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Abstract

The restricted isometry property (RIP) is at the center of important developments in compres-

sive sensing. In RN , RIP establishes the success of sparse recovery via basis pursuit for mea-

surement matrices with small restricted isometry constants δ2s < 1/3. A weaker condition,

δ2s < 0.6246, is actually sufficient to guarantee stable and robust recovery of all s-sparse vec-

tors via l1-minimization. In infinite Hilbert spaces, a random linear map satisfies a general RIP

with high probability and allow recovering and extending many known compressive sampling re-

sults. This thesis extends the known restricted isometric projection of sparse datasets of vectors

Σ embedded in the Euclidean spaces RN down into low-dimensional subspaces Rm,m � N, to

Riemannian manifolds (M, g), of manifold dimension m, with Riemannian metric g equivalent

to the induced metric from the embedding space RN . This will establish a higher-dimensional

version of the Fisher-Kolmogorov test for comparing populations in usual statistical analysis, al-

lowing to develop an inference procedure analogous to Generalized Linear Models in the usual

case (#Σ� N ).
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Chapter 1

Introduction

The digital revolution is driving nowadays the development and deployment of new, more so-

phisticated, robust and flexible sensing processing systems with ever increasing resolution. The

theoretical foundation of this revolution is the Shannon/Nyquist sampling theorem, which states

that the sampling rate of a continuous-time signal must be at least twice its highest frequency in or-

der to ensure reconstruction. By this results images, signals, videos, and other data can be exactly

recovered from Nyquist rate set of uniformly spaced samples. Unfortunately, in many applications,

the resulting Nyquist rate is so high that samples must be compressed in order to store or trans-

mit them. Despite extraordinary advances in computational power, the acquisition and processing

of signals in applications may simply be too costly [25], or even physically impossible, and con-

tinues to pose a tremendous challenge. Compressive sensing (CS) provides an alternative to the

Shannon/Nyquist sampling theorem when the signal under acquisition is known to be sparse or

compressible [1][2]. Sparsity allows for dramatically ”under-sampled” signals to be captured and

manipulated using a very small amount of data. This is the fundamental idea behind compressive

sensing.

While this idea has only recently gained significant attention in the signal processing community,

there has been work done in this direction. In 1795, Prony proposed an algorithm for the estimation

of parameters associated with a small number of complex exponentials sampled in the presence of

noise [26]. In the early 1900s, Carathéodory showed that a positive linear combination of any k

sinusoids is uniquely determined by its value at t = 0 and at any other 2k points in time [27][28],

which represents far fewer samples than the number of Nyquist-rate samples when k is small

and the range of possible frequencies is large. More recent, in the early 2000s, Blu, Marziliano,

and Vetterli [29] showed that signals that are governed by only k parameters can be sampled and

recovered from just 2k samples.

1



Building on these results and on the work of Candès, Romberg, Tao [3][5] and Donoho [30],

who showed that a signal having a sparse representation can be recovered exactly from a small set

of linear, nonadaptive compressive measurements, CS has emerged as a new framework for signal

acquisition and sensor design. To mention just a few, areas that have benefited immediately from

this basic discovery are image recovery and compression algorithms. While the research field

of CS draws from a variety of other areas such as random matrix theory, approximation theory,

numerical linear algebra, Banach space theory, and convex optimization, the combined efforts of

mathematicians, computer scientists, and engineers have led to many application such as medical

imaging, radar, microscopy and civilian and military surveillance.
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Chapter 2

Introduction to Compressed Sensing

In mathematical terms, a classical sparse recovery problem aims to recover a vector x ∈ RN from

linear and underdetermined measurements Ax = y, where A ∈ Cm×N models the linear mea-

surement (information) process with N being much larger than m. Looking closer, the standard

compressive sensing problem essentially identifies two questions which are not entirely indepen-

dent. Which matrices A ∈ Cm×N are suitable and what are efficient reconstruction algorithms

which recover the original signal x from measurements y?

Even though there are several tractable strategies to solve the standard compressive sensing

problem, in this chapter we focus on the basis pursuit (also called l1-minimization) strategy which

consists of solving a convex optimization problem, more precisely, to find a minimizer for

min
z∈RN

‖z‖1 subject to Az = y where ‖ · ‖1 is l1 − norm (P1)

2.1 Sparsity and Compressibility

Sparsity has been exploited in statistics and learning theory as a method for avoiding overfitting

[14] and figures prominently in the theory of statistical estimation and model selection [15]. The

notions of sparsity and compressibility are at the core of compressive sensing.

Definition 2.1.1. A vector x ∈ CN is called s - sparse if it has at most s nonzero entries, i.e., if

‖x‖0 := card({j : xj 6= 0, j = 1 · · · , N}) ≤ s

In applications, sparsity can be a hard constraint to impose, therefore we encounter vectors that

are not exactly s - sparse but compressible in the sense that they are well approximated by sparse

ones. Informally, a vector x ∈ CN is compressible if the error of its best s-term approximation

σs(x)p decays quickly in s.
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Definition 2.1.2. The lp-error of best s-term approximation to a vector x ∈ CN is defined by

σs(x)p := inf{‖x− z‖p, z ∈ CN is s-sparse} where p > 0

Note that sparsity is a highly nonlinear model: given a pair of s-sparse signals, a linear combi-

nation of two signals will in general no longer be s-spare. Sparsity is only a model and may not

be the best fit for all applications, therefore extensions of sparsity are: block sparsity [19], join

sparsity [18] and tree sparsity [20].

2.2 Design Sensing Matrices

Compressive sensing is not fitted for arbitrary matrices. It is still an open problem to construct ex-

plicit matrices which are provably optimal, but a breakthrough is achieved by resorting to random

matrices. Examples of random matrices are Gaussian matrices whose columns consist of inde-

pendent random variables following a standard normal distribution and Bernoulli matrices whose

columns are independent random variables taking the values +1 and −1 with equal probability.

We now list a number of desirable conditions that a sensing matrix A should have to guaranty

recovery of sparse vectors.

Definition 2.2.1. A matrix A ∈ Km×N (where K is R or C) is said to satisfy the null space property

relative to a set S ⊂ [N ] if

‖vS‖1 < ‖vS‖1 for all v ∈ KerA− {0}

where vS is the restriction of v on the indices in S. A matrix A ∈ Km×N is said to satisfy the null

space property of order s if it satisfies the null space property relative to any set S ⊂ [N ] with

card(S) ≤ s.

Slightly strengthened versions of the null space property are needed to reconstruct scheme with

respect to sparsity defect (stable null space property) or a scheme affected by error (robust null

space property).
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Definition 2.2.2. A matrix A ∈ Cm×N is said to satisfy the stable null space property with constant

0 < ρ < 1 relative to a set S ⊂ [N ] if

‖vS‖1 ≤ ρ‖vS‖1 for all v ∈ KerA

A matrix A ∈ Cm×N is said to satisfy the stable null property of order s with constant 0 < ρ < 1

if it satisfies the stable null space property with constant 0 < ρ < 1 relative to any set S ⊂ [N ]

with card(S) ≤ s.

Definition 2.2.3. The matrix A ∈ Cm×N is said to satisfy the robust null space property (with

respect to ‖ · ‖) with constants 0 < ρ < 1 and τ > 0 relative to a set S ⊂ [N ] if

‖vS‖1 ≤ ρ‖vS‖1 + τ‖Av‖ for all v ∈ CN .

A It is said to satisfy the robust null space property of order s with constants 0 < ρ < 1 and τ > 0

if it satisfies the robust null space property with constants ρ, τ relative to any set S ⊂ [N ] with

card(S) ≤ s.

It has been proved in [6] (Chapter 4) that null space property, stable null space property and

robust null space property are necessary and sufficient conditions for extract recovery of sparse

vectors via basis pursuit program (P1).

Since the null space property is not easily verifiable by direct computation, coherence is a much

simple concept and preferable to use to assess the quality of a measure matrix [16]. In general, the

smaller the coherence, the better the performance of sparse recovery algorithms.

Definition 2.2.4. Let A ∈ Cm×N be a matrix with l2 normalized columns a1, · · · , aN , i.e., ‖ai‖2 =

1 for all i ∈ [N ]. The coherence µ = µ(A) of the matrix A is defined as

µ := max
1≤i 6=j≤N

|〈ai, aj〉|

A general concept of l1 - coherence function is defined, which incorporates the usual coherence

as the particular value s = 1 of its argument.
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Definition 2.2.5. Let A ∈ Cm×N be a matrix with l2 - normalized columns a1, · · · , aN . The l1 -

coherence function µ1 of the matrix A is defined for s ∈ [N − 1] by

µ1(s) := max
i∈[N ]

max
{∑
j∈S

|〈ai, aj〉|, S ⊂ [N ], card(S) = s, i /∈ S
}

Remark 2.2.6. Note that coherence and the l1 - coherence function are invariant under multiplica-

tion on the left by unitary matrix U i.e columns of UA are l2 - normalized vectors Ua1, · · · ,UaN

and 〈Uai,Uaj〉 = 〈ai, aj〉. Also using the Cauchy-Schwarz inequality |〈ai, aj〉| ≤ ‖ai‖2 · ‖aj‖2

it is clear that the coherence matrix is bounded from above, µ ≤ 1.

What about lower bounds for the coherence and l1 - coherence function of a matrix A ∈ Cm×N

with m < N? What are examples of matrices with an almost minimal coherence? A matrix which

achieves the coherence lower bound is called equiangular tight frame and the coherence lower

bound is known as the Welch bound.

Definition 2.2.7. A system of l2 - normalized vectors (a1, · · · , aN) in Km is called equiangular if

there is a constant c ≥ 0 such that

|〈ai, aj〉| = c for all i, j ∈ [N ], i 6= j

Definition 2.2.8. A system of vectors (a1, · · · , aN) in Km is called a tight frame if there exists a

constant λ > 0 such that one of the following equivalent conditions holds:

(a) ‖x‖2
2 = λ

N∑
j=1

|〈x, aj〉|2 for all x ∈ Km

(b) x = λ
N∑
j=1

〈x, aj〉aj for all x ∈ Km

(c) AA∗ = 1
λ
Idm where A is the matrix with columns a1, · · · , aN .

It is now possible to prove [6] that coherence of a matrix is always in the range µ(A) ∈[√
N−m
m(N−1)

, 1
]

Theorem 2.2.9. The coherence of a matrix A ∈ Km×N with l2 - normalized columns satisfies

µ ≥

√
N −m
m(N − 1)

(2.1)
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Equality holds if and only if the columns a1, · · · , aN of the matrix A form an equiangular tight

frame.

The Welch bound can be extended to the l1 - coherence function for small values of its argument.

Theorem 2.2.10. The l1 - coherence function of a matrix A ∈ Km×N with l2 normalized columns

satisfies

µ1(s) ≥ s

√
N −m
m(N − 1)

whenever s <
√
N − 1 (2.2)

Equality holds if and only if the columns a1, · · · , aN of the matrix A form an equiangular tight

frame.

Remark 2.2.11. Note that when N � m the lower bound is approximately µ(A) ≥ 1/
√
m.

We claimed that the performance of sparse recovery algorithms is enhanced by a small coher-

ence. The next Theorem [6] guarantees the exact recovery of every s-sparse vector via basis pursuit

when the measurement matrix has a coherence µ < 1/(2s− 1).

Theorem 2.2.12. Let A ∈ Cm×N be a matrix with l2-normalized columns. If

µ1(s) + µ1(s− 1) < 1,

then every s-sparse vector x ∈ CN is exactly recovered from the measurement vector y = Ax via

basis pursuit.

Even though null space property is both necessary and sufficient condition to guarantee recovery

of sparse vectors, when the measurements are contaminated with noise it will be useful to consider

somewhat stronger conditions. Also, the lower bound on the coherence in Theorem 2.2.10 limits

recovery algorithms to rather small sparsity levels. To overcome these limitations, in [17], Candès

and Tao introduced the Restricted Isometry Property (RIP) on matrices A, also known as the

uniform uncertainty principle, and established its important role in compressed sensing.

Definition 2.2.13. The s−th restricted isometry constant δs = δs(A) of a matrix A ∈ Cm×N is a

positive real number δ ≥ 0 such that

(1− δ)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δ)‖x‖2
2 (2.3)
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for all s-sparse vectors x ∈ CN . We say that A satisfies the restricted isometry property if δs is

small for reasonably large s.

Just like for coherence, small restricted isometry constants are desired. In case N ≥ Cm it

has been proven in [6] that the restricted isometry constant must satisfy δs ≥ c
√
s/m, which is

reminiscent of the Welch bound µ ≥ c′/
√
m, for s = 2.

The success of sparse recovery via basis pursuit for measurement matrices with small restricted

isometry constants is guaranteed by the condition δ2s < 1/3. Weakening this condition to δ2s <

0.6246 is actually sufficient to guarantee stable and robust recovery of all s-sparse vectors via

l1-minimization.

Theorem 2.2.14. Suppose that the 2s−th restricted isometry constant of the matrix A ∈ Cm×N

satisfies

δ2s <
1

3
.

Then every s-sparse vector x ∈ Cm×N is the unique solution of

min
z∈CN

‖z‖1 subject to Az = Ax.

Theorem 2.2.15. Suppose that the 2s−th restricted isometry constant of the matrix A ∈ Cm×N

satisfies

δ2s <
4√
41
' 0.6246.

Then, for any x ∈ CN and y ∈ Cm with ‖Ax− y‖2 ≤ η, a solution x# of

min
x∈CN

‖z‖ subject to ‖Az− y‖2 ≤ η

approximates the vector x with errors

‖x− x#‖1 ≤ Cσs(x)1 +D
√
sη,

‖x− x#‖2 ≤
C√
s
σs(x)1 +Dη,

where the constants C,D > 0 depend only on σ2s.

8



2.3 Measurements bounds

Research in CS has also focused on reducing the number of measurements m (as a function of

N and s). We can now consider how many measurements m are necessary to achieve the RIP.

Ignoring the impact of δ2s and taking in consideration only the dimensions of the problem (N , m,

and s) led to a simple lower bound for m [7].

Theorem 2.3.1. Let A be an m ×N matrix that satisfies the RIP of order 2s with constant δ2s ∈(
0, 1

2

]
. Then

m ≥ Cs log
(N
s

)
,

where C = 1/2 log(
√

24 + 1) ' 0.28.

2.4 Sensing matrix constructions

Now that we have defined the relevant properties of a matrix A in the context of CS, we turn

to the question of how to construct matrices that satisfy these properties. We have already seen

that, in general, an equiangular tight frame achieves the coherence lower bound [21]. Similarly,

there are known matrices of size m ×m2 that achieve Welch bound (the coherence lower bound)

µ(A) = 1/
√
m, such as the Gabor frame generated from the Alltop sequence [22]. It was proved

that is possible to deterministically construct matrices of size m×N that satisfy the RIP of order

s, but in real world settings these constructions would lead to an unacceptably large requirement

on m [23][24]. Fortunately, these limitations can be overcome by randomizing the matrix con-

struction. Random matrices will satisfy the RIP with high probability if the entries are chosen

according to a Gaussian, Bernoulli, or more generally any sub-Gaussian distribution [6]. The-

orem 5.65 in [7] states that if a matrix A is chosen according to a sub-Gaussian distribution

with m = O(s log (N/s)/δ2
2s) then A will satisfy the RIP of order 2s with probability at least

1 − 2exp(−c1δ2s
2m). The most significant benefits of using random matrices is met in practice

where we are often more interested in recovering sparse signals with respect to some basis Φ, thus

we require the product AΦ to satisfy the RIP. When A is chosen randomly we do not have to

explicitly take Φ into account.
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As noted earlier, CS sparse recovery of vectors has so far been predominantly treated in discrete

settings in some finite-dimensional space (usually RN or CN ) whose nonzero entries with respect

to a particular basis are few in comparison to N . Although the standard CS framework assumes

that x is a finite-length vector with a discrete-valued index (such as time or space), in practice

we will often be interested in designing measurement systems for acquiring continuously indexed

signals such as continuous-time signals or images. It is sometimes possible to extend this model

to continuously indexed signals using an intermediate discrete representation.

Most real world signals are analog, or continuous time, and thus are modeled more precisely

in infinite dimensional function spaces. Any finite dimensional model may not be suited to such

problems. For example, much of finite compressing sensing theory revolves around Gaussian and

other random matrices, which have immense value. However, in real applications we do not always

have the option to choose A as we want. Instead, physical properties of the sensing process, as

well as constraints to its practical implementability determine the sensing matrix. Thus, the typical

sensing matrix is neither Gaussian nor Bernoulli, but rather a matrix with a very specific structure.

Also, the standard sparsity has to be extended to include a much richer class of signals and to

encode broader data models, including continuous time signals.

Although this issue has been quite widely recognized [7][8][10], few attempts were made so far

to extend the existing finite compressing sensing theory to infinite dimensional models. Admirable

progress has been done on how to derive compressive sensing theory for a variety of structured

sensing matrices that arise in applications [9]. Extending CS to infinite-dimensional spaces is

necessary in order to properly apply it in an analog setting [33], or to explore connections with

the sampling of signals with finite rate of innovation (signals that have a finite number of degrees

of freedom per unit of time) [34]. CS in infinite-dimensional spaces is also needed in machine

learning for the development of efficient methods to compute information in a concise way, to feed

learning algorithms that work on densities, to extract features or to uncover underlying structures

[35][36].

In the next two chapters we discuss two theories of compressed sensing in high-dimensional

(or infinite-dimensional) spaces from a few linear measurements. Chapter 3 presents a frame-

10



work based on a discretization procedure using a ”Low-Dimensional Model” [31], and Chapter

4 presents a general theory of compressed sensing for analog signals, formulated as an infinite

dimensional optimization problem [32].
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Chapter 3

Compressed Sensing in Hilbert Spaces

A general view of signal recovery problems in classical finite or infinite-dimensional spaces is to

consider observations y modeled as

y = Ax + e (3.1)

where x ∈ H,y ∈ F andH,F are Hilbert spaces of finite or infinite dimensions, A is a linear map

which models a finite number of measurements m and ε is a noise such that ‖e‖F is bounded. If no

further prior information on the signal is available, recovering x from y is generally not possible.

To overcome of the ill-posed nature of such problems the authors in [31] use a ”low complexity”

hypothesis on x (either x belongs to a ”low-dimensional model set” Σ or can be described by

few parameters). The objective is to address the following question: given a model set Σ and a

regularizer f , what RIP condition on A is sufficient to ensure that solving the optimization problem

x∗ ∈ argminz∈Hf(z)s.t.‖Az− (Ax + e)‖F ≤ ε (3.2)

yields an optimal decoder? An instance-optimal decoder provide exact recovery of vectors in

x ∈ Σ in the noisless setting, but also stable and robust when noise or error are present.

3.1 Restricted Isometry Property (RIP)

We have seen that in classical CS many efficient instance-optimal algorithms relies on properties

of the sensing matrix such as the restricted isometry property. One can extend the notion of RIP of

a linear operator A on a model set Σ−Σ := {x− x
′
: x,x

′ ∈ Σ} which is called secant set of Σ.

Definition 3.1.1. (RIP) The linear operator A : H → F satisfies the RIP on the secant set Σ− Σ

with constant δ if for all x ∈ Σ− Σ,

(1− δ)‖x‖2
H ≤ ‖Ax‖2

F ≤ (1 + δ)‖x‖2
H

12



where ‖ · ‖F and ‖ · ‖H are Euclidean norms of F andH.

3.2 Low-dimensional models

Given a set Σ ⊂ H the normalized secant set of Σ is defined as

S = S(Σ) :=
{
z =

y

‖y‖H
: y ∈ (Σ− Σ)− {0}

}
Intrisic dimension of S is measured using the upper box-counting dimension which is linked to the

notion of covering number. A comprehensive list of definitions of dimensions is presented in [38].

Remark 3.2.1. There are examples of sets for which no linear embedding to a finite dimensional

space is possible even though their dimension is finite, therefore it is not possible to construct a

linear map which satisfies the RIP.

Definition 3.2.2. (Covering number). Let α > 0 and S ⊂ H. The covering number N(S, α) of S

is the minimum number of closed balls (with respect to the norm ‖ · ‖H) of radius α, with centers

in S, needed to cover S.

Definition 3.2.3. (Upper box-counting dimension). The upper box-counting dimension of S is

boxdim(S) := lim sup
α→0

log[N(S, α)]/ log[1/α].

A model Σ is low-dimensional if boxdim(S(Σ)) is small compared to the ambient dimension of

the Hilbert spaceH (which may be infinite).

Already known dimensions [6]: for k-sparse vectors, boxdim(S(Σ)) = k and for n×nmatrices

of rank lower than r, boxdim(S(Σ)) = rn.

3.3 Dimension reduction with random linear operators

Now that the notion of dimension of a model Σ and the RIP property of operator A has been

defined, based on work in [38] the authors in [31] present a generic construction of a dimension-

reducing linear operator A : H → Rm that satisfies the RIP on Σ− Σ. Intuitively, the operator A
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is built in two steps: first project the signal in Σ onto a subspace H ⊂ H of finite (but potentially

large) dimension space then reduce the dimension by a multiplication with a random matrix (see

Table 1).

Table 1 Strategy for Dimension Reduction.

Low Dimension Finite Dimension Low Dimension

Σ ⊂ H Projection→ Linear Space H ⊂ H Reduction→ Linear Space = Rm

boxdim(S(Σ)) <∞ dim(H) = d <∞ m� d

Projection on a Finite-Dimensional Subspace Step

Given S ⊂ H such that boxdim(S) <∞ and 0 < α < 1, there always exists a finite-dimensional

subspace H ⊂ H that approximates all vectors in S with precision α i.e.

(1− α)‖x‖H ≤ ‖PHx‖H ≤ ‖x‖H

for all x ∈ Σ− Σ where PH denotes the orthogonal projection onto H [38].

In general H can be construct as following. First construct an α - cover of the normalized

secant set S. Let Cα be the set of center of balls used to cover S. It is now sufficient to take

Hα ⊂ H be the finite-dimensional linear subspace of H spanned by Cα and let PHα : H → H be

the orthogonal projection onto Hα [38].

Dimension Reduction Step

The goal now is to reduce down the dimension of subspace H to O(boxdim(S)) by using random

matrices. Denote by d the dimension of H and let (e1, · · · , ed) be an arbitrary orthonormal basis

of H . Identify the projection onto H with the linear operator PH : H → Rd that returns the

coordinates of the orthogonal projection onto H in the basis (e1, · · · , ed). Next compose PH with

a random matrix M ∈ Rm×d to build A : H → Rm such that A = MPH and A satisfies

RIP property and m ' O(boxdim(S)). In order to exhibit operator A satisfying RIP property

with constant δ it will be enough to build a random M : Rd → Rm satisfying a RIP with small

constant δ′ . The approach to constructM described in [39] is to independent draw ofm identically
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distributed random vectors ai ∈ H so that for x ∈ H,Mx := (〈ai,x〉)mi=1). A convenient way to

prove that M satisfy RIP is to choose its probability distribution [6] so that for any vector x ∈ H,

EM‖Mx‖2
2 = x‖2

H and require M to satisfy two concentration inequalities below.

There exists two constants c1, c2 ∈ (0, ∞] such that for any fixed y, z ∈ S(Σ) ∪ {0},

PM{|hM(y)− hM(z)| ≥ λ‖y − z‖H} ≤ 2e−c1mλ
2

for 0 ≤ λ ≤ c2/c1 (3.3)

PM{|hM(y)− hM(z)| ≥ λ‖y − z‖H} ≤ 2e−c2mλ, for λ ≥ c2/c1 (3.4)

where

hM : H → R

x 7→ ‖Mx‖2
2 − ‖x‖2

H.

Assuming that the random operator M satisfies above concentration inequality and the set S has

finite box-counting dimension, the next theorem states that reducing the dimension of vectors in Σ

is possible and a number of measurements m of the order of the dimension of the secant set S is

sufficient to be able to recover elements of Σ, from the ambient spaceH:

Theorem 3.3.1. Let M : H → Rm be a random linear map that satisfies (3.3) and (3.4). Assume

that boxdim (S) < s ( there exists 0 < αS <
1

2
such that N(S, α) ≤ α−s for all 0 < α < αS).

Then for any ξ, δ0 ∈ (0, 1) , M satisfies the RIP on Σ− Σ it with constant δ ≤ δ0 with probability

at least 1− ξ provided that

m ≥ 1

δ2
0

C

min(c1, c2)
max

{
s log

( 1

αS

)
, log

(6

ξ

)}
, (3.5)

where C > 0 is an absolute constant (independent on the dimension parameters).

3.4 Recovery of Low-Dimensional Models - Unions of Subspaces

Since the linear operators A built in the previous section preserve low complexity models Σ, we

turn to the study of the reconstruction of vectors from Σ using general decoders, with an emphasis

on a particular class of convex functions: “atomic norms” [39]. Considering a set A ⊂ H, called

the set of atoms, the corresponding atomic “norm” is built using the convex hull of A.
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Definition 3.4.1. The convex hull of a set A is:

conv(A) :=
{
x =

∑
ciai : ai ∈ A, ci ∈ R+,

∑
ci = 1

}
(3.6)

Definition 3.4.2. The atomic norm induced by the set A is defined as:

‖x‖A := inf{t ∈ R+ : x ∈ t · conv(A)} (3.7)

where conv(A) is the closure of conv (A) inH.

This function ‖x‖A is a convex gauge but is not always a norm. This norm is finite only on the

set E(A) := R+ · conv(A) = {x = t · y, t ∈ R+, y ∈ conv(A)} ⊂ H. It can be extended to H

by setting ‖x‖A := +∞ if x 6∈ E(A).

As a running example, a classical refinement of the notion of sparsity called structured sparsity

in levels is considered. For model Σ = Σ1 · · ·ΣJ associated to structured sparsity in levels a

similar class of atomic norms called the group norms in levels is defined.

Structured sparsity in levels

Structured sparsity also called group sparsity is the assumption that signals are not only sparse but

also supported on a few groups of significant coefficients in a transformed domain [40][41][42].

Medical imaging (MRI) and simultaneous signal and noise sparse modeling are two examples were

this model is useful [41]. Formally, consider (ei)i∈N an orthonormal basis of Hilbert spaceH, G a

finite collection of non-overlapping finite groups of indexes i.e.

G := {g ⊂ N | |g| <∞, g ∩ g′ = ∅ whenever g 6= g
′}

The restriction of a vector x ∈ H to a group g is

xg :=
∑
i∈g

〈x, ei〉ei

A group support is a subset T ⊂ G and the restriction of x to a group support is

xT :=
∑
g∈T

xg
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The group support of x ∈ H denoted gsupp(x) is the smallest T ⊂ G such that xT = x and the

size of the group support of x denoted |gsupp(x)| is the cardinality of gsupp(x). Given an integer

k, the k-group-sparse model is defined as

Σk := {x ∈ H, |gsupp(x)| ≤ k} (3.8)

Let d be the size of the biggest group. We have the following covering of S(Σk) :

N(S(Σk), α) ≤
( c
α

)dk
where C is a constant depending on d. (3.9)

Let Hj ⊂ H, j ∈ J be a collection or orthogonal spaces each equipped with a kj-group sparse

model Σj as defined in (3.8) each with its Hilbert basis and its setGj of groups. Then the structured

sparsity in levels is associated to the model

Σ :=
{
x ∈ H,x =

J∑
j=1

xj, xj ∈ Σkj

}
, (3.10)

i.e

Σ = Σk1 × Σk2 × · · · × Σkj ,

and

N(S, α) ≤ N(S(Σk1 , α)) · . . . ·N(S(Σkj , α)) ≤
(C1

α

)d1k1

· . . . ·
(Cj
α

)djkj
(3.11)

where Cj are constants that are of the order of the dimension of each level times the maximum

size of groups dj in level j.

Atomic norms for group norms in levels

GivenHj associated to the j-th level, let Sj(1) ⊂ Hj its unit sphere, Gj its set of groups, and Σ1,j

the associated 1-group sparse model, consider Aj := Σ1,j ∩ Sj(1) the collection of atoms of the

j-th level. The corresponding atomic norm is associated to the finite-dimensional space

E(Aj) = span({ej}i∈∪g∈Gj)
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and is defined as

‖x‖Aj =


∑

g∈G ‖xg‖H, x ∈ E(A) ;

+∞, x 6∈ E(A)
(3.12)

A natural regularizer for the structured sparsity in levels model is defined as follows in H1× . . .

×HJ :

fw : (xl, · · ·xJ) 7→ w1‖x1‖A1 + . . .+ wJ‖xJ‖AJ where wj > 0 (3.13)

Atomic norm associated to a union of subspace models

Given any union of subspaces Σ ⊂ H, the norm associated to its normalized atoms A(Σ) :=

Σ ∩ S(1) is defied as

‖ · ‖Σ := ‖ · ‖Σ∩S(1) (3.14)

and is sometimes useful as a regularizer to perform recovery (i.e. by choosing f(z) = ‖z‖Σ in

minimization (3.2)).

3.4.1 Exact recovery of unions of subspaces

Exact recovery of unions of subspaces [45] states that the stability of any decoder of the form (3.2)

is guaranteed if A satisfies a RIP on set Σ − Σ with a constant δ < δΣ(f) holds, where δΣ(f)

is a constant that depends only on the regularizer f and the model set Σ (See Appendix A). This

recovery is a generalization of the sharp RIP result by Cai and Zhang [44], whose RIP theorem

states that δ <
√

1/2 on Σ− Σ implies stable recovery of sparse vectors with the l1-norm, and of

low rank matrices with the nuclear norm.

3.4.2 Stable recovery of unions of subspaces

A stable recovery formulation for minimization (3.2) is also established in [45] which is stated

below.

Theorem 3.4.3. Assume that Σ is a union of subspaces. Then, for any continuous linear operator

A on H that satisfies the RIP on the secant set Σ − Σ with constant δ < δΣ(f) we have: for all
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x ∈ Σ, e ∈ F such that ‖e‖F ≤ ε, with x∗ the result of minimization (3.2),

‖x∗ − x‖H ≤ CΣ(f, δ) · (‖e‖F + ε), (3.15)

where CΣδ < +∞.

The constant CΣδ < +∞ is explicit in most classical examples [45].

3.4.3 Robust recovery of unions of subspaces

Regarding robustness to modeling error, it is more convenient to use a norm independent of the

measurement operator A. This norm was introduced in [46] as an intermediate tool to measure the

distance from a vector x to the model set Σ. Given a constant C, the A-norm is defined by

‖ · ‖A,C := C · ‖A · ‖F + ‖ · ‖H

(here the A refers to the measurement operator, not to be confused with the atomic norm). Follow-

ing robustness result has been proved by authors in [32] using symmetrized distance with respect

to a regularizer f

df (x,Σ) = inf
x̃∈Σ

f(x− x̃)− f(x̃− x)

2
.

Theorem 3.4.4. Let Σ be union of subspaces. Let f be positively homogeneous, non-negative and

convex with f(x) < +∞ for x ∈ Σ. Consider a continuous linear operator A satisfying the RIP

on Σ − Σ with constant δ < δΣ(f), and a noise level ‖e‖F ≤ ε. Denote CΣ the constant from

Theorem 3.4.3, and assume that for all u ∈ H, ‖u‖A,CΣ
≤ Cf,A,Σ · f(u) for some Cf,A,Σ < ∞.

Then, for all x ∈ H, e ∈ F , such that ‖e‖H ≤ η ≤ ε, any minimizer x∗ of (3.2) satisfies

‖x∗ − x‖H ≤ CΣ · (‖e‖F + ε) + 2Cf,A,Σ · df (x, Σ) (3.16)
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Chapter 4

Compressed Sensing for Analog Signals

In contrary to framework presented in Chapter 3, which adopted a discretization procedure using

a low dimensional model, in this chapter the approach of infinite compressed sensing framework

presented in [32] analyze an infinite dimensional optimization problem directly. Authors aimed for

a true analog setting where the following requirements can be identified: the mathematical model

consists of reproducing kernel Hilbert spaces, the index set of general measurements is equipped

with a more general metric structure, robust and stable recovery does not impose discretization, and

analog sparsity is not linked to a specific discrete set but rather it allows for sparse representations

within an uncountably infinite dictionary.

The main idea of this framework is to model signals in reproducing kernel Hilbert spaces as

ambient space with the kernel functions being the elements of the representation system. Sparsity

of a signal is defined as the minimal number of terms in the kernel functions expansions. Recov-

ery based on total-variation minimization problem (TV -minimization problem - an extension of

classical atomic measures) is robust (signal is only approximately sparse) and stable (measurement

is corrupted by noise). Two applications of this theory presented in [32] are: recovery of sparse

bandlimited functions and functions that have a sparse short-time Fourier transform.

4.1 Reproducing Kernel Hilbert Spaces

Definition 4.1.1. (Reproducing kernel) LetH be a Hilbert space of R valued functions defined on

a non-empty set X . A function K : X × X → R (Kx) is called a reproducing kernel of H if it

satisfies

• ∀x ∈ X,K(·, x) ∈ H
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• ∀x ∈ X, ∀f ∈ H, 〈f,K(·, x)〉H = f(x) (the reproducing property)

In particular, for any x, y ∈ X , K(x, y) = 〈K(·, x), K(·, y)〉H

Definition 4.1.2. A Hilber space H is called Reproducing Kernel Hilbert Space (RKHS) if H has

a reproducing kernel. We say that H has a unit-norm reproducing kernel, if K(x, x) = 1 for all

x ∈ X .

Remark 4.1.3. :

• The inner product of H induces the usual norm and the topology with respect to which H is

complete.

• SinceKx produce the point evaluation of any f ∈ H at x via the inner product, it can be deduce

that the span of {Kx}x∈X is dense inH

• If kernel K is not unit-norm, it can be normalized

K̃(x, y) =
K(x, y)√

K(x, x)K(y, y)

and

ĩ : H → H̃, ĩf(x) =
√
K(x, x)f(x), x ∈ X

is a space isomorphism, where H̃ is a Hilbert space with unit-norm reproducing kernel K̃.

The weak greedy algorithm described in [48] provides a norm-convergent expansion for each f̃ ∈

H̃ in term of at most countable number of kernel function and implicit for each f ∈ H. It will be

convenient to allow also expansions of the form

K ∗ µ ≡
∫
X

kxdµ(x)

where µ is an element ofM(X), the space of regular complex Borel measures of bounded total

variation on a locally compact Hausdorff space X .
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4.2 Atomic Norms on Reproducing Kernel Hilbert Spaces

The atomic norm was introduced in [39] and possesses a number of favorable properties that are

useful for recovering models from limited linear measurements. An extended list of atomic norms

obtained by convexifying atomic sets that are of interest in various applications are presented in

[39].

Consider all finite disjoint collections {Ei}ni=1 of Borel measurable subset of X such that X =
n⋃
i=1

Ei, then the spaceM(X) is equipped with the total-variation norm

‖µ‖TV ≡ |µ|(X) = sup
n∑
i=1

|µ(Ei)|

By the Riesz-Markov-Kakutani theorem, the space of continuous functions vanishing at infinity

C0(X) is the dual of the normed spaceM(X).

Definition 4.2.1. Let X be a locally compact Hausdorff space and M(X) the space of regular

complex Borel measures with bounded total variation. Let H be a separate reproducing kernel

Hilbert space of Borel measurable functions on X with a unit-norm reproducing kernel K. The

atomic norm ofH associates with each f ∈ H the value

‖f‖A = inf{‖µ‖TV : µ ∈M(X), K ∗ µ = f} (P)

Original atomic norm (3.7) from [39] has a more geometric nature but does not appear to be

discussed in the context of Hilbert spaces with reproducing kernel. Although this norm [39] and

atomic norm (P) are to an extend equivalent [32] and its dual is more commonly known and used.

Proposition 4.2.2. Given f ∈ H, then the dual of the atomic norm is

‖f‖∗A = sup
x∈X
|f(x)| = ‖f‖∞.

4.3 Sparse Recovery by Atomic Norm Minimization

Definition 4.3.1. A function f ∈ H is called s-sparse if there exist sequences {cn}sn=1 in Cs and

{xn}sn=1 in Xs such that f =
s∑

n=1

cnKxn and for any other expansion f =
s
′∑

n=1

c
′
nKs′n

of f we have

s ≤ s
′ .
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To ensure that linear combination of s kernel functions gave an s-sparse function linear, depen-

dencies of the kernel functions need to be ruled out. The key notion to guarantee this property is

called s-HRT property and is made precise by the following definition [32]. Also s-HRT property

leads to the required injectivity of the map between complex measure with support of size at most

s and the corresponding expansion in terms of kernel functions.

Definition 4.3.2. A Hilbert space with reproducing kernel has the s-HRT property, if for any

set of s points {xn}sn=1 in X the corresponding kernel functions form a linearly independent set

{Kxn}sn=1.

Proposition 4.3.3. IfH has the 2s-HRT property, then any f ∈ H of the form f =
s∑

n=1

cnKxn with

c ∈ Cs and x ∈ Xs is s-sparse and the choice of c ∈ Cs and x ∈ Xs is uniquely determined by f .

The setting for sparse recovery by atomic norm is as following. Given a signal f ∈ H, assume

that f =
s∑

n=1

cnKxn for some coefficient vector c ∈ Cs. Let (〈f,Mi〉)i∈I be linear measurements

indexed by an at most countable set I and corresponding to a family of vectors (Mi)i∈I in H. The

standard assumption used is that (Mi)i∈I is a Bessel family with Bessel bound 1, or equivalently,

that the measurement map

M : H → H′(= l2(I)), (Mf)i = 〈f,Mi〉

has operator norm ‖M‖ = 1.

Before sparse recovery by atomic norm is stated, it is necessarily to ensure ‖c‖1 = ‖f‖A that is

the measure µ∗ =
s∑

n=1

cnδxn called atomic decomposition of f is a minimizer of the program (P).

Definition 4.3.4. LetX be a locally compact Hausdorff space andH be be a separable reproducing

kernel Hilbert space of Borel measurable functions on X with a unit-norm reproducing kernel K,

and f ∈ M with ‖f‖A <∞. A minimizer µ∗ of (P) is called an atomic decomposition of f (not

unique but always exist). Another notation used is Dµ∗ =
∫
X
Kxdµ∗(x).

The following program is proposed for recovering f from the measurement with (Mi)i∈I

min ‖g‖A subject to 〈f,Mi〉 = 〈g,Mi〉, i ∈ I (PA)
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Theorem 4.3.5. Let f ∈ H be given by the linear combination f =
s∑

n=1

cnKxn with c ∈ Cs and

x ∈ Xs. Assume that the closed linear span of the measurement vectors span{Mi, i ∈ I} = H′

contains a continuous function ψ ∈ H ∩ C0(X) with the properties

(i) ‖ψ‖∞ = 1

(ii) ψ(xj) = cj/|cj|, j = 1, · · · ,m

(iii) |ψ(x)| < 1 for x /∈ {xj, j = 1, · · ·m}

and additionally that (Kxn)mn=1 is linearly independent. Then f is the unique solution of the pro-

gram (PA) and µ0 =
s∑

n=1

cnδxn is an atomic decomposition of f .

4.4 Stability and Robustness Recovery by Atomic Norm Minimization

Recovery based on minimizing the atomic norm can be achieved even if the model assumption of

sparsity is only approximately (stability). Also it provides controllable accuracy for recovery when

the measurement is corrupted by noise (robustness).

Let M : H → H′ be the measurement operator onH associated with the Bessel family (Mi)i∈I

as described above. Given contaminated measurements b = Mf + n, of an element f ∈ H with

an approximately sparse atomic decomposition

f =
s∑

n=1

cnKxn +K ∗ µc

in (Kx)x∈X and µc is arbitrary small inM(X), we wish to find conditions under which the follow-

ing problem approximately recovers f :

min ‖g‖A subject to ‖Mg − b‖ ≤ ε (PεA)

At first glance, it might be tempting to generalize l1-minimization program

min ‖x‖1 subject to ‖Mx− b‖2 < ε

by replacing the l1-norm with the total variation norm where the minimization is over µ whose

support is of size s. It is not possible to prove a statement like this in this setting. If x → Kx is
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continuous then ‖MKx′ −MKx‖2 is small for x close to x′ . Hence, for some contamination n, a

multiple of Kx′ is a solution of (PεA) but ‖δx − δx′‖TV = 2 for all x 6= x
′ .

Inspired by analysis of the structure of the solution of the Beurling LASSO [48], given by

min
µ∈M(T)

1

2
‖Φµ− b‖2

2 + λ‖µ‖TV

where Φ : M(T) → L2([0, 2π]) being a smooth convolution operator and T is the torus, similar

results were proved for (PεA). Intuitively, in the (PεA) context it states that for signals having an

atomic decomposition with small, finite support, most of the mass of the atomic decompositions

of the minimizer of (PεA) will be concentrated in a set close to the support of an atomic measure.

To make the notion of concentration quantitative, the following set of interpolating measurements

Θx,ω,λ,δ are defined as following. For a sequence (xi)i∈N in metric space X and δ > 0 define

Sδ =
⋃
i∈N

Uδ(xi) where Uδ(x) is the open ball of radius δ centered at x. For a sequence (ωj)j∈N in a

reproducing kernel Hilbert space H, and M : H → H′ a contraction to another Hilbert space and

λ, δ > 0 then:

Θx,ω,λ,δ = {ν ∈ H′ : M∗ν ∈ H ∩ C0(X)

M∗ν(xj) = ωj, j ∈ N

‖M∗ν‖∞ ≤ 1

|M∗ν(x)| ≤ λ for x /∈ Sδ}

Theorem 4.4.1. Let X be a second countable locally compact metric space, H be a separable

reproducing kernel Hilbert space over X with unit-norm kernel K such that C0(X) ∩ H is dense

inH and M : H → H′ a contraction. Let f ∈ H have the form

f =
∑
i∈N

ciKxi +K ∗ µc

and let f∗ be a solution of the program given by

min‖g‖A subject to ‖b−Mg‖ ≤ ε Pε

with ‖b−Mf‖ ≤ ε. Further, define µ∗ through f∗ = Dµ∗, ‖f∗‖A = ‖µ∗‖TV and for δ, λ > 0 set

C(λ, δ) := sup
|ωj=1

inf{‖ν‖ : ν ∈ θx,ω,λ,δ}
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Then we have

|µ∗|(Sδ) ≥ ‖f‖A −
2C(λ, δ)ε+ ‖µc‖TV

1− λ
. (4.1)

Theorem 4.4.2. Let X be a second countable locally compact metric space, H be a separable

reproducing kernel Hilbert space over X with unit-norm kernel K such that C0(X) ∩ H is dense

inH. Assume that the map X → H, x 7→ Kx is continuous. Let

f =
s∑
i=1

ciKxi +K ∗ µc

and let (µn) ⊆ 4 (4 still denotes the set of finitely supported measures) be a minimizing sequence

of the program

inf
µ∈4
‖µ‖TV subject to ‖b−MK ∗ µ‖ ≤ ε, (P4)

with ‖b − Mf‖ ≤ ε. Then there exists a δ0 > 0 so that, for all δ ≤ δ0 satisfying the same

assumptions as in Theorem 4.4.1. and for all sufficiently large n, the following error bound holds:

‖Dµn−f‖ ≤ 2C(λ, δ)ε+(C(λ, δ)+l)
(
ε‖f‖A+‖µc‖TV +

2C(λ, δ)ε+ ‖µc‖TV
1− λ

)
= Clε+C2‖µc‖TV
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Chapter 5

Extended Restricted Isometric Projections for Riemannian Manifolds

5.1 Background on Exterior Calculus in Euclidean Spaces

Definition 5.1.1. We denote by Λ(Rn) ≡ Λ0 ⊕ Λ1 ⊕ . . . ⊕ Λn the graded exterior algebra of Rn,

where each Λk, 0 ≤ k ≤ n, is spanned by homogeneous products of order k in differentials {dxj},

j = 1, 2, . . . , n.

Definition 5.1.2. The exterior differential d : Λ(Rn) → Λ(Rn) is defined by linearity and the

Leibniz property:

∀q = qi1i2...ikdx
i1 ∧ dxi2 ∧ . . . ∧ dxik ∈ Λk,

dq ∈ Λk+1, dq = d(qi1i2...ik) ∧ dxi1 ∧ dxi2 ∧ . . . ∧ dxik ,

along with the antisymmetry of the wedge product.

Remark 5.1.3. We note that Λ0 = C∞(Rn), and Λn+1 = ∅.

Corollary 5.1.4. If p ∈ Λk, q ∈ Λl, then

d(p ∧ q) = dp ∧ q + (−1)kp ∧ dq.

Theorem 5.1.5. The exterior derivative is a nilpotent operator, d2 = 0, so for any component of

the graded algebra, Λk:

Im(d|Λk) ⊂ Ker(d|Λk+1
),

and the quotient space Hk ≡ Ker(d|Λk)/Im(d|Λk−1
) is an Abelian group, the k−th de Rham

cohomology space.
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Proof. Let f ∈ Λ0, then df = ∂ifdx
i, and

d2f = d(∂if) ∧ dxi = ∂2
jifdx

j ∧ dxi = 0, (5.1)

since the matrix (∂jif) is symmetric and dxj ∧ dxi is antisymmetric, and we are computing the

trace of their product,

Tr(AS) = Tr(SA) = Tr(AtSt) = −Tr(AS)⇒ Tr(SA) = 0.

For the general case, let q ∈ Im(d|Λk), k ≥ 1, then there exists a k − 1 form p = pi1i2...ik−1
dxi1 ∧

. . . ∧ dxik−1 ∈ Λk−1 : q = dp, so

dq = d2p = (d2pi1i2...ik−1
) ∧ dxi1 ∧ . . . ∧ dxik−1 = 0

by remark 5.1.3.. Therefore, for any 1 ≤ k ≤ n, we have the vector subspaces inclusions

Im(d|Λk) ⊂ Ker(d|Λk+1
) ⊂ Λk+1

The quotient space Hk ≡ Ker(d|Λk)/Im(d|Λk−1
) defined by the equivalence relation p ∼ q ⇔

p− q ∈ Im(d|Λk−1
) and equipped with the addition

p̂+ q̂ = p̂+ q,

is a commutative group, by direct verification.

Example 1. Find the cohomology spaces of R2.

Solution. Since H0 = Ker(d|Λ0), it consists of functions f ∈ C∞(R2) such that df = 0, or

constants. Therefore, H0 ' R. To find H1, take q = q1dx
1 + q2dx

2 such that dq = 0, or

∂2q1 = ∂1q2. By Green’s formula,∮
γ

dp =

∫ ∫
(∂1q2 − ∂2q1)dx1dx2 = 0

for any closed curve γ ∈ R2, so there exists a function f ∈ Λ0 such that

f(x1, x2) =

∫
(1,1)→(x1,x2)

q, df = q,

where the integration is taken over any curve with endpoints (1, 1), (x1, x2). Therefore, q ∈

Im(d|Λ0), or H1 ' {0}.
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Example 2. Find the cohomology spaces of R2 \ {(0, 0)}.

Solution. H0 ' R by the same argument as in the previous problem. For H1, note that there are

two inequivalent ways of choosing a path (1, 1) → (x1, x2), namely circling either clockwise or

counterclockwise the origin (0, 0). Therefore, H1 ' {0, 1} ' Z2.

5.2 Induced Metric for Elementary Manifolds Embedded in Rn

Tensor spaces and tensor products

Definition 5.2.1. Let (V,+) be a vector space over the field K, dim(V ) = n, V ∗ its algebraic dual,

and ⊗ : Kn ×Kn → Kn×n a bilinear function, such that Range(⊗) is a vector subspace of Kn×n.

We call ⊗ a tensor product, and the spaces

T (p,q)(K) ≡ V ⊗
p ⊗ (V ∗)⊗

q

the (p, q)−tensor spaces over K, with the tensor product ⊗.

Example 3. The most natural example for the tensor product is the direct product,

ei ⊗ ej = eij, ∀ i, j = 1, 2, . . . , n,

and {ei}ni=1 a canonical basis for Kn, that is (ei)j = δij , while {eij}ni,j=1 is a canonical basis for

Kn×n, that is (eij)kl = δikδjl. Then for any two vectors

v =
n∑
i=1

viei, w =
n∑
j=1

wjej ⇒ v ⊗ w =
n∑
i=1

n∑
j=1

viwjeij.

Theorem 5.2.2. If ⊗ is a tensor product, then T (p,q)(K) is a vector space over K. If {ei}ni=1 is a

basis for V , and {fj}ni=1 is a basis for V ∗, then

B =
{
ei1 ⊗ ei2 ⊗ . . .⊗ eip ⊗ fj1 ⊗ fj2 ⊗ . . .⊗ fjq

}n
i1,i2,...,j1,j2,...=1

is a basis for T (p,q)(K).
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Theorem 5.2.3. If ⊗ is the direct tensor product over Rn, then the functions �,∧ defined as

v � w ≡ 1

2
(v ⊗ w + w ⊗ v) , v ∧ w ≡ 1

2
(v ⊗ w − w ⊗ v)

are also tensor products over Rn, called the symmetric and antisymmetric products, respectively.

The corresponding tensor product spaces are, respectively,

Rn � Rn ' Rn(n+1)/2, Rn ∧ Rn ' Rn(n−1)/2.

Also, there is the decomposition

Rn ⊗ Rn = (Rn � Rn)⊕ (Rn ∧ Rn)

Example 4. Let �,∧ be the symmetric, and antisymmetric products on Rn. Then for the vectors

v =
n∑
i=1

viei, w =
n∑
j=1

wjej,

we have

v � w =
n∑

i≤j=1

(viwj + wivj)ei � ej, v ∧ w =
n∑

1≤i<j

(viwj − wivj)ei ∧ ej.

Bilinear forms and inner products. Given the isomorphism between spaces V and V ∗, it is possible

to extend it to identify a subspace of L(V, V ∗) with the dual of T (2,0)(V ), or of T (0,2)(V ), or of

T (1,1)(V ). We use Einstein’s summation convention for repeated indices in the following.

Theorem 5.2.4. LetQ be an n×n symmetric, invertible matrix, Q̃ its inverse, and {ei}ni=1, {f j}nj=1

two bases for Rn. The function BQ : Rn → Rn defined by

BQ(v) = λ, v = xiei, λ = yjf
j,

where

yj = Qjix
i,

is a vector space isomorphism. Its inverse, B−1

Q̃
: Rn → Rn, is defined by

B−1

Q̃
(λ) = v, v = xiei, λ = yjf

j, xi = Q̃ikyk.

As V ' Rn ' V ∗, this induces an isomorphism BQ : V → V ∗.
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Example 5. If Q is the identity matrix, then yj = δjix
i is the canonical isomorphism V ' V ∗

(equivalent to vector transposition).

Corollary 5.2.5. Let S(V, V ∗) be the space of non-degenerate, symmetric bilinear functionals

q : V ⊗ V ∗ → R,

q( . , λ) ∈ V ∗, ∀λ ∈ V ∗, q(v, . ) ∈ V, ∀v ∈ V.

Then to every element of S(V, V ∗) there corresponds uniquely a non-degenerate, symmetric matrix

Q, and therefore an isomorphism BQ : V → V ∗.

The important consequence of these observations is identifying the basis changes in V, V ∗ which

leave an element of [T (2,0)(V )]∗ unchanged:

Theorem 5.2.6. Let M be a coordinate change for the space V , and q ∈ [T (2,0)(V )]∗ a non-

degenerate bilinear functional on V ,

q(v, w) = Qijx
iyj, v = xiei, w = yjej.

Then the coordinate change {xi} → {x̃k}, {yi} → {ỹl}, given by

X̃ = M ·X, Ỹ = M · Y,

leaves q unchanged iff.

MT ·Q ·M = Q.

Proof. Write

q(v, w) = XT ·Q · Y,

then we have the condition

X̃T · Q̃ · Ỹ = XT ·Q · Y,

or

XT ·MT · Q̃ ·M · Y = XT ·Q · Y.

Bilinearity and the condition Q̃ = Q now complete the proof.
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Definition 5.2.7. Let g : Rn → Gl(n,R), such that g(x) is a continuous function, and g(x) =

(gij(x)) is a strictly-positive definite element of the tensor space T (0,2)(Rn). Then g is called a

metric on Rn.

Remark 5.2.8. The fact that the function g takes its values into the tensor space T (0,2)(Rn) means

that it has the canonical basis representation

g(x) = gij(x)dxi � dxj,

where � denotes the symmetric tensor product, such that under any local change of coordinates

{xi} → {yj}, dyj = mj
idx

i, the tensor coordinates

gij → hlm, hij = m̃l
im̃

k
j glk,

where m̃ is the inverse transformation, m̃l
im

j
l = δji .

Example 6. The Euclidean norm is given by the choice gij(x) = δij . Under a global coordinate

transformationX → Y = M ·X (withM an invertible real matrix), the metric coefficients become

hij = (M−1)li(M
−1)kj δlk,

or equivalently the coefficients hij correspond to the symmetric square matrix M−1 · (M−1)t.

Definition 5.2.9. A set M is an elementary differentiable manifold embedded in Rn if it is the

range of a differentiable vector function with full-rank derivative defined on a (parametrization)

domain P ⊂ Rm of full measure, F : D ⊂ Rm → Rn,m < n, or component-wise

M = {(F j(t)), 1 ≤ j ≤ n, t ∈ P}, DtF = (∂iF
j)1≤j≤n

1≤i≤m, rank (DtF )t∈P = m.

The (manifold) dimension ofM is m.

Example 7. The upper half-circle is a manifold of dimension 1, embedded into R2 by the vector

function

F : (0, π)→ R2, F (θ) = (cos θ, sin θ).
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Example 8. The right hemisphere is a manifold of dimension 2, embedded into R3 by the vector

function

F : (0, π)× (0, π)→ R3, F (θ, φ) = (sin θ cosφ, sin θ sinφ, cos θ).

Definition 5.2.10. LetM be an elementary manifold of dimension m embedded into Rn by the

vector function F , with full-rank derivative DF given by the matrix-valued function (Dj
i )

1≤j≤n
1≤i≤m,

dF j = Dj
idt

i. If the embedding space has metric g(x) given by the matrix G ∈ Gl(n,R) of tensor

coefficients gij , then the induced metric onM is given by the (matrix of) coefficients

hij(t)dt
i � dtj, H = Dt ·G ·D ∈ Gl(m,R).

Theorem 5.2.11. The induced metric is well-defined, as under any coordinate change dti =

mi
jdu

j , the coefficient matrix changes as given by Remark (5.2.8).

Example 9. The induced metric on a circular arc embedded into R2 with canonical Euclidean

metric δijdxi � dxj is given by the tensor-valued function

g(θ) = dθ � dθ.

Example 10. The induced metric on the hemisphere embedded into R3 with canonical Euclidean

metric δijdxi � dxj is given by the tensor-valued function

g(θ, φ) = dθ � dθ + sin2(θ)dφ� dφ.

Example 11. Compute the arclength of the curve of endpoints (θ, φ1), (θ, φ2), given by the

parametrization (θ(t), φ(t)) = (θ, φ1 + (φ2 − φ1)t), t ∈ [0, 1].

Solution. The arclength of the curve given is

` =

∫ 1

0

√(
dθ

dt

)2

+ sin2 θ

(
dφ

dt

)2

dt =

∫ φ2

φ1

sin(θ)dφ = sin(θ)(φ2 − φ1).

Remark 5.2.12. Arclength is independent of the parametrization used (under differomorphic

reparametrization). Therefore, it would have been equally valid to choose the parametrization

given by the coordinate φ.
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5.3 Differentiable Varieties as Generalized Elementary Manifolds

Recall that an elementary manifold can be understood as the image of an injective differentiable

function, embedded in Euclidean space, ~F (D) ⊂ Rn, D ⊂ Rm. The inverse function ~F−1 is

well defined on ~F (D), and serves as a coordinate map for the points on the manifold. We now

generalize this construction by requiring the existence of such maps only locally.

Definition 5.3.1. A setM is a differentiable variety of real dimensionm if for every point p ∈M,

there exist an open set p ∈ U ⊂M and a homeomorphism fU : U → Rm (called local coordinate

chart), such that if Ui, Uj, Uk are three such sets and fi, fj, fk their respective charts, then the

transition function

ϕij ≡ fi ◦ f−1
j : fj(Ui ∩ Uj)→ fi(Ui ∩ Uj)

is a diffeomorphism, and ϕij ◦ ϕjk = ϕik on Ui ∩ Uj ∩ Uk.

Example 12. For the circle S1, we can define local charts via stereographic projection from the

points N ≡ (0, 1) and S ≡ (0,−1). Let UN ≡ S1 \ {N}, US ≡ S1 \ {S}, and

fN(x, y) =
x

1− y
, fS(x, y) =

x

1 + y

It can checked by elementary geometry that these differentiable functions are indeed bijections,

and that

fN(UN) = fS(US) = R, fN(S) = fS(N) = 0,

and moreover fN(UN ∩ US) = fS(UN ∩ US) = R \ {0}, such that ∀t ∈ R \ {0},

f−1
N (t) =

(
2t

t2 + 1
,
t2 − 1

t2 + 1

)
, (fS ◦ f−1

N )(t) =
1

t
.

Since t→ 1/t is a diffeomorphism on R \ {0}, all the conditions are satisfied.

Definition 5.3.2. LetM,N be differentiable varieties, and F :M→N a bijective function. Then

F is a (manifold) diffeomorphism if for any local charts f : U ⊂ M, g : V ⊂ N , the function

g ◦ F ◦ f−1 is a diffeomorphism on Euclidean spaces. We then say thatM,N are diffeomorphic.
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Corollary 5.3.3. It follows from the definitions that ifM,N are diffeomorphic, then they have the

same dimension.

Example 13. Let F : S1 → S1, given by the reflexion with respect to the x−axis, or F (x, y) =

(x,−y) in the embedding space R2. Obviously, F (N) = S, F (S) = N , and for t 6= 0,

(fN ◦ F ◦ f−1
N )(t) = (fS ◦ F ◦ f−1

S )(t) =
1

t
, (fN ◦ F ◦ f−1

S )(t) = (fS ◦ F ◦ f−1
N )(t) = t,

which are diffeomorphisms on R \ {0}. The last two composition maps can be used at points N,S

respectively, as well.

5.3.1 Tangent and Cotangent Spaces

Definition 5.3.4. Let M be an m−dimensional differentiable variety, p ∈ M, and f : U →

Rm, p ∈ U ⊂ M a local coordinate chart. Let x0 = f(p), and denote by γi(t) = x0 + tei, where

{ei}mi=1 is an orthonormal basis, (ei)j = δij , and t ∈ R. The pre-images Γi ≡ f−1(γi(R) ∩ f(U))

are curves in U , such that ∩iΓi = {p}, and their tangent vectors at p span the tangent space TpM:

TpM≡ SpanR

{
dΓi

dt

∣∣∣
t=0

}
Remark 5.3.5. The linear independence of the basis vectors defined above follows from a direct

application of chain rule,

dΓi

dt

∣∣∣
t=0

= Dx0(f−1) · dγ
i

dt

∣∣∣
t=0

= Dx0(f−1) · ei,

and the condition that f−1 is a diffeomorphism.

We introduce now a central object of differential geometry, which makes contact with function

theory in general. From this point forward, we will be mainly interested to describe the geometric

properties of a variety through their action on real-valued smooth functions defined on the variety.

To this end, we define the algebra of smooth functions on a differentiable variety.

Definition 5.3.6. Let M be an m−dimensional differentiable variety, p ∈ M, and f : U →

Rm, p ∈ U ⊂M a local coordinate chart. The set

A(M) ≡ {h :M→ R|h ◦ f−1 ∈ C∞(f(U))}
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is called the algebra of smooth functions onM.

Remark 5.3.7. Smoothness means that any partial derivative, of any order, of the function h◦f−1,

is well-defined on f(U). The fact that this set is closed under addition and multiplication follows

directly from basic properties of differentiable functions (linearity and Leibniz property of the

derivative).

Consider now a function h ∈ A(M), and the problem of computing the derivative of the func-

tion (h ◦ f−1 ◦ γ)(t), where γ = αiγ
i is a linear combination of the lines {γi}. By chain rule, we

obtain
dh

dt

∣∣∣
t=0

=
∂(h ◦ f−1)

∂xk
dγk

dt

∣∣∣
t=0

= αk
∂

∂xk
(h ◦ f−1)

∣∣∣
t=0
,

which shows that there is an obvious vector space isomorphism between TpM and Span {∂k}, k =

1, 2, . . . ,m, where (xk(q)) ≡ f(q), ∀q ∈ U .

Definition 5.3.8. The dual space of TpM (understood as a space of linear differential operators),

or the space of linear functionals over Span {∂k}, k = 1, 2, . . . ,m is defined as the cotangent space

T ∗pM. The elements of the canonical dual basis are denoted by {dxk}, and defined by

dxi(∂j) = δij,

and by linearity.

5.4 Vector Bundles, Sections, and Covariant Exterior Differential

The kind of differentiable variety (called vector bundle) arising in general relativity, and to some

extent in gauge theories as well, has a special structure which allows to regard it as a “base mani-

fold” endowed with a local copy of the same vector space, called “fiber”. The more subtle aspects

of the general definition have to do with the fact that, a priori, we do not know if (or how) such a

variety is embedded in RN or CN , for some (large) N ∈ N.

Definition 5.4.1. A differentiable variety V (called total space) of real dimension n+m is a vector

bundle over the differentiable varietyM (base manifold) with fiber E ' Rn, and projection map

π : V →M if π is continuous, surjective, and satisfies the following:
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(i) ∀p ∈ V ,∃ an open set U : π(p) ∈ U ⊂ M and a diffeomorphism π−1(U) → f(U) × E,

where f is a local coordinate chart at π(p) ∈M

(ii) if (Ui, fi) and (Uj, fj) are two coordinate charts at π(p) ∈ Ui ∩ Uj , and (π−1(Ui), ϕi),

(π−1(Uj), ϕj) are coordinate charts at p, then the transition function

φij ≡ ϕi ◦ ϕ−1
j : ϕj(π

−1(Ui) ∩ π−1(Uj))→ ϕi(π
−1(Ui) ∩ π−1(Uj))

is a diffeomorphism on Rn+m that has the form φij(x, e) = (x, fije), where fij ∈ G = Gl(n,R).

The group G is called the structural group of the bundle;

(iii) for three coordinate charts at π(p), Ui, Uj, Uk with Ui∩Uj∩Uk 6= ∅, the transition functions

satisfy fijfji = In×n, fijfjkfki = In×n.

Remark 5.4.2. It is possible to replace the structural group G in condition (ii) by subgroups of

Gl(n,R), such as SO(n) or SL(n,R). Likewise, it is possible to replace Rn by Cn throughout,

and therefore define complex varieties, with structural groups such as U(n), SU(n), etc.

Definition 5.4.3. A section on a vector bundle V over the baseM is a function u :M→ V such

that (π ◦ u)(x) = x, ∀x ∈M.

Example 14. Let V = {(eiθ, ieiθ(t + t cos θ, t sin θ)), θ ∈ [0, 2π], t ∈ R}. Then V is a vector

bundle overM = S1, with fiber R. It can be embedded into R3 as a slanted cylinder over the unit

circle. The function

u : S1 → V , u(eiθ) = (eiθ, ieiθ(cos θ + cos2 θ, cos θ sin θ))

is a section on V .

Definition 5.4.4. Given two vector bundles V1,V2 over the same base M, of fibers E1, E2, the

tensor sum, tensor product, tensor powers, duals of the two fibers are defined as equivalence classes

(under global diffeomorphisms) of the respective vector bundles overM, with fibersE1⊕E2, E1⊗

E2, E
∗
1 .

Example 15. The tensor sum V = R ⊕ Rn is a vector bundle over R, of fiber Rn. The bundle

product V ⊗ V is then defined as

V ⊗ V ≡ R⊕ (Rn ⊗ Rn)
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5.4.1 Classification of Vector Bundles

Definition 5.4.5. Two vector bundles V1,V2 over the same base, and with projection maps π1, π2,

are isomorphic if there exists an invertible function F : V1 → V2, such that

F (p) = q ⇒ π1(p) = π2(q), F |π−1
1 ({x}) : π−1

1 ({x})→ π−1
2 ({x})

is a vector space isomorphism, and the same for the inverse function F−1.

There is a useful criterion for vector bundle isomorphism, given below.

Theorem 5.4.6. Two vector bundles with transition functions φij, ψij (with respect to the same

covering {Ui}) are isomorphic if and only if there exist (intertwining) functions ri : Ui → Gl(n,R),

such that

ψijrj = riφij.

Remark 5.4.7. We are only concerned with characterizing vector bundles up to bundle isomor-

phism.

There exists also a useful method to “transplant” the fiber of one manifold onto another base

manifold, and create a new vector bundle this way. This is referred to as inducing.

Theorem 5.4.8. Let V be a vector bundle over M, with projection map π, and f : N → M a

function between manifolds. Then the induced bundle of V onto N is the vector bundle over N

with fiber E ′ (or projection function π′) defined by

(π′)−1({x}) = E ′x ≡ Ef(x) = π−1({f(x)}), ∀x ∈ N .

A classification result for vector bundles over compact manifolds is obtained by considering

(linear) projector maps. LetM be a compact (base) manifold, and P : M → CN×N a projector

function of rank n ≤ N , that is

P 2(x) = P (x), TrP (x) = n, ∀x ∈M.
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The range of this function is a vector subspace of CN , and it defines the fiber E. More precisely,

letGn
N be the space of all n−dimensional subspaces of CN (known as a Grassmannian). Any point

in x ∈ Gn
N is an n−dimensional subspace of CN , and we define the fiber to be the subspace itself:

π−1({x}) ≡ {x} = E.

Then (Gn
N , E, π) is a vector bundle over Gn

N . The construction is completed by inducing a vector

bundle overM using the function P . We obtain:

Theorem 5.4.9 (Vector bundle classification). Any vector bundle over a compact baseM and fiber

dimension n is isomorphic to a bundle induced overM by a projector function of rank n, called

characteristic map,

P :M→ Gn
N ,

for some N large enough. Two bundles are isomorphic if and only if their characteristic maps are

homotopic.

5.4.2 Calculus on Vector Bundles

Definition 5.4.10. Let V be a (real) vector bundle over the m−dimensional base manifoldM, and

fiber E, of dimension n. We denote by TM, T ∗M the tangent and cotangent bundles overM, by

Λk(M) the bundle of k−forms overM, and by Λ(M) the tensor sum of all Λk(M). We denote

by

S(E, k) ≡ C∞(E ⊗ Λk), S(E) ≡ C∞(E ⊗ Λ)

the spaces of smooth sections over V ⊗ Λk(M) and V ⊗ Λ(M), respectively.

Using the vector bundles classification theorem, it is possible, in principle, to embed any bundle

over a compact base into a (big enough) Grassmannian bundle, which is in a way a trivial (as in,

linear) structure. Then defining differential operators on the bundle of interest reduces to project-

ing the usual differential operators (on the Grassmannian) back onto our bundle. However, this

approach is not practical. We are therefore led to enlarging the notion of exterior differential and

tangent vector, in such a way as to ensure they are differential operators acting between the proper

spaces. A direct way to achieve this generalization is by defining a connection form.
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Definition 5.4.11. Let V be a vector bundle overM, of fiberE, and V∗ its dual fiber. A connection

form A is a section on V ⊗ V∗ ⊗ Λ1(M), such that

∇(A) ≡ In×nd+ A : S(E)→ S(E)

is a covariant linear operator.

If {ek}nk=1 forms a basis in the local fiber at x ∈M, Ex = π−1({x}), and we denote by {f j}nj=1

its canonical dual base, then locally a connection form can be written (summation over repeated

indices is assumed)

A = (Ak)
i
jei ⊗ f j ⊗ dxk,

so it is equivalent tommatricesAk of dimension n×n. In particular, its action on the basis vectors

is given by

Ael = (Ak)
i
lei ⊗ dxk,

where we have used the identity f j(el) = δjl . Using (multi)linearity and the Leibniz property, we

can define the action of the operator∇(A) on any smooth section in a tensor bundle S(T (p,q)(E)).

In particular, we have the most common cases of homogenous forms:

Theorem 5.4.12. Let u ∈ S(E, k), or u = uji1i2...ik(x)ej ⊗ dxi1 ∧ . . .∧ dxik , then∇(A)(u) = w ∈

S(E, k + 1), or w = wji1i2...ik+1
(x)ej ⊗ dxi1 ∧ . . . ∧ dxik+1 , with

w = du+ A ∧ u = [∂lu
j
i1i2...ik

+ (Al)
j
iu
i
i1i2...ik

]ej ⊗ dxl ∧ dxl ∧ dxi1 ∧ . . . ∧ dxik

If u ∈ S(E, 0) (a smooth function on the base manifold), then∇u ≡ du.

Remark 5.4.13. It is important to note that any section is locally a tensor, and therefore its density

must transform accordingly under coordinate transformations. Likewise, the coefficients of a con-

nection must transform under coordinate changes (in the fiber) in such a way as to ensure that the

covariant differential∇(A) is indeed invariant under coordinate transformations.

Theorem 5.4.14. Let G be a section on V ⊗ V∗, such that G(x) ∈ Gl(n,R), representing local

coordinate changes in the fiber of V . Then the connection form A transforms as

A→ B = GAG−1 + dGG−1.
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Proof. In the basis {ei}ni=1 of the fiber, we have

∇ei = (Ak)
l
ieldx

k.

Likewise, in the new basis {εj}nj=1, εj = Gi
jei, we have

∇εi = (Bk)
l
iεldx

k.

Therefore,

(Bk)
l
iεldx

k = (Bk)
l
iG

j
l ejdx

k = ∇(Gj
iej) = dGj

iej + (Ak)
l
iG

r
l erdx

k

In matrix form,BG = GA+dG, so by multiplying from the right byG−1, we obtain the result.

Corollary 5.4.15. The connection form does not transform covariantly under fiber basis changes.

5.4.3 Curvature Form, Bianchi Identities, and Torsion of the Connection

The nilpotency of the exterior differential d in exterior calculus on Euclidean spaces suggests to

consider similar quantities in a general vector bundle. To that end, we compute the covariant

differential (for a given connection A) of the connection form, and of an invariant 1-form, defined

below.

Definition 5.4.16. The 2-form Ω defined by

Ω(A) = ∇A = dA+ A ∧ A

is called the curvature of the connection A.

Remark 5.4.17. As the connection is a matrix-valued form, the wedge product A ∧ A does not

vanish. Instead, we obtain the component representation

Ω = Ωijdx
i ∧ dxj, Ωij = ∂iAj − ∂jAi + [Ai, Aj]

Theorem 5.4.18. Curvature is a global section of V ⊗ V∗ ⊗ Λ2(M).
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Proof. Under a basis change, the connection becomes A → GAG−1 + dGG−1. Introducing the

notation G(x) ≡ eg(x), we compute the new curvature form as

Ω→ d(GAG−1 + dg) + (GAG−1 + dg) ∧ (GAG−1 + dg)

We first note that all the terms independent on A vanish identically: d2g = 0, and

dg ∧ dg = ∂jgdx
j ∧ ∂kgdxk = [∂jg, ∂kg]dxj ∧ dxk

Since ∂jg∂kg = ∂j(g∂kg)−g∂2
jkg = ∂2

jk(g
2/2)−g∂2

jkg, which is a symmetric tensor, we conclude

that [∂jg, ∂kg]dxj ∧ dxk = 0. We are therefore left evaluating

d(GAG−1) +GAG−1 ∧GAG−1 +GAG−1 ∧ dg + dg ∧GAG−1

From the first and the second term, we obtain

GdAG−1 +GA ∧ AG−1 = GΩG−1.

The remaining terms can be written, using the rules of exterior differentials,

dG ∧ AG−1 −GA ∧ dG−1 +GAG−1 ∧ dg + dg ∧GAG−1

Finally, using dG = dgG, dG−1 = −G−1dg (as G, g commute), we obtain

2G(dg ∧ A+ A ∧ dg)G−1 = 0.

Thus, the curvature form transforms covariantly, so it is a global section.

Theorem 5.4.19. Let u ∈ S(E), then

∇2u = Ωu.

Proof. From the definition,

∇u = du+ A ∧ u, ∇2u = d(∇u) + A ∧∇u = d(A ∧ u) + A ∧ du+ A ∧ A ∧ u

Since by the generalized Leibniz property

d(A ∧ u) + A ∧ du = dA ∧ u,

we obtain the desired result.
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Remark 5.4.20. Notice that in “flat” spaces (Euclidean spaces), the operator d satisfies d2 = 0.

Therefore, Ω = ∇2 6= 0 is a measure of “non-flatness”.

In view of this result, it is natural to inquire if higher powers of the covariant differential are also

non-trivial. The (negative) answer is known as the Bianchi identity.

Theorem 5.4.21 (The Bianchi identity). For any curvature form,

∇Ω = 0.

Proof. If u is a section, then

∇(Ωu) = (∇Ω)u+ Ω∇u,

as Ω is a 2-form. On the other hand,

∇(Ωu) = ∇(∇2u) = ∇2(∇u) = Ω∇u.

Comparing the two equations, we obtain∇Ω = 0.

5.4.4 Torsion of a Connection Form

Assume that dim V = 2 dimM, or equivalently that the fiber is isomorphic to the tangent space.

For some vector bundles of this type, it is possible to define a global 1-form which realizes this

isomorphism:

Definition 5.4.22. If n = dim E = dim M, a fundamental one-form is a form θ ∈ V ⊗ T ∗(M)

such that ∀x ∈M, θ(x) is an isomorphism TxM→ Ex.

Remark 5.4.23. If a fundamental 1-form exists, it can be represented in a local fiber basis {ek}nk=1

as θ = ei ⊗ dxi, such that θ(∂j) = ej , mapping the basis elements between the two linear spaces.

Remark 5.4.24. In the special case V = T (M), the one-form is always well-defined, and acts as

the identity map on the tangent space.

Another Bianchi identity is obtained when computing the covariant differential of the funda-

mental one-form. We present its special form relevant for general relativity:
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Theorem 5.4.25. Assume V = 2 dimM and that V has a fundamental one-form θ. Then

S(θ) ≡ ∇θ = 0⇔ (Ak)
i
j = (Aj)

i
k.

Remark 5.4.26. The form S(θ) is called torsion of the connection form A.

Proof. Let X = Xj∂j be a section in T (M), then by definition θ(X) = Xjej:

S(θ) = ∇(ej ⊗ dxj) = (Ak)
i
jei ⊗ dxk ∧ dxj + ej ⊗ (Ak)

j
idx

i ∧ dxk

Therefore,

S(θ) = [(Ak)
i
j − (Aj)

i
k]ei ⊗ dxk ∧ dxj = 0⇔ (Ak)

i
j = (Aj)

i
k.

5.5 Covariant Derivative Formalism

Definition 5.5.1. Let V be a vector bundle overM, and A a connection form. If X = Xj∂j is a

global section on T (M), then we define the operator iX : S(E, k)→ S(E, k − 1) by

iX(dxk) = dxk(X) = Xk,

and (multi)linearity.

Example 16. If u = fkdx
k, then iX(u) = fkX

k.

Example 17. If u = fijdx
i ∧ dxj , then iX(u) = fijX

jdxi − fijX idxj .

Remark 5.5.2. Action of iX is equivalent to tensor contraction by X .

Definition 5.5.3. Let V be a vector bundle overM, and A a connection form. If X = Xj∂j is a

global section on T (M), then we define the operator∇X : S(E, k)→ S(E, k) by

∇X ≡ iX∇.

Remark 5.5.4. The operator ∇X is called the covariant derivative along X . It depends on both

the connection form and the vector field X .
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Remark 5.5.5. The covariant derivative operator is the generalization of the directional derivative

of vector calculus. Indeed, in Euclidean spaces Rn, we have for a smooth real function f ,

∇ = d, ∇Xf = iXdf = Xj∂jf = ~X · ~∇f.

Using the covariant derivative formalism, it is possible to express all the objects contructed so

far in a form which is manifestly covariant. Conversely, any new object expressed solely through

covariant derivatives is guaranteed to transform covariantly.

Theorem 5.5.6. For any section X ∈ T (M) and smooth function f ∈ A(M), the covariant

derivative satisfies

∇Xf = X(f) = Xk∂kf.

Theorem 5.5.7. For any two sections X, Y ∈ T (M), the curvature form satisfies

Ω(X, Y ) = [∇X ,∇Y ]−∇[X,Y ]

Theorem 5.5.8. If V = T (M), then for any two sections X, Y ∈ T (M), the torsion form satisfies

S(θ)(X, Y ) = [∇X ,∇Y ]− [X, Y ]

All the proofs can be checked by direct computation on the component representation of these

objects.

Remark 5.5.9. The covariant derivative inherits all the (multi)linearity and Leibniz properties of

the covariant differential operator.

Corollary 5.5.10. A section u ∈ S(E) satisfies∇u = 0 if and only if for any X ∈ T (M),∇Xu =

0.

5.6 Riemannian Manifolds

Definition 5.6.1. A Riemannian manifold is a vector bundle T ∗(M) � T ∗(M) endowed with a

positive-definite quadratic form section g, the metric.
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Example 18. The unit sphere S2 with the metric induced by the Euclidean norm from the embed-

ding space R3 is a Riemannian manifold.

Remark 5.6.2. Any metric can be expressed in a local coordinate chart as

g = gijdx
i � dxj,

where � is the symmetric tensor product, and {gij} is a symmetric tensor.

Given two vector fields X, Y ∈ T (M), we can write

g(X, Y ) = gijX
iY j, g(X,X) ≥ 0.

The metric tensor inverse leads to a dual tensor in the dual bundle:

Definition 5.6.3. Let (gij) denote the inverse matrix for (gij) : gijgjk = δik. Then the form

gij∂i � ∂j is a global section on T (M)⊗ T (M).

The metric tensor and its inverse allow to define new operations on the tensor bundles of M,

namely the raising and lowering of indices. Using linearity, we define these operations for a

section of T (M)⊗
p ⊗ (T ∗(M))⊗

q , on components, as

T
i1...ip
j1...jq

→ gij1T
i1...ip
j1...jq

, T
i1...ip
j1...jq

→ gji1T
i1...ip
j1...jq

Example 19. Let g = diag(1,−1) give the Minkowski metric on R2, then ∂i ≡ gij∂j , or

∂1 =
∂

∂x1
, ∂2 = − ∂

∂x2
.

The central question of Riemannian manifolds is: given a metric g, find a connection A such

that g remains invariant under the action of the covariant differential ∇(A). This is very relevant

when considering the evaluation

∇Zg(X, Y ) = (∇Zg)(X, Y ) + g(∇ZX, Y ) + g(X,∇ZY ),

for which only the last two terms would remain, if ∇g = 0. The following constitutes the funda-

mental theorem of Riemannian geometry:
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Theorem 5.6.4. On a Riemannian manifold, there exists a (unique) torsion-free connection Γ,

called Levi-Civita connection, such that

∇(Γ)(g) = 0.

The coefficients of Γ are called Cristoffel symbols, and are given by (the lowered indices form):

2Γijk = ∂jgki + ∂kgij − ∂igjk.

Proof. Both S(Γ) = 0 and ∇(g) = 0 can be checked by direct computation.

Example 20. LetM = S2, and g = diag(1, sin2 θ) (the induced metric). Then the inverse metric

tensor is g−1 = diag((1, sin−2 θ). Since the local coordinates are (x1, x2) = (θ, φ), the only non-

zero term corresponds to ∂1g22 = 2 sin θ cos θ, so we obtain

Γ1
22 = − sin θ cos θ = −sin 2θ

2
, Γ2

12 = Γ2
21 = cot θ.

Therefore, the Levi-Civita connection for this metric is

Γ =

 0 0

0 cot θ

 dθ +

 0 − sin θ cos θ

cot θ 0

 dφ.

The curvature tensor (matrix) components reduce to

Ω12 = ∂1Γ2 + [Γ1,Γ2] =

 0 − cos(2θ)

− sin−2 θ 0

+

 0 cos2 θ

cot2 θ 0

 ,

Ω =

 0 sin2 θ

−1 0

 dθ ∧ dφ

Definition 5.6.5. The metric tensor of a Riemannian manifold corresponding to the Levi-Civita

connection is called the Riemann tensor,R ≡ Ω(Γ).

Definition 5.6.6. The contraction of the Riemann tensor

Rij ≡ (Rki)
k
j

defines the Ricci tensor of the Levi-Civita connection onM.
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Remark 5.6.7. Due to symmetry of the Cristoffel symbols, the Ricci tensor is symmetric.

Example 21. For the unit sphere S2, we obtain

R11 = (R21)2
1 = 1, R22 = (R12)1

2 = sin2 θ

Definition 5.6.8. The scalar curvature of a Riemannian manifold is

R ≡ Ri
i = gijRji

Example 22. For the unit sphere S2, we obtain

R1
1 = 1, R2

2 = sin−2 θ · sin2 θ = 1, R = 2.

Definition 5.6.9. On a Riemannian manifold of dimension n with the Levi-Civita connection it is

possible to define a covariant volume form

dV ≡ √gdx1 ∧ . . . ∧ dxn, g = det(gij).

Remark 5.6.10. The volume form is properly defined by bringing the metric to its canonical form

(in normal coordinates {ξi}):

gijdx
i � dxj = δijdξ

i � dξj, dV = dξ1 ∧ . . . ∧ dξn.

Example 23. For the unit sphere S2, we obtain

dV = sin θdθ ∧ dφ.

5.6.1 Levi-Civita Calculus

It is helpful to first derive some of the formulas often encountered in covariant calculus with the

Levi-Civita connection.

Theorem 5.6.11. Let g be a metric on a Riemannian manifold, and Γ its associated Levi-Civita

connection. Denoting by G = (gij), G
−1 = (gij), g = det(G), and λ = ±1 (to account for both
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hyperbolic and spherical metric cases), we have the following identities, in component and matrix

forms:

∂kgij = Γlikglj + Γljkgli ⇔ ∂kG = GΓk + (Γk)
tG (5.2)

∂kg
ij = −(Γilkg

lj + Γjlkg
li)⇔ ∂kG

−1 = −(G−1Γk + (Γk)
tG−1) (5.3)

∂ log g

∂gij
= gij ⇔ ∂ log g

∂G
= G−1 (5.4)

∂ log g

∂gij
= −gij ⇔

∂ log g

∂G−1
= −G (5.5)

∂
√
λg

∂gij
=

1

2
gij
√
λg ⇔ ∂

√
λg

∂G
=

1

2

√
λgG−1 (5.6)

∂
√
λg

∂gij
= −1

2
gij
√
λg ⇔ ∂

√
λg

∂G−1
= −1

2

√
λgG (5.7)

√
λg∇kX

k = ∂k(
√
λgXk), ∂kg = 2gTr(Γk), (5.8)

where Xk∂k is a vector field (section of the tangent bundle).

Example 24. On the 2-dimensional unit sphere with the induced Euclidean metric, we obtain the

identities
∂G

∂θ
= Γ1G+GΓ1 = 2Γ1G,

0 =
∂G

∂φ
= Γt2G+GΓ2

as elementary identities for the matrices

Γ1 =

 0 0

0 cot θ

 , Γ2 =

 0 − sin θ cos θ

cot θ 0

 ,

and metric matrix

G =

 1 0

0 sin2 θ

 .
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5.7 Restricted Isometric Projections for Riemannian Manifolds

Given a set of observation vectors Σ embedded in the Euclidean space RN , where #Σ < N ,

we wish to be able to compare various instances of the restricted isometric projection of Σ on

m−dimensional linear subspaces of RN , m� N , and establish if the set Σ may be associated to a

Riemannian manifold (M, g), of manifold dimension m, with Riemannian metric g equivalent to

the induced metric from the embedding space RN . The purpose behind formulating this question

is that of establishing a higher-dimensional version of the Fisher-Kolmogorov test for compar-

ing populations in usual statistical analysis, or (alternatively) to develop an inference procedure

analogous to GLM (Generalized Linear Models) in the usual case (#Σ � N ). If successful, the

association Σ → (M, g) would allow to establish an obvious equivalence relation between two

distinct sets of vectors Σ1,Σ2, once they are associated to the same manifold.

In the following section we formulate the fundamental problem and present a classification

criterion.

5.7.1 Generalized Restricted Isometric Projections

In the following, we take positive integers m,n,N to be related by n < N, m� N .

Fundamental problem. Let Σ = {v1, v2, . . . , vn} be embedded in the Euclidean space RN , such

that there exists a restricted isometric projection to a hyperplane H ' Rm, with distortion factor

0 < δ � 1. Is there a Riemannian manifold (M, g), with dimM = m, and a point P ∈ M, such

that

H = TPM, || . ||`2(RN ) ↪→ g( . ), ϕP (Σ) = Σ̂ ⊂M, (5.9)

and the matrix of pairwise distances between the elements of Σ̂, in the metric g, has distortion

O(δ), where ϕP is the inverse local coordinate chart ϕP : TPM→M?

Remark 5.7.1. An obvious extension of the problem would only require identifying the manifold

M up to an isometry.

Remark 5.7.2. If a set Σ ⊂ RN can be associated with a Riemannian manifold (M, g) as described
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in the Fundamental Problem, then we say that Σ has the extended restricted isometric property, and

Σ̂ is an extension of Σ.

Theorem 5.7.3. Assume that an arbitrary set of vectors Σ ⊂ RN has the extended restricted

isometric property with projection to Rm. Then the Riemannian manifold (M, g) is homemorphic

to the symmetric space SO(m+ 1)/(SO(1)× SO(m)).

Proof. Assume there exists a differentiable function F : D → RN , where D ⊂ Rm is an open,

simply-connected set of full measure, such that F is a diffeomorphism betweenD and F (D). Then

the induced metric on the cotangent space at p ∈ F (D) is given in parametric form as

g ∈ T ∗pF (D)� T ∗pF (D), g(V,W ) =
∑

1≤i,j≤m

gijV
iW j,

where V,W ∈ TpF (D) are vectors from the tangent space, and

gij =
〈∂F
∂ti

,
∂F

∂tj

〉
,

with {ti}mi=1 coordinates in D, and 〈 , 〉 the usual scalar product on RN .

If the collection of vectors Σ = {v1, . . . , vn} ∈ D are the result of projecting the original set

of vectors Σ0 = {x1, . . . , xn} from RN to Rm, with restricted isometry constant δ, by application

of compressions Ak, k = 1, 2, . . . , n, where Ak ∈ Rm×N , then the metric tensor evaluated at the

point pk = F (vk) ∈ F (D), k = 1, 2, . . . , n takes the form

gij(pk) =
〈∂F
∂ti

(vk),
∂F

∂tj
(vk)

〉
,

or in matrix form

Gk = (DF )T (vk) ·DF (vk),

where

DF ∈ RN×m

is the derivative matrix of F , (DF )T is its transpose, and Gk ∈ Rm×m is the metric matrix at pk.

If the diffeomorphism F coincides with the inverse transformation vk → xk when evaluated on Σ,

then we obtain the set of matrix conditions

Ak · (DF )k = Im×m, ∀k = 1, 2, . . . , n.

51



This shows that, if the compression matrices {Ak}nk=1 are independent and identically distributed

random variables (i.i.d). from the same ensemble of random matrices, then the matrices (DF )k

are also i.i.d. with the distribution given by the generalized inverse of Ak, and therefore the ma-

trices {Gk}mk=1 are also i.i.d. covariance matrices, obviously positive-definite, and invertible with

probability 1. Therefore,

Gk
i.i.d.∼ G, ∀k = 1, 2, . . . , n,

where G is a diagonal, positive-definite matrix, and all Gk are obviously in its conjugacy class

within GL(n,R).

Denote by Ĝ the isotropy group ofG, then since the set Σ was chosen arbitrary, we conclude that

the Riemannian manifold F (D) has the metric isotropy group Ĝ acting transitively, and therefore

F (D) must be on open subset of a symmetric space U/Ĝ. Therefore, we can use the Cartan

classification of Riemannian symmetric spaces to distinguish two possible cases: either F (D) has

zero curvature, and is therefore an Euclidean space, or it has positive curvature, and the manifold

is then of compact type, i.e. equivalent to the quotient of two real Lie groups, U and Ĝ.

It remains to identify the possible choices of real Lie groups U, Ĝ in the Cartan classification of

compact symmetric spaces, compatible both with the requirement that Ĝ belong to an invariance

group for random covariance matrices, and the dimensional constraint dimU/Ĝ = m.

Together with the condition that U, Ĝ be real Lie groups, the dimension constraint implies that

U/Ĝ ' SO(m+ 1)/(SO(1)× SO(m)), dimU/Ĝ = m,

and that the ensemble of covariance matrices {ATk · Ak} is invariant under the induced action of

SO(m).

Remark 5.7.4. Assume that all entries in compression matrices Ak are i.i.d. Gaussian. Then the

eigenvalue distribution of the covariance matrices has the large m-limit (m � 1) given by the

Marchenko-Pastur law (shifted semicircle law). This means that, in the limit N � m � 1, the

curvature of the manifoldM becomes independent on the set Σ or m, and approaches a universal

limit.
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Corollary 5.7.5. Assume the set Σ = {x1, x2, . . . , xn} has the restricted isometric property with

compression matrices Ak, i.i.d. such that the eigenvalue distribution for covariance matrices ATk ·

Ak approaches the Marchenko-Pastur distribution. Then the set Σ has the extended restricted

isometric property, and it can be associated with an m−dimensional sphere in RN .
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Appendix A

Reproducing Kernel Hilbert Space

Definition A.0.1. (Reproducing kernel) Let H be a Hilbert space of R valued functions defined

on a non-empty set X . A function k : X ×X → R (kx) is called a reproducing kernel of H if it

satisfies

• ∀x ∈ X, k(·, x) ∈ H

• ∀x ∈ X, ∀f ∈ H, 〈f, k(·, x)〉H = f(x) (the reproducing property)

In particular, for any x, y ∈ X , k(x, y) = 〈k(·, x), k(·, y)〉H

Proposition A.0.2. (Uniqueness of the reproducing kernel) If it exists, reproducing kernel is

unique.

Definition A.0.3. A Hilber spaceH is called Reproducing Kernel Hilbert Space (RKHS) ifH has

a reproducing kernel.

Remark A.0.4. A Reproducing Kernel Hilbert Space H has a unit-norm reproducing kernel if

k(x, x) = 1 for all x ∈ X .

Definition A.0.5. A function k : X×X → R is called a kernel onX if there exists a Hilbert space

(not necessarilly a RKHS)H and a map φ : X → H, such that k(x, y) = 〈φ(x), φ(y)〉H

Corollary A.0.6. Every reproducing kernel is a kernel. (can take φ : x → k(·, x), k(x, y) =

〈(·, x), k(·, y)〉H i.e. RKHSH is a feature space)

Definition A.0.7. (Positive definite functions). A symmetric function h : X ×X → R is positive

definite if ∀n ≥ 1,∀(a1, · · · , an) ∈ Rn,∀(x1, · · · , xn) ∈ Xn

n∑
i=1

n∑
j=1

aiajh(xi, xj) ≥ 0
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The function h(·, ·) is strictly positive definite if for mutually distinct xi the equality holds only

when all the ai are zero.

Lemma A.0.8. Let H be any Hilbert space (not necessarily an RKHS), X a nonempty set and

φ : X → F . Then kernel h(x, y) := 〈φ(x), φ(y)〉H is a positive definite functions.

Corollary A.0.9. Reproducing kernels are positive definite

Reproducing Kernel ⇒ Kernel⇒ Positive Definite

Lemma A.0.10. If h is positive definite, then |h(x1, x2)|2 ≤ h(x1, x1)h(x2, x2)

Theorem A.0.11. (Moore - Aronszajn) Let k : X ×X → R be positive definite. There is a unique

RKHSH ⊂ RX with reproducing kernel k
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