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ABSTRACT 

 Data on the movement and diets of fish during a variety of life stages are important inputs 

to fisheries stock assessments and marine ecosystem models. Stable isotopes may provide 

previously inaccessible information on movement and diet of a variety of managed and forage 

fish species. Here I used several novel means of interpretation for stable isotope data to infer 

diets and movements of several important fisheries species over both short (weeks to months) 

and long (lifetime) timescales. Prior captive diet switch studies of marine teleosts converge on a 

constant partitioning offset (CPOM-L) whereby δ15Nmuscle is uniformly higher than δ15Nliver. Mean 

(±SE) difference across all studies was δ15NM-L = 1.67 ± 0.14‰. I then compared the δ15NM-L 

values from 575 marine fishes representing eight species from continental shelf waters of 

Florida, USA to this CPOM-L. I found that mean values of δ15NM-L for five of the eight species 

did not differ significantly from CPOM-L, but mean values for three species were lower than 

CPOM-L. These results suggest that the species at CPOM-L were both stationary and consuming a 

diet of stationary prey. The species with δ15NM-L values far from CPOM-L were either moving or 

consuming prey that was actively migrating through the area.  

 For lifetime-scale studies, I used the δ13C and δ15N values in the fish eye-lenses. I used 

the isotopic values in the eye-lens core (inner-most lamina) to estimate geographic location and 

habitat use of postlarvae from four species common to the northern West Florida Shelf (WFS). I 

found that isotopic values differed among the four species, suggesting different habitat by the 

postlarvae of each species. Relative isotopic values corresponded with relative geographies 

assessed through traditional fisheries demographic studies. In addition, correlation between eye-



 

x 

 

lens core isotope values and the parameters of eye-lens diameter or catch location each indicated 

that while some species move inshore during the postlarval period, others move little or move 

alongshore during this period. 

 I compared the eye-lens isotopic (δ13C and δ15N) profiles of two benthic-modifying 

species from the WFS to assess degree of habitat and diet stability in each species. Traditional 

fisheries data suggests that Tilefish (Lopholatilus chamaeleonticeps) shows high site fidelity and 

diet stability over the lifetime. Values of δ13C and δ15N in sequential eye-lens laminae were 

strongly correlated across the lifetime with increases in both profiles over time. These results 

suggest that Tilefish are highly stationary throughout the lifetime. Red Grouper (Epinephelus 

morio) are known for a sedentary lifestyle during the adult phase. However, as larvae and 

juveniles there is evidence that the species crosses the WFS to shallow water, and back to deeper 

areas. Eye-lens isotope profiles for adults showed low values of correlation between δ13C and 

δ15N. While δ15N increased steadily over the lifetime, δ13C did not. These results suggest much 

lower rates of both site fidelity and diet stability for Red Grouper than for Tilefish.  

 I used eye-lens stable isotope profiles combined with catch data and stomach content 

analysis to construct an in-depth depiction of Red Grouper diet and movement histories over the 

lifetime. I found that fish spawned on the WFS had isotopically distinct eye-lens cores from fish 

spawned in other regions. However, eye-lens core values were relatively consistent between 

juveniles and adults, suggesting a consistent region of postlarval habitat within the WFS system. 

Finally, I found that 60 to 66% of Red Grouper from WFS displayed a unique feature of the δ13C 

profile, whereby values peaked then decreased, completing the cycle before the end of the first 

year. Despite similarities in diet for individuals from the Florida Reef Tract and Campeche Bank, 

few had similar δ13C profiles. Combined with catch data and stomach content data, these isotopic 



 

xi 

 

data suggest ontogenetic cross-shelf movement along with a continually shifting diet over the 

first year of life.  

 The tools developed and tested here can provide additional data for interpreting 

movement and diets of important fisheries species for current single-species stock assessments. 

Using the difference between δ15N in the muscle and liver tissue of a single fish can provide 

information about the movement of fish over the preceding few months. Analyzing the δ13C and 

δ15N values in the eye-lens cores of individual fishes can indicate movement and diet during the 

earliest weeks of life using a historical approach. The whole eye-lens isotope profiles of δ13C and 

δ15N can suggest lifetime movement and combining the isotope profile data with traditional 

fisheries data may provide additional insight into the movement and diet of a species. These 

isotopic and statistical techniques will be invaluable as fisheries stock assessment continues to 

move to a more ecosystem-based approach.    
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CHAPTER 1: INTRODUCTION AND BACKGROUND 

 Single-species fisheries management is being supplanted by ecosystem-based fisheries 

management (O'Farrell et al. 2017), and this trend is expected to continue as computational 

power and ecosystem model sophistication increases (Marshall et al. 2019). Current methods of 

fisheries management and decision-making rely on understanding the biological and physical 

needs of target species, especially during life-stages that precede targeted fisheries. As Maunder 

and Piner (2015) discuss, knowledge of growth, natural mortality, and recruitment are all 

essential inputs to successful stock assessments. Additional data including diet and trophic 

dependencies, episodic events such as red tides, and habitat needs have begun to be incorporated 

into recent fisheries stock assessments as well (SEDAR 2018; SEADAR 2019). With this 

increased focus on a holistic approach to the management of ecosystems, additional life history, 

trophic, and habitat data will be necessary for most species. One field poised to provide high-

value, low investment data is stable isotope analysis. Over the past several years, the foundations 

have been laid for using bulk stable-isotope values (especially δ13C and δ15N) in various fish 

tissues, including muscle, liver, and eye lenses, as indicators of movement and diet. These 

methods are especially well-developed in regions such as the West Florida Shelf (WFS), where 

detailed isoscapes are available (Radabaugh and Peebles 2014). 

 

STABLE ISOTOPE ECOLOGY: GENERAL BACKGROUND 

 In marine organisms, the bulk isotopic values of δ13C and δ15N can be used as proxies for 

trophic position, basal resource dependence, and location. Observed δ15N values are not affected 



2 

 

by lipid content in tissues, but may be affected by chemical treatments (Skinner et al. 2016). The 

observed δ13C values may be influenced by lipid content in tissues with high percentages of fat, 

requiring mathematical or chemical lipid corrections (Skinner et al. 2016). Tissues with C:N 

ratios above 3.5 are generally considered high in lipid, requiring mathematical or chemical 

manipulation. To circumvent uncertainties associated with lipid correction and normalization, I 

selected tissues and isotopes for the current project that did not require mathematical or chemical 

manipulation. 

 Relative trophic position of organisms within an ecosystem is assessed using δ15N 

(Chikaraishi et al. 2007; Hunsicker et al. 2010; Bradley et al. 2015). Trophic position is 

ordinarily estimated by using simple addition from the δ15N baseline values of primary producers 

with an average increase of 3.4‰ per trophic level (Fry 2006). Recently, Hussey et al. (2014) 

showed mathematically that this average difference among trophic levels may ignore important 

variability within the system, under-estimating low trophic position differences in δ15N values 

while over-estimating high trophic position δ15N differences. As a consequence, trophic position 

may be under-estimated in many top predators, with modeled food chain length potentially 

shorter than reality. Nevertheless, tissue δ15N value remains an important and powerful proxy 

when considering trophic position in many ecologically relevant contexts.  

 In most species of fish, the trophic position of the individual increases as the fish grows, 

taking advantage of larger, higher trophic position prey, and resulting in increased values of δ15N 

in all tissues. The trend has been demonstrated using δ15N isotope values in muscle tissue from 

several species including Summer Flounder (Paralichthys dentatus) and Yellowfin Tuna 

(Thunnus albacares) (Graham et al. 2007; Buchheister and Latour 2011).  A similar observation 

has been made using eye-lens profiles for individual fishes, with lowest observed values 



3 

 

corresponding to the initiation of external feeding and increasing values of δ15N as the fish 

continues to grow over the lifetime (Wallace et al. 2014; Quaeck-Davies et al. 2018; Simpson et 

al. 2019).  

 In contrast, δ13C is primarily used to assess trophic dependence (Grippo et al. 2011) and 

can be interpreted as geographic position of predators due to predictable spatial variability in 

δ13C in many marine systems (Barnes et al. 2009; Radabaugh and Peebles 2014; Trueman et al. 

2017; Brault et al. 2018). This difference can be more useful than the small and variable isotopic 

increase with increasing trophic position (~0.5-1.5‰ per trophic level) due to more consistent 

differences with less variability (Fry 2006).  Phytoplankton fractionate carbon isotopes during 

photosynthesis at higher rates than benthic primary producers such as benthic microalgae, 

macroalgae, and vascular plants (Fry and Wainright 1991; Keough et al. 1998; Burkhardt et al. 

1999; Radabaugh et al. 2014; Puigcorbe et al. 2015). In general, values of δ13C in phytoplankton 

are near -24‰ (Fry 2006), whereas those of benthic algae are closer to -19‰ (Radabaugh et al. 

2014).  Difference in δ13C fractionation between planktonic and benthic photosynthetic 

organisms has been attributed to boundary layer effects (France et al. 1995) and to light 

availability for individual cells (Radabaugh et al. 2014). At higher trophic positions, δ13C values 

can be interpreted to represent the basal resource most responsible for maintaining the food web 

for a particular region (Elliot Smith et al. 2018; Paar et al. 2019) or the basal resource 

dependence of a species of interest (Duke et al. 2018).  

 

GEOGRAPHIC AND ISOTOPIC SETTING 

 The work in this dissertation is geographically centered on the West Florida Shelf (WFS), 

a wide continental margin bordering the western edge of the state of Florida, U.S.A. The WFS 
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consists of drowned limestone reef covered in a thin sand veneer in most areas (Balsam and 

Beeson 2003; Hine and Locker 2011). In limited locations, the limestone of the prehistoric reef 

projects above the soft sediment, providing habitat for sessile organisms (Wall and Stallings 

2018). These exposed rocky reefs covered in attached fauna function as aggregation sites for 

varied nekton and larger motile benthic organisms (Ainsworth et al. 2015). These densely 

populated areas provide habitat and food for many commercially and recreationally important 

fisheries species such as snappers (Lutjanidae) and groupers (Serranidae) (Gledhill and David 

2004).   

 Previous work has established isotopic background patterns in both δ13C and δ15N on the 

WFS (Figure 1.1, 1.2). In short, δ13C of fish muscle tissue decreases with water column 

depth/distance from shore (Radabaugh and Peebles 2014). Benthic microalgae dominate primary 

production in shallow water (Doi et al. 2010), whereas phytoplankton are the only source of 

primary productivity in deeper water (Popp et al. 1998; Burkhardt et al. 1999) due to a lack of 

adequate photosynthetically active radiation (PAR) reaching the bottom. Due to the higher rates 

of fractionation discussed above, δ13C in phytoplankton is typically lower than in benthic 

producers (Radabaugh et al. 2014). This pattern is carried through the system and reflected in 

fish tissue. Higher values of δ13C are generally observed in muscle tissue of fish living in shallow 

water and lower values are found in fish collected in deeper water within the same species 

(Radabaugh et al. 2013). The pattern of high background values of δ13C in shallow water on the 

WFS has been shown to hold over seasons (Radabaugh et al. 2013) and among years (Huelster 

2015).   

In contrast, δ15N of fish tissue in the Gulf of Mexico varies with distance to major sources 

of nutrient run-off from animal husbandry and treated municipal wastewater (Howarth et al. 
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1996; Burkart and James 1999). The δ15N entering the system reflects the trophic position of 

farm animals and humans, resulting in elevated background levels near the mouth of major rivers 

such as the Mississippi (Kendall et al. 2001; Duan et al. 2014; Walker et al. 2017). Water along 

the southern WFS has little riverine input, leaving diazotrophs such as Trichodesmium sp. as a 

primary source of δ15N into the system (McClelland et al. 2003; Holl et al. 2007). These cells 

utilize atmospheric N2 for amino acid synthesis during cell growth, resulting in an ecosystem 

with relatively low levels of background δ15N (Holl et al. 2007). In practical terms, this means 

that δ15N is highest close to the mouth of the Mississippi River (at the northwest edge of the 

WFS) and declines southeastward toward the Florida Keys (Radabaugh and Peebles 2014; 

Peebles and Hollander 2020). Patterns are carried through to fish tissue, with higher values of 

δ15N in fish farther north on the WFS and lower values of δ15N from fish closer to the Florida 

Keys (Radabaugh and Peebles 2014; Peebles and Hollander 2020; Figure 1.1, 1.2).  

Some specimens were collected from Campeche Bank north of the Yucatan peninsula. 

Like the WFS, this area consists of a wide, shallow continental shelf extending offshore from a 

major landmass. The bank projects northward from the shore into the southern Gulf of Mexico 

covering approximately 125 miles (Kormcker et al. 1959). Much of the area is covered in rock 

with a large reef complex, Alacran Reef, occupying much of the area. Unconsolidated sediment 

consists primarily of carbonate sand in the region (Kormcker et al. 1959). A modeled δ13C 

isoscape has not been published for the region; however, shallower areas seem to have higher 

levels of background δ13C due to clear water and the availability of light to the bottom for the 

proliferation of benthic microalgae (Michaud, unpublished data). Deeper waters have more 

negative values of δ13C due to light limitations of benthic photosynthetic organisms (Michaud, 

unpublished data). A modeled δ15N isoscape has been published for the region with relatively 
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uniform, low values of background δ15N (Peebles and Hollander 2020), consistent with low 

levels of river run-off (Kormcker et al. 1959) bringing little organic nitrogen from human 

activities into the region (Figure 1.1). Uncertainty remains for both the δ13C and δ15N isoscapes 

in this region due to low sample density, and an improved isoscape would increase interpretive 

power for fish and mobile organisms collected from the Campeche Bank.  

Finally, some samples were collected from near the southeast coast of Florida. This 

region does not have modeled isoscapes for δ13C or δ15N. However, a geographically limited 

study in Biscayne National Park, a small section of the Florida Reef Tract, suggests trends in the 

background values of both δ13C and δ15N isotopes in fish tissue (Figure 1.1). The park extends 

from the northern edge of the Florida Keys to just south of the city of Miami, Florida. It includes 

continuous reef along the outer edge and numerous patch reefs in shallow water (Brock et al. 

2004). Similar to patterns observed on WFS, δ13C values decreased with depth, indicative of 

decreases in benthic production (Curtis 2016). The researchers also found that δ15N increased 

with latitude, similar to observations on the WFS (Curtis 2016). It is unknown whether δ15N 

would continue to increase to the north of the heavily populated region of southeast Florida or if 

the δ15N maximum for the region occurs near Miami. 

 

MUSCLE AND LIVER δ15N DIFFERENTIAL 

 Historically, researchers have interpreted the δ13C and δ15N values of individual tissues or 

whole organism, depending upon the size of the organism under study (McClelland and Montoya 

2002; Elsdon et al. 2010). However, one limitation to this approach is the temporal limitation of 

the turnover time of each individual tissue. For example, muscle tissue integrates one to two 

months of growth into the isotopic values (Mohan et al. 2016). In contrast, liver tissue turns over 

more quickly, representing only one to two weeks with turnover driven by metabolism (Barreto-
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Curiel et al. 2017). Isotopic values within each tissue represent not only the diet and location 

over the preceding weeks to months, but may be influenced by nutritional state, species, sex, or 

even time of year (Awkerman et al. 2007; Hussey et al. 2010; Poupin et al. 2014; Mohan et al. 

2016). This aspect of interpretation should continue to be investigated in the future. 

Individual species (Popp et al. 2007; Olin et al. 2013; Mohan et al. 2016) or small groups 

of similar species (Hussey et al. 2010) have been investigated for their unique isotopic 

fractionations with diet. However, no study has investigated whether a consistent offset exists 

between the values in various tissues within individual fish living in a stable physical and trophic 

environment. Many of the previous studies that have investigated isotopic values in body tissues 

have used both liver and muscle as these tissues are easily accessible and vary in turnover time. 

Investigating this constant partitioning offset between two tissues in many species across the 

globe is a novel approach and has the advantage of applicability across taxa regardless 

background isoscape. 

 

FISH EYE LENSES AS RECORDS OF DIET AND MOVEMENT OVER THE 

LIFETIME 

 Whereas tissue isotopic differentials are one effective tool for broadening the scope of 

body tissue isotope analysis, tissue turnover limits timescales to the preceding few months. In 

contrast, fish eye lenses serve as a permanent record of stable isotopes over the lifetime of the 

individual (Wallace et al. 2014). Using the isotopic data within the eye lens has the potential to 

increase knowledge of both habitat and food utilization for important fisheries species, especially 

during life stages that are not susceptible to standard fisheries or sampling gears. 

 Because eye-lens protein does not turn over throughout the life of an individual 

(Lynnerup et al. 2008), this tissue can be used as a record of both trophic and geographic history. 
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Eye lenses of vertebrates and some invertebrates (i.e., squids) are composed primarily of proteins 

called crystallins (Mahler et al. 2013). Research using radiocarbon dating on human eye lenses 

has revealed that crystallins are not re-worked (Lynnerup et al. 2008). Thus, the isotope values 

found therein represent a permanent, historical record. Recent work on Greenland sharks 

(Somniosus microcephalus) confirms this idea in fish (Nielsen et al. 2016). The eye lens is an 

ideal candidate for studying the δ13C and δ15N stable isotopic histories throughout the lifetime of 

the individual because they are high in both carbon and nitrogen. Recent research into several 

fish species on the West Florida Shelf (WFS) has shown that the δ13C and δ15N values in the eye 

lens can reveal trophic and movement histories for individual fish in areas where background 

isoscapes exist (Wallace et al. 2014; Kurth et al. 2019; Meath et al. 2019). Full integration of 

environmental isotopic values within an eye-lens lamina requires approximately 54 days in 

juvenile, hatchery-reared Red Drum (Granneman 2018). Because additional material is added to 

the eye lens as the fish grows, resolution of the isotopic record seems to be highest during the 

first year of life, and lower as growth slows with age. Sampling of eye-lens laminae is 

accomplished via manual delamination (peeling), resulting in a signal resolution of 

approximately three to four months (Wallace et al. 2014).  

 

CHAPTER SUMMARIES 

The following are short summaries of each data chapter and how they fit together into a coherent 

document. I wrote each chapter as stand-alone research articles to be published in the literature 

with co-authors. The individuals who contributed data or ideas to each of the chapters are 

specifically mentioned in the acknowledgements section of this document. 
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Chapter 2: Offset between muscle and liver δ15N for short-term site fidelity  

In chapter two I take advantage of the differential turnover times between liver and 

muscle tissue within an individual fish. I used literature review to investigate whether a single 

value (constant partitioning offset, CPO) exists for the difference between δ15N of muscle and 

liver in teleost fishes consuming a consistent diet. I then compared the calculated average to the 

differences observed in wild fish. If wild fish differentials were constrained within the bounds of 

CPOM-L, then I concluded that the fish and its prey did not move along the δ15N gradient over the 

preceding two to three months. If these values were not within the bounds of CPOM-L, then I 

concluded that the fish or prey did move along the δ15N during the preceding few months. 

Distances were not assessed, but larger isotopic differences from the captive mean suggest longer 

distances moved. 

This approach is not only applicable to a wide array of teleost fish, but is also easily 

accessible as a screening technique. Both muscle and liver are easy to obtain and preserve from 

fish collected for other purposes. These tissues require minimal training to extract properly and 

are easily collected. They are easy to preserve using ice and a cooler, and show no isotopic 

degradation during freezing (Stallings et al. 2015). I used only δ15N values for this study because 

δ13C values can be impacted by lipid content. Liver tissue is high in lipid storage molecules, 

rendering δ13C unreliable or requiring additional chemical or mathematically manipulation to be 

useful (Buchheister and Latour 2010; Chen et al. 2012). If applied to other species in other 

regions, this technique can efficiently distinguish between fish that are healthy, stationary, and 

eating a consistent diet from those that should be investigated for physiological stress, 

movement, or diet changes.  
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Chapter 3: Eye-lens cores as records of geographic location in fish postlarvae  

 In chapter three, I explore the utility of the isotope values preserved in the eye-lens core 

as a record of postlarval (post-flection larvae) and early juvenile (post-settlement) location. 

Using a fish-length to eye-lens diameter regression equation unique to each species, I calculate 

that the center of the eye lens (core) represents the earliest weeks of life. During this time, 

postlarvae from all investigated species consume the same foods (zooplankton) (Nunn et al. 

2012; Umezawa et al. 2018), with a trophic position of approximately 3.0 (McCutchan et al. 

2003). Therefore, values of δ13C and δ15N differentiate individuals that are living and feeding in 

different locations. This simplification of the data allows comparison of locations and 

movements of several species that use broadly similar habitats on the WFS. These geographic 

locations further constrain habitat needs for each of the four species, Red Grouper (Epinephelus 

morio), Gag (Mycteroperca microlepis), Red Snapper (Lutjanus campechanus), and Black 

Seabass (Centropristis striata). I find that each utilizes a unique set of geographic locations with 

differing habitat characteristics. Each also employs a unique set of movements during the first 

few weeks of life within the context of the northern WFS. 

 

Chapter 4: Eye-lens profiles as indicators of movement and diet shifts 

 In chapter four, I investigate the δ13C and δ15N across the lifetime of individual fish, 

comparing two species with broadly similar adult life histories. With no movement along the 

δ15N gradient for the region, the value for δ15N within an individual eye-lens profile would be 

expected to increase steadily throughout the lifetime of the fish (Graham et al. 2007; Bradley et 

al. 2015). Similarly, a lack of movement in the δ13C isoscape direction results in steadily 

increasing values of δ13C within the eye lens. Movement in either direction would be expected to 

obscure these patterns and result in low correlation between the profiles of δ13C and δ15N.   
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 Decades of biological sampling suggests that Tilefish (Lopholatilus chamaeleonticeps) 

spend their life in burrows near the shelf edge (Fisher et al. 2014) and do not change location 

over time. Throughout the lifespan, these fish feed on benthic invertebrates (Wenner and Barans 

2001). I observe that Tilefish profiles of both δ13C and δ15N increase steadily over the lifetime. 

This species may be considered a model of isotopic consistency in both δ13C and δ15N, reflecting 

consistency in both diet and location over the lifetime. Despite the expected ratio of isotopic 

increase between δ13C and δ15N of 1:3, I find that the rate of increase for δ13C is almost as high 

as the rate of increase for δ15N in Tilefish, suggesting that δ13C fractionation with growth in fish 

may be higher than traditionally thought. 

 Adult Red Grouper also remain stationary. Many individuals excavate sandy sediment 

(Coleman et al. 2010; Wall et al. 2011), revealing small limestone outcroppings.  Individuals as 

small as 340 mm TL have been documented engaging in this activity (Ellis 2015); the fish use 

these excavations as their home territory. Conventional tagging studies have shown that Red 

Grouper are frequently recaptured at or near their original tagging location (Coleman et al. 

2011), suggesting movement is limited in many adults. However, limited data is available for 

Red Grouper less than ~2 years of age as long-term sampling programs rarely encounter 

individuals smaller than ~300 mm TL. This makes the use of eye lens δ13C and δ15N profiles a 

unique and important proxy for tracking Red Grouper throughout the lifetime. Isotopic eye-lens 

profiles are poorly correlated in the species. These results suggest that the species is much less 

stationary in early life than would have been thought from tagging studies alone, prompting 

further investigations into the movements and diets of the species. 
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Chapter 5: Integrating eye-lens isotope data with traditional fisheries data 

 The most recent Southeast Data Assessment and Review (SEDAR) stock assessment for 

Gulf of Mexico Red Grouper declared the species not overfished or undergoing overfishing 

(SEADAR 2019).  Despite population models in the SEDAR report indicating the stock to be of 

sufficient size, the SEDAR panel cautioned that several areas of uncertainty for the species, 

including locations and habits of young juveniles (SEADAR 2019), could affect these estimates.  

Therefore, understanding the habitat needs, movement patterns, and trophic characteristics of 

Red Grouper in detail throughout the entire WFS system and beyond will be of utmost 

importance for future stock assessments. 

 In chapter five, I utilize the tools developed in chapters three and four, combined with 

traditional fisheries data such as stomach content analysis and capture location, to create a 

clearer picture of Red Grouper diet and habitat needs over the lifespan. The highest isotopic 

resolution is available in the first year of life, the time period with the highest growth rate. I find 

high degree of isotopic similarity among eye-lens cores of fish from WFS regardless of capture 

year or age. I also find isotopically distinct eye-lens core values from Campeche Bank and 

southeast Florida. I find that although many Red Grouper use a mixed benthic and planktonic 

basal resource, major diet components shift throughout the juvenile period. Finally, I find an 

isotopic feature in the δ13C eye-lens profile of many individuals whereby the δ13C value peaks 

before the end of the first year of life. Catch records indicate that most individuals captured 

during the first year of life were captured in shallow seagrass beds. Although seagrass captures 

cannot represent the entire population during early life, it seems likely that the peak in δ13C is a 

result of Red Grouper using shallow habitats with primarily benthic basal resources during this 

period. 
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OBJECTIVES 

 The objective of this dissertation is to create and test novel methods of generating 

lifetime-scale biological data for ecosystem models and fisheries management. Using first 

principles, background isoscapes, and standardized statistics I show that it is possible to create 

robust movement and diet interpretations of fish isotope data. I use the CPO between muscle and 

liver tissue within the same individual to assess movement and diet on timescales of weeks to 

months. I also present three unique studies that develop methods of interpretation for bulk eye-

lens δ13C and δ15N values. I use the isotope values in the eye-lens core to represent the diet and 

locations of postlarvae during the earliest weeks of free-swimming life. I use the lifetime isotopic 

profiles of two benthic-associated fish species to investigate the degree of lifetime movement 

and diet variability. Finally, I use the lifetime isotopic values combined with traditional fisheries 

data (capture location and stomach content analysis) to create an in-depth account of the lifetime 

trophic and movement history of a single species. Rules developed here are generally applicable 

to many fish species, providing life-history data for forage fish, small reef fishes, and other 

species which have been poorly studied in the past. These four isotopic studies demonstrate the 

utility of bulk isotope values for fisheries research, providing data for improvements to 

ecosystem modeling, fisheries stock assessment and, ultimately, fisheries management. 
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Figure 1.1 General δ13C and δ15N trends within the three geographic study regions discussed in 

this dissertation. West Florida Shelf (WFS) isotope trends after Radabaugh and Peebles (2014). 

Campeche Bank (CB) isotope trends after Peebles and Hollander (2020) and B. Michaud 

(unpublished data). Southeast Florida (SEFL) trends after Curtis (2016).  
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Figure 1.2. General δ13C and δ15N trends on the WFS in fish muscle tissue after Radabaugh and 

Peebles (2014). Values derived from variance from mean values for each isotope based on 

multiple regression models.  
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CHAPTER 2: THE δ15N VALUES IN MUSCLE AND LIVER OF MARINE TELEOSTS 

DIFFER PREDICTABLY AND CAN BE USED AS AN INDICATOR OF SITE FIDELITY 

 

ABSTRACT 

We investigated the δ15N offset between two tissue types, skeletal muscle (relatively slow 

turnover rate) and liver (relatively fast turnover rate; δ15NM-L), as an indicator of marine fish site 

fidelity at a timescale of weeks-to-months. We calculated δ15NM-L from twelve published studies 

of captive marine teleost species that consumed isotopically consistent diets. The constant 

partitioning offset (difference between δ15N in muscle and liver tissue of the same individual 

[CPOM-L]: δ15NM-L) was 1.67 ± 0.30‰ (mean ± CI). Variation around the mean partitioning 

offset was not correlated with size, trophic position, tail aspect ratio, or water temperature. We 

used the 95% confidence interval for CPOM-L as a baseline for comparing the δ15NM-L values 

from eight wild-caught fish species captured from Florida, USA continental-shelf waters. The 

δ15NM-L values from five species were not different from CPOM-L, reflecting a lack of isoscape-

scale movements by these predatory species and their prey during recent months, consistent with 

the literature. The mean δ15NM-L values for three species were lower than CPOM-L, suggesting 

that these predatory species or their prey had recently moved along the δ15N gradient. All species 

with δ15NM-L values lower than CPOM-L are generalist predators that consume mixed diets of 

migratory forage fishes and benthic invertebrates. As a method, δ15NM-L appears to be useful 

for identifying short-term movements of marine teleosts or their prey and has the potential for 

widespread application. 
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INTRODUCTION 

 Seasonal diet and habitat use information are essential inputs to fisheries stock 

assessments and ecosystem models. However, these parameters may be difficult to obtain due to 

the difficulty and cost associated with field experiments. By utilizing the internal chemistry of 

individual organisms, researchers can broaden access to short-term movement information for 

many additional species for which the incorporation of movement data was impractical. Ratios of 

the two nitrogen stable isotopes (15N:14N, expressed as δ15N) have been measured for a multitude 

of terrestrial and aquatic animal species (Pinnegar and Polunin 1999; Fry et al. 2003; Ellis et al. 

2014; Tzadik et al. 2017). Values of δ15N have served as proxies for trophic position (Dalerum 

and Angerbjorn 2005; Bradley et al. 2015), food-web structure (Post 2002; Chikaraishi et al. 

2009), habitat use (Fry et al. 2002; Brame et al. 2014), organic nutrient subsidies (Nelson et al. 

2012; Larson et al. 2013), inorganic nutrient source (Gaston and Suthers 2004), and tissue 

turnover rate (Downs et al. 2014; Vander Zanden et al. 2015). Studies of δ15N-based tissue 

turnover rate in bony fishes have consistently reported that liver tissue turns over at a faster rate 

than muscle tissue (Logan et al. 2006; Ankjaero et al. 2012; Mohan et al. 2016). Liver tissue 

requires days to weeks to equilibrate and is generally controlled by metabolic rate (Matley et al. 

2016). Muscle requires weeks to months to equilibrate and is typically controlled by growth 

(Varela et al. 2012; Davis et al. 2015; Mohan et al. 2016).  

 

Isotopic offsets between body tissues 

Even under constant isotopic conditions, muscle and liver tissues may not reach identical 

values within the same individual due to physiological differences between tissue types 
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(Michaud et al. 2013; Sturrock et al. 2014). Authors have noted that δ15Nmuscle values are higher 

than δ15Nliver values in several marine teleost field studies (Haas et al. 2009; Michaud et al. 2013; 

Davis et al. 2015). Haas et al. (2009) used δ15Nmuscle and δ15Nliver to examine movements of 

Mummichogs (Fundulus heteroclitus) within an estuary, but noted that δ15Nmuscle values were 

always higher than δ15Nliver, even for fish caged in place. Davis et al. (2015) found δ15Nmuscle 

averaged 1.5‰ higher than δ15Nliver in four of five reef-fish species. Likewise, Michaud et al. 

(2013) found that δ15Nmuscle in Arctic Charr (Salvelinus alpinus) was approximately 1‰ higher 

than δ15Nliver with small differences based on sex, maturity state, or feeding status. The results of 

several other stable isotope studies using wild, marine teleosts have included higher values of 

δ15Nmuscle than δ15Nliver (e.g. Graham et al. 2007; Chouvelon et al. 2015; Logan et al. 2015). 

An offset between δ15N values for muscle and liver in fish fed a consistent diet has never 

been investigated on a broad scale. The final δ15N muscle and liver values from diet-switch 

experiments (Suzuki et al. 2005; Buchheister and Latour 2010; Mohan et al. 2016) can be 

expected to remain constant after sufficient time to complete turnover of the tissues under study. 

Thus, the difference between δ15N values of muscle and liver recorded at the end of long-

duration experiments can be used to calculate an offset between δ15Nmuscle and δ15Nliver in captive 

fishes. This constant partitioning offset (CPOM-L: δ15NM-L) can be used to infer movement and 

diet changes in wild fish in regions with known geographic trends in background isoscapes.  

 

Isotopic and geographic setting for wild fish in study 

The continental shelf around Florida, USA, includes a clearly defined δ15N gradient 

observed in both basal resources and fish muscle (Radabaugh et al. 2013; Radabaugh and 

Peebles 2014). The region includes diverse soft- and hard-bottom habitats. Scleractinian coral 
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reefs of the Florida reef tract extend northward along the southeast coast of the Florida peninsula, 

including Biscayne National Park (Ogden et al. 1994; Harlem et al. 2012). On the western side of 

the peninsula, the expansive West Florida Shelf (WFS) is composed of a mosaic of soft- and 

hard-bottom habitats (Locker et al. 2010; Hine and Locker 2011; Wall and Stallings 2018). A 

fine-scale isoscape has been established for the WFS (Radabaugh et al. 2013; Radabaugh and 

Peebles 2014) with higher δ15N values in the north and lower values in the south. This 

established isoscape can serve as the backdrop against which to examine the differences between 

slow- and fast-turnover tissues in a range of wild-caught fish species, inferring levels of site 

fidelities for predators and their prey. Previous work has taken advantage of the large differences 

in background δ15N between estuaries and coastal systems of the Gulf of Mexico. Studies of both 

blue crabs (Callinectes sapidus) (Gelpi et al. 2013) and brown shrimp (Farfantepenaeus aztecus) 

(Fry et al. 2003) compared slow- and fast-turnover tissues to examine movement into or out of 

Louisiana estuaries for settlement and spawning. 

  Some teleosts species in the region, such as Golden Tilefish (Lopholatilus 

chamaeleonticeps) exhibit high site fidelity and consume consistent, benthos-derived diets 

(Grimes et al. 1986; Grimes and Turner 1999). In contrast, the short-term movements and diets 

of species such as Red Grouper (Epinephelus morio) may be less consistent. While most tagged 

individuals are re-captured only short distances from their original tagging location, re-capture 

studies can present bias toward stationary individuals (Burns, 2009). In addition, stomach-

content studies indicate that the species diet tends to include both benthic prey and migratory 

forage fishes in the water column (Bullock and Smith 1991; Brule and Canche 1993).  
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Objectives 

We conducted a literature survey of captive diet-switch studies that reported tissue-

specific δ15N values for marine teleosts. We used the published results of these experiments to 

calculate CPOM-L. We hypothesized that (1) CPOM-L = 0 after the fish had been fed an 

isotopically consistent diet for sufficient time to complete turn-over of both tissues. If CPOM-L ≠ 

0 we hypothesized that (2) factors such as water temperature, body size, or metabolic rate would 

correlate with this difference. We then compared CPOM-L with the observed δ15NM-L of eight 

reef-associated fish species caught on Florida’s continental shelf to investigate the relative 

amount of short-term movement in these predatory fishes or their prey. We hypothesized that (3) 

species with little movement and local diets would have δ15NM-L values no different from 

CPOM-L while species which migrated or consumed migrating prey would have δ15NM-L 

significantly different from CPOM-L. The method can be applied to less-well studied populations 

to quickly evaluate relative site fidelities of fish species within a region. 

 

MATERIALS AND METHODS 

Survey of diet-switch studies 

 We compiled 14 δ15Nmuscle and δ15Nliver measurements from 12 previous studies in marine 

teleosts where the qualifications were that the study must investigate captive fish in diet-switch 

experiments that measured bulk δ15Nmuscle and δ15Nliver values. We limited the results to the final 

δ15Nmuscle and δ15Nliver values from experiments for which a minimum of three months elapsed 

post diet-change or δ15N values remained consistent for two consecutive sampling events. A 

minimum duration of 90 days has been shown to be sufficient to allow both muscle and liver 

tissues time to stabilize after an isotopic shift (Trueman et al. 2006; Mohan et al. 2016). In the 
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case of studies investigating the effect of feed quality or starvation on tissue isotope values, we 

included only isotope values from the control group or those fed a “high” quality diet. Fish in the 

starvation group or consuming “low” quality feed were excluded. Research subjects in each of 

the studies (1) were fed a starting diet until tissue isotope values stabilized, (2) were subjected to 

a change in feed, and (3) were fed the second diet for a minimum of three months or until 

measured values of δ15N were stable in both tissues. Diets consisted of either commercial fish 

feeds (fish feed in Table 2.1) or wild-caught prey items (each wild type identified in Table 2.1). 

In the case of wild-caught prey, the feed was either collected or bought in a single batch for the 

duration of the study to ensure isotopic consistency. 

Together, the experiments analyzed included 101 captive fish representing 12 marine 

species in 11 families (Table 2.1). The studies were conducted on four continents and used fish 

specimens from three ocean basins, with water temperatures ranging from 8 to 28°C. The 

smallest, most sedentary species was the Sand Goby (Pomatoschistus minutus). The largest, most 

mobile species was the Pacific Bluefin Tuna (Thunnus orientalis). Total mass and length ranged 

over several orders of magnitude (Table 2.1).  

For each of the 12 studies, we recorded diet type (commercial fish feed or a type of wild 

feed) and the number of days since diet change. Most studies also provided information on 

length, weight, and water temperature. However, if fish length or weight was missing, we 

estimated the missing parameter based on information provided by the study combined with 

published length-weight relationships. For example, if length was reported but not total weight, 

we calculated total weight using the combined species-specific, weight-at-length regressions 

provided by FishBase (http://www.fishbase.org/search.php). We also collected information on 

estimated trophic position and tail aspect ratio, a proxy for swimming speed and overall 
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metabolic rate, reported by FishBase (Froese and Pauly 2018).To test hypothesis (1) we 

calculated the parameter Δδ15NM-L by subtracting mean δ15Nliver from mean δ15Nmuslce within each 

study. To test hypothesis (2) we used a correlation matrix (Pearson’s r) to evaluate all possible 

pairings of variables (Δδ15NM-L, δ
15Nmuscle, δ

15Nliver, mean length, mean weight, water temperature, 

trophic level, tail aspect ratio) and visually examined scatterplots of each pairing to qualitatively 

assess nonlinear relationships. We used linear regression to relate δ15Nmuscle to δ15Nliver, which 

produced an intercept and slope describing the average partitioning offset (Δδ15NM-L).  

 

Survey of wild-caught reef fishes 

Between 2011 and 2017, we collected reef fishes using a variety of vessels and gear types 

(longline, hook-and-line, pole spear) from continental shelf waters around Florida, USA. From 

the WFS, we collected White Grunt (Haemulon plumierii; n = 141), Gray Snapper (Lutjanus 

griseus; n = 77), Red Snapper (Lutjanus campechanus; n = 9), Black Seabass (Centropristis 

striata; n = 10), Golden Tilefish (n = 36), and Red Grouper (n = 45). We collected Graysby 

(Cephalopholis cruentata; n = 69) and lionfishes (Pterois miles/P. volitans; n = 64) from coral 

reefs in Biscayne National Park off the coast of southeastern Florida (Figure 2.1). We collected 

all species during the months of July, August, and September. Additional Red Grouper and 

Black Seabass were collected seasonally (Table 2.4). Because all specimens were collected as a 

part of other field sampling efforts, total numbers and the availability of ancillary data, such as 

gonad mass, differed among species. 

We recorded length, weight, sex, and maturity state in the field for all specimens. We 

also recorded gonad mass for White Grunt, as these specimens were collected for a reproduction 

study (Stallings et al. 2016). For isotope analysis, we removed a 3–5 g sample of both muscle 
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from the dorsal musculature above the lateral line and liver tissue from each specimen, wrapped 

each sample in aluminum foil, and stored each at -20°C until analysis. Freezing has been found 

to impart no isotopic preservation effect on the tissues (Stallings et al. 2015).  

 Prior to isotope analysis, we thawed and dried samples at 55°C for a minimum of 48 h. 

Once dried, we homogenized the samples into a powder using a stainless-steel ball mill (Wig-L-

BugTM). We then packaged sub-samples of 500–750 µg into 3.3 x 5 mm tin capsules for stable-

isotope analysis performed in duplicate. Isotope analysis was performed using a Carlo-Erba 

NA2500 Series II elemental analyzer coupled to a continuous-flow Thermo-Finnigan Delta+ XL 

isotope ratio mass spectrometer at the University of South Florida College of Marine Science in 

St. Petersburg, Florida. Calibration standards were NIST 8573 and NIST 8574 L-glutamic acid 

standard reference materials. Analytical precision was measured using NIST 1577b bovine liver. 

Results are presented in standard notation ( notation, in ‰) relative to the international standard 

of air using the equation: 

δ15N = Rsample/Rstandard - 1 

We calculated mean and standard error of Δδ15NM-L for each wild-caught species 

collected during the July to September period. Using power analysis, we determined that the 

minimum sample size required to compare data to CPOM-L was seven. All wild-caught species 

included at least nine individuals. We performed regressions between total length and Δδ15NM-L 

for each species. Despite two significant correlations between fish total length and Δδ15NM-L 

(Red Snapper: p = 0.02, R2 = 0.58; White Grunt: p = 0.03, R2 = 0.03), slopes were uniformly 

shallow (range: -0.003-0.000) and R2 values were low, suggesting a weak relationship between 

Δδ15NM-L and fish size in wild species (Table 2.2). We, therefore, combined all specimens by 

species. We also combined values of Δδ15NM-L for all capture locations for each species. 
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Shapiro-Wilkes tests suggested Δδ15NM-L data could not be distinguished from a normal 

distribution (W = 0.94, p = 0.29). To test hypothesis (3) we used the Kruskal-Wallis (K-W) rank-

based ANOVA to compare the distributions of Δδ15NM-L values for each wild-caught species 

with the CPOM-L identified by the literature survey. We used the Games-Howell (G-H) post-hoc 

test to compare individual species with CPOM-L. We selected these tests due their robust 

treatment of the study’s unbalanced design and observed heterogeneity of variance (Olejnik and 

Lee 1990; Sokal and Rohlf 1994).  

To investigate the influence of gonad mass on White Grunt Δδ15NM-L, we performed 

linear regression of Δδ15NM-L as a function of gonad mass for each recorded sex category: mature 

females, mature males, and immature individuals. Linear regressions of Δδ15NM-L against gonad 

mass resulted in R2 < 0.05 for each group, and slopes were not different from zero at p = 0.05. 

Therefore, we combined all specimens from each group (regardless of gonad mass) for the K-W 

and G-H tests of sex and maturity in relation to CPOM-L. We collected both Red Grouper and 

Black Seabass throughout the year. Within each species, we compared each of four seasons to 

the CPOM-L distribution using K-W and G-H tests. All statistical analyses were conducted using 

Statgraphics Centurion 18 (The Plains, Virginia, USA). 

 

RESULTS 

Survey of diet-switch studies 

 The mean CPOM-L value (Δδ15NM-L) was 1.67‰ and the standard error was 0.14‰. The 

minimum value was 0.5‰ in Yellowtail Amberjack (Seriola lalandi) while the maximum value 

was 2.42‰ in Summer Flounder (Paralichthys dentatus) which made the total range 1.92‰. The 

95% confidence interval (CI) for the mean was 1.37–1.98‰. A one-tailed t-test indicated the true 
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value of δ15NM-L was significantly larger than zero (t = 12.02, p < 0.001). Thus, we rejected 

hypothesis (1) that CPOM-L = 0.  

CPOM-L was not correlated with length, weight, trophic position, tail aspect ratio, or 

values of δ15Nmuscle or δ15Nliver (Table 2.3), nor did they group by temperature (Figure 2.2). 

However, values for δ15Nmuscle and δ15Nliver were strongly correlated with one another (Pearson 

product-moment r = 0.98, p < 0.001). These results led us to reject hypothesis (2) that intrinsic or 

extrinsic factors would correlate with Δδ15NM-L. 

Linear regression indicated a significant relationship between δ15Nmuscle and δ15Nliver with 

evenly distributed residuals (Figure 2.3). The equation was: 

𝛿15𝑁𝑙𝑖𝑣𝑒𝑟  = 𝛿15𝑁𝑚𝑢𝑠𝑐𝑙𝑒 − 1.61 ‰ 

 (n = 14, R2 = 0.96, intercept p < 0.05, slope p < 0.05) 

 

Whereas the slope of this relationship was one, the negative intercept demonstrated that muscle 

contained consistently heavier nitrogen than liver. For the remainder of the analyses, we 

compared all Δδ15NM-L values from wild-caught fish to the 95% confidence range for CPOM-L 

(1.67 ± 0.30‰). 

 

Values of Δδ15NM-L in wild-caught reef fishes as compared to CPOM-L 

 When we calculated Δδ15NM-L for 575 wild-caught reef fish, we found a difference among 

Δδ15NM-L values across the eight species and CPOM-L (H = 228.86, df = 8, p < 0.001; Figure 2.4). 

Post-hoc pairwise comparisons indicated Red Grouper (t = 7.50, p < 0.001), Graysby (t = 5.64, p 

< 0.01), and Gray Snapper (t = 4.86, p < 0.01) differed from CPOM-L, while Black Seabass, Red 

Snapper, Golden Tilefish, lionfishes, and White Grunt did not (Table 2.5). In White Grunt, K-W 

indicated differences among the sex and maturity states (H = 33.14, df = 3, p < 0.001; Table 2.4; 
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Figure 2.5). Post-hoc tests indicated that only mature females differed from CPOM-L (t = 3.03, p 

< 0.05, Figure 2.5).  

 Seasonal values of Δδ15NM-L were significantly lower than CPOM-L in both Red Grouper 

(H = 39.79, df = 4, p < 0.001) and Black Seabass (H = 24.01, df = 4, p < 0.001; Table 2.5). Red 

Grouper with the highest value of Δδ15NM-L were collected in fall and those with the lowest 

values were collected in spring (Table 2.4; Figure 2.6a). For Black Seabass, fish captured in all 

seasons had lower values of Δδ15NM-L than CPOM-L. Individuals with the highest values were 

collected in summer. Those with the lowest values were collected in winter (Table 2.5; Figure 

2.6b). 

 

DISCUSSION 

Knowing the expected partitioning offset between body tissues within an individual is 

one means of utilizing stable isotopes to investigate movement within marine fish species. We 

found a constant partitioning offset (CPOM-L) value of Δδ15NM-L across captive fishes in 

isotopically stable environments with varying phylogenetic, biological, and ecological 

characteristics. Although our inference is limited to the species examined, the consistency of 

CPOM-L suggests that it may be typical in marine teleosts. Using this literature-based CPOM-L, we 

showed that Δδ15NM-L values for eight species of wild-caught fishes ranged from slightly above 

to far below CPOM-L, suggesting short-term (i.e., during the three months preceding capture) 

variation in diet and site fidelities of species which seem ecologically similar upon first 

inspection.  

Given that consistent trophic fractionation is expected under experimental conditions 

(Bradley et al. 2015; Vander Zanden et al. 2015), we were not surprised to observe values for 
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δ15Nmuscle and δ15Nliver that differed among species (Table 2.1). We were surprised, however, to 

observe a consistent difference between δ15Nmuscle and δ15Nliver regardless of size, trophic 

position, or swimming speed (metabolic rate) of the test subjects (Table 2.2; Figures 2a and b). 

We observed that δ15Nmuscle values were uniformly higher than δ15Nliver. Therefore, we rejected 

hypothesis (1) that CPOM-L = 0 and hypothesis (2) that intrinsic or extrinsic factors would 

correlate with the value of Δδ15NM-L when fish are fed an isotopically consistent diet. We 

propose that a consistent partitioning offset exists between δ15Nmuscle and δ15Nliver. However, 

additional studies would further examine the cellular processes leading to this relationship. 

Including compound-specific evaluations may help clarify the physiology behind the observed 

CPOM-L value. We further propose the use the 95% confidence interval for CPOM-L (1.37–

2.97‰) as a range against which researchers can evaluate wild-caught fishes to assess the extent 

of recent (within the preceding months) movement or diet changes within the context of a known 

isoscape. Future investigations of CPOM-L have the potential to decrease the size of CI if our 

findings are corroborated. Wild-caught fish would be expected to have Δδ15NM-L values 

overlapping with CPOM-L range if they were both stationary and eating a consistent, locally 

derived diet during the preceding weeks. Wild-caught fish with Δδ15NM-L outside CPOM-L range 

may be candidates for further investigation into some combination of movement along the 

regional δ15N gradient and a recent diet change, including feeding on migratory prey moving 

across the isoscape. 

The observation of lower δ15Nliver as compared to δ15Nmuscle is common among captive 

and wild marine teleost species, closer to the δ15N values of the various food sources they 

consume (e.g. Mohan et al. 2016, Buchheister and Latour 2011). This trend contrasts with other 

vertebrate taxa such as mammals and birds (Vanderklift and Ponsard 2003). One explanation for 
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observed lower δ15Nliver values of marine teleosts is that the liver incorporates a higher 

proportion of source amino acids than muscle (Pinnegar and Polunin 1999; Downs et al. 2014). 

A lower δ15N value may indicate less reconfiguration or transamination of the amino acids 

within the liver than within the muscle (Braun et al. 2014). Fractionation often occurs with 

growth, protein synthesis, and amino acid intracellular metabolism (Poupin et al. 2014). Shorter 

amino acid residence times within liver tissue (Michaud et al. 2013; Barreto-Curiel et al. 2017) 

may result in smaller overall fractionation in marine fishes. The physiological reason for CPOM-L 

merits further investigation and may lead to an improvement to CPOM-L estimates. 

Wild-caught reef fish displayed Δδ15NM-L values consistent with values reported for each 

tissue in other species (e.g. Serrano et al. 2007; Madigan et al. 2012; Matley et al. 2016). The 

range of measured Δδ15NM-L values was also consistent with hypothesis (3) that species with 

little movement and locally derived diets have Δδ15NM-L values no different from CPOM-L, while 

species that migrate across an isoscape, or eat migratory prey, have Δδ15NM-L values different 

from CPOM-L. Among the eight wild-caught species examined, Δδ15NM-L could not be 

distinguished from CPOM-L in five species, including White Grunt, lionfishes, and Golden 

Tilefish. These species associate closely with the benthos and consistently consume benthic or 

near-benthic prey (Grossman et al. 1985; Albins 2015; Pereira et al. 2015; Hixon et al. 2016). It 

is reasonable to suspect that these species had both high site fidelity and locally derived food 

during the weeks to months prior to capture.  

Values of Δδ15NM-L for Red Snapper and Black Seabass were no different from CPOM-L. 

However, both species were represented by small sample sizes and mean values were near the 

lower edge of the CPOM-L range. We suggest collecting additional specimens to help clarify 

these species’ relationships to CPOM-L. An isotopically derived understanding of the diets and 
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movements of Red Snapper on the WFS would be especially useful since the fishery for this 

species is both valuable and contentious (Burns 2009; Hollenbeck et al. 2015; O'Farrell et al. 

2017). 

The Δδ15NM-L values of three species, Gray Snapper, Graysby, and Red Grouper, were 

significantly lower than CPOM-L. These generalist predators consume mixed diets of small, 

migratory fishes and benthic invertebrates (Bullock and Smith 1991; Brule and Canche 1993; 

Yeager et al. 2014; Curtis et al. 2017). Individuals that rely on mobile food sources, such as 

migratory forage fishes, are likely consuming nitrogen with a different isotopic composition 

from local values (Graham et al. 2010; Lorrain et al. 2015). Mixed schools of small, migratory 

fishes are known to travel north and south along the WFS as water temperature changes 

throughout the year (Sutherland and Fable Jr. 1980; Anderson and Torres 2016). These schools 

often move across the nitrogen isoscape; therefore, their whole-body δ15N values may not align 

with the isotopic background where they were consumed. Highly mobile prey species would be 

expected to impart Δδ15NM-L values in their predators that also differ from CPOM-L.  

We were able to examine the potential effects of reproductive biology and capture season 

on tissue isotopic offsets for three species. We  found that Δδ15NM-L of mature female White 

Grunt differed from CPOM-L, potentially due to high metabolic investment in gonadal tissue 

(Hendry et al. 1999). Strikingly, mature female White Grunt were the only wild-caught fish 

examined for which Δδ15NM-L was larger than CPOM-L. Immature and mature male White Grunt 

Δδ15NM-L values were not different from CPOM-L (Table 2.5; Figure 2.5). Similarly, Michaud et 

al. (2013) found higher values of Δδ15NM-L in reproductive females than in male Arctic Charr. 

The reorganization of lipid and protein in the liver to form oocytes could be responsible for the 

observed differences between tissues (Martin et al. 1993). The potential relationship between 
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reproductive state and Δδ15NM-L should be investigated further during future studies of Δδ15NM-L 

in wild-caught marine teleosts.  

Values of Δδ15NM-L were lower than CPOM-L for both Red Grouper and Black Seabass 

throughout the year (Table 2.5; Figure 2.6), suggesting continuous movement of either the fish 

themselves or their prey. Values for Red Grouper Δδ15NM-L observed during spring were the 

lowest of all seasons, consistent with a diet including migratory forage fishes moving northward 

along WFS (Sutherland and Fable Jr. 1980; Anderson and Torres 2016), provided these prey had 

incorporated the δ15N from areas to the south of the sampling location (Radabaugh and Peebles 

2014). Low values of Δδ15NM-L in Black Seabass during winter may reflect seasonal movement 

of either the Black Seabass or their prey. Both seasonal differences and inter-species differences 

may be further clarified by investigating the Δδ15NM-L and whole-body δ15N values of small, 

migratory forage fishes on the WFS. 

 

Conclusions and future applications 

A consistent, non-zero CPOM-L value suggests that a true offset may exist between the 

nitrogen isotopes in liver and muscle of marine teleosts under ideal conditions. However, future 

studies on a broad taxonomic range of species should be conducted to continue to clarify this 

relationship. We suggest that the relationship between Δδ15NM-L and CPOM-L in wild-caught fish 

provides insight into geographic movement and diet differences among species. While Δδ15NM-L 

values in wild-caught fish may reflect either movement by the individuals themselves or their 

prey, this parameter presents a novel and useful indicator of site fidelity. The CPOM-L value and 

Δδ15NM-L in wild fish have the potential for worldwide application to a wide variety of ecological 

inquiries, with spatial resolution that is dependent on the slope of local isotopic gradients. 
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Table 2.1. Parameters associated with studies used in the literature survey. TAR is tail aspect ratio, TP is trophic position, Mean T is 

mean study temperature, MTL is mean total length, MM is mean mass, and Sampling Day is either the beginning or end of the diet-

switch study. δ15Nmuscle and δ15Nliver are presented with standard errors and are expressed in standard per-mille (‰) notation. δ15NM-L is 

calculated for each experiment. Bold values were derived from FishBase (http://www.fishbase.org/search.php). 

 

Authors Year Species TAR TP 

Mean T 

(°C) n 

MTL 

(mm) 

MM 

(g) 

Sampling 

Day Diet 

δ15Nmus

cle 

δ15Nliv

er δ15NM-L 

Guelinck

x et al.  2008 

Pomatoschistus minutus  

Sand Goby 1.07 3.2 17 12 42.8 1 90 fish feed 

12.88±

0.10 

10.51±

0.03 2.37 

Sweeting 

et al.  2007 

Dicentrarchus labrax 

European Seabass 1.22 3.5 8.5 3 150 41 150 eel 

17.83±

0.39 

16.05±

0.40 1.78 

" " " " " " 3 150 41 150 dab 

17.48±

0.40 

15.45±

0.49 2.03 

Mohan 

et al.  2016 

Micropogonias 

undulatus  

Atlantic Croaker 1.26 4 28 12 110 17 104 fish feed 

13.04±

0.04 

11.50±

0.13 1.54 

Suzuki et 

al.  2005 

 Lateolabrax japonicus 

Japanese Seabass 1.29 3.4 23 13 110 20 100 fish feed 

16.17±

0.05 

14.35±

0.09 1.82 

Olsen et 

al.  2015 

Gadus morhua  

Atlantic Cod 1.3 4.1 9 6 300 304 121 fish feed 

12.79±

0.03 

10.78±

0.08 2.01 

Barreto-

Curiel et 

al.  2017 

Totoaba macdonaldi  

Totoaba 1.4 4.1 26 3 33 28 60 fish feed 

12.20±

0.06 

10.10±

0.06 2.10 

Buchheis

ter & 

Latour  2010 

Paralichthys dentatus 

Summer Flounder 1.4 4.5 20.4 10 300 375 180 squid 

15.55±

0.18 

14.51±

0.07 1.04 

“ “ “ “ “ “ 10 300 375 180 krill 

12.01±

0.05 

9.59±0

.11 2.42 

Matley 

et al.  2016 

Plectropomus leopardus  

Leopard Coral Grouper 1.54 4.4 29 5 449 1634 196 bream 

11.90±

0.18 

10.60±

0.18 1.30 

Trueman 

et al . 2006 

Salmo salar  

Atlantic Salmon 2.05 4.5 8 6 325 314.7 315 fish feed 

10.20±

0.12 

8.70±0

.12 1.50 

Miller  2006 

Clupea pallasi  

Pacific Herring 2.32 3.2 10.6 5 169 47 302 fish feed 

12.50±

0.22 

11.00±

0.31 1.50 

Nuche-

Pascual 

et al. 2018 

Seriola lalandi  

Yellowtail Amberjack 3.49 4.2 18 3 180 75 98 fish feed 

12.88±

0.10 

12.38±

0.12 0.50 

Madigan  

et al. 2012 

Thunnus orientalis  

Pacific Bluefin Tuna 6.39 4.5 20 10 2470 

1.70x

105 2000 

squid, 

sardines 

16.10±

0.09 

14.60±

0.09 1.50 
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Table 2.2. Results of linear regressions between δ15NM-L and fish total length. Bold values 

indicate statistically significant relationships. 

Species N Intercept Slope F p R2  

All 451 1.57 -0.001 23.16 <<0.001 0.048 

Black Seabass 10 0.87 0.000 0.01 0.917 0.001 

Graysby 69 1.15 -0.002 1.91 0.170 0.027 

Gray Snapper 77 0.29 0.002 2.41 0.124 0.031 

Golden Tilefish 36 2.41 -0.001 2.78 0.104 0.077 

lionfishes 64 1.85 -0.001 3.51 0.065 0.053 

Red Grouper 45 -0.09 0.001 3.67 0.062 0.076 

Red Snapper 9 2.81 -0.003 9.82 0.016 0.584 

White Grunt 141 2.48 -0.003 4.87 0.029 0.033 

 

 

 

 

 

 

 

 

Table 2.3. Correlations between δ15NM-L and intrinsic or extrinsic parameters associated with 

marine teleost fishes in Table 2.1. Correlations are calculated as Pearson’s product moment (r). 

Variables are tail aspect ratio (TAR), trophic position (TP), mean temperature (T), mean total 

length (MTL), mean mass (MM), mean values of δ15Nmuscle and δ15Nliver from each study. 

 δ15NM-L p-value 

TAR  -0.42  0.13 

TP -0.34 0.24 

T (°C) -0.20 0.48 

MTL  -0.16 0.58 

MM  -0.10 0.74 

δ15Nmuscle 0.02 0.94 

δ15Nliver -0.20 0.50 
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Table 2.4. Summary statistics for δ15NM-L from wild-caught specimens and specimens in diet-

switch studies. Season is season of capture and SE is standard error of the mean. Rows in bold 

font include mean values significantly different from constant partitioning offset (CPO). 

 

Species Season Sex n 

δ15NM-L 

Min Max Range Mean ± SE 

*Red Grouper Summer All 45 -1.41 1.87 3.28 0.44±0.09 

“ Winter All 13 -0.14 
 

1.15 1.29 0.26±0.11 

“ Spring All 61 -1.14 1.29 2.43 0.19±0.06 

“ Fall All 25 -0.34 1.58 1.92 0.48±0.10 

*Graysby Summer All 69 -0.26 1.67 1.94 0.85±0.04 

*Gray Snapper Summer All 77 -0.83 2.40 3.23 0.90±0.08 

*Black Seabass Summer All 10 0.28 1.88 1.59 1.01±0.14 

“ Winter All 8 0.12 0.84 0.72 0.43±0.10 

“ Spring All 8 0.38 1.48 1.10 0.87±0.16 

“ Fall All 9 0.09 1.51 1.41 0.73±0.19 

Red Snapper Summer All 9 0.55 1.78 1.22 1.20±0.15 

Lionfishes Summer All 64 -0.02 2.32 2.35 1.45±0.07 

Golden Tilefish Summer All 36 -0.33 2.61 2.94 1.39±0.12 

White Grunt Summer All 141 0.11 3.44 3.33 1.96±0.05 

“ Summer Female 66 0.76 3.44 2.68 2.13±0.06 

“ Summer Male 37 0.62 2.77 2.15 1.57±0.07 

“ Summer Immature 38 0.11 3.11 3.00 2.05±0.10 

Constant Partitioning offset 14 0.5 2.42 1.92 1.67±0.14 
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Table 2.5. Results of all Games-Howell pairwise comparisons. “Lit” is the constant partitioning 

offset (CPO) derived from captive studies. Black Seabass (SB), Graysby (GB), Gray Snapper 

(GS), Golden Tilefish (GT), lionfishes (LF), Red Grouper (RG), White Grunt (WG). Rows in 

bold font signify significant difference. Levels of significance are indicated: * < 0.05, ** < 0.01, 

*** <0.001 

Species t p Season t p Sex t p 

Lit-SB 3.35 0.06 Lit-RGFall 7.07 *** Lit-Female 3.03 * 

Lit-GB 5.64 *** Lit-RGSpring 9.73 *** Lit-Immature 2.19 0.15 

Lit-GS 4.86 ** Lit-RGSummer 7.41 *** Lit-Male 0.67 0.91 

Lit-GT 1.53 0.83 Lit-RGWinter 7.89 *** Immature-Female 0.66 0.91 

Lit-LF 1.46 0.86 RGSpring-RGFall 2.58 0.09 Immature-Male 3.83 ** 

Lit-RG 7.5 *** RGSummer-RGFall 0.31 0.99 Male-Female 5.97 *** 

Lit-RS 2.22 0.44 RGSummer-RGSpring 2.29 0.16    

Lit-WG 1.97 0.58 RGWinter-RGFall 1.51 0.56    

GB-SB 1.17 0.95 RGWinter-RGSpring 0.55 0.98    

GS-GB 0.57 1 RGWinter-RGSummer 1.25 0.72    

GS-SP 0.75 0.99 Lit-SBFall 3.95 **    

GT-GB 4.38 ** Lit-SBSpring 3.87 **    

GT-GS 3.55 * Lit-SBSummer 3.35 *    

GT-SB 4.38 0.5 Lit-SBWinter 7.25 ***    

LF-GB 7.45 *** SBSpring-SBFall 0.56 0.98    

LF-GS 5.37 *** SBSummer-SBFall 1.21 0.75    

LF-GT 0.39 1 SBSummer-SBSpring 0.72 0.95    

LF-SB 2.81 0.2 SBWinter-SBFall 1.39 0.65    

RG-GB 4.19 ** SBWinter-SBSpring 2.39 0.18    

RG-GS 4.01 ** SBWinter-SBSummer 3.46 *    

RG-GT 6.56 ***        

RG-LF 8.92 ***        

RG-SB 3.65 *        

RS-GB 2.22 0.46        

RS-GS 1.78 0.69        

RS-GT 0.95 0.99        

RS-LF 1.4 0.88        

RS-RG 4.39 *        

RS-SB 0.92 0.99        

WG-GB 17.01 ***        

WG-GS 11.69 ***        

WG-GT 4.49 **        

WG-LF 6.25 ***        

WG-RG 14.54 ***        

WG-RS 4.61 *        

WG-SB 6.48 **             
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Figure 2.1. Catch locations for all wild-caught reef fish by species. Graysby (Cephalopholis 

cruentata) and lionfishes (Pterois spp.) were collected in Biscayne National Park (southeast 

Florida). All other species, Black Seabass (Centropristis striata), Red Grouper (Epinephelus 

morio), White Grunt (Haemulon plumierii), Golden Tilefish (Lopholatilus chamaeleonticeps), 

Red Snapper (Lutjanus campechanus), and Gray Snapper (Lutjanus griseus) were collected on 

the West Florida Shelf (WFS) off the west coast of Florida.  
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Figure 2.2. Mean values δ15NM-L measured in captive, diet-switch studies. Global mean (± SE): 

δ15NM-L = 1.67 ± 0.14. Black circles are studies conducted in cold water [8–10 °C; Atlantic Cod 

(AC), Atlantic Salmon (AS), and Pacific Herring (PH)]. Gray circles are studies conducted at 

intermediate temperatures [19–24 °C; European Seabass (EB), Pacific Bluefin Tuna (BT), 

Yellowtail Amberjack (YA), Sand Goby (SG), and Summer Flounder (SF)]. White circles are 

studies conducted in warm water [26– 29 °C; Atlantic Croaker (CR), Japanese Temperate Bass 

(JB), Leopard Coral Grouper (LG), and Totoaba (TO)]. No trends were observed with respect to 

size, temperature, trophic level, or swimming speed. 
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Figure 2.3. Linear regression between δ15Nmuscle and δ15Nliver measured in 12 captive, diet-switch 

studies. Gray lines are 95% confidence intervals. Upper line shows theoretical 1:1 relationship.  
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Figure 2.4. Mean values of δ15NM-L (± 95% CI) by species for wild specimens collected July-

September in Florida waters. Red Grouper (RG), Graysby (GB), Gray Snapper (GS), Black 

Seabass (SB), Red Snapper (RS), Golden Tilefish (GT), lionfishes (LF), and White Grunt (WG).  

Mean constant partitioning offset (CPO) ± CI is represented by horizontal solid and dashed lines. 

Numbers below each column are sample sizes. Species different from captive, diet-switch studies 

based on Games-Howell post-hoc test are indicated by level of significance: * < 0.05, ** < 0.01, 

*** <0.001 

  



49 

 

 

1

1.5

2

2.5
H = 33.14, df = 3,  < 0.001 p

δ1
5
N

m
u
s
c
le

 -
 l
iv

e
r (

‰
, 
A

ir
)

Female Male Immature

66

38

37

*

 

Figure 2.5. Means and 95% CI for δ15NM-L by reproductive category for White Grunt captured 

on the WFS (see Fig. 2.4 for explanation of data presentation).  
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Figure 2.6. Means and CI for δ15NM-L by season for two species of reef fish collected on WFS: 

a. Red Grouper, b. Black Seabass (see Figure 2.4 for explanation of data presentation). 

 



51 

 

 

 

 

 

 

CHAPTER 3: DISTINGUISHING ENVIRONMENTAL FROM TROPHIC INFLUENCES IN 

POSTLARVAL FISH SURVIVAL: A HISTORICAL APPRAOCH USING STABLE 

ISOTOPES 

 

 

ABSTRACT 

 

Survival of marine teleosts through the larval stage can depend on a variety of physical and 

biological factors. A historical approach using the central region (core) of fish eye-lenses may 

provide insight into common geographic locations or movement patterns of individuals that 

survive to the juvenile and adult phases. Teleost eye lenses preserve isotopic values for the entire 

lifespan. Here, we present a readily accessible method of disentangling multiple influences on 

bulk isotope values using the eye-lens cores from four reef-fish species in the eastern Gulf of 

Mexico. By correlating δ13C and δ15N values of the eye-lens core with juvenile capture location 

and with core size (growth over the first few weeks of life), we were able to distinguish 

movement from geographic origin. While postlarval locations of Black Seabass and Red Snapper 

had wide isotopic distributions, central Gag and Red Grouper geographies were more confined. 

Gag isotopes showed evidence of movement inshore during the postlarval and early juvenile 

period. Red Grouper showed trophic-position increase or movement north, while Black Seabass 

showed evidence of southward movement with increasing length. In short, the δ13C and δ15N 

isotope values in the cores of fish eye lenses describe the geographic patterns of individuals that 

have successfully survived the larval stage.  
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INTRODUCTION 

Fisheries scientists have suggested that egg and larval-stage survival is one key to 

variation in year-class strength of exploited marine fish populations for over 100 years (Hjort 

1914). Whereas millions of eggs can be released and fertilized during a single spawning event 

(Winemiller and Rose 1993, Rogers et al. 2009), only a miniscule percentage survive to 

harvestable or reproductive size. An array of trophodynamic processes and physical conditions 

interact over the pre-recruitment lifespan, leading to recruitment variability (Houde 2009). 

Common intrinsic or extrinsic characteristics of the postlarval and juvenile periods such as 

location or available food resources may provide clues to the best oceanographic conditions or 

locations for larval and early juvenile survival within a population (Robertson et al. 1999, Houde 

2009).  

 By definition the postlarval stage in a bony fish’s life includes the period of first feeding 

until settlement to the juvenile habitat. At this stage, the larvae have control over their buoyancy. 

However, they still considered planktonic because they lack the strength to swim against 

prevailing currents (Powell and Tucker 1992, Burghart et al. 2014). The postlarval and early 

juvenile stages have been some of the most difficult to study in wild marine fish populations. 

Larval fish can be difficult to identify, with many related species looking almost identical, even 

to the trained eye (Drass et al. 2000, Vandersea et al. 2008, Marancik et al. 2012). Historically, 

researchers have used ichthyoplankton surveys to directly sample the egg and larval stages of 

marine fish species (e.g., SEAMAP program in southeastern US; Eldridge 1988) . During the 

planktonic period, which can last weeks to months (Cowen 1991, Pepin and Myers 1991), 

individual larvae can move far from their spawning origin (Colin 2012, Burghart et al. 2014), 

decoupling larval collection location from either spawning or settlement habitat.  
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Previous research has demonstrated that larval survival can be linked to several intrinsic 

and extrinsic factors (Leis and Carson-Ewart 1999, Houde 2009, Lim and Mukai 2014) and may 

be location-specific (Beets 1997, Edwards et al. 2008, Marancik et al. 2012). Only larvae that 

survive to maturity will contribute to the future of the population. Therefore, using a historical 

record collected from fish that do survive to the late juvenile or adult stage may be better suited 

to investigating the habits and location of successful larvae than direct larval collections.  

Otolith microchemistry has been the preferred forensic method for geographic 

interpretation of fish origin. This method can be useful in detecting the chemical fingerprints of 

natal rivers in anadromous species (Chang and Geffen 2013) and movements of freshwater 

(Clarke et al. 2015) and marine species (Jones et al. 2013, Cook et al. 2014, Tzadik et al. 2017b). 

However, investigators have identified several difficulties when relying exclusively on this 

technique for historical reconstruction. First, physiology may interfere with the incorporation of 

measurable elements into the otolith structure (Sturrock et al. 2014). Second, the distribution of 

elements useful in microchemistry studies may change significantly year-to-year in open 

systems, requiring annual resampling of the background (Jones et al. 2013) and absolute 

knowledge of specimen age. Third, spatial scale or distribution of easily sampled elements can 

heavily influence results (Sturrock et al. 2014, Tzadik et al. 2017a).  

 

Interpreting bulk isotopes in fish tissues 

Bulk stable isotope values within animal tissues result from the combined isotopes of all 

amino acids within the tissue. Each amino acid undergoes a unique isotopic fractionation upon 

incorporation into the tissue; therefore, the bulk value represents a mass-balanced average of the 

fractionation among all amino acids present (Whiteman et al. 2019). Bulk stable isotope values 

may result from a combination of inputs, including geographic location (Seminoff et al. 2012, 



54 

 

Trueman et al. 2017), movement across isoscapes (McMahon et al. 2011, MacKenzie et al. 

2012), and trophic position (Post 2002, Guinan et al. 2015, Dalponti et al. 2018), which may be 

difficult to tease apart. Despite these difficulties, some common patterns have been observed 

among species. Values of bulk δ15N are generally considered to represent the trophic position of 

an organism, with consumer tissue becoming enriched in relation to its food source (McCutchan 

et al. 2003). In ecological studies, the average increase in δ15N is 3.4‰ per trophic level 

(Vanderklift and Ponsard 2003, Fry 2006). Bulk δ15N values can also provide insight into 

nutrient sources, with a consistent difference between eutrophic and oligotrophic waters 

(Hansson et al. 1997). Bulk δ13C values are often used to infer the dominant primary-producer 

type (basal resource) that supports food webs or individual taxa [e.g., planktonic vs. benthic; Fry 

and Wainright (1991); Kendall et al. (2001)].   Along continental shelves, δ13C gradients often 

exist in which consumer values are highest in clear, shallow waters and lowest in deep or turbid 

waters, due to greater influence of benthic production in the shallower areas. Benthic algae δ13C 

is generally enriched by approximately 5‰ as compared to phytoplankton due to light 

limitations at depth (Fry and Wainright 1991, Radabaugh et al. 2014). 

 

Fish eye lenses can be used as an archival tissue  

Fish eye lenses grow throughout the lifespan, adding a thin layer of cells along the outer 

surface of the existing lens (Nicol 1989, Vihtelic 2008). The cells then lose all organelles in the 

process of attenuated apoptosis (Wride 2011), leaving primarily crystallin proteins behind 

(Mahler et al. 2013). Protein movement within the embryonic eye lens appears to be isotropic, 

but research has found little movement of protein during the post-embryo stage (Shi et al. 2009). 

Small amounts of protein turnover does occur in the metabolically active outer lamina (Stewart 

et al. 2013); however, this turnover is limited. Because the cells become metabolically inert, the 
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proteins in each eye-lens lamina reflect the chemical composition within the body at the time of 

formation, resulting in the ability to age individuals based on radiocarbon within the eye-lens 

nucleus (Lynnerup et al. 2008, Nielsen et al. 2016).  

Recent investigations have indicated fish and squid eye lenses also preserve a record of 

δ13C and δ15N over the lifetime (Wallace et al. 2014, Quaeck-Davies et al. 2018, Kurth et al. 

2019, Meath et al. 2019). Controlled feeding experiments have shown that stable-isotope 

integration into fish eye lenses begins within two weeks of a diet-switch, and is 100% by 54 days 

post-switch (Granneman 2018). Therefore, the δ13C and δ15N within the inner-most eye-lens 

layer (hereafter: core) should represent the geographic location and diet (trophic position and 

basal-resource dependence) during the earliest weeks of life for an individual fish. These core 

isotope values can provide a historical perspective on the postlarval and early juvenile period of 

those fish captured during the late juvenile and adult phases (Meath et al. 2019).  

 

West Florida Shelf isoscape and species of interest 

The West Florida Shelf (WFS) is a continental shelf area located on the eastern side of 

the Gulf of Mexico. The area includes an expansive mosaic of soft- and hard-bottom habitats 

(Locker et al. 2010, Hine and Locker 2011, Wall and Stallings 2018) that extend over 600 km 

from north to south and over 200 km west from Florida, USA. An isoscape constructed using 

fish muscle tissue has been established for the WFS with patterns of both δ15N and δ13C 

consistent among seasons and years (Radabaugh et al. 2013, Huelster 2015). Across species, 

δ15N values are highest in the northwest, due to wastewater and animal husbandry inputs 

introduced via the Mississippi River and other rivers in the area (Radabaugh and Peebles 2014, 

Peebles and Hollander 2020). Values of δ15N are lowest in the southeast, which is consistent with 

little freshwater inflow and low nutrient availability, leaving diazotrophs such as Trichodesmium 
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spp., which directly incorporate atmospheric nitrogen, as the main providers of organic nitrogen 

to the marine system (Holl et al. 2007). Values of δ13C are highest in shallow, nearshore waters 

and decreased in an offshore direction, which is consistent with shallow-water communities 

relying heavily on benthic production and deep-water communities exclusively utilizing 

planktonic algae as a basal resource (Fry and Wainright 1991, Radabaugh et al. 2014). See 

Figure 1.1 for general trends in both δ13C and δ15N isotopes on the WFS. 

For the current study, we investigated four commercially and recreationally important 

reef-fish species common on the WFS for which the life cycles are relatively well known. Black 

Seabass (Centropristis striata) juveniles and adults are concentrated in low-relief hard-bottom 

areas of the northeastern WFS (Hood et al. 1994, Weaver 1996). Red Grouper (Epinephelus 

morio) also inhabit low-relief, hard-bottom areas of the WFS, but juveniles and adults tend to 

inhabit deeper waters than Black Seabass (Moe 1969, Johnson and Collins 1994, Lombardi-

Carlson 2014), with the center of abundance being south and west of Black Seabass. The species 

has been observed spawning in small groups distributed across the low-relief WFS (Coleman et 

al. 1996, Coleman et al. 2010). High concentrations of spawning occurs near the 70 m depth 

contour (Wall et al. 2011, Grasty et al. 2019) and juveniles are generally found in shallower 

waters. Gag (Mycteroperca microlepis) utilize many parts of the WFS during their life cycle. 

Spawning occurs on the shelf edge in large aggregations (Fitzhugh et al. 2005, Ellis and Powers 

2012), whereas juveniles inhabit the polyhaline regions of estuaries for a year or more (Stallings 

et al. 2010, Switzer et al. 2012). Older juveniles and non-spawning adults use high-relief habitats 

(Bullock and Smith 1991). Red Snapper (Lutjanus campechanus) were scarce on the WFS for 

decades but have re-expanded their range from the north-central Gulf of Mexico (Hollenbeck et 

al. 2015). To date, a small number of Red Snapper eggs has been genetically identified and 
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females will hydrated oocytes have been captured on the WFS (Burrows et al. 2018, Nguyen & 

Peebles, unpublished data) indicating spawning does occur in the region. However, the 

distribution of spawning locations, eggs, and larvae are unknown. 

 

Statistical analysis of complex isotopic datasets 

Simultaneous or sequential correlations have been used in a wide variety of fields to aid 

in data interpretation (Du et al. 2003, Zhang et al. 2006, Mahmoud and Sunarso 2018). In the 

case of isotopes, values may be simultaneously correlated to other known factors, thereby 

segregating the confounding interpretations for the bulk isotopic values (Meath et al. 2019). The 

range of possible interpretations may be limited, resulting in a single, most parsimonious, 

explanation of the eye-lens core isotopic data. By taking advantage of the isotopically 

conservative nature of eye-lens tissue combined with the established isotopic trends on the WFS, 

the spatial distributions and movements of reef-fish species during postlarval and early juvenile 

periods may be uncovered. An understanding of the geographic distribution of larvae that 

ultimately settle into juvenile habitats could lead to improved stock assessments and/or improved 

marine protected area management.  

 

Objectives 

Here we aimed to disentangle the multiple influences on bulk isotope values within the 

eye-lens cores of four reef-fish species in the eastern Gulf of Mexico. To accomplish this goal, 

we began by constructing a generalized matrix of interpretations to segregate the isotopic inputs 

to the eye-lens cores using statistical methods. This matrix could be used by any researcher doing 

similar work in any isotopic setting. We then used the constructed matrix to mathematically infer 
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the geographic extent and comparative movement of the four target reef fish species. We found 

that, despite broad similarities in habitat needs among the species, each displayed differences in 

larval central locations and movements. 

 

MATERIALS AND METHODS 

Specimen collection 

During routine monitoring efforts in 2015-2017, Florida Fish and Wildlife Conservation 

Commission’s Fisheries Independent Monitoring Program (FIM) and the National Oceanic and 

Atmospheric Administration Southeast Area Monitoring and Assessment Program (SEAMAP) 

groundfish trawl survey retained juveniles from each of four species, Black Seabass, Gag, Red 

Grouper, and Red Snapper from major estuaries on the west coast of Florida and the WFS 

(Figure 3.1). Each fish was measured for standard length (SL). Both eyes were extracted, 

wrapped in aluminum foil, and frozen at - 20°C until analysis (Stallings et al. 2015). Otoliths 

were extracted, dried, and cleaned of tissue. Aging was completed by counting annuli in whole 

otoliths using a dissecting stereomicroscope and transmitted light in Black Seabass, Gag, and 

Red Grouper (Casselman 1990, Kimura and Lyons 1991). For Red Snapper, otoliths were thin 

sectioned using an IsoMet low speed saw and mounted on a slide before aging under transmitted 

light (White and Palmer 2004). 

 

Eye lens preparation and sample analysis 

We thawed one eye from each fish and removed the lens. Laminae were separated using 

two sets of fine-tipped forceps under a dissecting stereomicroscope. We generally followed 

Wallace et al. (2014), with the exception that the lens was immersed in deionized water for 
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delamination (Stewart et al. 2013), which has been shown to have no effect on isotopic values 

(Meath et al. 2019). Once a lamina was removed, we measured the diameter of the remaining 

tissue and changed the water in the dish. The hardened eye-lens core, the innermost sphere of 

tissue, was retained for this study. We measured the eye-lens core diameter (ELD) to the nearest 

0.05 mm using a calibrated ocular micrometer.  

In many cases, a single eye lens did not provide sufficient mass for reliable isotopic 

analysis. If this was the case, we delaminated the second eye lens of that individual. If the lens 

core diameters were identical, the two cores were combined for isotopic analysis (Wallace et al. 

2014, Meath et al. 2019). If core diameters were not identical, the specimen was eliminated. Eye-

lens cores were then placed in a drying oven at 55°C for 12 hours to ensure complete desiccation.  

 Eye-lens cores with a mass of 150-600 µg were packaged into 3.3 x 5 mm tin capsules 

for stable-isotope analysis performed using a Carlo-Erba NA2500 Series II elemental analyzer 

coupled to a continuous-flow Thermo-Finnigan Delta+ XL isotope ratio mass spectrometer 

(IRMS) at the University of South Florida College of Marine Science in St. Petersburg, Florida. 

Calibration standards were NIST 8573 and NIST 8574 L-glutamic acid standard reference 

materials. Analytical precision, obtained by replicate measurements of NIST 1577b bovine liver, 

was ± 0.20‰ for δ13C and ± 0.17‰ for 15N. 

Results are presented in standard notation ( notation, ‰) relative to the international standard 

of air and Vienna Pee Dee Belemnite. 

𝛿𝑋 = (
𝑅𝑠𝑎𝑚𝑝𝑙𝑒

𝑅𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
− 1) × 1000 

where X is the element (carbon or nitrogen) and R is the corresponding ratio 13C/12C or 15N/14N.  
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Data analysis methods 

Prior to isotopic analysis, we devised a method for segregating the three potential sources 

of variability for bulk isotope values. In short, we listed all possible isotopic outcomes from each 

of the three inputs to the bulk isotope values in each species (geographic origin, change in 

trophic position, and postlarval/juvenile movement; Table 3.1). In this model, observed values 

were classed as “isotopic outcomes” and represented the incorporation of each of the three 

inputs. Consistency among the three inputs results in consistent outcomes (positive, negative, or 

zero; Table 3.1).  

Working backward from observed values, we devised a general interpretation for each of 

the three outcomes of correlations between δ13C or δ15N eye-lens core values and internal or 

external parameters such as size at analysis or juvenile location (positive correlation, negative 

correlation, or no correlation; Table 3.2). We included a set of simplifying assumptions based on 

the known biology or life history of the species under study (Table 3.2).  

Eye-lens cores were not precisely uniform in diameter for all specimens (0.35 ≤ ELD ≤ 

1.1 mm) due to the relative imprecision of manual delamination. Using these variable ELDs, 

capture locations, and isotope values, we devised a method of segregating the isotopic effects of 

postlarval location from movement or trophic change (Table 3.1 & 3.2). We constructed 

regression equations for standard length (SL) as a function of ELD in each species (Table 3.3). 

We calculated SL for each specimen at the time of eye-lens core completion based on these 

regressions and compared these to SL at settlement based on published literature. 

We recorded the eye-lens core δ13C and δ15N values for each specimen. For each species, 

we calculated mean, standard error, minimum, and maximum values of δ13C and δ15N of eye-

lens cores. We used the total range of δ15N values in eye-lens cores to infer the extent of 



61 

 

postlarval/early juvenile distribution in a north-south direction on the WFS, and total range of 

δ13C values to infer distribution across depth (Radabaugh and Peebles 2014). We used Spearman 

rank correlation to compare δ13C or δ15N with ELD and with juvenile collection location (latitude 

or longitude) for each species. Using the interpretation rules presented in Tables 3.1 and 3.2, we 

then described differences in the postlarval locations and movements of the four species. 

We compared the multivariate differences in stable isotope eye-lens core values among 

species using PERMANOVA [Package vegan; Adonis routine (Oksanen et al. 2019)] and 

multivariate pairwise comparisons [package EcolUtils; (Salazar 2019)]. We calculated the 

dispersion of δ13C and δ15N stable isotope values using stable isotope Bayesian ellipses in R 

(SIBER), which describes aspects of a population’s isotopic dispersion by plotting and 

measuring the bivariate standard deviation, or standard ellipse area (SEAc), of isotope biplots 

(Jackson et al. 2011). The value used for comparisons of isotopic width was SEAc, or the mode 

of n = 20,000 standard ellipses generated via Bayesian permutation. We considered differences 

in SEAc significant between species if ≥ 95% of posterior draws for one species was smaller than 

for the other. We also used SIBER to measure the degree of overlap between isotopic postlarval 

distributions for each species. Because there is no defined measure of overlap, we classified each 

pair using descriptive terminology from correlation (0.00-0.19 = very weak; 0.20-0.39 = weak; 

0.40-0.59 = moderate; 0.60-0.79 = strong; 0.80-1.0 = very strong). All statistical analyses were 

completed in R (R Core Team 2018). All data are published in the Gulf of Mexico Research 

Initiative Information and Data Cooperative (GRIIDC) website 

(https://data.gulfresearchinitiative.org/data/R1.x135.120:0012).  
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RESULTS 

For each of the four species, total numbers of specimens ranged from 38 to 52. Age at collection 

ranged from a under one year to over three years. The range of collection lengths was 37 to 325 

mm SL (Table 3.3). ELD at collection ranged from 0.9 to 7.5 mm. Analyzed ELD ranged from 

0.3 – 1.1 mm (Table 3.3). Each eye lens consisted of at least two laminae with only the inner-

most tissue used for analysis. Analyzed eye-lens core diameters translated to SL of 14 – 47 mm 

and represent the weeks just before and just after settlement to juvenile habitats (Table 3.3).  

The total range of δ15N values for all species combined was 7.02‰. The lowest value was 

a Red Snapper at 4.61‰ and the highest value was also Red Snapper at 11.24‰ (Table 3.4). The 

combined range of δ 13C values was 6.85‰ with the lowest value being -21.00‰ for Gag and the 

highest being -14.15‰ for Black Seabass (Table 3.4). Mean (± SE) δ15N and δ13C values were 

highest for Black Seabass and the species had the largest total range of δ13C values. We found 

the largest range of δ15N values (6.62‰) and the smallest range of δ13C (4.07‰) in Red Snapper 

(Table 3.4; Figure 3.2).  

 

Correlations between isotopic values and internal or external parameters  

 In Black Seabass, all correlations were weak but significant. ELD had a negative 

correlation with core δ15N and a positive correlation with δ13C. Collection latitude had a positive 

correlation with δ15N, whereas collection longitude negatively correlated with δ13C. According to 

the interpretation rules (Table 3.2), these results indicate Black Seabass postlarvae moved south 

and offshore during the weeks represented by these data (Table 3.5).  

 In Gag, ELD had a moderate, positive correlation with δ13C, but no correlation with δ15N. 

Latitude and δ15N had a weak correlation, but δ13C and longitude did not correlate (Table 3.5). 

According to the interpretation rules, Gag moved inshore or switched from planktonic to benthic 
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dependence. However, they did not move in a north-south direction. In addition, larval locations 

were moderately distributed in a north-south direction but were constrained in an east-west 

direction (Table 3.5).  

 In Red Grouper, δ15N had a moderate correlation with ELD and δ13C had a weak 

correlation with ELD (Table 3.5). There was no correlation between δ15N and collection latitude 

or between δ13C and collection longitude. According to the interpretation rules, Red Grouper 

moved north or increased trophic position as they grew, while also moving slightly inshore or 

changing basal-resource dependence. In addition, postlarval area was quite constrained in both 

the north-south and east-west directions (Table 3.5). 

 For Red Snapper, neither δ13C nor δ15N values correlated with ELD. However, δ15N did 

have a moderate correlation with collection latitude and δ13C had a weak negative correlation 

with collection longitude (Table 3.5). The interpretation rules indicated that Red Snapper did not 

change basal-resource dependence or move substantially during the first weeks of life. However, 

their larval area was widely distributed in the north-south direction (Table 3.5).  

 

Comparisons of species in isotopic space 

 We found significant multivariate differences among eye-lens core isotope values of the 

four species (PERMANOVA F = 8.42, p < 0.001). Pairwise comparison indicated that Black 

Seabass and Red Snapper were not significantly different nor were Red Grouper and Gag. 

However, each pair of species was significantly different from the other (Figure 3.3; Table 3.6). 

SEAc was largest for Black Seabass (5.83 ± 1.52‰2) and smallest for Red Grouper (2.40 ± 

0.59‰2); Red Snapper (4.13 ± 1.27‰2) and Gag (2.77 ± 0.74‰2) were intermediate. Black 

Seabass SEAc size was significantly different from Gag and Red Grouper. SEAc extent was not 
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significantly different between any other pair of species (Figure 3.3). We observed moderate 

overlap between SEAc for Red Snapper and Black Seabass at 0.48.  However, the major axis for 

the Red Snapper standard ellipse was in the δ15N direction (north-south), but the major axis for 

Black Seabass standard ellipse was oblique to both axes (Table 3.6; Figure 3.3). SEAc overlap 

between Red Snapper and Gag and between Gag and Red Grouper were also moderate (43% and 

49% respectively), with major axes for each ellipse being orthogonal to one another (Figure 3.3). 

We observed weak overlap in SEAc between Black Seabass and Gag (0.21), with major axes 

being oblique to one another. Both Gag and Red Grouper standard ellipses had major axes in the 

δ13C direction. However, the Gag ellipse was offset in the positive δ15N direction. Red Grouper 

and Red Snapper also had weak overlap (0.26) with major axes being orthogonal to one another. 

The lowest proportion of SEAc overlap was between Black Seabass and Red Grouper (0.08) 

with the Black Seabass ellipse positioned much higher in the δ15N direction than Red Grouper 

(Figure 3.3; Table 3.6).  

 

General interpretation of postlarval location and movement 

 By combining SEAc, and correlations between isotope values and size or location, we 

constructed a schematic diagram of postlarval/early juvenile distribution and movement for each 

of the four species (Figure 3.4). While the species use broadly similar habitats, subtle differences 

became apparent using these data. Black Seabass postlarvae were widely distributed, with little 

movement except for a subtle southward trend along the WFS. The central area for Red Grouper 

postlarvae was isotopically small with movement to the north and inshore. Gag postlarval 

distribution was also confined, with inshore movement during the postlarval period. Red Snapper 
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postlarval distribution was confined in the east-west direction but was diffuse in the north-south 

direction. No movement was detected over the postlarval period.  

 

DISCUSSION   

 We devised a novel strategy for inferring postlarval distribution and movement of fish 

using the δ13C and δ15N values in cores of fish eye lenses. We tested the strategy using several 

reef-fish species common to the hard-bottom habitats of the WFS. Despite the classification of 

all four species as reef fishes, we found differences in distribution and movement, using a 

combination of three statistical methods: correlation, PERMANOVA, and SIBER. While one 

species was widely distributed and experienced little movement, others were more narrowly 

distributed and experienced significant movement during the first weeks of life. This novel 

analysis approach can be adapted for use in other geographic areas that have strong trends in 

background isotopic signatures and may serve as a method of identifying important larval 

habitats or geographic areas. 

 

Construction and use of interpretation rules 

Outer eye-lens isotopic values align closely with values observed in the muscle in many 

fish species (Quaeck 2017). The WFS isoscape was constructed using the isotope values in white 

muscle of several demersal species found throughout the region. Isotope values from eye-lens 

cores may be somewhat lower than those used to create the WFS isoscape due to the trophic 

position of postlarvae as opposed to adult fish (Bradley et al. 2015, McMahon et al. 2015, 

McMahon and McCarthy 2016). However, isotopic trends in the WFS isoscape have been shown 

to be robust and should be present in eye lenses as well. Gag eye-lens core values reported here 
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align closely with the muscle δ13C and δ15N values (~ -21‰ and 8‰ respectively) of a few 

newly settled Gag in a previous study (Weisberg et al. 2014). With postlarvae of all four species 

consuming similar prey at close to the same trophic position (Powell and Tucker 1992, Berlinsky 

et al. 2000, Drass et al. 2000, Umezawa et al. 2018), differences in eye-lens core isotopes should 

be attributable to geographic variation and movement. 

A study of Epinephelus septemfasciatus (Convict Grouper, a congener of Red Grouper) 

early life history found that the total eye diameter at the onset of exogenous feeding was 0.3 mm 

(Park et al. 2014), and fish eye-lens diameters are known to be approximately half of total eye 

diameter (Collery et al. 2014). The smallest ELD in our study was 0.3 mm, indicating analyzed 

material was derived from exogenous feeding. In addition, δ15N values in the cores were 

uniformly the lowest in the eye-lens series (data not presented). In species with substantial 

maternal contribution to the early eye lens, exogenous feeding is indicated by a steep decline in 

δ15N values (Simpson 2018). 

Bulk δ13C and δ15N values are known to incorporate trophic position (McMahon and 

McCarthy 2016) and geographic location (Graham et al. 2010) into a single value. This 

combination of influences may present interpretation difficulties. While compound-specific 

isotope analysis is an effective tool for separating trophic from movement influences (Ellis 2012, 

McMahon et al. 2013, Bradley et al. 2015), the method remains expensive and time-consuming. 

Instead, our approach was to address these various influences statistically, using several 

independent analyses to segregate influences on bulk isotopic values. We considered three major 

influences on the bulk isotopic values within fish eye-lens cores: geographic origin (Trueman et 

al. 2017), trophic growth (Dalponti et al. 2018, McMeans et al. 2019), and movement along the 

isotopic gradient (Graham et al. 2010; Table 3.1). With isotopic eye-lens incorporation being 
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50% complete within 30 d (Granneman 2018), we expect relatively little change to occur; 

however, by correlating ELD with isotopic values, we were able to test that assumption.  

 

Gag spawning origin and postlarval movement  

 Despite Gag collections occurring exclusively in estuaries (Figure 3.1) where shallow, 

nutrient-rich water can result in high isotopic values (Barnes et al. 2009, Radabaugh and Peebles 

2014, Trueman et al. 2017), values of δ13C and δ15N were low, indicating an offshore, southern 

origin (Radabaugh and Peebles 2014). The species is known to spawn in high-relief areas near 

the outer WFS (Coleman et al. 1996, Coleman et al. 2011). Physical models suggest that larvae 

may take advantage of bottom currents to arrive at estuary mouths, often as much as 150 km 

away (Weisberg et al. 2014). Spearman rank correlation results are also consistent with this 

pattern, indicating young Gag move into areas with higher background δ13C during the first 

several weeks of life, but do not increase in δ15N over that same period, suggesting no increase in 

trophic position or movement north along the isotopic gradient (Table 3.5; Figure 3.4). Weisberg 

et al. (2014) also observed that muscle δ13C and δ15N values in newly settling larvae were 

substantially lower than juveniles that had been residing in seagrass beds for several months. 

The standard ellipse size was quite small for Gag, with low mean values for both δ13C 

and δ15N, suggesting most surviving juveniles originated from a confined spawning area near the 

southwestern extent of the study region. A weak positive correlation between δ15N and collection 

latitude suggested that individuals spending their postlarval period farther to the north were later 

collected from estuaries farther north. In contrast, non-significant correlation between δ13C and 

collection longitude suggests that longitudinal origin had no effect on later juvenile location. If 

the primary effect on δ13C is due to seagrass residence (Weisberg et al. 2014) and spawning 
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grounds are confined by depth (Coleman et al. 2004), then this lack of correlation with juvenile 

location would be expected.   

 

Black Seabass spawning origin and postlarval movement 

High mean values of both δ13C and δ15N in Black Seabass (Table 3.4, Figure 2), suggest 

this species originated farthest north and farthest inshore. The large standard ellipse area suggests 

the widest postlarval distribution of the four species. Little is known about Black Seabass 

spawning habits in the Gulf of Mexico, but adults and juveniles are found most frequently in 

low-relief hard bottom habitats spread across the northeaster quadrant of the WFS (Weaver 

1996). Significant correlations between δ15N and collection latitude and between δ13C and 

collection longitude indicate the postlarval distribution is quite wide in both the north-south and 

east-west directions. A significant negative correlation between δ15N and ELD may suggest 

movement to the south, which corresponds to a common direction of wind-driven currents in the 

region throughout most of the year (Mayer et al. 2017). A lack of correlation between δ13C and 

ELD indicates no movement inshore or offshore as the postlarvae grow, along with no major 

change in basal-resource dependence between 15 and 40 mm SL. These results are consistent 

with aspects of Black Seabass biology and circulation in the area (Weaver 1996, Mayer et al. 

2017).  

 

Red Grouper spawning origin and postlarval movement 

Red Grouper are thought to spawn in small harems spread across low-relief areas of the 

WFS (Coleman et al. 2010, Coleman et al. 2011). Repeated studies inside a marine protected 

area indicated that depressions maintained for reproductive purposes were clustered near 70 m 
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depth (Wall et al. 2011, Grasty et al. 2019). While our isotopic observation of a wide total δ13C 

and δ15N distribution (Table 3.4; Figure 3.4) supports the idea of scattered reproductive areas, the 

small SEAc suggests a high concentration of spawning as reported in the literature (Figure 3.3). 

Taken together with the lack of correlation between δ15N or δ13C and capture location, these data 

suggest a large proportion of the individuals that survived to the juvenile stage originated from a 

confined geographic area. A significant correlation between δ15N and ELD suggests that the 

species either increases tropic position quickly or moves northward throughout the postlarval and 

early juvenile period. Juveniles are often found in the Big Bend region and near the mouths of 

northern estuaries in the study region (Figure 3.1), whereas spawning seems to be most common 

south of 28°N (Wall et al. 2014, Grasty et al. 2019). A weak correlation between δ13C and ELD 

suggests little movement inshore between 14 and 36 mm SL. 

 

Red Snapper spawning origin and postlarval movement 

Red Snapper were common on the WFS before the mid-twentieth century, but became 

rare as the result of heavy fishing pressure (Burns and Froeschke 2012, SEDAR 2018). Recent 

commercial and recreational catches have suggested a range expansion over the past several 

years with the species returning to the central WFS. Evidence of Red Snapper spawning on the 

WFS includes eggs collected directly west of Tampa Bay and identified via DNA barcoding 

(Burrows et al. 2018) and several females collected in spawning condition (hydrated oocytes) 

from multiple locations on the WFS (Nguyen & Peebles, unpublished data). In our study, the 

constrained range of δ13C values and dispersed δ15N values (Table 3.4; Figure 3.3), suggests a 

narrow depth range but an expansive along-shelf distribution of larvae. These interpretations are 

corroborated by a moderate correlation between δ15N and capture latitude, coupled with a weak 

negative correlation between δ13C and capture longitude (Table 3.5; Figure 3.4). These results 
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suggest Red Snapper did not move north or south when settling into juvenile habitats. In 

addition, a lack of significant correlations between δ13C or δ15N and ELD indicates no major 

geographic movement, no trophic growth, or no change in basal-resource dependence during the 

first weeks of life, which is similar to previous findings in the northern Gulf of Mexico (Wells et 

al. 2008).  

 

Species-specific results suggest differences in spawning locations and movements 

 Mean (±SE) isotopic values for the four species indicated that the central location for 

each species was unique, with Black Seabass being concentrated farthest north and inshore, and 

Red Grouper being concentrated farthest south and offshore. Extent of north-south dispersion 

was highest in Red Snapper, whereas extent of east-west dispersion was highest in Black Seabass 

(Figure 2). Most importantly, these central locations agree with reported spawning locations for 

each of these species (Coleman et al. 1996, Weaver 1996, Saul et al. 2013).  

 Multivariate analyses suggested subtle, but potentially important, differences between 

fish eye-lens core δ13C and δ15N isotopic values of the four reef-fish species. The two 

complimentary methods (PERMANOVA and SIBER) identified similar trends and differences 

among the four species. A lack of difference and a high degree of overlap between Black 

Seabass and Red Snapper agrees with a shared northern latitude. Both species are known to be 

concentrated in the northern portion of the study area (Hood et al. 1994, Ainsworth et al. 2018), 

and the Red Snapper population has been expanding from the north toward the south. Red 

Snapper juvenile capture locations were in deeper water than Black Seabass (Figure 3.1), which 

corresponds with core δ13C values being lower in Red Snapper.  
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 A high degree of overlap and no significant difference between Gag and Red Grouper 

suggests shared locations and basal-resource dependences between these two species during the 

first few weeks of life. Both are known to spawn in 70-100 m of water near the shelf break, and 

evidence of spawning for both species has been observed in the same marine reserves (Wall et al. 

2011, Ellis and Powers 2012, Grasty et al. 2019). This similarity in isotopic signatures presents 

the possibility that Red Grouper use a similar mechanism of postlarval transport across the WFS. 

While Gag eye-lens cores are isotopically similar to Red Grouper cores, and Red Snapper cores 

are isotopically similar to Black Seabass cores during the first weeks of life, the two pairs of 

species are distinctly different. Overall, the patterns observed here indicate subtle geographic and 

life-history differences among these reef-fishes during the first weeks of life. 

 

Conclusions and future directions 

 Here we used bulk stable isotope analysis on the cores of eye lenses from juvenile fish as 

a chemical time-capsule to investigate the trophic and location history of individuals during the 

postlarval and early juvenile period. We explored a statistical technique to distinguish the 

isotopic influences on larvae that ultimately survive to the juvenile stage in four WFS reef-fish 

species. We showed that isotope data in eye-lens cores combined with catch location and ELD 

could be used to uncover subtle differences among species that use broadly similar geographic 

areas. We also showed that movement and trophic change could be inferred within each species 

over a time window of only a few weeks. Finally, we added evidence to suggest the range 

expansion in Red Snapper is multi-generational, not merely the result of juveniles or adults 

moving into the area with spawning occurring elsewhere. 

 While the use of eye-lens core stable isotopes as indicators of larval origin is quite 

promising, several additional developments could improve interpretation. First, technological 
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advances should enable future researchers to use even smaller eye-lens samples, potentially 

further subdividing the postlarval period. As compound-specific isotope analysis of eye lenses 

becomes more accessible, this technique should be investigated for corroboration of the current 

results. Isotopic techniques should also be paired with other emerging technologies such as egg 

and larval surveys which identify fish via DNA barcoding (Burrows et al. 2018) to better 

quantify the earliest larval period. Finally, additional species should be investigated, including 

pelagic and migratory species.  

 

LITERATURE CITED 

Able, K. W., M. P. Fahay, and G. R. Shepherd. 1995. Early life history of Black Seabass, 

Centropristis striata, in the mid-Atlantic bight and New Jersey estuary. Fishery Bulletin 

93:429-445. 

Ainsworth, C. H., C. B. Paris, N. Perlin, L. N. Dornberger, W. F. Patterson, E. Chancellor, S. 

Murawski, D. Hollander, K. Daly, I. C. Romero, F. Coleman, and H. Perryman. 2018. 

Impacts of the Deepwater Horizon oil spill evaluated using an end-to-end ecosystem 

model. Plos One 13. 

Barnes, C., S. Jennings, and J. T. Barry. 2009. Environmental correlates of large-scale spatial 

variation in the delta C-13 of marine animals. Estuarine Coastal and Shelf Science 

81:368-374. 

Beets, J. 1997. Effects of a predatory fish on the recruitment and abundance of Caribbean coral 

reef fishes. Marine Ecology Progress Series 148:11-21. 

Berlinsky, D., M. Watson, G. Nardi, and T. M. Bradley. 2000. Investigations of selected 

parameters for growth of larval and juvenile black sea bass Centropristis striata L. Journal 

of the World Aquaculture Society 31:426-435. 

Bradley, C. J., N. J. Wallsgrove, C. A. Choy, J. C. Drazen, E. D. Hetherington, D. K. Hoen, and 

B. N. Popp. 2015. Trophic position estimates of marine teleosts using amino acid 

compound specific isotopic analysis. Limnology and Oceanography-Methods 13:476-

493. 

Bullock, L. H., and G. B. Smith. 1991. Seabasses (Pisces: Serranidae). Memoirs of the Hourglass 

Cruises 8:1-243. 

Burghart, S. E., L. Van Woudenberg, C. A. Daniels, S. D. Meyers, E. B. Peebles, and M. 

Breitbart. 2014. Disparity between planktonic fish egg and larval communities as 

indicated by DNA barcoding. Marine Ecology Progress Series 503:195-204. 

Burns, K. M., and J. T. Froeschke. 2012. Survival of Red Grouper (Epinephalus morio) and red 

snapper (Lutjanus campechanus) caught on J-hooks and circle hooks in the Florida 

recreational and recreational-for-hire fisheries. Bulletin of Marine Science 88:633-646. 



73 

 

Burrows, M., J. S. Browning, M. Breitbart, S. A. Murawski, and E. B. Peebles. 2018. DNA 

barcoding reveals clear delineation between spawning sites for neritic versus oceanic 

fishes in the Gulf of Mexico. Fisheries Oceanography:1-12. 

Casselman, J. M. 1990. Growth and relative size of calcified structures of fish. Transactions of 

the American Fisheries Society 119:673-688. 

Chang, M.-Y., and A. J. Geffen. 2013. Taxonomic and geographic influences on fish otolith 

microchemistry. Fish and Fisheries 14:458-492. 

Clarke, A. D., K. H. Telmer, and J. M. Shrimpton. 2015. Movement patterns of fish revealed by 

otolith microchemistry: a comparison of putative migratory and resident species. 

Environmental Biology of Fishes 98:1583-1597. 

Coleman, F. C., P. B. Baker, and C. C. Koenig. 2004. A review of Gulf of Mexico marine 

protected areas: Successes, failures, and lessons learned. Fisheries 29:10-21. 

Coleman, F. C., C. C. Koenig, and L. A. Collins. 1996. Reproductive styles of shallow-water 

groupers (Pisces: Serranidae) in the eastern Gulf of Mexico and the consequences of 

fishing spawning aggregations. Environmental Biology of Fishes 47:129-141. 

Coleman, F. C., C. C. Koenig, K. M. Scanlon, S. Heppell, S. Heppell, and M. W. Miller. 2010. 

Benthic habitat modification through excavation by red grouper, Epinephelus morio, in 

the northeastern Gulf of Mexico. Open Fish Science Journal 3:1-15. 

Coleman, F. C., K. M. Scanlon, and C. C. Koenig. 2011. Groupers on the edge: shelf edge 

spawning habitat in and around marine reserves of the northeastern Gulf of Mexico. 

Professional Geographer 63:456-474. 

Colin, P. L. 2012. Aggregation spawning: biological aspects of the early life history. Pages 191-

224 in Y. S. DeMitcheson and P. L. Colin, editors. Reef Fish Spawning Aggregations: 

Biology, Research and Management. Springer, Dordrecht. 

Colin, P. L., C. C. Koenig, and W. A. Laroche. 1996. Development from egg to juvenile of the 

Red Grouper (Epinephelus morio) (Pisces: Serranidae) in the laboratory. Pages 399-414 

in F. ArreguinSanchez, J. L. Munro, M. C. Balgos, and D. Pauly, editors. Biology, 

fisheries and culture of tropical groupers and snappers: Proceedings of an 

EPOMEX/ICARM International workshop on tropical snappers and groupers. 

International Center for Living Aquatic Resources Management, University of 

Campeche, Mexico. 

Collery, R. F., K. N. Veth, A. M. Dubis, J. Carroll, and B. A. Link. 2014. Rapid, accurate, and 

non-invasive measurement of Zebrafish axial length and other eye dimensions using SD-

OCT allows longitudinal analysis of myopia and emmetropization. Plos One 9. 

Cook, G. S., P. E. Parnell, and L. A. Levin. 2014. Population connectivity shifts at high 

frequency within an open-coast marine protected area network. Plos One 9. 

Cowen, R. K. 1991. Variation in the planktonic larval duration of the temperate wrasse 

Semicossyphus pulcher. Marine Ecology Progress Series 69:9-15. 

Dalponti, G., R. D. Guariento, and A. Caliman. 2018. Hunting high or low: body size drives 

trophic position among and within marine predators. Marine Ecology Progress Series 

597:39-46. 

Drass, D. M., K. L. Bootes, J. Lyczkowski-Shultz, B. H. Comyns, G. J. Holt, C. M. Riley, and R. 

P. Phelps. 2000. Larval development of red snapper, Lutjanus campechanus, and 

comparisons with co-occurring snapper species. Fishery Bulletin 98:507-527. 

Du, Q. S., D. Q. Wei, and K. C. Chou. 2003. Correlations of amino acids in proteins. Peptides 

24:1863-1869. 



74 

 

Edwards, K. P., J. A. Hare, and F. E. Werner. 2008. Dispersal of black sea bass (Centropristis 

striata) larvae on the southeast US continental shelf: results of a coupled vertical larval 

behavior - 3D circulation model. Fisheries Oceanography 17:299-315. 

Eldridge, P. J. 1988. The southeast area monitoring and assessment program (SEAMAP)- A 

state-federal-university program for collection, management, and dissemination of 

fishery-independent data and information in the southeastern United States. Marine 

Fisheries Review 50:29-39. 

Ellis, G. S. 2012. Compound-specific stable isotopic analysis of protein amino acids: Ecological 

applications in modern and ancient systems. PhD. University of South Florida, Tampa, 

Florida. 

Ellis, R. D., and J. E. Powers. 2012. Gag Grouper, marine reserves, and density-dependent sex 

change in the Gulf of Mexico. Fisheries Research 115:89-98. 

Fitzhugh, G. R., C. C. Koenig, F. C. Coleman, C. B. Grimes, and W. Sturges. 2005. Spatial and 

temporal patterns in fertilization and settlement of young gag (Mycteroperca microlepis) 

along the west Florida shelf. Bulletin of Marine Science 77:377-396. 

Fry, B. 2006. Stable isotope ecology. Springer Science+Business Media, New York, MY. 

Fry, B., and S. C. Wainright. 1991. Diatom sources of C-13 rich carbon in marine food webs. 

Marine Ecology Progress Series 76:149-157. 

Graham, B. S., P. L. Koch, S. D. Newsome, K. W. McMahon, and D. Aurioles. 2010. Using 

Isoscapes to Trace the Movements and Foraging Behavior of Top Predators in Oceanic 

Ecosystems. Pages 299-318 in J. B. West, G. J. Bowen, T. E. Dawson, and K. P. Tu, 

editors. Isoscapes: Understanding movement, pattern, and process on earth through 

isotope mapping. 

Granneman, J. E. 2018. Evaluation of trace-metal and isotopic records as techniques for tracking 

lifetime movement patterns in fishes. University of South Florida, Tampa, FL. 

Grasty, S., C. C. Wall, J. W. Gray, J. Brizzolara, and S. A. Murawski. 2019. Temporal 

persistence of Red Grouper holes and analysis of associated fish assemblages from towed 

camera data in the Steamboat Lumps marine protected area. Transactions of the 

American Fisheries Society:1-9. 

Guinan, M. E., Jr., K. L. Kapuscinski, and M. A. Teece. 2015. Seasonal diet shifts and trophic 

position of an invasive cyprinid, the Rudd Scardinius erythrophthalmus (Linnaeus, 

1758), in the upper Niagara River. Aquatic Invasions 10:217-225. 

Hansson, S., J. E. Hobbie, R. Elmgren, U. Larsson, B. Fry, and S. Johansson. 1997. The stable 

nitrogen isotope ratio as a marker of food-web interactions and fish migration. Ecology 

78:2249-2257. 

Hine, A. C., and S. D. Locker. 2011. The Florida Gulf of Mexico continental shelf—great 

contrasts and significant transitions. The Gulf of Mexico: Origin, Waters, and Marine 

Life. 

Hjort, J. 1914. Fluctuations in the great fisheries of Northern Europe viewed in the light of 

biological research. Copenhague Conseil permanent international pour l'exploration de la 

mer. Rapports et Proces-Verbaux des Reunions 20:(234)-(234). 

Holl, C. M., T. A. Villareal, C. D. Payne, T. D. Clayton, C. Hart, and J. P. Montoya. 2007. 

Trichodesmium in the western Gulf of Mexico: N-15(2)-fixation and natural abundance 

stable isotope evidence. Limnology and Oceanography 52:2249-2259. 



75 

 

Hollenbeck, C. M., D. S. Portnoy, E. Saillant, and J. R. Gold. 2015. Population structure of red 

snapper (Lutjanus campechanus) in US waters of the western Atlantic Ocean and the 

northeastern Gulf of Mexico. Fisheries Research 172:17-25. 

Hood, P. B., M. F. Godcharles, and R. S. Barco. 1994. Age, growth, reproduction, and the 

feeding ecology of black-sea bass, Centropristis striata (Pisces, Serranidae), in the 

eastern Gulf of Mexico. Bulletin of Marine Science 54:24-37. 

Houde, E. D. 2009. Emerging from Hjort's shadow. Journal of Northwest Atlantic Fishery 

Science 41:53-70. 

Huelster, S. 2015. Comparison of isotope-based biomass pathways with groundfish community 

structure 

in the eastern Gulf of Mexico. Masters. University of South Florida, Tampa. 

Jackson, A. L., R. Inger, A. C. Parnell, and S. Bearhop. 2011. Comparing isotopic niche widths 

among and within communities: SIBER - Stable Isotope Bayesian Ellipses in R. Journal 

of Animal Ecology 80:595-602. 

Johnson, A. G., and L. A. Collins. 1994. Age-size structure of red grouper, (Epinephelus morio), 

from the eastern Gulf of Mexico. Northeast Gulf Science 13:101-106. 

Johnson, M. W., S. P. Powers, C. L. Hightower, and M. Kenworthy. 2010. Age, growth, 

mortality, and diet composition of Vermilion Snapper from the north-central Gulf of 

Mexico. Transactions of the American Fisheries Society 139:1136-1149. 

Jones, D., T. S. Switzer, B. Houston, and E. B. Peebles. 2013. Use of otolith microchemistry to 

improve fisheries-independent indicies of recruitment for gag (Mycteroperca microlepis): 

linking estuarine nurseries to nearshore reefs in the eastern Gulf of Mexico. Page 25pp  

SEDAR33-DW9. SEDAR, North Charleston, SC. 

Kendall, C., S. R. Silva, and V. J. Kelly. 2001. Carbon and nitrogen isotopic compositions of 

particulate organic matter in four large river systems across the United States. 

Hydrological Processes 15:1301-1346. 

Kimura, D. K., and J. J. Lyons. 1991. Between-reader bias and variability in the age-

determination process. Fishery Bulletin 89:53-60. 

Kurth, B. N., E. Peebles, and C. D. Stallings. 2019. Atlantic Tarpon (Megalops atlanticus) 

exhibit upper estuarine habitat dependence  followed by foraging system fidelity after 

ontogenetic habitat shifts. Estuarine Coastal and Shelf Science. 

Leis, J. M., and B. M. Carson-Ewart. 1999. In situ swimming and settlement behaviour of larvae 

of an Indo-Pacific coral-reef fish, the coral trout Plectropomus leopardus (Pisces : 

Serranidae). Marine Biology 134:51-64. 

Lim, L.-S., and Y. Mukai. 2014. Morphogenesis of sense organs and behavioural changes in 

larvae of the brown-marbled grouper Epinephelus fuscoguttatus (Forsskal). Marine and 

Freshwater Behaviour and Physiology 47:313-327. 

Locker, S. D., R. A. Armstrong, T. A. Battista, J. J. Rooney, C. Sherman, and D. G. Zawada. 

2010. Geomorphology of mesophotic coral ecosystems: current perspectives on 

morphology, distribution, and mapping strategies. Coral Reefs 29:329-345. 

Lombardi-Carlson, L. 2014. Age and growth description of red grouper (Epinephelus morio) 

from the northeastern Gulf of Mexico: 1978-2013. SEDAR 42, North Charleston, SC. 

Lynnerup, N., H. Kjeldsen, S. Heegaard, C. Jacobsen, and J. Heinemeier. 2008. Radiocarbon 

Dating of the Human Eye Lens Crystallines Reveal Proteins without Carbon Turnover 

throughout Life. Plos One 3. 



76 

 

MacKenzie, K. M., C. N. Trueman, M. R. Palmer, A. Moore, A. T. Ibbotson, W. R. C. 

Beaumont, and I. C. Davidson. 2012. Stable isotopes reveal age-dependent trophic level 

and spatial segregation during adult marine feeding in populations of salmon. Ices 

Journal of Marine Science 69:1637-1645. 

Mahler, B., Y. W. Chen, J. Ford, C. Thiel, G. Wistow, and Z. R. Wu. 2013. Structure and 

dynamics of the fish eye lens protein, gamma M7-Crystallin. Biochemistry 52:3579-

3587. 

Mahmoud, A., and J. Sunarso. 2018. A new graphical method to target carbon dioxide emission 

reductions by simultaneously aligning fuel switching, energy saving, investment cost, 

carbon credit, and payback time. International Journal of Energy Research 42:1551-1562. 

Marancik, K. E., D. E. Richardson, J. Lyczkowski-Shultz, R. K. Cowen, and M. Konieczna. 

2012. Spatial and temporal distribution of grouper larvae (Serranidae: Epinephelinae: 

Epinephelini) in the Gulf of Mexico and Straits of Florida. Fishery Bulletin 110:1-20. 

Mayer, D. A., R. H. Weisberg, L. Y. Zheng, and Y. G. Liu. 2017. Winds on the West Florida 

Shelf: Regional comparisons between observations and model estimates. Journal of 

Geophysical Research-Oceans 122:834-846. 

McCutchan, J. H., W. M. Lewis, C. Kendall, and C. C. McGrath. 2003. Variation in trophic shift 

for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102:378-390. 

McMahon, K. W., M. L. Fogel, B. J. Johnson, L. A. Houghton, and S. R. Thorrold. 2011. A new 

method to reconstruct fish diet and movement patterns from delta C-13 values in otolith 

amino acids. Canadian Journal of Fisheries and Aquatic Sciences 68:1330-1340. 

McMahon, K. W., L. L. Hamady, and S. R. Thorrold. 2013. A review of ecogeochemistry 

approaches to estimating movements of marine animals. Limnology and Oceanography 

58:697-714. 

McMahon, K. W., and M. D. McCarthy. 2016. Embracing variability in amino acid delta N-15 

fractionation: mechanisms, implications, and applications for trophic ecology. Ecosphere 

7. 

McMahon, K. W., S. R. Thorrold, T. S. Elsdon, and M. D. McCarthy. 2015. Trophic 

discrimination of nitrogen stable isotopes in amino acids varies with diet quality in a 

marine fish. Limnology and Oceanography 60:1076-1087. 

McMeans, B. C., T. Kadoya, T. K. Pool, G. W. Holtgrieve, S. Lek, H. Kong, K. Winemiller, V. 

Elliot, N. Rooney, P. Laffaille, and K. S. McCain. 2019. Consumer trophic positions 

respond variably to seasonally fluctuating environments. Ecology:1-10. 

Meath, B., E. B. Peebles, B. A. Seibel, and H. Judkins. 2019. Stable isotopes in the eye lenses of 

Doryteuthis plei (Blainville 1823): exploring natal origins and migratory patterns in the 

eastern Gulf of Mexico. Continental Shelf Research. 

Moe, M. A. J. 1969. Biology of the Red grouper Epinephelus morio from the eastern Gulf of 

Mexico. Pages 1-95  Florida Department of Natural Resources Marine Research 

Laboratory Professional Papers Series. Fish and Wildlife Research Institute, St. 

Petersburg, FL. 

Nicol, J. A. C. 1989. The eyes of fishes. Clarendon, Oxford, England. 

Nielsen, J., R. B. Hedeholm, J. Heinemeier, P. G. Bushnell, J. S. Christiansen, C. B. Ramsey, R. 

W. Brill, M. Simon, K. F. Steffensen, and J. F. Steffensen. 2016. Eye lens radiocarbon 

reveals centuries of longevity in the Greenland shark (Somniosus microcephalus). 

Science 353:702-704. 



77 

 

Oksanen, J., F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P. R. Minchin, R. 

B. O'Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens, E. Szoecs, and H. Wagner. 

2019. Vegan: community ecology package. R package version 2.5-4. 

Park, J.-M., J.-K. Cho, K.-H. Han, N.-r. Kim, H.-K. Hwang, K.-M. Kim, J.-I. Myeong, and M.-

H. Son. 2014. Early life history of the Sevenband Grouper, Epinephelus septemfasciatus 

from Korea. Development and Reproduction 18:13-23. 

Peebles, E. B., and D. J. Hollander. 2020. Combining Isoscapes with Tissue-Specific Isotope 

Records to Recreate the Geographic Histories of Fish. Pages 203-218 in S. A. Murawski, 

C. H. Ainsworth, S. Gilbert, D. J. Hollander, C. B. Paris, M. Schlüter, and D. L. Wetzel, 

editors. Scenarios and Responses to Future Deep Oil Spills. Springer, Cham, Switzerland. 

Pepin, P., and R. A. Myers. 1991. Significance of egg and larval size to recruitment variability of 

temperate marine fish. Canadian Journal of Fisheries and Aquatic Sciences 48:1820-

1828. 

Post, D. M. 2002. Using stable isotopes to estimate trophic position: Models, methods, and 

assumptions. Ecology 83:703-718. 

Powell, A. B., and J. W. Tucker. 1992. Egg and larval development of laboratory-reared Nassau 

Grouper, Epinephelus striatus (Pisces Serranidae). Bulletin of Marine Science 50:171-

185. 

Quaeck-Davies, K., V. A. Bendall, K. M. MacKenzie, S. Hetherington, J. Newton, and C. N. 

Trueman. 2018. Teleost and elasmobranch eye lenses as a target for life-history stable 

isotope analyses. Peerj 6:26. 

Quaeck, K. 2017. Stable isotpe analysis of fish eye lenses: reconstruction of ontogenetic trends 

in spatial and trophic ecology of elasmobranchs and deep water teleosts. University of 

Southampton, Southampton, England. 

R Core Team. 2018. R: A language and environment for statistical computing. R Foundation for 

Statistical Computing, Vienna, Austria. 

Radabaugh, K. R., D. J. Hollander, and E. B. Peebles. 2013. Seasonal delta C-13 and delta N-15 

isoscapes of fish populations along a continental shelf trophic gradient. Continental Shelf 

Research 68:112-122. 

Radabaugh, K. R., E. M. Malkin, D. J. Hollander, and E. B. Peebles. 2014. Evidence for light-

environment control of carbon isotope fractionation by benthic microalgal communities. 

Marine Ecology Progress Series 495:77-90. 

Radabaugh, K. R., and E. B. Peebles. 2014. Multiple regression models of δ13C and δ15N for fish 

populations in the eastern Gulf of Mexico. Continental Shelf Research 84:158-168. 

Robertson, D. R., S. E. Swearer, K. Kaufmann, and E. B. Brothers. 1999. Settlement vs. 

environmental dynamics in a pelagic-spawning reef fish at Caribbean Panama. Ecological 

Monographs 69:195-218. 

Rogers, P. J., T. M. Ward, L. J. McLeay, M. Lowry, R. J. Saunders, and D. Williams. 2009. 

Reproductive biology of blue mackerel, Scomber australasicus, off southern and eastern 

Australia: suitability of the Daily Egg Production Method for stock assessment. Marine 

and Freshwater Research 60:187-202. 

Salazar, G. 2019. EcolUtils: Utilities for community ecology analysis. R package version 0.1. 

Saul, S. E., J. F. Walter, III, D. J. Die, D. F. Naarc, and B. T. Donahue. 2013. Modeling the 

spatial distribution of commercially important reef fishes on the West Florida Shelf. 

Fisheries Research 143:12-20. 

SEDAR. 2018. SEDAR 52: Gulf of Mexico Red Snapper. NOAA, North Charleston, SC. 



78 

 

Seminoff, J. A., S. R. Benson, K. E. Arthur, T. Eguchi, P. H. Dutton, R. F. Tapilatu, and B. N. 

Popp. 2012. Stable isotope tracking of endangered sea turtles: validation with satellite 

telemetry and delta N-15 analysis of amino acids. Plos One 7. 

Shi, Y. R., K. Barton, A. De Maria, J. M. Petrash, A. Shiels, and S. Bassnett. 2009. The stratified 

syncytium of the vertebrate lens. Journal of Cell Science 122:1607-1615. 

Simpson, S. 2018. Spatial ecology and fisheries interactions of Rajidae in the UK. University of 

Southampton. 

Stallings, C. D., F. C. Coleman, C. C. Koenig, and D. A. Markiewicz. 2010. Energy allocation in 

juveniles of a warm-temperate reef fish. Environmental Biology of Fishes 88:389-398. 

Stallings, C. D., J. A. Nelson, K. L. Rozar, C. S. Adams, K. R. Wall, T. S. Switzer, B. L. Winner, 

and D. J. Hollander. 2015. Effects of preservation methods of muscle tissue fromupper- 

trophic level reef fishes on stable isotope values (delta C-13 and delta N-15). Peerj 3. 

Stewart, D. N., J. Lango, K. P. Nambiar, M. J. S. Falso, P. G. FitzGerald, D. M. Rocke, B. D. 

Hammock, and B. A. Buchholz. 2013. Carbon turnover in the water-soluble protein of the 

adult human lens. Molecular Vision 19:463-475. 

Sturrock, A. M., C. N. Trueman, J. A. Milton, C. P. Waring, M. J. Cooper, and E. Hunter. 2014. 

Physiological influences can outweigh environmental signals in otolith microchemistry 

research. Marine Ecology Progress Series 500:245-264. 

Switzer, T. S., T. C. MacDonald, R. H. McMichael, Jr., and S. F. Keenan. 2012. Recruitment of 

juvenile Gags in the eastern Gulf of Mexico and factors contributing to observed spatial 

and temporal patterns of estuarine occupancy. Transactions of the American Fisheries 

Society 141:707-719. 

Trueman, C. N., K. M. MacKenzie, and K. S. Glew. 2017. Stable isotope-based location in a 

shelf sea setting: accuracy and precision are comparable to light-based location methods. 

Methods in Ecology and Evolution 8:232-240. 

Tzadik, O. E., D. L. Jones, E. B. Peebles, C. C. Koenig, and C. D. Stallings. 2017a. The effects 

of spatial scale on assigning nursery habitats in Atlantic Goliath Groupers (Epinephelus 

itajara) using non-lethal analyses of fin rays. Estuaries and Coasts 40:1785-1794. 

Tzadik, O. E., E. B. Peebles, and C. D. Stallings. 2017b. Life-history studies by non-lethal 

sampling: using microchemical constituents of fin rays as chronological recorders. 

Journal of Fish Biology 90:611-625. 

Umezawa, Y., A. Tamaki, T. Suzuki, S. Takeuchi, C. Yoshimizu, and I. Tayasu. 2018. 

Phytoplankton as a principal diet for callianassid shrimp larvae in coastal waters, 

estimated from laboratory rearing and stable isotope analysis. Marine Ecology Progress 

Series 592:141-158. 

Vanderklift, M. A., and S. Ponsard. 2003. Sources of variation in consumer-diet delta(15)N 

enrichment: a meta-analysis. Oecologia 136:169-182. 

Vandersea, M. W., R. W. Litaker, K. E. Marancik, J. A. Hare, H. J. Walsh, S. Lem, M. A. West, 

D. M. Wyanski, E. H. Labani, and P. A. Tester. 2008. Identification of larval sea basses 

(Centropristis spp.) using ribosomal DNA-specific molecular assays. Fishery Bulletin 

106:183-193. 

Vihtelic, T. S. 2008. Teleost lens development and degeneration. International Review of Cell 

and Molecular Biology, Vol 269 269:341-373. 

Wall, C. C., B. T. Donahue, D. F. Naar, and D. A. Mann. 2011. Spatial and temporal variability 

of red grouper holes within Steamboat Lumps Marine Reserve, Gulf of Mexico. Marine 

Ecology Progress Series 431:243-254. 



79 

 

Wall, C. C., P. Simard, M. Lindemuth, C. Lembke, D. F. Naar, C. Hu, B. B. Barnes, F. E. 

Muller-Karger, and D. A. Mann. 2014. Temporal and spatial mapping of red grouper 

Epinephelus morio sound production. Journal of Fish Biology 85:1470-1488. 

Wall, K. R., and C. D. Stallings. 2018. Subtropical epibenthos varies with location, reef type, and 

grazing intensity. Journal of Experimental Marine Biology and Ecology 509:54-65. 

Wallace, A. A., D. J. Hollander, and E. B. Peebles. 2014. Stable isotopes in fish eye lenses as 

potential recorders of trophic and geographic history. Plos One 9. 

Weaver, D. C. 1996. Feeding ecology and ecomorphology of three seabasses (Pisces: Serranidae) 

in the northeastern Gulf of Mexico. University of Florida, Gainesville, FL. 

Weisberg, R. H., L. Zheng, and E. B. Peebles. 2014. Gag grouper larvae pathways on the West 

Florida Shelf. Continental Shelf Research 88:11-23. 

Wells, R. J. D., J. H. Cowan, and B. Fry. 2008. Feeding ecology of red snapper Lutjanus 

campechanus in the northern Gulf of Mexico. Marine Ecology Progress Series 361:213-

225. 

White, D. B., and S. M. Palmer. 2004. Age, growth and redproduction of the Red Snapper, 

Lutjanus campechanus, from the Southeastern U.S. Bulletin of Marine Science 75:335-

360. 

Whiteman, J. P., E. A. Elliott Smith, A. C. Besser, and S. D. Newsome. 2019. A Guide to Using 

Compound-Specific Stable Isotope Analysis to Study the Fates of Molecules in 

Organisms and Ecosystems. Diversity 11:1-18. 

Winemiller, K. O., and K. A. Rose. 1993. Why do most fish produce so many tiny offspring. 

American Naturalist 142:585-603. 

Wride, M. A. 2011. Lens fibre cell differentiation and organelle loss: many paths lead to clarity. 

Philosophical Transactions of the Royal Society B-Biological Sciences 366:1219-1233. 

Zhang, J. Y., A. Fujiwara, and J. Sawara. 2006. Multidimentional timing decisions: a case study 

in tourism behavior analysis. Tourism Analysis 11:319-329. 

 

  



80 

 

Table 3.1. Expected isotopic outcomes (increase, decrease, or no change) of all possible 

combinations of three effects: geographic distribution of spawning (geographic origin), changes 

in trophic position (trophic growth), and movement along an isotopic gradient. Consistent effects 

result in consistent outcomes. Mixed effects result in variable outcomes. 

 

Effect 

Isotopic 

Outcome 

Geographic 

origin 

Trophic 

growth 

Movement 

along 

gradient 

+ + + + 

0 + + + 

+ 0 + + 

+ + 0 + 

0 0 + + 

0 + 0 + 

+ 0 0 + 

- - - - 

- 0 - - 

- - 0 - 

0 - - - 

- 0 0 - 

0 - 0 - 

0 0 - - 

0 0 0 0 

+ + - -, 0, + 

+ - + -, 0, + 

- + + -, 0, + 

+ - - -, 0, + 

- + - -, 0, + 

- - + -, 0, + 

0 + - -, 0, + 

0 - + -, 0, + 

+ - 0 -, 0, + 

+ 0 - -, 0, + 

- 0 + -, 0, + 

- + 0 -, 0, + 
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Table 3.2. Rules of interpretation for all isotopic outcomes based on known isotopic trends in 

fish tissue and WFS isoscape. In this context, all interpretations are based on Spearman rank 

correlation between the combined core isotopic values for each species and two additional 

measurable parameters: eye-lens diameter (ELD) and juvenile capture location. Each correlation 

addresses straight-line movement over some period along the δ15N and δ13C gradients, which are 

orthogonal to one another, on the northern West Florida Shelf. 

 

1. δ15N correlation with ELD (among individuals within a species)  

 1A. If δ15N negatively correlates with ELD,    

  then species decreases trophic position or moves against δ15N gradient before settlement. 

 1B. If δ15N positively correlates with ELD,     

  then species increases trophic position or moves along δ15N gradient before settlement. 

 1C. If δ15N does not correlate with ELD,     

  then no trophic growth or movement along δ15N gradient occurred before settlement. 

2. δ15N correlation with collection latitude (among individuals within a species) 

 2A. If δ15N negatively correlates with juvenile collection latitude,  

  then individuals spawned farthest south settle farthest north (and vice versa). 

 2B. If δ15N positively correlates with juvenile collection latitude,  

  then individuals spawned farthest north settle farthest north (and vice versa). 

 2C. If δ15N does not correlate with juvenile collection latitude,  

  then spawning location does not affect juvenile location in the north-south direction. 

3. δ13C correlation with ELD (among individuals within species)  

 3A. If δ13C negatively correlates with ELD,    

  then species switches from benthic to planktonic basal resource or moves offshore. 

 3B. If δ13C positively correlates with ELD,    

  then species switches from planktonic to benthic basal resource or moves inshore. 

 3C. If δ13C does not correlate with ELD,    

  then no change in basal resource use or inshore-offshore movement occurs. 

4. δ13C correlation with collection longitude (among individuals within a species) 

 4A. If δ13C negatively correlates with collection longitude,  

 
 then individuals spawned farthest offshore settle farthest inshore (and vice versa). 

 4B. If δ13C positively correlates with collection longitude,    

  then individuals spawned farthest inshore settle farthest inshore (and vice versa). 

 4C. If δ13C does not correlate with juvenile collection longitude,  

  then spawning location does not affect juvenile location in the inshore-offshore direction. 

5. Simplifying assumptions   

 5A. If species does not become more herbivorous prior to settlement,  

  then 1A can be simplified to movement against δ15N gradient (southward on WFS). 

 5B. If species does not increase trophic position prior to settlement,  

 
 then 1B can be simplified to movement along the δ15N gradient (northward on WFS). 

 5C. If a species does not switch from benthic to planktonic basal resource prior to settlement, 

  then 3A can be simplified to movement against δ13C gradient (offshore on WFS). 

 5D. If species does not switch from planktonic to benthic basal resource prior to settlement, 
  then 3B can be simplified to movement along δ13C gradient (inshore on WFS). 
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Table 3.3. Capture information and regression parameters used to convert eye-lens diameters to 

fish length. For each of the four species number collected, collection length, collection age, total 

eye-lens diameter (ELD at collection) and size of analyzed eye-lens core (core ELD) are listed. 

Regression equation used to calculate standard length (SL) from ELD, R2, slope p-value (*** is 

≤ 0.001) and estimated SL at analysis.  Additional information on SL (mm) and age (d) at 

metamorphosis from post-larval to juvenile stage are provided from literature. 

 

  Black Seabass Gag Red Grouper Red Snapper 

Number collected 51 52 51 38 

Collection SL (mm) 48-231 94-321 37-256 140-325 

Collection age (yr) 0-3 0-2 0-2 1-3 

ELD at collection (mm) 1.5-6.1 1.5-6.2 0.9-7.0 3.0-7.5 

Core ELD (mm) 0.4-1.1 0.3-0.8 0.4-1.0 0.4-0.8 

Regression equation 

SL = 

35.33*ELD 

SL = 

56.54*ELD 

SL = 

(5.94*√(ELD))2 

SL = 

(6.02*√(ELD))2 

Estimated SL at analysis 

(mm) 15-40 18-47 14-36 15-29 

Slope p-value < 0.001 < 0.001 < 0.001 <0.001 

R2 0.98 0.96 0.99 0.99 

Metamorphosis SL (mm) 11 17-25 20 21 

Metamorphosis age (d) 20-35 29-52 35 30-35 

Source (Metamorphosis)  Roberts et al. 

1976 

Fitzhugh et al. 

2005 

Colin et al. 

1996  

Drass et al. 

2000 

Wells et al. 

2008 

 

 

 

 

Table 3.4. Number of samples, minimum, maximum, range, mean, and standard error for both 

δ15N and δ13C values recorded for eye-lens cores from the four species.  

 

Species n Mean ± SE 

(‰) 

Min (‰) Max (‰) Range (‰) 

Black Seabass (δ15N) 51 8.12 ± 0.20 5.31 10.97 5.65 

Gag (δ15N) 52 7.33 ± 0.11 5.59 9.40 3.81 

Red Grouper (δ15N) 51 7.05 ± 0.09 5.82 9.07 3.25 

Red Snapper (δ15N) 38 7.97 ± 0.24  4.61 11.24 6.62 

Black Seabass (δ13C) 51 -18.49 ± 0.20 -20.82 -14.15 6.67 

Gag (δ13C) 52 -19.02 ± 0.16 -21.00 -14.93 6.07 

Red Grouper (δ13C) 51 -19.26 ± 0.12 -20.65 -15.19 5.47 

Red Snapper (δ13C) 38 -18.96 ± 0.14 -20.44 -16.36 4.07 
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Table 3.5. Spearman rank correlations between δ15N and ELD or collection latitude and between 

δ13C and ELD or collection longitude by species. Significant p-values can be interpreted as 

follows: * < 0.05, ** < 0.01, *** <0.001. Isotopic Interpretations refer to Table 3.2. 

 

  

δ15N vs ELD  

Rho 

δ15N vs 

collection Lat 

Rho 

δ13C vs ELD 

Rho 

δ13C vs 

collection Lon 

Rho 

Isotopic 

Interpretations 

Black Seabass -0.30 * 0.37 ** 0.27(n.s.) -0.37 ** 1A, 2B, 3C, 4A 

Gag -0.02 (n.s) 0.30 * 0.48 *** -0.10 (n.s.) 1C, 2B, 3B, 4C 

Red Grouper 0.54 *** -0.12 (n.s.) 0.30 * 0.15 (n.s.) 1B, 2C, 3B, 4C 

Red Snapper 0.25 (n.s.) 0.63 *** 0.06 (n.s.) -0.31 (n.s.) 1C, 2B, 3C, 4C 

 

 

 

 

 

 

 

Table 3.6. Pairwise SEAc proportion overlap and PERMANOVA comparisons. Proportional 

overlap between SEAc are not evaluated for significance. Adjusted p-values for pairwise 

PERMANOVA are presented as * < 0.05, ** < 0.01, *** < 0.001. Global PERMANOVA (F = 

8.42, p < 0.001) 

 

SEAc Proportion overlap 

 

Black 

Seabass 
Gag 

Red 

Grouper 

Red 

Snapper 

Black Seabass      

Gag 0.21  
   

Red Grouper 0.08 0.49    

Red Snapper 0.48 0.43 0.26   

PERMANOVA Pairwise Comparisons 

 

Black 

Seabass 
Gag 

Red 

Grouper 

Red 

Snapper 

Black Seabass         

Gag 0.072 **       

Red Grouper 0.149 *** 0.026 (0.06)     

Red Snapper 0.017 (0.22) 0.042 * 0.115 **   
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Figure 3.1. Capture locations by species. Bathymetry lines represent 100 m and 200 m depth 

contours. All specimens were captured between six months and 3 years of age. SL (mm) at 

capture were Black Seabass (BS): 48-231; Red Grouper (RG): 37-256; Red Snapper (RS): 140-

325; and Gag (GG): 94-321. 
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Figure 3.2. Mean (±SE) eye-lens core δ13C and δ15N values by species. Black Seabass (BS), Gag 

(GG), Red Grouper (RG), and Red Snapper (RS).  
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Figure 3.3. Eye-lens core δ13C and δ15N values by species. Each data point represents the δ15N 

and δ13C values for the core eye-lens from an individual fish. Superimposed on the scatterplot 

are standard ellipses containing 40% of the observations for each species (from SIBER routine in 

R). Species are Black Seabass (BS), Gag (GG), Red Grouper (RG), and Red Snapper (RS). 

Notice that scale of both x-axis and y-axis differs from Figure 2. 
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Figure 3.4. Schematic of spawning locations and profiles for each species based on the 

interpretations in Table 5, with differences in relative spawning locations indicated by Figure 2. 

Isotopic information is relative rather than geo-referenced. Ovals represent core spawning area 

with relative locations from Figure 2. Solid arrows represent significant relationships between 

core isotopic value and juvenile location. Dashed arrows represent relationship between core 

isotopic values and eye-lens diameter (ELD; movement over the larval/post-larval period). 

Individual fish icons represent general distribution of juvenile fish collections for each species. 
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CHAPTER 4: CHARACTERIZING LIFETIME-SCALE MOVEMENT IN MARINE FISHES: 

TILEFISH ARE MODELS OF A SEDENTARY LIFE, RED GROUPER ARE MODELS OF 

CRYPTIC MOVEMENT 

 

ABSTRACT 

For various organism types, stable isotopes are used to establish trophic relationships and to 

detect movement. Animal-tissue isotope values typically represent discrete periods in the life of 

the specimen, whereas the laminar structure of the vertebrate eye lens can provide isotope 

records for the entire lifetime. We analyzed the δ13C and δ15N in sequential eye-lens laminae to 

provide lifetime records of trophic position and movement for two mesopredators in the eastern 

Gulf of Mexico, Tilefish (Lopholatilus chamaeleonticeps) and Red Grouper (Epinephelus 

morio). In Tilefish, which are known to have very high site fidelity, both δ13C and δ15N increased 

consistently throughout life (Δ13C range: 0.83 – 3.91‰; Δ15N range: 2.77 – 7.41‰). In Red 

Grouper, which tend to move to shallower water while young, 15N increased consistently, but 

13C did not (Δ13C range: -1.54 – 4.75‰; Δ15N range: 0.73 – 6.19‰). In Tilefish, δ13C and 15N 

each had a strong correlation with eye-lens diameter (mean Spearman r = 0.70 and 0.80 

respectively), and strong correlations between the two isotopes were present in all specimens 

(mean Spearman r = 0.86), reflecting trophic growth and little lifetime movement. In contrast, 

Red Grouper 15N also correlated strongly with eye-lens diameter (mean Spearman r = 0.83), but 

trends in 13C were irregular among individual and were consistent with movement back and 
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forth across the local 13C gradient; correlations between 15N and 13C were also weaker (mean 

Spearman r = 0.29). We suggest strong correlations between δ13C and 15N within variable 

isoscapes is indicative of high site fidelity. 

 

INTRODUCTION 

Trophic position and basal resource dependence using δ15N and δ13C 

Stable isotope data are often used to construct food webs and interpret species movements for 

ecosystem models and management decisions (Ainsworth et al. 2015; Gruss et al. 2016). The 

most commonly used stable isotope values for ecological studies are δ15N and δ13C. Analyses in 

a variety of terrestrial and marine systems has shown δ15N to be useful as a proxy for trophic 

position (Post 2002; Fry 2006). Average increases in δ15N across taxa are 3.4‰ per trophic level 

(Post 2002). In addition, larger individuals tend to have higher values of δ15N than smaller ones 

within the same species. This phenomenon has been demonstrated using individuals of varying 

sizes from the same species, including Summer Flounder, Paralichthys dentatus (Buchheister 

and Latour 2011), Boreoatlantic Armhook Squid, Gonatus fabricii  (Golikov et al. 2018) and 

Yellowfin Tuna, Thunnus albacares (Graham et al. 2007). In contrast, δ13C is considered a poor 

indicator of trophic position, with an average trophic fractionation of 0.4-1.0‰ per trophic level 

(Post 2002) and high variability. However, δ13C is known to be a useful indicator of basal-

resource dependence. Within many aquatic ecosystems, values of δ13C for benthic primary 

producers are higher than values of δ13C for corresponding planktonic producers, with a 

difference of approximately 5‰ (Keough et al. 1998; Araujo et al. 2007; Ellis et al. 2014; 

Radabaugh et al. 2014). Thus, rapid temporal changes in the δ13C of archival tissue may be 

interpreted as a shift in the individual’s relative dependence on benthos-based vs. plankton-based 
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food webs. If an archival tissue displays no rapid increases or decreases in either δ13C or δ15N 

over the lifetime, but instead shows steady, coordinated increases in both isotopes, this may 

indicate trophic increase over the lifetime with little change in basal resource.  

 

Fish eye-lenses as an archival tissue: physiology and isotopic conservation 

 During organismal growth and cell maintenance, new isotopic information is 

continuously incorporated into each tissue at a unique rate (Sweeting et al. 2005; Buchheister 

and Latour 2010; Heady and Moore 2013). White muscle, the most commonly used tissue for 

isotopic investigations, experiences 50% isotopic turnover within a few months in a growing fish 

(Hesslein et al. 1993; Guelinckx et al. 2007; Mohan et al. 2016). Liver undergoes 50% isotopic 

turnover within a few weeks (Hesslein et al. 1993; Logan et al. 2006; Sacramento et al. 2016), 

and blood plasma is faster (Heady and Moore 2013), making each tissue useful for investigation 

recent events, but not lifetime histories.  

 Internal eye-lens layers (laminae) experience little or no turnover after creation, and 

function as conservative recorders of the isotopic histories of individual animals (Lynnerup et al. 

2008; Stewart et al. 2013; Peebles and Hollander 2020). The conservative isotopic behavior of 

vertebrate eye-lenses arises from the synthesis of optical proteins, called crystallins, within the 

laminae. Once a new lens-fiber cell is grown, the nucleus and other organelles are removed (via 

attenuated apoptosis) to improve optical clarity (Wride 2011). New protein synthesis within 

individual lens-fiber cells becomes impossible (Rinyu et al. 2019) and results in preservation of 

the original organic material within the successively created laminae (Nicol 1989; Lynnerup et 

al. 2008; Stewart et al. 2013; Nielsen et al. 2016). [See Peebles and Hollander (2020) for a 

thorough review of fish eye-lens physiology as related to stable isotopes]. 
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 The conservation of isotopic values has been demonstrated in fish eye-lenses several 

times in recent years. Nielsen et al. (2016) used radiocarbon to show extreme longevity in 

Greenland Sharks. Granneman (2018) conducted an isotopic diet-switch experiment using 

captive Red Drum (Sciaenops ocellatus) and documented associated isotopic shifts within the 

eye-lens mirroring the isotopic change in the feed. Wallace et al. (2014) Quaeck-Davies et al. 

(2018) and Curtis et al. (unpubl. data) have all plotted 13C and 15N to show lifetime trends in 

individual teleosts consistent with a combination of trophic growth and movement over time. 

Similar trends have been noted in both the eye-lenses (Onthank 2013; Meath et al. 2019) and 

beaks (Golikov et al. 2018; Queiros et al. 2018) of cephalopods, with increases in trophic 

position over time underlying possible movement through isotopically variable geographies. 

However, precise interpretations of movement through eye-lens isotope profiles have not yet 

been explored. 

 

Stable isotopes and detection of movement 

 One factor that may add complexity the use of bulk isotopes for trophic position and 

basal-resource dependence is geographic variation in isotopic baselines. Whereas changes in 

isotope values over time my result from increasing trophic position or a change in diet, they may 

also arise from movement to areas with different background values. Previous work (Radabaugh 

and Peebles 2014) has established that trends in background δ15N and δ13C on the West Florida 

Shelf (WFS) are consistent among years, seasons, and species (Radabaugh et al. 2014; Huelster 

2015), with higher δ15N in the north-central Gulf of Mexico. The lowest values of δ15N are on 

the southern end of the WFS, consistent with greater dependence on elemental nitrogen fixation 

by diazotrophs in oligotrophic waters (McClelland et al. 2003). Trends in δ13C on the WFS are 
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orthogonal to those of δ15N with highest background values in shallow, clear waters where 

benthic primary producers are more important (Radabaugh et al. 2013). Movement through these 

two isoscapes (δ15N and δ13C) would tend to decouple temporal trends in δ13C and δ15N within 

the eye-lenses of an individual fish. 

 

Tilefish and Red Grouper: demersal predators with contrasting life histories 

 Tilefish, Lopholatilus chamaeleonticeps, and Red Grouper, Epinephelus morio, are large, 

demersal predators common to the continental shelf of the eastern Gulf of Mexico. Both species 

play an outsized ecological role in the region. Both species dig in soft sediment (Scanlon et al. 

2005; Ellis et al. 2017) and associate closely with the holes or depressions they create, including 

spawning nearby (Able et al. 1982; Coleman et al. 2011; Ellis 2019; Grasty et al. 2019). 

However, there are notable distinctions between these two species. 

Tilefish is an outer continental shelf species with a range throughout the western Atlantic 

Ocean from New England Suriname. Maximum size of females and males is 95 cm fork length 

(FL) and 112 cm FL respectively, with maximum age in the Gulf of Mexico confirmed by lead-

radium dating to 26 years (Turner et al. 1983; Lombardi-Carlson and Andrews 2015). Gulf of 

Mexico Tilefish may be protogynous hermaphrodites, but unequivocal evidence is lacking, and 

the species is considered to be gonochoristic throughout its range (Erickson and Grossman 1986; 

SEDAR 2011). Juvenile Tilefish consume primarily benthic organisms such as crustaceans, 

mollusks, and echinoderms (Steimle et al. 1999). Adult Tilefish consume primarily crustaceans 

and demersal fishes (Able et al. 1982; Grimes et al. 1986a).  

Tilefish create and maintain vertical burrows in clay sediments (Grossman et al. 1985; 

Grimes et al. 1986b; Able et al. 1987). In the Gulf of Mexico, this substrate is present at depths 
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between approximately 225 and 425 m (Nelson and Carpenter 1968; Balsam and Beeson 2003). 

Juvenile Tilefish reared in the lab have been observed to settle to the bottom and begin to dig in 

sediment by 1.5 cm SL (Fahay 1983). In the wild, juveniles have been observed sharing burrows 

of other benthic modifiers such as crabs (Able et al. 1982). The shaft-like burrows are excavated 

by movement of the fins and body (Able et al. 1982). Observations of adult Tilefish behavior 

suggest they usually associate directly with burrows but may forage away from them along the 

sea floor. Able et al. (1982) showed that smaller fish were associated with smaller burrows, 

suggesting that the fish continue to excavate the same burrow over the lifetime. Exceptionally 

high site fidelity is a key behavioral characteristic that helps to constrain the interpretation of 

stable isotope data for this species. Tilefish appear to move very little during life (Able et al. 

1982; Grimes 1983; Grimes et al. 1986a; Fisher et al. 2014). Because this species rarely 

consumes migratory prey, profiles of both δ13C and δ15N should reflect local conditions at a 

single location throughout the lifespan. 

Red Grouper is also a large, demersal predator. The species inhabits continental shelf 

waters from North Carolina to southern Brazil (Heemstra and Randall 1993) with the center of 

abundance being the WFS (Moe 1969; Gruss et al. 2017). Red Grouper is a known protogynous 

hermaphrodite. Individuals first mature as female (50% maturity by 2.8 y and 29.2 cm FL) and 

may become male around age 5-7 y (SEDAR 2015). The largest and oldest Red Grouper 

recorded in the eastern Gulf of Mexico were > 90 cm FL and > 27 years of age (SEDAR 2015). 

However, with a legal harvest limit of approximately 50 cm FL, individuals > 70 cm FL are rare 

(SEDAR 2015). Juvenile Red Grouper diets are composed almost exclusively of invertebrates, 

primarily crabs and stomatopods (Brule and Canche 1993; Weaver 1996). As the fish grow, the 
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fish becomes more piscivorous with almost 50% of the diet being composed of fish in the adult 

stage (Weaver 1996).  

Red Grouper spawning occurs in small groups spread across the middle to outer 

continental shelf (Coleman et al. 1996; Gruss et al. 2017), where adults maintain depressions in 

soft sediment (Coleman et al. 2010; Wall et al. 2011; Gratsy et al. 2019). These depressions are 

thought to be used as the spawning locations (Wall et al. 2014) and have been shown to persist 

for over 11 years (Gratsy et al. 2019). Juvenile Red Grouper are found on the inner continental 

shelf (< 30 m depth) where they use rocky reef habitats (Bullock and Smith 1991). Newly settled 

individuals are aggressive and territorial toward conspecifics (Colin and Koenig 1996). 

Individuals younger than two years of age are rare in fisheries surveys, suggesting that the 

smallest individuals are spread at low density across the WFS (Moe 1969), and are unavailable to 

most sampling gears due to their use of continuous reef habitat.  

Both acoustic and conventional tagging studies indicate most Red Grouper on the middle 

and outer continental shelf do not move over a one to two year period (Burns and Froeschke 

2012; Farmer and Ault 2014). However, recaptures of individuals that did move were in deeper 

water than original tagging (Moe 1969; Burns 2009; Saul et al. 2012). Based on these data and 

the relationship between size and capture depth, it is clear that Red Grouper use different habitats 

throughout the lifespan (Moe 1969; Johnson and Collins 1994; Gruss et al. 2017).  

 

Potential as a model species 

The idea of a single species or a small group of species serving as models for life history 

and autecology has been used in the context of stable isotopes in a variety of settings. For 

example, estimating the photosynthetic plasticity of CAM plants (Holtum and Winter 2014), 

describing energy pathways for juvenile insects (Tallamy and Pesek 1996), and investigating 
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climate-change effects on aestivating fishes in freshwater pools (Ogston et al. 2016) are a few of 

the areas which have used this approach. Once a particular autecological characteristic has been 

identified using other methods, the isotopic patterns associated with that characteristic can be 

used as a reference. Taxa with similar isotopic patterns to the model species can then be 

considered to have the same characteristic as the model species.  

 

Objectives 

Here we use δ13C and δ15N stable isotopes profiles of Tilefish and Red Grouper eye 

lenses as models of two distinct life history strategies undertaken by two benthos-modifying 

predators in the eastern Gulf of Mexico. We compare the isotopic histories of burrow-inhabiting 

Tilefish, which are known to have lifelong site fidelity with Red Grouper, which seem to move 

long distances over the lifetime. We suggest that Tilefish δ13C and δ15N records are tightly 

coupled throughout life because they reflect only trophic growth (increases in trophic position), 

whereas those of Red Grouper are decoupled by movement within the orthogonal δ15N and δ13C 

trends of the WFS (Radabaugh et al. 2013, Radbaugh and Peebles 2014).  

 

MATERIALS AND METHODS 

Material collection and preparation 

 We obtained 36 adult Tilefish Lopholatilus chamaeleonticeps and 30 Red Grouper 

Epinephelus morio from reef-fish monitoring efforts conducted by NOAA Fisheries, Florida Fish 

and Wildlife Research Institute (Eldridge 1988), and University of South Florida (Murawski et 

al. 2018). Tilefish were collected from the north-central Gulf of Mexico in water depths from 

178 to 375 m. Red Grouper were collected from the WFS in water depths ranging from 10 to 40 

m (Figure 1). Fish were measured (cm FL) and dissected at sea. All specimens were beyond the 
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length at 50% maturity (32.4 mm FL for Tilefish (SEDAR 2011) and 29.2 mm FL for Red 

Grouper (SEDAR 2015)). Otoliths were collected and cleaned of tissue. Whole eyes were 

wrapped in aluminum foil, placed in plastic bags, and frozen at -20C until analysis (Stallings et 

al. 2015).  

Prior to isotope analysis, we dissected and processed eye-lenses according to Wallace et 

al. (2014). We thawed whole eyes individually and removed the lens from the capsule. We 

placed each lens on a glass petri dish and measured eye-lens diameter (ELD) under a dissecting 

stereomicroscope using an ocular micrometer (nearest 0.05 mm). We delaminated each lens 

using two fine-tipped forceps and recoded ELD after each lamina removal. The lens core (< 1 

mm diameter) was the final tissue in the analyzed series. Whereas deionized water was used 

sparingly for Tilefish eye-lens delamination Red Grouper eye-lenses were submerged in water 

for delamination. The two methods have been shown to result in comparable isotopic values 

(Meath et al. 2019). We individually identified each lamina based on the diametric midpoint. 

Individual lamina material became desiccated in <1 h at 25 C, and we sealed each one into an 

individual container until isotopic analysis.  

Sagittal otoliths were aged by counting annuli under transmitted light microscopy. 

Tilefish otoliths were thin-sectioned, attached to a microscope slide, and annuli were counted 

using the methods outlined by Lombardi et al. (2015). Red Grouper otoliths were aged whole 

after the methods of Johnson and Collins (1994). 

 

Isotope analysis 

We weighed 200-600 µg of eye-lens material representing a single lamina to the nearest 

μg on a Mettler-Toledo precision microbalance. We used a Carlo-Erba NA2500 Series II 
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Elemental Analyzer (EA) combustion furnace coupled to a continuous-flow ThermoFinnigan 

Delta+XL isotope ratio mass spectrometer (IRMS) to measure 13C/12C and 15N/14N and C:N in 

duplicate at the University of South Florida College of Marine Science in St. Petersburg, Florida. 

The lower limit of quantification was 12 μg for both δ13C and δ15N. Calibration standards were 

NIST 8573 and NIST 8574 L-glutamic acid standard reference materials. Analytical precision, 

obtained by replicate measurements of NIST 1577b bovine liver, was ± 0.20‰ for δ13C and ± 

0.30‰ for 15N (maximum standard deviations of n = 300 replicates). Results are presented in 

delta notation (, in ‰) relative to international standards Vienna Pee Dee Belemnite (VPDB) 

and air: 

𝛿𝑋 = (
𝑅𝑠𝑎𝑚𝑝𝑙𝑒

𝑅𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
− 1) × 1000  

where X is either carbon or nitrogen.  

 

Eye-lens isotope data analysis 

 Eye-lenses do not contain known age-marks. Therefore, we used the best-fit regression 

for each species to relate eye-lens lamina diameter to FL for the species. For Tilefish, we used 

the linear regression: 

𝐹𝐿(𝑐𝑚) = 6.03 × 𝐸𝐿𝐷 (𝑚𝑚) 

(F = 1220, R2 = 0.97, p < 0.001).  

For Red Grouper, we used the logarithmic regression: 

𝐹𝐿 (𝑐𝑚) = 𝑒(𝑒+0.21 ×𝐸𝐿𝐷) 

(F = 5.09.57, R2 = 0.84, p < 0.01).  

 We used routine PERMANOVA (package vegan: Oksanen et al. 2019) to examine 

whether δ13C and δ15N within each species differed based on catch location, depth, FL or sex. 
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Isotope data did not differ based on these parameters, therefore we conducted further analyses 

under the assumption of a single population for each species. For each species, we examined 

Spearman rank correlation of species FL to capture latitude and depth as a method of separating 

general movement of the species from trophic change. We found no correlation between FL and 

capture latitude or depth in either species, suggesting that each species does not reliably change 

location or depth as the individuals grow.  

 We calculated mean and standard error for the δ13C and δ15N of each species. 

Subsequently, we used routines PERMDISPER and PERMANOVA (package vegan: Oksanen et 

al. 2019) to compare δ13C and δ15N values from the 468 individual Tilefish eye-lens laminae to 

and 406 Red Grouper eye-lens laminae. For each species we used non-linear regression in the 

form  

𝛿𝑋 = 𝑎 + 𝑏 × ln (𝐸𝐿𝐷) 

a simplified form of the growth equation, to model isotope values as a function of fish size.  

 

Isotope interpretations: movement or trophic increase 

We used a series of correlations to segregate the influence of trophic increase and 

movement on the eye-lens isotope values. First, we listed all possible isotopic outcomes from the 

two inputs (geographic movement and trophic growth: Table 4.1). Next, we used known isotopic 

trends to construct interpretations for each δ13C or δ15N eye-lens profile (Table 4.2). We then 

used a series of Spearman rank correlations (rs) to identify the likely trophic and geographic 

histories of each fish (Tables 4.4 and 4.5). 
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1) We correlated δ15N with ELD in each individual eye-lens profile to investigate 

whether the individual had experienced trophic change or movement along the δ15N 

gradient over the lifetime (Fry 2006; Radabaugh and Peebles 2014). 

2) We correlated δ13C with ELD in each individual eye-lens profile to investigate 

whether individuals had moved along the δ13C or changed basal resource over the 

lifetime (Fry and Wainright 1991; Radabaugh and Peebles 2014). 

3) We correlated δ13C to δ15N within each individual to investigate degree of 

consistency between the two isotopic values.  

Individuals with a strong correlation in all three tests were interpreted as having experienced 

trophic growth with little to no geographic movement, eliminating one of two possible 

interpretations for the isotopic results. We acknowledge that this approach is subject to both 

Type I and Type II error but assumed that repetition of these statistical tests for numerous 

individuals would result in weight-of-evidence support. 

 

Tilefish simulation: model species approach 

 We simulated a large Tilefish population using bootstrap analysis (package boot: Canty 

and Ripley (2017)). We first left out ~20% of the δ13C and δ15N pairs (seven fish: 92 eye-lens 

isotope data points) from the full dataset. Using the remaining 376 data points, we randomly 

selected between 8 and 19 data points (corresponding to the total range of laminae per 

individual) and calculated rs between δ13C and δ15N for these randomly selected values to 

simulate a population of 1,000 Tilefish. We recorded both rs and p-value for each of the 

simulated Tilefish and used the upper 95% of the distribution to represent the simulated Tilefish 

population. We then compared the rs and p-values from the seven individuals left out of the 
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bootstrap analysis to the rs distributions of the simulated Tilefish population to test classification 

success.  

 All fish collections and dissections were sanctioned under research collecting permits and 

IACUC protocols for the University of South Florida. All data were published in the Gulf of 

Mexico Research Initiative Information and Data Cooperative (GRIIDC) website 

(https://data.gulfresearchinitiative.org/data/R1.x135.120:0012). All data were analyzed using the 

R statistical environment (R Core Team 2018). 

 

RESULTS 

 Tilefish Lopholatilus chamaeleonticeps lengths ranged from 48 to 99 cm FL, and ages 

ranged from 8 to 20 years with four fish unaged (Table S.1). Red Grouper Epinephelus morio 

ranged from 29.2 to 78.1 cm FL, and ages ranged from 2 to 10 years (Table S.1). Multivariate 

location was significantly different between the isotope values for the two species (F =923.56, R2 

= 0.49, p < 0.001; Figure 2) as was multivariate dispersion (F = 14.60, p < 0.001). Tilefish mean 

(± SE) δ15N was 12.97 ± 0.07 while Red Grouper mean (± SE) δ15N was 9.46 ± 0.06. Tilefish 

mean (± SE) δ13C was -17.49 ± 0.04 while Red Grouper mean (±SE) δ13C was -16.49 ± 0.06.  

 

Isotopic profiles and lifetime isotopic trends 

 Isotope profiles represent changes in the eye-lens δ13C and δ15N throughout each fish’s 

lifetime (early juvenile to date of capture), starting with the smallest lamina (signifying the 

youngest time-point) and ending with the largest lamina (signifying time of capture). In each 

Tilefish eye-lens profile, there was an overall increase in δ13C and δ15N over the lifetime (Figure 

S.1). The range of early-life δ13C values was -20.01‰ to -16.97‰ with a mean (± SE) of -18.90 
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± 0.13‰. For δ15N the range of early-life values was 7.69‰ to 12.18‰ with a mean (± SE) of 

10.21 ± 0.18‰. Mean (± SE) lifetime change in δ13C was 2.50 ± 0.12‰ with a range from 0.83 

to 3.91‰. Mean (± SE) lifetime change in δ15N was 4.67 ± 0.17‰ with a range from 2.77 to 

7.41‰ (Figure S.1).  

 Red Grouper δ15N increased as the individuals age; however, many of the δ13C profiles 

did not follow similar profiles. While δ13C did increase throughout the lifetime of some 

individuals, visual inspection indicated that most peaked near 2 mm ELD (Figure S.2). The range 

of early-life δ13C values was -20.15‰ to -15.62‰ with a mean (±SE) of -18.63 ± 0.18‰. For 

δ15N the range of early-life values was 5.57 to 8.48‰ with a mean (±SE) value of 7.13 ± 0.13 

‰. Mean (± SE) lifetime change in δ13C was 1.93 ± 0.22‰ but ranged from -0.64‰ to 4.75‰. 

Mean (± SE) lifetime change in δ15N was 3.60 ± 0.20‰ with a range of 0.73‰ to 6.19‰ (Figure 

S.2). For both Red Grouper and Tilefish, δ13C and δ15N isotopes showed positive, logarithmic 

relationships with ELD. However, fit was poor for δ13C in Red Grouper (R2 = 0.12), which may 

have been due to the early-life peak (Table 3, Figure 3d). 

 

Correlations between isotopes 

 Tilefish Spearman rank correlation values (rs) comparing δ15N and ELD for all 

individuals combined was 0.80 (p < 0.001) with individual values ranging from 0.62 to 0.99 

(Table S.1). Spearman rank correlations values comparing δ13C to ELD for all Tilefish combined 

was rs = 0.70 with individual values ranging from 0.61 to 0.97.  A similar pattern was observed 

in δ15N for all Red Grouper combined with rs values between δ15N and ELD of 0.75 (p < 0.001), 

with individuals ranging from rs = 0.23 to rs = 1.0. For all Red Grouper combined, the 
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correlation between δ13C and ELD was 0.29 with a range from rs = -0.74 to rs = 0.93. The 

correlations were positive and significant for only 10 of 30 individuals (Table S.2). 

 For all Tilefish eye-lenses combined, rs = 0.86 (p < 0.001) between δ13C and δ15N. 

Values of rs ranged from 0.56 to 0.99 (Table S.1). Both isotope values increased consistently, 

and all appeared to have similar slopes when examined visually (Figure S.3). Red Grouper 

correlations between δ13C and δ15N were substantially more variable among individuals. Overall 

rs values for all individuals combined was -0.007 (p = 0.87) with a range from -0.39 (p = 0.17) to 

0.86 (p < 0.05) (Table S.2). Profiles of δ15N vs. δ13C for each individual were highly variable in 

both slope and direction (Figure S.4). 

 

Interpreting isotopic profiles as trophic growth and movement 

 Using the interpretation rules conceptualized in Tables 1 and 2, we listed our 

interpretations of the ecological history of each individual Tilefish and Red Grouper (Tables S.1 

and S.2). We inferred that 35 of 36 Tilefish increased trophic position over the lifetime while 

remaining in the same location and feeding within the same basal resource regime. Only the 

smallest Tilefish was suspected of change in basal resource dependence. We inferred that five 

Red Grouper increased trophic position while remaining stationary and continuing to feed on the 

same basal resource. All other individuals were interpreted as moving substantial distances 

across the isotopic gradients and/or changing basal resources over the lifetime.  

 

Tilefish simulation: model species approach 

 By simulating a population of 1,000 “Tilefish” using the δ13C/ δ15N point data, we 

created a robust population representing many possible relationships between δ13C and δ15N 
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Tilefish eye-lenses (Figure 4). The upper 95% of the distribution was rs > 0.59 (< 0.01). 

Comparing rs values for the seven reserved fish to this distribution, we found that all reserved 

fish fit within the distribution, indicating a 100% classification success rate. Comparing the rs 

values for collected Red Grouper to the simulated population, we found that the five individuals 

previously classified as stationary could not be distinguished from the Tilefish population. The 

remainder were outside the bounds of the rs values for the simulated population. 

 

DISCUSSION 

 We developed a novel approach for interpreting trophic increase and movement using 

eye-lens isotope profiles, adding power to a valuable archival record within fish tissues. We then 

used these isotopic interpretations to demonstrate difference in the trophic and movement 

histories of Tilefish Lopholatilus chamaeleonticeps and Red Grouper Epinephelus morio over 

the lifetime, two species with similar adult behavior in the eastern Gulf of Mexico (Coleman and 

Williams 2002). The strong correlations between isotopes and ELD and between δ13C and δ15N 

within an individual Tilefish eye lens, indicated that these fish remain stationary while increasing 

their trophic position with growth. Whereas most Red Grouper increased in trophic position over 

the lifetime, most individuals showed no correlation between δ13C and ELD or between δ13C and 

δ15N, suggesting basal resource changes via diet shifts and/or movement across isotopic 

gradients. These eye-lens isotope interpretations are consistent with decades of biological data in 

both species. We suggest using strong correlation between δ13C and δ15N as an indicator of high 

site fidelity and consistent basal resource dependence in species with little historical data. 

Species for which correlation is weak between the isotopes should be further investigated for 

movement or changes in basal resource dependence. 
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Development of an interpretation matrix 

 In order to enhance the value of eye-lens stable isotope data (Wallace et al. 2014; Meath 

et al. 2019; Simpson et al. 2019), we developed an interpretation approach using the trend in 

isotopic values with trophic position and geography. We segregated the potential effects of 

trophic change and movement on fish eye-lens isotope values and recombined them to simulate 

all possible isotopic outcomes (Table 4.1). We then continued the thought experiment to include 

all possible correlations between isotope values and fish size. We chose Spearman rank 

correlation because of the less stringent assumptions (Sokal and Rohlf 1994). When δ15N and 

δ13C are tested against ELD (proxy for individual size), a significant correlation could be 

interpreted as a change in trophic position (Fry 2006) or movement to an area with different 

isotope baseline values (Radabaugh and Peebles 2014; Lorrain et al. 2015). These multiple 

interpretations are difficult to segregate without additional biological or chemical information. 

Therefore, we used the correlation between δ15N and δ13C within the individual to segregate 

movement from trophic interpretations. A significant positive correlation between δ13C and δ15N 

indicates that the fish remained stationary while increasing in trophic position due to the 

orthogonal nature of the isoscapes within the WFS system (Fry et al. 2003; Radabaugh and 

Peebles 2014). By growing and eating within a confined region, both isotopes increase 

consistently (Buchheister and Latour 2011; Acosta-Pachon et al. 2015; Vane et al. 2018).  A non-

significant correlation or a negative correlation can only result from movement or a sustained 

diet shift breaking the correlation between δ15N and δ13C with trophic increase. By creating 

generalizable interpretation rules and using easily accessible statistical techniques, this approach 

can be applied to additional species, especially those with limited biological data. 
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Geographic differences and trends in δ15N 

 Mean values and overall distributions of both isotopes differed between Red Grouper and 

Tilefish over the lifetime (Figure 2). Differences in observed isotopic values between species 

follow the isotopic trends in δ13C and δ15N isoscape for the eastern Gulf of Mexico (Radabaugh 

and Peebles 2014), reflecting the areas in which each species is typically found. Red Grouper 

occur in patchy reef habitats of the WFS (Moe 1969; Coleman et al. 2010), usually in waters less 

than 100 m depth (SEDAR 2015). All Red Grouper in this study collected in 10 to 40 m (Figure 

4.1), which was reflected in the wide range of eye-lens δ13C values and lower values of δ15N. 

Tilefish in the Gulf of Mexico inhabit a narrow geographic range with a steep depth gradient 

(Steimle et al. 1999; Pierdomenico et al. 2015). All Tilefish in this study were collected in 178 to 

375 m depth with a wide east – west distribution (Figure 4.1). Within the WFS isoscape, this area 

is represented by high values of background δ15N and low δ13C reflecting the planktonic 

dependence of all fish in these deep water habitats (Radabaugh and Peebles 2014) . 

Eye-lens δ15N values increased with length in both species (Figures 4.7 and 4.8). 

Spearman rank correlations corroborated this result in all 36 Tilefish and 27 of 30 Red Grouper 

(Tables 4.4 and 4.5). We observed the lowest δ15N values during the earliest phases of 

exogenous feeding in both species, consistent with all previous eye-lens work (Wallace et al. 

2014; Quaeck 2017; Simpson 2018; Meath et al. 2019). Values of δ15N in each species fit well to 

a logarithmic function of ELD (Table 4.3, Figure 4.3), with isotope values increasing at a faster 

rate during early life, similar to trends seen in fish body length (Juanes 2016). Hussey et al. 

(2014) demonstrated mathematically that as trophic position increases, differences between δ15N 

values of predators and prey become smaller. The curvilinear trend in δ15N profiles for both 

species in our study suggest that this trend may occur within an individual as it grows. Highest 
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rates of δ15N increase occurred when individuals were small and feeding at a low trophic 

position. Change in δ15N slowed considerably in both species toward the outer edge of the eye-

lens, suggesting that most individuals were likely continuing to increase in trophic position, but 

fractionation was decreasing with increasing trophic position. 

 

Red Grouper move throughout the lifetime 

Three Red Grouper (10%) showed no significant correlation between δ15N and ELD, 

suggesting that either some individuals do not increase in trophic position or move in a direction 

that negates the increase in δ15N expected through trophic growth (southward on the WFS). 

Whereas it is possible that a fish could continue growing while consuming sub-optimal 

resources, growth would slow and the fish’s condition would be low (Peebles 2002). However, 

all Red Grouper with this pattern were above mean length at age (SEDAR 2015). A more likely 

explanation is that each of these individuals moved against the δ15N gradient. Whereas tagging 

studies have shown that substantial movement is uncommon for adult Red Grouper over a one to 

two-year time period (Burns and Froeschke 2012), several individual Red Grouper have been 

demonstrated to move 50 km and more southward, a large enough distance to negate δ15N 

increase from trophic growth over the same period (Burns 2009).  

Red Grouper δ13C was not well modeled using a logarithmic relationship to ELD (Table 

4.3, Figure 4.3). In addition, δ13C did not correlate significantly with ELD in most individuals. 

Many of the non-significant relationships were due to peaks in δ13C in early life, potentially 

revealing ontogenetic changes in basal resource dependence (Keough et al. 1998; Araujo et al. 

2007; Ellis et al. 2014). Red Grouper is considered a generalist predator due to its eclectic diet. 

Recent work indicates that generalist predators may be termed “generalist” due to substantial 
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dietary differences among individuals (Cobain et al. 2019). In addition, recent modeling has 

suggested that species-specific ontogenetic diet shifts may have substantial effects on overall 

ecosystem structure (Reum et al. 2019). Therefore, individuals within a “generalist” predator 

species, such as Red Grouper, may serve a wide variety of functions within the ecosystem 

throughout the lifetime. 

Although no data exist on the diets of wild Red Grouper larvae, the species has been 

successfully reared in the lab using wild-caught copepods as prey (Powell and Tucker 1992; 

Colin et al. 1996; Nunn et al. 2012). Juvenile Red Grouper diet composition consists primarily of 

benthic invertebrates while adults incorporates a high percentage of fish as prey (Brule and 

Canche 1993; Weaver 1996), which may themselves utilize both benthic and planktonic trophic 

pathways (Vander Zanden and Vadeboncoeur 2002). Reconstructing these three phases, one 

might expect to see low values of δ13C in early life, representing zooplankton (Burkhardt et al. 

1999), a peak in δ13C during the juvenile period representing a primarily benthic diet (Fry and 

Wainright 1991), and a subsequent decrease in δ13C as adults incorporate fish prey (Davis et al. 

2015). The lack of correlation between δ13C and δ15N within the eye-lens profiles of most Red 

Grouper adds to the hypothesis of basal resource changes, which may be the result of ontogenetic 

movement (Burns 2009; Radabaugh and Peebles 2014; Huelster 2015), diet changes (Weaver 

1996), or both. If these changes can be investigated and mapped isotopically throughout the 

lifetime, changes in the overall ecosystem can be modeled.  

 

Tilefish move little across isotopic gradients and are models of a sedentary life 

Non-linear regression of aggregated Tilefish δ13C data indicated curvilinear increase with 

ELD (Table 3, Figure 3), paralleling the increase in δ15N for the species. Baseline δ13C decreases 
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as depth increases away from the shoreline in the eastern Gulf of Mexico (Radabaugh and 

Peebles 2014). Inshore movement during the lifetime may cause an increase in δ13C but would 

be expected to create a depth gradient in fish length, with larger fish living in shallower water. 

We found no correlation between Tilefish length and capture depth. In addition, no previous 

studies have found that Tilefish move into shallower water as they age (Grossman et al. 1985; 

SEDAR 2011). A more parsimonious explanation exists in trophic growth along with high site 

fidelity [sensu Wallace et al. (2014), Buchheister and Latour (2011)] wherein δ13C and δ15N both 

increase as the fish advance to higher trophic positions during ontogeny. One advantage of 

ontogenetic progression to higher trophic positions is reduced vulnerability to basal-resource 

instability because higher trophic position individuals are capable of incorporating a variety of 

resources within the diet (MacKenzie et al. 2012; Burghart et al. 2013; Dalponti et al. 2018).  

Tight coupling between δ13C and δ15N (Table 4.4, Figure 4.2) increases the likelihood of 

this interpretation. If individual Tilefish had been moving in relation to either the δ13C or δ15N 

gradient for the region, correlations between the two isotopes would be low. The species is 

known to dig deep burrows in soft sediments, beginning soon after settlement and increasing 

with increasing fish size (Grimes et al. 1986a; Able et al. 1987; Scanlon et al. 2003). Snyder et 

al. (2019) found persistent polycyclic aromatic hydrocarbons in Tilefish tissues up to seven years 

after the Deepwater Horizon oil spill, suggesting that Tilefish prolong their exposure to such 

chemicals via a consistent association with the benthos over the lifetime. Stomach content 

studies indicate that Tilefish derive sustenance from the benthos throughout the lifetime (Able et 

al. 1982; Grimes et al. 1986b; Steimle et al. 1999). Therefore, it seems likely that stable isotopes 

in the Tilefish eye-lenses are reflecting a sedentary lifestyle, with a consistent trophic growth 

over the lifetime. 
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We were able to simulate the δ13C: δ15N trend in Tilefish by using 1,000 by random 

draws from the overall dataset. Over 95% of the simulated isotope profiles resulted in Spearman 

rank correlation coefficients for δ13C: δ15N above 0.56 (p < 0.05). Spearman rank correlations for 

δ13C: δ15N values in all members of a reserved Tilefish test set fit within this simulated 

population, indicating that this simulated distribution is a suitable proxy for members of the 

Tilefish population. This high degree of coupling between δ13C and δ15N suggests that Tilefish 

move little once they settle to the bottom, remaining in virtually the same location, feeding 

within the same energy pathway.  

For future researchers investigating the trophic and movement histories of fish via eye-

lens isotopes, we suggest using a series of Spearman rank correlations as we demonstrated with 

Red Grouper. First, the population should be investigated for known ontogenetic movement in 

the direction of the isotopic gradient. Next, relationships between δ15N and ELD as well as δ13C 

and ELD may be investigated to infer whether the individual has undergone trophic position 

changes or movement along the isotopic gradient. If trophic growth can be confirmed, Spearman 

rank correlations between δ15N and δ13C may be used as an approach for investigating movement 

within an individual over the lifetime. If the individual fits within the bounds described by the 

simulated Tilefish population (rs ≥ 0.59), then that fish can be suspected of both high site fidelity 

and consistent use of a single energetic pathway throughout the lifetime. If, on the other hand, 

the δ15N vs δ13C Spearman correlation falls below this value, then the individual should be 

investigated further for ontogenetic habitat or diet shifts. These differing scenarios can be 

investigated using gut content analysis using both visual and genetic prey identification, 

compound specific stable isotope analyses of the eye-lenses (Wallace 2019), tagging studies, or a 

combination of analysis types. 
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Table 4.1. General interpretations of bulk isotopic trends within fish eye-lenses. Bulk isotopes 

incorporate influences from both trophic position and location within an isoscape. Isotopic 

outcome is the value or trend observed in the eye-lens record. Effects are various influences on 

the isotopic outcome. Isotopic outcomes: (+, -, 0) positive, negative or non-significant trends in 

eye-lens isotope profile within an individual. Trophic change or movement along gradient: (+, -, 

0) are isotopic inputs increasing, decreasing, or not changing over time. Consistent changes in 

trophic position and movement result in consistent outcomes. Mixed effects result in mixed 

outcomes. 

 

Effect 
  

 

 

Trophic 

position  

Movement 

along 

gradient 

 

Isotopic 

Outcome 

+ + → + 

0 + → + 

+ 0 → + 

- - → - 

0 - → - 

- 0 → - 

0 0 → 0 

+ - → +, 0, - 

- + → +, 0, - 
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Table 4.2. General interpretations for all correlation outcomes within the eye-lens isotopic 

profiles of individual fishes as well was capture location as a function of length for the species. 

δ15N and δ13C are the order of δ15N or δ13C values over the lifetime. ELD is eye-lens diameter as 

measured by ocular micrometer at the diameter midpoint of the layer for which the isotopes were 

analyzed. In the context of this publication, correlation refers to Spearman rank correlation 

applied to the entire lifetime eye-lens isotopic record for an individual fish (or species if 

indicated). Interpretations can only be made at the level of analysis. 

 

1. δ15N correlation with ELD (within individuals)        

  1A. If δ15N negatively correlates with ELD,     

    then individual reduced trophic position or moved against δ15N gradient. 

  1B. If δ15N positively correlates with ELD,     

    then individual increased trophic position or moved along δ15N gradient. 

  1C. If δ15N does not significantly correlate with ELD,     

    then trophic position or movement along δ15N gradient during life were 

inconsistent. 

2. δ13C correlation with ELD (within individuals)       

  2A. If δ13C negatively correlates with ELD,      

    Then individual reduced trophic position or moved against δ13C gradient. 

  2B. If δ13C positively correlates with ELD,      

    then individual increased trophic position or moved along δ13C gradient. 

  2C. If δ13C does not significantly correlate with ELD,      

    then trophic position, basal resource, or movement during life were not consistent. 

3. Capture length (FL) correlation with relative capture location (among individuals within 

species) 

  3A. If capture length correlates (positively or negatively) with relative capture position, 

    then the species tends to have directional movement during life. 

  3B. If capture length does not correlate with relative capture position, 

    then the species tends to be stationary or moves inconsistently. 

4. δ13C correlation with δ15N (within individuals)         

  4A. If δ13C negatively correlates with δ15N,    

    then the individual (or its prey) moved against one isotopic gradient and along the 

other. 

  4B. If δ13C positively correlates with δ15N,    

    then the individual remained largely stationary while increasing trophic position. 

  4C. If δ13C does not correlate with δ15N,   

    then the individual (or its prey) likely moved inconsistently during the lifetime. 
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Table 4.3. Statistics for non-linear least-squares regression for isotopic values (δ15N and δ13C) as 

a function of eye lens diameter (ELD) in both Tilefish and Red Grouper. All regressions took the 

form of: isotopic value (δ15N or δ13C) = a + b*ln (ELD). Parameters are presented ± standard 

error. 

 

Regressed with 

Eye-lens diameter n a (± SE) b (± SE) F p R2 

Tilefish δ15N 468 11.02 ± 0.07 1.54 ±0.05 1069 ≤ 0.001 0.70 

Tilefish δ13C 468 -18.59 ± 0.05 0.86 ± 0.04 496 ≤ 0.001 0.52 

Red Grouper δ15N 406 8.12 ± 0.07 1.28 ± 0.06 526 ≤ 0.001 0.57 

Red Grouper δ13C 406 -17.27 ± 0.11 0.68 ± 0.09 56 ≤ 0.001 0.12 
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Table 4.4. Individual Tilefish information ordered by capture fork length (FL). Eye-lens diameter 

(ELD), Number of eye-lens laminae (ELL), Spearman rank correlations δ15N vs ELD and δ13C 

vs δ15N are listed along with interpretations corresponding to Table 4.2. Significance is indicated 

as follows: n.s.: p > 0.05, * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001. Individual capture length did 

not correlate with relative capture position (i.e., interpretation 3B in Table 4.2).  

 

FL 

(cm) Sex 

Age 

(y) ELD ELL 

δ15N vs 

ELD Rho 

δ13C vs 

ELD Rho 

δ13C vs 

δ15N Rho 

Isotopic 

Interpretation 

48 F 10 10.2 10 0.95 *** 0.61 (n.s.) 0.56 (n.s.) 1B, 2C, 3B, 4C 

49 F 9 10.2 12 0.97 *** 0.97 *** 0.99 *** 1B, 2B, 3B, 4B 

50 F 11 11.6 13 0.97 *** 0.93 *** 0.94 *** 1B, 2B, 3B, 4B 

51 F 15 12.5 12 0.68 * 0.92 *** 0.87 *** 1B, 2B, 3B, 4B 

52 F 9 11.3 12 0.98 *** 0.97 *** 0.96 *** 1B, 2B, 3B, 4B 

55 F 10 11.5 12 0.92 *** 0.92 *** 0.93 *** 1B, 2B, 3B, 4B 

56 F 13 11.3 18 0.89 *** 0.90 *** 0.94 *** 1B, 2B, 3B, 4B 

61 F 13 13.5 12 0.97 *** 0.95 *** 0.91 *** 1B, 2B, 3B, 4B 

62 F 9 11.2 16 0.81 ** 0.84 *** 0.57 * 1B, 2B, 3B, 4B 

62 F 11 10.1 8 0.98 *** 0.79 * 0.76 * 1B, 2B, 3B, 4B 

63 U 12 10.8 13 0.69 * 0.84 *** 0.88 *** 1B, 2B, 3B, 4B 

64 M 8 11.2 15 0.91 *** 0.9 *** 0.89 *** 1B, 2B, 3B, 4B 

66 F 12 11.5 12 0.97 *** 0.99 *** 0.95 *** 1B, 2B, 3B, 4B 

68 M 13 10.5 9 0.98 *** 0.87 ** 0.88 ** 1B, 2B, 3B, 4B 

69 F 17 12.4 19 0.84 *** 0.92 *** 0.87 *** 1B, 2B, 3B, 4B 

70 U NA 11.7 12 0.97 *** 0.73 ** 0.76 ** 1B, 2B, 3B, 4B 

70 U 20 12.5 10 0.95 *** 0.73 * 0.68 * 1B, 2B, 3B, 4B 

71 M 11 11.2 13 0.87 *** 0.95 *** 0.96 ** 1B, 2B, 3B, 4B 

72 U NA 11.5 14 0.91 *** 0.79 ** 0.65 * 1B, 2B, 3B, 4B 

72 M 12 10.8 11 0.87 *** 0.78 ** 0.85 ** 1B, 2B, 3B, 4B 

73 U 16 12.8 13 0.62 * 0.97 *** 0.65 * 1B, 2B, 3B, 4B 

74 U 11 12.2 14 0.93 *** 0.97 *** 0.95 *** 1B, 2B, 3B, 4B 

75 M 10 11.7 14 0.90 *** 0.60 * 0.77 ** 1B, 2B, 3B, 4B 

76 M 9 11.7 9 0.97 *** 0.93 *** 0.98 *** 1B, 2B, 3B, 4B 

77 U 12 12.4 16 0.92 *** 0.82 *** 0.81 *** 1B, 2B, 3B, 4B 

78 U 14 11.9 8 0.91 ** 0.93 ** 0.97 *** 1B, 2B, 3B, 4B 

79 F NA 12.1 15 0.93 *** 0.94 *** 0.91 *** 1B, 2B, 3B, 4B 

81 M 10 11.9 12 0.99 *** 0.97 *** 0.97 *** 1B, 2B, 3B, 4B 

83 F 13 13.3 17 0.97 *** 0.98 *** 0.98 *** 1B, 2B, 3B, 4B 

85 M 12 11.8 14 0.89 *** 0.84 *** 0.87 *** 1B, 2B, 3B, 4B 

89 F 12 11.9 13 0.93 *** 0.82 ** 0.74 ** 1B, 2B, 3B, 4B 

90 F NA 12.5 16 0.92 *** 0.89 *** 0.76 *** 1B, 2B, 3B, 4B 

92 M 13 12.8 14 0.98 *** 0.81 *** 0.78 ** 1B, 2B, 3B, 4B 

92 M NA 13.1 15 0.95 *** 0.97 *** 0.95 *** 1B, 2B, 3B, 4B 

93 M NA 13.1 16 0.95 *** 0.90 *** 0.95 *** 1B, 2B, 3B, 4B 

99 M 14 12.4 11 0.79 *** 0.95 *** 0.83 ** 1B, 2B, 3B, 4B 
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Table 4.5. Individual Red Grouper information ordered by capture fork length (FL). Eye-lens 

dimeter (ELD), Number of eye-lens laminae (ELL), Spearman rank correlations δ15N vs ELD 

and δ13C vs δ15N are listed along with interpretations corresponding to Table 2. Significance is 

indicated as follows: n.s.: p > 0.05, * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001. Individual capture 

length did not correlate with relative capture position (i.e., interpretation 2B in Table 4.2). 

 

FL 

(cm) 
Age ELD ELL 

δ15N vs 

ELD Rho 

δ13C vs 

ELD Rho 

δ13C vs 

δ15N Rho 

Isotopic 

Interpretation 

29.2 2 5.3 9 0.70 * 0.11 (n.s.) -0.25 (n.s.) 1B, 2C, 3B, 4C 

29.4 2 6.2 15 0.80 *** 0.43 (n.s.) 0.38 (n.s.) 1B, 2C, 3B, 4C 

30.0 2 4.9 7 1.00 *** 0.03 (n.s.) 0.04 (n.s.) 1B, 2C, 3B, 4C 

30.1 2 6.5 11 0.98 *** 0.83 ** 0.82 ** 1B, 2B, 3B, 4B 

30.4 2 5.3 9 0.73 * 0.55 (n.s.) 0.4 (n.s.) 1B, 2C, 3B, 4C 

30.9 2 7.2 11 0.46 (n.s.) 0.75 * 0.27 (n.s.) 1C, 2B, 3B, 4C 

31.8 2 6.5 9 0.95 *** 0.30 (n.s.) 0.22 (n.s.) 1B, 2C, 3B, 4C 

32.0 2 7.0 8 0.98 *** 0.71 (n.s.) 0.67 (n.s.) 1B, 2C, 3B, 4C 

32.4 2 7.0 8 0.93 ** 0.19 (n.s.) -0.07 (n.s.) 1B, 2C, 3B, 4C 

32.6 3 5.0 9 0.88 ** 0.93 *** 0.87 ** 1B, 2B, 3B, 4B 

32.7 2 5.6 13 0.60 * 0.20 (n.s.) -0.39 (n.s.) 1B, 2C, 3B, 4C 

32.9 2 7.1 9 1.00 *** -0.11 (n.s.) -0.12(n.s.) 1B, 2C, 3B, 4C 

32.9 2 6.8 10 0.92 *** -0.11 (n.s.) 0.04 (n.s.) 1B, 2C, 3B, 4C 

33.1 2 6.0 11 0.86 ** 0.16 (n.s.) -0.02 (n.s) 1B, 2C, 3B, 4C 

33.4 3 6.0 9 0.85 ** 0.70 * 0.40 (n.s) 1B, 2B, 3B, 4C 

33.6 2 8.2 16 0.99 *** 0.41 (n.s.) 0.43 (n.s.) 1B, 2C, 3B, 4C 

33.9 2 6.3 15 0.40 (n.s.) -0.06 (n.s.) -0.29 (n.s.) 1C, 2C, 3B, 4C 

34.1 2 7.5 17 0.78 *** 0.38 (n.s.) -0.02 (n.s.) 1B, 2C, 3B, 4C 

34.5 2 6.1 9 0.78 * 0.62 (n.s.) 0.02 (n.s.) 1B, 2C, 3B, 4C 

34.9 2 7.2 14 0.71 ** 0.81 *** 0.53 * 1B, 2B, 3B, 4B 

36.8 4 9.0 18 0.93*** -0.22 (n.s.) -0.35 (n.s.) 1B, 2C, 3B, 4C 

49.1 5 9.5 20 0.97 *** -0.50 * -0.55 * 1B, 2A, 3B, 4A 

49.6 5 9.0 21 0.97 *** -0.74 *** -0.75 *** 1B, 2A, 3B, 4A 

50.5 3 9.2 19 0.98 *** 0.49 * 0.51 * 1B, 2B, 3B, 4B 

51.8 10 9.0 20 0.94 *** -0.14 (n.s.) -0.17 (n.s.) 1B, 2C, 3B, 4C 

52.7 6 9.8 23 0.95 *** 0.00 (n.s.) -0.05 (n.s.) 1B, 2C, 3B, 4C 

54.1 5 9.5 20 0.23 (n.s.) 0.21 (n.s.) -0.52 * 1C, 2C, 3B, 4A 

57.0 6 9.8 22 0.98 *** 0.09 (n.s.) 0.11 (n.s.) 1B, 2C, 3B, 4C 

72.7 4 11.5 17 0.98 *** -0.03 (n.s.) -0.05 (n.s.) 1B, 2C, 3B, 4C 

78.2 NA 9.8 17 0.94 ** 0.61 * 0.64 ** 1B, 2B, 3B, 4B 
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Figure 4.1. Collection locations for all individuals within the Gulf of Mexico. Red Grouper 

collection locations are white circles. Tilefish collection locations are black circles. More than 

one fish was collected at several of the mapped locations. Bathymetry markings are 100, 200, 

1000, 2000, and 3000 m. 
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Figure 4.2. Isotopic distribution for all Red Grouper and Tilefish eye-lens layers. PERMANOVA 

results comparing the combined difference in δ15N and δ13C by species are listed. Red Grouper 

are white circles. Tilefish are black circles.  
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Figure 4.3. Non-linear regression of isotopic values δ15N and δ13C as a function of eye-lens 

diameter (ELD) for both Tilefish and Red Grouper. Equations and R2 values are listed for each. 
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Figure 4.4. Spearman rank correlations (Rho) representing correlation between δ15N and δ13C for 

simulated population of 1,000 Tilefish. 95% of all simulated fish resulted in a correlation > 0.59 
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Figure 4.5. Lifetime profiles of δ13C and δ15N in Tilefish eye-lenses ordered by fork length at 

capture. Primary x-axis is eye-lens dimeter. Secondary x-axis is approximate fork length 

calculated from linear regression between fork length and eye-lens diameter.  
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Figure 4.6. Lifetime profiles of δ13C and δ15N in Red Grouper eye-lenses ordered by fork length 

at capture. Primary x-axis is eye-lens dimeter. Secondary x-axis is approximate fork length 

calculated from linear regression between fork length and eye-lens diameter.  
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Figure 4.7. Tilefish lifetime correlations between δ15N and δ13C. Individuals are ordered by fork 

length. Individual eye-lens layers are signified by dots. Lines indicate profiles over time. 

Innermost eye-lens layer is always at the bottom (usually left) of the graph. Outermost eye-lens 

layer is always at the top (usually right) of the graph. 
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Figure 4.8. Red Grouper lifetime correlations between δ15N and δ13C. Individuals are ordered by 

fork length. Individual eye-lens layers are signified by dots. Lines indicate profiles over time. 

Innermost eye-lens layer is always at the bottom (usually left) of the graph.  
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CHAPTER 5: ONTOGENETIC MOVEMENT AND DIET SHIFTS IN JUVENILE RED 

GROUPER 

 

 

ABSTRACT 

Eye-lenses are valuable as an archival tissue to track the movements and diets of fish over their 

lifetime. We analyzed the bulk δ13C and δ15N in the sequential eye-lens laminae of 55 juvenile 

and 38 adult Red Grouper (Epinephelus morio) from continental shelf waters of Campeche, 

Mexico and Florida, USA. We used published rules to interpret isotopic patterns within the eye 

lens. We complimented these data with stomach contents and catch locations from an additional 

521 Red Grouper. We found that postlarval locations and movements were consistent among 

juvenile and adult Red Grouper from the eastern Gulf of Mexico. Postlarval locations for fish 

from Mexico and southeastern Florida were easily distinguished by their δ15N values. We found 

a unique shape to the δ13C profiles of eastern Gulf of Mexico Red Grouper whereby values 

increased sharply and subsequently decreased sharply by the end of the first year of life, 

suggesting cross-shelf movement or radical diet shifts. Stomach-contents indicated that Red 

Grouper are dependent on small shrimps (68% of diet) and crabs (20% of diet) early in life but 

eat more squids and fishes as they approach maturity. It appears likely that the shape of the δ13C 

profile reflects these diet shifts accompanied by cross-shelf movement in young Red Grouper in 

the eastern Gulf of Mexico. Eye lens isotope profiles have the potential to corroborate existing 

movement and diet information or be used to identify species for which more study is warranted. 
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INTRODUCTION 

 Movement and diet histories of targeted species are important for ecosystem modeling 

and fisheries stock assessments. However, the data are often sparse due to sampling difficulty 

and expense. Bulk stable isotopes in body tissues, such as muscle, have provided information 

regarding trophic position (Choy et al. 2015), basal-resource dependence (Grippo et al. 2011), 

and movement (Acosta-Pachon et al. 2015) in fish and other marine organisms with high 

economic value. Due to tissue turnover, most stable isotope records provide information 

covering only a few months of the organism’s life. Unlike most tissues, eye lens proteins are not 

reworked once formed (Lynnerup et al. 2008). Instead, new layers of protein are added to the 

outer edge of the lens as the organism grows (Dahm et al. 2007). Once dissected, the isotopes of 

fish eye lenses provide a historical perspective unavailable in other tissues (Wallace et al. 2014, 

Quaeck-Davies et al. 2018, Simpson et al. 2019). These isotope profiles can enhance traditional 

fisheries datasets by providing high resolution movement and diet information regarding life 

history stages often unavailable to traditional fisheries gears.  

 

Fish eye lenses as archival tissue  

 Vertebrate eye-lenses grow sequentially during life (Shi et al. 2009). Cells at the outer 

edge of the eye lens exchange atoms with the body via the humors. In captive Red Drum 

(Sciaenops ocellatus), isotopic values from a new diet were 90% incorporated into the outer eye 

lens 54 days after the diet was changed (Granneman 2018). Once lens fiber cells are out of direct 

contact with the capsule, they undergo attenuated apoptosis, in which the organism removes all 

organelles and ceases protein synthesis (Stewart et al. 2013, Peebles and Hollander 2020). Lack 

of turnover within the lens has been demonstrated in vertebrates including humans (Lynnerup et 

al. 2008, Kjeldsen et al. 2010) and Greenland Sharks (Somniosus microcephalus) (Nielsen et al. 
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2016) using radiocarbon dating. The sequential δ13C and δ15N records within the lens provide a 

method for tracking the ontogenetic diet shifts and movements of individuals over the lifespan. 

This has been demonstrated in several species of squid (Parry 2008, Hunsicker et al. 2010, 

Golikov et al. 2018, Queiros et al. 2018, Meath et al. 2019), elasmobranchs (Quaeck-Davies et 

al. 2018, Simpson et al. 2019), and bony fishes (Wallace et al. 2014, Tzadik et al. 2017, Quaeck-

Davies et al. 2018).  

 

Interpretation of δ13C and δ15N profiles in fish eye lenses 

 The geographic interpretation of animal tissue isotope values requires a spatially variable 

isotopic background (isoscape). On the West Florida Shelf (WFS) in the eastern Gulf of Mexico, 

bulk-tissue derived δ13C and δ15N isoscapes exist that are stable on seasonal (Radabaugh et al. 

2014) and inter-annual timescales (Huelster 2015). Recent work suggests that δ15N is regionally 

consistent with highest values in the north central Gulf near the mouth of the Mississippi River 

and lowest in the eastern Gulf of Mexico near the Florida Keys (Peebles and Hollander 2020). 

These pattern of δ15N values is consistent with municipal run-off and animal husbandry from the 

Mississippi River valley (Kendall et al. 2001, O'Connor et al. 2016), and little terrestrial nitrogen 

input near the Florida Keys, leaving diazotrophs such as Trichodesmium spp, to introduce much 

of the nitrogen to the biosphere via the incorporation of atmospheric N2 (Carpenter et al. 1997, 

McClelland et al. 2003).  

 Values of δ13C decrease with increasing depth, in a westward direction from peninsular 

Florida (Radabaugh and Peebles 2014). Phytoplankton, the dominant primary producer in outer 

continental shelf waters, undergo high rates of isotopic fractionation during photosynthesis, 

resulting in low values of δ13C (Fry and Wainright 1991, Keough et al. 1998, Burkhardt et al. 
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1999).  In shallow, clear waters, benthic microalgae, macroalgae and seagrasses make up a large 

proportion of primary producers (Keough et al. 1998, Grippo et al. 2011, McMahon et al. 2016), 

and contain high values of δ13C (Fry and Wainright 1991, Radabaugh et al. 2014). Isotopic 

trends in primary producers are transmitted to higher trophic levels with δ13C values in muscle 

tissue from a single species of fish varying by ~4‰ across depth (Radabaugh et al. 2013, 

Radabaugh and Peebles 2014).  

 

Red Grouper life history 

 Red Grouper (Epinephelus morio) is a reef-fish species common to the eastern Gulf of 

Mexico, with a center of abundance near the central WFS (Lombardi-Carlson et al. 2008, 

Carruthers et al. 2015, Gruss et al. 2017).  Between 2.3 and 5.6 million pounds of Red Grouper 

were landed annually by the commercial sector between 2004 and 2018 (NOAA Fisheries 2019). 

Between 1.9 and 8.7 million pounds were landed annually by the recreational sector over the 

same period (personal communication to JV, National Marine Fisheries Service, Fisheries 

Statistics Division, September 4, 2019), making the species one of the most heavily exploited 

reef fish in the Gulf of Mexico.  

 Little information is available for larval and juvenile Red Grouper, a critical life history 

stage for accurate stock assessment. Fishery independent monitoring programs rarely capture 

individuals smaller than ~300 mm total length (TL) (SEDAR 2015). Moe (1969) suggested that 

small juveniles are rarely observed because they inhabit continuous reef habitats, avoiding traps 

and trawls. A visual fish monitoring effort of central WFS reefs records juvenile Red Grouper (< 

200 mm SL) in continuous natural reef and artificial reef habitats, areas inaccessible to most 

capture gears (Stallings, unpublished data).  
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 The species is a protogynous hermaphrodite with 50% maturity for females occurring at 

2.8 years and 242 mm standard length (SL). Sexual transition to male begins as early as three 

years, but often occurs later, with 50% males in the population occurring around 12.6 years and 

725 mm SL (SEDAR 2015).  Adult Red Grouper excavate sandy sediments to reveal limestone 

outcrops, for use as a home territory and spawning area (Coleman et al. 2010, Wall et al. 2011, 

Grasty et al. 2019). Tagged Red Grouper are largely recaptured within 1 km of their original 

location (Coleman et al. 2011, Burns and Froeschke 2012), suggesting that their movement is 

quite restricted.  

 Red Grouper diet changes as the fish grows. Juvenile Red Grouper diets are composed of 

benthic invertebrates (Weaver 1996, Brule et al. 1999). The one available study from the WFS 

indicated the small juveniles (100–200 mm SL) fed on various types of shrimps, while larger 

juveniles incorporated crabs, and adults added fish (Weaver 1996).  This geographically limited 

study was conducted over 20 years ago and was based on fewer than 200 total individuals.  

 A number of recent studies have paired stomach-content analysis with muscle stable-

isotope values to better integrate the diets of various fish species on timescales of days and 

months (e.g., Curtis et al. 2017, Matley et al. 2018, Burbank et al. 2019). To date, no studies 

have combined eye-lens isotope data with large-scale stomach content and catch location data. 

By integrating these datasets, we aim to produce the most complete lifetime-scale records of 

movement and diet to date for a heavily exploited predatory reef fish species.  

 

Objectives 

Here we present eye-lens isotope profiles alongside stomach-content and catch depth data 

from a wide size range of Red Grouper. The isotope data largely corroborates known biological 
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information and fills gaps in knowledge of the species. By combining these data, we show that 

most Red Grouper on the WFS are spawned near the shelf-edge, migrate long distances during 

the first year of life, and switch diet multiple times. By using a relatively well-studied species, 

we show that eye-lens isotope profiles can enhance the specificity of existing demographic and 

diet data or be used to identify additional species for which closer scrutiny of these data is 

warranted. 

 

MATERIALS AND METHODS 

Fish collection and eye lens preparation 

 We collected 85 Red Grouper for eye-lens isotope analysis from the West Florida Shelf 

(WFS) through a variety of mechanisms including fish traps and trawls (FWC-FWRI & NOAA 

Fisheries), scientific longline (Murawski et al. 2018), and by a scientist (JV) accompanying 

recreational anglers (all sub-legal fish were collected under NOAA LOA with J. Vecchio). 

Stomach-content data were obtained from FWC-FWRI Fisheries Independent Monitoring 

Program (FIM) Stomach Content Laboratory (collection locations Figure 5.1B). FIM personnel 

collected stomachs from Red Grouper using unbaited gears, primarily balloon trawls and otter 

trawls (Eldridge 1988). Field crews recorded capture latitude, longitude, and depth for all fish 

used isotope and diet studies. 

We froze fish for eye-lens isotope analysis whole at -20°C soon after capture. We 

measured each fish for standard length (SL), fork length (FL), and total length (TL). We 

removed otoliths and cleaned them of tissue. We aged all otoliths whole under transmitted light 

using a dissecting microscope in the FWRI otolith laboratory (Carroll, personal communication).  
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 We dissected  and processed eye-lens samples according to Wallace et al. (2014) with the 

exception that all delamination was conducted while the lens was submerged in water (Stewart et 

al. 2013), which results in identical isotope values (Meath et al. 2019). Briefly, we thawed whole 

eyes, made a corneal incision, and removed the lens epithelium/capsule. We placed each lens 

under a dissecting stereomicroscope, where we separated laminae with two fine-tipped forceps.  

The lens core (~0.5 mm diameter) was the final analyzed tissue. We used an ocular micrometer 

to measure the diameter at the equator to the nearest 0.05 mm. We defined laminar midpoint as 

the lens diameter after lamina removal plus half the thickness of the removed lamina and 

identified each lamina by its unique laminar midpoint or eye-lens diameter (ELD). We placed 

each lamina in a drying oven at 50°C overnight to ensure complete desiccation. 

 

Isotope analysis 

 We added a dry weight of 150-600 µg of material from an individual eye-lens lamina to a 

tin capsule and weighed each sample to the nearest μg on a Mettler-Toledo precision 

microbalance. We measured isotopes 13C/12C and 15N/14N along with C:N in duplicate using a 

Carlo-Erba NA2500 Series II Elemental Analyzer (EA) combustion furnace coupled to a 

continuous-flow ThermoFinnigan Delta+XL isotope ratio mass spectrometer (IRMS) at the 

University of South Florida College of Marine Science in St. Petersburg, Florida. The limit of 

quantification was 12 μg for both δ13C and δ15N. Calibration standards were NIST 8573 and 

NIST 8574 L-glutamic acid standard reference materials. Analytical precision, obtained by 

replicate measurements of NIST 1577b bovine liver, was ± 0.13‰ for δ13C and ± 0.17‰ for 

15N (mean standard deviations of n = 530 replicates conducted over an 11-month period). 
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Results are presented in delta notation (, in ‰) relative to international standards Vienna Pee 

Dee Belemnite (VPDB) and air: 

𝛿𝑋 = (
𝑅𝑠𝑎𝑚𝑝𝑙𝑒

𝑅𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
− 1) × 1000  

where X is 13C or 15N and R is the corresponding ratio 13C/12C or 15N/14N. 

 

Eye-lens isotope data analysis 

 We divided fish into the categories of juveniles (0–2 y, < 242 mm SL) and adults (2+ y; ≥ 

242 mm SL) (Figure 5.1A).  Individuals not meeting both criteria to be considered adult were 

classified as juveniles.  

 

Eye-lens core isotope data analysis 

 The eye-lens core represents the period during life from first feeding (~72 h after hatch) 

to age/length at the core edge. We used the isotopic data from the core to represent location 

during the late larval (postlarval) period (see Vecchio and Peebles 2019). We used the regression 

equation SL = (5.94*√(ELD))2 to calculate the standard length at which the core was completed. 

Based on the SL: ELD regression equation, cores represented the entire larval duration plus a 

short period (days-weeks) of the early juvenile stage.  

 We calculated mean (± SE), minimum, and maximum eye-lens core values for both δ15N 

and δ13C within each group. We used package Vegan (Oksanen et al. 2019) to calculate beta 

dispersion and PERMANOVA for eye-lens core values of each group. We conducted Spearman 

rank correlations (rs) between eye-lens core isotopic values (δ15N and δ13C) and the independent 

variables core ELD and capture location (latitude and longitude). To interpret the results of these 

correlations, we used the Table 3.2 interpretation rules (Vecchio and Peebles 2019). Briefly, a 
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significant correlation between core isotopic value and ELD indicated a change in trophic 

position during the larval period or a move to an area with a different isotopic baseline. A 

significant correlation between core isotopic value and capture location (latitude, longitude) 

indicated a relationship between spawning location and the locations of juveniles or adults. No 

correlation indicated no change or inconsistent change during the larval period. 

 

Lifetime eye-lens profiles 

 We used the regression equation SL = e(4.21 + 0.20 * ELD) to relate SL to ELD across the 

lifespan (discussed in Chapter 4). The lifetime-scale equation accounts for the logarithmic 

relationship between ELD and fish length in later life. We calculated lifetime Δδ15N and Δδ13C 

as the final value of δ15N or δ13C minus the initial value. We performed a series of Spearman 

rank correlations comparing sequential δ15N and δ13C values to ELD or to one another over the 

lifetime. We then used the lifetime-scale interpretation rules (Table 4.2) to sedentary from 

moving individuals. To reliably calculate Spearman rank correlation values, a minimum of 8 to 

10 samples is necessary, and p-values for correlation coefficients are heavily influenced by 

sample number (Sokal and Rohlf 1994). This presented a problem when evaluating eye-lens 

profiles of juvenile Red Grouper with small numbers of eye-lens laminae. Therefore, we used 

Spearman r > |0.5| as the definition of substantial correlation between isotopic values and ELD.    

 

Carbon bump: δ13C maximum during the first year of life 

 We observed that most individuals with consistently increasing δ15N, but no correlation 

between δ15N and δ13C, appeared to have profiles in which δ13C reached a maximum during the 

first year of life with a subsequent decrease in δ13C values. We called this feature in the δ13C 
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profile “carbon bump.” We used a 1:1 relationship between δ13C and δ15N to represent a 

maximum expected rate of increase for δ13C with no diet change or movement. Despite the 

theoretical 1:3 relationship between increases in δ13C and δ15N with increasing trophic position 

(Fry 2006), field studies have indicated a relationship between 1:1 and 1:2 in eye-lens profiles 

for stationary individuals (Table 4.1), and trophic discrimination factors have suggested similar 

values (Eddy 2019, Patterson et al. 2020).  

 To locate and measure a carbon bump within an individual δ13C profile, we:  

1. identified fish for which δ15N resulted in > 0.5 correlation with ELD and δ13C did not. 

2. located the first segment of these eye-lens in which δ13C continuously increased faster 

than δ15N (δ13Cinitial) in an individual fish (each “segment” often extended through several 

laminae)  

3. located the first segment in which δ13C continuously decreased faster than δ15N in that 

fish (δ13Ctop). We identified this as the transition from increasing to decreasing δ13C. 

4.  located the ELD of transition as the ELD of this δ13Ctop value. 

5.  calculated the height of transition as δ13Ctop - δ
13Cinitial  

We then calculated mean (± SE) ELD and height of transition for each group. 

 

Stomach-content collection, prey identification, and data analysis 

 Researchers immediately removed stomachs from each Red Grouper, placed then in 

cheesecloth bags, and submerged them in 10% formalin for at least 48 h. Stomachs were then 

rinsed in fresh water and stored in 50% isopropanol until processing. Fresh water was used to 

flush contents into a gridded petri dish and contents were identified to the lowest possible 

taxonomic level using both dissecting and compound microscopes. Each prey was enumerated 
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based upon identifiable structures and was measured volumetrically (see Hall-Scharf et al. 

(2016) for full description of identification methods).  

 We used 50 mm SL size-classes to group the stomach-content data. We grouped data 

from all fish ≤ 100 mm SL together and data from all fish ≥ 401 mm SL together due to sample 

sizes. We calculated volume and percent volume for each prey type within each Red Grouper 

size-class. We aggregated prey taxa by family for analysis. If original identification was not 

below the family level, then we left prey items at the taxonomic level of identification. We 

calculated percent volume of each prey category by size-class. For graphical purposes, we 

further grouped the data into a few primary categories. We divided decapods into shrimps, crabs, 

and lobsters. We classified fish prey as pelagic or demersal based on their typical location in the 

water column. We classified all groups of prey that comprised less than one percent of total 

volume as “other.”   

 All statistical analyses were completed in R statistical computing environment (R Core 

Team 2018). All data are published in the Gulf of Mexico Research Initiative Information and 

Data Cooperative (GRIIDC) website 

(https://data.gulfresearchinitiative.org/data/R1.x135.120:0012).   

 

RESULTS 

Analyzed Red Grouper 

 Lengths, ages, ELDs, and numbers of eye-lens laminae were broadly similar in all adult 

fish (Table 5.1). Collection locations spanned the north-south extent of the WFS in fish analyzed 

for both eye-lens isotopes and for stomach contents (Figure 5.1A and B). In both cases, the 
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smallest fish were primarily captured closest to shore, while no fish larger than 175 mm SL were 

captured in less than 7 m of water. 

 

Eye-lens core isotopes 

 Core ELD for 93 Red Grouper ranged from 0.20 to 0.65 mm. Using regression (1) 

relating standard length (SL) to ELD, we calculated that the fish were 14-46 mm SL at the time 

of core completion, representing the postlarval and very early (first days) post-settlement periods 

(Table 5.2).   

 Multivariate homogeneity of group dispersion (using routine betadispar in R) found no 

difference in dispersion between WFS juveniles and adults (F = 1.10, p = 0.30). PERMANOVA 

indicated a difference between the core isotopic values of these fish (F = 3.34, p < 0.05). 

However, the range of values in both isotopes was quite similar (Figure 5.2A). Means for adults 

was slightly higher in the δ13C dimension and slightly lower in the δ15N dimension (Table 5.2, 

Figure 5.2B).  

 Due to low sample sizes, no statistical analyses were conducted on the additional two 

geographic groups (Mexico and SEFL). Visual analysis of these two groups indicated that core 

isotopic values for SEFL fish differed from Mexico fish, primarily in the δ15N direction (Table 

5.2, Figure 5.2). Although eye-lens core values for all individuals caught outside the WFS fell 

within the range of values observed on the WFS, these values clustered closely together within 

their respective δ15N ranges at the extreme edges of δ15N range for the WFS. Eye-lens core 

isotopic values for fish captured in Mexico also clustered in the δ13C direction (Figure 5.2A).  

 Based on rules of interpretation for the eye-lens cores (Table 3.2), Spearman rank 

correlation indicated little difference in the isotopically derived movements of the postlarvae for 
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WFS juveniles and adults. In both groups, δ15N had strong and moderate correlation 

(respectively) with ELD, indicating fish increased trophic position or moved north with 

increasing length during the postlarval period. In contrast, δ15N did not correlate significantly 

with collection latitude in either group, suggesting juvenile and adult location are not related to 

larval location in the north-south direction (Table 5.3). In both juveniles and adults, δ13C 

moderately correlated with ELD, indicating fish in both groups moved inshore or changed from 

planktonic to benthic basal-resource dependence during early life. Although juveniles had no 

significant correlation between eye-lens core δ13C and collection longitude, a moderate negative 

correlation in adults suggests fish captured farthest inshore originated from farthest offshore 

(Table 5.3).  

 

Lifetime eye-lens profiles: juveniles 

 Lifetime change in δ15N was positive for all WFS juveniles except for three. Of 53 WFS 

juveniles, 45 (85%) had ≥ 0.5 positive correlation between δ15N and ELD, increasing trophic 

position over the lifetime. All fish longer than 110 mm SL resulted in positive Spearman rank 

correlation values between δ15N and ELD (Table 5.4).  

 Lifetime change in δ13C for WFS juveniles was positive in all but one very small 

individual. However, correlation between δ13C and ELD as well as between δ13C and δ15N were 

highly variable (Table 5.4). Visual inspection of individual δ13C profiles as a function of ELD 

indicated many had steep increases in δ13C between the core and ~ 2 mm EDL, with subsequent 

decreases. This observation is noted using blue or red dots in each individual profile (Figure 5.3).  

Note that fish for which total ELD < 2 mm do not have the descending δ13C values (Figure 5.3).  
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 Taken together, these data indicate that the majority of juvenile Red Grouper increased in 

trophic position while having inconsistent basal-resource dependence and moving throughout 

life. However, up to 11 juvenile Red Grouper (21% of sampled fish) spent their entire lives 

increasing δ15N (increasing trophic position) while also increasing δ13C, indicating consistent 

basal-resource dependence throughout life (Figure 5.3). 

 

Lifetime eye-lens profiles: WFS adults  

 WFS adult Red Grouper also increased in both δ13C and δ15N over the lifetime. Of the 30 

individuals sampled, 25 (83%) had Spearman rank correlation between δ15N and ELD of rs ≥ 0.5 

over the lifetime (Table 5.5). This can be seen visually in individual profiles of δ15N:ELD 

(Figure 5.4). 

 Fewer WFS adults had significant correlations between δ13C and ELD. Ten individuals 

(33%) had rs ≥ 0.5 between δ13C and ELD (Table 5.5) and eight (26%) had rs ≥ 0.5 between δ15N 

and δ13C. Again, visual analysis shows that many WFS adults had consistent regions for which 

δ13C increased faster than δ15N, followed by a decrease (Figure 5.4). 

 Five individuals increased their trophic position while continuing to depend on the same 

basal resource. An additional three individuals had inconsistent trophic positions or moved 

sufficiently to mask trophic increase or consistent basal resource dependence. However, most 

WFS adults (n = 21) experienced trophic-position increase over the lifetime while switching 

basal-resource dependence or moving inconsistently within the isoscape.  

 

Lifetime eye-lens profiles: non-WFS Red Grouper 

 In the five adult Red Grouper collected from Mexico, δ15N and δ13C increased over the 

lifetime. All Mexico fish had significant positive correlation between δ15N and ELD. However, 
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only three of five had significant positive correlation between δ13C and ELD and two had 

significant correlation between δ15N and δ13C (Table 5.5). Interpretations of these trends indicate 

that all five individuals increased trophic position throughout life. Two of five also maintained 

consistent basal-resource dependence. However, three switched between basal resources, 

potentially moving substantial distances over the lifetime (Table 5.5, Figure 5.5).  

  SEFL Red Grouper increased in both δ13C and δ15N over the lifetime. Correlation 

between δ15N and ELD were significant and positive in all three. However, in one of three, 

correlation between δ13C and ELD as well as between δ15N and δ13C were low (Table 5.5). 

Interpretations for these three individuals (Table 4.2) indicated that all increased trophic position 

over their lifetimes while two maintained single basal-resource dependence. The third fish 

experienced a trophic position increase but changed basal-resource dependence through life 

(Table 5.5, Figure 5.5).  

 

Carbon bump 

 The carbon bump occurred in 33 of 55 (60%) WFS juvenile Red Grouper (Figure 5.3) 

and 20 of 30 (66%) WFS adult Red Grouper (Figure 5.4). Only one individual from Mexico and 

one from SEFL displayed a similar δ13C profile (Figure 5.5).  

 We found no correlation between capture latitude or SL and existence of a carbon bump 

in the eye-lens profile of WFS juvenile or WFS adult Red Grouper. In WFS juvenile Red 

Grouper, the average ELD of δ13C transition was 1.88 ± 0.04 mm (Table 5.6). The mean height 

was 3.23 ± 0.18‰, (Table 5.6, Figure 5.6A). In WFS adults, the average ELD of transition was 

2.28 ± 0.13 mm. The mean height of transition was 3.03 ± 0.33‰, (Table 5.6. Figure 5.6B). The 

single individual from Mexico with a carbon bump displayed one of the most extreme examples, 
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with a height of 6.36‰, but with a similar location in the eye-lens to those from the WFS (ELD 

= 1.38 mm) (Figure 5.5). The single individual to display the trait from SEFL had a somewhat 

different pattern. δ13C increased quickly 3.97‰ in early in life (ELD = 0.8 mm) but remained 

essentially steady until much later in the juvenile period, when the isotopic decline occurred 

(Figure 5.5).  

 

Basal resource dependence 

 WFS juvenile and adult Red Grouper appeared to have similar basal-resource 

dependence. Both spent approximately 75% of the lifespan depending on mixed basal resources 

(Table 5.7, Figure 5.7). Latitude of capture did not correlate with proportion of the lifespan that 

depended on mixed basal resources in either juveniles or adults (juvenile rs = -0.18, p = 0.11; 

adult rs = -0.08, p = 0.66). In both WFS juvenile and adult fish, some individuals depended on a 

variety of basal resources over the lifetime while others depended on mixed basal resources 

throughout (Figures 5.3 and 5.4). Many WFS adults and juveniles began their lives depending on 

planktonic basal resources, but quickly transitioned to mixed resource used around the time of 

settlement (Figures 5.3 and 5.4).  

 We observed a similar distribution of resource use in Mexican fish (Table 5.7, Figure 

5.7), with four of five individuals beginning life depending on planktonic resources and quickly 

transitioning to mixed resource dependence. Stable-isotope values for one of five fish indicated 

benthic resource dependence during the juvenile period (Figure 5.5). SEFL Red Grouper spent 

less time dependent on planktonic resources and more time dependent on benthic basal resources 

(Table 5.7, Figure 5.7). Two of three individuals spent the latter half of their lifetimes dependent 

on strictly benthic basal resources (Figure 5.5) 



   

 

146 

 

Stomach contents 

The stomach contents from 521 Red Grouper collected on the WFS (Figure 5.1B) 

revealed multiple diet shifts over the lifetime. Red Grouper between 37- and 150-mm SL preyed 

heavily on decapod shrimps, which comprised 62–72% of dietary volume. The primary families 

of shrimp consumed by Red Grouper less than 100 mm SL were Penaeidae and Caridae (26 and 

37% respectively), with crabs from the family Galatheidae comprising an additional 23% of 

volume. Individuals between 100- and 150-mm SL also consumed diets heavy in penaeid 

shrimps (69%), with crabs from the family Majidae comprising an additional 18% by volume. 

Although not comprising a large volume, several species of grass shrimp were recorded in the 

stomachs of Red Grouper in the length range of 100-150 mm SL, including Hippolyte zostericola 

and Palaemonetes pugio, both of which inhabit very shallow, estuarine waters.  

By 150 mm SL, Red Grouper were less heavily dependent on shrimps, and began feeding 

on various families of crabs and other types of invertebrates. While penaeid shrimps still 

comprised 20% by volume for Red Grouper in the length range of 150–200 mm SL, the most 

consumed category of prey was crabs with various families (primarily Portunidae and Majidae), 

comprising 44% of the diet. At this length, fish comprised approximately 16% of the diet. Red 

Grouper between 200- and 300-mm SL had the most eclectic diets, consuming prey from 20 

families of shrimps and crabs along with small volumes of cnidarians, gastropods, annelid 

worms, and even tunicates and several families of fish. Between 200- and 350-mm SL, fish and 

invertebrates each comprised about half of the diet.  

By 250 mm SL, squids from the family Loliginidae began contributing substantially to 

the diet (15% by volume) and continued to be an important diet component until about 350 mm 

SL. By 300 mm SL, squids were the primary invertebrate consumed (25% by volume), with 
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crabs still making up about 17% of the diet and over 52% of the diet being composed of fish, 

primarily demersal fishes. Red Grouper larger than 350 mm SL consumed higher proportions of 

fishes (63–78%), with most of the identifiable prey being demersal fishes. Red Grouper 

continued to consume shrimps (up to 3%) and lobsters (up to 18%) but the most consumed non-

fish prey was crabs (8–37%) (Table 5.8 and Figure 5.8). 

 

DISCUSSION 

 We characterized the lifetime geographic and diet histories of Red Grouper using a 

combination of eye-lens stable isotope, catch locations, and stomach-contents. We found that 

Red Grouper natal origins on the WFS were relatively consistent between juveniles and adults, 

suggesting a stable spawning area year-to-year within the time constraints of the study. Red 

Grouper from outside WFS (Mexico and SEFL) had distinctly different core δ15N values from 

one another, which is consistent with known or inferred isotopic trends for their respective 

regions. We found that virtually all Red Grouper, regardless of age or location, increased in δ15N 

during life, indicating increasing trophic position with body growth. We also found that an 

increase and subsequent decrease in δ13C (i.e., carbon bump) occurred in the majority of WFS 

Red Grouper, suggesting two distinct shifts in basal-resource dependence through movement 

during the first year of life. The apex of the carbon bump approximately coincided with a brief 

period during which Red Grouper are found in shallow water. We found that Red Grouper 

captured in Mexico and SEFL displayed consistent basal-resource dependence (through δ13C 

eye-lens profiles). This may be due to shorter distances moved during the first year or smaller 

differences in δ13C for the region. The techniques developed here are applicable to numerous 

other marine fisheries species in the southeastern United States and beyond.   
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WFS Spawning locations and postlarval habits 

 Average WFS Red Grouper δ13C and δ15N eye-lens core values near -19‰ and 7‰ 

respectively suggest a trophic position of approximately 3 and planktonic basal-resource 

dependence when compared to the isotopes measured for primary producers on the WFS 

(Radabaugh et al. 2013). Red Grouper use broadcast spawning to produce millions of buoyant 

eggs (Lowerre‐Barbieri et al. 2014). Although no diet data exist for wild Red Grouper larvae, the 

species has been successfully reared in the lab using wild-collected zooplankton (Colin et al. 

1996). A closely related species, Nassau Grouper (Epinephelus striatus), has been found to feed 

primarily on calanoid copepods and decapod larvae during the larval period (Grover et al. 1998). 

Copepods are omnivorous, feeding on a combination of phytoplankton and heterotrophic 

protists, and have been calculated to feed at a trophic position of 2.1-2.7 (Bode et al. 2015, 

Umezawa et al. 2018). Feeding on these resources would put the larval grouper near trophic 

position 3-3.5 with plankton-based basal-resource dependence (Popp et al. 1998, Burkhardt et al. 

1999, Grippo et al. 2011, Radabaugh et al. 2014), corroborating the isotopic findings.  

 Assuming all larval Red Grouper feed on the same types of prey and at the same trophic 

position, the isotopic values in eye-lens cores may be interpreted as geographic location. With a 

wide range of both δ13C and δ15N core values (~3‰ in δ15N and ~5‰ in δ13C) and little 

difference between observed core isotope values between juveniles and adults, these results 

suggest that Red Grouper maintain a consistent central spawning region year-to-year on the 

WFS. Within one marine protected area on the WFS, Red Grouper “holes” known to be used as 

spawning locations (Coleman et al. 1996) have been observed to be maintained by members of 

the species for at least ten years (Grasty et al. 2019). These known spawning sites are centered 

around 70 m depth. Observed core isotope values suggest that postlarvae may remain nearby. 
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 In eye-lens cores of WFS juveniles and adults, δ13C and δ15N correlated positively with 

core ELD, indicating a rapid diet change that included more benthic-associated prey (Fry and 

Wainright 1991) along with a small but perceptible increase in trophic position over the weeks of 

the postlarval and settlement periods, represented by cores of increasing size (Pinnegar and 

Polunin 1999). However, when we investigated both δ13C and δ15N for correlation with 

collection location, the isotopic values had no relationship in either adults or juveniles, 

suggesting that Red Grouper maintain a continuous spawning area on the WFS that varies little 

over time (Radabaugh and Peebles 2014).  

 

WFS lifetime isotopic profiles: trophic growth, diet, shifts, and basal-resource dependence  

 Most WFS Red Grouper had at least 50% correlation between δ15N and ELD across the 

lifetime. These results suggest that Red Grouper experience an increase in trophic position 

during life. The consistency of the increase over time suggests the fish did not migrate along the 

δ15N gradient. A similar pattern been shown using muscle δ15N from variously sized individuals 

from the same species (Graham et al. 2007, Sweeting et al. 2007, Buchheister and Latour 2011) 

as well as the eye lenses of several species of fish (Wallace et al. 2014, Quaeck-Davies et al. 

2018, Kurth et al. 2019, Simpson et al. 2019).  

 Lifetime profiles for δ13C were quite different from δ15N profiles in most WFS Red 

Grouper. The majority of WFS juvenile and adult eye-lenses had low correlation between δ13C 

and ELD, in contrast with 36 Tilefish (Lopholatilus chamaeleonticeps) from a similar region 

(Chapter 4). Tilefish represent a model of high lifetime site fidelity and consistent lifetime diet 

(Chapter 4). Therefore, we suspect that diets and/or locations of Red Grouper changed 

throughout the lifetime across depth.  
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 Of the approximately 600 individuals collected for the current work, we found that larger 

Red Grouper tended to be located in deeper water than smaller individuals, with individuals 

between 75- and 150-mm SL being the only size-class captured in water shallower than 10 m. 

Some Red Grouper stomachs from fish < 150 mm SL contained prey known to occur only in 

seagrass beds, which grow in a maximum of 2 m of water on the WFS. Historic survey data 

support the interpretation of lifetime movement crossing the depth gradient of the WFS. Catch 

records for both fishery-independent and fishery-dependent surveys indicate that small Red 

Grouper are usually encountered in shallower water than large fish on the WFS (Moe 1969, 

Lombardi-Carlson et al. 2008, Gruss et al. 2017). When examining movement of tagged 

individuals, Burns (2009) found that while most Red Grouper remained within 1 km of original 

capture location, longer times at-large ( > 2 y)  correlated with higher probability of long-

distance movement. She also found that Red Grouper movements > 1 km were uniformly toward 

deeper water. 

 These data suggest that Red Grouper follow similar patterns of movement to those 

verified for Gag (Mycteroperca microlepis), on a somewhat different timescale. Postlarvae move 

to shallow-water habitats to become juveniles and adults return to deeper water as they mature 

(Weisberg et al. 2014, Carruthers et al. 2015). However, differences are notable between the 

species. While Gag are encountered routinely in polyhaline seagrass beds throughout their first 

year of life, few Red Grouper are captured in these areas over a much more limited time-period 

(Figure 5.1A, SEADAR 2015). Young Red Grouper are more often observed by divers hidden in 

small crevices of natural and artificial reefs on the WFS (Stallings, unpublished data, (Moe 

1969)). This strategy of remaining hidden under ledges may partially account for the 

inaccessibility of the small size-classes by standard fisheries sampling gears. In addition, the 
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shape and location of the carbon bump, indicates that Red Grouper spend only short period in 

shallow water, subsequently moving to deeper water within a few months. 

 

A bump in the δ13C profiles of WFS Red Grouper 

 When we investigated WFS juveniles and adults δ13C eye-lens profiles more closely, we 

noticed a carbon bump (rapid increase and subsequent decrease in δ13C) in the majority of fish. 

We also observed that the smallest Red Grouper displayed only an increase in δ13C, with no 

subsequent decrease. These fish had maximum ELDs smaller than the diameter at which δ13C 

values began declining in larger fish. We found the average peak in the carbon bump to be at 

approximately 2 mm ELD, which is consistent with a SL of approximately 100 mm SL and an 

age of less than one year. We found that, according to the SL:ELD regression, resolution of eye-

lens profiles was highest in the first year due to faster growth during this period (Casselman 

1990, Pankhurst and Eagar 1996, Beullens et al. 1997).  

 Initial δ13C values corresponded with a diet composed of zooplankton. However, as Red 

Grouper settled into benthic habitats, they appear to rely more heavily on benthic prey. The 

smallest individuals (37-100 mm SL) in our stomach-content analysis fed almost exclusively on 

various families of small shrimps. These small shrimp taxa are omnivorous benthic feeders 

(Winkler et al. 2007, Sierszen et al. 2011). While this places the growing Red Grouper near the 

same trophic position as during the postlarval stage, a diet composed primarily of benthic 

organisms could result in δ13C increasing quickly. 

 A rapid switch from feeding in the plankton to feeding from the benthos is common 

among reef-associated species. Other grouper species have been shown to have similar post-

settlement diets. For example, Nassau Grouper have been found to feed primarily on 
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gammaridean amphipods, isopods and mysid shrimps (Grover et al. 1998), and Gag rely heavily 

on epibenthic prey (Mullaney and Gale 1996).  Isotopic values may represent not only prey but 

also depth (through the dominant basal resource for the region). In the example of Gag, muscle 

δ13C in fish 100-200 mm SL (found in shallow seagrass beds) were similar to values observed 

near the apex of the Red Grouper δ13C profiles. Together catch records, isotope records, and 

stomach content records suggest that most WFS Red Grouper are spawned in deep water, transit 

the WFS to shallower nursery areas, and begin returning toward deeper water over the first year 

of life. Over the first year of life, the species also transitions food sources several times, taking 

advantage of the availability of larger prey as gape-size increases.  

  It is possible that some Red Grouper on the WFS do not make cross-shelf migrations but 

remain stationary through life. Approximately one-third of WFS Red Grouper did not show a 

carbon bump in their δ13C profile. These individuals had high correlations between δ13C and 

δ15N, much like Tilefish (Chapter 4), suggesting little movement and no basal-resource 

dependence transitions throughout the juvenile period. A large tagging study of over 30,000 fish 

on the WFS encountered a few fish < 200 mm SL in water deeper than 30 m, and several fish > 

400 mm SL in water shallower than 10 m (FWRI-FDM, personal communication). If an 

individual finds adequate resources, there is no need to move. 

 

Non-WFS spawning locations 

 Stable isotopic values in the eye-lens cores of SEFL and Mexico Red Grouper fell within 

the range of WFS values, but differed substantially from one another, primarily in the δ15N 

direction. This difference reflects the isotopic backgrounds for the two regions. Red Grouper 

from Mexico had δ13C and δ15N eye-lens core values that were tightly grouped despite being 
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collected across a large geographic area. This may indicate a restricted spawning area in the 

region, or may be a symptom of a low-variability isoscape (Peebles and Hollander 2020).  

 The δ15N values off the southeast coast of Florida are expected to be lower than other 

regions in this study due to the dominance of diazotrophs in the marine primary productivity for 

the area (McClelland et al. 2003). In addition, δ13C would be expected to be high due the 

exceptionally clear water, allowing for benthic primary productivity throughout continental shelf 

waters (Palandro et al. 2004, Lidz et al. 2008). In a small stable isotope study examining fish 

tissue from Biscayne National Park, the authors showed relatively low values of δ15N and high 

values of δ13C throughout their study area in relation to values observed on the WFS (Curtis et 

al. 2017). In addition, the δ15N and δ13C core values for two mesopredator species (Curtis 2016) 

were quite similar to our results for Red Grouper, suggesting all three species begin life at 

similar trophic positions and similar depths in this region. These results also highlight the need to 

develop a high-resolution isoscape for coastal waters of the southeastern United States.  

 

Non-WFS lifetime isotopic profiles: trophic growth and basal-resource dependence  

 With a less variable δ13C isotopic backgrounds than the WFS, we observe consistent δ13C 

over the lifetime rather than a frequent shifting of δ13C in the eye-lens record. Of the eight Red 

Grouper investigated from outside the WFS, the carbon bump occurred in only two δ13C profiles. 

It seems striking that Red Grouper in these other regions do not show similar δ13C patterns to 

Red Grouper captured on the WFS. Broadly similar diets have been reported for juveniles 

captured on Campeche Bank and WFS (Brule and Canche 1993, Weaver 1996). Although no diet 

information is available for Red Grouper captured off the southeast coast of the United States, 

Red Grouper from Brazilian reefs displayed similar reliance on crustaceans early in life while 
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incorporating fish into their diets later in life (Freitas et al. 2017). It appears reasonable to 

assume that juvenile Red Grouper using the clear water reefs of the Florida reef tract would also 

have broadly similar ontogenetic diet trends. Differences in diet do not seem to be driving 

differences in δ13C among regions.   

 Differences in the δ13C profiles between the WFS and the other regions may highlight 

differences in ontogenetic movements among the populations. It is possible that Red Grouper 

from the Florida reef tract and Campeche Bank move shorter distances during the first year of 

life than those from the WFS. Suitable habitats for each life-stage may be more confined and/or 

more contiguous on these areas than on the WFS. WFS reefs are highly fractured and scattered 

across large expanses of unconsolidated sediments (Hine and Locker 2011); whereas, the Florida 

reef tract and the Alacran reef on the Campeche Bank are composed of more contiguous hard 

substrates (Kormcker et al. 1959, Ogden et al. 1994). The Red Grouper population on the WFS 

may have evolved to take advantage of heterogeneous habitat availability with variability in food 

resources across large spatial scales. While this adaptation may not have been necessary outside 

the region. 

 

Conclusions and future directions 

 We used eye-lens stable isotope analysis paired with stomach-content analysis and catch 

data to reconstruct the diets, basal-resource dependence, and potential movements of Red 

Grouper throughout the lifespan, particularly in the first one to two years. We found that isotopic 

values of postlarval Red Grouper on the WFS varied broadly, which is consistent with a 

spawning area covering much of the WFS, as described in the literature. We also found that 

mean and distribution of eye-lens core isotope values were quite similar between WFS juveniles 

and adults, indicating dominant areas may shift subtly, but do not change radically year-over-
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year. While Red Grouper captured outside the WFS displayed eye-lens core isotope values 

similar to those found on the WFS, they were clustered at opposite ends of the δ15N spectrum, 

which is consistent with the isotopic background for those regions.  

 Juvenile and adult Red Grouper from the WFS and Mexico spent a comparable 

percentage of their life depending on each of the three available basal-resource classes (benthic, 

mixed, planktonic), whereas fish captured on the east coast of Florida depended most heavily on 

benthic basal resources. Finally, we found that over two-thirds of WFS Red Grouper displayed a 

large increase and subsequent decrease in δ13C (carbon bump) during the first year of life. These 

clear isotopic shifts with ontogeny paralleled catch depth records, with a limited time use of very 

shallow water during the first year of life. The concurrence of these data types suggests cross-

shelf movement of the fish during the first year while taking advantage of additional types of 

prey. In contrast, only a small fraction of fish from outside the WFS displayed a similar pattern 

in δ13C. This may be due to the larger distances traveled by WFS Red Grouper, higher variability 

of the WFS isoscape, or a combination of factors. In short, the interpretations of eye-lens stable 

isotopes corroborate and clarify Red Grouper habitat needs and diets observed through 

traditional data types. This powerful tool has the potential to streamline and simplify studies of 

numerous species going forward.  
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Table 5.1. Basic biological parameters for all Red Grouper with eye-lenses analyzed. Fish were 

collected from the West Florida Shelf (WFS), Campeche Bank (Mexico), and the north Atlantic 

Ocean off the coast of southeast Florida (SE-FL). Numbers of individuals collected (n), standard 

length at collection (SL), age in years, Eye-lens diameter (ELD), and total number of analyzed 

eye-lens layers (ELL) are each listed. Geographic areas are identified on Figure 5.1. 

 

  n SL (mm) 

Age 

(y) 

ELD  

(mm) 

ELL  

(#) 

WFS juvenile 55 37 - 241 0-2 0.90 – 7.00 2 – 16 

WFS adult 30 242 - 667 2-10 6.10 – 11.50 7 – 22 

Mexico 5 354 - 530 3-5 7.50 – 9.25 20 – 26 

SE-FL 3 431 - 557 3-5 8.40 – 9.75 14 – 18 

 

 

 

 

 

 

 

 

 

Table 5.2. Isotopic values of Red Grouper eye-lens cores (inner-most eye-lens layer) collected 

from the West Florida Shelf (WFS), Campeche Bank (Mexico), and the north Atlantic Ocean off 

the coast of southeast Florida (SE-FL). Size of the analyzed eye-lens core and the calculated SL 

at analysis (based on regression (1)), Mean ± SE, minimum and maximum values are listed for 

both δ15N and δ13C. 

 

 core δ15N   core δ13C 

  

Core ELD 

(mm) 

Analysis 
SL 

(mm) mean ± SE min max 

 

mean ±  SE min max 

WFS juvenile 0.40 – 1.10 14 - 39 7.13 ± 0.09 5.82 9.07  -19.07 ± 0.13 -20.65 -15.19 

WFS adult 0.50 – 1.30 18 - 46 7.00 ± 0.13 5.57 8.49  -18.56 ± 0.22 -20.15 -14.95 

Mexico 0.80 – 1.00 28 - 35 8.22 ± 0.13 7.72 8.45  -18.74 ± 0.26 -19.84 -17.82 

SE-FL 0.60 – 1.00 21 - 35 6.43 ± 0.29 5.91 6.96  -17.93 ±0.96 -19.34 -16.09 
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Table 5.3. Spearman rank correlations between stable isotope values (δ15N or δ13C) and eye-lens 

diameter (ELD) or collection location (Collection Lat & Collection Lon) in Red Grouper eye-

lens. Isotopic interpretations based on decision table presented in Chapter 2. Significance values 

are as follows: n.s. p > 0.05, * p ≤ 0.05, ** p ≤0.01, *** p ≤ 0.001  

 

  

δ15N vs 

ELD  

Rho 

δ15N vs 

collection Lat 

Rho 

δ13C vs 

ELD 

Rho 

δ13C vs 

collection Lon 

Rho 

Isotopic 

Interpretations 

WFS Juveniles 0.52 *** -0.26 (n.s.) 0.41** -0.24 (n.s.) 1B, 2C, 3B, 4C 

WFS Adults 0.72 *** -0.16 (n.s.) 0.44 ** -0.49 ** 1B, 2C, 3B, 4A 
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Table 5.4. Biological, statistical, and interpretation information for individual juvenile Red 

Grouper ordered by capture standard length (SL). Eye -lens diameter (ELD), number of eye-lens 

laminae (ELL), lifetime changes in δ13C and δ15N. Spearman rank correlations (δ15N:ELD, 

δ13C:ELD, δ13C:δ15N) are listed along with interpretations from Table 4.2 Significance is 

indicated as follows: n.s. p > 0.05, * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001. Individual capture 

length did not correlate with relative capture latitude or capture depth (i.e. interpretation 3B in 

Table 4.2). 

 

SL 

(mm)

Age 

(y)

ELD 

(mm) ELL

Lifetime 

δ
15

N 

change

Lifetime 

δ13C 

change

d15N v 

ELD 

Rho

d13C v 

ELD Rho

d13C v 

d15N 

Rho

37 0 0.9 2 -0.39 3.07 -1.00 # 1.00 # -1.00 # * * * *

83 0 3.0 4 -0.23 4.11 -0.40 # 0.20 # -0.80 # * * * *

92 0 2.0 4 0.45 2.25 0.40 # 0.80 # -0.20 # * * * *

97 0 3.1 4 0.28 2.89 0.50 # 1.00 # 0.50 # * * * *

102 0 2.4 3 -0.71 4.64 -0.50 # 1.00 # -0.50 # * * * *

120 0 4.5 9 2.35 1.67 0.98 *** 0.41 (n.s.) 0.37 (n.s.) 1B 2C 3B 4C

121 0 4.0 8 2.34 0.97 0.93 *** 0.17 (n.s.) 0.29 (n.s.) 1B 2C 3B 4C

134 0 4.2 9 1.46 2.28 0.83 * 0.70 * 0.55 (n.s.) 1B 2B 3B 4B

142 1 5.4 8 2.96 1.87 1.00 *** 0.74 * 0.74 * 1B 2B 3B 4B

147 1 5.5 13 2.30 1.66 0.91 *** 0.27 (n.s.) -0.01 (n.s.) 1B 2C 3B 4C

158 1 5.1 9 3.79 2.01 1.00 *** 0.33 (n.s.) 0.33 (n.s.) 1B 2C 3B 4C

160 1 5.9 9 3.00 3.41 0.88 *** 0.24 (n.s.) 0.44 (n.s.) 1B 2C 3B 4C

165 1 5.4 5 3.05 3.33 0.89 * 0.49 (n.s.) 0.49 (n.s.) 1B 2C 3B 4C

166 1 6.2 16 1.97 0.93 0.96 *** -0.42 (n.s.) -0.49 (n.s.) 1B 2C 3B 4C

166 1 4.2 5 2.04 2.16 1.00 * 0.10 (n.s.) 0.10 (n.s.) 1B 2C 3B 4C

167 0 4.5 5 2.09 2.76 1.00 * 1.00 * 1.00 * 1B 2B 3B 4B

170 1 4.5 7 2.80 2.97 0.93 * 0.50 (n.s.) 0.46 (n.s.) 1B 2C 3B 4C

171 1 6.0 13 1.96 1.06 0.86 *** -0.32 (n.s.) -0.58 * 1B 2C 3B 4A

175 1 4.5 7 1.70 2.21 0.86 * 0.71 (n.s.) 0.36 (n.s.) 1B 2B 3B 4C

176 2 4.5 8 1.70 2.98 0.90 *** 0.43 (n.s.) 0.24 (n.s.) 1B 2C 3B 4C

177 1 4.2 5 3.07 2.36 0.94 * 0.43 (n.s.) 0.49 (n.s.) 1B 2C 3B 4C

177 1 4.7 6 4.15 2.12 0.96 *** 0.43 (n.s.) 0.36 (n.s.) 1B 2C 3B 4C

177 1 4.5 8 3.65 2.14 1.00 *** 0.05 (n.s.) 0.05 (n.s.) 1B 2C 3B 4C

178 1 3.7 5 1.02 -2.21 0.37 (n.s.) -0.89 * -0.14 (n.s.) 1C 2A 3B 4C

178 1 4.6 8 2.11 1.31 0.96 *** -0.21 (n.s.) -0.14 (n.s.) 1B 2C 3B 4C

179 1 4.4 7 1.94 3.11 0.43 (n.s.) 0.50 (n.s.) -0.21 (n.s.) 1C 2C 3B 4C

180 1 4.6 9 3.68 0.44 0.98 *** 0.00 (n.s.) -0.03 (n.s.) 1B 2C 3B 4C

182 1 4.9 9 2.97 2.67 0.98 *** -0.02 (n.s.) 0.00 (n.s.) 1B 2C 3B 4C

182 1 4.8 5 2.81 2.38 1.00 *** 0.09 (n.s.) 0.09 (n.s.) 1B 2C 3B 4C

183 1 4.1 5 2.98 2.22 0.71 (n.s.) 0.66 (n.s.) 0.89 * 1B 2B 3B 4B

187 1 6.1 9 1.64 2.60 0.88 *** 0.48 (n.s.) 0.64 (n.s.) 1B 2C 3B 4B

187 1 5.6 6 3.34 2.84 0.96 *** 0.39 (n.s.) 0.46 (n.s.) 1B 2C 3B 4C

190 1 6.8 11 2.96 0.59 0.94 *** 0.66 * 0.48 (n.s.) 1B 2B 3B 4C

190 1 4.6 8 2.45 2.63 1.00 *** 0.00 (n.s.) 0.00 (n.s.) 1B 2C 3B 4C

191 1 4.7 7 3.59 2.23 0.86 * 0.36 (n.s.) 0.64 (n.s.) 1B 2C 3B 4B

195 1 5.0 5 3.19 2.79 0.66 (n.s.) 0.49 (n.s.) -0.03 (n.s.) 1B 2C 3B 4C

197 1 7.0 12 2.18 2.91 0.95 *** 0.38 (n.s.) 0.35 (n.s.) 1B 2C 3B 4C

201 1 6.6 11 1.84 3.17 0.97 *** 0.59 (n.s.) 0.54 (n.s.) 1B 2B 3B 4B

204 2 5.7 7 3.00 3.47 0.82 * 0.86 * 0.54 (n.s.) 1B 2B 3B 4B

206 1 5.0 7 3.56 1.97 0.89 * 0.86 * 0.61 (n.s.) 1B 2B 3B 4B

206 1 5.5 9 2.75 1.54 1.00 *** -0.03 (n.s.) -0.03 (n.s.) 1B 2C 3B 4C

207 2 5.2 9 4.29 2.93 0.92 *** 0.98 *** 0.97 *** 1B 2B 3B 4B

216 2 6.8 11 2.19 2.35 0.93 *** 0.00 (n.s.) -0.23 (n.s.) 1B 2C 3B 4C

219 1 6.5 9 0.21 0.44 0.48 (n.s.) 0.75 (n.s.) 0.17 (n.s.) 1C 2B 3B 4C

219 2 6.3 8 3.71 3.11 1.00 *** 0.31 (n.s.) 0.31 (n.s.) 1B 2C 3B 4C

221 2 5.8 7 1.57 2.65 0.57 (n.s.) 0.21 (n.s.) -0.02 (n.s.) 1B 2C 3B 4C

225 2 5.7 6 2.03 2.50 0.68 (n.s.) 0.71 (n.s.) 0.57 (n.s.) 1B 2B 3B 4B

226 1 6.5 9 3.06 1.12 0.65 (n.s.) -0.32 (n.s.) -0.37 (n.s.) 1B 2C 3B 4C

229 2 6.4 7 2.60 1.79 0.93 *** 0.17 (n.s.) 0.00 (n.s.) 1B 2C 3B 4C

233 1 6.7 16 4.13 3.90 0.65 * 0.11 (n.s.) -0.34 (n.s.) 1B 2C 3B 4C

233 2 7.0 9 1.49 3.06 0.93 *** 0.78 * 0.87 *** 1B 2B 3B 4B

234 1 6.1 8 0.98 2.17 0.36 (n.s.) 0.26 (n.s.) 0.40 (n.s.) 1C 2C 3B 4C

235 1 5.8 6 4.02 1.54 1.00 *** 0.49 (n.s.) 0.49 (n.s.) 1B 2C 3B 4C

239 2 5.5 9 3.51 2.70 0.93 *** 0.28 (n.s.) 0.05 (n.s.) 1B 2C 3B 4C

240 1 6.4 11 4.68 1.94 0.88 *** 0.44 (n.s.) 0.25 (n.s.) 1B 2C 3B 4C

Isotopic 

interpretation
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Table 5.5 Biological, statistical, and interpretation information for individual adult Red Grouper 

ordered by capture standard length (SL). Capture location [Florida southeast coast (SEFL), or 

Campeche Bank (Mexico), West Florida Shelf (WFS)] are listed. Eye-lens diameter (ELD), 

number of eye-lens laminae (ELL), Spearman rank correlations (δ15N:ELD, δ13C:ELD, 

δ13C:δ15N) are listed along with interpretations from Table 3.2. Significance is indicated as 

follows: n.s. p > 0.05, * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001. Individual capture length did not 

correlate with relative capture position (i.e. interpretation 3B in Table 3.2). 

 
 

  

Catch 

Area

SL 

(mm)

Age 

(y) ELD ELL

Lifetime 

δ15N 

change

Lifetime 

δ13C 

change

SE-FL 431 4 9.5 15 3.21 4.08 0.81 *** 0.03 (n.s.) 0.43 (n.s.) 1B 2C 3B 4C

SE-FL 483 3 10.0 14 4.78 4.13 0.96 *** 0.69 * 0.82 *** 1B 2B 3B 4B

SE-FL 557 5 10.7 18 3.86 6.62 0.99 *** 0.98 *** 0.96 *** 1B 2B 3B 4B

Mexico 355 3 8.2 20 2.29 1.28 0.74 *** 0.52 *** 0.20 (n.s.) 1B 2B 3B 4C

Mexico 381 3 9.0 21 2.50 2.45 0.66 *** 0.93 *** 0.56 ** 1B 2B 3B 4B

Mexico 442 5 9.4 21 3.49 3.11 0.86 *** -0.13 (n.s.) -0.26 (n.s.) 1B 2C 3B 4C

Mexico 512 5 9.8 23 2.78 2.38 0.93 *** 0.56 * 0.61 *** 1B 2B 3B 4B

Mexico 530 NA 10.0 26 3.03 2.13 0.81 *** 0.29 (n.s.) 0.33 (n.s.) 1B 2C 3B 4C

WFS 241 2 5.3 9 4.35 1.14 0.70 * 0.12 (n.s.) -0.25 (n.s.) 1B 2C 3B 4C

WFS 243 2 6.2 15 2.65 2.60 0.80 *** 0.44 (n.s.) 0.39 (n.s.) 1B 2C 3B 4C

WFS 248 2 4.9 7 3.33 1.20 1.00 *** 0.04 (n.s.) 0.04 (n.s.) 1B 2C 3B 4C

WFS 249 2 6.5 11 3.27 1.83 0.98 *** 0.83 *** 0.82 *** 1B 2B 3B 4B

WFS 254 2 5.3 8 3.77 2.31 0.73 * 0.55 (n.s.) 0.40 (n.s.) 1B 2B 3B 4C

WFS 256 2 7.2 11 2.83 1.65 0.46 (n.s.) 0.75 * 0.27 (n.s.) 1C 2B 3B 4C

WFS 263 2 6.5 9 2.72 1.58 0.95 *** 0.30 (n.s.) 0.22 (n.s.) 1B 2C 3B 4C

WFS 265 2 7.0 8 3.83 3.16 0.98 *** 0.71 (n.s.) 0.67 (n.s.) 1B 2B 3B 4B

WFS 268 2 7.0 8 3.94 3.47 0.93 *** 0.19 (n.s.) -0.07 (n.s.) 1B 2C 3B 4C

WFS 270 3 5.0 9 3.83 1.81 0.88 *** 0.93 * 0.87 *** 1B 2B 3B 4B

WFS 271 2 5.6 13 2.29 2.33 0.60 * 0.20 (n.s.) -0.39 (n.s.) 1B 2C 3B 4C

WFS 273 2 6.8 10 3.79 1.94 0.92 *** -0.12 (n.s.) 0.04 (n.s.) 1B 2C 3B 4C

WFS 273 2 7.1 9 3.64 2.74 1.00 *** -0.12 (n.s.) -0.12 (n.s.) 1B 2C 3B 4C

WFS 275 2 6.0 11 2.30 3.68 0.86 *** 0.16 (n.s.) -0.03 (n.s.) 1B 2C 3B 4C

WFS 278 3 6.0 9 5.41 2.00 0.85 * 0.70 * 0.40 (n.s.) 1B 2B 3B 4C

WFS 279 2 8.2 16 3.73 4.75 0.99 *** 0.42 (n.s.) 0.43 (n.s.) 1B 2C 3B 4C

WFS 282 2 6.3 15 0.73 1.24 0.40 (n.s.) -0.06 (n.s.) -0.29 (n.s.) 1C 2C 3B 4C

WFS 283 2 7.5 17 4.51 2.67 0.78 *** 0.38 (n.s.) -0.02 (n.s.) 1B 2C 3B 4C

WFS 287 2 6.1 9 2.91 1.89 0.69 (n.s.) 0.62 (n.s.) 0.02 (n.s.) 1B 2B 3B 4C

WFS 290 2 7.2 14 4.16 2.06 0.71 * 0.81 *** 0.54 * 1B 2B 3B 4B

WFS 306 4 9.0 18 3.05 0.63 0.93 *** -0.23 (n.s.) -0.35 (n.s.) 1B 2C 3B 4C

WFS 414 5 9.5 20 3.15 0.33 0.97 *** -0.50 * -0.55 * 1B 2A 3B 4A

WFS 418 5 9.0 21 4.47 -0.65 0.97 *** -0.74 *** -0.75 *** 1B 2A 3B 4A

WFS 425 3 9.2 19 4.87 2.60 0.98 *** 0.49 * 0.52 * 1B 2C 3B 4B

WFS 437 10 9.0 20 4.44 1.49 0.94 *** -0.14 (n.s.) -0.17 (n.s.) 1B 2C 3B 4C

WFS 444 6 9.8 22 4.26 2.31 0.95 *** 0.00 (n.s.) -0.05 (n.s.) 1B 2C 3B 4C

WFS 457 5 9.5 20 2.33 1.46 0.23 (n.s.) 0.21 (n.s.) -0.52 * 1C 2C 3B 4A

WFS 482 6 9.8 22 3.93 0.98 0.98 *** 0.09 (n.s.) 0.11 (n.s.) 1B 2C 3B 4C

WFS 618 4 11.5 17 4.11 2.30 0.98 *** -0.03 (n.s.) -0.05 (n.s.) 1B 2C 3B 4C

WFS 667 NA 9.8 17 6.19 1.64 0.93 *** 0.61 * 0.64 ** 1B 2B 3B 4B

d15N vs ELD 

Rho

d13C v ELD 

Rho

d13C v d15N 

Rho

Isotopic 

interpretations
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Table 5.6. Height and diametric location within the eye-lens of first transition from quickly 

increasing δ13C to quickly decreasing δ13C in eye-lens profiles (Carbon Bump). Fish are grouped 

by maturity and capture location [West Florida Shelf (WFS juvenile or WFS adult), Campeche 

Bank (Mexico), and the north Atlantic Ocean off the coast of southeast Florida (SE-FL)] n = 

number of fish for which the feature occurred in the eye-lens profile for that group.  

 

  n 

Mean ELD 

(± SE; mm) 

Min ELD 

(mm) 

Max ELD 

(mm) 

Mean 

height (± 

SE; ‰) 

Min height 

(‰) 

Max height 

(‰) 

WFS juvenile 33 1.88 ± 0.04 0.76 3.16 3.23 ± 0.18 0.86 4.91 

WFS adult 20 2.28 ± 0.13 0.76 5.10 3.03 ± 0.33 0.63 6.39 

Mexico 1 - - 1.38 - - 6.36 

SE-FL 1 - - 0.80 - - 3.97 

 

 

 

 

 

 

Table 5.7. Mean (± SE), min, and max proportion of the lifespan utilizing each available basal 

resource. Fish are grouped by size and capture location [West Florida Shelf (WFS juvenile or 

WFS adult), Campeche Bank (Mexico), and the north Atlantic Ocean off the coast of southeast 

Florida (SE-FL)]. Planktonic basal resource is represented by δ13C values ≤ -18‰, benthic basal 

resource is represented by δ13C   -15‰, mixed benthic and pelagic basal resources is 

represented by -18‰ < δ13C < -15‰. 

    n mean (±SE) min max 

WFS juvenile planktonic 55 0.20 ± 0.02 0.00 0.63 

WFS juvenile mixed - 0.75 ± 0.02 0.09 1.00 

WFS juvenile benthic - 0.05 ± 0.02 0.00 0.80 

WFS adult planktonic 30 0.18 ± 0.03 0.00 0.66 

WFS adult mixed - 0.75 ± 0.04 0.09 1.00 

WFS adult benthic - 0.06 ± 0.03 0.00 0.91 

SE-FL planktonic 3 0.03 ± 0.01 0.00 0.05 

SE-FL mixed - 0.39 ± 0.28 0.08 0.95 

SE-FL benthic - 0.58 ± 0.29 0.00 0.92 

Mexico planktonic 5 0.10 ± 0.03 0.00 0.18 

Mexico mixed - 0.82 ± 0.07 0.55 1.00 

Mexico benthic - 0.08 ± 0.08 0.00 0.38 
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Table 5.8. Percent by volume of diets consumed by 521 Red Grouper collected from the WFS 2007-2015. All Red Grouper were 

collected, and stomachs analyzed by the Fisheries Independent Monitoring program at the Florida Fish and Wildlife Conservation 

Commission. Size categories are listed in SL. Vertical line represents approximate size at 50% maturity. All prey items were identified 

to the lowest taxonomic level possible. Prey were aggregated to family for analysis as listed here. Prey were aggregated to higher 

taxonomic levels for graphical representation (Figure 5.8). Any grouping (family or higher) that comprised less than 1% of total prey 

for the dataset was classified as “other” for graphical representation.  

 

Family or higher 

taxon 

Grouping 

(Figure 5.8) 

0-100   

(n = 10)       

101-150 

(n = 41)  

151-200  

(n = 92) 

201-250 

(n = 154)  

251-300  

(n = 132) 

301-350  

(n = 51) 

351-400  

(n = 19) 

401+  

(n = 22) 

Algae other - - - 0.35 0.06 * - * 

Seagrass other - - - - - - - - 

          
Cnidaria other - - - 0.06 - - - - 

          

Decapoda unId Decapoda 0.85 2.56 4.66 1.14 3.37 1.05 0.27 0.40 

Alpheoidea shrimps - 1.38 6.28 1.13 0.66 - 0.31 - 

Caridae shrimps 37.48 0.99 0.84 0.85 0.31 0.12 * - 

Processidae shrimps - * - - - - - - 

Penaeidae shrimps 26.77 68.85 19.72 2.28 1.21 0.81 - - 

Penaeoidea shrimps - - 1.40 0.95 0.15 - - - 

Sicyoniidae shrimps - - 1.49 1.06 1.05 0.32 - - 

Stomatopoda shrimps - 0.83 1.50 1.73 1.56 0.91 2.26 0.67 

Porcellanidae crabs - 0.14 0.84 0.05 - - - - 

Anomura crabs - - 0.18 0.34 0.04 - - 5.55 

Paguroidea crabs - - 4.12 0.67 0.16 - - - 

Galatheidae crabs 22.69 0.00 1.40 0.04 - - - - 

Portunidae crabs - 2.50 9.90 10.85 0.49 - 1.68 - 

Pilumnoidea crabs - - - 0.17 0.00 - 0.00 - 

Pinnotheridae crabs - - 0.11 - - - - - 

Brachyura crabs 0.27 - 0.91 3.48 2.46 0.74 0.27 12.46 

Calappidae crabs - - - 4.22 - 6.66 3.03 6.78 

Leucosiidae crabs - - 2.81 0.49 0.36 0.07 0.34 - 

Goneplacidae crabs - 0.59 1.45 0.03 0.51 - - - 
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Table 5.8. (Continued) 
Family or higher 

taxon 

Grouping 

(Figure 5.8) 

0-100         101-150  151-200  201-250  251-300  301-350  351-400  401+  

Parthenopidae crabs - - - 1.72 - 0.70 - 0.62 

Majoidea crabs - 18.46 13.98 12.52 16.39 5.21 2.96 7.58 

Xanthoidea crabs 5.35 - 8.12 9.54 3.79 4.16 - - 

Scyllaridae lobsters - - 0.84 0.14 0.08 0.04 18.18 - 

Amphipoda other 0.15 - - * - - 0.02 - 

Isopoda other - - 0.04 - 0.07 - - - 

Mysida other 1.09 - - * - - - - 

Arthropoda other - - * 0.10 * - - - 

Ostracoda other - - * - - - - - 

Axiidea other - 0.88 0.09 - 0.55 0.14 - - 

Crustacea other - - 0.29 0.08 0.06 0.35 0.34 - 

Copepoda other - - * * 0.00 - - - 

          
Mollusca other - * - - 0.18 - 1.35 - 

Gastropoda other - - 2.53 0.15 0.07 - - - 

Bivalvia other - - 0.03 - 0.07 - - * 

Loliginidae squid - - 0.01 0.32 15.43 24.53 6.06 - 

Cephalopoda other - 0.37 0.05 0.05 * 0.04 - - 

          
Annelida other - 0.08 0.17 0.16 0.20 0.07 0.40 0.10 

Holothuroidea other - - - 0.15 - - - - 

Ophiuroidea other - - - - - * - - 

Tunicata other - - - 0.10 - - - - 

          
Actinopterygii unID fish 5.35 1.90 16.22 17.02 14.20 12.27 62.55 3.34 

Clupeidae pelagic fish - - - 5.94 6.15 - - 41.95 

Carangidae pelagic fish - - - - - 1.75 - - 

Anguilliformes demersal fish - - - 0.98 - - - - 

Apogonidae demersal fish - - - - - - - 3.70 

Balistidae demersal fish - - - - 0.15 - - - 

Batrachoididae demersal fish - - - 4.42 - - - - 

Blenniidae demersal fish - - - - - 0.11 - - 

Diodontidae demersal fish - - - - * - - - 
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Table 5.8 (Continued) 
Family or higher 

taxon 

Grouping 

(Figure 5.8) 

0-100         101-150  151-200  201-250  251-300  301-350  351-400  401+  

Haemulidae demersal fish - - - 0.05 3.27 3.15 - - 

Labridae demersal fish - - - 3.44 8.91 - - 0.20 

Lutjanidae demersal fish - - - - 1.45 - - - 

Muraenidae demersal fish - - - - - - - 14.81 

Monacanthidae demersal fish - - - 0.15 - 0.18 - - 

Opistognathidae demersal fish - - - 0.74 - - - - 

Pomacentridae demersal fish - - - - 6.18 8.06 - - 

Scaridae demersal fish - - - 11.29 - - - - 

Sciaenidae demersal fish - - - - - - - - 

Serranidae demersal fish - - - 0.98 7.82 28.59 - - 

Sparidae demersal fish - - - 0.01 2.55 - - 0.30 

Syngnathidae demersal fish - - - 0.05 - - - - 

Synodontidae demersal fish - - - - - - - 1.23 
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Figure 5.1. Collection locations and collection depths for all Red Grouper organized by standard 

length (SL) at capture. Bathymetry lines represent 100 m depth intervals. A. Collection locations 

for Red Grouper collected for stable isotope analysis 2015-2017. B. Collection locations for Red 

Grouper collected for stomach content analysis 2007-2015. C. Capture depth (m) as a function of 

standard length (mm) for Red Grouper collected for stable isotopes analysis. D. Capture depth 

(m) as a function of standard length (mm) for Red Grouper collected for stomach content 

analysis.   

  

A 

B 

C 

D 
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Figure 5.2. Eye-lens core isotopic values for all Red Grouper analyzed. Points are coded by catch 

location and maturity [West Florida Shelf (WFS juvenile or WFS adult), Campeche Bank 

(Mexico), and the north Atlantic Ocean off the coast of southeast Florida (SE-FL)].  A. 

Individual eye-lens core isotopic values. B mean (± SE) by location/maturity group. 

  

A 

B 
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Figure 5.3. Profiles of δ13C and δ15N as a function of eye-lens diameter for individual juvenile 

Red Grouper from the West Florida Shelf (WFS) ordered by standard length (SL). First x-axis is 

eye-lens diameter. Second x-axis is approximate standard length as computed using regression 

(2). Blue dots denote areas of the eye-lens for which δ13C increases faster than δ15N and red dots 

denote areas of the eye-lens for which δ13C decreases faster than δ15N in fish for which 

δ15N:ELD  rs > 0.5 and δ13C:ELD rs < 0.5. Fish for which δ15N:ELD  rs < 0.5 or δ13C:ELD rs > 

0.5 are noted with *. No sections of these δ13C profiles highlighted. Individual standard length is 

noted. In the case of SL ties, fish are presented in identical order to Table 5.4.  
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Figure 5.3 (cont.). Profiles of δ13C and δ15N as a function of eye-lens diameter for individual 

juvenile Red Grouper from the West Florida Shelf (WFS) ordered by standard length (SL). First 

x-axis is eye-lens diameter. Second x-axis is approximate standard length as computed using 

regression (2). Blue dots denote areas of the eye-lens for which δ13C increases faster than δ15N 

and red dots denote areas of the eye-lens for which δ13C decreases faster than δ15N in fish for 

which δ15N:ELD  rs > 0.5 and δ13C:ELD rs < 0.5. Fish for which δ15N:ELD  rs < 0.5 or δ13C:ELD 

rs > 0.5 are noted with *. No sections of these δ13C profiles highlighted. Individual standard 

length is noted. In the case of SL ties, fish are presented in identical order to Table 4. 
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Figure 5.4. Profiles of δ13C and δ15N as a function of eye-lens diameter for individual adult Red 

Grouper from the West Florida Shelf (WFS) ordered by standard length (SL). First x-axis is eye-

lens diameter. Second x-axis is approximate standard length as computed using regression (2). 

Blue dots denote areas of the eye-lens for which δ13C increases faster than δ15N and red dots 

denote areas of the eye-lens for which δ13C decreases faster than δ15N in fish for which 

δ15N:ELD  rs > 0.5 and δ13C:ELD rs < 0.5. Fish for which δ15N:ELD  rs < 0.5 or δ13C:ELD rs > 

0.5 are noted with *. No sections of these δ13C profiles highlighted. Individual standard length is 

noted. In the case of SL ties, fish are presented in identical order to Table 5.5. 

 

 



   

 

175 

 

 
 

Figure 5.5. Profiles of δ13C and δ15N as a function of eye-lens diameter for individual adult Red 

Grouper. Top row of panels indicate fish captured off the southeast coast of Florida (SE-FL). 

Remaining panels are fish captured on the Campeche Bank (Mexico). First x-axis is eye-lens 

diameter. Second x-axis is approximate standard length as computed using regression (2). Blue 

dots denote areas of the eye-lens for which δ13C increases faster than δ15N and red dots denote 

areas of the eye-lens for which δ13C decreases faster than δ15N in fish for which δ15N:ELD  rs > 

0.5 and δ13C:ELD rs < 0.5. Fish for which δ15N:ELD  rs < 0.5 or δ13C:ELD rs > 0.5 are noted with 

*. No sections of these δ13C profiles highlighted. Individual standard length is noted. In the case 

of SL ties, fish are presented in identical order to Table 5.5. 
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Figure 5.6. Profiles of δ13C as a function of eye-lens diameter for all West Florida Shelf (WFS) 

Red Grouper identified as having a “carbon bump.” Primary x-axis is eye-lens diameter. 

Secondary x-axis is approximate standard length based on regression (2). A. WFS Juveniles B. 

WFS Adults. Note different scales in both x- and y-axes between panels A and B.  

B A 
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Figure 5.7. Proportion of total lifespan utilizing each available basal resource. Fish are grouped 

by location/maturity [West Florida Shelf (WFS juvenile or WFS adult), Campeche Bank 

(Mexico), and the north Atlantic Ocean off the coast of southeast Florida (SE-FL)]. Planktonic 

basal resource: δ13C ≤ -18‰, benthic basal resource: δ13C ≥ -15 ‰, mixed basal resource: -18‰ 

< δ13C < -15‰ 
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Figure 5.8. Proportion by volume of diets consumed by 521 Red Grouper collected from the 

WFS 2007-2015. All Red Grouper were collected, and stomachs analyzed by the Fisheries 

Independent Monitoring program at the Florida Fish and Wildlife Conservation Commission. 

Size categories are listed in standard length (SL). All prey items were identified to the lowest 

taxonomic level possible. Prey were aggregated to general categories for analysis (see Table 5.8 

for families within each group). Any grouping (family or higher) that comprised less than 1% of 

total prey for the entire dataset was classified as “other” for graphical representation. Numbers at 

the tops of columns are total number of individuals included in that size class. 
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CHAPTER 6: SUMMARY AND CONCLUSIONS 

 

 Ecosystem modeling and fisheries stock assessments require large datasets consisting of 

life history parameters, diets, and the habitat needs of target species. I developed four novel 

interpretations for δ13C and δ15N in fish tissues, each of which is potentially useful in providing 

data to the stock assessment process. First, I showed that a consistent difference (constant 

partitioning offset) exists between the δ15N of muscle and liver within the same fish in a 

laboratory setting. I showed that the isotopic partitioning offset in wild fish can be compared to 

this constant value to infer movement across an isoscape.  Within the West Florida Shelf (WFS) 

context, similar species resulted in variable outcomes, suggesting differential habitat use and 

diets among species. I suggest that this method can be used as a screening technique for 

detecting movement or diet shifts in wild fish populations on short (weeks to months) timescales. 

Next, I showed that relative geolocation and evaluation of postlarval movement is possible using 

the historical approach of stable isotope values in fish eye-lens cores. This method can be used to 

understand habitat needs and movements in the earliest phases of life, which are difficult to 

sample in many fish species. Third, I showed that eye-lenses can be used to investigate the 

trophic and movement histories of individual marine fishes over the lifetime. By contrasting the 

eye-lens isotopic histories of two important benthic-modifying species, I showed that two species 

which play a similar ecological role as adults can have disparate trophic histories. Finally, I 

utilized the tools devised earlier to present a lifetime depiction of the trophic and movement 

histories of a single species from several sub-regions and two maturity classes. Throughout this 

work, I showed that isotopic tools can be used to monitor the stability of trophic and movement 
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histories over time and that isotopic data can be combined with traditional fisheries data such as 

stomach contents to increase knowledge of target species. Each method developed here is 

directly applicable to fisheries data in the Gulf of Mexico, and each has the potential to be 

adapted to systems around the world. 

 

CHAPTER SUMMARIES 

Chapter two: Isotopic differences between muscle and liver in captive and wild fishes 

 Tissue δ15N values have been used to indicate trophic position for a wide variety of 

organisms. However, several authors have noted that difference exist between the values in 

various body tissues such as muscle and liver (Gaston and Suthers 2004; Chen et al. 2012; 

Schmidt et al. 2016). Differential turnover rates (Elsdon et al. 2010; Heady and Moore 2013) and 

differences in the organismal uses (Bunnell et al. 2007; Barreto-Curiel et al. 2018) of these 

tissues can explain some of the observed difference between δ15N in the liver and muscle of a 

single individual. Stable isotope values in muscle tissue are often controlled by growth in fish 

(Varela et al. 2012; Davis et al. 2015; Mohan et al. 2016) while stable isotope values in liver are 

controlled by metabolism (Matley et al. 2013). In addition, the turnover in fish muscle tissue 

(and its proxy δ15N value) occurs on a timescale of approximately one to two months (Guelinckx 

et al. 2007; Colborne and Robinson 2013), while the turnover in liver tissue occurs on a 

timescale of days to weeks (Matley et al. 2013). It is also known that the difference between 

available resources and the need for a nutrient can drive the fractionation within a tissue or 

organism. For example, fractionation in δ13C in photosynthetic diatoms has been shown to be 

highly correlated with light availability (Radabaugh et al. 2014). Following this logic, it would 

make sense to suspect that a high-energy tissue such as liver would be more selective of nitrogen 
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atom incorporation than a longer-term storage tissue such as muscle, where high energy 

investment into isotopic discrimination may be wasted.  

 The objectives of this study were two-fold. The first goal was to determine whether a 

consistent difference (constant partitioning offset: CPOM-L) existed between the liver and muscle 

δ15N values for a variety of marine teleosts fed a consistent diet over time. To accomplish this 

goal, I used a literature review of captive, diet-switch studies examining marine teleosts. The 

second goal was to identify local reef-fish species for which liver and muscle tissue δ15N fell 

within the range of CPOM-L. To do this, I compared the CPOM-L value to δ15N differences 

calculated between muscle and liver of wild-caught reef-associated fishes captured from neritic 

waters surrounding Florida, USA.  

 For the literature review, I selected studies that used captive, diet-switch techniques of 

marine teleosts. All studies followed individual fish for a minimum of three months post diet-

switch. I used the published end values for muscle and for liver of fish in control groups in each 

study. I found that across a variety of independent parameters: species, temperature, region, and 

others, a relatively tight relationship existed between values of δ15Nmuscle and δ15Nliver (Δδ15NM-L), 

with average (± SE) for Δδ15NM-L being 1.67 ± 0.14‰. I dubbed this parameter the constant 

partitioning offset (CPOM-L). 

 I then compared this average difference to the differences I calculated (Δδ15NM-L) for 575 

individuals from eight wild reef-fish species collected in the eastern Gulf of Mexico (West 

Florida Shelf: WFS) and southeast Florida (SEFL).  Among species, I found differences in the 

mean value of Δδ15NM-L. Mean values could not be distinguished from CPOM-L in five species, 

White Grunt, lionfishes, Golden Tilefish, Red Snapper, and Black Seabass. However, values of 
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Δδ15NM-L were significantly lower than CPOM-L in three species, Gray Snapper, Graysby, and 

Red Grouper.  

 I investigated differences in both sex and season for a few of the species. I investigated 

whether male and female White Grunt showed differences in their Δδ15NM-L values during the 

spawning season. I found that reproductive females differed significantly from CPOM-L, but 

males and immature fish did not. I also investigated differences in season for both Red Grouper 

and Black Seabass. Although Δδ15NM-L was significantly lower than CPOM-L in both species for 

all seasons, differences existed among seasons, with spring having the lowest value of Δδ15NM-L 

in Red Grouper and winter having the lowest value of Δδ15NM-L in Black Seabass.  

 Due to the high consistency of Δδ15NM-L values observed in controlled, diet-switch 

studies of marine teleosts, I suggest that the value is robust and applicable worldwide. I further 

suggest that deviations from CPOM-L in wild fish populations may be attributable to movement of 

either the fish itself or the prey. If true, differences in Δδ15NM-L could be used as a screening tool 

to assess movement in a variety of marine teleost predator and prey species around the globe. 

However, this claim requires additional investigation. Physiological stressors such as starvation 

(Colborne and Robinson 2013; Varela et al. 2015; Barreto-Curiel et al. 2017) or reproduction 

(Martin et al. 1993) may affect bulk isotopic values in various body tissues. Therefore, further 

investigations using compound specific isotope analysis should be used to probe the 

physiological mechanisms for the observed difference between the δ15N values in liver and 

muscle tissues. In addition, highly migratory species such as tunas, migratory baitfish and others 

must be investigated to verify patterns in bulk isotopes as well as individual amino acids.  

 While questions remain contrasting the role of movement and the role of physiology, the 

observation of a consistent value for Δδ15NM-L is quite useful. Fish for which Δδ15NM-L conforms 
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to CPOM-L can be assumed to be in good condition and eating a consistent diet. Fish for which 

Δδ15NM-L differs from this value should be further investigated for the reason for the difference, 

whether it be physiological or movement-related. 

 

Chapter three: Using eye-lens cores to assess postlarval locations 

 Traditionally, the study of fish larvae has been conducted using direct-capture techniques 

such as plankton net tows (Eldridge 1988; Schobernd et al. 2018). However, a few factors make 

this approach both cumbersome and potentially misleading. Once larvae are collected in the 

field, they must be identified microscopically. The process is time-consuming and many larvae 

within the same family are difficult to visually distinguish (Schobernd et al. 2018).  In addition, 

larvae spend a minimum of one month in the water column (Cowen 1991; Powell and Tucker 

1992; Drass et al. 2000). Finding and identifying larvae in the water column does not aid in 

locating spawning sites (Burghart et al. 2014) or give any indication of differential survival to 

later life stages (Takasuka et al. 2004; Tolley et al. 2012).  

 Scholars in both the US and UK have shown that stable isotopes (δ13C and δ15N) in eye-

lenses can be used to indicate patterns of movement and diets over the lifetime of fish (Wallace 

et al. 2014; Quaeck-Davies et al. 2018). The earliest records within each eye-lens are created 

with the first instance of nutrient uptake. In sharks and rays, the nutrition from the maternal 

investment of yolk can be observed (Simpson et al. 2019). However, in subtropical teleost fish, 

yolk sac feeding only lasts a few days (Colin et al. 1996), rendering the initiation of first feeding 

(~72 h) the first available isotopic record within the eye-lens (Kurth et al. 2019).  The material of 

the outer cell layers of a lamina account for the highest percentage of the total mass. Due to 

analytical constraints, the minimum mass of 100 μg from an eye-lens core incorporates ~ 1 

month of growth. Therefore, the isotopic values of the eye-lens core are most representative of 
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the latter half of the larval period (postlarval period). I used the δ13C and δ15N in eye-lens cores 

of four reef-fish species as a historical record to document larval diets and locations for 

individuals that survived to the juvenile period. The first objective of this study was to create 

universally effective rules of interpretation for correlations between δ13C or δ15N and external 

factors such as fish size at isotopic incorporation or location at capture. These rules can be 

applied to numerous additional species both on and off the WFS.  The second objective was to 

isotopically identify difference in habitat use of four species found in broadly similar regions of 

the northern WFS. 

 To accomplish these goals, I collected juveniles from four species of reef fish on the 

northern WFS, Black Seabass (Centropristis striata), Gag (Mycteroperca microlepis), Red 

Grouper (Epinephelus morio), and Red Snapper (Lutjanus campechanus). I delaminated the eye-

lenses of these fish until cores 0.5 – 1.0 mm remained. If tissue mass was insufficient to be 

processed by Isotope Ratio Mass Spectrometer (IRMS), I combined the cores from both eye 

lenses of the same fish. Each eye-lens core was packaged in tin capsules and analyzed for bulk 

δ13C and bulk δ15N using IRMS. I conducted Spearman rank correlations (rs) between the 

isotopic value in the core and external parameters such as eye-lens diameter (a proxy for fish 

length/age at core-completion) and capture location (a proxy for juvenile location). I created a 

series of interpretation rules to describe the movement patterns of the individual larvae at the 

time of eye-lens core formation. I assumed that all larvae were at a similar trophic position, 

leaving location as the dominate driver of differences in the observed isotopic values. I also used 

a Bayesian statistical routine (SIBER; Jackson et al. 2011) to characterize the isotopic breadth 

and relative geographic location of larvae in each of the four species.  
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 I found that Black Seabass was the most distributed species during the postlarval period 

with the largest central geographic area, as well as the species situated closest to shore during the 

larval period. According to correlations between the eye-lens core diameter and isotopic value, 

some Black Seabass seemed to move southward during the larval period. Historically, Black 

Seabass in the Gulf of Mexico are known to be centered in the Big Bend region of Florida, with 

adults and juveniles spread throughout the region (Bullock and Smith 1991; Hood et al. 1994; 

Weaver 1996). No specialized spawning areas are known to exist, lending credence to the idea of 

distributed spawning and larval locations throughout the northeastern WFS. Although Black 

Seabass are documented as far south as Tampa Bay, catch seems to be seasonal, and it is 

unknown whether spawning occurs this far south (Bullock and Smith 1991). A general drift 

southward by some larvae could assist in explaining the seasonal nature of Black Seabass catches 

in the southern extent of the range. 

 According to isotopic records in eye-lens cores, Red Grouper had the smallest central 

larval geographic region, situated farthest to the southwest of the four species. While pits dug by 

adult Red Grouper have been documented across the WFS, high concentrations have been found 

in the Steamboat Lumps Marine Protected Area (Coleman and Koenig 2010; Wall et al. 2011; 

Grasty et al. 2019). These known biological patterns corroborate the central isotopic values. 

While isotopic data did not indicate significant correlation with juvenile capture location, 

correlation between larval size and isotopic value suggested movement both north and inshore 

during the latter half of the larval period. The assumed distributed spawning agrees with the lack 

of correlation between juvenile capture locations and isotopic value.  

 Gag postlarval distribution was similar to Red Grouper, but the central area was farther 

north. The Madison-Swanson Marine Protected Area (just north of Steamboat Lumps) was 
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created, in part, in an effort to preserve Gag spawning populations (Coleman et al. 2011; Gruss et 

al. 2017), corroborating the isotopic data. There was a significant correlation between δ13C and 

juvenile location in the inshore-offshore direction, an indication of inshore movement over the 

postlarval period. Inshore movement is well documented in larval Gag (Weisberg et al. 2016), 

with juveniles spending their first year in oligohaline portions of estuaries that empty into the 

Gulf of Mexico. 

 Red Snapper isotopically overlapped with all three other species. While significant 

correlation existed between δ15N and juvenile location in the north-south direction, no correlation 

was found between either isotope (δ15N or δ13C) and larval size, suggesting that larvae were not 

moving in a single direction with size. Little is known about the life history patterns of Red 

Snapper on the WFS. However, individuals of all sizes are found on relatively deep reefs in 

comparison to the other three species (SEDAR 2018). Isotopic data from eye-lens cores increase 

the evidence of multi-generational Red Snapper re-establishment on the WFS.  

 Each of the isotopic results presented above is consistent with known or inferred life 

history characteristics from decades of study in each of the four study species. They demonstrate 

the utility of isotopic values in eye-lens cores as indicators of location during the postlarval 

period. This technique is applicable to a wide variety of species including valuable fisheries 

species on the WFS or other coastal systems with well-known isoscapes. These techniques could 

also be applied to migratory fishes such as tunas and billfish, or even deep-sea fishes. The 

technique can be paired with a variety of new and traditional fisheries techniques as well. By 

pairing this technique with fish egg DNA barcoding (Burghart et al. 2014; Burrows et al. 2018) a 

complete picture of the egg and larval period can be developed for a species. This could reduce 

cost and manpower necessary for larval fish study and increase the understanding of essential 
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fish habitat for a variety of important species (Steimle et al. 1999; Lindeman et al. 2000; Drohan 

et al. 2007). In addition, eye-lens cores can be harvested and compared between members of a 

population over a several year period to investigate changes in central geography over time, or 

other changes that may occur with changes in climate or physiochemical environment.   

 

Chapter four: Contrasting isotopic profiles in two benthic-modifying fish species 

 While eye-lens core isotopes can be used to study the geography of larvae, the entire eye-

lens can be used to investigate the trophic and movement histories of individual fish. These data 

can be a useful addition single-species management plans and could be of use as ecosystem 

modeling becomes more integrated into the fisheries management process. I compared the 

lifetime isotopic records from adult Tilefish (Lopholatilus chamaeleonticeps) with those from 

adult Red Grouper. These two species were chosen because of their similar ecological roles 

during the adult phase. Both are demersal species found on the WFS and both are generally 

considered to be sedentary (Coleman and Koenig 2010). Both dig depressions in soft sediment 

and are assumed to reside near the depressions they created (Able et al. 1982; Ellis et al. 2017). 

However, historical evidence suggests some movement of juvenile Red Grouper across the WFS 

(SEDAR 2015), whereas Tilefish are not known to change location with length (SEDAR 2011). 

The primary objectives of this study were to discover whether differences in the lifetime eye-lens 

isotope profiles of Tilefish and Red Grouper were similar and whether inferences could be made 

about diet changes or movement over the lifetime using these data.  

 To address these questions, I conducted bulk isotope analysis of δ13C and δ15N within the 

eye-lenses of adult Tilefish and Red Grouper. Once collected, I delaminated each eye-lens into 

several successive laminae, with the innermost eye-lens lamina representing the postlarval stage 



   

 

188 

 

and the outermost lamina representing the most recent few months of life. I created rules for 

interpreting these data based on correlation between the isotopic value (δ13C or δ15N) and the 

eye-lens diameter or correlation between the two isotopic values. I interpreted high correlation 

values in all three tests to indicate that fish were depending on the same basal resource 

throughout life and moving little across the landscape over the lifetime. Low correlation in one 

or more of the tests indicated some movement or change in basal-resource dependence over time.  

 I found that all individual Tilefish had tight correlations in all three tests. Both δ13C and 

δ15N correlated closely with eye-lens diameter, and both correlated closely with one another. We, 

therefore, suggest that Tilefish can be used as a model of lifetime isotopic consistency. If another 

species had correlation values as high as Tilefish, then that species could be considered highly 

sedentary with a consistent basal-resource dependence over the lifetime.  

 Results for Red Grouper correlations between isotopes and eye-lens diameters were quite 

different. While δ15N correlated closely with eye-lens diameter throughout life, δ13C correlations 

were weak in most fish. In turn, δ13C did not correlate closely with δ15N. Historic stomach 

content records of Red Grouper suggest that the species goes through several shifts in diet before 

reaching maturity (Weaver 1996), potentially explaining large fluctuations in the lifetime δ13C 

record. Despite similarities in Tilefish and Red Grouper as adults, they seem to have quite 

different routes of arriving at the evident stability observed within adults from both species.  

 In future studies using eye-lens stable isotopes, the interpretation rules developed here 

can be applied to a wide range of fish species on the WFS as well as fish species inhabiting other 

areas with established isoscapes. For example, the movement histories of Gag are thought to be 

well-established. However, the use of isotopic eye-lens profiles may elucidate movements or diet 

changes that have not been observed to date. Many other important species on the WFS such as 
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other groupers, grunts, and even some snappers, have little-known life history. The use of eye-

lens isotopic profiles may aid in understanding of these species. In addition, eye-lens profiles of 

known seasonal and lifetime migrators such as tunas and mackerels (family: Scombridae) could 

be used as additional model species for comparison of species with unknown trophic or 

movement histories. Regardless of species, eye-lens isotope profiles can provide information 

regarding diet and movement over the entire lifetime and has the potential to streamline life 

history studies for use in ecosystem modeling, and eventually, fisheries stock assessments around 

the globe. 

 

Chapter five: Red Grouper lifetime isotopes and the carbon bump 

 In this chapter, I utilized the tools developed in chapters three and four combined with 

traditional fisheries data to create a clearer depiction of the Red Grouper life history. By 

comparing the eye-lens core δ13C and δ15N values between maturity-classes, I showed that Red 

Grouper larval distribution is relatively consistent across time on the WFS. By comparing the 

eye-lens core isotopic values among capture areas, I showed that isotopic values differed among 

the three regions studied [WFS, Campeche Bank (Mexico), and southeast Florida (SEFL)]. 

These results suggest that Red Grouper spawned in one area, such as the Campeche bank of 

Mexico do not move to another area, such as the WFS, with growth. Although population 

genetics has shown a high degree of mixing among these populations (Zatcoff et al. 2004), 

tagging data suggests little long-distance movement (Burns 2009).  

 In this study, the largest eye-lens core isotopic differences were between fish from 

Mexico and those from SEFL, with fish from Mexico having much higher values of δ15N than 

SEFL fish. This result aligns with the known isotopic trends for the region. Background δ15N 
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values on Campeche Bank are quite high (Peebles and Hollander 2020) while values for the 

Florida Reef Tract are probably much lower (Curtis 2016).   

 In chapter five I showed that most Red Grouper δ15N profiles over the whole eye lens 

were positively correlated with ELD, suggesting increasing trophic position with growth, as 

occurs in other predatory species (Buchheister and Latour 2010). However, I showed that δ13C 

peaked during the first year of life, suggesting movement or diet switching as a mechanism for 

undulations in the δ13C profile over the lifetime.  

 Over 65% of both juvenile and adult Red Grouper from the WFS showed a similar 

pattern of values in the δ13C over the lifetime, with a steep increase in δ13C early in life, followed 

by a short-term decrease before leveling over the remainder of the lifetime. Due to its high 

prevalence, I dubbed this feature of the δ13C profile “carbon bump” and quantified both height 

and location in each fish. I found that the mean ELD for the apex of the carbon bump was 

approximately 2 mm, corresponding to a standard length of approximately 100 mm. I found that 

the mean height of the carbon bump was approximately 3‰ above the initial δ13C values from 

the eye-lens core.  

 I found that the feature was quite rare in both Mexico and SEFL. Of five adult Red 

Grouper from Mexico, only one showed the feature. The remainder showed increasing, linear 

δ13C profiles with strong correlation between δ13C and δ15N. Of three adult Red Grouper from 

SEFL, one fit the definition for having a carbon bump, but the δ13C eye-lens profile was visibly 

quite different from the WFS fish with a carbon bump. The remaining fish from SEFL also 

showed increasing, linear trends in δ13C with high correlation between δ13C and δ15N. 

 I compared basal-resource dependence among the regions and maturity classes. I found 

that fish on the WFS and Campeche Bank, Mexico spent approximately 75% of their lifetime 



   

 

191 

 

dependent on a mixture of both planktonic and benthic basal resources. However, the earliest life 

stages were dependent on planktonic basal resource, and several individual fish became 

dependent on benthic resources at the apex of the carbon bump. The distribution of lifetime basal 

resource dependence was starkly different in the Red Grouper collected in SEFL. Only the 

earliest life history stage was dependent upon planktonic basal resource, the remainder of the 

lifespan were dependent upon mixed for benthic resources, with an average of 58% and a high of 

92% of the lifetime represented by benthic resource dependence. This difference seems 

reasonable if Red Grouper captured in SEFL spend their entire lifetime within this clear-water, 

coral-reef ecosystem.  

 I found that the isotopic results corroborated existing fisheries data. Through stomach-

content analysis, I found that small Red Grouper from the WFS (in similar size ranges to the 

height of the carbon bump) consumed large proportion of shrimps and crabs. These prey are 

benthic feeders themselves, relying on a benthic food web. Larger Red Grouper relied more 

heavily on fish prey, which are more likely to combine both benthic and planktonic resources. 

While I did not have access to larval Red Grouper stomachs, previous studies have shown that 

Red Grouper rely on zooplankton, especially copepods, during the postlarval period (Colin et al. 

1996), which themselves rely on a phytoplankton as their primary food sources (Umezawa et al. 

2018), indicating a planktonic basal-resource dependence during this life stage.   

 I used capture location and capture depth data for over 600 individuals (between the 

isotope and stomach content datasets) to investigate depth distributions for Red Grouper on the 

WFS. I found that the smallest individuals were captured in a wide range of depths (2 – 40 m), 

with most individuals <150 mm SL captured in < 3 m water depth and were captured over only a 

few months period from August to October. Fish over 150 mm SL were rarely observed in water 
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shallower than 10 meters, suggesting cross-shelf movement with ontogeny. Catch records of Red 

Grouper dating back to the earliest published works indicate a similar trend (Moe 1969; Burns 

2009; SEDAR 2015).  

 Future researchers can use similar techniques of combining eye-lens bulk isotope data 

with other fisheries datasets to investigate lifetime changes in diet and movement. In fact, with 

increased certainty in the interpretation of isotopic data produced by corroboration with catch 

and stomach-content records, it is possible that eye-lens isotope records may eventually replace 

traditional techniques when incorporating traditionally under-studies species into ecosystem 

models.   

 

CONCLUSIONS AND FUTURE DIRECTIONS 

 I showed that stable isotopes can be used as natural tags to investigate movement and diet 

over both short (weeks to months) and long (lifetime) time scales. The difference between the 

δ15N values in muscle and liver of an individual fish can indicate movement along the δ15N 

gradient in either the fish itself or its prey. The eye-lens core values of both δ13C and δ15N can 

distinguish among spawning locations in species with broadly similar spatial patterns and may be 

a useful tool for investigating postlarval movements of various species. Lifetime profiles of both 

δ13C and δ15N can indicate whether movement or diet changes have occurred over the lifetime of 

individual fish. Some species, such as Tilefish, remain essentially stationary, relying on 

consistent food sources throughout the lifetime. Others, such as Red Grouper, may move or 

switch prey types several times during life. Finally, these data can be combined with a variety of 

other data types such as stomach content and capture location to present a comprehensive 

account of the movement and diet patterns within a species or suite of species. Each of these 
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tools may be applied to the study of teleosts or other marine animals worldwide, provided a 

stable and known isotopic background for the region. In fact, these isotopic tools may be useful 

in several difficult-to-study groups such as deep-sea fishes, marine mammals, or turtles. 

 While the interpretation of bulk δ13C and δ15N isotopes is an accessible tool with 

widespread application, a few additional pieces of information may improve utility and help 

segregate inputs that are not currently possible. First, compound-specific isotope analysis can 

segregate the isotopic values in amino acids that fractionate within the body from those that are 

incorporated wholesale (McMahon et al. 2015; Ohkouchi et al. 2017). Using this technique, 

researchers are able to segregate amino acids that represent location from those that represent 

trophic position, increasing confidence in geographic interpretations (Graham et al. 2010). 

However, the method remains time-consuming and expensive, with hours of wet-chemistry 

required to segregate the amino acids prior to analysis (Ohkouchi et al. 2017). 

 Incorporating δ34S or δ18O into analyses may also improve geographic and trophic 

certainty. By creating an isoscape of δ34S, researchers have a third geographic axis on which to 

overlay their observations (Rossman et al. 2016). In addition, δ34S is not appreciably fractionated 

with trophic position, so this isotope may be easier to interpret for geographic location than 

either δ13C or δ15N (Dance et al. 2018). Finally, δ34S can be used as an additional indicator of 

benthic dependence, potentially segregating the confounding influences of movement and diet 

shifts inherent in δ13C interpretation. The values of δ18O within tissues are dependent upon 

salinity and temperature fluctuations (Darnaude et al. 2014). While salinity within the open 

ocean should remain essentially constant, temperature fluctuates much more in shallow water 

than in deep water, giving a depth signal along with a range of temperatures in which the fish 

was living. Regardless of which isotope is chosen, adding additional isotopes has the potential to 
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provide a fourth axis for geographic and dietary interpretation (Dance et al. 2018; Skinner et al. 

2019). 

 Finally, clarifying the timing and connection between eye-lens isotope incorporation and 

growth parameters will improve researchers’ ability to relate changes in isotopes to changes in 

diet or other ontogenetic shifts. To date, a single study has investigated the timing of isotopic 

incorporation within the eye-lens of captive fish (Granneman 2018). The study found that 

isotopic incorporation begins approximately 16 d post diet change. However, all fish within the 

study were less than one year old. At this life stage, fish are continuing to grow quickly, 

increasing eye-lens diameter at a comparable rate (Casselman 1990). Investigating the isotopic 

incorporation time required for both smaller and larger individuals could help constrain some of 

the assumptions made here. Investigations into eye-lens isotope incorporation of fast-growing 

fish in contrast to slow-growing fish of the same age could provide additional information about 

the relationship between body growth, eye-lens growth, and isotopic fractionation prior to 

incorporation into the eye lens. Additional studies relating eye-lens diameter, lamina number, or 

some other parameter to age would also aid in pinpointing isotopic interpretations to an even 

more specific time-period.   

 The interpretation of bulk δ13C and δ15N isotopes within the muscle, liver, and eye-lenses 

of teleost fishes are important tools for both short-term and long-term investigation of movement 

and diet. In all cases explored here, isotopic interpretations corroborated life history, diet, and 

movement information known from decades of study. These tools are applicable in a wide 

variety of species and locations, if background isoscapes exist for the region. Eye-lens isotope 

profiles may help expand information about difficult-to-study species such as marine mammals, 

turtles, and deep-sea fishes. Results of these analyses can be combined with traditional fisheries 
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data such as capture location, conventional tagging data, and stomach content data to present 

both short-term and long-term accounts of movement and diet. Precision may be increased by the 

addition of compound-specific isotope analysis and additional isotopes, but the use of bulk δ13C 

and δ15N seems sufficient to increase understanding of a wide variety of species at this time.  
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APPENDIX A. PERMISSION TO RETAIN FISH AND IOCUC APROVAL 

 

 
 

 

Figure AA.1. Letter of agreement granting explicit permission for researchers to collect and 

retain Red Grouper below minimum legal size.  
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Figure AA2. University of South Florida Institutional Animal Care and Use Committee 

(IACUC) approval for post-mortem fish tissue dissection. Letter was renewed annually 2016-

2020. 
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APPENDIX B. EXAMPLE FIELD AND LAB DATASHEETS 

The following are the datasheets used to record all fish collection data and eye-lens peeling data.  

 

 
 

Figure AB.1. Fish collection datasheet. This sheet includes information on specimen length, 

weight, sex, and specific samples extracted from that individual. This datasheet is completed in 

conjunction with protocols presented in Appendix A.1 

 

Collection Number: ________________________________Species ID:______________________________

SL FL TL TW GW LW Sex Otolith Eye Liver Muscle

(mm) (mm) (mm) (g) (g) (g) M,F,U Y,N Y,N Y,N Y,N

& vial # & vial #

Specimen # JV # Notes
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Figure AB.2. Eye-lens peeling datasheet. This sheet includes information on the eye-lens 

diameter, laminar midpoint, lamina number, and vial identification for all samples peeled from 

the eye lens of a single fish. This datasheet is used in conjunction with instructions located in 

Appendix C. 

  

Collection Number: ___________________Species name:_______________ Specimen #:________ JV #:________

Lens 

Diameter 

(μm)

Lamina 

Midpoint 

(μm)

Lamina 

Number 
(from 

center)

Vial ID Notes
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APPENDIX C. SAMPLE PREPARATION PROTOCOLS 

 

Each of these numbered protocols can be printed and used by a technician or student to complete 

the steps required to get samples from the fish to completing sample preparation for the Isotope 

Ratio Mass Spectrometer. 

Protocol 1. Extract samples from whole fish and dry/pulverize liver or muscle samples 

Materials 

• Aluminum foil 

• Otolith vials 

• Write-in-the-rain paper 

• Pencil 

• Sharpie 

• Zip top or Whirlpak bags 

•  

Extracting samples 

1. Prepare materials ahead of time by: 

• Writing # for sample on outside of vial 

• Writing # for sample on outside of Zip top or Whirlpak bag 

• Writing Collection number, species, specimen #, & # on small write-in-the-rain 

paper tag 

• Cutting 3-inch square piece of aluminum foil & writing # & either L or M on the 

upper left corner in sharpie 

2. Remove fish carcass from cooler, ice, or freezer.  

3. Record Collection Number & Species at the top of the Specimen datasheet 

4. For each specimen measure and record SL, FL, TL, Total weight 

5. Assign each specimen a #.  

6. Each specimen from the same reference receives a sequential number starting at 1 

7. Slit belly of fish if intact 

8. Check sex of fish 

9. Record sex of the fish if known. Record “U” if unknown or unchecked 

10. Remove whole liver if possible 

11. Weigh liver & record 

12. Remove remainder of guts 

13. Record gutted weight of fish 

14. Cut 2 cm x 2 cm piece from liver. Place on aluminum foil labeled “L” for that sample. 

Fold foil  

15. Cut 2 cm x 2 cm piece of muscle from upper left shoulder. Remove skin. Place on 

aluminum foil labeled “M” for that sample. Fold foil 

16. Remove otoliths. Rinse in DI water and place in otolith vial for that sample. Place otolith 

vial in tray with other otoliths. 
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17. If fish is small, sever the head and place the whole head in the zip top bag. If fish is large, 

remove both eyes whole and place eyes in zip top bag. 

18. Place folded aluminum foil with liver and muscle into bag with eyes/head. 

19. Check each box for samples taken (Otoliths, eyes, liver, muscle) 

20. Place whole package into freezer with like samples. Make sure outer bag is labeled. 

Drying liver/muscle samples 

21. Remove samples from freezer 

22. Open aluminum foil to make sure # is written on the inside 

23. Place opened foil packet into drying oven 

24. Dry in drying oven for 48 hours 

25. Once dry, place sample in “Wig-l-bug” to homogenize sample 

26. Once ground, place sample into small, numbered plastic vial.  

27. Clean Wig-L-Bug between each use using air from compressor. 
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Protocol 2. Fish Eye Lens Peeling Protocol: Water Method 

Materials 

• Dissecting microscope with micrometer 

• Scalpel 

• Fine-tipped forceps (2 pairs) 

• Glass petri dish 

• Clear tape 

• Small container DI water (2) 

• Kim wipes 

• Small squares aluminum foil (around 20) 

• Gloves 

• Small vials  

• Marking pens 

• Datasheets 

• 2 beakers (one filled with DI water. The other empty) 

Methods 

1. Use a small ruler to check the microscope’s micrometer. Make sure that 10 marks on the 

micrometer = 1 mm on the ruler. You will be using this to measure the lens diameter. For 

most scopes, power 10 should be the correct setting 

2. Thaw just one sample at a time. Thawing is fast, peeling is slow 

3. Once sample is thawed, use scalpel to gently cut a slit in the eye tissue overlying the lens 

4. Gently grasp the lens with forceps & cut the ligament and muscle holding the eye lens in 

place 

5. Place the lens on the glass petri dish 

6. There will still be a small envelope of tissue surrounding the lens with a small amount of 

fluid behind it. Gently peel this envelope of tissue off the lens 

7. Add enough water to the petri dish to cover the lens. 

8. Examine the lens under the microscope. Look for the striations running from one pole to 

the other. 

9. Position the lens so that you can peel layers off parallel to the striations. 

10. After positioning the lens, but before peeling any layers, use the stage micrometer to 

measure the diameter of the lens & record. 

11. Begin peeling by holding the lens in place with one pair of forceps & gently digging the 

other pair into the outer layer of lens. This should result in a large section of the outer 

layer peeling away. Place all lens peeled away onto one piece of aluminum foil. 

12. Continue peeling until you have peeled away the entire outer layer and the eye lens is 

relatively smooth again.  

13. Remove the lens from the dish & dump the water into the empty beaker. You may also 

need to use a Kim wipe to get the sticky eye lens material off the petri dish 

14. Add water to cover the lens from the beaker of clean DI water  

15. Measure the diameter of the lens. Record on datasheet 

16. Begin peeling another layer parallel to the striations. Continue until the lens is relatively 

smooth again.  

17. Measure again.  

18. Repeat steps 7-17 until diameter of lens is approximately 0.5-0.7 mm. This is the core.  
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19. If you need to run eye lens layers in duplicate, you will need to peel the second eye as 

well (see steps 21-26 below). There will not be enough material to get two samples from 

this inner core layer. 

20. Place each layer into a labeled vial. Most should be dry by this time. If not, leave the lid 

off the vial until the layer is dry.  

Peeling second lens from the same fish 

21. Repeat steps 1-18 on the second eye. 

22. As before, record diameter on datasheet.  

23. If diameters of second lens are within 0.1 mm of first and there are the same number of 

layers, then the material from both eyes can be combined into the same vial for the entire 

lens.  

24. If diameters of second lens are not the same as the first, or the numbers of layers are not 

the same, layers cannot be combined into the same vial.  

25. More common: outer layers are not the same diameter or number of layers, but inner 2-3 

are. These inner layers may be combined. These are the ones for which extra material is 

generally needed for sufficient mass. 

26. Discard all material that does not get use (in a single vial for that layer number) 

Drying eye lens layers 

27. Leave lids open on plastic vials 

28. Place vials into vial holder 

29. Place vial holder into drying oven at least overnight. Check on vials in morning. 

30. If eye lens layers are dry, close lids on all vials 

Filling out the eye lens peeling datasheet 

Collection Number: __________________________Species ID:________________ Specimen 

#:_______ JV #:______ 

Lens 

Diameter 

(mm) 

Lamina Midpoint 

(mm) 

Lamina 

Number 

(from 

center) 

Vial ID Notes 

3.5     

 2.95 7 1100  

2.4     

 2.2 6 1101  

2.0     

 1.8 5 1102  

1.6     

 1.4 4 1103  

1.2     

 1.0 3 1104  

0.8     

 0.65 2 1105  

0.5     

 0.25 1 1106  
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1. Begin by filling out the information at the top of the page (Collection number, species ID, 

Specimen #, JV#)  

2. Each time a lens diameter is measured, write that diameter (in mm) in the left-hand 

column (Red text) 

3. When you place that layer into a vial, fill out the vial ID (Blue Text) 

4. Once you have finished peeling the entire lens, record the layer number. Begin with #1 

being the most inner layer and increase numbers until you get to the outer layer (Green 

Text) 

5. Calculate the lamina midpoint as the mean of the diameters above and below that line. 

(Purple Text) 

6. For the final “Lamina midpoint” record half the value of the last diameter 

7. If peeling a second eye lens from the same fish, draw a line on the datasheet. Complete 

Lens Diameter & Lamina Number. Indicate whether additional material from this eye 

went into the vials with the other eye. 

8. Discard all material that does not go into the single vial for that layer. 
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Protocol 3. Eye lens or Liver/Muscle Material Prep for IRMS 

Materials 

• Microbalance 

• Small tin containers 

• Nitrile gloves 

• Fish tissue (eye-lens, liver, or muscle) 

• Forceps (2 pairs curved tip) 

• Small material spoon 

• Kim Wipes 

• Plastic 12x8 grid tray with letters & numbers 

• Standards materials (NIST 1577B, NIST 8573, NIST 8574 or check listed material) 

 

Methods 

1. Get out an IRMS datasheet from the tray above the balance 

2. Read the instructions on the top of the sheet. Follow all instructions for masses of 

standards to use. 

3. Get out plastic grid tray and tin containers from the drawer next to the microbalance 

4. Wipe down the balance, the counter in front of the balance, and all tools to be used with a 

Kim Wipe 

5. Fold an empty capsule and then roll between two fingers until approximately round 

6. Place this empty capsule into the first grid cell (A1) in the grid tray 

7. Repeat step 5. Place this empty capsule into the second cell (A2) in the grid tray. 

8. Place an empty tin capsule on the microbalance and hit the large center button on the 

balance. This will tare the balance with the tin capsule on it. Once the balance has 

finished taring, the door will open automatically. 

9. Remove the tin capsule from the balance.  

10. Find standard NIST 8573. Weigh out anywhere between 150 and 1000 ug into the 

capsule. 

11. Place capsule back onto balance. Record mass on datasheet. 

12. Wipe down microbalance, counter, and all tools with Kim Wipe 

13. Take capsule out, roll into a ball, and place into well A3. 

14. Repeat steps 8-12. Place into well A4 

15. Repeat steps 8-12 using standard NIST 8574 twice and follow directions on sheet. These 

should go in cells A5 & A6 

16. Repeat steps 8-12 using NIST 1577B (Bovine Liver) twice. 

17. Each of these six standards should be in the range 150-1000 ug of material. They should 

be as evenly spaced as possible. Order does not matter. (Ex: 300 ug, 150 ug, 457 ug, 822 

ug, 604 ug, 995 ug). 

18. I usually do all standards at once. Cell C1 gets a NIST 1577B (Bovine Liver) which 

should weigh anywhere between 150 and 1000 ug.  

19. Cells D10-E1 also get all 3 standards. Masses should be between 150 and 1000 ug, but 

distribution is not necessary.  

20. Once all standards have been weighed, you can start weighing your material. 

21. Again, wipe down the balance, counter, and tools with a Kim Wipe to make sure residues 

from standards are cleaned away 

Preparing Eye lenses for IRMS 
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22. As before, tare an empty tin capsule 

23. Take the capsule out and add 100-600 ug of material to the capsule. If the eye lens pieces 

are large, a smaller piece can be broken off to place into the capsule. 

*Note: 100 ug is an absolute minimum. If 100 ug of material is not available, try to get 

material back into vial and make a note of which vial number the material came from. A 

second eye will need to be peeled or the layer not used. 

24. Record vial number on datasheet under ID1. Record mass in mg on datasheet under 

Weight (mg) 

25. Close capsule into ball as before. Drop capsule into correct slot in tray. Double check. 

Triple check. 

26. If enough material remains in the vial, make a second capsule from that same layer. If 

possible, all samples should be run in duplicate. 

27. If not enough material remains in the vial for a second capsule from the same layer, make 

a note on the datasheet that this will be a single sample.  

28. If using a core, whether single or double, record this in the notes as well.  

29. Attempts should be made to randomize the samples being weighed so that they are not all 

sequential at all times. I tend to do this by starting on an outside layer. I then find the 

corresponding core and alternate lenses from both directions on the same fish. However, 

randomization can happen in any manner. 

30. Each tray can hold 36 unknown samples along with the 13 standards. This means that if 

duplicates are made for each lens, a tray can hold up to 18 total eye lens layers. 

 

Preparing Liver/Muscle for IRMS 

31.  Prepare tray using steps 1-21 

32. As before, tare an empty capsule 

33. Take vial of dried and ground liver or muscle. Use tool to stir contents to make sure it is 

well mixed 

34. Take capsule out of balance. Add 500-750 ug of liver or muscle material to capsule 

35. Repeat steps 30-32 for a second capsule from the same liver/muscle vial 

36. Attempts should be made to randomize the samples being weighed so that they are not all 

sequential at all times.  

37. Each tray can hold 36 unknown samples along with the 13 standards. This means that 

tray can hold up to 18 total liver/muscle samples. If both liver and muscle are present for 

each fish, samples from 9 individuals can be processed in a tray. 
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APPENDIX D. PRELIMINARY ISOTOPE TESTS USING FISH EYE LENSES 

 

AD.1. Effect of thawing and refreezing on the integrity of eye-lens isotope samples 

 A freezer holding eye-lens samples was left ajar for approximately three days prior to 

discovery. This resulted in all samples thawing to approximately 10°C for several hours. I asked 

the question, what is the effect of long-term thawing on the isotopic composition of the eye-lens 

laminae?  

 To answer this question, I selected three fish for which the isotope data was available for 

a single eye lens, but the other eye was intact in the compromised freezer. I peeled the second 

eye and produced the IRMS data using normal protocols. I then visually compared the isotope 

profiles from the two eyes of the same individual.  
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Figure AD.1. Isotope profiles from left and right eyes of the same individual. Each pair of left 

and right panels corresponds to the δ15N and δ13C profiles for a single individual. Error bars on 

each point is marked as 0.3‰, the average error for the IRMS run producing these data. 

  

 I found the δ15N and δ13C profiles to be within the expected variability and error 

according to the imperfections of manually peeling eye-lenses (Figure AD.1). These results led 

us to continue using the sampled that had been allowed to thaw.  
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AD.2. Minimum sample mass for reliable stable isotope measurements 

 Previous researchers had investigated the maximum eye-lens mass for reliable isotopic 

measurements. However, the minimum mass required had not been carefully considered 

previously. I asked the question: what is the minimum mass of eye-lens material that will 

produce consistent, reliable results using the Carlo-Erba NA2500 Series II Elemental Analyzer 

(EA) combustion furnace coupled to a continuous-flow ThermoFinnigan Delta+XL isotope ratio 

mass spectrometer (IRMS) at the University of South Florida College of Marine Science in St. 

Petersburg, Florida? I used repeated samples from the same eye lens to measure the amplitude of 

the N2 (mass 28) peak.  

 

Figure AD2. Plot of N2 (mass 28) amplitude peak vs total sample mass for eye lens samples. 

Peak amplitudes less than 500 can be considered unreliable. 

 Using a combination of previous knowledge (E. Goddard) and the literature, I found that 

amplitudes less than approximately 500 become unreliable and prone to high rates of error. 

Using the linear relationship between mass and amplitude, I set a minimum acceptable mass of 

100 μg for each sample to be analyzed and used for analysis. 
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