as shown in the box plot in Figure 3.5. The sample means of daily entropy rates for weekdays and 

weekends were 1.64 and 1.63 respectively showing no significant difference between the means 

(p-value = 0.26). For this cohort, we did not expect to see a difference as only one participant has 

a routine work schedule. This participant works 10 hours each day on Wednesday, Thursday, and 

Friday and the box plot of daily entropy rate for each day of the week for this participant is shown 

in Figure 3.6. We did not observe any significant differences in daily entropies between three 

working days with the non-working days in Figure 3.6. Comparison of the entropy rates of the 

three working days with the non-working days also did not show any significant differences 

between the means of daily entropies (p-value = 0.51). 

When we studied the daily entropy rates of the participants stratified by age group, we 

obtained very interesting results. Of the 10 participants, two are below age 70, two are between 

the ages of 70 and 75, and six are older than 75. The box plots of the entropy rates for these three 

age groups are shown in Figure 3.7. The sample means are 1.48, 1.55, and 1.67 respectively and 

show statistically significant differences (p < 0.001) in the daily entropy rates among different age 

cohorts. 

3.7 Discussion and Conclusions 

In this paper, we studied human mobility in private homes using data from ambient sensors 

that observe residents’ movements. We construct daily movement trajectories based on the 

collected sensor data and use entropy rate to measure the regularity and predictability of these 
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trajectories. Our analysis shows that the movements of these residents at home are not completely 

random, but inherently regular and are predictable. The average real entropy for daily trajectories 

range between 0.81 and 2.22, and their corresponding limit of predictability is between 0.56 and 

0.86 (Table 3.7). On average, about 70% of the time the resident’s next location can be correctly 

predicted by a theoretically best designed predictive algorithm. The regularity and predictability 

of the resident’s movements under conditions representative of normal life routines, across 

different homes with varying floor plans, and for individuals with different lifestyles remained 

within a very narrow range over long periods of time. This is a very important finding and a unique 

contribution of this research. To our knowledge, it is the only work of this kind to quantify the 

predictability of human mobility in private homes and demonstrate its consistency across 10 

installations and 3772 days of data. 

The data collected from wireless ambient sensor systems in private homes over extended 

periods of time contains temporary shifts predominantly due to the presence of visitors in the 

homes and malfunctions in the sensor systems. These factors skew the data collected from the 

home in the form of missing sensor data in the case of system malfunctions, and additional sensor 

data not representative of the resident’s movements in the case of visitors. A change-point 

detection algorithm is used to identify such segments of time and study their influence on the 

entropy rates of daily trajectories. Results of the change-point detection algorithm shown in Tables 

3.6 and 3.7 present clear differences between the entropy rates of days that belong to different 

types of segments. 

Using the bi-weekly phone interviews with the participants and maintenance logs to 

corroborate the change-points from the algorithm, the segments were classified into four categories 

as ‘Normal’ (‘Normal_1’ and ‘Normal_2’), ‘Visitor-related’, ‘System-malfunction’, and 
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‘Unknown’. 75% of the study days corresponded to the normal behavior of the participant without 

the effects of known artifacts such as visitors and sensor system malfunctions. ‘Visitor-related’ 

and ‘System-malfunction’ type segments corresponded to less than 10% of the days, and 20% of 

the days were categorized as ‘Unknown’ as the starting change-points could not be validated by 

the interviews and logs. However, we were able to anecdotally observe behaviors from the rest of 

the sensor data which could have caused changes in daily entropy rate associated with the behavior 

of the participant such as changes in sleeping habits which coincided with the start of an unknown 

period. We note the detection of participants’ behavioral changes using entropy rate as an 

important future research direction.  

‘Normal’ type segments were much longer in duration and contained a significantly higher 

number of days than those that correspond to visitors and system malfunction. While the average 

daily entropy rate of the normal days was comparable to the overall average daily entropy rate 

(1.64 vs 1.60), the range of observed daily entropy values of the normal days was significantly 

narrower. We also observed consistent and statistically significant differences in the means of daily 

entropies for days categorized as ‘Normal’ vs. ‘System-malfunction’ and ‘Visitor-related’ as 

shown in Table 3.8. The mean daily entropy rate of visitor days was on average higher than days 

categorized as ‘Normal’ and ‘System-malfunction’. This is somewhat intuitive as during these 

days the presence of visitors in the house increased the amount of entropy. On the other hand, days 

during which there were sensor malfunctions where one or more sensors failed to send data, the 

average daily entropy rate was lower. 

After isolating the effect of known causes on the daily entropy rate and focusing on days 

categorized as ‘Normal’ segments, we proceeded to analyze the data across homes to identify 

potential patterns. Since our participants are retired older adults, we did not observe any significant 
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differences in daily entropies between weekdays and weekends as shown in Figure 3.6. Analysis 

of the daily entropies of the days of the week for one of our participants who works a regular 

schedule three days a week also did not show significant differences in daily entropy. While this 

is a very small dataset, it does provide additional evidence that an entropy-based approach is robust 

to varying lifestyles and routines. 

The most interesting results were obtained when analyzing daily entropy rate stratified by 

age group. We observed statistically significant increases in average daily entropy rate for older 

cohorts as shown in Figure 3.7. While our dataset is small based on 10 participants, this is a novel 

and interesting finding which motivates the further study of entropy-based metrics that measure 

the amount of disorder in stochastic processes as part of an ambient home monitoring system to 

identify aging-related behavior changes. 

Overall, 60% of the change-points detected by the algorithm are validated by the 

information in the bi-weekly phone interviews with the participants and maintenance and system 

logs. Since the information from the logs are incomplete, and there were other potential sources of 

change in the data collected from the private homes such as the changes in the residents behavior, 

we believe this percentage of validation is in fact very promising in terms of further investigating 

entropy-based metrics as part of a comprehensive activity and overall health monitoring system in 

more structured and closely monitored experimental designs. Identification of periods of time 

which are skewed by factors other than participants’ behaviors is essential for effective monitoring 

of health and wellness using ambient sensor systems in private homes. 
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Sensor ID Time State 
565 06:59:47 ON 
553 07:06:34 ON 
553 07:12:15 OFF 
553 07:16:56 ON 
553 07:21:32 OFF 
565 07:22:53 OFF 
618 07:39:21 ON 
553 07:52:33 ON 
618 07:54:42 OFF 
618 08:01:17 ON 
618 08:03:56 OFF 
618 08:08:09 ON 

Figure 3.1 An example of dataset. 
 
 

Table 3.1 
A summary of datasets for 10 houses 

House Size of datasets 
after removing 

outliers 

ܰ ܰ௫ Minimum 
trajectory 

length 

Maximum 
trajectory 

length 

Averaged 
trajectory 

length 
8 687 4 10 21 395 112 

13 713 4 10 23 545 203 
14 178 3 8 28 181 82 
27 674 3 8 19 264 96 
28 495 6 11 17 542 192 
51 178 5 10 15 286 131 
53 210 5 9 31 197 92 
54 220 6 12 50 492 212 
55 208 4 10 37 368 168 
56 209 5 10 38 529 173 

 
 

 

Figure 3.2 The value of the contrast function ܬ for 1  ܭ  ௫ܭ ൌ 30 for House 55. Circles indicate 
the convex hull points of ሺܭ,   .ሻܬ
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Table 3.2 
The values of the second derivative ܦ and contrast function ܬ for the convex hull points in ሺܭ,  ሻܬ

 ܬ ܦ ܭ
1 Infinity 11.47 
2 5.25 8.46 
3 0.68 7.23 
5 2.50 5.00 
6 0.25 4.61 
8 0.41 3.93 
10 0.53 3.29 
11 0.25 3.07 
12 0.11 2.94 

 
 

 

Figure 3.3 The daily entropy rates in five segments for House 55. The black horizontal lines in the graph 
show the sample means of the daily entropy rate for each segment, and the vertical dashed lines indicate 

the location of four change-points. 
 
 

Table 3.3 
Five segments obtained by the change-point detection algorithm in House 55 

Segment Number of data points Date start ܵ̅ (SD) Πഥ (SD) 
Interpretation of 

the start date Segment type 

1 31 2018-06-05 1.48 (0.16) 0.74 (0.036) Not applicable Normal_1 
2 33 2018-07-06 1.18 (0.14) 0.80 (0.026) Unknown Unknown 

3 102 2018-08-08 1.46 (0.15) 0.75 (0.032) 

Replace a 
malfunction 

sensor Normal_1 
4 29 2018-11-19 1.82 (0.20) 0.67 (0.047) Visitor activity Visitor-related 
5 13 2018-12-19 1.45 (0.10) 0.74 (0.030) Unknown Unknown 
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Table 3.4 
The p-values of the t-tests of the daily entropy rate (predictability) for pairs of segments in House 55 

Segment 
(Segment 
type) 

Segment 2  
(Unknown) 

Segment 3 
(Normal_1) 

Segment 4 
(Visitor 
related) 

Segment 5 
(Unknown) 

Segment 1 
(Normal_1) 

7.96e-11 
(1.73e-08) 

0.63 
(0.57) 

1.51e-09 
(1.00e-08) 

0.53 
(0.42) 

Segment 2  
(Unknown) 

NA 3.23e-14 
(1.85e-12) 

1.81e-19 
(3.17e-16) 

2.26e-08 
(3.54e-06) 

Segment 3 
(Normal_1) 

- NA 6.75e-11 
(5.38e-10) 

0.75 
(0.17) 

Segment 4 
(Visitor 
related) 

- - NA 9.65e-10 
(5.34e-06) 

Segment 5 
(Unknown) 

- - - NA 

 
 

Table 3.5 
The sample means of entropy rate and the limit of predictability 

House ܵ̅ௗ 
[ܵ

ௗ, ܵ௫ௗ] 
ܵ̅௨ 

[ܵ
௨, ܵ௫௨ ] 

ܵ̅ 
[ܵ

, ܵ௫] 
∏ഥௗ 

[∏
ௗ, ∏௫

ௗ] 
∏ഥ௨ 

[∏
௨ , ∏௫

௨ ] 
∏ഥ 

[∏
, ∏௫

 ] 
8 2.91 

[2.00, 3.32] 
2.45 

[1.86, 2.84] 
1.57 

[1.14, 2.29] 
0.14 

[0.10, 0.25] 
0.46 

[0.33, 0.60] 
0.73 

[0.54, 0.83] 
13 2.92 

[2.00, 3.32] 
2.65 

[1.86, 3.15] 
1.82 

[1.20, 2.36] 
0.14 

[0.10, 0.25] 
0.37 

[0.20, 0.55] 
0.67 

[0.56, 0.75] 
14 2.41 

[1.58, 3.00] 
2.01 

[1.19, 2.64] 
1.31 

[0.48, 2.01] 
0.20 

[0.13, 0.33] 
0.52 

[0.34, 0.73] 
0.76 

[0.63, 0.92] 
27 2.55 

[1.58, 3.00] 
2.24 

[1.28, 2.70] 
1.53 

[0.70, 2.14] 
0.18 

[0.13, 0.33] 
0.45 

[0.26, 0.72] 
0.71 

[0.59, 0.89] 
51 3.09 

[2.32, 3.32] 
2.35 

[1.64, 2.73] 
1.58 

[1.17, 2.00] 
0.12 

[0.10, 0.20] 
0.53 

[0.35, 0.70] 
0.74 

[0.66, 0.82] 
53 2.81 

[2.32, 3.17] 
2.41 

[2.05, 2.76] 
1.47 

[1.14, 1.88] 
0.15 

[0.11, 0.20] 
0.45 

[0.31, 0.58] 
0.75 

[0.67, 0.82] 
54 3.18 

[2.58, 3.58] 
2.40 

[1.44, 2.89] 
1.66 

[1.00, 2.14] 
0.11 

[0.084, 0.17] 
0.53 

[0.29, 0.75] 
0.73 

[0.61, 0.85] 
55 2.78 

[2.00, 3.32] 
2.33 

[1.72, 2.76] 
1.47 

[0.91, 2.11] 
0.15 

[0.10, 0.25] 
0.48 

[0.28, 0.62] 
0.74 

[0.60, 0.84] 
56 2.61 

[2.32, 3.32] 
2.11 

[1.68, 2.53] 
1.42 

[1.05, 2.12] 
0.17 

[0.10, 0.20] 
0.52 

[0.38, 0.67] 
0.74 

[0.62, 0.82] 
Overall 2.85 

[1.58, 3.58] 
2.41 

[1.19, 3.15] 
1.60 

[0.48, 2.36] 
0.14 

[0.084, 0.33] 
0.45 

[0.20, 0.75] 
0.72 

[0.54, 0.92] 
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     (a)           (b) 
Figure 3.4 (a) Box plots of three entropy measures for all 10 houses. (b) Box plots of the limit of 

predictability of three entropy measures for all 10 houses. 
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Table 3.6 
Segments of the sequence of daily entropy rates over 10 houses and the validation results 

House Segment 
Number of 
data points Start Date ܵ̅ (SD) 

Interpretation of 
start date Segment type 

8 

1 22 2017-01-01 1.42 (0.14) Not applicable Normal_1 
2 36 2017-01-24 1.89 (0.15) Visitors arrived Visitor-related 
3 233 2017-03-01 1.55 (0.14) Visitors left Normal_1 
4 11 2017-11-03 1.82 (0.10) Visitors arrived Visitor-related 
5 358 2017-11-14 1.54 (0.13) Visitors left Normal_1 
6 27 2018-12-05 1.68 (0.15) Unknown Unknown 

13 

1 222 2017-01-01 1.66 (0.13) Not applicable Normal_1 
2 180 2017-08-15 1.88 (0.12) Add a new sensor Normal_2 
3 13 2018-02-11 2.22 (0.11) Visitors arrived Visitor-related 
4 298 2018-02-25 1.89 (0.12) Visitors left Normal_2 

14 

1 38 2017-01-01 1.23 (0.19) Not applicable Normal_1 
2 54 2017-02-08 0.93 (0.18) Unknown Unknown 

3 86 2017-04-03 1.59 (0.15) 

Lower three 
sensors’ view for a 

better coverage Normal_2 

27 

1 21 2017-01-01 1.09 (0.20) Not applicable 
System-

malfunction 

2 66 2017-01-25 1.29 (0.16) 
Replace a drained 

battery Normal_1 
3 126 2017-04-01 1.44 (0.16) Unknown Unknown 

4 126 2017-08-15 1.62 (0.16) 
Add two new 

sensors Normal_2 
5 57 2017-12-21 1.40 (0.16) Unknown Unknown 

6 192 2018-03-13 1.69 (0.14) 
Replace a drained 

battery Normal_2 
7 86 2018-09-30 1.58 (0.17) Unknown Unknown 

1 38 2017-07-07 1.56 (0.14) Not applicable Normal_1 

28 

2 114 2017-08-15 1.72 (0.12) Add a new sensor Normal_2 

3 8 2017-12-16 2.01 (0.16) 
Visitors arrived for 

Christmas Visitor-related 
4 175 2017-12-30 1.76 (0.13) Visitors left  Normal_2 
5 64 2018-07-12 1.62 (0.12) Unknown Unknown 
6 6 2018-09-27 2.09 (0.16) Unknown Unknown 
7 90 2018-10-03 1.70 (0.12) Unknown Unknown 

51 

1 21 2018-05-14 1.32 (0.11) Not applicable 
System- 

malfunction 

2 157 2018-06-11 1.62 (0.14) 

Replace a 
malfunctioned 

sensor Normal_1 

53 

1 60 2018-05-23 1.43 (0.17) Not applicable Normal_1 
2 53 2018-07-23 1.53 (0.12) Unknown Unknown 

3 28 2018-09-26 1.33 (0.12) 

Sensor malfunction 
due to drained 

battery 
System- 

malfunction 

4 69 2018-10-24 1.51 (0.14) 
Replace two 

drained batteries Normal_1 

54 

1 37 2018-05-21 1.61 (0.18) Not applicable Normal_1 
2 30 2018-06-27 1.42 (0.17) Unknown Unknown 
3 41 2018-07-27 1.64 (0.13) Unknown Unknown 

4 16 2018-09-11 1.94 (0.13) 

Sensor malfunction 
due to network 

issue 
System- 

malfunction 

5 96 2018-09-27 1.72 (0.13) 
Repair dropped 

sensor Normal_1 

55 
1 31 2018-06-05 1.48 (0.16) Not applicable Normal_1 
2 33 2018-07-06 1.18 (0.14) Unknown Unknown 
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Table 3.6 (Continued) 

55 

3 102 2018-08-08 1.46 (0.15) 

Replace a 
malfunctioned 

sensor Normal_1 
4 29 2018-11-19 1.82 (0.20) Visitor activity Visitor-related 
5 13 2018-12-19 1.45 (0.10) Unknown Unknown 

56 

1 66 2018-06-04 1.53 (0.10) Not applicable Normal_1 
2 5 2018-08-10 1.96 (0.12) Unknown Unknown 
3 22 2018-08-15 1.51 (0.11) Unknown Unknown 

4 116 2018-09-07 1.32 (0.11) 

Sensor malfunction 
due to drained 

battery 
System- 

malfunction 

 
 

Table 3.7 
Aggregate statistics (mean, (standard deviation) [minimum, maximum]) of daily entropy rate and limit of 

predictability of different types of segments over 10 houses 

Type Normal_1 Normal_2 Normal_1& 
Normal_2 

Visitor-related System 
malfunction 

Unknown Overall 

Number of 
segments 

15 7 22 5 5 15 47 

Number of 
days 

1595 1171 2766 97 202 707 3772 

ܵ̅ (SD) 
[min, max] 

1.55 (0.17) 
[0.81, 2.10] 

1.77 (0.17) 
[1.16, 2.22] 

1.64 (0.20) 
[0.81, 2.22] 

1.92 (0.20) 
[1.24, 2.36] 

1.35 (0.22) 
[0.70, 2.14] 

1.49 (0.26) 
[0.48, 2.34] 

1.60 (0.24) 
[0.48, 2.36] 

Πഥ (SD) 
[min, max] 

0.73 (0.040) 
[0.56, 0.86] 

0.69 (0.039) 
[0.57, 0.82] 

0.71 (0.044) 
[0.56, 0.86] 

0.65 (0.045) 
[0.54, 0.80] 

0.76 (0.044) 
[0.61, 0.89] 

0.73 (0.052) 
[0.57, 0.92] 

0.72 (0.048) 
[0.54, 0.92] 

 
 

Table 3.8 
The number of t-test with p-value < 0.01 vs. the number of t-test with p-value >= 0.01 for comparing the 

means of entropy rates in two segments 

 Normal_2 Visitor-related System malfunction Unknown 
Normal_1 7 vs. 0 10 vs. 0 7 vs. 0 16 vs. 6 
Normal_2 - 4 vs. 0 2 vs. 0 11 vs. 2 

Visitor-related - - - 6 vs. 1 
System malfunction - - - 8 vs. 0 

Unknown - - - - 
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Figure 3.5 Box plots of daily entropy for weekday vs. weekend from normal segments (Normal_1 and 
Normal_2). 

 
 

 

Figure 3.6 Box plots of daily entropy rate for each day of 30 weeks for a participant who works on 
Wednesdays, Thursdays, and Fridays. 

 
 

 

Figure 3.7 Box plots of the real entropy rates for three age cohorts. 
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Chapter 4: Analysis of Changes in Data Collection Environment in Ambient-assisted 

Private Homes 

 

4.1 Introduction 

HomeSense uses ambient sensor networks to continuously collect data about the residents’ 

daily activities. The collected data is assumed to be representative of the residents’ daily activities 

and is further used for health and wellness monitoring. However, ambient sensor networks are not 

100% reliable and sensors in the networks need periodic maintenance due to malfunction or dead 

batteries, which results in incomplete observation of the residents' activities. In addition, smart 

home inhabitants have visitors including family members and friends staying in their house from 

time to time. The activities of visitors trigger the ambient sensors as well as the resident’s activities. 

These changes in the environment and disruptions in the sensor networks and the presence of 

visitors introduce data that are not representative of the resident’s normal daily activities and may 

lead to an incorrect or incomplete understanding of the residents’ activities and wellness.  

Recall that in Chapter 3, we apply a change point detection algorithm on the sequence of 

daily entropy rate to identify time periods when the collected data reflects the resident’s daily 

activities. We validate detected change-points by checking whether the date of the change-points 

can be corroborated with the information from three sources; namely the bi-weekly assessments, 

the maintenance logs, and device battery information collected from the sensor network. In this 

chapter, we work the other way around, which is we examine the records about system changes 

and the presence of visitors from these three sources, and identify which of them can be 
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corroborated with detected change-points in the sequence of daily entropy rate. To be specific, we 

divide the records about system changes and the presence of visitors respectively into two groups: 

one consists of records that can be corroborated with detected change-points, the other consists of 

records that are not. We construct metrics to describe the records in these two groups and analyze 

their difference. This work will help us understand the characteristics of changes that are more 

likely to be detected by changes in daily entropy rate and inform the design of more comprehensive 

metrics capable of detecting a broader range of disruptions in ambient-assisted technologies for 

health and wellness monitoring. 

The rest of this chapter is organized as follows: In Section 4.2 we provide an overview of 

records about system changes (we call them ‘change records’ for convenience) in the maintenance 

log and device battery information. Then in Section 4.3, we design metrics to depict and compare 

characteristics of change records in two groups. After that, we summarize the records about the 

presence of visitors (we call them visitor records) from bi-weekly assessments and examine their 

characteristics in Section 4.4 and Section 4.5 respectively. Finally, in Section 4.6, we summarize 

our findings. 

4.2 Overview of Change Records in Maintenance Log and Device Battery Information 

 The records about changes in sensor systems and device battery information over 10 

houses are summarized in Table 4.1. In total there are 42 records about changes in sensor systems 

including adding new motion sensors, removing motion sensors from the current sensor system, 

adjusting the field of the motion sensors’ view for a better coverage, reinstalling motion sensors 

to the original location if they fall off from the wall, relocating motion sensors to a new location, 

replacing the dead batteries with new ones, and replacing the malfunctioned sensors with sensors 

that function well. 
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For example, according to the information from columns in Table 4.1, we know that the 

first record occurred in House 8 and it is about changing the location of the motion sensor with the 

alias ‘In Bathroom, Guest’ for better coverage on 2017-01-24. The second record is to replace a 

malfunctioned motion sensor with a good one on 2017-05-17; on the same day, the dead battery 

of the motion sensor with the alias ‘In Shower’ was replaced with a new battery. The second and 

third maintenance occurred on the same day and we treat these two changes as one change. The 

third record is about the replacement of a dead battery. Noticing that this sensor’s battery was dead 

before the maintenance, we checked the battery sensor events and wakeup sensor events of the 

sensor ‘In Shower’ and find the date when both the battery and wakeup sensor failed to report an 

event as the true date when the battery run out, which generates a new record in row 4 with the 

description of ‘No data reported due to dead battery’ on 2017-02-14. A similar situation can be 

found in rows 7 and 8. 

The first finding of the change records in Table 4.1 is that multiple changes that occur on 

the same day always can be corroborated with detected change-points. For example, in House 55 

two changes in the sensor system were found to occur on 2018-08-08 when a change-point is 

detected also for this date (see Table 3.6, Chapter 3). Other such days with multiple changes and 

can be corroborated with detected change-points include 2017-04-03 for House 14 and 2018-10-

24 for House 53.  

To get an overview of the change records in Table 4.1, we summarize the number of change 

records in terms of maintenance type and the alias of the motion sensors respectively and the 

percentage of how many of them can be corroborated with the detected change-points in Table 

4.2A.  Let ܦ be the set of all possible alias ݅′ݏ, i.e., ‘In Living Room’, ‘In Front Door Area’, ‘In 

Bedroom, Master’, ‘In Bedroom, Master (General)’, ‘In Bathroom, Master’, ‘In Kitchen’, ‘In 
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Shower’, ‘In Dining Area’, ‘In Office Area’, and ‘In Bathroom, Guest’, ܦ be the set of all possible 

 i.e., ‘Add a new sensor’, ‘Adjust the view’, ‘Reinstall’, ‘Relocate’, ‘Replace battery’, and ,ݏ′݆

‘Replace with another sensor’. Let ܽ represent the number of maintenance type ݆ (used as the 

columns in Table 4.2A) that occurred on the motion sensor with alias ݅ (used as the rows in Table 

4.2A). The value of ܽ  is the number within the parenthesis at the intersection of row ݅  and column 

݆ in Table 4.2A. For example, ‘(3)’ at the intersection of row 2 and column 3 represents that there 

are 3 ‘Reinstall’ records in maintenance log for the motion sensor with the alias ‘In Front Door 

Area’. The number 2 above ‘(3)’ represents that two of these three maintenances can be 

corroborated with the detected change-points. 

We calculate the percentage of the record changes for a given sensor with alias ݅ can be 

corroborated with the detected change-points. For example, there are four ‘Add a new sensor’ 

occurring on the motion sensor ‘In Bedroom, Master (General)’ with three of them can be 

corroborated with detected change-points; for the same sensor, there are two ‘Replace battery’ 

records in the maintenance log with both of them can be corroborated with detected change-points. 

No other types of maintenance log are found for this sensor. Thus the percentage is 

(3+2)/(4+2)*100% = 83.33%.  

Similarly, we calculate the percentage of the record changes for a given maintenance log ݆ 

can be corroborated with the detected change-points. For example, there are in total 1/3+1/3+1/3+1 

= 2 records for ‘Adjust the view’ over all possible sensor alias (the summation of the numbers in 

the parenthesis in column 2 in Table 4.2A), among which 1/3+1/3+1/3 = 1 can be corroborated 

with a detected change point. Thus the percentage is 1/2*100% = 50%. 

For multiple records on the same day, assuming that there are ݊ records, we assign 1/݊ 

change to each record as the number of changes that record brings to the data collection 
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environment. For example, in Table 4.1 we know that there are three ‘Adjust the view’ 

maintenance records for three motion sensors (‘In Front Door’, ‘In Bedroom, Master’, and ‘In 

Shower’) in House 014 on 2017-04-03. According to this rule, the number of changes that each 

motion sensor brings to the system is ‘1/3’ in column 2 in Table 4.2A.  

In summary, 14 out of 42 change records (33.33%) were corroborated with detected 

change-points. In terms of the maintenance type, 50% of ‘Adjust the view’, 50% of ‘Reinstall’, 

and 63.64% of ‘Add a new sensor’ can be corroborated detected change-points; while for 

‘Replacing batteries’, ‘Battery dead’, and ‘Replacing malfunctioned sensor’, the percentages are 

below 40%. 

We further categorize the records in maintenance log and battery information in terms of 

their impact on the daily trajectories as shown in Table 4.2B. ‘Battery dead’ results in the absence 

of sensor events in the trajectory; ‘Add a new sensor’, ‘Reinstall’, ‘Replace battery’, and ‘Replace 

sensor’ result in the presence of new sensor events; while ‘Adjust the view’ and ‘Relocate sensor’ 

lead to changes in the observed events. Overall, 28.57% of records that indicate the absence of 

sensor events, 37.50% that indicate the presence of new sensor events, and 25% relates to the 

change in the observed events can be corroborated with detected change-points.  

In terms of sensor alias, over 80% of the records on ‘In Bedroom, Master (General)’ 

(83.33%) and ‘In Bathroom, Master’ (100%) can be corroborated with detected change-points; 

while the percentage for sensors ‘In Living Room’, ‘In Front Door Area’, ‘In Bedroom, Master’, 

and ‘In Shower’ is only between 20% and 45%. None of the records for other sensors can be 

corroborated with the detected change-points. These results indicate that the detected change-

points in the sequence of daily entropy rate shown in Chapter 3 cover partial of sensor system 
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changes, which lead to the question of what changes in the sensor system are more likely to be 

detected by changes in the daily entropy rate.  

In next section, we construct metrics to describe a change record based on the changes in 

ambient data before and after this change record; then use a classification decision tree to help 

identify the main metrics that distinguish the change records that can be corroborated with detected 

change-points from those that cannot. 

4.3 Metrics Construction and Analysis for Change Records in Maintenance Logs 

In this analysis, we included houses that have only one change record for a day and have 

at least one change record that can be corroborated with a detected change point. These houses 

include House 13, 27, 28, 51, and 54 and there are in total 24 change records, among which nine 

are the change records that can be corroborated with detected change-points, and 15 cannot.  

We define some metrics (Table 4.3) to describe the collected ambient data before and after 

the change record. We first calculate an individual metric in Table 4.3 except ݂݂݀݅_݊݉ݑ for days 

before and after the change record respectively. Then use the difference of metrics for before and 

after the change record as a feature to describe the change record. For example, the calculated 

ܰ’s for days before and after a change record is denoted as ܰ୫୧୬	_  and ܰ୫୧୬	_௧ 

respectively. The difference metric of ܰ is calculated by ܰ୫୧୬	_ௗ ൌ ܰ୫୧୬	_ െ

ܰ୫୧୬	_௧. Similarly, we obtain other difference metrics including ܰ୫ୟ୶	_ௗ, ܰௗ_ௗ, 

ܵ̅௨ௗ, ܵ̅ௗ, ݈ ̅, ܽ݃ݒௗ_ௗ, and ݎௗ_ௗ. In addition to the above difference 

metrics, we also use ݅3ݐ_ݏ, i.e., if the sensor events from the changed sensor rank top 3 

before a change records, ݅3ݐ_ݏ௧, i.e., if the sensor events of the changed sensor rank top 3 

after a change record, as well as  ݂݂݀݅_݊݉ݑ, i.e., the count of different items between the set 
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,_௧	்ݏ݈ܽ݅ܽ _ and	்ݏ݈ܽ݅ܽ ݅ ൌ 1, 2, 3, to describe a change record. In total, there are 

eight difference metrics and three non-difference metrics to be used to describe a change record. 

We use the eight difference metrics and ݅3ݐ_ݏ, ݅3ݐ_ݏ௧, and ݂݂݀݅_݊݉ݑ to 

train a classification decision tree [123] to classify the change records as ݀ݎܿ݁ݎ and 

 _. The result shows that only ܵ̅௨ௗ is used in the tree construction. The following݀ݎܿ݁ݎ

if-then rules are generated by the decision tree model:   

 If ܵ̅௨ௗ  െ0.32, the change record is a ݀ݎܿ݁ݎ. 

 If െ0.32 ൏ ܵ̅௨ௗ  0.19, the change record is a  ݀ݎܿ݁ݎ_. 

 If ܵ̅௨ௗ  0.19, the change record is a ݀݊ܿ݁ݎ. 

The misclassification error for the training dataset is 8.3% and two ݀ݎܿ݁ݎ_ are 

classified as ݀ݎܿ݁ݎ. The confusion matrix is shown in Table 4.4. 

These rules indicate that when the difference in the value of ܵ௨ between the days before 

and after a change record is relatively large, the change records are more likely to be identified by 

the real entropy-based change-point algorithm. According to the definition, the value of ܵ௨ is 

determined by the distribution of motion sensor events. In other words, when the changes in the 

sensor system result in significant changes in the probability distribution of the frequency of sensor 

events, these changes can be captured by the value of daily entropy rate. This is reasonable because 

changes in the distribution of sensor events illustrate possible changes in movement patterns and 

the frequency of these patterns which actually determine the value of the daily entropy rate.  

Next, using House 27 as an example we visually examine the relationship between the 

changes in the distribution of sensor events and the detection of change-points in the sequence of 

daily entropy rate. 
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In House 27, there are nine change-points that divide the sequence of daily entropy rate 

into 10 segments as shown in Table 4.5. The bolded four dates in the column ‘Date begin’ are 

those that can be corroborated with detected change-points in the sequence of daily entropy rate. 

For each segment, we calculated the probability distribution of sensor events and graph them in 

Figure 4.1. 

Let’s first focus on the changes in the probability distributions of sensor events between 

four pairs of segments namely Segments 1 vs 2, Segments 3 vs 4, Segments 6 vs 7, and Segments 

7 vs 8 whose transition points coincide with change-points detected by the algorithm proposed in 

Chapter 3. 

In terms of Segment 1 vs Segment 2, from the battery information and maintenance log in 

Table 4.2A, we know that the battery of motion sensor with the alias ‘In Living Room’ was 

depleted and no sensor events were reported by this sensor during Segment 1. On 2017-01-24 

when the battery was replaced the motion sensor reported data normally in Segment 2. In Figure 

4.1 the probability of sensor events of the motion sensor with the alias ‘In Living Room’ is zero in 

Segment 1 and then rises to near 0.3 in Segment 2 after the dead battery is replaced. In addition, 

the probabilities of events for sensors ‘In Bathroom, Master’ and ‘In Kitchen’ are comparable in 

Segment 1 and both of them drop from about 0.4 to about 0.3 in Segment 2 due to the increased 

number of sensor events of the sensor ‘In Living Room’.  

In terms of Segment 3 vs Segment 4, the probabilities of sensor events of the motion sensor 

‘In Bedroom, Master (General)’ and of the sensor ‘In Shower’ are 0.1 and 0.25 respectively in 

Segment 4. However, both of these are almost zero in Segment 3. These changes in the probability 

distribution are introduced by the installation of these two sensors in Segment 4.  
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In terms of Segment 6 vs Segment 7 and Segment 7 vs Segment 8, both probabilities of 

sensor events of the sensor ‘In Living Room’ and the sensor ‘In Bedroom, Master (General)’ 

decrease to almost zero in Segment 7 from 0.3 and 0.15 respectively in Segment 6, and then in 

Segment 8, they rise back to 0.25 and 0.15. These changes in the probability distributions of sensor 

events correspond to the records in the maintenance log and battery information that the batteries 

are dead and are then replaced for the sensor ‘In Living Room’ and the sensor ‘In Bedroom, Master 

(General)’.   

We note that all the probability distribution changes between four pairs of segments 

introduced above that can be corroborated with detected change-points relate to the presence or 

absence of sensor events of motion sensors that are installed in the living room and the master 

bedroom where the independent resident normally spends considerable time during his/her daily 

life. However, the presence of new sensor events or the absence of sensor events is not always 

detected by the algorithm proposed in Chapter 3. For example, in Segment 4 the probability of 

sensor events for the sensor ‘In Shower’ is 0.25 while in Segment 5 the probability is near zero 

and this change does not coincide with any of the change-points discovered in Chapter 3, implying 

that this probability change relating to the sensor ‘In Shower’ did not cause a significant change 

in the value of daily entropy rate.  

In addition to visually examining the probability distributions, we can also quantitatively 

measure the extent to which the two probability distributions of sensor events in two adjacent 

segments are different using distance measures of histograms such as ߯ଶ statistic [124].  

Given two histograms ܪ ൌ ሼ݄ሽ and ܭ ൌ ሼ݇ሽ, ߯ଶ statistic can be calculated using  

݀ఞమሺܭ,ܪሻ ൌ
ሺ݄ െ ݉ሻଶ

݉
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where ݉ ൌ
ି
ଶ

. 

Table 4.6 shows the calculated dissimilarity measures between probability distributions of 

sensor events in each pair of two adjacent segments. For ߯ଶ statistic, all four pairs of adjacent 

segments (bolded in Table 4.6) that relate to change records that were discovered by detected 

change-points have a dissimilarity measure bigger than 0.2. In other words, when two probability 

distributions before and after a change record are sufficiently dissimilar, the change record can be 

detected by changes in the daily entropy rate. 

4.4 Overview of Presence of Visitors in Bi-weekly Assessments 

In this section, we focus on the records in bi-weekly assessments related to long-term 

visitors. In most cases, this information pertains only to visitors who stay with the participant 

multiple days/weeks, and in many cases the start and end dates of the visit are approximations. 

Visitor information is summarized in Table 4.7. Notice that either arriving or leaving of visitors 

counts for a change in the data collection environment. In total, we determine 13 visitor arrival 

and departure events with the start and end date recorded and 7 of them coincide with detected 

change-points. 

4.5 Metrics Construction and Analysis for Presence of Visitors in Bi-weekly Assessments 

Similar to Section 4.3, we construct metrics in this section to help us identify the key 

features that distinguish visitor events that were discovered with detected change-points from those 

that were not. The metrics we use in this section are listed in Table 4.8. In addition to the six 

difference metrics including ܰ୫୧୬	_ௗ, ܰ୫ୟ୶	_ௗ, ܰௗ_ௗ, ܵ̅௨ௗ, ܵ̅ௗ, ݈ ̅ , and 

 that we use in Section 4.3, we introduce two new metrics for visitor events in this ݉ݑ݊_݂݂݅݀

section: ܰ݉ݑୟ୪୧ୟୱ defined as the mean of daily sensor events for motion sensor with a specific 

alias and ܲ  ୟ୪୧ୟୱ defined as the mean of the daily proportion of sensor events for a motion sensorݎ
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with a specific alias. For these two metrics, instead of using difference of metrics for days before 

and after a change record to describe a change record, we use the absolute value of the difference 

metric to capture the absolute changes that visitors’ arrival and departure introduce to the ambient 

sensor data. To be specific, metrics include |ܰ݉ݑୟ୪୧ୟୱ_ୢ୧| and |ܲݎୟ୪୧ୟୱ_ୢ୧|, ݈ܽ݅ܽݏ = ‘In Living 

Room’, ‘In Kitchen’, ‘In Bedroom, Guest’, ‘In Bathroom, Guest’, ‘In Front Door Area’, ‘In 

Bedroom, Master’, or ‘In Bathroom, Master’ are used for analysis. We do not use ݅3ݐ_ݏ 

and ݅3ݐ_ݏ௧ in this analysis because the changes are not related to a specific sensor but the 

overall system.  

We use t-test to compare the mean of difference metrics for two groups, i.e., ݀ݎܿ݁ݎ 

and ݀ݎܿ݁ݎ_. Results show that the mean of daily sensor events and the mean of the 

proportion of daily sensor events for motion sensors ‘In Living Room’ and ‘In Bathroom, Guest’ 

are significantly different between two groups (Table 4.9). Both the daily sensor events in the 

living room and the guest bathroom for ݀ݎܿ݁ݎ are almost doubt of those for ݀ݎܿ݁ݎ_, 

illustrating that visitors' activities bring significant changes to the number and proportion of sensor 

events in the living room and the guest bathroom which can be captured by the changes in the 

value of daily entropy rate. Due to the increase in the number and proportion of sensor events in 

the living room and guest bathroom the proportions of the sensor events of motion sensors ‘In 

Bedroom, Master’ and ‘In Front Door Area’ are significantly lower than those when the visitors 

are absent. 

Similarly, as in Section 4.3, we use a classification decision tree to help determine the 

feature that can distinguish visitor records that can be corroborated detected change-points from 

those that cannot. We train a classification decision tree use the features we constructed for each 
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visitor event, and the result shows that only |ܰ݉ݑୟ୲୦୰୭୭୫,ୋ୳ୣୱ୲_ୢ୧| is used for tree construction. 

The tree branches can be interpreted as the below rule: 

 ห୍ܰ݉ݑ୬	ୟ୲୦୰୭୭୫,ୋ୳ୣୱ୲ౚห  14, the visitor record is a ݀ݎܿ݁ݎ; otherwise, the 

record is a ݀ݎܿ݁ݎ_. 

The misclassification error for the training dataset is 0, meaning that all ݀ݎܿ݁ݎ have 

the value of  ห୍ܰ݉ݑ୬	ୟ୲୦୰୭୭୫,ୋ୳ୣୱ୲ౚห bigger than 14. It could be possible that when the number 

of sensor events in the guest bathroom exceeds some threshold, the new mobility patterns that are 

brought by the increased number in the sensor events of the motion sensor installed guest bathroom 

begins to count in the changes in the value of daily entropy rate. 

4.6 Conclusion 

In this chapter, we analyze the records about system changes in the maintenance log and 

the presence of visitors in the bi-weekly assessments. We observe that 33.33% of records in the 

maintenance log and 53.85% records in the bi-weekly assessment about the presence of visitors 

are detected by the detected change-points in the sequence of daily entropy rate described in Table 

3.6 in Chapter 3.  

We construct metrics to describe records about the sensor system changes and the presence 

of visitors respectively. We compare the records that coincide with detected change-points in daily 

entropy rate and those that do not and investigate the distinguishing characteristics between these 

groups. The rules generated by a classification decision tree on a dataset of 24 change records 

indicate that the change record is more likely to be detected when the difference in the value of 

daily temporal uncorrelated entropy rate between two adjacent segments exceeds a threshold, 

indicating change records that bring significant changes in probability distribution of sensor events 

are more likely to be detected by changes in daily entropy rate. These changes could be caused by 
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the presence or absence of sensor events of motion sensors installed in areas where the resident is 

more likely to spent considerable time during his/her daily life such as the living room or the 

master bedroom are more likely to be detected (Table 4.2A), and the changes in the presence of 

sensor events that relate to activities such as taking a shower or cooking that occur less frequently 

during daily life are less likely to be detected by daily entropy rate. In the view of system 

maintenance, this finding suggests new methods and metrics in addition to daily entropy rate 

should be considered to effectively identify the undetected changes, such as threshold method 

based on the dissimilarity measures of probability distributions. This is important especially for 

the changes from sensors that report a small number of sensor events in normal days (the sensor 

‘In Shower’) but could closely relate to a person’s health status.  

For the visitor records, the detected records that can be corroborated with the detected 

change-points in the sequence of daily entropy rate are those that have significant differences in 

the numbers and proportions of sensor events in the living room, the guest bathroom, the front 

door area, and the master bedroom between days before and after the visitors’ arrival and 

departure. The rules obtained from a classification tree indicate that the daily movement level (the 

number of daily sensor events) in the guest bathroom is much higher for records that can be 

corroborated with detected change-points than those that cannot. In addition, we notice that all the 

detected visitor records relate to either multiple family members or a long-term staying of a family 

member; and four out of six undetected visitor records relate to friends and their short-term stay. 

This suggests that the length of the visit period and the number of visitors bring different levels of 

changes in the collected ambient sensor data. Collecting and analyzing data of different types of 

visitors from various houses could help us design algorithms that can effectively detect the 

presence and absence of visitors in real living environments.  
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Table 4.1 
Changes in sensor systems and device battery information over two years (2017 and 2018)  

House Date Alias of motion sensors 

(illustrate the location 

and function of sensors 

Maintenance 

type 

Description Is the maintenance 

corroborated with a 

detected change-

point? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8 

2017-01-24 In Bathroom, Guest Relocate The location of this sensor 

might be too high for the 

participant. Changed its 

location next to the door and 

lowered it down. 

No 

2017-05-17 

 

In Living Room Replace with another 

sensor 

The old sensor was 'stuck on' 

at random times. 

No 1/2 

2017-05-17 

 

In Shower Replace battery The battery run out and there 

was no data since 2017-02-14. 

No 1/2 

2017-02-14 In Shower Battery dead No data reported due to the 

battery running out. 

No 

2017-08-15 In Bedroom, Master 

(General) 

Add a new sensor Add a new sensor for a better 

coverage 

No 

2017-10-24 In Front Door Area Reinstall The magnet on the front door 

was kicked off. It was re-

installed on 2017-10-24. 

No 

2018-09-26 In Front Door Area Replace battery The battery run out and there 

was no data since 2019-09-13. 

No 

2018-09-13 In Front Door Area Battery dead No data reported due to the 

battery running out 

No 

 

 

 

 

 

 

 

 

 

13 

2017-01-24 In Living Room Replace battery The battery run out and there 

was no data since 2017-01-06 

No 

2017-01-03 In Living Room Battery dead No data reported due to the 

battery running out 

No 

2017-08-16 In Bedroom, Master 

(General) 

Add a new sensor Add a new sensor for a better 

coverage 

Yes 

2018-06-11 In Office Area Replace battery The battery run out and there 

was no data since 2018-06-07 

No 

2018-06-07 In Office Area Battery dead No data reported due to the 

battery running out. 

No 

 

 

 

 

 

 

 

14 

2017-04-03 

 

In Front Door Area Adjust the view Lower it down and repaired it 

again. 

Yes 1/3 

 

2017-04-03 

 

In Bedroom, Master Adjust the view Lower it down to better 

capture the participant's 

motion 

Yes 1/3 

 

2017-04-03 

 

In Shower Adjust the view Lower it down to better 

capture the participant's 

motion. 

Yes 1/3 
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Table 4.1 (Continued) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

27 

2017-01-24 In Living Room Replace battery The battery run out and there 

was no data since 2016-12-20. 

Yes 

2017-04-12 In Bathroom, Guest Adjust the view Lowered it down to better 

capture motion. 

No 

2017-08-15 In Bedroom, Master 

(General) 

Add a new sensor Add a new sensor for a better 

coverage 

Yes 

2017-09-26 In Shower Replace battery The battery run out since 

2017-08-19. 

No 

2017-08-19 In Shower Battery dead No data reported due to the 

battery running out. 

No 

2018-03-13 In Bedroom, Master 

(General) 

Replace battery The battery run out and there 

was no data since 2018-01-14. 

Yes 

2017-12-22 In Bedroom, Master 

(General) 

Battery dead No data reported due to the 

battery running out. 

Yes 

2018-09-14 In Living Room Battery dead The battery run out and there 

was no data between 2018-09-

14 and 2019-03-05 

No 

2018-11-18 In Shower Battery dead The battery run out and there 

was no data since 2018-11-18. 

No 

 

 

 

 

 

 

 

 

 

28 

2018-08-15 In Bedroom, Master 

(General) 

Add a new sensor Add a new sensor for a better 

coverage 

Yes 

2018-02-22 In Kitchen Relocate The device has been re-

positioned due to its coverage 

area. Less overlapping with 

the living room. 

No 

2018-09-05 In Shower Replace battery The battery run out and there 

was no data since 2018-05-12. 

No 

2018-05-12 In Shower Battery dead No data reported due to the 

battery running out. 

No 

 

 

 

 

 

 

 

51 

2018-06-11 In Living Room Replace with another 

sensor 

USF.AL.MS.184 was replaced 

with AN.AL.MS.78 because 

this sensor stuck on 

sometimes. 

Yes 

2018-09-26 In Shower Replace battery The battery run out and there 

was no data since 2018-08-27. 

No 

2018-08-27 In Shower Battery dead No data reported due to the 

battery running out. 

No 

 

 

 

53 

2018-06-11 In Kitchen Replace with another 

sensor 

USF.EL.MS.443 was replaced 

with USF.EL.MS.563 because 

this sensor stuck on most of 

the time. 

No 
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Table 4.1 (Continued) 
 

 

 

 

 

 

 

 

53 

2018-10-24 In Living Room Replace battery The battery run out and there 

was no data since 2018-10-05. 

Yes 1/2 

2018-10-24 In Shower 

 

Replace battery The battery run out and there 

was no data since 2018-09-28. 

 

Yes 1/2 

2018-10-05 In Living Room Battery dead No data reported due to the 

battery running out. 

No 

2018-09-26 In Shower Battery dead No data reported due to the 

battery running out. 

Yes 

 

 

 

 

 

54 

2018-08-09 In Dining Area Add a new sensor Add a new sensor to get better 

coverage 

No 

2018-09-26 In Front Door Area Reinstall The device was kicked off and 

no data since 2018-9-12. 

Yes 

2018-09-12 In Front Door Area Battery dead No data reported by the motion 

sensor cause it was kicked off. 

Yes 

 

 

 

 

 

 

 

 

 

 

 

55 

2018-08-08 In Bathroom, Master Add a new sensor Add a new sensor for better 

coverage 

Yes 1/2 

2018-08-08 In Living Room Replace with another 

sensor 

USF.AL.MS.630 was replaced 

with USF.AL.MS.632 because 

this device cannot be 

paired/repaired. No data was 

reported since 2018-07-19. 

Yes 1/2 

2018-07-19 In Living Room Battery dead No data reported by the motion 

sensor 'In living room'. 

No 

2018-10-02 In Shower Replace with another 

sensor 

AN.AL.MS.77 was replaced 

with USF.AL.MS.513 because 

it didn't report motion. 

No 

 

 

 

 

 

 

 

 

 

 

56 

2018-10-08 In Living Room Replace battery No data after 2018-10-08 and 

this sensor was repaired on 

2019-01-22. 

No 1/3 

2018-10-08 In Kitchen Replace battery The battery run out and there 

was no data since 2018-09-30. 

No  1/3 

2018-10-08 In Shower 

 

Replace battery The battery run out and there 

was no data since 2018-09-08. 

No 1/3 

2018-09-30 In Kitchen Battery dead No data reported by the motion 

sensor 'In kitchen'. 

No 

2018-09-08 In Shower Battery dead No data reported by the motion 

sensor 'In shower'. 

Yes 

  



86 
 

Table 4.2A 
A detailed summary of change records in terms of the maintenance type and alias of the motion sensors 

Alias Battery 

dead 

Add a 

new 

sensor 

Reinstall Replace 

battery 

Replace 

sensor 

Adjust 

the 

view 

Relocate Percentage that sensor 

with alias i corroborated 

with change-points  

In Living Room 0 

(3) 

- - 1+1/2 

(3+1/2+

1/3) 

1+1/2 

(2) 

- - (3)/(8+1/2+1/3)= 

33.96% 

In Front Door Area 1 

(2) 

- 1 

(2) 

0 

(1) 

- 1/3 

(1/3) 

- (2+1/3)/(5+1/3)= 

43.75% 

In Bedroom, Master - - - - - 1/3 

(1/3) 

- (1/3)/(1/3)= 

33.33% 

In Bedroom, Master 

(General) 

1 

(1) 

3 

(4) 

- 1 

(1) 

- - - (3+2)/(4+2)= 

83.33% 

In Bathroom, Master - 1/2 

(1/2) 

- - - - - (1/2)/(1/2)= 

100% 

In Kitchen 0 

(1) 

- - 0 

(1/3) 

0 

(1) 

- 0 

(1) 

(0)/(3+1/3)=0% 

In Shower 2 

(6) 

- - 1/2 

(5+1/3) 

0 

(1) 

1/3 

(1/3) 

- (2+1/2+1/3)/(12+2/3)= 

22.37% 

In Dining Area - 0 

(1) 

- - - - - (0)/(1)= 

0% 

In Office Area 0 

(1) 

- - 0 

(1) 

- - - (0)/(2)= 

0% 

In Bathroom, Guest - - - - - 0 

(1) 

0 

(1) 

(0)/(2)= 

0% 

Percentage that maintenance 

type (j) corroborated with 

change-points 

(4)/(14)

= 

28.57% 

(3+1/2)/

(5+1/2)

= 

63.64% 

(1)/(2) = 

50% 

(3)/(12+

1/2) = 

24% 

(1+1/2)/(4)

= 37.50% 

(1)/(2)

= 50% 

0/2 = 0 (14)/42 = 

33.33% 

 
 

Table 4.2B  
Aggregate summary of change records in terms of their impact of daily trajectories 

Type of impact 

on data 

collection 

Absence of sensor events Presence of new sensor events Change in the observed events 

Percentage that 

impacts type (k) 

corroborated 

with change-

points 

(4)/(13)=28.57% (9)/(24) = 37.50% (1)/(4) = 25% 
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Table 4.3 
Metrics that are constructed for days before and after a record about sensor system changes 

Metrics Value Type Description 

ܰ Integer The minimum number of distinct motion sensors that fire on a day 

ܰ௫ Integer The maximum number of distinct motion sensors  that fire on a day 

ܰௗ Integer The mode of the number of distinct motion sensors  that fire on a day 

ܵ̅௨ Numerical The mean of temporal-uncorrelated entropy rate of daily trajectories 

ܵ̅ Numerical The mean of real entropy rate of daily trajectories 

݈ ̅ Numerical The mean of the length of daily trajectories 

	்ݏ݈ܽ݅ܽ , ݅ ൌ 1,2,3 Categorical The alias of the sensor with the number of sensor events ranking top ݅ including ‘In 

Living Room’,  ‘In Bedroom, Master’, ‘In Bathroom, Master’, ‘In Bedroom, Guest’, 

‘In Bathroom, Guest’, etc. 

 ௗ Integer The daily average number of sensor events of the changed sensor݃ݒܽ

 ௗ Numerical The daily average proportion of sensor events of the changed sensorݎ

3ݐ_ݏ݅ 3 Binaryݐ_ݏ݅ ൌ 1 represents that the number of sensor events for the changed 

sensor ranks among top 3 BEFORE a change record;  

3ݐ_ݏ݅ ൌ 0	represents that the number of sensor events for the changed 

sensor doesn’t rank among the top 3 BEFORE a change record. 

3௧ݐ_ݏ݅ 3௧ Binaryݐ_ݏ݅ ൌ 1	 represents that the number of sensor events for the changed 

sensor ranks among top 3 AFTER a change record;  

3௧ݐ_ݏ݅ ൌ 1 represents that the number of sensor events for the changed sensor 

doesn’t rank among the top 3 AFTER a change record. 

 represents the count of different items between the set 3 ,2 ,1 ,0 = ݉ݑ݊_݂݂݅݀ Integer ݉ݑ݊_݂݂݅݀

_௧	்ݏ݈ܽ݅ܽ _ and	்ݏ݈ܽ݅ܽ , ݅ ൌ 1, 2, 3. 

 
 

Table 4.4 
Confusion matrix of the classification decision tree 

 Actual ݎܿ݀ݎܿ݁ݎ Actual ݎܿ_݊݊݀ݎܿ݁ݎ 

Predicted 2 9 ݎܿ݀ݎܿ݁ݎ 

Predicted 13 0 ݎܿ_݊݊݀ݎܿ݁ݎ 
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Figure 4.1 Probability distributions of motion sensor events in different segments (House 27). 
 
 

Table 4.5 
Ten segments determined by nine change records in the maintenance log and battery information (House 

27). Bolded dates are those can be corroborated with detected change-points in daily entropy rate 

Segment Date begin Date end Days Battery info and maintenance 

Alias 

Impact on data collection 

1 2017-01-01 2017-01-24 21 Battery was dead 

In Living Room 

Absence of events 

2 2017-01-25 2017-04-12 78 Replace battery 

In Living Room 

Presence of new events 

3 2017-04-13 2018-08-15 115 Adjust the view 

In Bathroom, Guest 

Change of observed events 

4 2017-08-16 2017-08-19 3 Add a new sensor 

In Bedroom, Master (General) 

Presence of new events 

5 2017-08-20 2017-09-26 38 Battery dead 

In Shower 

Absence of events 

6 2017-09-27 2017-12-22 85 Replace battery 

In Shower 

Presence of new events 

7 2017-12-23 2018-03-13 57 Battery dead 

In Bedroom, Master (General) 

Absence of events 

8 2018-03-14 2018-09-14 176 Replace battery 

In Bedroom, Master (General) 

Presence of new events 

9 2018-09-15 2018-11-18 63 Battery dead 

In Living Room 

Absence of events 

10 2018-11-19 2018-12-31 38 Battery dead 

In Shower 

Absence of events 
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Table 4.6 
The distance of the probability distributions between two adjacent segments (House 27)  

The segment before the change record 

vs. 

the segment after the change record 

߯ଶ statistic 

Segment 1 vs. Segment 2 0.20 

Segment 2 vs. Segment 3 0.013 

Segment 3 vs. Segment 4 0.37 

Segment 4 vs. Segment 5 0.14 

Segment 5 vs. Segment 6 0.0049 

Segment 6 vs. Segment 7 0.31 

Segment 7 vs. Segment 8 0.25 

Segment 8 vs. Segment 9 0.086 

Segment 9 vs. Segment 10 0.028 

 
 

Table 4.7 
The presence of visitors over two years (2017 and 2018) according to the bi-weekly assessment  

House Visitors 

arrive 

Visitors 

leave 

Description Arriving date 

corroborated with 

detected change-points 

Leaving date 

corroborated with 

detected change-points 

8 2017-01-25 2017-02-28 Son has been visiting, 

granddaughter and great-

granddaughter came for four 

days in mid-February 

Yes Yes 

8 2017-08-07 2017-08-10 Friend from out of town was 

visiting 

No No 

8 2017-09-09 2017-09-12 Friends stayed during the storm No No 

8 2017-11-03 2017-11-13 Son and daughter are visiting 

for an unspecified amount of 

time. Granddaughter and her 

boyfriend are also coming when 

the parents are there. 

Yes Yes 

8 2018-12-18 2018-12-25 Grandson visited. No No 

13 2018-02-11 2018-02-24 Daughter visited Yes Yes 

55 2018-11-22 NA Visitors may still be present 

after the last day included in the 

analysis 

Yes - 
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Table 4.8 
Metrics that are constructed for the days before and after a change record about visitors 

Metrics Value Type Description 

ܰ Integer The minimum number of motion sensors that fire on a day 

ܰ௫ Integer The maximum number of distinct motion sensors  that fire on a day 

ܰௗ Integer The mode of the number of distinct motion sensors  that fire on a day 

ܵ̅௨ Numerical The mean of temporal-uncorrelated entropy rate of daily trajectories 

ܵ̅ Numerical The mean of real entropy rate of daily trajectories 

݈ ̅ Numerical The mean of the length of daily trajectories 

	்ݏ݈ܽ݅ܽ , ݅ ൌ 1,2,3 Categorical The alias of the sensor with the number of sensor events ranking top ݅ including 

‘In Living Room’,  ‘In Bedroom, Master’, ‘In Bathroom, Master’, ‘In Bedroom, 

Guest’, ‘In Bathroom, Guest’, etc. 

 represents the count of different items between the set 3 ,2 ,1 ,0 = ݉ݑ݊_݂݂݅݀ Integer ݉ݑ݊_݂݂݅݀

_௧ݏ݈ܽ݅ܽ _ andݏ݈ܽ݅ܽ , ݅ ൌ 1, 2, 3. 

  = ‘Inݏ݈ܽ݅ܽ ,ݏ݈ܽ݅ܽ ௦ Integer The daily mean of sensor events of the motion sensor with݉ݑܰ

Living Room’, ‘In Kitchen’, ‘In Bedroom, Guest’, ‘In Bathroom, Guest’, ‘In 

Front Door Area’, ‘In Bedroom, Master’, or ‘In Bathroom, Master’ 

 = ݏ݈ܽ݅ܽ ,ݏ݈ܽ݅ܽ ௦ Numerical The daily proportion of sensor events of the motion sensor withݎܲ

‘In Living Room’, ‘In Kitchen’, ‘In Bedroom, Guest’, ‘In Bathroom, Guest’, ‘In 

Front Door Area’, ‘In Bedroom, Master’, or ‘In Bathroom, Master’  

 
 

Table 4.9 
Mean and standard deviation (SD) of difference metrics for ݀ݎܿ݁ݎ and ݀ݎܿ݁ݎ_ in bi-weekly 

assessments about visitors 

Difference metrics Mean (SD) for ݀ݎܿ݁ݎ vs. 

Mean (SD) for ݀ݎܿ݁ݎ_ 

P-value 

 ୖ୭୭୫_ௗ| 12.57 (7.4) vs. 29 (15.42) 0.049	୧୴୧୬	୬୍݉ݑܰ|

 ୖ୭୭୫_ௗ| 0.89% (0.57%) vs. 7.67% (4.88%) 0.019	୧୴୧୬	୬୍ݎܲ|

 ୟ୲୦୰୭୭୫,ୋ୳ୣୱ୲_ௗ| 19.43 (3.55) vs. 11 (2.53) 4.54e-4	୬୍݉ݑܰ|

 ୟ୲୦୰୭୭୫,ୋ୳ୣୱ୲_ௗ| 0.59% (0.38%) vs. 2.59% (1.73%) 0.036	୬୍ݎܲ|

 |ୣୢ୰୭୭୫,ୟୱ୲ୣ୰_ௗ	୬୍ݎܲ| 0.89% (0.63%) vs. 4.48% (1.56%) 1.51e-3 

 |୰ୣୟ_ௗ	ୈ୭୭୰	୰୭୬୲	୬୍ݎܲ| 1.93% (1.68%) vs. 12.44% (7.47%) 0.017 
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Chapter 5: Future Work 
 

In this section, we introduce future research directions 

5.1 Available Features and Methods Used for System Change Detection 

Changes and disruptions in the data collection environments are unavoidable when using 

ambient sensor networks for activity monitoring in the real living environments, introducing 

deviations in the collected ambient sensor data and misunderstanding of the occupants’ daily 

activities. Our results in Chapter 4 indicate that changes in the daily real entropy rate detected by 

minimizing a penalized contrast function are able to identify part of the changes and disruptions 

in the data collection environments. To discover the undetected system changes and facilitate the 

long-term reliability of sensor systems for data collection and health monitoring, other features of 

sensor data and change-point detection algorithms could be considered for the detection of system 

changes.  

System changes such as sensors’ failing to report data change the number of sensor events 

and therefore their probability distribution. Quantitative metrics that describe the probability 

distributions of sensor events may be useful features to capture such changes in the system. Recall 

that the entropy is a measurement that quantifies the uncertainty or information in a random 

variable. Defining the resident’s location as a random variable, the entropy estimated from the 

distribution of sensor events quantitatively measures the uncertainty of the resident’s location 

which is represented by sensor events. When the resident spends his/her majority time in the living 

room and much less time in other locations, the probability for the sensor events relating to the 
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living room will be the biggest in the distribution and the uncertainty of the resident’s location 

measured by the entropy will be small. When the sensors in the living room malfunction, the 

probability distributions constructed by other sensor events will become uniform and thus the 

uncertainty of the resident’s location measured by the entropy will increase. The changes in the 

entropy measurement illustrate the status changes of the sensors installed in the living room and 

could be used as features to track system changes.  

It is illustrated in our previous study (Chapter 4) that the uncorrelated entropy rate is the 

dominant feature to distinguish the detected changes from the undetected ones, suggesting that the 

uncorrelated entropy rate could be a useful feature to track system changes. Besides the 

information measurements estimated from a single probability distribution such as the uncorrelated 

entropy rate and the real entropy rate, features that measure the difference in the information 

measurements of two probability distributions, i.e., the information gain, or the dissimilarity of 

two probability distributions such as ߯ଶ statistic and the relative entropy or Kullback-Leibler 

distance [117] can be useful to quantitatively measure changes that occur in distributions. Other 

available features include the shape characteristics of probability distribution such as skewness 

and kurtosis. These features capture different aspects of the collected data and we could compare 

their performance on the detection of change-points and identify features that are useful to detect 

changes that are not discovered by merely using the real daily entropy rate. 

In the study of human mobility, we modeled the sequential data of daily real entropy as 

piecewise constant and estimated the unknown abrupt changes in the mean by minimizing a 

penalized contrast function. In the current literature, many other alternative methods are available 

for the detection of unknown changes based on the statistical features of the data. A classical idea 

is to compare the probability distributions of data before and after the candidacy change-points 
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based on hypothesis testing. A null hypothesis that there is no change occurring in the sequential 

data and an alternative hypothesis that the probability distribution changes at some points are the 

typical hypotheses for this method. Test statistics, for instance, the likelihood ratio, i.e., the ratio 

of likelihood functions [125] is estimated based on observations and the assumed probability 

distribution to help determine the change points [126]. Other change-point detection methods can 

be found in [126]–[128]. These methods provide us alternative models to fit the sequential data for 

the discovery of undetected system changes. A comparison of how these methods perform on the 

detection of system-changes could be one of the future research directions. 

5.2 Real-time Location and Activity Tracking 

In smart homes, real-time analysis and tracking of smart home occupant’s location and 

activity are necessary to provide services to the occupants’ needs. One of our future work is to 

transfer the current offline analysis algorithms to real-time algorithms to facilitate real-time smart 

home applications.  

In our study of using ambient sensor networks to monitor the occupant’s health and 

wellness outlined in Chapter 2, an offline algorithm is proposed to track the occupant’s location 

and status and facilitate a retrospective analysis of the occupant’s activity routines and health 

conditions.  

Based on this offline algorithm, we designed a rule-based online algorithm to track the 

occupant’s location and outings in real time using ambient sensor data. In this algorithm, shown 

in Figure 5.1, the occupant’s locations are maintained in a location ordered list which is updated 

based on rules and the sensor events reported by motion sensors and contact sensors that are 

installed on the exit doors. The algorithm in Figure 5.1 tracks the resident’s locations and his/her 
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outing activities in real time. In the future, real-time tracking of other health-related activities such 

as sleep behaviors will be incorporated. 

5.3 Using Ambient Sensor Data for Health Monitoring 

The location and status tracking algorithm proposed in this dissertation enables us to 

generate health-related indicators from ambient sensor data. By visualizing these indicators, we 

can explore an individual’s life routines as well as his/her health conditions. However, visually 

examining graphs to determine health conditions is subjective and time and labor-consuming, and 

not scalable. In our future work, we would like to focus on quantitative relationships between the 

indicators and health conditions to facilitate the automatic monitoring and decision making about 

an individual’s health condition. Some of our work may include the exploration of how indicators 

change related to changes in health conditions (if a higher duration of outings relates to a lower 

risk of developing depression and loneliness, if longer sleep durations and lower number of sleep 

disruptions relate to better sleep quality; if longer durations of outings relates to lower risk of 

loneliness) and how a quantitative evaluation of an individual’s physical or mental health condition 

can be predicted by ambient indicators (if a score that evaluates sleep quality can be predicted by 

predictors such as sleep duration, times of sleep disruption, and time spent out of home). Further, 

in the study of human mobility, we discovered that the regularity of mobility, i.e., the daily real 

entropy rate, is positively correlated with age, i.e., the older age cohorts have a higher value of 

entropy rate. Considering the possible decline in physical and mental functionality due to aging, 

we could consider the entropy rate as an indicator and explore its relationship with an individual’s 

physical and mental health condition as aging in future work. 

  



95 
 

Step 1: Create a blank Location Ordered List (LOL) 
Step 2: Iterate through the list of events for all motion sensors and home exit 
sensors (contact sensors on the garage, front door, etc.) for a given period 
starting at the beginning and update the LOL according to rules as below: 
 Rule 1: When there is a motion sensor ON event, add the motion 

sensor to the last position of LOL and remove any home exit events (if 
applicable) 
Rule 2: When there is a motion sensor OFF event, remove the motion 
sensor  from the list (if applicable) 
Rule 3: When there is a home exit sensor ON event, add an exit sensor 
to the first position in the list if the first position is not already Exit. 

Step 3: The last location in LOL is taken as the estimation of the occupant’s 
current location.  

                  

Figure 5.1 A real-time location and activity tracking algorithm. 
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