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Abstract

This dissertation considers three separate game theory problems in transportation. In

the first problem, a combinatorial auction market has been proposed for fractional ownership

of autonomous vehicles. The proposed combinatorial auction has two unique features. First,

the items are continuous time slots defined by bidders and second, the spatial information

of bidders has been incorporated so that sharing becomes a viable plan. A conflict-based

formulation of the winner determination problem has been proposed, for which an effec-

tive solution approach based on a heuristic and a maximal-clique based relaxation has been

presented. The second part of the dissertation examines a pessimistic bilevel toll pricing

problem for mitigating the risk of transporting hazardous materials. Since the optimistic

hazmat toll pricing problem creates multiple optimal solutions for the inner problem, risk

hedging against the behavioral uncertainty of hazmat carriers is desired. Considering haz-

mat carriers as satisficing decision-makers, an approximate pessimistic problem has been

formulated. The optimal solution existence of optimistic and pessimistic problems have

been studied. Moreover, solution approaches based on disjunctive programming have been

presented. In the third problem, we study the effect of satisficing behavior on transportation

network systems. When network users are satisficing decision-makers, the resulting traffic

pattern which is called satisficing user equilibrium may deviate from the (perfectly ratio-

nal) user equilibrium and the total system travel time can be worse than in the case of the

perfectly rational user equilibrium. We call the ratio between the total system travel times

of the worst-case satisficing user equilibrium traffic pattern and the perfectly rational user

equilibrium the price of satisficing, for which we provide an analytical bound. We compare

the analytical bound with numerical bounds for several transportation networks.

vii



Chapter 1: Introduction

Game theory is the mathematical modeling of the interactions between a set of

players. Each player has a set of choices or strategies and a payoff or utility function, which

depends not only on her strategy but also on the strategies taken by other players. Players

make choices based on their preferences. In traditional game theory models, it is usually

assumed that the players are perfectly rational and have a clear system of preferences and

perfect knowledge of the surrounding decision-making environment. As a result, they choose

strategies that maximize their outcomes or utilities. Game theory has been widely used

in various fields. Researchers have deployed game theory to solve challenging problems in

economics, biology, political science, and computer science. In the transportation field, game

theory approaches have been used to address different problems, including traffic assignment,

matching riders and drivers in ride-sharing, and congestion pricing. In this dissertation, we

use game theory approaches to solve three separate transportation problems.

In the first problem, we use auction models to design a new market for fractional owner-

ship autonomous vehicles (AVs). Since the inconveniences of having to locate and walk to a

car can be overcome with the self-driving capability, fractional vehicle ownership can become

a viable and even cheaper option compare to the car-sharing service or the traditional vehi-

cle ownership. To design a vehicle fractional ownership market, we propose a single-round

combinatorial auction that considers spatial information of the bidders. We propose the use

of bidder-defined items which enables bidders to bid on any time intervals they wish. In

the proposed auction, bidders bid on the package(s) simultaneously. Next, the auctioneer

collects all the submitted bids. Considering the spatial information of the bidders, the auc-

tioneer solves the Winner Determination Problem (WDP) to determine the set of winners.
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Next, the auctioneer determines the payments based on VCG payment rule. To generate the

WDP problem and solve it effectively, we develop a conflict-based formulation. For solving

the problem for larger instances, we design a heuristic to find a primal solution and provide a

maximal-clique relaxation of the problem to obtain a high-quality dual bound. We compare

the performance of the proposed formulations and solution approaches through numerical

experiments.

In the second problem, we study an example of Stackelberg games, which is the pes-

simistic bilevel toll pricing problem for reducing the risk of transporting hazardous materials

(hazmat). To reduce the transport risk of hazardous materials, transportation agencies may

set tolls on certain road segments to direct the carriers to the less populated and safer roads.

One can formulate the hazmat toll pricing problem as a bilevel optimization problem. In the

upper-level optimization problem, the transportation agency aims to minimize the transport

risk by setting a set of tolls on certain roads. In the inner problem, given a set of road

tolls, the network user (shipping carrier) aims to choose the shortest path (the path with the

minimum cost). The solution to the inner problem may not be unique. Previous studies have

considered an optimistic point of view, which assumes that among the path solutions of the

inner problem, the network users choose the one with the lowest risk. However, as we will

show through examples and numerical experiments, the solution to the inner problem may

not be unique. As a result, the network users may select alternative paths to the optimistic

path, which can lead to substantially higher risk than anticipated. With this in mind, we

consider a pessimistic point of view and study a setting where the transportation agencies

seek a toll vector that minimizes the worst-case risk.

In the third problem, we study the network user equilibrium problem, which is an example

of nonatomic games, when network users have an ambiguous system of preferences. When

network users are satisficing, the resulting travel pattern is called satisficing user equilibrium

(SatUE) and it can be different from a perfectly rational equilibrium (PRUE). We quantify

how bad the system travel time in SatUE can be compare to PRUE. In particular, we define
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the price of satisficing (PoSat) as the ratio between the worst-case total travel time of SatUE

and the total travel time of PRUE. We develop analytical bounds on PoSat and compare it

to numerical bounds for several networks.

In summary, the objective of this dissertation is to answer the following questions:

• Question 1: How to design a market under which people can co-own a vehicle together?

• Question 2: Why is it important to consider a pessimistic approach for bi-level toll

pricing problem and how to formulate and solve pessimistic toll pricing problem?

• Question 3: How bad the total travel time in SatUE can be compare to PRUE when

network users are satisficing?

In the process of completing this dissertation and answering the above-mentioned ques-

tions, the following papers have been published or submitted:

• Takalloo, M., Bogyrbayeva, A., Charkhgard, H., Kwon, C. Combinatorial Auction

with Bidder-Defined Items for Fractional Ownership of Autonomous Vehicles. Inter-

national Transactions in Operational Research, Under major review.

• Takalloo, M., Huchette, J., Kwon, C. Pessimistic Bi-level Toll Pricing Problem for

Mitigating Hazardous Materials Transport Risk. Operations Research, Under review

• Takalloo, M., Kwon, C. On the Price of Satisficing in Network User Equilibria. Trans-

portation Science, Accepted.

The dissertation can be summarized as follows: in Chapter 2, we propose a combinatorial

auction for fractional ownership of autonomous vehicles. Chapter 3 presents a pessimistic

approach for the bi-level hazmat toll pricing problem to minimize the risk of shipping haz-

ardous materials. In Chapter 4, we discuss How bad the total travel time in SatUE can be

compare to PRUE when network users are satisficing. Chapter 5 concludes the dissertation

with summarizing of the problems and solution approaches and providing directions for the

future studies.
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Chapter 2: Combinatorial Auction with Bidder-defined Items for Fractional

Ownership of Autonomous Vehicles

2.1 Introduction

People are not interested in owning a car as much as they once were due to several fac-

tors, including congestion, parking problems, and the cost of maintaining and operating the

vehicle. For this reason, it is no surprise that peer to peer ride-sharing services like Lyft

and Uber and car-sharing services like ZipCar have grown significantly in recent years. In

response to these recent changes, fractional ownership has also gained attention as a viable

alternative to traditional car ownership. By doing so, people can split the cost of leasing.

Moreover, given that people have such varying needs, someone who takes two or three trips

a week may find fractional ownership even cheaper than a car-sharing service.

The introduction of autonomous vehicles (AVs) to consumer markets will expedite this

trend. Even with extreme congestion on the road, “driving” an AV can be a pleasant expe-

rience: one can sleep or watch a movie in the car. Moreover, since AVs can travel without

passengers, sharing vehicles will become easier. Currently, co-owning a conventional vehicle

with friends is not easy, although it can certainly reduce the cost of owning a car. For exam-

ple, if I want to use a car for commuting and my friend wants to use it while I am at work,

my friend must come to my workplace to pick the car up, which requires another form of

mobility. With AVs, the co-owned car can travel autonomously from my work to my friend’s

location. Therefore, we envision that AVs will be co-owned widely.
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Co-owning an item is not a new idea. In the private jet market, fractional ownership has

been popular (Hicks et al., 2005). One can buy a share in a jet and use it for an allocated

amount of time. In the real estate market, especially for resort condominiums, a similar

form of ownership exists, known as timeshare (Terry, 1994). Multiple owners hold the rights

to use a particular property, and each owner is allocated to a certain number of periods of

time. The price each owner pays depends on the length of time periods and the season.

Various car manufacturers with conventional vehicles have experimented fractional own-

ership with some restrictions on the location. Ford Credit Link was a pilot program for

co-leasing vehicles in Austin, Texas, but few people registered. Audi had a similar pilot

fractional ownership program, ‘Audi Unite’ in Stockholm, Sweden. After selecting an Audi

model and forming a group to co-lease a vehicle of the chosen Audi model. Each customer

splits the leasing cost either in proportion to the usage time or at the fixed rate. Nissan

Intelligent Get & Go Micra, in Paris, France, used a matching algorithm to form car sharing

communities, which partly own a vehicle. All these programs are no longer active.

While the future of this new form of vehicle ownership is unclear with conventional

vehicles, it certainly becomes a viable option with an AV. Inconveniences of having to locate

and walk to a car can be overcome with the self-driving capability. As typical cars are

parked 95% of the time (Shoup, 2005), there is a great potential for AV fractional ownership

to change the current structure of car ownership. We note that when people share AVs,

co-leasing may be a more viable service due to maintenance and insurance issues. In this

research, ‘fractional ownership’ means that customers co-lease a vehicle and ‘co-owners’ mean

co-lessees.

For a practical fractional AV ownership model to be successful, there must be little to

no time conflicts among co-owners. Therefore, a suitable mechanism is needed to match

customers with non-overlapping time-schedules together and avoid conflicts. With these in

mind, in this study, we design an auction market for fractional AV ownership as an alternative

to the traditional full ownership model.
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Note that although the fractional AV ownership gives less flexibility compared to the

dynamic ride-sharing services, it provides a cleaner and cheaper option for the customers who

use the vehicle regularly in specific time intervals. Furthermore, customers are subjected to

less uncertainty in terms of vehicle availability and the price rates under fractional ownership

on these specific time intervals.

2.1.1 Combinatorial Auctions

Combinatorial auctions are suitable mechanisms to sell items or allocate resources in pack-

ages, instead of single items separately. Due to the complementarities and substitutability

among items, the value of a package of items may not be the same as the summation of the

individual values of those items. Furthermore, in many situations, bidders participating in

combinatorial auctions have preferences only for a package of items, not for individual items

separately. Combinatorial auctions capture these unique characteristics through bidding lan-

guages, winner determination methods, and pricing schemes that are specifically designed.

For general descriptions of combinatorial auctions, we refer readers to De Vries and Vohra

(2003) and Pekeč and Rothkopf (2003).

Combinatorial auctions have been used across various industry sectors. Federal commu-

nication commission initiated combinatorial auctions in 1994 to allocate the spectrum right

licenses to telecommunication companies. Combinatorial auctions have also been proposed

for Internet pricing (Hershberger and Suri, 2001). In transportation and logistics, combina-

torial auctions have gained attention for selling airport departure and arrival slots (Rassenti

et al., 1982), truckload transportation (Zhang et al., 2015), city bus route market (Cantillon

and Pesendorfer, 2006), and railway industry (Kuo and Miller-Hooks, 2015). Recently, re-

searchers suggest combinatorial auctions in ride-sharing market for designing a more efficient

shared mobility system (Hara and Hato, 2018), and collaborative vehicle routing (Gansterer

and Hartl, 2017) and public transportation systems (James et al., 2018).
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In this research, we consider a combinatorial auction market for the fractional AV own-

ership. In the proposed single-round combinatorial auction, the auctioneer is a car manu-

facturer or leasing company that wants to sell AVs, and the bidders are customers who are

interested in co-leasing a car. The auctioneer sells time-slot packages to bidders through an

auction that gives the winners the right to use the same vehicle in these time-slots within a

week for a certain period.

Each time-slot package includes several time-slots covering the travel needs of customers.

For example, one package can offer the right to use the vehicle for Monday and Tuesday

between 8 AM to 9 AM, and Thursday from 6 PM to 7 PM. In the designed auction market,

bidders submit multiple bids for various packages, and at most, one of them will be accepted.

For instance, if a customer wishes to use the vehicle on Monday between 8 AM to 9 AM, and

Tuesday or Thursday from 6 PM to 7 PM, She will submit two bids, one for Monday between

8 AM to 9 AM, and Tuesday from 6 PM to 7 PM, and another one for Monday between

8 AM to 9 AM, and Thursday from 6 PM to 7 PM. Each bid includes a time-slot package

and the bidding price offered by the bidder of that package. The bidders must submit their

spatial information at the beginning and ending of the time-intervals they intend to use the

vehicle. Considering the available vehicles and the spatial information of the bidders, the

company determines the set of winning bids to maximize social welfare. Next, the auctioneer

determines the payment amount for each winner concerning some pricing rules.

2.1.2 Unique Challenges and Contributions

The setting of the problem under study is unique in several aspects. First, in the most exist-

ing combinatorial auctions, products are pre-defined discrete items. In the proposed auction,

items are neither pre-defined nor discrete; instead, we consider bidder-defined continuous-

time items. Every possible time interval is a potential item; it becomes an item when a

bidder finds the time interval valuable. As we will discuss later, if we define the items as

fixed pre-defined time-slots, we obtain lower social welfare compared to the case where we

7



consider flexible bidder-defined time slots. Second, the fractional vehicle ownership model

incorporates the bidder’s location as well. If the customers are far away and the gap time

between their trips is short, they cannot co-own a car together. A suitable formulation for

the model requires not only to consider these unique characteristics but also to provide a

suitable framework for designing effective solution approaches as well.

Determining the set of winners of the auction is another challenge. The winner determi-

nation problem (WDP) can usually be formulated as a weighted set packing problem, which

is known to be NP-hard (Rothkopf et al., 1998). We can categorize methods for solving

the WDP into three groups based on the used solution approaches. Given the intractability

of finding optimal allocation in combinatorial auctions, the first group of studies (Rothkopf

et al., 1998; Tennenholtz, 2000) restricts the set of bids; thereby the problem is solvable in

polynomial time. Unfortunately, restricting bids is not possible in many applications, and

applying these methods will result in a loss of efficiency. The second group of studies solves

the problem to the optimality using various branching methods (Fujishima et al., 1999; Sand-

holm et al., 2005) The third group of studies develops heuristics approaches, which include

virtual simultaneous auctions (Fujishima et al., 1999), equilibrium heuristics (Tsung et al.,

2011), and Tabu heuristics (Wu and Hao, 2015).

In this study, considering the spatial information of bidders, we first formulate the WDP

in a discrete-time setting where the items are fixed and predefined time slots. In the discrete-

time setting, the period under the study is divided into equally-sized time-slots, and bidders

can only bid on these predefined time-slots. We use simple examples to show the weakness of

the discrete-time formulation. Next, we formulate the problem in a continuous-time setting,

where the bidders define items, and we represent its superiority compared to the discrete-

time setting. For the continuous-time WDP, we develop a conflict-based formulation, which

enables us not only to generate the model more effectively but also to solve it for relatively

large-sized instances exactly. To solve large-scale problems, we design the Sequential Single-

Vehicle Decomposition (SSVD) heuristic to find a high-quality primal solution. We also

8



develop a maximal-clique based relaxation of the problem to obtain a dual bound for the

WDP.

We summarize the contributions of this research as follows. First, this is the first study

considering combinatorial auction approaches for the fractional vehicle ownership of AVs.

While researchers have studied combinatorial auctions in several areas of transportation, the

problem of AV fractional ownership markets has not been addressed yet. Second, we design

a new type of combinatorial auctions with unique characteristics, namely, combinatorial

auctions with bidder-defined items. Instead of using predefined items (time slots in the

combinatorial auction market), bidders define them based on their travel needs. Moreover,

we incorporate the spatial information of bidders in our formulation and examine whether

a package of bids is feasible considering this information. Third, we devise an effective

computational method for solving the WDP, which can consider the multiple units and

spatial information efficiently. While many desirable properties of the proposed auction

market design, based on the well-known Vickery-Clarke-Groves (VCG) mechanism (Vickrey,

1961; Clarke, 1971; Groves, 1973), hold when the WDP is solved optimally, we suggest

solving the WDP approximately with a prespecified optimality gap, especially for large-

scale problems, as the WDP is NP-hard. To do so, we design the Sequential Single-Vehicle

Decomposition (SSVD) heuristic for finding a high-quality primal solution. We also propose

a maximal-clique based relaxation to find a dual bound for the WDP. We demonstrate the

performance of our solution approach through numerical experiments. Finally, we study

the impact of the optimality gap from the WDP on the pricing scheme and the revenue

of the auctioneer under VCG payment. We also want to emphasize that we can apply the

formulations and the solution approaches proposed here to some other combinatorial auctions

when the continuous-time setting and bidder-defined continuous-time items are considered.

Such applications may include arrival and departure slots allocation in airports, matching

drivers and customers in ride-sharing transportation systems, and resource allocation for

cloud computing.
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The remainder of this study is organized as follows. In Section 2.2, we discuss some

important concepts in combinatorial auctions, including the WDP, incentive compatibility,

and rationality. In Section 2.3, we describe the setting of the fractional AV ownership market.

We present the WDP under discrete-time and continuous-based settings and compare them in

Section 2.4. In Section 2.5, we describe solution approaches to solve the WDP. As mentioned

before, the WDP is NP-hard, and it may not be possible to solve it to optimality. We discuss

this matter and study its implications on auctioneer’s revenue and the payments in Section

2.6. In Section 2.7, we present numerical experiments based on California 2010–2012 travel

survey datasets.

2.2 Preliminaries

In this section, we define some fundamental concepts in combinatorial auctions that we use

in this study.

2.2.1 The Winner Determination Problem (WDP)

Suppose I denotes the set of bidders, and set K represents the set of distinct items. Each

bidder i ∈ I, submits a set of bids Bi. Each bid bj is a 2-tuple (cj, aj), where cj is the bidding

price for bid j and aj is a binary vector of elements akj, where akj = 1 if item k is in bid j,

and is 0 otherwise. We assume that at most one bid from each customer can be determined

as a winning bid. The auctioneer pools the submitted bids and determines the winning bids

by solving the following WDP:

Z∗WDP = max
xj

∑
j∈J

cjxj (2.1)

s.t.
∑
j∈J

akjxj ≤ 1 ∀k ∈ K (2.2)

∑
j∈Bi

xj ≤ 1 ∀i ∈ I (2.3)
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xj ∈ {0, 1} ∀i ∈ I,∀j ∈ Bi (2.4)

which is a special case of the weighted set packing problem. Binary variable xj specifies

whether package j is awarded to the corresponding bidder or not. Objective function (2.1)

maximizes the social welfare (the summation of winning bidding prices). Constraint (2.2)

ensures that each item assigned to at most one bid. Constraint (2.3) specifies that at most

one bid from each bidder can be a winning bid. The optimal solution x∗ to the above problem

specifies the optimal allocation.

2.2.2 Incentive Compatibility and Individual Rationality

After determining the set of winners, the auctioneer calculates the payment amount for

each winner according to some pricing rules. An ideal payment rule satisfies the two key

principles, namely incentive compatibility and individual rationality. A suitable auction

mechanism induces bidders to reveal their true valuations of packages (Pekeč and Rothkopf,

2003). This principle is known as incentive compatibility which ensures that participants in

the auction achieve their best outcome by bidding truthfully. The other important principle

in auction design is rationality. The bidders will not participate in an auction if they lose

money. Hence, the amount of payment for each bidder must be less than or equal to their

valuation. A suitable auction design satisfies these two core principles.

2.3 Combinatorial Auction Design for Fractional Ownership of Autonomous Ve-

hicles

In this section, we describe the combinatorial auction setting for the fractional vehicle own-

ership market.

11



2.3.1 Items and Bidders

Items are basic units of good or service offered at the auction. In the fractional AV ownership

market, the item is the right to use a vehicle at a particular time slot within a specific day

in each week for a certain period, which we call a leasing period. For instance, the right to

use the vehicle on Monday from 8 PM to 10 PM is a potential item. There are two possible

settings for defining the time-slots. In the first setting, the auctioneer defines these time

slots, and the bidders can only bid on these time-slots. For instance, the auctioneer may

divide each day into the following time slots: 12 AM–6 AM, 6 AM–12 PM, 12 PM–6 PM

and 6 PM–12 AM. In this example, the right to use a vehicle on Tuesday between 6 AM–12

PM is a valid item, while the right to use a vehicle on Wednesday between 11 AM–3 PM

is not an acceptable item. We call this setting the discrete-time setting. In the second,

continuous-time, setting, bidders define time-slots. In a continuous-time setting, bidders

can bid on any possible time intervals rather than the restricted discrete fixed predefined

time-slots. We will later compare these two settings. We are considering a leasing period

from one month to six months for the fractional ownership market. Moreover, we assume a

homogeneous vehicle fleet for the proposed auction. If the vehicles are not homogeneous, we

can design an auction for each vehicle model separately. Each bidder needs to specify the

following information in the submitted bids: Trip schedule: Set of items (time intervals) in

which bidder wishes to use the vehicle; Bidding price: The price offered by the bidder for

the corresponding trips; and Location information: The spatial information of the vehicle

at the origin and the destination of each trip. Spatial information will be used to estimate

the commuting time between bidders and consequently find the feasible matches. There is

no limit on the number of bids a bidder can submit. However, at most one bid from each

customer can be accepted.
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2.3.2 The Auction Format

In this study, we use the VCG combinatorial auction, since it is known to achieve both

incentive compatibility and rationality. However, we can use the solution approaches for

the WDP developed here, in any other mechanism. In this auction, bidders simultaneously

submit bids on any individual items or any packages of the items, without having any

information about the bids submitted by the others. Next, the auctioneer pools all the bids

and solve the WDP by specifying the best allocation of packages to the bidders. Afterward,

the auctioneer computes the payments for each winner according to the VCG payment rule,

which is as follows: First, bidders express their bids for desirable items or packages of items.

Next, the auctioneer solves the WDP and specifies the optimal allocation x∗ and optimal

welfare Z∗WDP. Removing winner i’s bids from the set of all bids, the auctioneer solves the

WDP, denoted by WDP−i, and specifies the optimal allocation x∗−i and optimal welfare

Z∗WDP−i
. Then, bidder i pays the amount equal to

pi = Z∗WDP−i
−
(
Z∗WDP −

∑
j∈Bi

cjx
∗
j

)
(2.5)

where cj is the bidding price for bid j. Adding location constraints to ensure the feasibility

of the problem do not have any effects on rationality and incentive compatibility of the

VCG mechanism if bidders state their locations truthfully. This can be proved by following

the proof for incentive compatibility and rationality of general combinatorial auction setting

(Ausubel et al., 2006).

Although incentive compatibility and rationality hold under the VCG mechanism, it

may be inefficient concerning the auctioneer’s revenue (Sandholm and Likhodedov, 2015).

Moreover, for large problems, we may not be able to solve the problem to optimality. Under

sub-optimal allocation, VCG mechanism does not satisfy compatibility and rationality. We

will discuss this matter further in Section 2.6.
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2.4 Formulating the Winner Determination Problems

In this section, we formulate the winner determination problem under both the discrete-time

setting with predefined time slots and the continuous-time setting with bidder-defined time

slots.

2.4.1 The Discrete-Time Winner Determination Problem

Suppose I denotes the set of bidders participating in the fractional vehicle ownership combi-

natorial auction. Each bidder i ∈ I submits a set of bids Bi, which includes the bidding price

cj, the corresponding time-slots, and the location of the bidder at the origin and destination

of each trip. The constant ajt denotes whether a bid j includes a time slot t or not; ajt is 1

if a time-slot t ∈ T is included in a bid j and is 0 otherwise. We denote the set of all time

slots by T and the length of each time-slot by ∆t. Extracted from bidder’s location data,

the parameter riktt′ represents the time it takes to commute from bidder i’s location at time

slot t to a bidder k’s location at time slot t′ (note that bidders can be in different locations

at different times). We formulate the discrete-time WDP as follows:

(P0) max
xjv

∑
i∈I

∑
j∈Bi

∑
v∈V

cjxjv (2.6)

s.t.
∑
j∈J

ajtxjv ≤ 1 ∀t ∈ T , v ∈ V (2.7)

∑
j∈Bi

∑
v∈V

xjv ≤ 1 ∀i ∈ I (2.8)

t∆t+ riktt′xjv ≤ (t′ − 1)∆t+M(1− xlv) ∀i, k ∈ I, j ∈ Bi, l ∈ Bk, (2.9)

t, t′ ∈ T : t′ > t, ajtalt′ = 1

xjv ∈ {0, 1} ∀i ∈ I, j ∈ Bi (2.10)

where M is a big positive constant. In the formulation above, the decision variable xjv, is 1

if bid j is assigned to vehicle v and is 0 otherwise. The objective function (2.6) maximizes
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t0 t1 t2 t3

A B

Figure 2.1 – Trip schedules of bidder A and B in Example 2.1

social welfare. Constraint (2.7) ensures that each time slot for each vehicle is assigned to

at most one bid. Constraint (2.8) states that at most one bid from each bidder can be

determined as a winner. Constraint (2.9) ensures that conflicting bids do not match. As

an aside, formulation (P0) can be improved in practice by removing unnecessary time slots

from T . In other words, for each trip in each bid, T can only contain the starting time slot

and ending time slot corresponding to that trip. For example, if a given trip in a given bid

contains time slots 3–6, then T should contain time slots 3 and 6 but it is not necessary to

insert time slots 4 and 5 in T .

Although the discrete-time WDP provides a suitable framework, it is inferior compared to

the continuous-time formulation in terms of social welfare. Moreover, increasing the number

of time slots does not necessarily improve the social welfare. The following examples specify

the drawbacks of the discrete-time formulation.

Example 2.1. Consider two bidders, bidder A, and bidder B who are bidding in a fractional

ownership market with a single vehicle. Suppose the distance between two bidders is negli-

gible. Moreover, assume that the period under study [t0, t3] is divided into three time-slots

[t0, t1], [t1, t2], [t2, t3]. Figure 2.1 represents the trip schedules of bidder A and B. Bidder A

bids cA on time-slot [t0, t1], and bidder B bids cB on time slots [t0, t3], [t0, t3], [t0, t3]. Under

the discrete-time setting, the social welfare is equal to max{cA, cB}, while in the continuous-

time setting with bidder-defined items, social welfare is equal to cA + cB which is strictly

greater than max{cA, cB} under positive bidding prices.

Example 2.2. Consider the auction in Example 2.1. Suppose bidders A and B have trip

schedule represented in Figure 2.2a. Assume that the period under study [t0, t3] has been
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t0 t1 t3

A B

(a) with two time slots

t0 t1 t2 t3

A B

(b) with three time slots

Figure 2.2 – The trip schedules of bidder A and B in Example 2.2

divided into two time-slots [t0, t1], [t1, t3]. Under the discrete-time setting, bidder A bids

on the time-slot [t0, t1], and bidder 2 bids on the time slot [t1, t3]. Social welfare is equal

to cA + cB. Now suppose, we increase the number of time-slots from 2 to 3 as depicted in

Figure 2.2b. In this case, bidder A bids on time-slot [t0, t1] and [t1, t2], and bidder B bids on

[t1, t2] and [t2, t3]. The social welfare is equal to max{cA, cB} which is less than or equal to

cA + cB. Therefore, increasing the number of time-slots may cause even less welfare.

2.4.2 The Continuous-Time Winner Determination Problem

In the continuous-time setting, bidders submit the exact departure and the arrival times of

trips along with bidding price and spatial information. Set Tj denotes the set of trips in bid

j. Each trip n ∈ Tj is represented by a pair (sn, en), where sn is the departure time/start

time and en is the arrival time/end time of that trip. A parameter rikemsn represents the

time it takes for an AV to drive from bidder’s i location at time em to bidder’s k location

at time sn. With these notations, we can formulate the WDP under the continuous-time

setting as

(P1) max
xjv

∑
i∈I

∑
j∈Bi

∑
v∈V

cjxjv (2.11)

s.t.
∑
j∈Bi

∑
v∈V

xjv ≤ 1 ∀i ∈ I (2.12)

emxjv ≤ sn +M(1− xlv) ∀i, k ∈ I, j ∈ Bi, l ∈ Bk, (2.13)

m ∈ Tj, n ∈ Tl : sm ≤ sn ≤ em

em + rikemsnxjv ≤ sn +M(1− xlv) ∀i, k ∈ I, j ∈ Bi, l ∈ Bk, (2.14)
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m ∈ Tj, n ∈ Tl : sn ≥ em

xjv ∈ {0, 1} ∀i ∈ I, j ∈ Bi (2.15)

Constraints (2.13) and (2.14) are equivalent to (2.7) and (2.9) in the discrete-time setting.

Constraint (2.13) states that if any two trips from different bids overlap, then those two

trips cannot be assigned to a single vehicle. Constraint (2.14) considers the commuting time

between the bidder’s location and ensures the feasibility of the match.

It is worth to mention that in practice the start time and end time of trips are subject

to some uncertainty. For instance, bidder k may have some delay and finish her trip at time

e′m > em. As a result, we may not be able to serve bidder i at the pre-scheduled time sn. To

deal with this uncertainty, the auctioneer can set rikemsn to a value that is greater than the

commuting time between bidders’ locations by some margin.

Problem (P1) is a binary problem with many constraints and variables. Generating

the optimization model for (P1), specially Constraint (2.13) and Constraint (2.14) is time

consuming. Moreover, these two constraints include big-M constraints, which make the

problem more difficult to solve. In the next section, we propose a conflict-based approach to

eliminate these constraints and construct and solve the model faster.

2.5 Computational Methods

In this section, we introduce an equivalent conflict-based formulation for the continuous-time

WDP. To solve the conflict-based problem, we need to design an algorithm that finds the

conflicting bids efficiently. We introduce such an algorithm in Section 2.5.2. We introduce

SSVD algorithm to obtain a high-quality feasible solution for the WDP in short time. We

also introduce the so-called maximal-clique based relaxation of the problem to find a dual

bound for the problem.
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Table 2.1 – Time-slots and bidding prices for submitted packages in Example 2.3

Package Time Intervals Bidding Price

1 6:00 AM–9:00 AM 45
2 6:00 AM–6:30 AM 2:30 PM–3:30 PM 25
3 8:00 AM–8:30 AM 3:00 PM–4:00 PM 20
4 2:00 PM–4:00 PM 20
5 10:00 AM–12:00 PM 2:00 PM–4:00 PM 6:00 PM–7:30 PM 55

2.5.1 The Conflict-based Reformulation of the WDP

We can rewrite (P1) in an equivalent conflict-based formulation. Consider graphG = (N ,A),

in whichN represents the set of nodes and setA represents the set of arcs. Each node nj ∈ N

represents a bid and has a weight which is equal to the corresponding bidding price cj. Each

edge connects two nodes with overlapping bids.

Example 2.3. Suppose there are five bidders in a fractional vehicle ownership combina-

torial auction. Table 2.1 shows the time-slots associated with each bidder’s bid as well as

the bidding price for those packages. Suppose that the commuting times between bidder’s

locations is negligible. The set of all non-matchable pairs is

{
{1, 2}, {1, 3}, {2, 3}, {2, 4}, {2, 5}, {3, 4}, {3, 5}, {4, 5}

}
.

We can have the following conflict-based constraints for this problem:

x1 + x2 ≤ 1, x1 + x3 ≤ 1, x2 + x3 ≤ 1, x2 + x4 ≤ 1,

x2 + x5 ≤ 1, x3 + x4 ≤ 1, x3 + x5 ≤ 1, x4 + x5 ≤ 1,

xi ∈ {0, 1} ∀i ∈ {1, 2, 3, 4, 5}.

In the light of Example 2.3, Problem (P1) can simply be written as follows:

(P2) max
xjv

∑
i∈I

∑
j∈Bi

∑
v∈V

cjxjv (2.16)
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s.t.
∑
j∈Bi

∑
v∈V

xjv ≤ 1 ∀i ∈ I (2.17)

xjv + xlv ≤ 1 ∀v ∈ V , i, k ∈ I, j ∈ Bi, l ∈ Bk : j, l are conflicting (2.18)

xjv ∈ {0, 1} ∀j ∈ B,∀v ∈ V (2.19)

Constraint (2.18) is a conflict constraint, which ensures that two conflicting bids do not

share a vehicle. Two bids do not match if they have at least one overlapping intervals.

Mathematically speaking, bid bj ∈ Bi conflicts with bid bl ∈ Bk if and only if

sm ≤ en + rikensm , sn ≤ em + rikemsn for some m ∈ Tj, n ∈ Tl (2.20)

Constraint (2.18) can be easily generated in relatively short time compared to (2.13)–(2.14).

Moreover, it makes the problem easier to solve. Next, we prove that formulations (P2) and

(P1) are equivalent. Proofs for all propositions are provided in the appendix.

Proposition 2.1. (P2) is equivalent to (P1).

To use formulation (P2), we need to find the set of conflicting bids, for which we present

a simple algorithm in the next section.

2.5.2 Detecting Conflicting Bids

As described above, formulation (P2) requires finding all overlapping bids. Each bid includes

several trips. Two bids conflict if they have overlapping trips. Algorithm 1 represents an

exact algorithm to find the set of conflicting bids in polynomial time.

Proposition 2.2. Let p be the total number of bids in a fractional vehicle ownership

combinatorial auction, i.e., p = |B|. Also, let q be the maximum number of trips in a bidding

package. The time complexity of Algorithm 1 is O(p2q log q).

Once we determine the conflicting bids, we can solve problem (P2) by CPLEX or any

other integer programming solver.
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Algorithm 1: Detecting conflicting bids
Input: Start time, end time, and location information of the trips in all bids
Output: Set of conflicting bids

1 foreach pair of bids belonging to bidders i and k do
2 Place the start and end times of all the trips in the pair (of bids) in vector L

such that the end time of each trip is right after its start time. Also, make sure
that all the even cells contain the end times and all the odd cells contain the
start times;

3 Create a binary vector I with the same size as vector L;
4 Set the value of each cell in I to i if its corresponding value in vector L belongs

to the bid submitted by bidder i, and set it to k otherwise;
5 Sort vector L in a non-decreasing order and update I accordingly;
6 t← 2;
7 while t < length(L) do
8 if I[t] 6= I[t− 1] then
9 The pair is conflicting, report it, and go to the next pair;

10 end
11 if I[t] 6= I[t+ 1] then
12 if L[t+ 1] ≤ L[t] + rI[t]I[t+1]L[t]L[t+1] then
13 The pair is conflicting, report it, and go to the next pair;
14 end
15 end
16 t← t+ 2

17 end
18 end

2.5.3 Sequential Single-Vehicle Decomposition (SSVD) Heuristic

It usually takes a considerable amount of time to find a high-quality feasible solution for

problem (P2) for large instances. In this section, we introduce SSVD to find a high-quality

solution in a relatively short time.

Since we assume a homogeneous fleet of vehicles, we can decompose the vehicle fractional

ownership combinatorial auction to a |V|-round single vehicle combinatorial auction. At each

round, considering the set of remaining bidders, we solve the WDP for a single vehicle and

find the winners. Then, we update the set of bidders by excluding the winners from the list

of bidders and go to the next round. This procedure continues until we assign all the vehicles

to the bidders. The SSVD algorithm steps has been presented in the following pseudo-code.
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Algorithm 2: SSVD heuristics for computing a high-quality feasible solution
Input: Set of vehicles V , set of bidders I, and set of bids Bi for each i ∈ I,
Output: Set of winners W

1 Initialization W ← ∅;
2 for v = 1 to |V| do
3 Consider an auction with a single vehicle v;
4 Solve problem (P2) with the set of bidders I;
5 Ŵ ← the set of winners of the auction ;
6 W ←W ∪ Ŵ ;
7 I ← I \ Ŵ ;
8 end

We can bound the quality of the solution found by SSVD as the following proposition

presents.

Proposition 2.3. Given the same set of bids and corresponding bid prices, let Z∗V

and ZG
V be the optimal objective function value for (P2) and the SSVD objective value when

the set of vehicles is V . Let Z∗V be the optimal objective value when the set of vehicles is V ′,

where |V| > |V ′|. Then we have

Z∗V − ZG
V ≤

|V|
|V ′|

Z∗V ′ − ZG
V . (2.21)

When the fleet size (|V|) is large, we fail to solve (P2) to optimality. However, we can

solve (P2) optimally when the fleet size is relatively small. Proposition 2.3 utilizes this fact

to find an optimality gap bound for the solutions found by SSVD. In the first round, SSVD

will find Z∗{v1}, with v1 being the first vehicle the algorithm considers; this information can

bound the performance of the algorithm as follows:

Z∗V − ZG
V ≤ |V|Z∗{v1} − Z

G
V .
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In general, however, the bound in (2.21) does not provide a high-quality dual bound. In

Section 2.5.4, we introduce a relaxation of (P2), which is based on finding maximal cliques,

to find a better dual bound for the problem.

Note that problem (P2) has symmetry issues. An integer linear program is symmetric if

its variables can be rearranged without structural changes in the problem (Margot, 2010).

To see this, consider Example 2.3 and suppose the fleet size for the auction is 2. One possible

solution is to assign bids {1, 5} to vehicle 1, and {2} to vehicle 2. However, we obtain the

same objective value by assigning {1, 5} to vehicle 2 and {2} to vehicle 1. This symmetry

problem, which arises from constraint (2.17), makes the problem difficult to solve as the

fleet size increases. Since SSVD solves the WDP with a single vehicle in each iteration, the

symmetry issue is eliminated. In Section , we develop a relaxation for (P2), which breaks

the symmetry.

2.5.4 The Maximal-Clique Based Relaxation for Finding Dual Bounds

To evaluate the quality of the solution obtained from SSVD, it is necessary to find a good

dual bound. Computing a good dual bound can be done by developing a good relaxation. A

good relaxation can, in turn, be obtained based on good formulation. So, in this section, we

first show that how a good formulation can be obtained and then we discuss a how a good

relaxation can be developed.

Note that each conflict constraint (2.18) can be viewed as a simple clique constraint.

In graph theory a clique is a complete subgraph of a given graph. By this definition, each

conflict constraint (2.18) is simply constructed based on a clique with cardinality of two

in the conflicting graph. This observation enables us to derive a better formulation by

replacing constraints of the form (2.18) with stronger constraints based on cliques with

larger cardinalities. To this end, we can use maximal cliques. Note that a maximal clique

is a clique that cannot be extended by adding any other node. In Example 3, we can find

two maximal cliques, namely {1, 2, 3} and {2, 3, 4, 5}. Accordingly, we can replace conflict
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constraints in Example 2.3 by the following stronger constraints:

x1 + x2 + x4 ≤ 1, x2 + x3 + x4 + x5 ≤ 1.

These two constraints give us a stronger formulation. For instance, x = (0.5, 0.5, 0, 0.5, 0)

does not satisfy the above constraints, while it satisfies constraint (2.18).

In light of the above, we can obtain a stronger formulation by using maximal cliques:

(P3) max
xjv

∑
i∈I

∑
j∈Bi

∑
v∈V

cjxjv (2.22)

s.t.
∑
j∈Bi

∑
v∈V

xjv ≤ 1 ∀i ∈ I (2.23)

∑
j∈Cm

xjv ≤ 1 ∀v ∈ V ,m ∈M (2.24)

xjv ∈ {0, 1} ∀i ∈ I, j ∈ Bi,∀v ∈ V (2.25)

where M is the set of all maximal cliques, and Cm is the set of nodes in maximal clique

m ∈ M. The LP relaxation of (P3) is superior to the LP relaxation of (P2). Commercial

solvers such as CPLEX add similar cliques to the problem in the preprocessing phase to

tighten LP feasible region of the problem.

Based on (P3), we now develop a relaxation problem to compute dual bounds. In order

to do so, we use an aggregation technique to reduce the number of decision variables. Note

that problem (P3) still suffers from symmetry issue because of having homogeneous vehicles.

So, using an aggregation technique over all vehicles we can not only reduce the size of the

problem but also break the symmetry. Specifically, we define yj :=
∑

v∈V xjv for each j ∈ B

and introduce the following relaxation of problem (P3):

(R) max
yj

∑
i∈I

∑
j∈Bi

cjyj (2.26)
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s.t.
∑
j∈Bi

yj ≤ 1 ∀i ∈ I (2.27)

∑
j∈Cm

yj ≤ |V| ∀m ∈M (2.28)

yj ∈ {0, 1} ∀i ∈ I, j ∈ Bi (2.29)

where constraint (2.28) states that at most |V| bids can be determined as a winner among a

group of conflicting bids, since there are only |V| available vehicles.

Proposition 2.4. Problem (R) is a relaxation of problems (P2) and (P1).

Now, one can solve problem (R) to compute a dual bound. It is evident that this prob-

lem is expected to be solve quickly because of breaking symmetry and having less decision

variables. However, a key issue is that it is not always possible to add all maximal cliques

to the problem because (1) finding all maximal cliques is NP-hard (Östergård, 2002), and

(2) the number of maximal cliques increases exponentially. Therefore, we choose a subset

of maximal cliques randomly. We use the following procedure to generate maximal cliques:

We start to create a clique by adding one random bid to it. Next, we attempt to add all

the other bids in a random order, if possible. We add a bid to the clique if it conflicts with

all the existing bids in the clique. We repeat this process multiple times and impose a time

limit as the termination condition. Also, we make sure that all the bids will initiate a clique

at least once in our procedure. As we will show in Section 2.7, problem (P3) gives us a better

dual bound compare to the CPLEX dual bound for problem (P2) for large instances.

2.6 VCG Mechanism under Suboptimal Solutions

It usually takes a considerable amount of time to solve the WDP optimally. However, it is

possible to solve relatively large problems with a small optimality gap. When the solution is

suboptimal, incentive compatibility and rationality do not necessarily hold under the VCG

mechanism. Moreover, suboptimal allocation affects the winners’ payments and consequently
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the revenue of the auctioneer. In the following, we study VCG mechanism under suboptimal

solution.

Incentive compatibility does not necessarily hold under suboptimal allocation algorithms

(Nisan and Ronen, 2007). Although in theory suboptimal allocation may influence the

bidders to mistrust, in practice, suitable algorithms essentially eliminate agent’s incentives

to misreport their preferences (Vorobeychik and Engel, 2011). Next, we study the effect of

suboptimality on rationality assumption. Let Zε, xε and pε denote the social welfare, the

package allocation and the bidder’s payment when the WDP is solved with the optimality

gap of ε, respectively. That is,

Z∗WDP − Zε
WDP

Zε
WDP

≤ ε, (2.30)

The rationality assumption holds if vεi (xi,ε) ≥ pεi for each i ∈ I, where vεi is the bidder’s i

true valuation for the packages awarded to her, and xi,ε is the package allocation for the bids

submitted by bidder i. If bidders bid truthfully, under certain conditions, the rationality

assumption holds.

Proposition 2.5. Suppose ε represents the optimality gap for the winner deter-

mination problem and the incentive compatibility assumption holds. Then the rationality

assumption holds if Zε
WDP ≥ Zε

WDP−i
for all i ∈ I.

Note that when ε = 0, we have Z0
WDP = Z∗WDP ≥ Z∗WDP−i

= Z0
WDP−i

since the problem

is solved optimally. However, in general, when ε > 0, inequality Zε
WDP ≥ Zε

WDP−i
is not

necessarily true. Nevertheless, if bidders bid truthfully, and removing any bidder does not

increase the social welfare under suboptimal allocation, the rationality holds.
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2.6.1 Bidder’s Payments and Auctioneer’s Revenue

A suboptimal allocation affects the winners’ payments and the revenue of an auctioneer. The

following proposition compares the payments and the auctioneer’s revenue under an optimal

and suboptimal allocation.

Proposition 2.6. Let p∗i and pεi denote the payments of a bidder i under the opti-

mality and a optimality gap of ε, and R∗ and Rε denote the auctioneer’s revenue under the

optimality and an optimality gap of ε under the VCG mechanism, respectively. Then the

following bounds hold:

|pεi − p∗i | ≤ εmax
{
Zε

WDP, Z
ε
WDP−i

}
+ max

j∈Bi
cj, (2.31)

|Rε −R∗| ≤ εmax

{
(|I| − 1)Zε

WDP,
∑
i∈I

Zε
WDP−i

}
. (2.32)

As ε approaches to zero, the upper bound (2.32) on the revenues difference goes to 0.

The bound (2.31) on the payments difference, however, goes to maxj∈Bi cj; therefore, it is

not tight. The revenue and a bidder’s payments under a suboptimal allocation can be higher

or smaller than the revenue and the bidder’s payments under the optimal allocation.

2.7 Numerical Experiments

We compare the discrete model and the continuous model numerically and evaluate the

performance of (P1) and (P2). We use the Julia 7.0 to implement all formulations and

algorithms. We also use CPLEX 12.5 to solve integer programming problems.

To test our results, we use 2010–2012 California Household Travel Survey1, which includes

the travel information of 2908 vehicles in a week. The survey dataset includes the date,

departure time, arrival time, duration, mileage, and origin and destination of each trip

for every vehicle under the study. We test the performance of the proposed formulations
1https://trid.trb.org/view/1308918
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and algorithms by generating some instances using 2010–2012 California Household Travel

Survey. To generate the different bids other than the travel pattern for each bidder, we

assume that bidders drop one or two trips randomly. To generate the bidding prices for a

leasing period of four weeks, we use the following formula:

cb = 4× (5 + 0.76 ãbmb)

where we assume the fixed leasing cost for each week is $5 and the average cost per mile is

$0.76 2, and ãb is randomly drawn from the interval [0.8, 1.2] and mb is the total mileage of

all the trips in the package. The location distances of each pair of customers are randomly

selected between 0 and 60 minutes. The number of bidders and the fleet size in the experi-

ments vary, depending on the classes of instances used. We will describe these classes when

we present the numerical results for each experiment.

Figure 2.3 compares the social welfare under discrete-time problem (P0) and the continu-

ous time problem (P1) for a simulated fractional ownership auction with a single vehicle and

100 bidders. As presented, the continuous-time model is always superior to discrete-time

model with respect to social welfare. Moreover, increasing the number of time slots in the

discrete-time setting does not necessarily improve social welfare as it has been explained in

Example 2.2.

We compare the model building time (the time that Julia takes to generate the model)

and the solution time of (P1) and (P2) to show the superiority of (P2). For the comparison,

we generate ten classes of instances based on the fleet size and the number of bids. We set

the number of bidders to 100, 150, 200, 250 and 300, and the number of vehicles to 1 and

5. We generated five instances for each class, and use the performance profile to compare

the building time and the solution time of the basic formulation (P1) and the conflict-based

formulation (P2). We construct the performance profile in Figure 2.4a for comparing model

building time as follows: For each formulation and for each problem instance, we compute the
2American Automobile Association, 2015 report
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Figure 2.3 – Comparing social welfare under the continuous-time setting and the
discrete-time setting for simulated fractional ownership auction
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Figure 2.4 – Comparing the basic formulation (P1) and the conflict-based formulation (P2)
for simulated fractional ownership auction
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Table 2.2 – Computational time and optimality gap for simulated fractional ownership
auction for small instances

|I| |B| |H| R TSSVD(sec) TCPLEX(sec) GapSSVD GapCPLEX

100 292.6 5 1 2.41 6.47 0.83 0
150 438.8 5 1 8.30 32.72 0.87 0
200 582.8 5 1 20.28 120.77 1.58 0
250 730 5 1 37.79 535.22 1.37 0
300 876.2 5 0.4 55.62 1526.69 4.09 1.93
100 292.6 10 0.9 3.28 162.47 1.49 0.04
150 438.8 10 0.3 12.41 275.44 3.20 1.35
200 582.8 10 0.1 31.75 3379.70 5.03 2.93
250 730 10 0 64.86 > 3600 6.95 5.76
300 876.2 10 0 100.39 > 3600 13.26 11.53

ratio between the model building time of the formulation on the instance and the minimum

of the model building time of two formulations on the instance. The performance profile in

Figure 2.4a then shows for each formulation, on the vertical axis, the fraction of instances

with a ratio that is less than or equal to the factor τ shown on the horizontal axis. The

performance profile in Figure 2.4b for solution time can be created similarly.

For almost all instances, the model building time and the solution time for the conflict-

based formulation (P2) is smaller than the basic continuous formulation (P1). We could

generate the conflict-based model 13 times faster compared to the basic continuous model in

(P1). Moreover, we could solve (P1) 35 times faster than (P2). Formulation (P1) is difficult

to solve since it has big-M constraints. However, the conflict-based formulation has only

clique constraints. CPLEX utilizes these clique constraints to generate stronger constraints

and solves the model much faster.

We test the performance of the conflict-based formulation by solving (P2) for different

instances. Table 2.2 summarizes our results for smaller instances. We consider ten classes

of instances based on the number of bidders and fleet size, as can be seen in Table 2.2, and

generate ten instances for each class. We report the SSVD average computation time TSSVD,

the CPLEX average computation time for the problems solved to optimality within one hour

TCPLEX, and the ratio of instances in each class solved to optimality (R) by CPLEX within
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Figure 2.5 – Comparing primal solution and dual solution with CPLEX solution for
simulated fractional ownership auction

an hour , the gap between the primal bound obtained by CPLEX and SSVD and the CPLEX

dual bound. When the number of vehicles is relatively small (|H| = 5), we could solve 44

out of 50 instances to optimality within an hour by CPLEX, however, when the number of

vehicles is larger (|H| = 10), the symmetry becomes more severe, and CPLEX fails to solve

the problem to optimality. However, SSVD can find a primal solution within 2 minutes.

Moreover, as presented in Table 2.2, the gap between the primal bound obtained by CPLEX

and SSVD is negligible (within 2.2%), which suggests that SSVD provides a high-quality

primal solution. The optimality gap of SSVD is below 10% for all classes of instances except

the last class, which has the highest average number of bids (|B| = 876.2) and number of

vehicles (|H| = 10).

Next, we compare the performance of the SSVD and the maximal clique relaxation with

CPLEX for larger instances. For comparison purposes, we consider four classes of instances

based on the fleet size. We set the fleet size to 15, 20, 25 and 30. We set the number of

bidders to 300 for all classes. We generate ten instances for each class, and compare the

solution of the SSVD heuristics with CPLEX through the performance profile presented in

Figure 2.5a. We set the CPLEX solution time limit to one hour. As Figure 2.5a shows, the

SSVD heuristics outperforms in 33 out of 40 instances. The solution found by the SSVD
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Table 2.3 – Optimality gap for simulated fractional ownership auction for large instances

|I| |B| |H| TSSVD(sec) TCPLEX(sec) ZSSVD

ZCPLEX GapSSVD

300 879.2 15 147.77 >3600 1.00 15.00
300 879.2 20 178.08 >3600 1.10 13.97
300 879.2 25 200.32 >3600 1.36 12.74
300 879.2 30 217.48 >3600 1.38 11.49

heuristics can be as high as 1.7 times of the CPLEX solution. Figure 2.5b compares the

dual bound found by (R) with CPLEX dual bound, found within an hour, For all instances,

maximal clique relaxation (R) outperforms CPLEX dual bound. The dual bound found by

(R) can outperform CPLEX by more than 30 %.

Table 2.3 reports the average solution time for each class, and the optimality gap for large

instances obtained by comparing SSVD primal solution and maximal clique dual solution.

It also reports the SSVD to CPLEX objective value ratio ( ZSSVD

ZCPLEX ). As it can be seen in the

table, the SSVD primal bound outperforms CPLEX. Moreover SSVD is much faster and can

find the primal bound in less than 4 minutes for all classes of instances. As seen in Table

2.3, while the optimality gap is considerable for larger instances (from 11.49% to 15%), the

SSVD primal bound outperforms CPLEX.

31



Chapter 3: Pessimistic Bilevel Toll Pricing Problem for Mitigating Hazardous

Materials Transport Risk

3.1 Introduction

Hazardous materials (hazmat) are items and chemicals classified by the United States De-

partment of Transportation as potentially dangerous to the safety of the environment or

population. The general public could potentially encounter risk when an accident involving

a shipment of hazmat occurs. Therefore, specific policies and regulations are needed for

shipping hazardous materials. To protect against the risks of transportation of hazardous

material, the transport of hazmat is regulated under the Federal Hazardous Materials Trans-

portation Act under the authority of the United States Secretary of Transportation.

Two main policies have been proposed for reducing the hazmat transport risks: network

design and toll-setting. Network design policy (Kara and Verter, 2004), which has been

practiced by transportation agencies, forbids the use of particular road segments for some

hazmat carriers. However, such a policy is considered as being too inflexible, since it com-

pletely bans some shipping carriers from using certain roads. Alternatively, a toll policy

involves setting tolls on certain road segments to channel the carriers to the less populated

roads. It is more flexible and effective than the network design policy for reducing transport

risk (Marcotte et al., 2009). In this study, we consider the toll-setting policy for minimizing

the exposure risk of hazmat.

One can formulate the hazmat toll pricing problem as a bilevel optimization problem.

In the upper-level optimization problem, the transportation agency aims to minimize the
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Figure 3.1 – Simple network for comparing the optimistic and the pessimistic approach for
hazmat toll pricing problem

transport risk by setting a set of tolls on certain links. In the lower level or inner problem,

given a set of road tolls, the network user (shipping carrier) aims to choose the shortest path

(the path with the minimum cost). The solution to the inner problem may not be unique.

Previous studies have considered an optimistic point of view, which assumes that among the

path solutions to the inner problem, the network users choose the one with the lowest risk.

However, as we will show through examples and numerical experiments, the solution to the

inner problem under the toll-setting policy may not be unique. As a result, the network

users are able to select alternatives to the “optimistic” path, which can lead to substantially

higher risk than anticipated. With this in mind, we consider a pessimistic point of view

and study a setting where the transportation agencies seek a toll vector that minimizes the

worst-case risk.

3.1.1 An Illustrative Example

This section describes the difference between the optimistic and the pessimistic approach in

the hazmat toll pricing problem via a simple illustrative example, depicted in Figure 3.1a.

There are two paths available: path 1 is O → A → D, and path 2 is O → B → D. The

shortest path from O to D is path 2, with a cost of 2 and a risk of 20. On the other hand,

path 1 is more costly, with a cost of 2, but is safer, with a risk of 10. If the transportation

agency wishes to incentivize users to select path 2 while minimizing the financial impact,

they may select an optimal toll policy of tBD = 1 and tij = 0 for all other links (i, j).
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Under this toll policy, both path 1 and path 2 cost the same to network users, i.e., there

are two optimal solutions to the inner problem. If we make an optimistic assumption about

user behavior, we assume that all network users will select path 1, the least risky option.

Alternatively, if we make a pessimistic assumption, we consider the worst case, where each

user selects path 2. Observe that, under this pessimistic approach, increasing the toll tBD

slightly, will induce users to always select path 1, as it removes the multiple optimal solutions.

However, the upper-level problem will attempt to set the toll tBD = 1+ε for very small ε > 0

to lower the financial cost borne by the network users, and so no optimal solution in fact

exists for this particular example.

Alternatively, we could work under the assumption that network users are not perfectly

rational and are willing to accept solutions that are very slightly suboptimal. Consider that

a new path is added as in Figure 3.1b, which we call path 3: directly from O to D. After

tolling tBD = 1, the cost of paths 1 and 2 is 3, and the cost of path 3 is 3.1, which is very close

to 3. While path 3 is not optimal, but it may be sufficiently close to optimal that network

users deem it acceptable. Under this behavioral assumption, the optimistic approach will

lead us to set a toll of tBD = 1, under which policy the network users will choose path 3

with a risk of 0.

Now, suppose that the risk along path 3 is much higher, with a value of 50. If we are

optimistic, we believe that the network users can be induced to choose path 1 with risk 10

by tolling tBD = 1. If we are pessimistic, however, we believe that the same toll policy will

lead to users selecting path 3, with a substantially higher risk of 50. Therefore, to be robust,

it would be reasonable to toll tBD = 2 and tOD = 2, for example, to make sure that path 1

becomes the only acceptable path to the network users.

As we have observed in this example, the optimal toll policy largely depends on the

behavioral assumptions. Later, we discuss the existence of optimal solutions under optimistic

and pessimistic formulations. We also present an approximation of the pessimistic problem,

for which the solution existence is assured.
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3.1.2 Related Works

Toll policy to regulate the use of roads for shipping hazardous materials has been proposed

by Marcotte et al. (2009). Other studies extend the model proposed by Marcotte et al. (2009)

by developing different toll pricing frameworks which control both regular and hazmat traffic

(Wang et al., 2012), incorporate the spreading of the risk in the network (Bianco et al., 2015),

or permit a nonlinear travel delay function (Esfandeh et al., 2016). The hazmat toll pricing

problem is an example of a bilevel optimization problem.

In the upper-level optimization problem, the leader (transportation agency) aims to min-

imize the risk by tolling a set of roads. In the inner problem, given this set of road tolls, the

follower (shipping carrier) chooses the shortest path. Optimizing the upper-level problem

depends on the solution of the inner problem which may not be unique. To address this issue,

two different approaches have been considered, namely the optimistic and the pessimistic

approach. In the optimistic approach, the leader assumes that the follower chooses the best

response, while in the pessimistic approach, it is assumed that the follower chooses the worst

response. While the previous studies in hazmat toll pricing literature consider an optimistic

approach, in this study, we contribute to hazmat toll pricing literature by considering a

pessimistic approach. Previous studies have explored the necessary optimality conditions for

general pessimistic bilevel programming (Dempe et al., 2014) and developed exact (Lozano

and Smith, 2017) and approximate (Wiesemann et al., 2013) solution approaches for solv-

ing the pessimistic bilevel problem. In this research, we study the conditions under which

optimal solutions exist for both the pessimistic and the approximate pessimistic hazmat toll

pricing problem. We also develop solution approaches to solve the approximate pessimistic

hazmat toll pricing problem, using ideas from Wiesemann et al. (2013) and disjunctive pro-

gramming.

The underlying assumption in the approximate pessimistic hazmat toll pricing problem

is related to the notion of bounded rationality and satisficing behavior of the network users.

When network users are satisficing—a term coined by Simon (1956)—they are indifferent
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among the alternatives whose costs are within a certain threshold. This notion has been

actively applied in transportation research (Guo and Liu, 2011; Di and Liu, 2016; Sun et al.,

2017; Eikenbroek et al., 2018; Takalloo and Kwon, 2019). Under this setting, any path within

a threshold of the shortest path is acceptable to the users and can be the output of the lower

level problem. In this study, we assume that the transportation agency seeks a set of link

tolls that minimizes the worst-case risk of the acceptable, or satisficing, paths. In other

words, the transportation agency assumes that the network users choose the riskiest path

among the set of satisficing paths and aims to minimize the transportation hazmat risk in

the network by tolling certain roads.

3.1.3 Contributions

To the best of our knowledge, this study considers the pessimistic approach in hazmat toll

pricing for the first time. Two main challenges arise regarding the existence and computation

of optimal solutions, which are addressed here. First, we show that the approximate pes-

simistic hazmat toll pricing problem always admits an optimal solution, while the pessimistic

problem does not. To prove the existence of optimal solutions, we consider an alternative

problem with bounded tolls, which we further leverage to show that the approximate pes-

simistic problem admits an optimal solution. Second, we present two formulations for the

master problem, using techniques from disjunctive programming. We analyze these formu-

lations and show a connection between the “big-M constants” that appear in them with

the bounded toll problem. Additionally, we provide valid inequalities for these formulations

to improve the computational efficacy of our approach. Finally, we present numerical ex-

periments, where we observe on realistic hazmat networks that a) the optimistic approach

can lead to a substantial underestimate of true risk, and that b) our methods can produce

high-quality solutions in a reasonable amount of computation time.
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3.1.4 Notation

Throughout this chapter, we try to keep consistency in the mathematical notation. Calli-

graphic upper-case alphabets are used to denote sets of indices such as S or A. Lower-case

alphabets are for indices, as in s ∈ S, or scalar quantities, as in z or ns. Lower-case bold

alphabets are for vector quantities as in t or xs, while their elements are tij or xijs. Upper-

case bold alphabets are for sets of vectors as in X or Qs. Blackboard bold alphabets are for

sets of solutions to some optimization problems as in X. We also distinguish scalar zero 0

from vector zero 0 in a similar fashion.

3.2 Bilevel Hazmat Toll Pricing Problem

Consider a network G = (N ,A) with N as the set of nodes, and A as the set of links. We

denote the set of origin-destination shipments in the network by S. Each origin-destination

shipment s ∈ S has a fixed hazmat type h(s) ∈ H. Moreover, ns ≥ 1 denote the number

of trucks needed for shipment s ∈ S. Parameter cij ≥ 0 denote the length or the cost of

link (i, j) ∈ A and ρ
h(s)
ij ≥ 0 represents the risk exposure on link (i, j) when hazmat type

h is carried. Constant bsi is defined as 1 if i = o(s), −1 if i = d(s), or 0 otherwise for

all i ∈ N , s ∈ S. With this notation, we can present the (optimistic) bilevel Hazmat Toll

Pricing (HTP) problem as follows:

HTP : minimize
t

∑
s∈S

∑
(i,j)∈A

ns

(
ρ
h(s)
ij + α

(
cij + t

h(s)
ij

))
xsij

subject to t
h(s)
ij ≥ 0 ∀(i, j) ∈ A, s ∈ S

where, for each s ∈ S, xs solves:

minimize
xs

∑
(i,j)∈A

(
cij + t

h(s)
ij + βρ

h(s)
ij

)
xsij

subject to
∑

(i,j)∈A

xsij −
∑

(j,i)∈A

xsji = bsi ∀i ∈ N
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xsij ∈ {0, 1} ∀(i, j) ∈ A,

where α and β are nonnegative constants. The upper-level decision variable thij is the toll

imposed on link (i, j) for hazmat type h, and the lower level decision variable xsij is 1 if

link (i, j) is used for carrying shipment s and is 0 otherwise. Note that the above problem

is separable for each hazmat type h ∈ H since we charge the same toll th(s)
ij if the hazmat

type is the same. Once we define Sh = {s ∈ S : h(s) = h} as the set of shipments of each

hazmat type h ∈ H, we can write the problem for each h and Sh. Therefore, without the

loss of generality, we can drop superscripts h and h(s) from the problem for the simplicity

of the presentation.

3.3 Optimistic and Pessimistic Formulations

Let us define the solution set of inner problem for each shipment s ∈ S separately as:

Xs =

{
xs

∣∣∣ ∑
(i,j)∈A

xsij −
∑

(j,i)∈A

xsji = bsi ∀i ∈ N , xsij ∈ {0, 1} ∀(i, j) ∈ A
}
,

where each vector xs ∈ Xs denotes a path for shipment s ∈ S. Note that this set is

independent of toll vector t = (tij : (i, j) ∈ A). In overloading of notation, we will also use

xs to denote a sub-vector of x associated with shipment s ∈ S. Therefore, we can write

X =
{
x | xs ∈ Xs ∀s ∈ S

}
. As the lower level problem for a given t is a shortest path

problem, when we consider X in the inner problem of hazmat carriers, subtour elimination

constraints are unnecessary and we can relax the integrality conditions to interval conditions

[0, 1].

For simplicity of notation, we define a shorthand for the lower-level objective function:

hs(t,xs) :=
∑

(i,j)∈A

(cij + tij + βρij)xsij
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for each s ∈ S. The set of optimal solutions to the inner problem for a given toll policy is

given by the following point-to-set mappings:

Xs(t) := arg min
xs∈Xs

hs(t,xs) ∀s ∈ S

X(t) := arg min
x∈X

∑
s∈S

hs(t,xs) =
∏
s∈S

Xs(t).

Similarly, for the upper-level objective function we define

fs(t,xs) :=
∑

(i,j)∈A

ns

(
ρij + α(cij + tij)

)
xsij

f(t,x) :=
∑
s∈S

fs(t,xs).

Then, we can rewrite HTP compactly as follows:

HTP : minimize
t≥0, x∈X(t)

f(t,x)

The above HTP problem is called an optimistic formulation in the bilevel optimization

literature. When α = 0, we can solve this problem by a two-phase method based on inverse

optimization (Marcotte et al., 2009). The inverse problem always has a feasible solution,

and the optimal toll solution exists.

When α 6= 0, HTP becomes a bilevel optimization problem. Marcotte et al. (2009)

propose a single level optimization formulation for bilevel optimization by substituting the

lower level problem with KKT condition. Since the lower level problem can have multiple

optimal solutions, it is unclear which path will be chosen by the followers. This optimistic

formulation assumes that the hazmat carriers will choose the least risky path(s) as discussed

for the simple example in Figure 3.1a. Objective function of HTP involves a bilinear term

tijxsij. By linearizing these bilinear terms, HTP can be cast as a bilevel mixed-integer linear

program.
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In the pessimistic approach, it is assumed that hazmat carriers are indifferent among

multiple optimal solutions and choose the riskiest path. We write the pessimistic formulation

as follows:

PHTP : minimize
t≥0

max
x∈X(t)

f(t,x). (3.1a)

By introducing auxiliary variables z, we can also write equivalently:

PHTP : minimize
t≥0, z≥0

z (3.2a)

subject to f(t,x)− z ≤ 0 ∀x ∈ X(t), (3.2b)

or equivalently, by letting z =
∑

s∈S zs and z = (zs : s ∈ S):

PHTP : minimize
t≥0, z≥0

∑
s∈S

zs

subject to fs(t,xs)− zs ≤ 0 ∀xs ∈ Xs(t), s ∈ S.

By definition of f(·, ·, ), both z and z are nonnegative. Furthermore, we consider an approx-

imation to PHTP by relaxing the optimizing-behavior assumption of the hazmat carriers

(Wiesemann et al., 2013). Define

Xεs(t) :=
{
ys ∈ Xs|hs(t,ys) < hs(t,y

′
s) + εs ∀y′s ∈ Xs

}
, (3.3)

Xε(t) :=
{
y ∈ X|ys ∈ Xεs(t) ∀s ∈ S

}
, (3.4)

where ys and y′s denote a sub-vector of y and y′, respectively, for shipment s ∈ S. Call any

lower-level solution y ∈ Xε(t) an ε-approximate solution under t. Similarly, ys represents an

ε-approximate path for shipment s ∈ S. The ε-approximation to PHTP is defined as follows:
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PHTPε : minimize
t≥0, z≥0

∑
s∈S

zs (3.5a)

subject to fs(t,xs)− zs ≤ 0 ∀xs ∈ Xεs(t), s ∈ S (3.5b)

The ε-approximation notion is related to the satisficing behavior and the bounded ra-

tionality of network users (Sun et al., 2017). The satisficing network users may choose any

path whose cost is close enough to the shortest path. which is related to (3.3). In this study,

we use the satisficing path and ε-approximate path interchangeably.

3.4 Existence of Optimal Toll Solutions

In this section, we discuss the existence of an optimal toll solution for the optimistic, pes-

simistic, and ε-approximate pessimistic formulation.

Let us consider the example in Figure 3.1a. We assume that β = 0 for simplicity and

α > 0 is sufficiently small so that the risk component is dominant in the upper-level objective

function. We consider shipment 1 from O to D; shipment 2 from O to B; and shipment

3 from B to D. We assume ns = 1 for each shipment s ∈ {1, 2, 3}. Although there are

no path-change opportunities for shipments 2 and 3, they still contribute to the objective

function since α > 0. Clearly there are two paths for shipment 1:

path 1 : O → A→ D

path 2 : O → B → D

The upper-level objective function for path 1 and path 2 is as follows:

path 1 : [5 + α(1 + tOA)] + [5 + α(2 + tAD)]

path 2 : [10 + α(1 + tOB)] + [10 + α(1 + tBD)].
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the lower level objective function becomes

path 1 : [(1 + tOA) + (2 + tAD)] = 3 + tOA + tAD

path 2 : [(1 + tOB) + (1 + tBD)] = 2 + tOB + tBD

For the optimistic formulation HTP, any toll vector such that 3 + tOA + tAD ≤ 2 + tOB + tBD

is sufficient to make path 1 optimal for the lower-level problem. Since α > 0, we require

3 + tOA + tAD = 2 + tOB + tBD; for example

t∗BD = 1, t∗OA = t∗AD = t∗OB = 0.

is a solution for HTP.

For the pessimistic formulation PHTP, however, we require 3+ tOA+ tAD < 2+ tOB + tBD

to make path 1 the unique optimal solution to the inner problem. We need to solve the

following problem:

minimize
t

[5 + α(1 + tOA)] + [5 + α(2 + tAD)]

subject to 3 + tOA + tAD < 2 + tOB + tBD

t ≥ 0.

Since the constraint is a strict inequality and α is positive, there exists no optimal solution.

We can, however, show that PHTPε has an optimal solution for the same example.

Suppose εs = 0.1. To make path 1 the unique ε-approximate solution to the inner problem,

we require both

3 + tOA + tAD < 2 + tOB + tBD + 0.1,

2 + tOB + tBD ≮ 3 + tOA + tAD + 0.1.
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We need to solve the following problem:

minimize
t

[5 + α(1 + tOA)] + [5 + α(2 + tAD)]

subject to 3 + tOA + tAD < 2 + tOB + tBD + 0.1,

2 + tOB + tBD ≥ 3 + tOA + tAD + 0.1.

t ≥ 0.

Thus, an optimal toll policy under PHTPε is

tBD = 1.1, tOA = tAD = tOB = 0.

for any α ≥ 0. The existence of an optimal solution is guaranteed for this example, mainly

because of the strict inequality in the definition of X(·) in (3.4).

As shown in the example above, the pessimistic formulation PHTP may not have an opti-

mal solution, although there always exists an optimal solution to the optimistic formulation

HTP.

Proposition 3.1. The optimistic formulation HTP admits an optimal solution for

any α ≥ 0. However, there exists no optimal solution to PHTP, in general.

Unlike the pessimistic formulation PHTP, the ε-approximate pessimistic problem PHTPε

guarantees a solution. To prove the optimal solution existence for PHTPε, first, we consider

the case when the toll vector t is bounded from above. When t is bounded, z is also bounded.

In particular, we assume that tij is bounded as follows:

tij ≤ Bij :=
zt=0

α
+ max

s∈S
εs + β

∑
(i,j)∈A

ρij ∀(i, j) ∈ A, (3.6)

where zt=0 is an upper bound for PHTPε obtained by setting t = 0. We denote this bounded

version of PHTPε by PHTPε and prove that there is an optimal solution for this problem.

Lemma 3.1. There exists an optimal solution to PHTPε for all ε > 0.
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In fact, Lemma 3.1 holds not only for Bij but also for any finite upper bound for tij.

Therefore, when tij has an exogenous upper bound, as in the second-best toll pricing (Law-

phongpanich and Hearn, 2004), Lemma 3.1 assures the existence of ε-approximate pessimistic

toll pricing for all ε ≥ 0 and α ≥ 0. When there is no exogenous upper bound on tij, we rely

on the endogenous bound, Bij, given in (3.6), which requires α > 0. Using the endogenous

bound Bij and Lemma 3.1, we show that for any given solution to the original problem

PHTPε, there exists a solution to the bounded problem PHTPε that is no worse than the

given solution, which leads to the existence of ε-approximate pessimistic toll.

Proposition 3.2. There exists an optimal solution to PHTPε for all ε > 0 and α > 0.

As discussed above, the pessimistic formulation PHTP may not have an optimal solution.

For this reason, we consider the approximate pessimistic formulation PHTPε with ε > 0 and

develop solution approaches for it in the upcoming sections.

3.5 Solution Approaches for the Approximate Formulation

In this section, we reformulate PHTPε as a semi-infinite program and devise a cutting plane

algorithm based on the method of Wiesemann et al. (2013).

First, note that for a given s ∈ S, constraint (3.5b) is equivalent to the following disjunc-

tive constraint (Wiesemann et al., 2013, Proposition 4.1):

[
x ∈ Xεs(t) =⇒ fs(t,xs)− z ≤ 0

]
∀x ∈ X

⇐⇒
[
x /∈ Xεs(t)

]
∨

[
fs(t,xs)− z ≤ 0

]
∀x ∈ X,

which is also equivalent to the following statement:

∃y ∈ X : [hs(t,xs) ≥ hs(t,ys) + εs] ∨ [fs(t,xs)− zs ≤ 0] x ∈ X
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Hence, PHTPε is equivalent to the following problem with disjunctive constraints:

minimize
t≥0, z≥0, y∈X

∑
s∈S

zs (3.7a)

subject to [hs(t,xs) ≥ hs(t,ys) + εs] ∨ [fs(t,xs)− zs ≤ 0] ∀s ∈ S,x ∈ X (3.7b)

If we assume that there is at least one path for each shipment, then the lower level problem

has a solution and Xε(t) 6= ∅. Under this assumption, variable zs attains the worst-case

objective value fs(.) of the lower level problem for the shipment s at optimality. Next, we

present a cutting plane algorithm for solving (3.7).

3.5.1 Cutting Plane Algorithm For Approximate Pessimistic Problem

In this section, we describe an iterative algorithm for solving PHTPε, which is based on

the iterative algorithm proposed by Wiesemann et al. (2013). In each iteration k of the

algorithm, we solve two problems, namely the master problem Masterk and the subproblem

Subk. Masterk is a relaxation of (3.7), and considers only a finite set of paths, namely

Xk ⊂ X, and can be formulated as follows:

Masterk :

minimize
t≥0, z≥0, y∈X

∑
s∈S

zs (3.8a)

subject to [hs(t,x
l
s) ≥ hs(t,ys) + εs] ∨ [fs(t,x

l
s)− zs ≤ 0] ∀s ∈ S,xl ∈ Xk,

(3.8b)

which produces an optimal solution (tk, zk,yk). We formulate Masterk as a MILP in Section

3.5.3 and 3.5.4. Next, we can formulate the subproblem Subk as follows:

Subk : maximize
x∈X, w

∑
s∈S

ws
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subject to ws ≤ hks − hs(tk,xs) + εs ∀s ∈ S

ws ≤ fs(t
k,xs)− zks ∀s ∈ S

where hks is the minimum lower-level objective function value under tk, given by

hks = min
y∈X

hs(t
k,ys). (3.9)

To solve Subk, we need both subtour elimination constraints and integrality conditions in

X. Note that subproblem Subk finds a path solution xks ∈ Xs(tk) for each shipment s in S.

We use this solution to generate some cuts, which are added to Masterk. For the optimal

solution wk to Subk, suppose there exists a shipment such that wks > 0. Then the following

inequalities hold:

hs(t
k,xks) < hks + εs,

zks < fs(t
k,xks),

which imply that there exists an ε-approximate path with a higher upper-level objective

function under toll vector tk than zks . In this case, we update the master problem by

Xk+1 = Xk ∪ {xk}. If wk ≤ 0, then there is no ε-approximate solution xk with a higher

risk than current set of path solutions Xk and tk is optimal. A summary of the algorithm is

provided.

Note that the proposed cutting plane algorithm is an exact approach. The number of

constraints in Masterk grows as the algorithm iterates. Therefore, Masterk becomes difficult

to solve. As a result, it may not be possible to solve the approximate pessimistic formulation

PHTPε optimally for large networks. However, we can obtain a primal bound using the

toll vector tk that we obtained by solving Masterk. Since εs is small relative to the value

of hs(t,xs), then the number of paths within Xε(tk) is small. Therefore we can use Yen’s

K-shortest path algorithm (Yen, 1971) to enumerate the set of approximately optimal paths.
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Algorithm 3: Cutting Plane Algorithm For PHTPε
Input: Network G = (N ,A) and parameters c,n,ρ, α, β
Output: Optimal toll t∗

1 Initialization. Set iteration counter k = 0 and X0 = ∅;
2 while wk > 0 do
3 Given Xk, solve Masterk to obtain optimal solution (tk, zk,yk) ;
4 Given tk, compute hks by solving (3.9) ;
5 Given tk and zk, solve subproblem Subk to obtain optimal solution (xk,wk) ;
6 Set Xk+1 = Xk ∪ {xk} and k ← k + 1.
7 end

Once we enumerate those paths, we can compute the upper-level objective function fs(tk,xs)

for them and choose the one with maximum fs(t
k,xs), which gives us a primal bound for

PHTPε. In each iteration of the algorithm, we obtain a dual bound for the problem by

solving Masterk, which can be used to calculate the optimality gap for the primal bound.

In each iteration of the algorithm, instead of adding only one path to the Masterk for each

shipment s, we can add multiple paths. In particular, to generate multiple paths in iteration

k of the algorithm, we find the set of ε-approximate shortest paths under tk, compute fs(·)

for them, and add those with fs(·) higher than zks to the problem.

3.5.2 Analysis of Masterk

As the following proposition shows, we can simply ignore subtour elimination constraints in

X in Masterk.

Proposition 3.3. For any solution yk ∈ X with subtours for Masterk, there exists

a solution y ∈ X without subtours, at least as good as ŷ.

To solve PHTPε efficiently, we need to be able to solve Masterk in a reasonable amount of

time. In this section, we provide some valid cuts for PHTPε, which can be added to Masterk.

Adding these cuts to Masterk can potentially decrease the solution time of Masterk. We
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consider the following optimization problem to provide valid cuts:

minimize
t≥0, x∈X

∑
s∈S

fs(t,xs) =
∑
s∈S

∑
(i,j)∈A

ns

(
ρij + α(cij + tij)

)
xsij (3.10)

Since X is independent from t and Problem (3.10) is a minimization problem, and therefore,

we will necessarily have t = 0 at optimality. Hence, we can rewrite (3.10) as:

R0 := min
x∈X

∑
s∈S

fs(0,xs) = min
x∈X

∑
s∈S

∑
(i,j)∈A

ns

(
ρij + αcij

)
xsij

Similarly, we can define R0
s for each shipment s as:

R0
s := min

x∈X

∑
s∈S

∑
(i,j)∈A

ns

(
ρij + αcij

)
xsij

Then, we have the following valid inequality for PHTPε:

zs ≥ R0
s ∀s ∈ S.

Consequently we have z =
∑

s∈S zs ≥ R0. Moreover, as described in the previous section, by

setting the toll vector to any nonnegative vector t and using Yen’sK-shortest path algorithm,

we can obtain an upper bound for PHTPε, which we denote by Ut. Therefore, we have

z =
∑
s∈S

zs ≤ Ut (3.11)

We can add this valid cuts to Masterk to obtain a tighter and a stronger relaxation.

Linearizing the bilinear term tijysij in (3.8b), we can reformulate Masterk as follows:

minimize
t,z,y,τ

∑
s∈S

zs (3.12a)
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[ ∑
(i,j)∈A

(cij + βρij + tij)x
l
sij ≥

∑
(i,j)∈A

(cij + βρij)ysij + τsij + εs

]
∨
[
fs(t,x)− zs ≤ 0

]
∀s ∈ S, l ∈ J|Xk|K (3.12b)

τsij ≤M3
sijysij ∀s ∈ S, (i, j) ∈ A (3.12c)

τsij ≤ tij ∀s ∈ S, (i, j) ∈ A (3.12d)

τsij ≥ tij +M3
sij(ysij − 1) ∀s ∈ S, (i, j) ∈ A (3.12e)

t ≥ 0, z ≥ 0, τ ≥ 0 (3.12f)

y ∈ X (3.12g)

where J|Xk|K = {1, 2, ..., |Xk|}. Constraints (3.12c)–(3.12e) linearize tijyij. Marcotte et al.

(2009) propose a big-M formulation for optimistic problem. They use the longest path for

bounding the maximum toll that can be charged on an arc. The length of the longest path,

unfortunately, cannot be used for bounding the toll on each link. We present several lemmas

and propositions to provide valid bounds onM3
sij in (3.12c) and (3.12e). In these lemmas and

propositions, we assume that there should always be at least one ε-approximation solution

for each shipment s ∈ S in Masterk. In other words, there always exists l(s) ∈ J|Xk|K for

each s ∈ S such that zks = fs(t
k,x

l(s)
s ). First, based on this assumption, we provide a bound

on the amount of toll charged on shipment s ∈ S under an optimal solution to Masterk. We

denote the amount of toll charged by T ks .

Lemma 3.2. Let (tk, zk,yk) be an optimal solution to Masterk. Suppose there

exists l(s) ∈ J|Xk|K for each s ∈ S such that zks = fs(t
k,x

l(s)
s ). Let T ks =

∑
(i,j)∈A t

k
ijx

l(s)
sij .

Then, the following holds:

T ks ≤ T s :=
Ut −R0

αns

for any nonnegative toll vector t ≥ 0.

49



Lemma 3.3. Let (tk, zk,yk) be an optimal solution to Masterk. Let us define

ŷ(tk) := arg min
x∈X

∑
s∈S

hs(t
k,xs) (3.13)

Then, (tk, zk, ŷ(tk)) is also an optimal solution to Masterk.

To bound M3
sij, we first define:

C0
s := max

xs∈Xs

∑
(i,j)∈A

(cij + βρij)xsij ∀s ∈ S, (3.14)

where subtour elimination constraints are implicitly assumed in Xs. Essentially, C0
s is the

length of the “longest path” for shipment s ∈ S with link cost being (cij + βρij) for each

(i, j) ∈ A.

Proposition 3.4. Let (tk, zk,yk) be an optimal solution to Masterk. Suppose there

exists l(s) ∈ J|Xk|K for each s ∈ S such that zks = fs(t
k,x

l(s)
s ). Let T ks =

∑
(i,j)∈A t

k
ijx

l(s)
sij .

Then, the following lower bound for M3s
ij is valid in Masterk:

M3
sij ≥ max

s′∈S
{C0

s′ + T s′ + εs′} − βρij − cij ∀s ∈ S. (3.15)

Note that we have bounded big-M values in Masterk based on the existence of an εs-

approximate path for each shipment. This assumption may put some restriction on the

value of tk and consequently on the cuts generated by Subk in iteration k. Although this

assumption generally does not necessarily hold, especially in early iterations, it holds under

the optimal solution to PHTPε in the proposed cutting plane algorithm, when wk ≤ 0.

Lemma 3.4. Suppose on iteration k, we have wk ≤ 0 for Subk. Then, there exists

at least one εs-approximate path for each shipment s ∈ S.

50



3.5.3 Big-M Formulation of the Master Problem

Note that the disjunctive constraints (3.8b) in Masterk can be written with big-M constraints

and auxiliary binary variables. We can formulate the master problem as the following MILP:

minimize
t,z,y,v,τ

∑
s∈S

zs (3.16a)

subject to ∑
(i,j)∈A

(cij + βρij + tij)x
l
sij ≥

∑
(i,j)∈A

[
(cij + βρij)ysij + τsij

]
+ εs −M1l

s v
l
s (3.16b)

∀s ∈ S, l ∈ J|Xk|K∑
(i,j)∈A

ns

(
ρij + α(cij + tij)

)
xlsij − zs ≤M2l

s (1− vls) ∀s ∈ S, l ∈ J|Xk|K

(3.16c)

τsij ≤M3
sijysij ∀s ∈ S, (i, j) ∈ A (3.16d)

τsij ≤ tij ∀s ∈ S, (i, j) ∈ A (3.16e)

τsij ≥ tij +M3
sij(ysij − 1) ∀s ∈ S, (i, j) ∈ A (3.16f)

vls ∈ {0, 1} ∀s ∈ S, l ∈ J|Xk|K

(3.16g)

t ≥ 0, z ≥ 0, τ ≥ 0 (3.16h)

y ∈ X (3.16i)

Problem Masterk contains big-M constants. The value of such constants has an impact

on the solution process. In this section, we seek to find lower bounds for big-M values for

Masterk.

Proposition 3.5. Let (tk, zk,yk,vk, τ k) be an optimal solution toMasterk in (3.16).

Suppose there exists l(s) ∈ J|Xk|K for each s ∈ S such that zks = fs(t
k,x

l(s)
s ). Let T ks =
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∑
(i,j)∈A t

k
ijx

l(s)
sij . Then the following lower bounds for M1l

s and M2l
s are valid for Masterk:

M1l
s ≥ C0

s + T s + εs (3.17)

M2l
s ≥

∑
(i,j)∈A

ns

(
ρsij + α(max

s′∈S
{C0

s′ + T s′ + εs′} − βmin
s′∈S
{ρs′ij})

)
(3.18)

for all s ∈ S, l ∈ J|Xk|K.

3.5.4 Balas Extended Reformulation of the Master Problem

In this subsection we derive another MILP formulation for (3.8b) in Masterk using tech-

niques introduced by Balas (1985). The construction of Balas emits MILP formulations for

disjunctive sets that uses additional continuous variables and is ideal, meaning it has the

tightest possible linear programming relaxation.

In particular, for each ` ∈ J|Xk|K and s ∈ S, we apply the techniques of Balas to construct

the strongest possible MILP formulation for the union of the two sets given as

P1l
s =


(ts, zs, τ s,ys) ∈ Qs(1)

∣∣∣∣ ∑
(i,j)∈A

(cij + βρij + tsij)x
l
sij ≥

∑
(i,j)∈A

[
(cij + βρij)y

1l
sij + τ 1l

sij

]
+ εs

 ,

P2l
s =

(ts, zs, τ s,ys) ∈ Qs(1)

∣∣∣∣ ∑
(i,j)∈A

ns

(
ρij + α(cij + tsij)

)
xlsij − zs ≤ 0


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where

Qs(u) :=



(ts, zs, τ s,ys)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

τsij ≤M3
sijysij ∀(i, j) ∈ A

τsij ≤ tsij ∀(i, j) ∈ A

τsij ≥ tsij +M3
sij(ysij − u) ∀(i, j) ∈ A∑

(i,j)∈A

ysij −
∑

(j,i)∈A

ysji = bsiu ∀i ∈ N

τsij, tsij ≥ 0 ∀(i, j) ∈ A

0 ≤ ysij ≤ u ∀(i, j) ∈ A



. (3.19)

Within the definition for P1l
s , P

2l
s , and Qs, we take vectors defined as follows:

ts = (tsij : (i, j) ∈ A)

τ s = (τsij : (i, j) ∈ A)

ys = (ysij : (i, j) ∈ A).

Observe that each constraint describing Qs(u) is affine in u. Therfore, the following set is

polyhedral.

{
(ts, zs, τ s,ys, u)|(ts, zs, τ s,ys) ∈ Qs(u)

}
Lemma 3.5. Select some ` ∈ J|Xk|K and s ∈ S. The following is an ideal formulation

for P1l
s ∪P2l

s :

∑
(i,j)∈A

(ciju
1l
s + βρiju

1l
s + t1lsij)x

l
sij ≥

∑
(i,j)∈A

[
(cij + βρij)y

1l
sij + v1l

sij

]
+ εsu

1l
s (3.20a)

∑
(i,j)∈A

ns

(
ρiju

2l
s + α(ciju

2l
s + t2lsij)

)
xlsij − z2l

s ≤ 0 (3.20b)

(t1l
s , z

1l
s , τ

1l
s ,y

1l
s ) ∈ Qs(u

1l
s ) (3.20c)
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(t2l
s , z

2l
s , τ

2l
s ,y

2l
s ) ∈ Qs(u

1l
s ) (3.20d)

(tsij, zs, τsij, ysij) = (t1lsij, z
1l
s , τ

1l
sij, y

1l
sij) + (t2lsij, z

2l
s , τ

2l
sij, y

2l
sij) ∀(i, j) ∈ A (3.20e)

u1l
s + u2l

s = 1 (3.20f)

u1l
s , u

2l
s ∈ {0, 1}. (3.20g)

Applying the ideal MILP formulation (3.20) for every l ∈ J|Xk|K and s ∈ S, we can

develop the following formulation for Masterk.

Proposition 3.6. The following is a valid MILP formulation for Masterk:

minimize
∑
s∈S

zs (3.21a)

subject to ∑
(i,j)∈A

(ciju
1l
s + βρiju

1l
s + t1lsij)x

l
sij ≥

∑
(i,j)∈A

[
(cij + βρij)y

1l
sij + v1l

sij

]
+ εsu

1l
s (3.21b)

∀s ∈ S, l ∈ J|Xk|K∑
(i,j)∈A

ns

(
ρiju

2l
s + α(ciju

2l
s + t2lsij)

)
xlsij − z2l

s ≤ 0 ∀s ∈ S, l ∈ J|Xk|K (3.21c)

(tsij, zs, τsij, ysij) = (t1lsij, z
1l
s , τ

1l
sij, y

1l
sij) + (t2lsij, z

2l
s , τ

2l
sij, y

2l
sij) (3.21d)

∀s ∈ S, l ∈ J|Xk|K, (i, j) ∈ A

u1l
s + u2l

s = 1 ∀s ∈ S, l ∈ J|Xk|K (3.21e)

τ 1l
sij ≤M3

sijy
1sl
ij ∀s ∈ S, l ∈ J|Xk|K, (i, j) ∈ A

(3.21f)

τ 2l
sij ≤M3

sijy
2sl
ij ∀s ∈ S, l ∈ J|Xk|K, (i, j) ∈ A

(3.21g)

τ 1l
sij ≤ t1lsij ∀s ∈ S, l ∈ J|Xk|K, (i, j) ∈ A

(3.21h)
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τ 2l
sij ≤ t2lsij ∀s ∈ S, l ∈ J|Xk|K, (i, j) ∈ A

(3.21i)

τ 1l
sij ≥ t1lsij +M3

sij(y
1l
sij − u1l

s ) ∀s ∈ S, l ∈ J|Xk|K, (i, j) ∈ A

(3.21j)

τ 2l
sij ≥ t2lsij +M3

sij(y
2l
sij − u2l

s ) ∀s ∈ S, l ∈ J|Xk|K, (i, j) ∈ A

(3.21k)∑
(i,j)∈A

y1l
sij −

∑
(j,i)∈A

y1l
sji = bsiu

1l
s ∀i ∈ N , s ∈ S (3.21l)

∑
(i,j)∈A

y2l
sij −

∑
(j,i)∈A

y2l
sji = bsiu

2l
s ∀i ∈ N , s ∈ S (3.21m)

τ 1l
sij, τ

2l
sij, t

1l
sij, t

2l
sij ≥ 0 ∀s ∈ S, l ∈ J|Xk|K, (i, j) ∈ A

(3.21n)

y1l
sij ≤ u1ls ∀s ∈ S, l ∈ J|Xk|K, (i, j) ∈ A

(3.21o)

y2l
sij ≤ u2ls ∀s ∈ S, l ∈ J|Xk|K, (i, j) ∈ A

(3.21p)

y1l
sij, y

2l
sij ∈ {0, 1} ∀s ∈ S, l ∈ J|Xk|K, (i, j) ∈ A

(3.21q)

u1l
s , u

2l
s ∈ {0, 1} ∀s ∈ S, l ∈ J|Xk|K (3.21r)

Note that the formulation above has more variables compare to the big-M formulation

(3.16). However, constraints (3.21b) and (3.21c) have replaced big-M formulation constraints

(3.16b) and (3.16c).
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(d) α = 10−5, β = 1

Figure 3.2 – Number of shortest paths for the Ravenna network under optimistic toll

3.6 Numerical Experiments

In this section, we present numerical experiments to test the validity of the proposed models

and methods. We use the Julia Programming Language for modeling optimization problems,

and we use Gurobi solver for solving MILPs.

3.6.1 Optimistic Approach Generates Multiple Lower-Level Optimal Solutions

As described in Section 3.3, the lower level problem in HTP may have multiple solutions for

the optimistic toll vector tHTP. To test the existence of multiple solutions for the lower level

problem of HTP in relatively large networks, we consider the Ravenna network (Bonvicini and

Spadoni, 2008). The Ravenna network has 111 nodes, 286 arcs, and 31 origin-destination

pairs for four hazmat types: chlorine, LPG, gasoline, and methanol. Note that as the
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probability of the risk exposure is a very small number, to avoid the numerical issues rising

from the existence of small numbers in our model, we normalize the probability vector by

dividing its elements by its maximum value. We assume that the toll imposed on each arc

is the same for each hazmat type. To find the solutions of the inner problem under tHTP,

first we solve HTP, using the single level formulation (Marcotte et al., 2009). Next, we use

Yen’s algorithm for finding all the optimal solutions to the inner problem under optimistic

toll vector tHTP. Figure 3.2a represents the histogram of the number of OD pairs based on

the number of shortest paths for four different cases based on the values of α and β. In

all cases, there are OD pairs with multiple shortest paths. As Figure 3.2a represents, the

number of OD pairs with multiple shortest paths may be greater than the number of OD

pairs with a single shortest path. Note that using a positive term for the risk in the lower

level problem (β > 0) does not necessarily yield a single shortest path for each OD pair, as

shown in Figure 3.2b and Figure 3.2d.

Next, we compare the upper-level objective function value for the best-case solution

xb ∈ X(tHTP) and the worst-case solution xw ∈ X(tHTP) of the lower level problem under

tHTP. Figure 3.3 represents the cumulative distribution of the gap between f(tHTP,xb) and

f(tHTP,xw) for different values of α and β. As Figure 3.3 shows, the gap is greater than 25

% for some OD pairs for all cases. Moreover, more than 10% of the OD pairs have a gap

greater than 15% for all cases. These results show the downside of the optimistic formulation

HTP; the network users may not choose the best-case path, and as a result, they may face

much higher risk than what is predicted by the optimistic approach.

Next, to study the effect of toll policy on the network and the existence of multiple solu-

tions in more detail, we consider the origin-destination pair s = (109, 111) for the Ravenna

network. Table 3.1 compares the toll free cost Cs, the total toll charged Ts, the total cost

Cs +Ts, the upper-level objective function value fs and the risk component of fs denoted by

Rs for the worst-case solution under tHTP which is denoted by xws ∈ Xs(tHTP), the best-case

solution under tHTP which is denoted by xbs ∈ Xs(tHTP) and the toll free solution x0
s ∈ Xs(0)
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Figure 3.3 – CDF of the gap between f(tHTP, xb) and f(tHTP, xw) where xb, xw ∈ X(tHTP)
for Ravenna network
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Table 3.1 – The effect of toll policy for OD pair s = (109, 111) for the Ravenna network
(α = 10−5, β = 0)

Solution Cs Ts Cs + Ts fs Rs

xws 29296.94 7598.78 36895.72 1423.73 1024.16
xbs 36895.72 0 36895.72 1183.28 783.71
x0
s 25894.91 11000.81 36895.72 1392.17 992.59

when no road has been tolled. As presented in Table 3.1, x0
s has the minimum toll free cost

Cs. Under the optimistic toll policy, a relatively large toll Ts will be charged on path x0
s. As

a result, other paths with lower risk become the shortest paths as well. Moreover, under the

optimistic toll policy, there are multiple shortest paths (paths with the minimum total cost

of Ts + Cs). As presented, the total cost Ts + Cs is the same for all three paths, and all of

them can be chosen by network users in the lower level problem. However, the upper-level

objective function fs is different, and it is possible that the network users choose xws (tHTP),

which has the highest risk.

Next, we consider the optimistic approach in the context of boundedly rational behavior

where users do not necessarily choose the shortest path.

3.6.2 Optimistic Approach Generates Multiple Lower-Level Satisficing Solutions

We also examine the set of satisficing solutions. As the set of shortest paths is a subset

of ε-approximate paths, the set of solutions to the inner problem is larger, and the gap

between the objective function value for the worst-case and the best-case solution is greater

under satisficing network users. Figure 3.4 represents the histogram of the number of OD

pairs based on the number of satisficing paths for different values of α and β when the the

indifference band is set to 10 % of the length of the shortest path when no toll has been

charged (εs = 0.1 miny′∈X hs(0,y
′)). As Figure 3.4 shows, for the Ravenna network, there

may be many ε-approximate paths under optimistic toll vector tHTP. For instance, as Figure

3.4a represents, the number of shortest paths for an OD pair can be as high as 67. Similar to

the case of shortest paths, using a positive term for the risk (β > 0) in lower level problem
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Figure 3.4 – Number of ε-approximate paths for the Ravenna network
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Figure 3.5 – CDF of the gap between f(tHTP, xb) and f(tHTP, xw) where xb, xw ∈ Xε(tHTP)

does not necessarily yield to single boundedly rational path for each OD pair as Figure

3.4b and Figure 3.4d represent. Figure 3.5 represents the cumulative distribution of the gap

between f(tHTP,xb) and f(tHTP,xw) for different values of α and β under tHTP. Note that

here xb,xw ∈ Xε(tHTP). As Figure 3.5 shows, the gap is greater when network users are

satisficing and applying optimistic approach may result in a much higher risk from what is

predicted by optimistic approach.

3.6.3 Cutting Plane Algorithm for Solving Approximate Pessimistic Problem

In order to implement the cutting plane algorithm in Section 3.5, we add the valid inequality

described in Section 3.5.2 to Masterk and use the results in Section 3.6 for bounding big-M

constants.
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Figure 3.6 – Cutting plane algorithm for solving approximate pessimistic problem for the
Nine-node network

We implement the exact cutting plane algorithm in Section 3.5.1 for the Nine-node net-

work (Hearn and Ramana, 1998). The Nine-node network includes 9 nodes and 18 links.

We consider 16 origin-destination pairs. We consider the free flow time of each link as the

cost associated with that link. For experimental purposes, we assume that ns is a discrete

random number between 0 and 100, and ρsij is a random number between 0 and 1. We set

the value of α and β to 10−2. We also set the value of εs = 0.1 minx∈X hs(0,x) for each

shipment s ∈ S.

Figure 3.6a represents the lower bound and the upper bound for f(·) in each iteration of

the cutting plane algorithm. Figure 3.6b denote maxs∈S ws in sub-problem Subk. As figures

3.6a and 3.6b present, the algorithm terminates after 6 iterations. In the last iteration, the

lower bound and the upper bound have the same value and ws ≤ 0 for all s ∈ S.

As mentioned earlier, for solving Masterk, we can either use big-M formulation or Balas

formulation. Although theoretically interesting, since Balas formulation has many variables

and constraints, it may not be a suitable approach for solving Masterk for large networks.

Table 3.2 compares Balas formulation and big-M formulation for the Nine-node network.

We report the number of variables and constraints for Masterk in the last round of the

cutting plane algorithm, the total number of nodes explored for solving Masterk and the
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Table 3.2 – Comparing Balas and Big-M formulation for Masterk in the final iteration

# of constraints # of variables Nodes explored Time(s)

Balas 21216 11266 13875 74.28
Big-M 1216 706 5567 2.25

total solution time of Masterk for all the iterations of the algorithm. As it can be seen,

big-M formulation has fewer variables and constraints and is much faster compare to the

Balas formulation.

Next, we test the performance of the cutting plane algorithm for the Ravenna network.

We set the value of α = 10−5 and β = 0. We also set the value of εs = 0.1 minx hs(0,x)

for each shipment s. Note that we solve the master problem to 1 percent optimality gap in

each iteration. We set the lower bound in iteration k as the highest lower bound obtained by

solving the master problem until iteration k. Similarly, the upper bound is the lowest upper

bound obtained until iteration k. To speed up the algorithm, we add multiple paths to the

master problem in each iteration of the algorithm. Figure 3.7a shows the upper bound and

the lower bound for PHTPε optimal objective value obtained by the cutting plane heuristic.

The upper bound is non-increasing, and the lower bound is non-decreasing. As Figure 3.7

represents, while the algorithm starts with a gap of 18 percent, it could solve the problem

with an optimality gap of 3.7 percent in 48 hours.

Note that the value of M3
sij is usually a very large number. This may result in charging a

high toll on some arcs, which may not be acceptable by network users. Additionally, setting

a large number to M3
ij results in numerical issues and makes the problem difficult to solve

too. Considering this, we may consider a maximum toll amount that can be charged on a

link by considering the following constraint:

tij ≤ tmax
ij ∀(i, j) ∈ A (3.22)
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Figure 3.7 – Cutting plane algorithm for solving approximate pessimistic problem for the
Ravenna network

Setting a bound on the maximum toll on each link helps us bound M1l
s , M2l

s and M3
sij in

Masterk easily. Figure 3.8a represents the upper bound and the lower bound for the cutting

plane algorithm when the toll in each arc is bounded (tmax = 500). Similar to the unbounded

toll case, the upper bound is non-increasing, and the lower bound is non-decreasing. As

Figure 3.8b represents, we could solve the problem to optimality after 6 iterations.

Table 3.3 compares the PHTPε objective value when the toll on each link is upper bounded

by tmax which is denoted by z∗t≤tmax and when it is not bounded which is denoted by z∗. For

the bounded case we consider solution time limit of 2 hours. As it can be seen when we

increase tmax the gap between z∗t≤tmax and z∗ becomes smaller. In particular, for tmax = 1000

and tmax = 1500, bounding t by tmax results in a better solution. The reason is that when we

bound t by tmax, the feasible region of PHTPε becomes much tighter, and PHTPε becomes

much easier to solve and we obtain a high-quality solution.

Table 3.3 – Comparing z∗ and z∗t≤tmax

tmax z∗t≤tmax z∗ Gap (%)

500 67099.75 65310.98 2.66
1000 65063.24 65310.98 −0.35
1500 64930.22 65310.98 −0.58
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Figure 3.8 – Cutting plane algorithm for solving PHTPε for the Ravenna network
(tmax = 500)

3.6.4 Comparing Optimistic and Pessimistic Approaches

In this section, we compare the optimistic and pessimistic policies. First, we solve the

optimistic formulation HTP using single level formulation proposed by Marcotte et al. (2009).

We compute the worst-case solution under optimistic toll vector tHTP for different values

of εs. Next, we solve PHTPε for different values of εs and compares it to the worst-case

solution under tHTP. Figure 3.9a represents the worst-case upper level objective function

under optimistic and pessimistic toll vectors. We denote this values by f(xw, tHTP) and

f(xw, tPHTPε). We represent f(xw, tHTP) and f(xw, tPHTPε) for different values of constant

c where εs = cminx hs(0,x). We set tmax
ij = 500 for all (i, j) ∈ A. Note that f(xw, tPHTPε)

is always smaller than f(xw, tHTP). Even for small value of c = 0.01, there is 5 percent gap

between f(xw, tHTP) and f(xw, tPHTPε). Note that in general, as e increases, the indifference

band becomes larger and the difference between PHTPε and the worst-case solution under

tHTP becomes larger.

65



0.02 0.04 0.06 0.08 0.10
c

64000

66000

68000

70000

72000

74000

76000

U
pp

er
-le

ve
lo

bj
ec

tiv
e

fu
nc

tio
n

va
lu

e

HTP
PHTP

(a) Upper level objective function value

0.02 0.04 0.06 0.08 0.10
c

5

6

7

8

9

10

11

12

G
ap

Gap

(b) Gap

Figure 3.9 – Comparing the worst-case solution under optimistic toll and the pessimistic
toll

66



Chapter 4: On the Price of Satisficing in Network Equilibria

The copyright permissions for reuse previously published material in this chapter can be

found in Appendix A.

4.1 Introduction

Instead of assuming a perfectly rational person with a clear system of preferences and per-

fect knowledge of the surrounding decision-making environment, we can consider boundedly

rational persons with (1) an ambiguous system of preferences and (2) lack of complete infor-

mation, following Simon (1955). When decision makers are indifferent among alternatives

within a certain threshold, they are called satisficing decision makers, opposed to optimiz-

ing decision makers. The notion of satisficing was first introduced by Simon (1955, 1956).

Satisficing decision makers choose any alternative whose utility level is above a threshold,

called an aspiration level, even when the alternative is not optimal. The satisficing behavior

is related to the first source of boundedness—an ambiguous system of preferences.

In transportation research, modeling drivers’ route choice is an important task. While

the travel-time minimization has been traditionally used as a basis for such modeling, sub-

optimal route-choice behavior has gained attention. Since Mahmassani and Chang (1987),

bounded rationality has gained attention in the transportation research literature (Szeto

and Lo, 2006; Wu et al., 2013; Han et al., 2015; Szeto and Lo, 2006; Ge and Zhou, 2012; Di

et al., 2014; Guo, 2013; Lou et al., 2010). Empirical evidence supports bounded rationality of

drivers (Nakayama et al., 2001; Zhu and Levinson, 2010). The notion of bounded rationality

has also been considered in the evaluation of value of times in connection to route-choice

modeling (Xu et al., 2017), and in the model of behavior adjustment process (Ye and Yang,
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2017). We refer readers to a review of Di and Liu (2016). In the non-transportation literature,

the notion of bounded rationality and satisficing has also received much attention (Charnes

and Cooper, 1963; Lam et al., 2013; Jaillet et al., 2016; Chen et al., 1997; Brown and Sim,

2009).

While the above-mentioned transportation research literature considers boundedly ratio-

nal drivers, their discussion is limited to satisficing drivers without considering the second

source of boundedness: lack of complete information on the decision environment. Sun

et al. (2018) connect the first and the second sources of boundedness by considering both

satisficing behavior and incomplete information, in the context of shortest-path finding in

congestion-free networks. Sun et al. (2018) study the second source by considering errors in

drivers’ perception of arc travel time, and conclude that their perception-error model can

generally capture both sources of boundedness in rationality in a single unified modeling

framework.

In the literature, the traditional network user equilibrium, Wardrop equilibrium in par-

ticular, is called the perfectly rational user equilibrium (PRUE), while a traffic pattern equi-

librated among satisficing drivers is called a boundedly rational user equilibrium (BRUE). In

this study, we will use a new term satisficing user equilibrium (SatUE) instead of BRUE to

emphasize that it only considers the first source of boundedness without considering drivers’

incomplete information on the decision environment. We believe that the term ‘BRUE’

should be used to describe a broader and more general class of models, including SatUE.

Note that SatUE differs from the stochastic user equilibrium (SUE) (Sheffi, 1985) in two

important aspects. First, drivers are assumed to be optimizing decision makers in SUE, while

they are satisficing in SatUE. Second, with appropriate probability distributions assumed in

the random utility model in SUE, each path possesses a probability of being chosen; hence we

can compute the expected traffic flow rate in each path. In SatUE, however, each satisficing

path is acceptable to drivers, but it may or may not be chosen by drivers and we do not

know its probability of being chosen. See further discussion in Di and Liu (2016).
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The main contribution of this study is the quantification of how bad the total travel time

in SatUE can be. In a SatUE traffic pattern, the total travel time can be either greater than

or less than that of PRUE. We define the price of satisficing (PoSat) as the ratio between

the worst-case total travel time of SatUE and the total travel time of PRUE. This research

quantifies PoSat analytically and compares with numerical bounds.

The analytical quantification of PoSat is related to the price of anarchy (PoA) (Koutsou-

pias and Papadimitriou, 1999; Roughgarden and Tardos, 2002) that compares the perfor-

mances of the system optimal solutions and the PRUE solutions. Using a similar idea, we can

also compare the performance of the perfectly rational user equilibrium traffic patterns and

satisficing user equilibrium traffic patterns. While PoA quantifies how much system-wide

performance we can lose by competing, PoSat quantifies how much we can lose by satisficing.

Roughgarden and Tardos (2002) define and study the PoA of approximate Nash equilibria,

which are essentially SatUE patterns. We develop our bounds for PoSat based on the bounds

for PoA of approximate Nash equilibria (Christodoulou et al., 2011) and the ideas from the

sensitivity analysis of traffic equilibria (Dafermos and Nagurney, 1984). Note that Perakis

(2007) studies the PoA of the exact Nash equilibria with general nonlinear, asymmetric cost

functions.

The notion of PoSat is also related to the price of risk aversion (Nikolova and Stier-Moses,

2015) and the deviation ratio (Kleer and Schäfer, 2016). When network users are risk-

averse decision makers, the price of risk aversion compares the performances of the resulting

equilibrium among risk-averse users and the (risk-neutral) PRUE. When network users’ cost

functions are deviated from the true cost functions for some reasons, the deviation ratio

compares the performances of the resulting equilibrium and the PRUE. Kleer and Schäfer

(2016) show that the price of risk aversion is a special case of the deviation ratio. In both

research articles, however, only cases with a common single origin node are considered. In

this study, we consider general cases with multiple origin nodes and multiple destination

nodes, with asymmetric travel time functions.
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This chapter is organized as follows. In Section 4.2, we introduce the notation and

define various concepts including user equilibrium, system optimum, satisficing behavior,

price of anarchy, and price of satisficing. In Section 4.3, we define the user equilibrium with

perception errors and make connections with satisficing user equilibrium. Our main result

is introduced in Section 4.4, where we derive the analytical worst-case bound on the price of

satisficing. In Section 4.5, we compare the analytical bound with numerical bounds.

4.2 Notation and Definitions

Since we will use path-based and arc-based flow variables and their corresponding functions

and sets interchangeably, we need clear definitions of variables, sets, and functions. We use

boldfaced lower-case letters for vector quantities as in v and normal lower-case letters for

their components as in va; similarly, vector-valued functions like t(·) and their components

like ta(·). We use boldfaced upper-case letters for the set that they belong to, as in v ∈ V.

We use calligraphic capital letters for sets of indices as in N . The only exception is that Q

(a bold-face capital letter instead of lower case) represents a vector of Qw, the demand for

OD pair w. The lower-case version qwi is instead the net amount of flow associated with OD

pair w that enters or leaves node i in the next subsection

4.2.1 Traffic Flow Variables and Feasible Sets

We consider a network with a set of origin and destinationW that is represented by directed

graph G(N ,A), where N is the set of nodes, and A is the set of arcs. For each origin

destination pair w ∈ W , the demand is Qw and the set of available paths is Pw. The set of

all available paths in the whole network is defined as P = ∪w∈WPw.

We also define the set of path flow variables f as

F =

{
f :
∑
p∈Pw

fp = Qw ∀w ∈ W , fp ≥ 0 ∀p ∈ P
}
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and the corresponding set of arc flow variables v is defined as

V =

{
v : va =

∑
p∈P

δpafp ∀a ∈ A, f ∈ F

}

where δpa = 1 if path p contains arc a and δpa = 0 otherwise. Let A+
i and A−i be the set

of arcs whose tail node and head node are i, respectively. When we need to preserve OD

information in arc flow variables, we use x as follows:

X =

{
x : xwa =

∑
p∈Pw

δpafp ∀a ∈ A, w ∈ W f ∈ F

}
=

{
x :

∑
a∈A+

i

xwa −
∑
a∈A−i

xwa = qwi ∀w ∈ W , i ∈ N
}

where qwi = −Qw if i = o(w), qwi = Qw if i = d(w), and qwi = 0 otherwise.

We have va =
∑

p∈P δ
p
afp, xwa =

∑
p∈Pw δ

p
afp, and va =

∑
w∈W x

w
a . Therefore, the transfor-

mations from f to v, from f to x, and from x to v are unique, which are denoted by f 7→ v,

f 7→ x, and x 7→ v, respectively. The inverse transformations are, however, not unique. In

the rest of this chapter, to emphasize the non-uniqueness of the transformation and refer to

any result of such transformation, we use any7−→; for example, with v
any7−→ f , we consider any

f such that va =
∑

p∈P δ
p
afp.

We will use v, f , and x interchangeably to describe the same traffic pattern. In particular,

we define

• f∗, v∗, x∗ : system optimal flow vectors (Section 4.2.2)

• f0, v0, x0 : perfectly rational user equilibrium flow vectors (Section 4.2.3)

• fκ, vκ, xκ : (multiplicative) satisficing user equilibrium flow vectors with a multiplica-

tive factor (to be defined subsequently) κ (Section 4.2.4)

Note that when κ = 0, we have fκ = f0.
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4.2.2 Travel Time Functions and System Optimum

We denote arc travel function with arc traffic volume v by ta(v) for each arc a ∈ A. We

consider a performance function for each arc a as

za(v) = ta(v)va.

We denote the travel time function along path p with flow f by cp(f). When written as

functions of x, the arc travel time is denoted as τa(x) or τwa (x), where the latter is used to

emphasize the focus on OD pair w. Of course, τwa (x) = τa(x) = ta(v), where v =
∑

w x
w
a .

The performance function for path p ∈ P is as follows:

zp(f) = cp(f)fp.

The following shows the relationship between path and arc travel times.

cp(f) =
∑
a∈A

δpata(v).

We define the arc-based total system performance function Z(v) and path-based total

system performance function C(f) interchangeably as follows:

Z(v) ≡
∑
a∈A

za(v) =
∑
a∈A

ta(v)va

=
∑
p∈P

zp(f) =
∑
p∈P

cp(f)fp =
∑
w∈W

∑
p∈Pw

cp(f)fp ≡ C(f),

which is also called the total travel time. A flow pattern that minimizes Z(·) or C(·) is called

a system optimal flow pattern.
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The vector-valued function t(·) is called monotone in V if

[t(v1)− t(v2)]>(v1 − v2) ≥ 0 (4.1)

for all v1,v2 ∈ V. If (4.1) holds as a strict inequality for all v1 6= v2, it is said strictly

monotone. The function t(·) is called strongly monotone in V with modulus α > 0 if

[t(v1)− t(v2)]>(v1 − v2) ≥ α
∥∥v1 − v2

∥∥2

V
(4.2)

for all v1,v2 ∈ V, where ‖·‖V is the l2-norm in V. The monotonicity of path-based travel

time function cp(·) or its vector form c(·) can be similarly defined. The path-based function

cp(·), however, is not strongly monotone in general (e.g., see Example 3 in de Palma and

Nesterov, 1998).

4.2.3 Perfectly Rational User Equilibrium

When network users are perfectly rational—they seek the shortest path—we attain the per-

fectly rational user equilibrium (PRUE) defined as follows:

Definition 1 (Perfectly Rational User Equilibrium). A traffic pattern f0 is called a

perfectly rational user equilibrium (PRUE), if

(PRUE) f 0
p > 0 =⇒ cp(f

0) = min
p′∈Pw

cp′(f
0) (4.3)

for all p ∈ Pw and w ∈ W .

Using the arc travel function, the above condition can be restated as follows

f 0
p > 0 =⇒

∑
a∈A

δpata(v
0) = min

p′∈Pw

∑
a∈A

δp
′

a ta(v
0) (4.4)

for all p ∈ Pw and w ∈ W .
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It is well known that a solution to the following variational inequality problem is a user

equilibrium traffic flow (Smith, 1979; Dafermos, 1980):

to find f ∈ F :
∑
p∈P

cp(f)(fp − fp) ≥ 0 ∀f ∈ F, (4.5)

which can be equivalently rewritten as:

to find v ∈ V :
∑
a∈A

ta(v)(va − va) ≥ 0 ∀v ∈ V, (4.6)

or

to find x ∈ X :
∑
a∈A

∑
w∈W

τa(x)(xwa − xwa ) ≥ 0 ∀x ∈ X (4.7)

where τwa (x) = τa(x) = ta(v).

With strictly monotone functions ta(·), the solution v to (4.6) is unique. While the

transformations v any7−→ f and v
any7−→ x are not unique, any such f and x are solutions to (4.5)

and (4.7), respectively; therefore, solutions to (4.5) and (4.7) are not unique in general.

When the travel time on arc a is a function of only va, i.e. ta = ta(va), then it is called

separable. With separable arc travel time functions, the variational inequality problem (4.6)

admits an equivalent convex optimization problem as formulated by (Beckmann et al., 1956).

In general, if the Jacobian matrix of the arc travel time function vector t(v) is symmetric,

that is,
∂ta(v)

∂ve
=
∂te(v)

∂va
∀a, e ∈ A,

for all v ∈ V, the variational inequality problem (4.6) can be reformulated as an equivalent

Beckmann-type convex optimization problem (Patriksson, 2015; Friesz and Bernstein, 2016).

When the Jacobian is asymmetric, no Beckmann-type convex optimization problem equiva-

lent to (4.6) exists in general. In this case, the arc travel time functions is characterized as

asymmetric and obtaining a PRUE flow requires solving a variational inequality problem.
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4.2.4 Satisficing User Equilibrium

We introduce definitions of satisficing behavior and corresponding user equilibrium traffic

patterns. In transportation research literature, boundedly rational user equilibrium (BRUE)

is often defined with an additive term (see e.g., Lou et al., 2010; Di et al., 2013; Han et al.,

2015). Herein, we refer to BRUE in the literature as an ‘additive satisficing user equilibrium’

to (i) highlight its additive feature and (ii) limit user behavior to just satisficing. Bounded

rationality includes behaviors other than satisficing as well.

Definition 2 (Additive Satisficing). A traffic pattern f is called an additive satisficing

user equilibrium (ASatUE) with an additive factor E , if

(ASatUE) fp > 0 =⇒ cp(f) ≤ min
p′∈Pw

cp′(f) + E (4.8)

for all p ∈ Pw and w ∈ W , where E is a positive constant.

We can also derive a similar definition using a multiplicative term. While the additive

form in Definition 2 is popularly used in the transportation research literature, the multi-

plicative form in Definition 3 enables us to consider the satisficing level in disaggregate arc

levels as we will observe in this research. Multiplicative satisficing user equilibrium is also

called approximate Nash equilibrium in the price of anarchy literature (Christodoulou et al.,

2011).

Definition 3 (Multiplicative Satisficing). A traffic pattern fκ is called amultiplicative

satisficing user equilibrium with a multiplicative factor κ, or κ-MSatUE, if

(MSatUE) fκp > 0 =⇒ cp(f
κ) ≤ (1 + κ) min

p′∈Pw
cp′(f

κ) (4.9)

for all p ∈ Pw and w ∈ W , where κ ≥ 0 is a constant.

Note that the additive (E) and multiplicative (κ) factor in (4.8) and (4.9), respectively,

may be defined for each OD pair w. For example, Ew and κw can replace E and κ in (4.8)
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and (4.9), respectively, to allow for non-homogeneous satisficing thresholds. In such cases,

however, we assume that travelers for the same OD pair are homogeneous with the same

threshold Ew or κw. In this research, to describe the satisficing behavior, we focus only on

MSatUE. Moreover, for simplicity, we use a single value of κ for all OD pairs.

4.2.5 Price of Satisficing

The price of anarchy (PoA) compares the performances of a satisficing user equilibrium

(C(fκ)) against that of a system optimum (C(f∗)). Among possibly multiple satisficing user

equilibrium traffic patterns, we are interested in the worst-case. Let Ψκ(G,Q, t) be the set

of all satisficing user equilibria with a multiplicative factor κ where G,Q, and t denote the

underling network, demand vector, and travel time function, respectively. Then, the PoA

for the triplet (G,Q, t) is defined as follows:

PoAκ(G,Q, t) = max
fκ∈Ψκ(G,Q,t)

C(fκ)

C(f∗)
, (4.10)

where f∗ is the system optimum flow for (G,Q, t). We are usually interested in its upper

bound over a set of triplets, Ω., i.e.

sup
(G,Q,t)∈Ω

PoAκ(G,Q, t)

In the context of bounded rationality and satisficing, we are more interested in comparing

the performance of approximate Nash equilibrium C(fκ) and the performance of the perfectly

rational user equilibrium C(f0). We define the price of satisifcing (PoSat) of instance (G,Q, t)

as follows:

PoSatκ(G,Q, t) = max
fκ∈Ψκ(G,Q,t)

C(fκ)

C(f0)
, (4.11)
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and its upper bound over Ω is

sup
(G,Q,t)∈Ω

PoSatκ(G,Q, t)

We define Ω is a set of all triplets where G is a directed graph with a finite number

of nodes and arcs, Q is a vector of finite and positive constants, and t(·) is a vector of

polynomial functions with nonnegative coefficients and of order n ≥ 0. To emphasize the

latter, we also write Ω(n) instead of Ω when appropriate.

4.3 User Equilibrium with Perception Errors

Related to MSatUE is the user equilibrium with perception error (UE-PE) model. In this

model, we assume that network users are optimizing, i.e. seeking the shortest path; however,

we assume that users may have their own perception of the travel time function.

We let εwa denote the perception error of travel time along arc a of users in OD pair w.

A vector x ∈ X is a solution to the UE-PE model, if

∑
a∈A

∑
w∈W

(ta(v)− εwa )(xwa − xwa ) ≥ 0 ∀x ∈ X (4.12)

The above variational inequality assumes that ε is sufficiently small, i.e., 0 ≤ εwa < ta(v)

for all a ∈ A, w ∈ W . Under such an assumption, ta(v)− εwa can be viewed as the perceived

travel time for arc a for drivers of OD pair w.

The term εwa represents the perception error for arc a and OD pair w. In this model, we

assume all drivers for each OD pair are homogeneous in their perception of arc travel time.

With changes of variables λwa ta(v) = ta(v)− εwa , the UE-PE model (4.12) can be restated

as follows:

(UE-PE-X)
∑
a∈A

∑
w∈W

λwa ta(v)(xwa − xwa ) ≥ 0 ∀x ∈ X (4.13)
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for some λ such that λwa ∈ (0, 1] for all w ∈ W and a ∈ A. We observe that the UE-PE

model generates a subset of MSatUE traffic flow patterns.

Lemma 4.1 (UE-PE-X =⇒ MSatUE). Suppose x is a solution to UE-PE-X in

(4.13) with some λ where λwa ∈ [ 1
1+κ

, 1] for all w ∈ W and a ∈ A. Then any f with x
any7−→ f

is a κ-MSatUE flow.

We can also provide a path-based formulation of UE-PE:

(UE-PE-F)
∑
w∈W

∑
p∈Pw

c̃wp (f)(fp − fp) ≥ 0 ∀f ∈ F (4.14)

for the perceived path travel time functions c̃wp (f) =
∑

a∈A δ
p
aλ

w
a ta(v) with some λ such that

λwa ∈ (0, 1] for all a ∈ A, w ∈ W .

Lemma 4.2 (UE-PE-F ⇐⇒ UE-PE-X). If f ∈ F is a solution to UE-PE-F in (4.14)

for some λ such that λwa ∈ [ 1
1+κ

, 1], then x with f 7→ x is a solution to UE-PE-X in (4.13).

Conversely, if x ∈ X is a solution to UE-PE-X in (4.13), then any f with x
any7−→ f is a solution

to UE-PE-F in (4.14).

When the values of λwa are the same across all w ∈ W , i.e. λa = λwa for all w ∈ W , we

can simplify (4.13) as follows:

(UE-PE-V)
∑
a∈A

λata(v)(va − va) ≥ 0 ∀v ∈ V (4.15)

for some λ such that λa ∈ (0, 1] for each a ∈ A. The simplified model (4.15) has been

considered in the literature for approximate Nash equilibrium (Christodoulou et al., 2011)

and Nash equilibrium with deviated travel time functions (Kleer and Schäfer, 2016). For the

simplified model, we can state:

Lemma 4.3 (UE-PE-V =⇒ UE-PE-X). Suppose that v ∈ V is a solution to

UE-PE-V in (4.15) for some λ such that λa ∈ [ 1
1+κ

, 1] for all a ∈ A. Let x be any vector

with v
any7−→ x. Then x is a solution to UE-PE-X in (4.13).
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UE-PE-X

UE-PE-F

UE-PE-V MSatUE (4.16)

Figure 4.1 – Summary of lemmas 4.1–4.4.

While Lemmas 4.1, 4.2, and 4.3 provide sufficient conditions for a traffic flow pattern to

be a κ-MSatUE, Theorem 1 of Christodoulou et al. (2011) provides a necessary condition.

Although Christodoulou et al. (2011) assumed separable arc travel time functions, their proof

is still valid for nonseparable travel time functions.

Lemma 4.4 (A necessary condition of MSatUE). Let fκ ∈ F be a κ-MSatUE and

vκ ∈ V be the corresponding arc flow vector with fκ 7→ vκ. Then we have

∑
a∈A

ta(v
κ)((1 + κ)va − vκa) ≥ 0 ∀v ∈ V. (4.16)

Christodoulou et al. (2011) derive a tight bound on the price of anarchy on approximate

Nash equilibria based on Lemma 4.4.

Figure 4.1 summarizes the relationships between problems addressed in Lemma 4.1 to

4.4. The relation X =⇒ Y means that any solution to X yields a solution to Y Note that

this result does not mean that the notions of UE-PE and SatUE are equivalent in general.

Rather, the specific modeling of UE-PE-X, UE-PE-F, and UE-PE-V with the perception error

interval [ 1
1+κ

, 1], as defined in (4.13), (4.14), and (4.15), respectively, leads to the result in

Figure 4.1. If we use a different definition of perception error sets, such a result may not

hold.

4.4 Bounding the Price of Satisficing

We first provide analytical bounds of C(fκ) compared to C(f0).
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4.4.1 Lessons from the Price of Anarchy

We first observe that PoSatκ(G,Q, t) ≤ PoAκ(G,Q, t) for any network instance (G,Q, t),

since C(f0) ≥ C(f∗). This enables us to use the results from the price of anarchy literature

for bounding PoSat. Theorem 2 of Christodoulou et al. (2011) bound the price of anarchy

when arc travel-time functions are separable and polynomial with nonnegative coefficients

and of degree n that leads immediately to the following result:

Lemma 4.5. Suppose fκ is a κ-MSatUE flow, and ta(·) is polynomial with nonneg-

ative coefficients and of degree n. Define

ζ(κ, n) =


(1 + κ)n+1 if κ ≥ (n+ 1)1/n − 1,(

1
1+κ
− n

(n+1)(n+1)/n

)−1

if 0 ≤ κ ≤ (n+ 1)1/n − 1.

(4.17)

Then we have

C(f∗) ≤ C(fκ) ≤ ζ(κ, n)C(f∗) ≤ ζ(κ, n)C(f0). (4.18)

That is, the PoSat is bounded above by ζ(κ, n).

The bound in Lemma 4.5 is not tight when κ is small. For example, when κ = 0, C(fκ) =

C(f0). Thus, C(fκ)

C(f0)
= 1. However, (19) yields the following:

C(fκ)

C(f0)
≤
(

1− n

(n+ 1)
n+1
n

)−1

where the expression on the right is strictly larger than one. For example, the expression

reduces to 4
3
when n = 1 and approaches infinity when n is large.

In Lemma 3 of Christodoulou et al. (2011), the existence of a network instance with

C(fκ) = (1 + κ)n+1C(f∗) is shown for κ ≥ (n + 1)1/n − 1 via a circular network example

presented in Figure 4.2. The circular network includes m + l nodes where positive integers

m and l are chosen so that m
l

= 1 + κ. All nodes lie in a circle and each node i is adjacent

to two neighboring nodes via arc (i, i + 1) and (i − 1, i). The arc cost function for arc a is
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i

i +m

m + k

2

1

Figure 4.2 – Circular network of Christodoulou et al. (2011)

ta(va) = (va)
n, where va is the total arc flow in arc a. There are m+ l OD pairs (i, i+m) for

i = 1, 2, ..,m+ l, with unit demand from node i to node i+m (indices are taken cyclically).

Note that the circular network can be easily converted to a directed network by replacing

each undirected arc with two directed arcs with opposite direction. The cost associated with

arc a will be ta(va, v̂a) = (va + v̂a)
n in this case where v̂a is the flow in the arc with opposite

direction.

For each OD pair (i, i + m), there are two paths, clockwise and counterclockwise. The

former contains m arcs and the latter has only l. Note that our choice requires that m
l

=

(1 + κ) where κ ≥ 0, i.e., m ≥ l. Consider the all-or-nothing strategy that sends the unit

demand for every OD pair along only one path, clockwise or counterclockwise. Using the

clockwise strategy, each arc has m units of flows and costs mn. Thus, the clockwise path

costs m ·mn, while the cost of the counterclockwise one is l ·mn. Because m·mn
l·mn = m

l
≥ 1,

the clockwise strategy is not in a user equilibrium unless m = l. For the counterclockwise

strategy, each arc has l units of flows instead and costs ln. Similarly, the clockwise and

counterclockwise path cost m · ln and l · ln, respectively. Using the same reasoning as before,

flow-bearing (or the counterclockwise) paths are less expensive than or the same as the unused

ones. Thus, the counterclockwise strategy is in user equilibrium and yields (m+ l) · ln+1 as

the total travel cost. Consider MSatUE. Because it is PRUE, the counterclockwise strategy

is automatically in MSatUE. But, the clockwise one is also in MSatUE because the cost of

flow-bearing (or the clockwise) path is exactly (1 + κ) time the cost of the shortest path,
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i.e., the counterclockwise one. Additionally, the total travel cost of the clockwise strategy is

(m+ l) ·mn+1. Then, the PoSat of this circular network is

(m+ l) ·mn+1

(m+ l) · ln+1
=
(m
l

)n+1

= (1 + κ)n+1.

Thus, the bound is tight. Now consider the system problem for the circular network. The

problem objective is to minimize
∑

a∈A vata(v). Using the counterclockwise strategy, the

partial derivative of the objective function with respect to va is (n+1)ln. Then, switching to

the clockwise path would increase the total travel cost by (m− l)(n+ 1)ln ≥ 0 per unit flow.

Thus, the counterclockwise strategy is system optimal because switching to the unused path

does not result in a reduction in the total travel time. Observe that the UE-PE-X model can

capture the satisficing behavior of network users in the circular network adequately. Let us

consider λ as follow as (indices are taken cyclically):

λwia =


1

1+κ
for a ∈ {(j, j + 1) : j = i, i+ 1, ..., i+m− 1}

1 for a ∈ {(j − 1, j) : j = i, i− 1, ..., i− l + 1}

Under the above λ, if all network users choose the clockwise path, the flow in each arc

will be equal to m, the path cost for each OD pair will be 1
1+k

mn+1 = lmn, which is equal

to the cost of the alternative path, and thus the clockwise path is a solution to UE-PE-X

and PoSatκ = (1 + κ)n+1. In Section 4.5, we will compute the PoSat numerically for these

examples to confirm that UE-PE-X is a useful model to find PoSatκ.

By Lemma 4.5, when travel time functions are polynomials of degree n with nonnegative

coefficients, the PoSat is bounded as follows:

PoSatκ(G,Q, t) ≤


(1 + κ)n+1 if κ ≥ (n+ 1)1/n − 1,(

1
1+κ
− n

(n+1)(n+1)/n

)−1

if 0 ≤ κ ≤ (n+ 1)1/n − 1.

(4.19)

82



0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
κ

1

2

3

4

5

6
W
or
st
-C
as
e
P
ric

e
of

Sa
tis
fic
in
g

4(1 + κ)

3− κ
(1 + κ)2

(a) n = 1

0.0 0.2 0.4 0.6 0.8 1.0
κ

0

5

10

15

20

25

30

W
or
st
-C
as
e
P
ric

e
of

Sa
tis
fic
in
g

1
1

1+κ
− (4/5)5/4

(1 + κ)5

(b) n = 4

Figure 4.3 – The worst-case price of satisficing for n = 1 and n = 4.

for all (G,Q, t) ∈ Ω(n) and by the circular network example in Figure 4.2, we know that there

indeed exists a network instance (G,Q, t) ∈ Ω(n) such that PoSatκ(G,Q, t) = (1 + κ)n+1

for all κ ≥ 0. Therefore when κ ≥ (n + 1)1/n − 1, the bound in (4.19) is tight. Figure 4.3a

shows the bounds in (4.19) when travel time functions are linear or when n = 1. For smaller

κ values, the worst-case PoSat falls in the shaded interval, while for larger κ values, it is

exactly (1 + κ)2. Figure 4.3b shows the same bounds when n = 4 instead. When κ is zero,

we have fκ = f0; hence, we must have the PoSat approach to 1. With this observation, we

naturally ask a question: Does (1 + κ)n+1 provide a tight bound on PoSatκ for all κ ≥ 0?

We present partial answers to this question in the following sections.

4.4.2 Increased Travel Demands and Travel Time Functions

We first define new sets of flow vectors. When the travel demand Qw for each w ∈ W is

multiplied by the factor 1 + κ, we define

F1+κ =

{
f :
∑
p∈Pw

fp = (1 + κ)Qw ∀w ∈ W , fp ≥ 0 ∀p ∈ P
}
,

V1+κ =

{
v : va =

∑
p∈P

δpafp ∀a ∈ A, f ∈ F1+κ

}
,
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X1+κ =

{
x : xwa =

∑
p∈Pw

δpafp ∀a ∈ A, w ∈ W f ∈ F1+κ

}
.

The above three sets can equivalently be written as follows:

F1+κ = {(1 + κ)f : f ∈ F},

V1+κ = {(1 + κ)v : v ∈ V},

X1+κ = {(1 + κ)x : x ∈ X}.

We will use ‘hat’ for flow vectors in these sets, for example, f̂
κ
∈ F1+κ, while without hat in

the original sets as in fκ ∈ F.

We consider cases when the travel time functions ta(·) are polynomials of order n, in

particular, the following form of asymmetric arc travel time function for each a ∈ A:

ta(v) =
n∑

m=0

bam

(∑
e∈A

daemve

)m
=

n∑
m=0

bam

(
d>amv

)m
(4.20)

for some constants bam for m = 0, 1, ..., n and daem for e ∈ A and m = 0, 1, ..., n. Note that

we use the vector form dam = (daem : e ∈ A). The travel time function (4.20) is a general

form of the travel time functions considered in the traffic equilibrium literature (Meng et al.,

2014; Panicucci et al., 2007). If dam is a unit vector such that daem is 1 if a = e and 0

otherwise, we have a separable polynomial arc travel time function that has been used in

the literature popularly (Christodoulou et al., 2011; Roughgarden and Tardos, 2002):

ta(va) =
n∑

m=0

bam(va)
m = ba0 + ba1va + ba2(va)

2 + · · ·+ ban(va)
n. (4.21)
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Lemma 4.6. With the polynomial travel time function (4.20), for any f ∈ F, we

have

C((1 + κ)f) ≤ (1 + κ)n+1C(f) (4.22)

for all κ ≥ 0 and n ≥ 0.

4.4.3 Cases with Separable, Monomial Arc Travel Time Functions

As a simple case, we consider separable, monomial functions of degree n for arc travel time

of the following form:

ta(va) = ba(va)
n (4.23)

with a positive scalar ba for each a ∈ A and nonnegative constant n.

It is well known (Beckmann et al., 1956) that v0 ∈ F is a user equilibrium flow, if and

only if it minimizes the following potential function

Φ(v) =
∑
a∈A

∫ va

0

ta(u) du =
∑
a∈A

ba
n+ 1

(va)
n+1

when the arc travel time functions are separable, so that the integral is well defined. Similarly,

vκ ∈ V is a κ-MSatUE flow, if it is a solution to UE-PE-V, or equivalently, if it minimizes

the following potential function (Christodoulou et al., 2011)

Ψ(v;λ) =
∑
a∈A

∫ va

0

λata(u) du =
∑
a∈A

λaba
n+ 1

(va)
n+1

for some λa ∈ [ 1
1+κ

, 1] for each a ∈ A.

When travel time functions are separable, we can show the following result (Englert et al.,

2010; Takalloo and Kwon, 2018):
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Lemma 4.7. When the arc travel time functions are in the form of (4.21), let f0 ∈ F

and f̂
0
∈ F1+κ be the PRUE flows with the corresponding travel demands. We can show

C(f̂
0
) ≤ (1 + κ)n+1C(f0) (4.24)

for all κ ≥ 0 and n ≥ 0.

Although Englert et al. (2010) consider cases with a single OD pair only with interest in

the changes in the path travel time, the same technique can be used to prove Lemma 4.7 for

cases with multiple OD pairs.

Using Lemma 4.7, we show that a solution to UE-PE-V is an MSatUE flow.

Theorem 4.1. When the arc travel time functions are of the form (4.23), let v ∈ V

be a solution to UE-PE-V and f ∈ F is the any corresponding path flow with v
any7−→ f .

We let f̂
0
∈ F1+κ be the PRUE flows. Then we have C(fκ) ≤ C(f̂

0
), and consequently

C(fκ) ≤ (1 + κ)n+1C(f0) for all κ ≥ 0.

Note that the bound obtained in Theorem 4.1 relies on the sufficient condition, not a

necessary condition. Therefore, the result is not applicable to all MSatUE flows, although it

provides a useful bound in the framework of UE-PE models.

4.4.4 Cases with Separable Arc Travel Time Functions

We consider general polynomial, separable arc travel functions in the form of (4.21).

Theorem 4.2. Suppose that the arc travel time functions are in the form of (4.21).

Let fκ ∈ F be any κ-MSatUE and f̂
0
∈ F1+κ be the PRUE flow. Suppose that κ ≥ 0 is

sufficiently small, in particular, so that

∑
p∈P

[cp(f̂
0
)− cp(fκ)](f̂ 0

p − fκp ) ≥ κ
∑
p∈P

cp(f
κ)
∣∣∣f̂ 0
p − fκp

∣∣∣. (4.25)
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Then we have C(fκ) ≤ C(f̂
0
). Consequently C(fκ) ≤ (1 + κ)n+1C(f0), and

sup
(G,Q,t)∈Ω(n)

PoSatκ(G,Q, t) = (1 + κ)n+1.

Theorem 4.2 depends on condition (4.25) and a similar condition appears in general

asymmetric cases as in Theorem 4.3. We discuss this condition in Section 4.4.6.

4.4.5 General Cases with Asymmetric Arc Travel Time Functions

We consider asymmetric arc travel time functions (4.20), in which case Lemma 4.7 is not

applicable. We first observe that the multiple of a PRUE flow, (1+κ)f0, provides a satisficing

solution to the traffic equilibrium problem with the increased travel demand.

Lemma 4.8. Suppose ta(·) are polynomials of order n as defined (4.20). If f0 ∈ F

is a PRUE flow, then (1 + κ)f0 is a σ-MSatUE flow with σ = (1 + κ)n − 1 in F1+κ. When

n = 1, we have σ = κ.

By introducing an additional condition, we compare MSatUE flows with the proportional

travel demand increase, and obtain the worst-case bound of PoSat.

Theorem 4.3. Let fκ ∈ F be any κ-MSatUE and f̂
σ
∈ F1+κ be any σ-MSatUE flows

with the corresponding travel demands, when σ = (1 + κ)n − 1. Suppose that κ ≥ 0 is

sufficiently small, in particular, so that

∑
p∈P

[cp(f̂
σ
)− cp(fκ)](f̂σp − fκp ) ≥ σ

∑
p∈P

max{cp(f̂
σ
), cp(f

κ)}
∣∣∣f̂σp − fκp ∣∣∣. (4.26)

Then we have C(fκ) ≤ C(f̂
σ
). Consequently C(fκ) ≤ (1 + κ)n+1C(f0), and

sup
(G,Q,t)∈Ω(n)

PoSatκ(G,Q, t) = (1 + κ)n+1.

Note that condition (4.26) is stronger than condition (4.25) for separable travel time

functions. This is natural, since we consider more general classes of travel time functions.
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O D

t1(v1) = 1

t2(v2) = 1 + v2

(a) Example 1

O D

t1(v1) = v1

t2(v2) = v2

(b) Example 2

Figure 4.4 – Simple illustrative examples for evaluating PoSat where the travel demand is
Q from node O to node D.

4.4.6 Illustrative Examples

For the illustration purpose, we consider two examples in Figure 4.4 with linear travel time

functions, where n = 1. In Example 1, the travel time function in the first arc is not

increasing. We can verify that

maxC(fκ) =


Q+ κ2 if κ ≤ Q, with fκ = (Q− κ, κ)

(1 +Q)Q if κ ≥ Q, with fκ = (0, Q)

among all κ-MSatUE flows in F and

C(f̂
0
) = (1 + κ)Q with f̂

0
= (1 + κ)f0 = ((1 + κ)Q, 0).

among all κ-MSatUE flows in F1+κ. Comparing the two quantities, we observe C(fκ) ≤ C(f̂
0
)

in both cases. To prove Theorem 4.3, condition (4.25) needs to hold only for these two flow

vectors. Regardless of the value of κ, however, it is impossible to satisfy condition (4.25),

although the worst-case PoSat bound (1 + κ)n+1 still holds for all κ ≥ 0. The price of

satisficing is 1 + κ2

Q
if κ < Q and 1 +Q if κ ≥ Q in this example, both of which are less than

(1 + κ)2.
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On the other hand, in Example 2, we have strictly monotone travel time functions in

both arcs. Similarly, we consider

maxC(vκ) =
2 + 2κ+ κ2

(2 + κ)2
Q with fκ =

(
Q

2 + κ
,
(1 + κ)Q

2 + κ

)
C(v̂0) =

(1 + κ)2

2
Q with f̂

0
= (1 + κ)f0 =

(
(1 + κ)Q

2
,
(1 + κ)Q

2

)

and can verify that C(fκ) ≤ C(f̂
0
) for all κ ≥ 0. In Example 2, we note that (4.26) holds for

κ ≤ 0.206. In this example, we observe that the price of satisficing is 2(2+2κ+κ2)
(2+κ)2

, which is no

greater than (1 + κ)2 for all κ ≥ 0.

4.4.7 Other Approaches

When there is a single origin and multiple destinations, i.e., a single common origin node,

in the network, Kleer and Schäfer (2016) introduces the notion of the deviation ratio that

compares the system performances of the user equilibrium and the equilibrium with deviated

travel time functions t̃a(·). The notion of deviation may also be interpreted as perception in

our definition. In a special case, the deviation ratio is reduced to the price of risk aversion

(Nikolova and Stier-Moses, 2015) that compares the performances of equilibria among risk-

averse and risk-neutral network users.

Kleer and Schäfer (2016) define the (separable) deviated travel time functions with the

following bounds:

ta(va) + αta(va) ≤ t̃a(va) ≤ ta(va) + βta(va) (4.27)

where −1 ≤ α ≤ 0 ≤ β. The consideration of this deviated travel time function generalizes

our UE-PE model where α = − κ
1+κ

and β = 0. Kleer and Schäfer (2016) show that the

worst-case deviation ratio with (4.27) is bounded by

1 +
β − α
1 + α

⌈
|N | − 1

2

⌉
Q.
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Therefore, we obtain the following theorem:

Theorem 4.4 (Kleer and Schäfer, 2016). Consider a directed graph with a single

common origin node with the total travel demand Q and let |N | be the number of nodes.

Then we have
Z(vκ)

Z(v0)
≤ 1 + κ

⌈
|N | − 1

2

⌉
Q (4.28)

where vκ is a solution to UE-PE-V in (4.15).

Note that Theorem 4.4 only covers a subset of the entire MSatUE flows, as it is limited

to the solutions UE-PE-V in (4.15) and is applicable to cases with a single common origin.

When Theorem 4.4 is applied in the examples in Figure 4.4, the bound (4.28) becomes 1+κQ.

4.5 Numerical Bounds

To quantify PoSat in typical traffic networks and compare it with the analytical bound

obtained in Theorem 4.3, we define the worst-case problem for the total travel time under

MSatUE as follows:

max
vκ

Z(vκ) =
∑
a∈A

za(v
κ
a) =

∑
a∈A

ta(v
κ)vκa (4.29)

subject to vκ is an MSatUE flow with κ

To quantify the benefit of satisficing, instead of maximizing, we can minimize the objective

function (4.29). Since MSatUE involves path-based definition and formulation, (4.29) is

numerically more challenging to solve. Instead, we replace MSatUE by UE-PE-X. We

know that the UE-PE-X. models provide a subset of MSatUE traffic flow patterns as seen

in Lemmma 4.1; hence by using UE-PE-X models, we will obtain suboptimal solutions to

(4.29).
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Using UE-PE-X in (4.12), we formulate the worst-case problem as follows:

max
v,x,ε

Z(v) =
∑
a∈A

za(v) =
∑
a∈A

ta(v)va (4.30)

subject to
∑
a∈A

∑
w∈W

(ta(v)− εwa )(xwa − xwa ) ≥ 0 ∀x ∈ X (4.31)

vκa =
∑
w∈W

xwa ∀a ∈ A (4.32)

x ∈ X (4.33)

0 ≤ εwa ≤
κ

1 + κ
ta(v) ∀a ∈ A (4.34)

Problem (4.30) is an optimization problem with equilibrium constraints. We can replace

the equilibrium condition (4.31) by the following KKT conditions to create a single-level

optimization problem:

ta(v)− εwa + πwi − πwj ≥ 0 ∀w ∈ W , a ∈ A (4.35)

xwa (ta(v)− εwa + πwi − πwj ) = 0 ∀w ∈ W , a ∈ A (4.36)∑
a∈A+

i

xwa −
∑
a∈A−i

xwa = qwi ∀w ∈ W , i ∈ N (4.37)

The resulting problem is a mathematical program with complementarity conditions (MPCC),

which is nonlinear and nonconvex. Finding a global solution to MPCC problems is in general

difficult, and Kleer and Schäfer (2016) has shown that solving the above MPCC optimally

is NP-hard. In order to solve this problem, we use an interior point method by utilizing the

Ipopt nonlinear solver (Wächter and Biegler, 2006) with multiple starting solutions.

4.5.1 Numerical Experiments

In this section we present some examples to compare the total travel times in MSatUE and

PRUE numerically for both separable and asymmetric networks. We approximate MSatUE

by UE-PE-X and solve it by the Ipopt nonlinear solver, after reformulating (4.29) as a single-
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(a) Example 1 with Q = 1
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Figure 4.5 – PoSat for the simple networks in Figure 4.4

level optimization problem using KKT conditions. We use the JuMP package (Dunning et al.,

2017b) in Julia Programming Language for modeling and interfacing with the Ipopt solver.

4.5.1.1 Simple Networks

To test the validity and the strength of UE-PE-X model, we first consider Examples 1 and 2

in Figure 4.4. Figure 4.5 compares the PoSat under UE-PE-X with the PoSat under MSatUE,

obtained in Section 4.4.6. As Figure 4.5 shows, the PoSat under UE-PE-X is equal to the

the PoSat under MSatUE for both examples, which suggests that the UE-PE-X model is an

effective model.

4.5.1.2 Circular Network of Christodoulou et al. (2011)

We also compute the PoSat under UE-PE-X model for the circular network of Christodoulou

et al. (2011) presented in Figure 4.2. For numerical experiments, we assign m and l to the

smallest positive integers such that m
l

= (1 + κ)5, and κ ∈ {0, 0.1, 0.2, ..., 1}. We also set

n = 4. As it can be seen in Figure 4.6, we obtained identical results for circular network

under UE-PE-X, using the Ipopt solver, which shows that the UE-PE-X model can obtain

the upper bound provided in Lemma 4.5.
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Figure 4.6 – PoSat for the circular network in Figure 4.2

4.5.1.3 Larger Networks

We present some examples to compare the total travel times in MSatUE and PRUE numer-

ically and compare the numerical worst-cases with the analytical bound given in Theorem

4.2 for larger networks with both separable and non-separable, asymmetric arc cost func-

tions. As (4.29) is a non-convex problem, the Ipopt solver can produce a local minimum

at best. To obtain a higher-quality local minimum, we solve the problem multiple times by

using different initial solution. For generating different initial solutions for the network with

separable arc cost functions, we utilize UE-PE-V model. We generate initial λ randomly

and use the Frank-Wolfe algorithm to obtain the corresponding v and x. For the network

with non-separable cost function, we can use the fixed point method (Dafermos, 1980) with

a randomized λ to obtain an initial solution x. We randomly generate five initial starting

points for each example and report the largest PoSat values.

We first consider the nine-node network presented in Hearn and Ramana (1998). The

nine-node network consists of 9 nodes and 18 arcs, and the travel time functions are poly-

nomials of order n = 4. We also create an asymmetric variant of the nine-node network as

shown in Figure A.1 in Appendix E. The asymmetric nine-node network has non-separable

arc cost function in the form of (A29). The comparison result is presented in Figure 4.7a.
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(a) Approximate PoSat (Ipopt-UE-PE-X)
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(b) Comparing analytical and numerical PoSat

Figure 4.7 – PoSat for nine-node network

As Figure 4.7a represents PoSatκ increases with κ for both symmetric and asymmetric nine-

node network since PRUE total travel time is fixed with respect to κ, while the worst-case

MSatUE total travel time increases as κ increases. Moreover, PoSatκ is smaller for symmetric

nine-node network compared to the asymmetric nine-node network for smaller κ values (0.1

and 0.2), but it is greater for larger κ values (κ ≥ 0.3). In general, the gap between PoSatκ

for symmetric nine-node network and asymmetric nine-node network is small.

Figure 4.7b compares the numerical PoSatκ with the analytical bound provided in Theo-

rem 4.2 for MSatUE for the nine-node network. We observe that there is a large gap between

the analytical and numerical bounds which increases with κ. Although the analytical re-

sult certainly provides a valid bound, it is too large to be practically useful in realistic

road networks. This indicates opportunities for empirical studies on the analytical bounds

that depend on more network-specific information such as travel demands and travel time

functions. The bound (1 + κ)n+1 in Theorem 4.2 is independent from such network-specific

information.

We also consider the Sioux Falls network presented in Suwansirikul et al. (1987), which

consists of 24 nodes, 76 arcs, and 576 OD pairs. The arc travel cost function is the BPR

function, which is a polynomial function with degree n = 4. We also consider an asymmetric
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(b) Comparing analytical and numerical PoSat

Figure 4.8 – PoSat for Sioux Falls network

variant of Sioux Falls network with arc cost function in the form of (A29). As Figure 4.8a

represents, PoSatκ increases with κ for both symmetric and asymmetric Sioux Falls network,

and it is greater compared to the nine-node network for both symmetric and asymmetric

networks. Furthermore, PoSatκ is greater for asymmetric Sioux Falls network compared with

the symmetric Sioux Falls network for all positive κ values, and the gap between PoSatκ for

symmetric Sioux Falls network and PoSatκ for asymmetric Sioux Falls network increases with

κ. Figure 4.8b compares the numerical PoSatκ with the analytical bound. The gap between

the analytical and the numerical bound is tighter compared to the nine-node network, but

it is still considerable.
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Chapter 5: Conclusions and Future Research Directions

In this dissertation, we use game theory approach to solve three separate transporta-

tion problems. In the first problem, we design a new auction market for fractional vehicle

ownership market that considers spatial information of the bidders. We propose the use

of bidder-defined items, which enables bidders to bid on any time intervals they wish. We

use clique constraints to formulate the WDP, which enables us to generate the model and

solve it faster. For solving the problem for larger instances, we design a greedy algorithm to

find a primal solution and provide a maximal-clique relaxation of the problem to obtain a

high-quality dual bound for that. We compare the performance of the proposed formulations

and solution approaches through extensive numerical experiments. We can extend this work

in several directions. First, the methodology of this paper can be applied to other combina-

torial auctions, including resource allocation in cloud computing and ride-sharing markets

with some variations, etc. Second, We can improve the solution approaches by designing

algorithms based on maximal-clique based relaxation. Third, we can improve the vehicle co-

ownership auction market by considering other features. For instance, we can consider the

uncertainty in the departure and arrival time of the bidders in the auction market. Fourth,

as the VCG mechanism does not perform well, especially regarding the auctioneer revenue,

one research direction is to design a practical iterative auction for fractional car ownership,

which helps preference elicitation and generating higher revenue.

In the second problem, we considered a pessimistic approach for hazmat toll pricing prob-

lem. We studied the existence of the solution for pessimistic and approximate pessimistic

hazmat toll pricing problems. We developed solution approaches, which are closely related

to Wiesemann et al. (2013) and utilize disjunctive programming, to solve the approximate
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pessimistic hazmat toll pricing problem. To model the disjunctive constraints, we utilize

both the Balas formulation and the big-M formulation approaches, both of which use big-M

constraints to linearize the bilinear terms. While Balas formulation is ideal and stronger,

the practical performance was worse than the big-M formulation with the bounds on big-M

constants we developed. Through numerical experiments in a realistic network, we confirmed

that there usually exist multiple optimal solutions in the problem, hence requiring a pes-

simistic approach for robustness. We can further explore this problem in several directions.

First, the pessimistic approach can be applied to other bi-level optimization problems in-

cluding network design hazmat problem and general network pricing problems. Second, it

may be possible to improve the bound on M3
sij. Improving the bound on M3

sij makes the

master problem easier to solve and possibly can improve the quality of the solution. More-

over, it may be possible to propose new valid inequalities to solve the master problem more

efficiently.

In the third problem, we study the effect of satisficing behavior on the transportation

systems performance . When network users are satisficing decision-makers, the resulting

satisficing user equilibria may degrade the system performance, compared to the perfectly

rational user equilibrium. To quantify how much the performance can deteriorate, this paper

has quantified the worst-case analytical bound on the price of satisficing. We also quantified

the price of satisficing for several networks numerically and compare it to the analytical

bound. As we have seen in the numerical examples in this paper, there is a large gap

between the worst-case analytical bound and the actual bound. Clearly, this is a limitation

of our approach. In the literature of the price of anarchy have similar observations been

reported (O’Hare et al., 2016; Colini-Baldeschi et al., 2017). Likewise, the behavior of the

price of satisficing in practice can be quite different from what we have observed in this

paper. Deriving empirical or network-specific bounds can be meaningful contributions as a

future research direction. We suggest additional potential future research directions. For

the proposed analytical bound, our result is based on the condition (4.26). By attempting
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to relax this condition, one may obtain a global bound for any value of κ. In deriving the

analytical bound, we utilized a novel technique comparing equilibrium patterns before and

after the travel demand is increased, namely V and V1+κ. Applying this technique in the

context of the price of risk aversion and the deviation ratio would be an interesting research

direction.
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Appendix B: Proofs of Chapter 2

Proof of Proposition 2.1. Formulations (P1) and (P2) possess the same objective func-

tion. Moreover, constraints (2.12) and (2.17) are exactly the same. Therefore, we only need

to show that (2.18) is equivalent to (2.13)–(2.14).

1. We show that if either (2.13) or (2.14) is violated, then (2.18) is also violated. First,

suppose that x violates (2.13); i.e., there exist j, v, n, and m such that

emxjv > sn +M(1− xlv) (A1)

sm ≤ sn ≤ em, (A2)

where we abbreviated the index descriptions, i, k ∈ I, j ∈ Bi, l ∈ Bk,m ∈ Tj, n ∈ Tl, for

simplicity. For (A1), xjv = xlv = 1 is the only possibility. From (A2), we observe:

sn ≤ em =⇒ sn ≤ em + rikemsn

sm ≤ sn =⇒ sm ≤ sn ≤ en ≤ en + rikensm

Therefore, when (A2) holds, (2.20) also holds. In this case, x does not satisfy (2.18).

Similarly, when x violates (2.14), we can show that x also violates (2.18).

2. We show that if (2.18) is violated, then (2.13)–(2.14) are also violated. Suppose that

x violates (2.18); i.e., there exist j, v, n, and m such that

xjv = xlv = 1,

sm ≤ en + rikensm ,

sn ≤ em + rikemsn .
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If sn ≤ sm, we obtain sn ≤ sm ≤ em ≤ em + rikemsn , and as a result x violates (2.13)–(2.14).

If sm ≤ sn, then sm ≤ sn ≤ en ≤ en + rikensm , and consequently, x violates (2.13)–(2.14).

Hence, (2.18) is equivalent to (2.13)–(2.14).

Proof of Proposition 2.2. Since we have p bids, there are
(
p
2

)
pairs of possible bids. More-

over, since the maximum number of trips in a submitted bid is q, vector L has a maximum

possible length of 2q. Therefore, the time complexity of sorting L is O(q log q). After sorting

O(q) comparisons should be made. Consequently, the time complexity of Algorithm 2.2 is

(
p

2

)
[O(2q log q) +O(q)].

Hence, the result follows.

Proof of Proposition 2.3. Let Z∗,vV be the social welfare associated with the v-th vehicle;

that is, Z∗,vV =
∑

i∈I
∑

j∈Bi cjx
∗
jv where x∗ is an optimal solution to (P2) with V . Without

loss of generality, let us assume that Z∗,vV ≥ Z∗,v
′

V if v ≤ v′. Since Z∗V ′ is optimal, we have

Z∗V ′ ≥
|V ′|∑
v=1

Z∗,vV

or equivalently
Z∗V ′

|V ′|
≥
∑|V ′|

v=1 Z
∗,v
V

|V ′|
(A3)

Moreover, since Z∗,vV ≥ Z∗,v
′

V if v ≤ v′, we have

Z∗V ′

|V ′|
≥
∑|V ′|

v=1 Z
∗,v
V

|V ′|
≥
∑|V|

v=|V ′|+1 Z
∗,v
V

|V| − |V ′|
(A4)

Using the weighted average of the right-hand-side of (A3) and (A4), we obtain the following:

Z∗V ′

|V ′|
≥ |V

′|
|V|

∑|V ′|
v=1 Z

∗,v
V

|V ′|
+
|V| − |V ′|
|V|

∑|V|
v=1+|V ′| Z

∗,v
V

|V| − |V ′|
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=

∑|V|
v=1 Z

∗,v
V

|V|
=
Z∗V
|V|

(A5)

Furthermore, from the sub-optimality of SSVD, we have

ZG
V ≤ Z∗V ,

which along with (A5) leads to

Z∗V − ZG
V ≤

|V|
|V ′|

Z∗V ′ − ZG
V .

This completes the proof.

Proof of Proposition 2.4. Suppose x is a feasible point for problem (P3). We let yj =∑
v∈V xjv. From (2.23) we have

∑
j∈Bi

∑
v∈V

xjv =
∑
j∈Bi

yj ≤ 1.

Getting summation over v in (2.24) we have

∑
v∈V

∑
j∈Cm

xjv =
∑
j∈Cm

yj ≤ |V|.

Therefore, x is a feasible solution for problem (R). Moreover, (P3) and (R) share the same

objective function: ∑
j∈B

∑
v∈V

cjxjv =
∑
j∈B

cjyj

Hence, problem (R) is a relaxation of problem (P3).

Proof of Proposition 2.5. Under incentive compatibility, we have

vi = Zε
WDP −

∑
j∈B−i

cjx
ε
j, ∀i ∈ I.
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Since Zε
WDP ≥ Zε

WDP−i
, we obtain the following:

vi = Zε
WDP −

∑
j∈B−i

cjx
ε
j ≥ Zε

WDP−i
−
∑
j∈B−i

cjx
ε
j ≥ pεi , ∀i ∈ I.

Since vi ≥ pei , the bidders do not lose by participating in the auction, and therefore rationality

holds.

Proof of Proposition 2.6. Considering VCG payment in (2.5), we have

p∗i = Z∗WDP−i
−
(
Z0

WDP −
∑
j∈Bi

cjx
0
j

)
(A6)

pεi = Zε
WDP−i

−
(
Zε

WDP −
∑
j∈Bi

cjx
ε
j

)
. (A7)

From (A6) and (A7) we obtain

p∗i − pεi = (Z∗WDP−i
− Zε

WDP−i
) + (Zε

WDP − Z∗WDP) +

(∑
j∈Bi

cjx
∗
j −

∑
j∈Bi

cjx
ε
j

)
. (A8)

Since the WDP is a maximization problem, we have the following:

Zε
WDP ≤ Z∗WDP. (A9)

Since at most one bid from each bidder can be determined as a winner, we have

(∑
j∈Bi

cjx
∗
j −

∑
j∈Bi

cjx
ε
j

)
≤ max

j∈Bi
cj. (A10)

Moreover, from (2.30), we have

Z∗WDP − Zε
WDP

Zε
WDP

≤ ε (A11)
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Substituting (A9)–(A11) to (A8), we obtain:

p∗i − pεi ≤ εZε
WDP−i

+ max
j∈Bi

cj,

pεi − p∗i ≤ εZε
WDP + max

j∈Bi
cj.

Consequently,

|pεi − p∗i | ≤ εmax
{
Zε

WDP, Z
ε
WDP−i

}
+ max

j∈Bi
cj,

which completes the first part of the proof.

The revenue of the auctioneer is the summation of the bidder’s payments. Hence, we

have

R∗ =
∑
i∈I

p∗i =
∑
i∈I

Z∗WDP−i
− |I|Z∗WDP +

∑
i∈I

∑
j∈Bi

cjx
∗
j =

∑
i∈I

Z∗WDP−i
− (|I| − 1)Z∗WDP.

Similarly, we can write Rε as

Rε =
∑
i∈I

Zε
WDP−i

− (|I| − 1)Zε
WDP.

Using (A9) and (A11), we obtain

Rε −R∗ ≤ (|I| − 1)εZε
WDP

R∗ −Rε ≤ ε
∑
i∈I

Zε
WDP−i

.

Consequently,

|Rε −R∗| ≤ εmax

{
(|I| − 1)Zε

WDP,
∑
i∈I

Zε
WDP−i

}
,

which completes the proof.
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Appendix C: Proofs of Chapter 3

Proof Proposition 3.1. The set of feasible solution is non-empty and bounded, since there

always exists a feasible solution, for example, with t = 0 and the toll on each link can be

bounded (Marcotte et al., 2009). Therefore, the existence of an optimal solution is guaranteed

by Dempe (2002, Theorem 3.3). The non-existence of optimal solution to PHTP is shown

by the example in Section 3.4.

Proof Lemma 3.1. We denote the feasible region of PHTPε by:

Tε =

{
(t, z) :

∑
s∈S

fs(t,xs)− z ≤ 0, ∀x ∈ Xε(t), 0 ≤ t ≤ B

}
.

We show that the feasible setTε is closed for all ε ≥ 0, following the proof of Wiesemann et al.

(2013, Proposition 3.1). Although our lower-level problem Xε(·) is discrete unlike the problem

considered in Wiesemann et al. (2013), we have an equivalent continuous LP relaxation. With

this slight modification, Tε can be shown closed. In addition, Tε is obviously non-empty;

e.g. t = 0 generates a feasible solution. Since PHTPε minimizes a continuous objective

function over a closed, non-empty set, there exists an optimal solution by the extreme value

theorem.

Proof of Proposition 3.2. Consider toll vector t̂ ≥ 0 where t̂ij > Bij for some (i, j) ∈ A.

Let x̂ be a solution to the lower level problem under t̂. Note that (̂t, x̂) is feasible to PHTPε

but not PHTPε. We consider two cases.

(i) Consider cases when hs(̂t, x̂s) > (Bij −maxs∈S εs) for some s ∈ S. That is,

hs(̂t, x̂s) =
∑

(i,j)∈A

(cij + t̂ij + βρij)x̂sij
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> Bij −max
s∈S

εs

=
zt=0

α
+ β

∑
(i,j)∈A

ρij,

which leads to

∑
(i,j)∈A

(cij + t̂ij)x̂sij >
zt=0

α
.

Then we have:

fs(̂t, x̂) =
∑

(i,j)∈A

ns

(
ρij + α(cij + t̂ij)

)
x̂sij

≥
∑

(i,j)∈A

ns

(
α(cij + t̂ij)

)
x̂sij

≥
∑

(i,j)∈A

α
(
cij + t̂ij

)
x̂sij

> zt=0.

Consequently zt̂ > zt=0. Therefore, t = 0 is a better solution that is feasible to PHTPε.

(ii) Consider cases when hs(̂t, x̂) ≤ (Bij −maxs∈S εs) for all s ∈ S. That is,

∑
(i,j)∈A

(cij + t̂ij + βρij)x̂sij = hs(̂t, x̂s) ≤ Bij −max
s∈S

εs.

Note t̂ijx̂sij ≤ hs(̂t, x̂s) for all (i, j) ∈ A. Therefore, we have t̂ij ≤ (Bij −maxs∈S εs) for all

(i, j) ∈ A such that x̂sij = 1. Construct t, which is feasible to PHTPε, as follows:

tij =


t̂ij if t̂ij ≤ Bij,

Bij if t̂ij > Bij,
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for all (i, j) ∈ A. Since hs(̂t, x̂s) ≤ (Bij − maxs∈S εs), we also have hs(̂t, x̂s) + εs ≤ Bij.

Therefore, the following must hold:

x̂sij =


0 or 1 if t̂ij < Bij,

0 if t̂ij ≥ Bij,

Moreover, based on the definition of t, the following also holds:

x̂sij =


0 or 1 if tij < Bij,

0 if tij = Bij,

Since t̂ij = tij for all (i, j) ∈ A where t̂ij ≤ Bij, we have:

hs(̂t, x̂s) =
∑

(i,j)∈A

(cij + t̂ij + βρij)x̂sij

=
∑

(i,j)∈A:t̂ij<Bij

(cij + t̂ij + βρij)x̂sij +
∑

(i,j)∈A:t̂ij≥Bij

(cij + t̂ij + βρij)x̂sij

=
∑

(i,j)∈A:tij<Bij

(cij + tij + βρij)x̂sij +
∑

(i,j)∈A:tij=Bij

(cij + tij + βρij)x̂sij

=
∑

(i,j)∈A

(cij + tij + βρij)x̂sij

= hs(t, x̂s)

Therefore, the new pair (t, x̂) is still feasible to the problem. Note that, however, zt̂ ≥ zt,

since the toll values have been decreased.

In summary, for any solution t̂ that is feasible to PHTPε, but not PHTPε, there exists a

solution t to PHTPε such that zt̂ ≥ zt. Therefore, we obtain the proposition.
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Proof of Proposition 3.3. Consider a feasible solution (tk, zk,yk) where yk involves a

subtour for some s ∈ S. After eliminating subtours from yk, we obtain y. We suppose that

tk and y induce z. We observe that

hs(t
k,xls) ≥ hs(t

k,yks) + εs > hs(t
k,ys) + εs,

which implies that y will create less constraints of [fs(t,x
l
s) − zs ≤ 0] types. Therefore∑

s∈S ẑs ≥
∑

s∈S zs; that is, solutions without subtours always generate a better or the same

objective function value.

Proof of Lemma 3.2. Note that the optimal objective function value
∑

s∈S z
k
s can be di-

vided into two components: the toll independent part
∑

s∈S
∑

(i,j)∈A(nsρij +αnscij)x
l(s)
sij and

the toll dependent component α
∑

s∈S
∑

(i,j)∈A nst
k
ijx

l(s)
sij . Since R0 is the minimum possible

value for the toll independent component, the following inequality holds:

R0 ≤
∑
s∈S

∑
(i,j)∈A

(nsρij + αnscij)x
l(s)
sij .

Consequently, we have

R0 + α
∑
s∈S

ns
∑

(i,j)∈A

tkijx
l
sij = R0 + α

∑
s∈S

nsT
k
s

≤
∑
s∈S

∑
(i,j)∈A

ns
(
ρij + α(cij + tkij)

)
x
l(s)
sij =

∑
s∈S

zks .

(A12)

From (3.11), we have:

∑
s∈S

zks ≤ Ut. (A13)

From (A12) and (A13), we obtain the lemma.
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Proof of Lemma 3.3. From (3.13) we obtain:

hs(t
k,yks) ≥ hs(t

k, ŷ(tk)s) ∀s ∈ S

Therefore (3.8b) holds. Moreover, as ŷ(tk) ∈ X, we know that (tk, zk, ŷk) is feasible to

Masterk. Since (tk, zk, ŷ(tk)) and (tk, zk,yk) have the same objective function value of∑
s∈S z

k
s , we observe that (tk, zk, ŷ(tk)) is also optimal to Masterk.

Proof of Proposition 3.4. From (3.14) we obtain:

∑
(i,j)∈A

(cij + βρij)x
l(s)
sij ≤ C0

s ∀s ∈ S (A14)

Additionally, based on Lemma 3.2, we have:

∑
(i,j)∈A

tkijx
l(s)
sij ≤ T s ∀s ∈ S (A15)

Consequently, for any ε-approximation solution in Xk for each s ∈ S, we have:

hs(t
k,xls) < hs(t

k,xl(s)s ) + εs ≤ C0
s + T s + εs ≤ max

s′∈S
{C0

s′ + T s′ + εs′} ∀s ∈ S, l ∈ J|Xk|K.

Let us define A(tk) = {(i, j) | tkij > maxs′∈S {C0
s′ + T s′ + εs′} − βρij − cij}. Consider the toll

vector t̃
k
defined as follows:

t̃kij = min

{
tkij, max

s′∈S
{C0

s′ + T s′ + εs′} − βρij − cij
}

for each (i, j) ∈ A. That is,

t̃kij =


tkij if (i, j) 6∈ A(tk),

maxs′∈S {C0
s′ + T s′ + εs′} − βρij − cij if (i, j) ∈ A(tk).
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Suppose the path represented by xls passes through arcs in A(tk); i.e. xlsij = 1 for some

(i, j) ∈ A(tk). Then, we have:

hs(t
k,xls) ≥ max

s′∈S
{C0

s′ + T s′ + εs′},

hs(̃t
k
,xls) ≥ max

s′∈S
{C0

s′ + T s′ + εs′}.

Thus, the path represented by xls is not an εs-approximate path under both tk and t̃
k
. Now

suppose the path represented by xls does not pass through arc (i, j) ∈ A(tk); i.e. xlsij = 0

for all (i, j) ∈ A(tk). Then we have:

hs(t
k,xls) = hs(̃t

k
,xls). (A16)

Consequently, based on (A16), all ε-approximate paths under toll tk are ε-approximate paths

under t̃
k
. Moreover, all non-ε-approximate paths under toll tk are non-ε-approximate paths

under t̃
k
.

Since ε-approximate paths do not include any arc (i, j) ∈ A(tk), the toll amount charged

on the satisficing paths do not change by setting the toll to t̃
k
. Hence, if (tk, zk,yk) is optimal

to Masterk, so is (̃t
k
, zk,yk) . Therefore, M3

sij can be bounded by (3.15).

Proof of Lemma 3.5. Suppose not. In particular, suppose there exists a shipment s ∈ S

for which there is no ε-approximate path. Consequently, based on (3.8b), we have zks = 0.

We pick xs = arg minys∈Xs
hs(t

k,ys) in Subk. Then we have

ws ≤ hks − hs(tk,xs) + εs = εs

ws ≤ fs(t
k,xs)− zks = fs(t

k,xs).

Since Subk is a maximization problem, we have: wks = min{εs, fs(tk,xks)} > 0, which is a

contradiction.
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Proof of Proposition 3.5. Based on Lemma 3.3, (tk, zk, ŷ(tk),vk, τ̂ ) is also optimal to

Masterk, where ŷ(tk) is optimal to (3.13). We have:

∑
(i,j)∈A

(cij + βρij + tkij)x
l(s)
sij + εs ≥

∑
(i,j)∈A

(cij + βρij + tkij)ŷsij + εs ∀s ∈ S.

From (A14) and (A15), we have:

∑
(i,j)∈A

(cij + tkij + βρij)x
l(s)
sij ≤ C0

s + T s + εs ∀s ∈ S.

Consequently:

∑
(i,j)∈A

(cij + tkij + βρij)ŷsij(t
k) + εs ≤ C0

s + T s + εs ∀s ∈ S

which completes the proof for M1l
s . By substituting tij with (3.15) in (3.16c), we can easily

bound M2l
s .

Proof of Lemma 3.5. Given a disjunctive set
⋃d
i=1 P

i, where each P i = {x ∈ Rn : aix ≤

bi} is a bounded polyhedra, the formulation of Balas (1985) is

x =
d∑
i=1

xi (A17a)

aixi ≤ biui ∀i ∈ JdK (A17b)
d∑
i=1

ui = 1 (A17c)

u ∈ {0, 1}d. (A17d)
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where the xi are auxiliary continuous variables that serve as copies of x for each disjunct,

and u are binary variables that indicate each of the possible disjuncts P i. In our setting,

d = 2, and we take the copies of the original decision variables (ts, zs, τ s,ys) corresponding

to the disjuncts P 1l
s and P 2l

2 to be (t1l
s , z

1l
s , τ

1l
s ,y

1l
s ) and (t1l

s , z
1l
s , τ

1l
s ,y

1l
s ), respectively.

We can observe that (3.20a) and (3.20b) derive from (A17b). Similarly, (3.20c) and

(3.20d) also derive from (A17b) by homogenizing all constant terms that appear in the

constraints describing Qs(1). Finally, (3.20e), (3.20f), and (3.20g) are analogous to (A17a),

(A17c), and (A17d), respectively

Proof of Proposition 3.6. Follows directly from applying Lemma 3.5 for each s ∈ S and

l ∈ J|Xk|K. Note that we have explicitly written out the constraints describing the sets

Qs(u
1l
s ). Finally, we explicitly impose the integrality on the y variables relaxed in the de-

scription of Qs(·) in constraints (3.21q).
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Appendix D: Proofs of Chapter 4

Proof of Lemma 4.1. Given f , we let v be the arc flow vector from f 7→ v. Let ε be the

perception error that makes x a solution to (4.12). Then, x is a user equilibrium flow with

respect to arc travel time λwa ta(·) and the following follows from (4.4):

fp > 0 =⇒
∑
a∈A

δpaλ
w

a ta(v) = min
p′∈Pw

∑
a∈A

δp
′

a λ
w

a ta(v) (A18)

for all p ∈ Pw and w ∈ W . Since λwa ∈ [ 1
1+κ

, 1], the right-hand-side of (A18) implies

1

1 + κ

∑
a∈A

δpata(v) ≤ min
p′∈Pw

∑
a∈A

δp
′

a λ
w

a ta(v) ≤ min
p′∈Pw

∑
a∈A

δp
′

a ta(v),

which is equivalent to the following path flow form:

cp(f) ≤ (1 + κ) min
p′∈Pw

cp′(f).

Therefore, we conclude that f is a κ-MSatUE traffic flow.

Proof of Lemma 4.2. We can prove both directions by observing that

∑
w∈W

∑
p∈Pw

c̃wp (f)(fp − fp) =
∑
w∈W

∑
p∈Pw

∑
a∈A

δpaλ
w
a ta(v)(fp − fp)

=
∑
w∈W

∑
a∈A

λwa ta(v)

( ∑
p∈Pw

δpafp −
∑
p∈Pw

δpafp

)
=
∑
w∈W

∑
a∈A

λwa ta(v)(xwa − xwa ).
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Proof of Lemma 4.5. From Theorem 2 of Christodoulou et al. (2011), we have

C(fκ) ≤ ζ(κ, n)C(f) ∀f ∈ F. (A19)

Picking f = f0 in (A19), we obtain the upper bound on C(fκ). Inequalities involving C(f∗)

are from the fact C(f∗) ≤ C(f) for all f ∈ F.

Proof of Lemma 4.6. By simple comparison, we can show

C((1 + κ)f) = Z((1 + κ)v) =
∑
a∈A

( n∑
m=0

bam

(
(1 + κ)d>amv

)m)
(1 + κ)va

≤ (1 + κ)n+1
∑
a∈A

( n∑
m=0

bam

(
d>amv

)m)
va

= (1 + κ)n+1Z(v)

= (1 + κ)n+1C(f)

where v is the arc flow vector from f 7→ v.

Proof of Lemma 4.7. This is a minor variant to the proof of Englert et al. (2010, Theorem

3). Since v0 ∈ F and v̂0 ∈ F1+κ are PRUE flows that minimize Φ(·) over their corresponding

feasible sets, we have

Φ(v0) ≤ Φ
( v̂0

1 + κ

)
and Φ(v̂0) ≤ Φ

(
(1 + κ)v0

)
,

which imply

(1 + κ)n+1
∑
a∈A

ba
n+ 1

(v0
a)
n+1 ≤

∑
a∈A

ba
n+ 1

(v̂0
a)
n+1 (A20)

and ∑
a∈A

ba
n+ 1

(v̂0
a)
n+1 ≤ (1 + κ)n+1

∑
a∈A

ba
n+ 1

(v0
a)
n+1 (A21)

respectively.
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Let us assume that C(f̂
0
) > (1 + κ)n+1C(f0), which is equivalent to

(1 + κ)n+1
∑
a∈A

ba(v
0
a)
n+1 <

∑
a∈A

ba(v̂
0
a)
n+1. (A22)

From n× (A20) + ((n+ 1)(1 + κ)n − 1)× (A21) + ((1 + κ)n − 1)× (A22), we obtain

θ1

∑
a∈A

ba(v
0
a)
n+1

n+ 1
< θ2

∑
a∈A

ba(v̂
0
a)
n+1

n+ 1
(A23)

where

θ1 = n · (1 + κ)n+1

n+ 1
− ((n+ 1)(1 + κ)n − 1) · (1 + κ)n+1

n+ 1
+ ((1 + κ)n − 1) · (1 + κ)n+1 = 0

θ2 = n · 1

n+ 1
− ((n+ 1)(1 + κ)n − 1) · 1

n+ 1
+ ((1 + κ)n − 1) = 0

for all κ ≥ 0. Therefore, (A23) leads to 0 < 0, which is a contradiction. We conclude that

C(f̂
0
) ≤ (1 + κ)n+1C(f0).

Proof of Theorem 4.1. Since v̂0 ∈ F1+κ is an user equilibrium flow that minimizes Φ(·),

we have

Φ(v̂0) ≤ Φ
(
(1 + κ)v

)
,

which implies

∑
a∈A

ba(v̂
0
a)
n+1

n+ 1
≤
∑
a∈A

ba
(
(1 + κ)va

)n+1

n+ 1
= (1 + κ)n+1

∑
a∈A

ba(va)
n+1

n+ 1
. (A24)

Since v ∈ V is a solution to UE-PE-V, we have

Ψ(v;λ) ≤ Ψ
( v̂0

1 + κ
;λ
)
,
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for some λ. Therefore, we have

∑
a∈A

λaba(va)
n+1

n+ 1
≤
∑
a∈A

λaba(v
0
a)
n+1

(n+ 1)(1 + κ)n+1
=

1

(1 + κ)n+1

∑
a∈A

λaba(v̂
0
a)
n+1

n+ 1
.

Since λa ∈ [ 1
1+κ

, 1], we obtain

1

1 + κ

∑
a∈A

ba(va)
n+1

n+ 1
≤ 1

(1 + κ)n+1

∑
a∈A

ba(v̂
0
a)
n+1

n+ 1

which implies

(1 + κ)n
∑
a∈A

ba(va)
n+1

n+ 1
≤
∑
a∈A

ba(v̂
0
a)
n+1

n+ 1
(A25)

Let us assume that C(f) > C(f̂
0
), which is equivalent to

∑
a∈A

ba(v̂
0
a)
n+1 <

∑
a∈A

ba(va)
n+1 (A26)

From A × (A24) + B × (A25) + C × (A26) for any positive constants A, B and C, we

obtain

θ1

∑
a∈A

ba(v̂
0
a)
n+1

n+ 1
< θ2

∑
a∈A

ba(va)
n+1

n+ 1
(A27)

where

θ1 = A−B + C(n+ 1)

θ2 = A(1 + κ)n+1 −B(1 + κ)n + C(n+ 1).

In particular, consider A, B and C as follows:

A = (n+ 1)
(
(1 + κ)n − 1

)
B = (n+ 1)

(
(1 + κ)n − 1

)
+ (n+ 1)κ(1 + κ)n+1

C = κ(1 + κ)n+1
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We observe that A, B and C are all positive and θ1 = 0. We also see that

θ2 = −(n+ 1)κ2(1 + κ)n
(
(1 + κ)n+1 − 1

)
≤ 0

for all κ ≥ 0 and n ≥ 0, which leads to a contradiction. Therefore, we have

C(f) ≤ C(f̂
0
) ≤ (1 + κ)n+1C(f0),

where the last inequality is from Lemma 4.7. This completes the proof.

Proof of Theorem 4.2. By slightly modifying the proof of Theorem 4.3, we can show

C(fκ) ≤ C(f̂
0
). By Lemmas 4.6 and 4.7, we complete the proof.

Proof of Lemma 4.8. Let f = (1 +κ)f0, and v = (1 +κ)v0 for the corresponding arc flow

vectors. If the condition

∑
a∈A

( n∑
m=0

λambam

(
d>amv

)m)
(v′a − va) ≥ 0 ∀v′ ∈ V1+κ (A28)

holds for some constants λam ∈ [ 1
1+σ

, 1] for m = 0, 1, ..., n and a ∈ A, then we can find

λa ∈ [ 1
1+σ

, 1] such that

λa

n∑
m=0

bam

(
d>amv

)m
=

n∑
m=0

λambam

(
d>amv

)m

for all a ∈ A; consequently, by Lemmas 4.1 and 4.3, f is a σ-MSatUE flow in F1+κ.

Since v0 is PRUE for V, we know that

∑
a∈A

( n∑
m=0

bam

(
d>amv

0
)m)

(va − v0
a) ≥ 0 ∀v ∈ V.
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Therefore

∑
a∈A

( n∑
m=0

1

(1 + κ)m
bam

(
(1 + κ)d>amv

0
)m)

((1 + κ)va − (1 + κ)v0
a) ≥ 0 ∀v ∈ V.

Letting for all a ∈ A

λam =
1

(1 + κ)m
, m = 0, 1, ..., n

va = (1 + κ)v0
a,

v′a = (1 + κ)va,

we observe that λam ∈ [ 1
1+σ

, 1] and we obtain (A28); hence proof.

Proof of Theorem 4.3. We decompose Pw for each OD pair w into the following four

subsets:

P1
w = {p ∈ Pw : f̂σp > 0, fκp > 0, f̂σp − fκp ≥ 0},

P2
w = {p ∈ Pw : f̂σp > 0, fκp > 0, f̂σp − fκp < 0},

P3
w = {p ∈ Pw : f̂σp > 0, fκp = 0},

P4
w = {p ∈ Pw : f̂σp = 0, fκp > 0}.

We ignore cases with f̂σp = 0 and fκp = 0. Note that f̂σp − fκp > 0 for p ∈ P3
w and f̂σp − fκp < 0

for p ∈ P4
w. From the definition of MSatUE flows, we have

f̂σp > 0 =⇒ cp(f̂
σ
) ≤ (1 + σ)µw(f̂

σ
),

fκp > 0 =⇒ cp(f
κ) ≤ (1 + κ)µw(fκ),

129



for all p ∈ Pw, w ∈ W . In addition, µw(f̂
σ
) ≤ cp(f̂

σ
) and µw(fκ) ≤ cp(f

κ) for all p ∈ P by

definition. Therefore, we have

∑
p∈P

[cp(f̂
σ
)− cp(fκ)](f̂σp − fκp )

≤
∑
w∈W

{ ∑
p∈P1

w

[
(1 + σ)µw(f̂

σ
)− µw(fκ)

]
(f̂σp − fκp ) +

∑
p∈P2

w

[
µw(f̂

σ
)− (1 + κ)µw(fκ)

]
(f̂σp − fκp )

+
∑
p∈P3

w

[
(1 + σ)µw(f̂

σ
)− µw(fκ)

]
(f̂σp − fκp ) +

∑
p∈P4

w

[
µw(f̂

σ
)− (1 + κ)µw(fκ)

]
(f̂σp − fκp )

}

=
∑
w∈W

{ ∑
p∈Pw

[
µw(f̂

σ
)− µw(fκ)

]
(f̂σp − fκp ) + σ

∑
p∈P1

w∪P3
w

µw(f̂
σ
)(f̂σp − fκp )

− κ
∑

p∈P2
w∪P4

w

µw(fκ)(f̂σp − fκp )

}

≤
∑
w∈W

{ ∑
p∈Pw

[
µw(f̂

σ
)− µw(fκ)

]
(f̂σp − fκp ) + σ

∑
p∈Pw

max{µw(f̂
σ
), µw(fκ)}

∣∣∣f̂σp − fκp ∣∣∣}
≤
∑
w∈W

∑
p∈Pw

[
µw(f̂

σ
)− µw(fκ)

]
(f̂σp − fκp ) + σ

∑
p∈P

max{cp(f̂
σ
), cp(f

κ)}
∣∣∣f̂σp − fκp ∣∣∣.

From (4.26), we obtain

0 ≤
∑
w∈W

∑
p∈P

[
µw(f̂

σ
)− µw(fκ)

]
(f̂σp − fκp )

=
∑
w∈W

[
µw(f̂

σ
)− µw(fκ)

](∑
p∈P

f̂σp −
∑
p∈P

fκp

)
=
∑
w∈W

[
µw(f̂

σ
)− µw(fκ)

]
(Q̂w −Qw)

= κ
∑
w∈W

µw(f̂
σ
)Qw − κ

∑
w∈W

µw(fκ)Qw

=
κ

1 + κ

∑
w∈W

µw(f̂
σ
)Q̂w − κ

∑
w∈W

µw(fκ)Qw

≤ κ

1 + κ

∑
w∈W

∑
p∈Pw

cp(f̂
σ
)f̂σp −

κ

1 + κ

∑
w∈W

∑
p∈Pw

cp(f
κ)fκp

=
κ

1 + κ
C(f̂

σ
)− κ

1 + κ
C(fκ).

130



Lemmas 4.6 and 4.8 complete the proof.
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Appendix E: Assymetric Nine-node Network

1 5 7 3

2 6 8 4

9

Figure A.1 – Asymmetric nine-node network

In order to test the performance of UE-PE-X model in an asymmetric network, we create

an asymmetric version of the nine-node network considered by Hearn and Ramana (1998).

In the asymmetric nine-node network, which has been shown in Figure A.1, we add a few

additional arcs and assume that the arc travel cost function is:

ta(v) = Aa +Ba

(
0.5vâ + va

Ca

)4

(A29)

where â is the flow in the opposite arc. Thus, the arc travel function depends not only on

the flow in that arc, but also on the flow in the arc in opposite direction. The values of

parameters Aa, Ba and Ca are given in Table A.1 for each arc.
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Table A.1 – Asymmetric nine-node network link cost function parameters

a Aa Ba Ca

(1,5) 12 1.80 5
(1,6) 18 2.70 6
(2,5) 35 5.25 3
(2,6) 35 5.25 9
(5,6) 20 3.00 9
(5,7) 11 1.65 2
(5,9) 26 3.90 8
(6,8) 33 4.95 6
(6,9) 30 4.50 8
(7,3) 25 3.75 3
(7,4) 24 3.60 6
(7,8) 19 2.85 2
(8,3) 39 5.85 8
(8,4) 43 6.45 6
(9,7) 26 3.90 4
(9,8) 30 4.50 8
(5,1) 12 1.80 5
(6,1) 18 2.70 6
(5,2) 35 5.25 3
(6,2) 35 5.25 9
(6,5) 20 3.00 9
(7,5) 11 1.65 2
(9,5) 26 3.90 8
(8,6) 33 4.95 6
(9,6) 30 4.50 8
(3,7) 25 3.75 3
(4,7) 24 3.60 6
(8,7) 19 2.85 2
(3,8) 39 5.85 8
(4,8) 43 6.45 6
(7,9) 26 3.90 4
(8,9) 30 4.50 8
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