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Abstract

Large blackouts with significant societal and economic impacts result from cascade of fail-

ures in the transmission network of power grids. Understanding and mitigating cascading failures

in power grids is challenging due to the large number of components and their complex interactions,

wherein, in addition to the physical topology of the system, the physics of power flow and functional

dependencies among components largely affect the spatial distribution and propagation of failures.

In this dissertation, data-driven interaction graphs, which help in capturing the underlying inter-

actions and influences among the components during cascading failures, are used for capturing the

non-local nature of propagation of failures as well as for simplifying the modeling and analysis of

cascades. Particularly, influence and correlation graphs are constructed for revealing and comparing

various types of interactions/influences during cascades.

In addition, as a step towards analyzing cascades, community structures in the interaction

graphs, which bear critical information about cascade processes and the role of system components

during cascades are identified. The key idea behind using community structures for analyzing

cascades is that a cascade entering a community is likely to reach to most of the other members of

the same community while less likely to reach to other communities. Thus, community structures

significantly impact cascade behavior by trapping failures within communities. Further, a centrality

measure based on the community structures is proposed to identify critical components of the

system, which their protection can help in containing failures within a community and prevent the

propagation of failures to large sections of the power grid. Various criticality evaluation techniques,
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including data-driven, epidemic simulation-based, power system simulation-based and graph-based,

have been used to verify the importance of the identified critical components in the cascade process

and compare them with those identified by traditional centrality measures. Moreover, it has been

shown that the loading level of the power grid impacts the interaction graph and consequently, the

community structure and criticality of the components in the cascade process.

Furthermore, a Markov chain model is designed based on the community structures em-

bedded in the data-driven interaction graphs of power grids. This model exploits the properties of

community structures in interactions to enable the probabilistic analysis of cascade sizes in power

grids. The trapping property of communities is extensively used to show that the probability dis-

tribution of cascade sizes exhibit power-law behavior as observed in previous studies and historical

data.

Finally, an integrated framework based on the influence model, a networked Markov chain

framework, is proposed for modeling the integrated power grid and transportation infrastructures,

through one source of their interdependency i.e., electric-vehicle (EV) charging stations. The inter-

actions based on the rules and policies governing their internal and interaction dynamics is captured.

Particularly, the proposed integrated framework is used to design an algorithm for assigning dy-

namic charging prices for the EV charging infrastructure with the goal of increasing the likelihood

of having balanced charging and electric infrastructures. The proposed scheme for charging prices

is traffic and power aware as the states and interactions of transportation and power infrastruc-

tures are captured in the integrated framework. Finally, the critical role of cyber infrastructure in

enabling such collaborative solutions is also discussed.
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Chapter 1: Introduction

By the year 2050, 68% of the world’s population is expected to reside in urban areas, with

North America currently leading the race in terms of the most urbanized geographic location till

date [2]. In these increasingly urban societies, goods and services are expected to be conveniently

available at all times with high reliability. Major systems required for the smooth operation of an

urban society are the critical infrastructures, which include power, energy (gas and oil), commu-

nication, transportation, emergency services, water, and food supply. Critical infrastructures are

highly interdependent and collaborative systems due to the services and influences that they receive

from one another. The complex mesh of interdependencies within standalone infrastructures as

well as interdependencies shared among these infrastructures could be both problematic, by intro-

ducing vulnerabilities and compromising reliability, and beneficial, by introducing opportunities for

increasing the effective operation of these systems.

The work in this dissertation aims to study and understand the reliability challenges of one

of the most critical infrastructure, i.e., electric power grids. This dissertation also analyzes the

reliability of the power grid infrastructure in conjunction with another critical infrastructure, i.e.,

the transportation infrastructure, through one form of their interdependency: the emerging new

technology of electric vehicle (EV) charging infrastructure.

Portions of this chapter were published in IEEE PES [3], IEEE TNSE [4], Smartgreens [5] and Springer [6].
Copyright permissions from the publishers are included in Appendix A.

1



Power grids are large-scaled and complex interconnected networks that supply electricity

from generators to consumers via a channel of high voltage transmission lines. In power grid infras-

tructures, the complex nature of influences and interactions between various components contribute

in the reliability of the overall infrastructure. For instance, failure of few components may influence

failure of other components and lead to large-scale blackouts. In this dissertation, we investigate

the leading cause of large-scale blackouts, i.e. cascading failures [7]. We also analyze the risk posed

by the EV charging infrastructure to the power grid infrastructure in terms of the increased levels

of stress in power grids.

While this dissertation focuses on two interdependent infrastructures i.e., power grid and

transportation infrastructures, the modeling and reliability analysis methods discussed in this dis-

sertation is applicable to other interdependent infrastructures as well. The upcoming sections in this

chapter will introduce these infrastructures as well as the specific reliability challenges investigated

throughout this dissertation in detail.

1.1 Power Grid Infrastructure

An electric/power grid is an interconnected network that supplies electricity from produc-

ers to consumers. It consists of producers such as generating stations that generate electricity,

high voltage transmission lines that carry power over long distances, distribution lines that supply

electricity to individual consumers, and substations for stepping the voltage up or down during

transmission, as shown in Figure 1.1. In this dissertation, the network of high voltage transmission

lines is termed as the transmission network. In the transmission network, nodes represent generat-

ing stations G, load buses L, combinations of load and generating buses, and transmission buses

2



��
��������
�
����
�������
�������

��	����������
������
������
�����	�����

*HQHUDWLQJ�6WDWLRQ� *HQHUDWRU�6WHS�8S�
7UDQVIRUPHU�

7UDQVPLVVLRQ�/LQHV�
���������������DQG�����N9�

�"*!�**�#".
&XVWRPHU�
���N9�RU����N9�

6XEVWDWLRQ�
6WHS�'RZQ�
7UDQVIRUPHU�

6XE��WUDQVPLVVLRQ�
&XVWRPHU�

��N9��DQG���N9�

������

6HFRQGDU\�&XVWRPHU�
���9�DQG����9�

3ULPDU\�&XVWRPHU�
��N9�DQG��N9�

��
��������
�
����
�������
�������

��	����������
������
������
�����	�����

*HQHUDWLQJ�6WDWLRQ� *HQHUDWRU�6WHS�8S�

7UDQVIRUPHU�

7UDQVPLVVLRQ�/LQHV�
���������������DQG�����N9�

�"*!�**�#".
&XVWRPHU�
���N9�RU����N9�

6XEVWDWLRQ�
6WHS�'RZQ�
7UDQVIRUPHU�

6XE��WUDQVPLVVLRQ�
&XVWRPHU�

��N9��DQG���N9�

������

6HFRQGDU\�&XVWRPHU�
���9�DQG����9�

3ULPDU\�&XVWRPHU�
��N9�DQG��N9�

Figure 1.1: Structure of power grids. (Figure is borrowed from [1])

whose sole purpose is to transfer power. As mentioned, our reliability study is focused on cascading

failures and in general, cascading failures can be attributed to transmission networks of power grids.

The general mechanism of cascades is due to the redistribution of power flows caused by few initial

failures, which overloads and consequently, causes dependent failures of other components in the

system, such as transmission lines. In this dissertation, we focus on the transmission network of

power grids. An example of transmission network, that is used in this dissertation for studies, is

the IEEE 118 bus test system (Figure 1.2) with 118 buses, including substations and generators,

and 186 transmission lines.

1.1.1 Power Grid’s Interdependent Infrastructures

Power grids are critical infrastructures with interdependency with other critical infrastruc-

tures such as energy, communication and transportation systems. In this section, we discuss the

co-dependency between the power grid infrastructure and the transportation infrastructure. Par-

ticularly, the increase in the number of hybrid electric transportation systems, including plugin
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Figure 1.2: Topology of the IEEE 118-bus system. Nodes (black dots) represent generating
stations, load buses, transmission buses, and combinations of generating stations and load buses;
and edges (blue lines) represent transmission lines.

hybrid EV’s and hybrid electric trains have introduced new interdependencies between the power

and transportation infrastructures [8], [9], [10], [11], [12], [13], [14]. For instance, vehicle-to-grid

(V2G) technology allow EV’s to discharge their energy to the power grid using bi-directional power

electronic DC/AC interfaces, which can help in stabilizing the power grid during disturbance and

power shortage [15], [16].

Another source of interdependency between power and transportation infrastructures comes

from the EV charging infrastructure. The EV charging infrastructures are slowly emerging in cities

[17], similar to the traditional gas stations. On one hand, in the charging infrastructure, traffic

patterns and population distribution can affect the power demand in the electric grid at various

times and locations. On the other hand, the demand on the power grid can affect the charging price

and consequently, affect the traffic pattern in the transportation system.

Such interdependencies are important as, for instance, during the peak-energy-consumption

hours, inappropriate energy pricing signals at charging stations that motivate EV users to use
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Figure 1.3: Interdependent networks of power (bottom) and transportation (top) infrastructures
via EV charging stations and the role of cyber infrastructure.

specific charging stations, along with other factors, can lead to power demand profiles that result

in instability of the electric grid and in worse cases power outages [18]. As such, it is essential to

design and operate these charging infrastructures while considering the interdependency between

power and transportation systems and the state of these systems. For instance, designing pricing

incentives can provide a controlling mechanism for interdependency and reliable operation of these

systems. The incentives will be communicated to the users through the cyber infrastructure. In

general, the cyber infrastructure plays a key role in enabling such collaboration and cooperation

among infrastructures, while also explicitly benefiting from the reliable power system as the source

of electricity. Figure 1.3 shows the structure of intra-system and inter-system interdependencies

within and among these infrastructures respectively and the pricing mechanism relayed by the

cyber infrastructure.
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1.1.2 Reliability Challenges in Power Grids

Current power grids face multiple challenges including growing electricity demand, aging

of the incumbent power grid, introduction of intermittent power sources such as renewable energy

to new sources of load such as electric vehicles, and distributed storage technologies. One such

challenge faced by power grids are large scale blackouts, which is a rare probability event; however,

occurrence of such events can lead to consequences of catastrophic scales. For example, a wide-

area blackout occurred in the Pacific Southwest on September 8, 2011, which lasted for around

twelve hours and affected around 5 million people [19]. The blackout that piqued the interest of

power system researchers to investigate blackouts and their causes was the US Northeast blackout

of August 14, 2003, which lasted for more than two days and affected around 50 million people [7].

Large blackouts with significant societal and economic impacts result from cascade of failures

in the transmission network of power grids [7]. Understanding and mitigating cascading failures in

power grids is challenging due to the large number of components and their complex interactions,

which contribute in the cascade process. Intensive research efforts have been focused on understand-

ing the underlying interactions in cascades, which for example, enable predicting the propagation

path of failures and identifying critical/vulnerable components in the power grid. While large

blackouts are infrequent, the power law behavior exhibited by the blackout size distribution (e.g.

measured in terms of unserved energy, numbers of customers with no service, number of transmission

lines tripped) warrants the need to study such events [20].

The North American Electric Reliability Corporation (NERC), which oversees the reliability

of the bulk transmission system in North America stated "Cascading outages are defined as the

uncontrolled loss of any system facilities or load, whether because of thermal overload, voltage
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collapse, or loss of synchronism, except those occurring as a result of fault isolation" [21]. However,

the IEEE Task Force on Understanding, Prediction, Mitigation, and Restoration of Cascading

Failures [22] inform that all cascading outages do not eventually lead to blackouts and thus, state

"A cascading outage is a sequence of events in which an initial disturbance, or set of disturbances,

triggers a sequence of one or more dependent component outages". In the latter definition, large

blackouts may or may not be consequences of cascading outages. However, in most cases, cascading

outages lead to wide-area blackouts [7, 19].

In general, cascading failures can be defined as a sequence of interdependent outage events,

initiated by few outages or disturbances [22, 23]. The initiating events can be attributed to various

external factors or random events such as natural disasters, vegetation disturbances (e.g. tree

contact), human errors, software/hardware errors, and so on. In recent years, cyber/physical attacks

on power grids, such as the case of the Ukrainian cyber attack of 2015 [24] are also precursors to

cascading failures. After the occurrence of the initiating events, the dependent sequence of outages

result from the internal mechanisms such as voltage and angular instability, line overloads, hidden

failures as well as errors related to maintenance, operation and human judgement [22].

1.2 Cascade Models of Power Grids

Modeling and studying cascading failures include a diverse field of techniques and approaches

(see [22, 23] for a review). They include topological models, high level statistical models, deter-

ministic and probabilistic models, simulation-based models for analyzing quasi-steady and dynamic

behavior of the system, or hybrid and interdependent models with other systems (e.g., communica-

tion systems), and so on (see [25]). Many of these methods have been bench-marked and validated
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as well as cross validated [26, 27]. In this section, we restate the cascade model adopted in this

dissertation from the studies in [28, 29].

1.2.1 Cascade Phenomena in Networks

It is noteworthy to mention that cascading phenomena are not unique to power systems

and occur in different forms (e.g., information diffusion, disease epidemics, viral marketing, etc.)

on various real world networks (e.g., social networks and communication networks). Such processes

have been the focus of many research studies. In this dissertation, we specifically focus on the

cascading failure phenomena in power grid systems.

1.2.2 Cascade Model for the Power Grid

Cascade model with the quasi-static approach for simulating cascading failures for the power

grid and the optimal DC power flow model has been adopted from the studies in [28, 29]. Here, we

briefly restate the details of the model from [28, 29].

1.2.2.1 Transmission Line Overloading and Failure Mechanism

A system with V nodes (substations) interconnected by n transmission lines is considered.

The main mechanism of cascading failures is transmission line overloading due to power flow redis-

tribution after failures. Specifically, if failures occur in the power grid, the assumption is that power

will be redistributed based on the optimal DC power flow formulation as described in the immediate

next section. If the new power-flow distribution overloads lines based on their power-flow capacity,

more failures will occur in the power grid. This process iterates until no more failures occur in the

system. Note that as discussed in [28–30], a transmission line k has a capacity, say Ck, that can be
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governed by the thermal limit, the voltage drop limit, or the steady-state stability limit of the line.

Constant capacities for the lines are assumed, where for the IEEE 118-bus system are estimated

using the power flow through the lines based on the original setting of the model. The estimated

capacities are then rounded to the closest capacity from the set C = {20, 80, 200, 500, 800} in MW

[30].

Following the models presented in [28, 29, 31], a threshold αk for the power flow through the

kth line above which the protection relay (e.g., circuit breaker or impedance protective relay) trips

the line is considered. Various factors and mechanisms, which specify this threshold for transmission

lines are discussed in [28, 29, 32, 33]. Thus, a line is considered overloaded when the power flow

through the line exceeds (1 − αk)Ck. Moreover, the initial triggering events for cascading failures

are considered to have more than one failure (two or three initial failures are considered in this case)

as the N-1 security is ensured in all loading levels of the power grid. The power-grid loading level

denoted by r is an operating characteristic of the power grid, defined as the ratio of the total demand

to the generation-capacity of the power grid. The parameter r represents the level of stress over the

grid in terms of the loading level of its components. Other examples of operating characteristics

and their role on the power system cascades can be found in [28, 29, 34, 35].

1.2.2.2 Power-Flow Formulation

Next, the DC optimal power flow formulation, which is used for calculating power flow re-

distributions after failures is restated from [28, 29]. In the transmission network, sets L and G are

the set of load buses and the set of generator buses, respectively. The notation Li represents the
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demand at the load bus i. The DC power-flow equations [36] can be summarized as

F = AP, (1.1)

where P is a power vector whose components are the input power of nodes in the grid (except the

reference generator), F is a vector whose n components are the power flow through the transmission

lines, and A is a matrix whose elements can be calculated in terms of the connectivity of transmission

lines in the power grid and the impedance of lines. Note that this system of equations does not

have a unique solution as the elements of vector P including the generator injections denoted by

gis for i ∈ G and served loads denoted by `j for j ∈ L are assumed to be unknown and need

to be identified. A standard optimization approach with the objective of minimizing the cost

function below for variables gi and `j is considered(i.e., load shedding mechanism in the power flow

optimization is considered):

Cost =
∑
i∈G

wgigi +
∑
j∈L

w`j`j . (1.2)

with respect to the following constraints:

1. DC power flow equations: F = AP .

2. Capacity of generators: Gimin ≤ gi ≤ Gimax, i ∈ G.

3. Load to be served at buses: Lj ≤ `j ≤ 0, j ∈ L.

4. Power flow capacity of transmission lines: |Fk| ≤ Ck for k ∈ {1, ..., n}.

5. Power balance constraints (power generated and consumed must be balanced):∑
i∈G gi +

∑
j∈L `j = 0.
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Note that the quantities `js are negative and gis are positive by definition. In this cost

function, wgi and w`j are positive values representing the generation cost for every node i ∈ G and

the load-shedding price for every node j ∈ L, respectively. High prices for load shedding is assumed

so that a load is to be curtailed only when the constraints of the optimization cannot be satisfied

otherwise (such as in case of generation inadequacy or transmission capacity limitations). Also, a

minimum Gi
min and maximum range Gimax for the generators’ injections, where the minimum and

maximum can be set based on the generators’ last setting and their possible range of variations

is assumed. It is assumed that technologies, such as pumped-storage hydro-power, can make such

assumptions possible and provide the flexibility in relative adjustments of generation during the

short process of cascades. In the simulations, Gimax is set based on the maximum capacity of the

generators available in the IEEE 118-bus model and Gimin is set to be 80 percent of the generator’s

last injection setting. Note that if the power grid separates into islands due to failures, the presented

DC power flow optimization is run on each island separately. In cases where the balance of power

generated and consumed cannot be achieved for an island, the components in the island are assumed

to have failed.

1.2.2.3 Cascading Failure Simulations in Power Grids

Following the approach presented in [28, 29], in this dissertation, MATPOWER [37], a pack-

age of MATLAB m-files are used for solving the optimal power flow and simulating cascading failures

based on a quasi-static approach that focuses on transmission line overloads as the mechanism for

propagation of failures. For studies that require cascade data, a large dataset of cascade scenarios

was generated by triggering two or three random initial failures in the system. Note that in this

dissertation, we refer to the cascade as any number of successive failures after the initial disturbance
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(even few more failures). The order of failures in each cascade scenario in the cascade dataset is

stored. The power grid loading level, r (the ratio of the total demand over total generation capacity

of the system) is used to simulate cascades under different settings and evaluate the role of operat-

ing characteristics in cascade analyses. For each analysis, at least 16,000 unique cascading failure

scenarios have been simulated.

1.3 Key Contributions of this Dissertation

The main contributions of this dissertation can be broadly categorized based on the two

critical infrastructures analyzed and studied throughout. The first contribution lies in the improve-

ment of the reliability of the power grid infrastructure susceptible to cascading failures. The second

contribution is towards increasing the reliability of the power grid, considering its interdependency

with the transportation infrastructure via EV charging stations. In both reliability studies, the goal

is to leverage the maximal amount of information from datasets of the respective infrastructures

that implicitly capture various physical details of the infrastructure being studied. In this section,

we discuss the key contributions as follows.

1. Studying the role of community structures in cascade processes of power grids: The first contribu-

tion is the comprehensive study and investigation of the role of community structures in the control

and mitigation of cascading failures in power grids. While structures and communities were shown

to impact cascade processes in various other networks [38–42], the detailed analysis and investiga-

tion of cascading failures in a power grid network, undertaken in this dissertation, is the first study

of its kind. A critical property of community structures utilized in this dissertation for controlling

cascades is the trapping property of communities, which suggests that a cascade entering a commu-
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nity is likely to reach to most of the other members of the community, while less likely to reach to

other communities. We studied the community structures of data-driven interaction graphs using

community detection approaches, while considering both directed influence graphs and undirected

correlation graphs. An important observation from this study was that applying different com-

munity detection techniques led to variation in the identified structures and each revealed various

aspects of cascade processes.

2. Analyzing reliability of power grids by identifying critical components of cascade processes using

community structures of interaction graphs: The second contribution is the utilization of the com-

munity structures in the interaction graphs of power grids for reliability analysis. Specifically, this

dissertation focused on identifying critical components in the power grid’s cascade processes. For

this purpose, a novel community-based centrality measure was developed to capture various aspects

of community structures of interaction graphs of power grids. The importance of the community-

based centrality measure’s identified critical components was also compared with critical components

identified using standard centrality measures including betweenness, closeness, eigen, and degree,

using multiple verification techniques such as data-driven, SI epidemic simulation-based, power sys-

tem simulation-based, and graph-based approaches. While each of the standard centrality measures

shed light on different aspects of the criticality of components, they are not designed to identify

critical components in cascade and epidemic processes. Our key observation was that in most cases,

our community-based centrality measure performed better than these measures in identifying crit-

ical components in the cascade. Further, we also compared the critical components identified by

the community-based centrality measure with those identified by the influence-based measure of the

study in [43]. This comparison also showed that the community-based centrality measure performed
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better in most cases. The results of these experiments imply that protecting the critical components

identified using our community-based centrality can help in reducing the risk of large cascades and

blackouts.

3. Investigating impact of power system’s loading level on criticality of components using com-

munity structures of interaction graphs: The third contribution is the investigation of the impact

of power system’s loading level on the interaction graph and the community structures. For two

different loading levels i.e. normal and stressed levels, we observed different interaction graphs

and consequently, different community structures in the graphs, which led to different ranking of

components using the community-based centrality measure. Overall, our key observation was that

depending on the condition and the operating settings of the power grid, the critical components

of the system varied. Therefore, it is important to perform criticality analysis with considerations

about the system’s state and operating settings.

4. Characterizing and predicting size of cascades using Markov chain framework derived from com-

munity structures of interaction graphs: The fourth contribution is the development of a Markov

chain framework to study the failure propagation process between communities and to characterize

the likelihood of various cascade sizes. For this purpose, we formulated a Markov chain model

based on the community structures in the interaction graphs of the power grid. The states of the

community-based Markov chain model tracked the size of cascades. The main idea used was that

the groups of components that formed communities, provided an estimate measure of cascade size.

Thus, using the community-based Markov chain, the distribution of cascade sizes was characterized

using the size of communities. Additionally, depending on the initial conditions such as the commu-

nity from which the cascade started, cascade size distribution was characterized. A key finding from
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this framework was the power-law behavior in the distribution of cascade sizes, which suggested the

importance of community structures of interaction graphs in cascade behavior. Power law behavior

has been observed in historical data as well as previous studies of cascading failures [20].

5. Analyzing reliability of power grids and its interdependent transportation infrastructure using

an integrated framework: The fifth and the final contribution is the study and reliability analy-

sis of the coupled power grid infrastructure and transportation infrastructure via interdependency

links between EV charging stations and power grids. An integrated framework of power grids and

EV charging stations modeled the interactions between the infrastructures based on the networked

Markov chain framework i.e. the influence model. This integrated framework captured the state and

stochastic dynamics of inter and intra-system interactions. Particularly, intra-system dynamics or

self-influence transition probabilities were leveraged from real taxi dataset that contained movement

of vehicles in a particular location. Constraint-based influences were used to activate and deactivate

influences among the charging stations and substations to probabilistically force the components to

transition to desirable states. For this purpose, a novel pricing algorithm was designed for charg-

ing stations (which was relayed to EV drivers by the cyber infrastructure) to motivate EV drivers

to travel to appropriate locations such that the influences could be activated and deactivated. In

general, this integrated framework can be applied to other networked systems as well as infrastruc-

tures to probabilistically capture interdependency aspects and improve the overall reliability of the

coupled systems.

1.4 Structure of this Dissertation

For straightforward readability of this dissertation, each chapter is commenced with a brief

introduction about the details of the overall chapter including discussion on the appropriate related
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work and also concluded with a brief summary and key observations of the chapter. While Chap-

ter 1 provides an overview of the overall dissertation, the remaining chapters from Chapter 2 to

Chapter 5 are each focused on different aspects of reliability analysis of standalone power grids and

Chapter 6 focuses on the reliability analysis of the power grid infrastructure in conjunction with

the interdependent EV charging infrastructure.

Chapter 2 is focused on constructing the interaction graphs of power grids using the cascade

dataset obtained from the cascade model discussed in Chapter 1. The inadequacy of the physical

topology-based interaction graphs of power grids is discussed and a literature review on the two

categories: data-driven and electric distance-based methods for constructing interaction graphs

is provided. Then, results and statistics on the influence-based and correlation-based interaction

graphs of the IEEE 118 test bus system is discussed along with key observations and conclusions.

Additionally, appropriate thresholds applied to interactions graphs is discussed as well.

Then, Chapter 3 proceeds with the utilization of the influence-based and correlation-based

interaction graphs, constructed in Chapter 2, to comprehensively study the role of community

structures in the interaction graphs using disjoint and overlapped community structures over the

directed and undirected interaction graphs. Key observations, discussion, and statistics for the

IEEE 118 test bus system is provided.

Finally, Chapter 4 uses the community structures derived in Chapter 3 to perform the

reliability study of the power system by identifying critical components in the cascade process.

A novel community-based centrality measure is used to identify and rank the critical components

of the IEEE 118 test bus system (which are mostly the bridge or overlap nodes). Further, the

criticality of the identified components is verified by comparing with critical components identified
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by standard centrality measures as well as an existing influence-based method [44] using data-driven,

SI epidemic simulation, power simulation, and graph-based efficiency analyses. Additionally, the

role of operating settings, i.e. loading levels in power grids’ centrality is discussed.

In Chapter 5, the community structures derived in Chapter 3 is utilized to construct a

Markov chain framework for characterizing and predicting size of cascades. Numerical analysis-based

results are provided for the IEEE 118 test bus system, which includes the probability distribution

of average cascade sizes as well as probability distribution of cascade sizes given the cascade started

from a unique community.

In Chapter 6, the reliability analysis of the power grid infrastructure along with the EV

charging infrastructure is provided. First, individual interaction graphs for the EV charging in-

frastructure and power grid infrastructure are constructed. Then, the two interaction graphs are

combined together to form an integrated framework, in which all reliability studies are performed.

This includes the constraint-based influence model analysis as well as the design of optimal charging

prices for EV charging stations. Note that substations considered in this study is a generalization

of the details of a power system.

1.5 Publications Resulting from this Dissertation

The following publications are associated with this dissertation.

1. Upama Nakarmi, Mahshid Rahnamay-Naeini, Md Jakir Hossain, and Md Abul Hasnat, "Inter-

action Graphs for Cascading Failure Analysis in Power Grids: A Survey", In Review, Energies,

2020.
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2. Upama Nakarmi and Mahshid Rahnamay-Naeini, "A Markov Chain Approach for Cascade Size

Analysis in Power Grids based on Community Structures in Interaction Graphs", In Review, Prob-

abilistic Methods Applied to Power Systems (PMAPS), 2020.

3. Upama Nakarmi, Mahshid Rahnamay-Naeini, and Hana Khamfroush, "Critical Component

Analysis in Cascading Failures for Power Grids Using Community Structures in Interaction Graphs",

IEEE Transactions on Network Science and Engineering, 2019.

4. Upama Nakarmi and Mahshid Rahnamay-Naeini, "Analyzing Power Grids’ Cascading Failures

and Critical Components using Interaction Graphs", IEEE Power & Energy Society General Meeting

(PESGM), 2018.

5. Upama Nakarmi and Mahshid Rahnamay-Naeini, "An Influence-based Model for Smart City’s

Interdependent Infrastructures: Application in Pricing Design for EV Charging Infrastructures",

Springer, Cham, 2017.

6. Upama Nakarmi and Mahshid Rahnamay-Naeini, "Towards Integrated Infrastructures for Smart

City Services: A Story of Traffic and Energy Aware Pricing Policy for Charging Infrastructures",

Smartgreens, 2017.
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Chapter 2: Interaction Graphs of Power Grids

As discussed in Chapter 1, we analyze cascading failures in power grids, which are complex

phenomena caused due to complex interactions among components occurring within a short period

of time [23]. Various studies and models have been developed to understand and control cascad-

ing failures including methods based on power system simulation [20, 46], deterministic analytical

models [47], and probabilistic models [29, 48, 49].

Understanding and analyzing properties of each individual component in a power grid during

cascading failures is challenging due to the large size and complex and sometimes hidden interactions

among the components. Therefore, an alternative to reduce the complexity of cascading failure

studies is by analyzing the global properties of the power grid by modeling the infrastructure as a

graph, where nodes represent the individual components of the power grid and edges represent the

interactions that the components have among themselves. In the past two decades, graph-based

methods [3, 4, 44, 50–97] have attracted a lot of attention due to the simplicity of the models and

ability to describe the propagation behavior of the failures on the graph of the system [98, 99]. Thus,

in this dissertation, we will focus on graph-based models of power grids and provide a literature

review on the various methods and research studies undertaken as well as ongoing in this specific

area. In addition to graph representations of power grids, combination of power grids’ graph with

Portions of this chapter were published in IEEE PES [3] and IEEE TNSE [4]. Copyright permissions from the
publishers are included in Appendix A. Portions of this chapter are also available as preprint in arXiv [45].
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graphs of other dependent infrastructures can represent the complex interdependency/interactions

among the power grid and its dependent infrastructures (which will be discussed in Chapter 6).

We will first discuss the physical topology-based graphs of power grids as many initial

graph-based models were developed based on the physical topology of the power system, where the

connections among the nodes represented the actual physical connections among the components of

the system [100, 101]. However, studies in [96, 102] showed the lack of strong connection between

the physical topology of the system and failure propagation in cascading failures in power grids. In

general, influences and interactions among the components of the system during cascade processes

may occur both locally and at distance due to the physics of electricity governing the power flow

dynamics as well as other functional and cyber dependencies among the components of the system.

For instance, historical as well as simulation data verify that failure of a critical transmission line

in the power grid may cause overload/failure of another transmission line that may or may not be

topologically close. Therefore, graph models based on the physical topology of the system are not

adequate in describing the propagation behavior of failures in power grids. Hence, new methods

are emerging to reveal the complex and hidden interactions that may not be readily available

from physical topology of the power system. These new approaches are focused on extracting and

modeling the underlying graph of interactions among the components of the system.

In this dissertation, we use the term interaction graphs to refer to these models. We broadly

categorize methods for constructing interaction graphs into two main classes: data-driven approaches

and electric distance-based approaches. As the name implies, the data-driven approaches for building

interaction graphs rely on data collected from the system (historical and real data or simulation

data) for inferring and characterizing interactions among the components of the system. We further
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define three categories for data-driven interaction graphs based on the method used for analyzing

the data. These include: (1) methods based on outage sequence analysis [3, 4, 44, 50–71], (2)

risk-graph methods [72–75]; and (3) correlation-based methods [3, 4, 76, 103]. The category of

outage sequence analysis can be further divided into four sub-categories including (i) consecutive

failure-based methods [50–57], (ii) generation-based methods [58–63], (iii) influence-based methods

[3, 4, 44, 64], and (iv) multiple and simultaneous failure methods [65–71].

On the other hand, electric distance-based approaches exploit properties based on physics

of power and electricity governed by Kirchoff’s laws to define interactions among the components.

Thus, the interactions are represented by electrical distances, which illustrate the properties of the

electrical interactions based on power flows among the components. We define two sub-categories

for electric distance-based interaction graphs based on the electrical properties utilized for creating

the graphs. These include: (1) methods that define the interactions based on changes in the power

flow due to changes in physical attributes of components caused by outage conditions [77–81] and

(2) methods that define the interactions among components during normal or non-outage operating

conditions [82–97, 104]. The category of defining interactions during non-outage operating condi-

tions can be classified into: (i) impedance-based methods, which define interactions by considering

a single impedance measure among the components connected over multiple paths [82–93] and (ii)

sensitivities in components’ states due to changes in voltage magnitudes and voltage phase angles

[94–97, 104]. Figure 2.1 shows the taxonomy of the reviewed methods for constructing various types

of interaction graphs. We will discuss these methods in detail.

Next, we use the cascade dataset generated in Section 1.2.2 of Chapter 1 to extract the

interactions/relations among the components of the power grid during the cascade process. As the
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Figure 2.1: Taxonomy of methods for constructing interaction graphs.

cascade model is based on transmission line overloading, which is the main attribute for causing

cascading failures in power grids, we focus on extracting interactions among the transmission lines

of the power grid. Hence, in the interaction graphs, the nodes represent the transmission lines in

the physical topology and the edges between the transmission lines will be the interactions that we

derive from the cascade dataset. We will specifically use two techniques to extract the relations and

construct the graph of interactions, including the influence-based [43] and correlation-based [105]

approaches. Finally, we will present the interaction graphs for IEEE 118 bus system.

2.1 Physical Topology-based Graphs of Power Grids

Initial graph-based studies of power grids, such as [98–101], were based on the physical

topology of the power grid. In general, a power grid can simply be represented by a graph, G =

(V,E), where V represents the set of generator, transmission, substation, or load buses and E

represents the set of power lines [106].
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Physical topology-based graphs of power grids shows the physical connectivity among the

components of the system. Various studies have been performed on such graphs by analyzing their

global structural properties [100, 101], such as average path length, clustering coefficient, and degree

distribution, for analyzing power grids with respect to standard complex networks such as small

world, random, and scale-free graphs. Particularly, the study in [101] compares the average path

length and clustering coefficient of real-world power grids to their equivalent random and scale-free

network models. However, the study concluded that real-world power grids differed significantly

from standard network models as the clustering coefficient and the average path length of real-world

grids were significantly greater than that of their complex network model counterparts.

Some studies performed on the physical topology also focus on properties of the electrical

connections [107] identified using centrality measures such as degree, eigenvector, closeness, and

betweenness (for a review and definition of centrality measures refer to [108]). However, it has been

discussed that physical graphs may be inadequate in representing and capturing the interactions

among the components of the power grid [96, 102] specifically for analyzing cascading failures. This

limitation is due to the inability of the physical graphs to capture the dynamics of interactions

at-distance in cascading failures, for instance, due to Kirchoff’s and Ohm’s laws.

Recently, some studies consider the physical and electrical properties of power grids to

generate synthetic power grid networks that consider the heterogeneity of the components in terms

of their operating voltages [106, 109]. In such graphs, each vertex is associated with a voltage rating

such that transmission lines are represented as edges between vertices of the same voltage level

and voltage transformers are represented as edges between vertices with different voltage levels.

However, analysis of such graphs for cascading failures scenarios is an open research problem.
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Table 2.1: Classification of existing studies using our data-driven taxonomy

Category Subcategory Further Subcategory Works

Data-driven
Interaction Graphs

Outage Sequence

Consecutive Failures [50], [51], [52], [53],
[54], [55], [56], [57]

Generation-based Failures [58], [59], [60], [61],
[62], [63]

Influence-based [44], [64], [3], [4]

Multiple and Simultaneous Failures [65], [66], [67], [68],
[69], [70], [71]

Risk-graph [72], [73], [74], [75]
Correlation-based [3], [4], [76]

2.2 Data-driven Interaction Graphs

Various data-driven approaches have been proposed for inferring and modeling interactions

among the components of the power grid. These approaches rely on data from simulation or histor-

ical outage datasets. As the historical datasets are limited, majority of the studies use simulation

data. Data-driven methods build a graph of interactions for the system, denoted by Gi = (Vi, Ei), in

which the set of vertices Vi are the components of the system that their interactions are of interest,

such as the set of buses or transmission lines. Further, the set Ei represents the set of interac-

tions/influences among the components, which may be directed, undirected, weighted (representing

the strength of interactions or influences) or unweighted depending on the analysis of interest. We

categorize and discuss data-driven methods for modeling interaction graphs for studying cascading

failures in power grids into five categories as shown in Table 2.1.

2.2.1 Interaction Graphs based on Outage Sequences in Cascading Failures

This class of methods rely on cascade data in the form of sequence of failures in each cascade.
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For instance, the sequence l5 → l7 → l3 → l6 represents an example of sequence of transmission

line failures in a cascade scenario. These methods are based on analysis of sequence of failures for

extracting interactions and focus on the cause and effect interactions among failure of components.

Methods in this category use various techniques and statistics to analyze such data as discussed

next.

2.2.1.1 Interaction Graph based on Consecutive Failures

In this category of outage sequence analysis, only direct consecutive failures in a sequence

are used for deriving the interaction links among the components of the system. In other words,

two components in the system have a directed interaction link, ei,j ∈ Ei, if they appear as suc-

cessive outages in the order li → lj in a cascade scenario in the dataset. For instance, if the

sequence l5 → l7 → l3 → l6 represents an example sequence of transmission line failures in a

cascade scenario, the following directed interaction edges will belong to graph Gi, i.e., {e5,7, e7,3,

and e3,6} ∈ Ei. The strength of interactions among the components in this case can be charac-

terized using the statistics of occurrences of pairs of successive outages in cascade scenarios in the

dataset. For instance, the work in [50] assigns weights to the interaction edges by statistical anal-

ysis of number of times that a pair of successive line outages occur in the cascade dataset (i.e.,

|la → lb|/(total number of successive pairs), where |la → lb| is the number of times failures la and

lb occur successively in the cascade dataset). These weights can be interpreted as the probability

of occurrence of each pairs of successive line outages. Examples of studies using this method to

develop the power grid’s graph of interactions include [50–57], where they consider transmission

lines in the system as the vertices Vi of the interaction graph Gi.
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In the study presented in [110], the sequences of consecutive failures are called fault chains.

For creating the dataset of fault chains, in the first step, a single transmission line is tripped as

the initiator of cascading failure in the simulation and in the subsequent steps, the most overloaded

component due to power flow re-distributions is considered as the next failure in the overall sequence

of consecutive failures. In the studies in [51–53, 55–57], for a power grid with n transmission lines,

n fault chains are created and the edges among consecutive failures in each chain is weighted based

on power flow changes in a line after the failure. In the work in [54], fault chains are created by

considering multiple initial failures such that, a system with n transmission lines may have more

than n fault chains. Finally, a fault chain graph is developed by combining all fault chains together

into a single graph where the vertices are all the components that have failed in the fault chains and

the edges between the vertices exist if the outages have successively occurred in the fault chains.

For pairs of outages (i → j) that have reoccurred in multiple fault chains, their combined edge

weight in the fault chain graph is averaged.

2.2.1.2 Interaction Graph using Generation-based Failures

The method based on the consecutive failures discussed in Section 2.2.1.1 focuses on one

to one impact that the outage of a line has on the outage of another line. However, in cascading

failures, instead of pair-wise interactions among successive failures, a group of failures may contribute

to failures of other components. Therefore, it is important to consider the effects of groups of

failures and characterize interactions among the components based on the effects among groups of

components. The works presented in [58–62] define such groups as generation of failures within a

cascade process, which are failures that occur within short temporal distance of each other. In these

works, the sequence of failures in the cascade are divided into sequence of generations and the failure
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induced cause and effect relationships are considered between consecutive generations. Specifically,

outages occurring in generation m+ 1 are assumed to be caused by outages in generation m.

The interactions based on successive generations are defined in different ways in the litera-

ture. For instance, the authors in [44] assume that all components in generation m have interactions

with all components in generation m + 1, i.e., if generation m has n1 number of components and

generation m + 1 has n2 number of components, then the number of interactions between gener-

ation m and m + 1 will be n1 × n2. But some studies argue that considering all possible pairs of

interactions among components of two consecutive generations overestimate the interactions among

components [58–63]. Specifically, all line outages in one generation may not be the cause of a line

outage in the next generation. Therefore, in the works presented in [58, 60], the cause of failure of

a line k in generation m + 1 is considered to be due to the failure of a line in generation m with

the maximum influence value on the line k. The influence value for component j in generation m is

defined as the number of times that the component j has failed in a generation m before the failure

of line k in the successive generation m + 1 in the cascade dataset. For cases where two or more

lines in generation m have the same maximum influence values on line k in generation m + 1, all

such components are assumed to interact with line k.

In the works discussed so far in this section, the interaction among component j in generation

m and component k in generation m + 1 will be represented by a directed link ej,k. While the

works in [58, 60] limit the interactions by only considering the maximum influence values in current

generation as the probable cause of component failures in the next generation, the work in [59]

gives an improved estimate of the interactions between successive generations using the expectation

maximization (EM) algorithm.
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The weight of the interaction links can also be defined in various ways. For instance, the

weight of the link can be defined as the ratio of number of times that the pair of components appeared

in two successive generations over the total number of times that component k has appeared in the

dataset. This weight can be interpreted as the likelihood of failure of component k in the next

generation given the failure of component j in the current generation. The study in [63] considered

both statistical properties as well as the amount of load shed that has occurred between successive

generations to assign interaction link weights. However, the study in [63] identified islands formed in

the power grids during outages and then, selectively assigned links between components of successive

generations only if the generations were located in islands that were direct consequences of one

another.

2.2.1.3 Influence-based Interaction Graph

In this method, the interactions among the components are derived based on successive

generations in cascades; however, the weights of the interactions are characterized based on the

influence model and the branching process probabilistic framework. The influence model is a net-

worked Markov chain framework, originally introduced in [111] and was first applied to cascade

dataset in the work presented in [112]. Studies in this category consider transmission lines in the

system as the vertices Vi of the interaction graph Gi and the influences/interactions between the

lines as the edges Ei.

In [44], authors consider interaction links among all pairs of lines in two successive gen-

erations in a cascade using the influence model. The weights of the directed links are derived in

two steps. In the first step, a branching process approach is used in which each component can

produce a random number of outages in the next generation. The number of induced outages by
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each component is assumed to have a Poisson distribution based on the branching process model.

Parameter λi specifies the propagation rate (mean number of outages) in generation m+ 1 for the

outage of component i in generation m. In other words, this step defines the impact of components

on the process of cascade by describing how many failures their failure can generate [49]. In the

second step, it is assumed that given that component i causes k outages in the next generation,

some components are more likely to outage than others. Therefore, they calculate the conditional

probability g[j|i], which is the probability of component j failing in generation m + 1, given the

failure of component i in generation m. If only g[j|i] values based on the statistical analysis of data

are considered, then the probability of failure of component j given component i failure will be

known; however, the expected number of failures from failure of component i is not known. Hence,

both steps are important in characterizing the influences among components.

The final step consists of combining the information from the first and second steps into

a single influence matrix H (representing the links of graph of interactions and their weights).

The elements of the matrix are defined based on the conditional probability that a particular

component j fails in the next generation m+ 1, given that component i has failed in generation m

and that generation m+1 includes exactly k failures. This probability can be defined as P (j|i, k) =

1− (1−g[j|i])k. Then, the conditional probability hi,j,m that component j fails in generation m+1,

given that component i failed in generation m, over all possible values of k represents the actual

elements of H, and is found by multiplying P (j|i, k) with the probability of k failures occurring as

follows:

hi,j,m =
∞∑
k=0

(1− (1− g[j|i]k))
λki,m
k!

e−λi,m . (2.1)
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Based on the influence graph, cascading failures can start with a line outage at a node of

the graph and propagate probabilistically along the directed links in the graph. Examples of other

works, which have used the influence-based approach to derive the graph of interactions for power

grids include [3, 4, 64]. In this dissertation, we will use this technique in deriving the graph of

interactions for cascade analysis, as will be discussed in Section 2.4.

2.2.1.4 Interaction Graph of Multiple and Simultaneous Failures

This class of methods also use the sequence of failures to model the interactions among the

components of the system; however, they consider the interactions among multiple simultaneous

failures.

Specifically, in the study presented in [65], a Markovian graph was developed with the goal of

addressing the problem of capturing the effect of multiple simultaneous outages within generations

on the characterization of the interactions among the components of the successive generations in

a cascade. In this case, the nodes of the graph represent the states of the Markov chain defined as

the set of line outages in a generation of the cascade and the links represent the transition among

the states (i.e., interactions between successive generations of outages). Hence, each node in the

graph may represent the outage of a single line or multiple lines. Markovian interaction graphs also

consider a node with a null state, which represents the state where the cascade stops. This state

occurs at the end of all cascade scenarios. The transition probabilities among the states (i.e., the

weight of the links) from state i to state j can be estimated by counting the number of consecutive

states in which state i and state j occur in all the cascades and dividing by the number of occurrences

of state i. Other studies that consider the interaction among multiple failures at the same time are

presented in [66–71].
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2.2.2 Risk Graphs for Interaction Graph

The work presented in [72] introduces the risk-based interaction graphs, which describes the

interactions or relationships among the nodes (i.e., buses/substations) of the power grid based on

effects of their simultaneous failures in causing damage in the system. This graph is not solely

focused on analysis of interactions among components during cascading failures. Instead, it is

focused on the vulnerability analysis of the power grid and the effect of failures is assessed using

metrics such as net-ability, which measures the effectiveness of a power grid subjected to failures,

based on power system attributes including power injection limitation and impedance among the

components.

Construction of risk graphs are done in two steps. The first step includes generating and

tracking the sets of strongest node combinations whose simultaneous failures have significant effects

on the power grid [72, 73, 73]. In the second step, these sets of strong node combinations are used

to form the risk graphs. If a node appears at least once in the sets of strong node combinations,

then the node becomes a vertex of the risk graph. Links among nodes in the risk graph exist if

they appear in the same set of strong node combination. Both nodes and links in the risk graph

are weighted based on the frequency of their appearance in the sets of strong node combinations.

This approach results in a weighted but undirected node risk graph, where higher weight values

on the links suggest stronger node combinations. Node risk graphs are dependent on the system

parameters such as ratio of capacity to the initial load of the nodes in the system. To remove

dependencies on system parameters, node risk graphs can be constructed for multiple parameter

values and combined together to form the node integrated risk graph using the risk graph additivity

property [72, 73]. The aforementioned risk graph can also be extended to a directed risk graph,
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where the removal of components in a specific order in strong node combinations are considered

[74].

Another similar concept to risk graph is the double contingency graph introduced in [75].

While m contingency combinations of attack scenarios for the power grid was studied in the risk

graphs, many methods focus on N-2 contingency analysis as the power grid is considered to be N-1

protected [113]. In the double contingency graph, the vertices of the graph are the transmission lines

and the links between vertices show pairs of transmission lines whose simultaneous failure as initial

triggers can affect the reliability of the system by, for instance, violating the thermal constraint

rules in the power grid.

2.2.3 Correlation-based Interaction Graph

The work in [76] presents a graph of interactions for power grids based on correlation among

the failures of the components. In the correlation-based interaction graph in [76], vertices represent

the transmission lines and the edges represent the pairwise correlation between line failures in

the cascade dataset. The correlation dependence between failures are captured in the correlation

matrix, whose ijth elements are positive Pearson correlation coefficient between the failure statuses

of components i and j in the cascade dataset. The resulting correlation matrix is symmetric and can

be interpreted as an undirected and weighted interaction graph, where the nodes are the failed lines,

the edges are the interactions between the lines and the weights are the correlation values among

the components. Similarly, the studies in [3] and [4] also construct correlation-based interactions

graphs from simulated cascade dataset consisting of sequences of transmission line failures. In this

dissertation, in addition to the influence-based technique discussed in Section 2.2.1.3, we will also
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use this technique in deriving the graph of interactions for cascade analysis, as will be discussed in

Section 2.4.

2.3 Electric Distance-based Interaction Graphs

Various electric distance-based methods have been proposed for modeling interactions among

the components of the power grid using the dynamics of power flow as well as the physical/electrical

properties of the system and components. In a power grid, electricity does not flow through the

shortest path between two nodes i and j. Instead, it can flow through parallel paths between nodes

i and j based on the physical properties of the system and its components as well as the physics

of electricity (i.e., Ohm’s law). Thus, the electrical interactions/distances between the components

may extend beyond the physical topology and the direct connections in the power grid. The concept

of electric distance was first introduced by Lagonotte et al. [104] in 1989 as a measure of coupling

between buses in the power system and was based on sensitivities in the power system due to changes

in voltage magnitudes.

Similar to data-driven interaction graphs, electric distance-based methods build a graph of

interactions for the system, denoted by Gi = (Vi, Ei), in which the set of vertices Vi are the compo-

nents of the system that their interactions are of interest, such as the set of buses or transmission

lines. Further, the set Ei represents the set of interactions/influences among the components, which

may be directed, undirected, weighted (representing the strength of interactions or influences) or

unweighted depending on the analysis of interest. We categorize and discuss electric distance-based

methods for modeling interaction graphs in power grids into two categories as shown in Table 2.2.
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Table 2.2: Classification of existing studies using our electric distance-based taxonomy

Category Subcategory Further Subcategory Works

Electric
Distance-based
Interaction Graphs

Outage Condition-based [77], [78], [79], [80], [81]

Non-outage
Condition-based

Impedance-based
[61], [82], [83], [84], [85],
[86], [87], [88], [89], [90],
[91], [92], [93]

Jacobian [86], [94], [95], [96],[97]

2.3.1 Outage Condition-based Interaction Graph

This class of methods for characterizing electric distance-based interaction graphs are focused

on interactions among the components of the power grid during outage conditions. For instance, in

the study presented in [78], interactions among the components as well as their weights are derived

using the changes in the power flows in transmission lines during outage conditions. Thus, the outage

induced interaction graph Gi consists of the set of vertices Vi that represents the transmission lines

and the set of edges Ei that represents the impact of outage of one line on another. This impact is

characterized using LODF [114], where LODF for line ei,j ∈ Ei is calculated based on the ratio of

the impact of outage of line i on line j based on the reactance of all possible spanning tree paths

between the lines, over the impact of outage of line i on line j using the reactance of all alternative

spanning tree paths that the power can flow (i.e., excluding the spanning tree path of line i) [77].

However, during cascading failures, the impact of a failed line on the remaining lines is not

limited to changes in power flows. In a power grid, if two or more lines share a bus, outage of one

line may expose the remaining lines (connected through the same bus) to incorrect tripping due to

malfunctioning of the protection relays. The exposed lines are prone to failure and increase in power

flow in the exposed lines exacerbates their tripping probability causing further outages. Such failures
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are known as hidden failures. In the studies in [79–81], vertices Vi represent transmission lines as

well as a hidden failure state and edges Ei represent inter-line interactions as well as interactions

between lines and the hidden failure state. Thus, the interaction graph Gi will have n + 1 nodes

where n is the number of transmission lines and the extra one node represents the hidden failure

state. The hidden failure node has bidirectional links from itself to every other node in the power

grid. However, the hidden failure node does not have influence on itself. The inter-line interaction

ei,j ∈ Ei shows the increase of power flow in line j due to outage of line i. The interaction from the

hidden failure node to a line i reflects the tripping probability of line i caused due to the increase in

power flow in line i exceeding the line flow limits. And, interaction from line i to the hidden failure

node reflects the average tripping probability of all the other remaining lines.

2.3.2 Non-outage Condition-based Interaction Graphs

As the name suggests, this class of methods for constructing the electric distance-based

interaction graphs are focused on interactions among the components of the power grid during

normal operating conditions. We broadly categorize non-outage condition-based interaction graphs

into two categories: impedance-based and Jacobian as discussed next.

2.3.2.1 Impedance-based Interaction Graph

Impedance-based electric distance interaction graphs Gi consist of vertices Vi that represent

buses and edges Ei that represent electrical interactions between pairs of buses weighted by their

corresponding impedance-based electrical distances.

Inverse admittance matrix, more commonly known as the impedance matrix Z, is one of the

simplest forms of representing electrical interactions between pairs of buses in the system and is
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found by inverting the system admittance matrix Y, i.e. Z = Y−1. Matrix Z shows the relationship

between the nodal bus voltage vector and the nodal current injection vector. However, unlike matrix

Y, which is sparse, impedance matrix Z is non-sparse as it represents the changes in nodal voltage

throughout the system due to a single nodal current injection between a pair of nodes in the system.

Therefore, edges in the impedance-based interaction graph are the connections between the elements

in the Z matrix with weights between buses i and j corresponding to their absolute value of the

impedance, i.e. |Zij | [82–90]. Smaller magnitudes of impedance represent shorter electric distance

between buses. Note that the individual elements Zij in matrix Z are complex valued.

Note that studies in [82–90] are not focused on cascading failures but their concept of

formulating impedance-based electrical distances can be extended for studying cascade processes.

For example, in the study in [61], transmission lines are considered as the nodes of the interaction

graph and thus, impedance-based electric distance between pairs of transmission lines are assigned

as weights of the interaction links. To find electric distance between transmission lines i and j,

where line i connects bus is to id and line j connects bus js to jd, the minimum of the four possible

Thevenin equivalent impedance’s between the pairs of buses, i.e., Zisjs , Zisjd , Zidjs , and Zidjd is

taken.

Cascading failures can also be studied by representing interactions between pairs of nodes by

effective resistances between the nodes. Effective resistance, Rij , between nodes i and j, also known

as Klein resistance distance [115], is the equivalent resistance of all parallel paths between the nodes.

It shows the potential difference between nodes i and j due to unit current injection at node i and

withdrawal at node j. For cascading failure analysis, as the impedance of a transmission line in a

high voltage transmission network is dominated by the imaginary part of impedance, i.e. reactance,
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the effective resistance between nodes can be formulated in terms of their reactance. Thus, in the

studies in [91–93], effective resistance between nodes i and j is found as Rij = Q+
ii−2Q+

ij+Q
+
jj where,

Qij is the row i and column j element of Q+, which is the penrose pseudo-inverse of the Laplacian

matrixQ. MatrixQ is defined as the difference between the weighted diagonal degree matrix and the

weighted adjacency matrix derived from the physical topology, and shows the relationship between

the buses and transmission lines in the grid. In the studies in [91–93], the weights of the edges in

the physical topology required for finding the weighted diagonal degree and adjacency matrix are

the susceptance (i.e., the imaginary part of impedance) values between the nodes. Thus, edges Ei

in the effective resistance interaction graph reflect the electrical connections between the buses with

weights between nodes i and j being the corresponding Rij values.

2.3.2.2 Jacobian Interaction Graph

Electric distance-based interaction graphs can also be constructed using the sensitivity ma-

trix of the power grid during normal operating conditions. In such interaction graphs Gi, vertices

Vi represent the buses and the edges Ei represent the electrical interactions in terms of sensitivities

between the buses. These sensitivities can be found using the Jacobian matrix, which is obtained

during Newton Raphson-based load flow computation. Jacobian sensitivity matrix J, shows the

effect of complex power injection at a bus on the voltage magnitude and voltage phase angles of

other buses. Matrix J consists of four sub-matrices.

The seminal work of electrical distances by Lagonotte et al. in [104] focused on using the

Jacobian sub-matrix (JQV), also known as the voltage sensitivity matrix ∂V/∂Q, to find the electric

distance between buses. Similarly, the study in [94, 95] also used the voltage sensitivity matrix.

In the studies in [94, 104], the matrix of maximum attenuations was found, which consisted of
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columns of voltage sensitivity matrix divided by the diagonal values. Finally, electrical interactions

ei,j ∈ Ei between buses i and j weighted by their electric distance was derived as the logarithm of

the individual elements of the attenuation matrix. Note that studies in [94, 95] analyzed the risk

of cascading failures by studying the voltage collapse phenomenon, which is a sequential process

during which large parts of the power grid may suffer due to low voltages [116].

2.4 Interaction Graphs for IEEE 118-bus System

The simulated cascade dataset generated using the cascade model discussed in Section 1.2.2

of Chapter 1, is used to find the logical graphs of interactions, H and CR based on the influence-

based and correlation-based techniques discussed in Section 2.2.1.3 and Section 2.2.3 respectively.

The physical topology of the IEEE 118 test bus system shown in Figure 1.2 of Chapter 1, is

converted to a 186 node line graph shown in Figure 2.2, where the 186 nodes represent the edges

(transmission lines) in the original topology of Figure 1.2 and edges represent common buses between

the transmission lines.

We use the overall cascade dataset (with size of 16,000 cascade scenarios) without considering

operating characteristics (i.e., r parameter). We constructed the directed graph of interactions

based on influence-based approach (i.e., graph H ) and the undirected graph of interactions using

correlation-based approach (i.e., graph CR). Excluding the self loops, total number of possible links

in the interaction graph is 34,410 for the undirected correlation CR matrix and 68,820 for the

directed influence H matrix. However, based on the cascade dataset, the graph of interactions for

CR and H consist of 34,396 and 32,504 links, respectively. Both graphs H and CR are dense graphs.

However, there are 0.05% missing links out of the total possible undirected links in graph CR (due
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(a) (b)

Figure 2.2: IEEE 118-bus system converted to a 186 node line graph. (a) Topology of the IEEE
118-bus system shown in Figure 1.2 of Chapter 1, where black nodes represent the buses of the
power grid and the blue links represent the transmission lines between the buses. (b) Line graph
of the topology shown in (a), where blue nodes in (b) represent the transmission lines in (a) and
black links in (b) show the common buses between the transmission lines in (a).

to zero correlation) and 52.7% missing links out of the total possible directed links in graph H (due

to zero influence).

2.4.1 Applying Threshold to Interaction Graphs

Influence-based and correlation-based approaches pick even the smallest interactions based

on the cascade data, due to which the small interactions may act as noise [117]. Hence, to focus

on the major interactions in the system, we apply thresholds to only consider interactions with

strength larger than a threshold value [118]. Since, thresholds can result in islands in the interaction

graph, we focus on the Largest Connected Components (LCC). Identification of LCC in interactions

graphs with major strength of interactions can be used in prediction of the largest cascade sizes.

For comparisons between the interaction graphs based on influence-based and correlation-based

approaches, we choose thresholds such that the size of LCC is comparable in both networks. For
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Figure 2.3: Interaction graphs for H (Threshold ≥ 0.7) over the line graph (shown in black).

Figure 2.4: Interaction graphs for CR (Threshold ≥ 0.7) over the line graph (shown in black).

instance, Figure 2.3 and Figure 2.4 show the graph of interactions atop the line graph (shown

in Figure 2.2 (b)) for the influence-based and correlation-based approaches for threshold 0.7, for

which the size of LCC for H and CR are 57 and 59, respectively. The strong interactions on the

same dataset of cascades is shown among different set of components in Figure 2.3 and Figure

2.4, which emphasize the role of the technique in extracting the graph of interactions. We also

observed that the size of LCC for H ≥ 0.6 and CR ≥ 0.4 are similar. However, in these thresholds

too, the strong interactions among components are shown in different sets of components. Similar
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to the different techniques that lead to different graph of interactions on the cascade process, we

observed that operating settings, e.g. different loading levels for the power grid r, also result in

different graphs of interactions. In the upcoming chapters, we will show that different techniques

and operating settings lead to different structures in interaction graphs and consequently, different

criticality of the components. These properties will have a central role in determining propagation

path of failures and help in predicting cascade sizes. Overall, these studies contribute in mitigating

large scale cascading outages.

2.5 Summary

In this chapter, we reasoned the importance of graph representations of power grids condi-

tioned to cascading failures. We discussed the physical topology-based graphs of power grids and

the inadequacy of such graphs in providing accurate representations of cascading failure scenarios.

We learned that accurate modeling of cascading failures by graphs should be undertaken using

interaction graphs rather than physical topology-based graphs. Thus, we reviewed existing work

on various techniques deployed for constructing interaction graphs in two distinct categories: data-

driven and electric distance-based. We specifically used two data-driven methods: influence-based

and correlation-based for deriving interaction graphs from our cascade dataset produced in Chapter

1. We showed that depending on the technique of deriving interaction graphs, different graphs are

produced from the same dataset. Such graphs have the same number of nodes but differ in the

interaction links among components, in terms of the number of links and their direction as well

as their inherent meaning. For example, the influence-based interaction graphs are directed and

weighted, where the weights represent the probability of failure of the child node given the failure

of the parent node. In contrast, the correlation-based interaction graph is undirected and weighted,
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where the weights represent the correlation with which two components fail in the same cascade. We

also showed that applying thresholds to interaction graphs is necessary to focus on the influential

interactions and remove unwanted noise. However, we observed that applying the same threshold

to the influence-based and correlation-based interaction graphs produce different graphs with inter-

action links among different sets of components. Further, we also showed that operating settings,

such as loading levels of the power grid impact the produced interaction graph. We postulate that

different techniques of deriving interaction graphs will consequently lead to different structures and

patterns in the interaction graphs and thus, different criticality of components, as will be discussed

in detail in Chapter 3 and Chapter 4 respectively. We will also produce interaction graphs for the

interdependent power and transportation infrastructure for the purpose of reliability analysis, as

will be discussed in Chapter 6.
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Chapter 3: Structures and Patterns in Interaction Graphs of Power Grids

Structures and patterns in various networks are important in describing the spread of various

processes such as infectious diseases, behaviors, rumors etc. [119–121]. In the case of large scale

power grids, structures present in the interaction graphs of power grids can be used to study the

impact of cascading failures in the transmission network and utilize the graph structure to mitigate

large cascades. For example, graph structures considered in the studies in [77, 78] for cascade

mitigation are tree partitions. In the study in [77], tree structures present in the outage condition-

based interaction graph (details discussed in Section 2.3.1) showed that transmission line failures

could not propagate across common areas of tree partitions. Further, the extended work of [77] in

[78] found the critical components of the tree partitions, known as bridges. The failure of bridge

lines played a crucial role in the propagation of cascading failures. However, failure of non-bridge

components did not propagate failures and the impact was more likely to be contained inside smaller

regions/cells. This important property of bridge lines was used in mitigation of cascading failures

by switching off transmission lines that caused negligible network congestion as well as improved

the robustness of the system.

Purpose of analyzing structures present in the interaction graphs are not limited to miti-

gation of cascading failures. For instance, in the study in [83], network structures were used for

Portions of this chapter were published in IEEE PES [3] and IEEE TNSE [4]. Copyright permissions from the
publishers are included in Appendix A.
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contingency analysis. The impedance interaction graph (details discussed in Section 2.3.1) in [83]

was pruned by removing edges above an operator defined threshold. Then, the common structure

between the pruned impedance interaction graph and the topological graph of the power grid were

analyzed and verified to be the contingencies that violate transmission line limits and cause over-

loads. Similarly, the study in [85] identified zonal patterns in the impedance interaction graph for

reliability assessment of zones for load deliverability analysis.

In general, there are various ways and purposes for defining the structures and patterns of

connections in graphs. In this dissertation, we analyze the community structures present in the

influence-based and correlation-based interaction graphs, derived in Chapter 2 using the cascade

dataset generated in Chapter 1. Many research works have studied the impact of structures and

communities in networks on cascade processes [38–42]. Communities are defined as groups of nodes

that are densely connected among themselves while having scarce connections to other groups.

Specifically, in these studies, it has been shown that in addition to the microscopic and macroscopic

properties of networks, community structures within the network have significant impact on cascade

behavior. According to the findings in [38, 40, 42], in general a cascade entering a community will

reach to most of the other members of the community, while it is more difficult for it to reach to

other communities. In other words, the communities act as traps for the cascade processes over

the networks [41, 122, 123]. This important property can have important practical implications in

controlling the cascade processes by limiting propagation of cascading failures inside community

structures.

However, even with community detection, different techniques can reveal different structures.

To show this point, we study the community structure of the graph of interactions using disjoint and
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overlapped community detection algorithms while considering both directed and undirected graphs.

For community detection, we specifically apply Infomap [124, 125], which considers link directions,

and conductance-based community detection [126], which does not consider link directions. These

community detection techniques are different in the nature of their structure detection approach ,as

discussed in Section 3.2.3. We will show that applying different community detection techniques

can lead to variation in the identified structures and each can reveal various aspects of cascade

processes.

3.1 Related Prior Work

In this section, we briefly review the existing studies for analyzing various roles of community

structures in networks. It has been shown that the community structure in a network is an important

player in percolation process, spreading behavior, epidemic model or information diffusion in the

network [38–42]. The extent to which communities impact the epidemics are particularly studied

in [38]. The authors in [38] discussed that while the set of communities are of crucial importance,

the exact internal structure of the communities barely influence the behavior of the percolation

processes across networks unless it is a targeted attack that starts the spread. Other works have

discussed that communities act as traps for the epidemic processes over networks [38], [41]. The

work in [38] also discussed that the inter-community edges are important for the spread of epidemics.

As suggested by [39], on average, epidemics in networks with strong community structures exhibit

greater variance in the final size.

The community structure of networks has also been studied for targeted immunization to

prevent spread of diseases [39], [40]. Specifically, [39] exploits the concept of community bridges
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(i.e., nodes that connect to multiple communities) and presents a stochastic algorithm for finding

bridging nodes using random walk over the network. The authors in [39] showed that immunization

of identified bridging nodes are more effective than those simply targeting highly connected nodes.

In this chapter, we use a similar concept to protect the critical components identified based on the

community structure to reduce the risk of large cascades.

3.2 Community Structures in Interaction Graphs of Power Grids

In this section, we will start by discussing some preliminaries of community structures,

including the types of community structures and their importance in cascade behavior. Then, we

will discuss two specific community detection algorithms that we use in this dissertation. Finally, we

will show the results obtained from the community detection algorithms applied to the interaction

graphs derived in Chapter 2 using the cascade dataset generated in Chapter 1.

3.2.1 Preliminaries

Communities are densely connected groups of components with scarce connections to com-

ponents of other groups [127]. Community structures identified in graphs can be of two types (1)

overlapped, such that a component may be a member of more than one community and (2) disjoint,

such that a component is a member of a single community. Community structures are identified in

graphs using community detection techniques (see [127–129] for a survey of such approaches). These

approaches utilize the inherent patterns and properties of the graph, such as the weights of the links

and their directions. In general, the goal of the community detection algorithm is to identify the

set of communities and the membership labels for the components of the graph. Figure 3.1 shows

examples of disjoint and overlapped community structures. As seen in the figure, bridge nodes of
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(a) (b)

Figure 3.1: Examples of community structures shown by dashed lines. (a) Two disjoint
communities with weak interactions between the bridge nodes (bridge nodes shown in grey). (b)
Two overlapped communities with weak interactions between the overlap nodes (overlapped nodes
shown in grey).

disjoint communities tend to have weak interactions with components of other communities while

having strong interactions with components within the same community. Similarly, overlap nodes

of overlapped communities tend to have strong interactions among other components within the

same community but weak interactions among overlap nodes of different communities.

Studies in network science have shown that communities play important roles in defining

the propagation behaviors in networks [123]. Particularly, the propagations tend to stay within

communities due to tight internal interactions and weak external interactions. In this dissertation,

we focus on overlapped as well as disjoint community structures in the interaction graphs of the

power grid as we believe they can provide a new perspective in defining the key players in the

cascade process.

3.2.2 Identifying Community Structures in Interaction Graphs

In this section, we evaluate the community structure of the graph of interactions to sub-

sequently characterize their role in the cascade processes in power grids. Consider the interaction

graph, constructed using the influence-based and correlation-based techniques discussed in Section
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2.2.1.3 and Section 2.2.3 of Chapter 1, respectively. Let the interaction graphs be denoted by

IG = (NIG, EIG), where NIG is the set of the nodes in the graph (i.e., the set of transmission

lines in the power system) and EIG is the set of interaction links in the graph. Community de-

tection algorithms identify the set of communities, C = {C1, C2, · · · , CK}, where K is the number

of communities in the graph, based on the patterns and weights of interactions. Then they assign

membership labels to the nodes inNIG. We denote the set of community labels for node ni ∈ NIG by

CL(ni) = {Cv, · · · , Cu}, where Cv, Cu ∈ C. For the overlapped community structures |CL(ni)| ≥ 1,

while for disjoint community structures, |CL(ni)| = 1, where |.| is the cardinality of the set.

In this dissertation, we study the overlapped as well as disjoint community structures in

the power grid’s interaction graphs as they allow the modeling of the spread of failures from one

community to the next using the overlap or bridge nodes. We specifically adopt the overlapped

community detection algorithm presented in [126] (with minor modifications discussed in [130]),

which considers weights but not the direction of interactions. It uses the belonging degree and con-

ductance to locally optimize the conductance-based utility function for communities by evaluating

a new community formed with an addition of a new neighboring node. We refer to this community

detection algorithm as the conductance-based community detection in this dissertation. A detailed

review of this approach is presented in [126, 130]. In order to utilize the weights as well as the

direction of interactions in our analyses, we adopt the Infomap community detection approach [131].

In Infomap, we exploit both disjoint and overlapped community detection algorithms, using vari-

ations of its random walk algorithm, to evaluate and compare the role of disjoint and overlapped

community structures in the cascade processes of power grids. For more details on this algorithm,

refer to [131].

48



In overlapped communities of directed as well as undirected interaction graphs, common/

overlap nodes (nodes that belong to multiple communities) contribute in the spread of failures

during cascades. In disjoint communities of undirected interaction graphs, bridge nodes (nodes that

have links to components in other communities) contribute in the spread of failures during cascades.

In the case of directed interaction graphs with disjoint communities, there are two types of bridge

nodes: o-bridge nodes that have outgoing links towards nodes of other communities and i-bridge

nodes that have incoming links from nodes of other communities. While, incoming and outgoing

properties are both important factors in determining spread of failures, we consider the former as

the initiator of failure propagation during cascades. Note, a node may have both incoming and

outgoing links, however, the spread of failures to other communities occur through the outgoing

links only.

Next, we briefly review the conductance-based community detection and the Infomap com-

munity detection algorithms. Note that the two approaches used in this dissertation for community

detection are two examples of community detection algorithms and evaluating the performance of

Infomap or conductance-based methods in identifying communities is not the focus of this disser-

tation. Instead, we use these methods to show that various community structures can lead to each

component having a distinct role in the propagation characteristics of cascades.

3.2.2.1 Conductance-based Community Detection

We adopt the weighted, overlapped community detection algorithm presented in [126] (with

minor modifications) to characterize the overlapped community structure in the graph of interac-

tions. Since, communities are overlapped, for some of the i and j pairs of communities, Ci∩Cj 6= ∅.
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The conductance-based community detection uses the belonging degree of a node to a community

and the overall conductance of a community to find community structures in graphs.

1. Belonging Degree: The set of neighbors and the degree for node i is denoted by Ni and Di,

respectively. The degree of node i is defined as Di =
∑

j∈Ni
wij , where wij is the weight of the link

from node i to node j. Thus, the belonging degree of node i to a community Ck is defined as

B(i, Ck) =

∑
j∈Ck

wij

Di
(3.1)

2. Conductance: The conductance φCk
of a community Ck ∈ C is defined as

φCk
=
cut(Ck, G\Ck)

wCk

, (3.2)

where cut(Ck, G\Ck) denotes the sum of weights of edges adjacent to the nodes in the community

except edges inside the community itself and wCk
denotes the sum of the weights of all edges

connected to nodes in the community. Smaller values of conductance for communities are preferred.

3. Conductance-based Community Detection Algorithm: The community detection algorithm pre-

sented in the study in [126] is shown in Algorithm 1 with two minor modifications: (1) to update

the conductance as in line 8 and (2) to remove the analyzed neighbors from the neighboring set as

in line 9 and 11. Thus, all neighbors of an initially identified community are either appended or

skipped. In this algorithm, the edges within community C are denoted by Ec. While, the appending

process of a node to a community is different from the algorithm presented in [126], the identified

communities are in agreement with the concept of tight interactions within communities and weak

interactions outside communities.
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Algorithm 1 Community detection algorithm based on [126]

Input: Graph G = (V,E)
Output: Overlapped Communities C
1: Initialize: C = ∅
2: while E 6= ∅ do
3: C = {i, j} where e(i, j) = argmax

(u,v)∈E
wij

4: while Nc 6= ∅ do
5: C ′ = C ∪ argmax

w∈Nc

B(w, c)

6: if Φ(C ′) < Φ(C) then
7: C = C ′

8: Φ(C) = Φ(C ′)
9: Nc = Nc\C

10: else
11: Nc = Nc\C
12: end if
13: end while
14: E = E\Ec
15: C = C ∪ C
16: end while

3.2.2.2 Infomap Community Detection

The Infomap community detection algorithm [124] is an information-theoretic algorithm,

where the problem of finding the community structure of a network is a problem of optimally com-

pressing the information accumulated by a random walk on the network. Each node or community

in the network is represented by a code-word such that the random walk, represented by a stream

of codewords is of shortest possible length, known as the minimum description length. A simple

method of assigning codewords to nodes is by using Huffman codes, where the frequency of visit by

the random walk is used to assign the codewords.

The frequency of visits depends on the structural regularities of the network. Specifically,

for a network having a community structure, a random walk will most likely visit the node inside the
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same community in the next step, i.e., the propagation rate of the random walk inside the community

is higher compared to outside the community and a random walk entering a community persists in

the community for a longer time. This regularity in the network is used to solve the compression

problem by reusing codewords, where each community is represented by a unique codeword but

codewords representing individual nodes inside the communities may be reused. However, assigning

codewords to nodes and communities is not the main goal and the actual codewords are not devised.

In fact, only the theoretical limit on the shortest possible description length to represent the nodes

and communities in the network is required and, it can be found by Shannon’s source coding theorem.

Further, using Shannon’s theorem in conjunction with the structural regularity of the network, the

method finds the K partitions (communities) in the network with efficient membership of nodes to

each partition.

Mathematically, the average description length of a single step taken by the random walk is

given by the map equation as follows

L(C) = q→H(Q) +
K∑
i=1

pi H(P i), (3.3)

where C is the set of disjoint communities in a network (we will discuss overlapped communities

later in this section) and L(C) is the lower bound on the code length of a single step of the random

walk through the network. Equation (3.3) consists of two parts: the cost of movement between

communities, and the cost of movement inside communities. These movements are represented by

K+1 codebooks: one index codebook and K module codebooks. The index codebook consists

of the K unique codewords given to K communities while the module codebook for community

Ci consists of the codewords given to nodes inside that community including one code to exit the
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community. Specifically, in Equation (3.3), H(Q) is the entropy of the index codes given to the

communities weighted by q→, which is the rate of use of the index codebook and Q is the normalized

probability distribution of q→. If qi→ is the probability of the random walk exiting the community

i then, q→ =
∑K

i=1 qi→. Next, H(P i) is the entropy of the module codenames given to nodes within

a community Ci, including the entropy to exit the community and P i is the normalized probability

distribution. It is weighted by pi , which is the fraction of within community movements that occur

in community Ci including the probability of exiting the community, i.e.
∑K

i=1 p
i = 1 + q→. The

map equation is discussed in detail in [131].

As the Infomap community detection algorithm is based on random walk, it can be applied to

directed, undirected, weighted and unweighted graphs. It also has variations that allow identification

of overlapping communities. In this case, instead of assigning only one codeword to a node, multiple

codewords can be assigned by considering the origin of the random walk. Solving the map equation

for overlapping modules gives the number of communities, the membership of nodes to communities

and also the degree by which a node belongs to a module by looking at how often a random walk

switches modules [132].

3.2.3 Community Structure Analysis and Results

In this section, we will present the analysis and results of the community structures iden-

tified in the influence-based and correlation-based interaction graphs of IEEE 118 test bus system

constructed in Chapter 2 using the cascade dataset generated in Chapter 1. Particularly, we will

use the conductance-based community detection and the Infomap community detection to identify

the overlapped as well as disjoint community structures in the interaction graphs. We will show

that depending on the type of interaction graph, the algorithm used in identifying communities, and
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the operating settings of the power grid used for generating the cascade dataset, the structures and

patterns identified in the graphs will differ and lead to different conclusions about the criticality of

components.

3.2.3.1 Community Structures in IEEE 118-bus System

We apply the Infomap disjoint and Infomap overlap community detection as well as the

conductance-based community detection to the influence-based (H ) and correlation-based (CR)

graphs for the IEEE 118-bus system. We briefly discussed the thresholded interaction graphs in

Section 2.4.1 of Chapter 1. Removal of the small weighted interactions from the interaction graphs

have dual purpose. In addition to showing only the strong interactions between the components,

removal of small weighted links ensures that community detection algorithms can detect properties

that bear the macroscopic and microscopic features relative to the scale of the interaction graphs.

If community detection algorithms, discussed in Section 3.2.2, are applied to interaction

graphs directly, they will not be able to reveal the dominant structures in the graph due to links

with small weights acting as noise [117]. Based on our observations, these community detection

algorithms result in very few communities (one or two communities for interaction graphs H and

CR) with majority of the components belonging to one community. As such, we use a threshold

for the weight of the links, such that the resulted communities are not too small or too large in

number or size; such that the resulting communities can bear properties between microscopic and

macroscopic properties relative to the scale of the graph [118].

We have tested various thresholds and found that the best thresholds based on the quality

of the identified communities are 0.6 for graph H and 0.7 for graph CR. To make a comparable case
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Table 3.1: Properties of the thresholded graphs of H and CR

Graph No. of
vertices
in LCC

No. of
edges

No. of com-
munities:
Conductance-
based

No. of com-
munities:
Infomap
Disjoint

No. of com-
munities:
Infomap
Overlap

H ≥ 0.6 143 1160 45 12 12
H ≥ 0.7 57 612 12 4 7
CR ≥ 0.7 59 636 12 5 5

for the graph CR with threshold 0.7, we also evaluate graph H with threshold 0.7, which provides

similar number of components in the largest connected component (LCC) and similar number of

communities as presented in Table 3.1. As the thresholds can result in disconnected graphs; we only

use the LCC of the interaction graphs in our analyses similar to the work in [118].

For the influence graph H with threshold 0.6, we obtain 12, 12 and 45 communities from

Infomap disjoint, Infomap overlap and conductance-based community detection, respectively. We

have depicted the structures of these communities in Figure 3.2 over the line graph of IEEE 118-

bus system shown in Figure 2.2 of Chapter 2. The colors applied to the nodes are classifying the

transmission lines into different communities each represented by a color. If a component belongs to

multiple communities, as in the case of overlapped communities, multiple colors are assigned to the

node. In the case of disjoint communities, the bridge nodes are assigned multiple colors depending

on the communities that they bridge. The small blue nodes represent the transmission lines that

have weak interactions (below the defined threshold) and consequently, did not participate in the

community detection process. We observed that depending on the interaction graph derived from

the cascade dataset and the community detection algorithm applied to the thresholded interaction

graphs, the identified community structures also differ.
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Figure 3.2: Community structure of graph H with threshold 0.6 over the line graph of IEEE
118-bus system based on (a) Infomap disjoint, (b) Infomap overlap, and (c) Conductance-based
community detection algorithms.
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3.2.3.2 Community Structures’ Statistics in IEEE 118-bus System

In our first study, to analyze the community structures of interaction graphs, we use the

conductance-based community detection algorithm discussed in Section 3.2.2.1 for identifying over-

lapped community structures. We applied this algorithm over the LCC of the influence-based and

correlation-based interaction graphs H and CR after applying threshold 0.7 and found 12 commu-

nities in each, respectively. However, the structure of communities and their OR are quite different.

Our analysis show that some communities do not overlap suggesting that failures inside such com-

munities rarely propagate to other communities. Table 3.2 shows the OR for the communities

identified in H with threshold 0.7. Table 3.3 shows the number of nodes in each community for the

three community detection algorithms. Since, the conductance-based algorithm yields 45 commu-

nities, for simplicity we show only the 12 highly populated communities in Table 3.3. To provide

a more detailed view on the community structures, in Table 3.4, we show the overlap/bridge size

between pairs of communities Ci and Cj , denoted by |O(i, j)|. The size of bridges for the disjoint

communities is counted as the total number of nodes that act as bridges between two communities

Ci and Cj . For overlapped communities, the size of overlaps is the number of nodes that fall in

the overlap region (i.e., belong to both communities). The number of communities with n over-

lap/bridge components is denoted by Un =
∑

Ci,Cj∈C δ(|O(i, j)| − n), where δ is the delta function,

such that δ(i) equals to one if i = 0 and zero otherwise. In Table 3.4, for Infomap overlap, there are

no pairs of communities that have overlap size greater than 3, hence U4 and above is zero. The last

column of Table 3.4 shows the pairs of communities that have overlap/bridge size greater than 4.

Tables 3.3 and 3.4 show that the shape and size of communities as well as the size of overlap/bridge

between communities differ depending on the applied algorithm.
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Table 3.2: Overlap Ratio (OR) of communities in H with threshold 0.7

Community 3 4 6 7 8 9 10 11 12
1 - 0.067 - 0.053 0.389 - - - -
2 0.1 - 0.08 0.105 0.13 0.187 - 0.058 0.133
3 - - 0.105 0.154 0.111 - - 0.091 -
5 - - 0.227 - - - 0.2 - -
6 - - - 0.053 - 0.058 0.062 0.062 -
7 - - - - 0.187 - - - -
8 - - - - - 0.062 - - -
9 - - - - - - - 0.125 -

Table 3.3: Community sizes for graph H with threshold 0.6

Community No. of nodes
(Conductance-based)

No. of nodes (In-
fomap Disjoint)

No. of nodes (In-
fomap Overlap)

1 19 31 32
2 19 17 17
3 18 16 18
4 15 21 29
5 14 26 28
6 14 7 7
7 14 3 6
8 14 2 3
9 13 6 3
10 13 5 8
11 10 6 6
12 10 3 5

Table 3.4: Community overlap sizes for graph H with threshold 0.6

Algorithm U0 U1 U2 U3 U4 |O(i, j)| > 4

Infomap
Disjoint

97 11 5 2 2 O(3,6)=5, O(3,10)=5, O(4,10)=5,
O(4,12)=5, O(5,11)=5, O(3,12)=6,
O(4,11)=6, O(3,11)=7, O(1,7)=8,
O(5,6)=8, O(1,3)=9, O(3,5)=9,
O(4,5)=10, O(1,2)=18, O(3,4)=20

Infomap
Overlap

118 9 4 1 0 0

Conductance-
based

1789 139 25 15 7 O(3,28)=5, O(5,8)=5, O(10,30)=6,
O(1,27)=7, O(7,15)=7

58



3.3 Summary

In this chapter, we studied the role of community structures in the power grid’s interaction

graphs during cascading failures. To characterize the community structures in power grid’s graph

of interactions, we used both disjoint and overlapped community detection techniques.

We observed that applying different community detection techniques led to variation in the

identified structures and each structure could reveal various aspects of cascade processes. We used

the motivation that propagations are more likely to stay within communities to identify the over-

lapped and bridge components, that can contribute in propagation of failures from one community

to another and consequently, contributing in larger cascades. We postulate that protecting the crit-

ical components such as bridge and overlap nodes can help in reducing the risk of large cascades and

blackouts. In Chapter 4, we will specifically show that protection of critical components identified

using community structures will reveal key players of the cascade process that are not identified

using traditional metrics.
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Chapter 4: Reliability Analysis of Power Grids Using Community Structures

Occurrence of cascading failures in power grids has motivated power system researchers

to use graph-based cascading failure models for various reliability studies. In this dissertation,

our reliability analysis studies on power grids focuses on identifying critical components of the

cascade processes. Identification of critical components have also been undertaken in other areas

like epidemics, viral marketing, and disease spread [40, 133]. Particularly, in power grids, identifying

critical components in the cascade process has been conducted using different approaches including

power system models and simulations [51, 134–136], graph-based analysis of physical structures and

topology of power systems [89, 137], and interaction graphs [43, 77, 78, 138, 139]. For instance,

in [135] and [136], the authors focused on synchronization, phase-locked states and flow exchanges

that ensured stable operation of the power grid. Power flow re-routing caused by outages can de-

synchronize the grid. Thus, critical lines in the grid were predicted by identifying lines whose removal

caused de-synchronization in the power system. In the latter work, the authors also considered the

secondary outages caused by the transient dynamics.

The closest to the study and analysis presented in this chapter are those, which use power

grid’s network properties, standard centrality measures, or define new centrality measures to rank

the components based on their importance in the cascade process [107, 137, 140, 141]. For instance,

Portions of this chapter were published in IEEE PES [3] and IEEE TNSE [4]. Copyright permissions from the
publishers are included in Appendix A. Portions of this chapter are also available as preprint in arXiv [45].
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the work in [140] uses the coreness of the components in the power grid’s network (where coreness

is defined by the largest integer c for which a node belongs to a c-core–the largest sub-network with

all nodes having at least degree c) to identify the critical set of components. As another example,

in [141], a centrality measure is introduced based on the electrical betweenness and eigenvector

centrality. Combination of these two measures yield the electrical centrality, which accounted for

the electrical as well as the topological properties of a power grid. Moreover, in [77, 78], the

authors identify tree partitions in the power grid’s graph of interactions and show that transmission

line failures cannot propagate across common areas of tree partitions. Although the latter use

different type of structures and evaluation mechanism for the identified critical components, it is

the closest work in concept to the work presented in this chapter. Since our work is focused on using

interaction graphs for criticality analysis, we will also provide a literature review on the reliability

analysis performed using interaction graphs of power grids.

Next, we will exploit the community structure of the graph of interactions to introduce a

new centrality measure, named community-based centrality to specify the criticality of the compo-

nents (specifically, transmission lines in the power grid) in the cascade process. The main idea

behind this new measure is that communities formed in the interaction graph reveal group of

components that are likely to contain failures within themselves during the cascade (due to tight

influences/interactions); however, if a component belongs to multiple communities (in the case of

overlapped communities) or bridges two communities (in the case of disjoint communities) then it

will be critical in the cascade process in the sense that it serves as a gateway to spread failures from

one community to another. As the scale of the communities are smaller than that of the whole

network, identifying and protecting such components can help in containing failures within a com-

61



Cascade 
Dataset

Novel 
Community-

based Centrality 
Measure for 
Identifying 

Critical 
Components

SI-based Cascade 
Simulation 

Cascade Model for 
the Power Grid and 

Simulation 
(Chapter 1)

Community 
Structures
(Chapter 3)

Evaluating the Criticalities and 
Role of Operating Settings

Constructing 
Interaction Graphs 

(Chapter 2)

Power-based 
Simulation 

Data-driven 
Analysis

Graph-based 
Efficiency Analysis

Figure 4.1: Key components for identifying critical components of power grids during cascade
processes using community structures in interaction graphs (shown with red arrows) and
evaluating the role of critical components (shown with blue arrows).

munity and reduce the risk of large blackouts. Figure 4.1 shows the key components of identifying

critical components with relation to the previous chapters.

To verify the criticality of the identified components based on community-based centrality,

we will use data-driven, SI (Susceptible and Infectious) epidemic [142] simulation-based, power

system simulation-based, and graph-based approaches. We will also compare the role of identified

critical components with those identified using standard centrality measures including betweenness,

closeness, eigenvector, and degree centralities as well as the influence-based method presented in

[43]. We postulate that our results will confirm that critical components identified based on the

community structures will prove to be key players in cascading failures in power grids compared

to those identified with other centrality measures. We will specifically show that protecting the

critical components identified using community-based centrality can help in reducing the risk of large

cascades while, the performance in improving reliability also depends on the community detection

algorithm and the type of interaction graph.
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4.1 Related Prior Work

Interaction graphs discussed in Chapter 2 can be used for various analysis; specifically related

to the reliability of the power grid; including analyzing role of components and finding critical ones

that contribute heavily in a cascade process, predicting distribution of cascades sizes, and studying

patterns and structures that reveal connections and properties of the components in the power

grid that extend beyond physical topology-based graphs. Thus, we divide the reliability studies

performed using the interaction graphs into various categories and discuss them below.

4.1.1 Critical Component Analysis

We classify studies that identify and analyze role of critical components in power grid’s

reliability into three broad categories that include 1) using pre-existing as well as novel measures to

find critical buses/transmission lines, 2) evaluating attack strategies that cause significant damage

in the power grid, and 3) employing mitigation measures such as upgrading transmission lines or

adding new components to protect the identified critical components.

4.1.1.1 Critical Component Identification

This class of reliability analyses focuses on finding critical buses/transmission lines by ana-

lyzing structural properties of interaction graphs using standard centrality measures such as degree,

betweenness etc. (for a review of standard centrality measures refer to [108]) or by defining novel

interaction graph based metrics.

Critical Component Identification using Standard Centrality Measures: In the studies

presented in [51–53, 55–57], fault chain-based interaction graphs are found to be scale free graphs,
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indicating that most nodes possess low degrees but a limited number of nodes possess high in and

out degrees. Thus, in the fault chain-based interaction graphs, vertices with higher degrees are

assumed to be the critical components of the system. Similar conclusions are obtained by authors

in the studies in [84, 88], where the inverse admittance interaction graph is observed to be scale-free

and consisting of limited number of nodes with high degrees, which are considered as the critical

components of the system. These are examples of works that consider the degree centrality measure

to identify critical components of the system. Other centrality measures such as betweenness,

eigenvector, and PageRank have also been considered on interaction graph-based representations of

power grids including [79, 81, 95] to find critical components of the system.

Critical Component Identification using New Centrality Measures: In addition to studies

that rely on standard centrality measures; some works develop new centrality measures in the context

of power grids and the developed interaction graphs to analyze criticality of the components. For

instance, in the generation-based interaction graphs [58–61, 63], out-strength measure, which is

the sum of the weights of the interaction links originating from a node, is used to find critical

transmission lines. Such lines are the ones whose failure at any stage of the cascade including the

initial stage or propagation stage induces failure in significant number of other transmission lines.

Outages in the initial stages are caused by external factors such as bad weather conditions, improper

vegetation management, and exogenous events, whereas outages in the propagation stage is caused

due to power flow re-distributions, hidden failures, and other interactions between components.

Influence-based [44, 64] and multiple and simultaneous failure [65] interaction graphs are also used to

find critical transmission lines but they explicitly focus on lines whose failure during the propagation

stage of cascading failures cause large cascades. Particularly, the studies in [44, 64] use a cascade
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probability vector derived using the influence-based interaction graph to quantify the probability

of failure of lines during propagation stage of cascades and defines critical lines as the ones whose

corresponding entries in the probability vector have higher values. Similarly, the study in [65] finds

the probability distribution of states of the multiple and simultaneous failures interaction graph

and defines critical lines as the ones that belong to states with higher probability of occurrence.

Influence-based and correlation-based interaction graphs constructed in the studies in [3, 4] are also

used to find the critical transmission lines during cascade processes by using a community-centrality

measure. As the name suggests, the measure quantifies the criticality of transmission lines based on

their community membership, where critical lines are the ones that belong to multiple communities

or act as bridges between communities. Note that communities are defined as groups of vertices with

strong connections among themselves and few connections outside(for definition of communities and

a review of community detection methods on graphs refer to [127]).

Identification of critical lines is not limited to data-driven interaction graphs. Multiple

studies use electric distance-based interaction graphs for such analysis as well. Effective resistance

between components in the effective resistance-based interaction graph can be summed for all node

pairs in the graph to find the effective graph resistance metric of the power grid. Effective graph

resistance metric was initially defined in the study in [115] as Kirchhoff index and used in the

study in [143] as a robustness metric. Lower values of this metric suggests that the power grid is

robust to cascading failures. Effective graph resistance can also be found using the eigenvalues and

eigenvectors of the Laplacian matrix of the grid [144]. In the study in [91], critical transmission

lines are found by measuring the changes in effective graph resistance before and after the removal

of the line. In a similar manner, impedance-based interaction graphs constructed in the study in

65



[90] and [87] are also used to find critical transmission lines by measuring the changes in net-ability

metric before and after the removal of a line. Net-ability reflects the performance of a network by

quantifying the ability of a generator to transfer power to a load within the power flow limits.

4.1.1.2 Studying the Effect of Line Upgrades and Line Additions

While identification of critical components in the power grid is necessary, assessing the

impact of modifications and protection of such critical components in the overall power grid is

the next step in the study. In the studies presented in [44] and [64], an influence interaction

graph-based metric is used to quantify the impact of upgrading the critical lines (for example, by

improving vegetation management around the lines or by improving protection systems) on cascade

propagation. The work in [65] uses the multiple and simultaneous failure interaction graph to do

a similar study. In both interaction graphs, the authors conclude that upgrading lines that take

part in propagation of cascades reduces the risk of large cascades compared to upgrade of lines

that initiate cascades. While the studies in [44, 64] investigate the performance of the power grid

networks after line upgrades, the studies in [92] and [93] uses effective graph resistance metric to

study the impact of adding transmission lines in optimal locations of the power grid. However, in

[93] the authors warn that placing an additional line between a pair of nodes does not necessarily

imply increased robustness of the grid. Infact, grid robustness may decrease after adding additional

lines (due to Braess’s paradox [145]), if the additions are done haphazardly.

4.1.1.3 Analyzing Response to Attack/Failure Scenarios

In addition to identifying critical components and characterizing the impact of their mod-

ifications in the reliability of power grids, the study of the response of power grids to attacks and
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failures is also necessary. Such studies can be used to find critical components and attack strategies

that threaten the reliability of the overall power grid. In the studies in [72–74], node integrated

risk graphs are used to find groups of transmission lines whose removal from the graph causes the

largest drop in net-ability of the power grid, as discussed in Section 2.2.2. These groups can be found

in real-time independent of system parameters. The study in [93] also analyzes the robustness of

power grids to deliberate attacks using the effective graph resistance metric, as discussed in Section

4.1.1.1.

4.2 Formulation of Community-based Centrality Measure

While standard centrality measures, such as closeness, betweenness, eigenvector, and de-

gree centralities [146], can reveal various aspects of criticality of components based on topological

properties, new approaches are needed to identify key players in processes on networks such as the

cascade processes. As discussed in Chapter 3, it has been shown that community structures in

networks play a key role in the cascade processes on the network. In this section, we introduce a

novel community-based centrality measure to identify critical components in the cascade process of

power grids based on the idea of trapping failures in communities.

The main idea behind the community-based centrality is that overlapped nodes (in the case

of overlapped communities) or bridge nodes (in the case of disjoint communities) are critical in the

cascade process as they heavily contribute in the spread of failures from one community to another.

However, this condition is not enough in defining the centrality for various cases; for example, in

the case of the following scenarios:
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1. (S1) a bridge or overlapped node of multiple communities, where the communities themselves do

not have a central role in the propagation of failures;

2. (S2) multiple nodes have the same properties as far as community membership (e.g., they belong

to the same communities); however, their centrality is different due to the microscopic connectivity

properties of the nodes.

To capture these factors in the novel community-based centrality measure, we proceed as follows.

In the first step, we address scenario (S1) by defining a community-based centrality measure using

the disjoint and overlapped community structures identified by the conductance-based and infomap

community detection algorithms over the influence-based and correlation-based interaction graphs.

Then, in the second step, we further develop and improve the community-based centrality mea-

sure defined in the first step, such that both scenarios (S1) and (S2) can be addressed. Using this

weighted community-based centrality measure and the community structures identified by the In-

fomap overlap, Infomap disjoint, and conductance-based community detection algorithms over the

influence-based and correlation-based interaction graphs, we identify key components in the cascade

process of power grids.

To define the community-based centrality measure, we first create an augmented graph of

communities to define the centrality of communities in the network and then sum up the centrality of

communities for the nodes they belong to (i.e., nodes get their centrality from the centrality of all the

communities they belong to). In the augmented graph, the communities are represented by nodes

and the strength/weights between the community-nodes are defined using the overlap/bridge nodes

shared between the communities as well as the strength of interactions between the overlap/bridge

nodes. An example of an augmented graph of the community structures identified using the Infomap
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Figure 4.2: Example of converting community structures of interaction graphs to augmented
graphs of community structures. (a) Infomap disjoint-based community structure of graph H with
threshold 0.6 over the line graph of IEEE 118-bus system. (b) Augmented graph of Infomap
disjoint-based community structures shown in (a).

disjoint algorithm for the influence-based interaction graph with threshold 0.6 is shown in Figure

4.2. Next, to define the weighted community-based centrality measure, we adjust the community-

based centrality measure using the local interaction weights of the nodes. We will discuss both these

measures in detail.

4.2.1 Community-based Centrality Measure

We form the augmented graph of the communities denoted by AG = (NAG, EAG), where

NAG is the set of communities (i.e., NAG = C) and EAG is the set of links among communities de-

fined as following. For networks with overlapped communities, EAG represents connections due to

common (overlapped) nodes among the communities (i.e., ers ∈ EAG if there exists a node ni ∈ NIG

such that Cr and Cs both belong to CL(ni)). For network structures with disjoint communities, EAG
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represents connections due to bridging links among the communities (i.e., ers ∈ EAG if there exists

a link eij ∈ EIG such that Cr ∈ CL(ni) and Cs ∈ CL(nj), where ni and nj are the two end nodes

of line eij in the interaction graph IG). Next, to capture the strength of interactions among com-

munities, we consider their closeness centrality. Closeness centrality over the relatively small graph

of NAG can show how fast failures from a community can get to another community. To evaluate

closeness centrality of communities, we assign weights (representing distance between communities)

to the links EAG in the AG. Specifically, distance among the communities is defined to depend

on the overlap/bridge size between pairs of communities. We define R{Ci,Cj} = |O(i, j)|/|Ci ∪ Cj |,

where |Ci ∪ Cj | denotes the total number of unique components in communities Ci and Cj . An

effective distance inversely proportional to R{Ci,Cj} is assigned to the links among the nodes of the

AG, i.e. communities with larger overlap/bridge size will be assigned smaller link weights suggesting

smaller distance between the communities. The rest of the communities with no overlaps/bridges

are assigned equal larger weights for their links than any overlapped/disjoint communities (i.e., sug-

gesting a larger distance between the communities). The weighted AG is then used to find closeness

centrality for each community. Using the identified centrality values for the communities, we define

initial measure of importance for node ni ∈ IG as

Ini =
∑

k such that ni∈Ck

Mk, (4.1)

whereMk is the closeness centrality of community k. This initial measure of importance for nodes in

the interaction graphs addresses scenario (S1). Next, we discuss the critical components identified

using the community-based centrality measure and the verification of the critical components using

a data-based analysis.
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4.2.1.1 Critical Components Identification

We used the conductance-based community detection algorithm over the influence-based

and correlation-based interaction graphs with various thresholds but similar Largest Connected

Component (LCC) size (Table 4.1). Note that the size of LCC for H and CR with threshold 0.7

is 57 and 59 respectively. Similarly, the size of LCC is similar for H and CR with threshold 0.6

and 0.4 respectively. Then, using the community-based centrality measure, we identified ten most

influential nodes in the cascade process of power grids. We observe that overlap components that

belong to multiple communities are in higher ranks. For instance, nodes 32 and 151 in H with

threshold 0.6 belong to five different communities, which contributed to their importance.

We also derived the influence-based H and correlation-based CR interaction graphs for

various operating settings, e.g. power grid loading levels, r (the ratio of the total demand over total

generation capacity of the system) to simulate cascades under different settings and evaluate the

role of operating characteristics in cascade analyses. Note, for each analysis, we have simulated at

least 20,000 unique cascading failure scenarios. Then, we applied the conductance-based community

detection algorithm to the H and CR interaction graphs with various thresholds but comparable

LCC sizes. We observed that similar to the different techniques that lead to different graph of

interactions on the cascade process, different loading levels r for the power grid also result in

different graphs of interactions and ranking of critical components. Table 4.2, shows the top 5

critical components identified for the system for different r values. These results also show that

depending on the condition and the operating settings of the power grid, the critical components

of the system may vary. Therefore, it is important to perform criticality study with considerations

about the power grid’s conditions.
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Table 4.1: Critical components based on community-based centrality (I)

Rank H ≥ 0.6 H ≥ 0.7 CR ≥ 0.4 CR ≥ 0.7
1 32 25 138 44
2 151 26 119 26
3 96 24 82 25
4 167 32 73 43
5 76 55 64 27

Table 4.2: Critical components based on community-based centrality (I) for different power grid
loading levels

H (Threshold = 0.3) CR (Threshold = 0.3)
Rank r=0.6 r=0.7 r=0.8 r=0.9 r=0.6 r=0.7 r=0.8 r=0.9
1 9 62 45 8 44 68 26 20
2 58 44 51 9 36 71 36 36
3 35 16 52 45 21 69 38 54
4 27 181 9 58 51 75 25 31
5 61 7 102 48 50 50 39 33

4.2.1.2 Verification of Criticality

In order to verify that the identified critical components based on the community-based

centrality measure reveal the actual influential components in the cascade process, we have done a

set of analyses based on our cascade dataset. Particularly, we have focused on the 5 most critical

components identified for H with a threshold of 0.7 (i.e., nodes 24, 25, 26, 32 and 55 according

to Table 4.1). Figure 4.3 (a) shows that these five nodes appear in the early generations of the

cascades, which shows their contribution in the progress of cascade. Moreover, the results in Figure

4.3 (b) show that among all cascade sizes observed in the dataset, these nodes tend to be a part of

larger cascades. In other words, the occurrence of these nodes in cascades increase with the size of

cascade. These results confirm the criticality of the identified nodes using the new community-based

centrality measure.
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Figure 4.3: Data-driven verification of community-based critical components I. (a) Number of
times critical components failed in various generations and (b) number of occurrences of the
critical components in different cascade sizes for H ≥ 0.7.

4.2.2 Weighted Community-based Centrality Measure

While, the community-based centrality measure ranks the nodes such that the important

nodes are the ones that help in spreading the failures to more central communities (addressing

Scenario (S1) mentioned above), it cannot address Scenario (S2) as it does not differentiate among

the nodes with the same community membership. To capture the microscopic properties of the

nodes to differentiate local centralities, we define a weighted and scaled version of Ini for node

ni ∈ Cr as following

CMni = Ini ∗
∑

eij∈EIG s.t. nj∈Cs,r 6=s
wninj , (4.2)

where eij is the link connecting node ni to nj and wninj : (1) for the case of disjoint communities

of directed graphs: is the weight of the outgoing link from o-bridge node ni to i-bridge node nj ,

(2) for the case of disjoint communities of undirected graphs: is the weight of the link connecting

bridge node ni to bridge node nj and (3) for the case of overlapped communities: weight of the link

connecting overlap node ni to overlap node nj .
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Table 4.3: Critical Components based on weighted community-based centrality (CM) for
Conductance-based, Infomap Disjoint and Infomap Overlap community detection algorithms.

Rank Conductance-based Infomap Disjoint Infomap Overlap
H≥0.6 H≥0.7 CR≥0.7 H≥0.6 H≥0.7 CR≥0.7 H≥0.6 H≥0.7 CR≥0.7

1 30 43 43 30 30 39 30 30 20
2 96 30 31 32 25 25 40 17 30
3 32 168 25 76 32 32 186 35 44
4 148 39 27 70 18 21 75 13 8
5 167 25 30 179 29 20 73 20 -

Table 4.3 shows the top 5 critical components identified using the community-based central-

ity measure, i.e., CM . These identified components belong to either the bridge or overlap region in

community structures. In the case of Infomap overlap, for graph CR with threshold 0.7, there are

only four components in the overlap region thus, only four components are shown in Table 4.3.

4.3 Evaluation of Weighted Community-based Centrality Measure

In order to show that community structures in the graph of interactions play central roles in

cascade processes and to verify the importance of the critical transmission lines identified using the

community-based centrality measure CM , we use four methods: (1) data-driven analysis, (2) SI-

based simulation, (3) power system simulation and (4) graph-based efficiency analysis. We compare

the centrality of the identified components based on the community-based centrality with those

found using the standard centrality measures including betweenness, closeness, eigenvector and

degree centralities, as well as the influence-based criticality measure discussed in [43]. Specifically,

the influence-based criticality measure ranks the components based on their probability of failure

at any stage of the cascade, which can be calculated for the influence-based interaction graph [43].

While each of these measures reveal various aspects of criticality, we will show that the community-

based centrality can reveal aspects about cascade process that were not captured by other measures.
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4.3.1 Data Driven Analysis of Centrality

In this section, we use two statistical properties of the identified central components using

the cascade datasets to verify their importance.

4.3.1.1 Critical Components’ Occurrence in Critical Cascade Stages

In general, cascading failures in power grids have different stages including: (1) precursor

stage, where the trigger events and initial failures occur in the system; the progress of failures

are relatively slow and it is the best time to respond and prevent a large cascade and blackout,

(2) escalation stage, where due to critical component failures, the next generations of failures are

accumulating quickly and the control of the system becomes very difficult, and (3) phase-out stage,

where the progress of cascade slows down again as the cascade phases out and comes to an end. These

stages can be observed from historical and simulation cascade data from power grids [29, 64, 147].

As such, the failures that occur at the end of the precursor phase and at the beginning of the

escalation phase can be considered to have the most contributions in aggravating the failures and

fueling the cascade. Hence, we use the cascade data to evaluate when in the cascade process the

identified central components appeared. To do this, following [148], we define generations within

each cascade as groups of failed components. As mentioned in [148], useful insights can be obtained

by grouping components into generations, which suggests that initial failures are mostly the failures

occurring in the precursor stage and the subsequent failures are the ones belonging to the escalation

and phase-out stages. Depending on the rate of propagation of failures between various generations

and stages in the same cascade, the impact of the failures on the subsequently failing components

can be determined. In our cascade dataset, the range of number of observed generations is 1 to 96.
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Figure 4.4: Ratio of occurrences of central component failures in various cascade generations over
the total number of generations with the same index. Results for rank 1 central component are
presented for graph (a) H≥0.6, (c) H≥0.7, and (e) CR≥0.7; and for rank 2 central components for
graph (b) H≥0.6, (d) H≥0.7, and (f) CR≥0.7.
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We have assumed that the generations 1 to 3 represent the precursor phase, the generations 4 to 50

represent the escalation phase and the generations 51 to 96 represent the phase-out stage.

In Figure 4.4, we present the results for this evaluation measure for three graphs of interac-

tions; all constructed based on the same cascade dataset. Specifically, Figure 4.4 shows the ratio of

occurrence of the failures of central components with rank 1 and 2 for various cascade generations

over the total number of generations with the same index in the cascade dataset. In Figure 4.4a,

the rank 1 central component identified by the conductance-based, Infomap overlap and Infomap

disjoint community detection approaches is the same (component 30 with rank 1 as seen in Table

4.3). It can be seen that the peak of the occurrence lies in the early cascade generations. Similarly,

for the influence-based graph of interactions with threshold 0.7 and the correlation-based graph of

interactions with threshold 0.7 (i.e., Figures 4.4c and 4.4e respectively), all three community-based

approaches identify components that their occurrence peak is in the early generations. While the

central components identified by other standard centrality measures, and also by the influence based

measure [43] show the peak at slightly different generations, they all mainly agree with the same

trend of higher peaks at early to middle generations. Also, we can observe that depending on the

graph of interactions, the agreement among these measures vary. A similar behavior can be observed

for the rank 2 central component as shown in Figures 4.4b, 4.4d and 4.4f.

4.3.1.2 Critical Components’ Occurrence in Various Cascade Sizes

As another data-driven measure, we also evaluate the severity of the cascades that the

identified central components were a part of. Specifically, we evaluate the ratio of occurrence

of central component failures in various cascade sizes. To this end, higher occurrence ratios in

larger cascade sizes can imply critical contribution of the component in the cascade. In Figure
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Figure 4.5: Ratio of occurrences of central component failures in various cascade sizes over the
total number of cascade scenarios. Results for rank 1 central component are presented for graph
(a) H ≥ 0.6, (c) H ≥ 0.7, and (e) CR ≥ 0.7; and results for rank 2 central component are
presented for graph (b) H ≥ 0.6, (d) H ≥ 0.7, and (f) CR ≥ 0.7.
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4.5, we present the results for cascade size of critical components for three graphs of interactions;

all constructed based on the same cascade dataset. Figure 4.5 presents the ratio of occurrences

of failure of central components with rank 1 and 2 centralities over the total number of cascade

scenarios for various cascade sizes. The results presented in Figure 4.5 suggest that among all

cascade sizes observed in the dataset, the identified central components tend to be a part of larger

cascades. Some points to note from the results are as following. The community-based centrality

measures show a consistent performance in identifying components that appear in larger cascade

sizes while other centrality measure such as degree-based, betweenness, eigenvector centralities, and

the influence-based measure [43] show more fluctuations among different graphs and ranks.

4.3.2 SI Simulation-based Verification of Centrality

In this section, we evaluate the impact of the identified central components in the cascade

process by protecting them from failures and characterizing the effect of their protection on reducing

the risk of failure propagation. To do so, we use the SI epidemic model on the graph of interac-

tions to simulate the cascade process. We particularly consider two possible states for each node

(component) of our network including: (1) functional, and (2) failed. We use the weights of the

links connecting the nodes (identified through the construction of the interaction graphs in Chapter

2) to probabilistically propagate failure from one node to another. To protect a component from

failures, we simply remove it and its adjacent links from the graph of interactions; meaning that

they cannot be failed and they do not participate in propagation of failures. Protecting components

happen before the start of the cascade process and is enforced as an initial condition. To evaluate

the role of the identified central components, we set them as protected and run the SI simulation

to characterize the average size of failures. We trigger the failures using two random initial failures
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Figure 4.6: SI simulation of cascade over influence interaction graph H with threshold 0.6. For
each centrality measure, (from left to right) the first bar represents protection of component with
rank 1, the second bar represents protection of components with rank 1 and rank 2, and so on.

and repeat the simulations 100 times for each initial failure scenario. We use 1000 different two

initial failures scenarios and apply the same initial failure scenarios for all centrality measures as

the trigger event.

We specifically protect nodes identified as central using different centrality approaches in the

order of rank 1; rank 1 and rank 2; rank 1, rank 2 and rank 3 and so on. The results are presented

in Figure 4.6 for graph H with threshold 0.6. Similar behavior has been observed for other graphs

of interactions. From Figure 4.6, it can be observed that protection of central components based on

betweenness centrality provides the best performance in reducing the risk of propagations with In-

fomap overlap-based centrality closely following. The in-degree, conductance, and Infomap disjoint

also follow next while the total improvement in the average number of failures is not significant in

all cases due to small number of protected components.

In the next experiment, we protected a larger number of central components identified from

the community-based centrality measures. Specifically, we protected 16 central components, which

is the number of overlapped components identified from Infomap overlap method (we used the same

number for the other two methods as the number of overlapped and bridge components for them

are large, see Table 3.4). We observed an improvement of 33.5%, 29.8%, and 26.4% in the average
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Figure 4.7: Power simulation of cascade with protection of top five central components showing
(a) average cascade size and (b) percentage of cascade sizes larger than 50.

size of failures compared to the unprotected scenario as shown in Figure 4.6 for conductance-based,

Infomap overlap and Infomap disjoint centralities, respectively. We also protected 16 randomly

selected components and obtained a 2.3% improvement in the average size of failures compared to

the unprotected scenario, which is smaller than that of community-based centralities; suggesting

the importance of protecting central nodes in reducing the risk of failures.

4.3.3 Power Simulation-based Verification of Centrality

In this evaluation method, we use the power system simulation of cascading failures, as

discussed in Section 1.2.2, to evaluate the role of protecting central components in reducing the risk

of cascading failures in the power grid. As discussed in Section 1.2.2, transmission line overloading

is the main mechanism for propagation of failures in our power simulations; as such, by adequately

increasing the transmission capacities of lines for handling larger power flows, the central lines will

be protected from failures. A similar approach was used in [138] based on the branch capacity

expansion model [149]. As such, similar to the SI simulation-based model, we protect the first five
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central components (transmission lines) by doubling their capacities and run the power system sim-

ulation to characterize the effects of such protection on the risk of cascade. We trigger the failures

using two random initial failures and use 1000 different two initial failure scenarios. Note that we

apply the same initial failure scenarios for all centrality measures so that the results are comparable.

We specifically look at the average size of cascade (Figure 4.7a) and percentage of cascades with

more than 50 failures in the simulation (Figure 4.7b) to evaluate how protecting the central com-

ponents affect the risk of failures. Inspection of the capacity upgrade for critical components based

on Figure 4.7 suggests that protecting central components identified based on community-based

centrality measures can reduce the risk of cascading failures better than protection of components

identified using other methods. Specifically, protecting the components identified based on the

conductance-based method shows the best performance in reducing the risk of cascade. The in-

degree and influence-based measure [43] also perform well followed closely by the Infomap overlap

and Infomap disjoint measures. These results suggest that certain criticality analyses based on cen-

trality measures, such as conductance-based centrality measure, can have real-world implications

for upgrading power grids and improving their resilience.

4.3.4 Graph-based Efficiency Analysis of Centrality

Here, we use graph-based efficiency properties to evaluate the effect of failure of central

components on the overall connectivity of the graph. In particular, we use the global efficiency

measure introduced in [150] as following:

Ef = 1/(n(n− 1)) ∗
∑
i 6=j

1/dij , (4.3)
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Figure 4.8: Graph efficiency-based analysis with failure of the top five central components for
graph (a) H ≥ 0.6, and (b) CR ≥ 0.7.

where n is the number of components in the graph and dij is the shortest path (geodesic distance)

between any two nodes i and j. To show the role of central nodes (components) on the efficiency

of the network, we remove (i.e., fail) central nodes starting from rank 1, rank 1 and rank 2 and

so on. To this end, the graph efficiency should drop as the number of failed nodes increases. We

can see from Figure 4.8 that central components identified using the community-based approaches

have higher drops in efficiency with failure of identified central nodes compared to other centrality

measures except for the betweenness centrality for both the influence and correlation interaction

graphs. We observe that betweenness centrality dominates the drop in efficiency, which is due to

the definition of the global efficiency measure based on the geodesic distances.

4.3.5 Conclusions from Results and Complexity Analysis

Based on the presented results, betweenness, indegree, conductance-based, Infomap community-

based, and influence-based [43] centrality measures each perform better for different evaluation

methods, while the community-based centrality measures are more consistent and show less varia-
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tions in performance among the presented evaluation methods. The computational complexity of

calculating the betweenness centrality is Θ(|V |3) in general, while for sparse graphs can be reduced

to O(|V |2log(|V |)+ |V ||E|) (where |V | is the number of nodes and |E| is the number of edges in the

graph); however, the interaction graphs are not usually sparse. The computational complexity of

indegree centrality is Θ(|V ||E|) and Θ(|V |) for list and matrix implementation of the graph, respec-

tively. Finally, the computational complexity for conductance-based centrality is O(|V |2) [126] and

Infomap-based centrality is O(|E|) [151]. Note that the majority of the computational complexity

for the proposed community-based centrality measure is in finding communities while the rest of

the calculations are in the order of O(1). Therefore, there is a tradeoff between computational com-

plexity and performance of the centrality measures in some cases; however, the community-based

centrality measures have better computational complexity than the betweenness centrality. While

comparison between different centralities offers important insights about performance of these mea-

sures in identifying criticality of components, the main goal of the study and presented results is

to show that community structures in interaction graphs play a key role in the cascade process in

power grids similar to many other real-world networks. The community structures are not only

useful for identifying critical components and preventing the spread of failures but also for other

applications such as providing information on the possible sizes of cascades based on the sizes of

the communities.

4.4 Role of Operating Characteristics in Power Grids in Centrality

Similar to the different techniques that lead to different graph of interactions for the cascade

process, operating settings, as introduced in Section 1.2.2 (such as the loading level for the power

grid, r), also results in different graphs of interactions and subsequently different ranking of central

84



Table 4.4: Critical Components based on Conductance-based, Infomap Disjoint, and Infomap
Overlapped Community-based Centrality (CM) for different power grid loading level

Rank Conductance-based Infomap Disjoint Infomap Overlap
r=0.6 r=0.9 r=0.6 r=0.9 r=0.6 r=0.9

1 58 27 36 27 36 27
2 36 8 19 8 9 8
3 19 36 38 36 35 36
4 38 55 8 55 96 101
5 8 58 9 58 60 96

components. In this section, we use two very different loading levels for our power grid; specifically,

r = 0.6 as a normally loaded power system and r = 0.9 as a stressed loading, where the power

grid works close to its capacity. As expected in the latter setting, our power system simulation

leads to larger sizes of cascading failures. Using the cascade model discussed in Section 1.2.2, we

generate two cascade datasets for each of these settings (with size of 10,000 scenarios each). Next,

we generate the graph of interactions using influence-based approach. We observe two very different

graphs from these two datasets with different number of links and communities suggesting that the

interactions among the components change as the operating settings of the power system vary. Due

to different graphs of interactions, the central components also vary between these cases. The list of

critical components identified based on the community-based centrality measure for these cases is

presented in Table 4.4. We have also evaluated the role of the identified central components in the

cascade process for these two cases and have observed similar trends as those of Section 4.3. Overall,

these results show that depending on the condition and the operating settings of the power grid,

the critical components of the system may vary. Therefore, it is important to perform criticality

analysis with considerations about the system’s state and operating settings.
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4.5 Summary and Conclusions

In this chapter, we proposed a community-based centrality measure based on the trapping

property of community structures and identified critical components and their role using data-

driven, epidemic simulation on the graph of interactions, power system simulation, and graph-

based approaches. We also compared the role of the identified central components with the central

components identified using other standard centrality measures. While each of the measures shed

light on different aspects of the criticality of components, they are not designed to identify critical

components in cascade and epidemic processes. We showed that in most cases, the community-

based centrality measure performed better than these measures in identifying critical components

in the cascade. We also compared the critical components identified using the community-based

centrality measure with the ones identified using the influence probability vector, designed in the

study in [43]. We observed that our community-based centrality measure performed better than

the influence probability vector in most cases. Moreover, we showed that the loading level of the

power grid impacted the graph of interactions and consequently, the community structures and

criticality of the components in the cascade process. This suggests the importance of considering

the state and operating settings of power systems in reliability analyses. The presented study

suggests that protecting the identified critical components using the community-based centrality

can help in reducing the risk of large cascades and blackouts.
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Chapter 5: Cascade Size Analysis in Power Grids Using Community Structures

Understanding cascade size distribution in power grids and predicting cascade size when

it gets triggered, have been extensively studied in literature. For instance, in the study in [20],

blackout data from historical sources as well as from simulations revealed the power-law behavior

in the blackout size distribution (e.g. measured in terms of unserved energy or number of tripped

transmission lines). This suggests that the likelihood of occurrence of large blackouts is more than

what is traditionally expected. Additionally, prediction of cascade sizes given an initial triggering

event, can help in estimating the risk of large blackouts and control and mitigate the spread of

failures during cascade processes. It also allows for characterization of contributions of components

of the system towards large cascades.

In Chapter 3, we studied the structures and patterns of interactions using the commu-

nity structures in interaction graphs constructed in Chapter 2 based on the influence-based and

correlation-based methods. In this chapter, we use the community structures that are present in

the interaction graphs to study the failure propagation between communities and to characterize

the likelihood of various cascade sizes. For this purpose, we formulate a Markov chain (MC) model

based on the community structures in the interaction graphs of the power grid. This model exploits

the properties of overlap and bridge nodes of communities (i.e., nodes that belong to multiple com-

munities or have connections to other communities) as well as the strength of influences/interactions

of the components to characterize transition probabilities in the MC. The states of the community-
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Figure 5.1: Key components for characterizing and predicting cascade sizes using community
structures in interaction graphs of power grids.

based MC model allow the tracking of the size of cascades. The main idea behind this model is that

the groups of components that form communities, provide an estimate measure of cascade size, as

a cascade entering a community is likely to spread failures to other components within the com-

munity and less likely to spread to outside the community. Thus, using our community-based MC,

the distribution of cascade sizes can be characterized using the size of communities. Additionally,

depending on the initial conditions such as the community from which the cascade starts, cascade

size distribution can be characterized. As suggested by historical data and previous studies of cas-

cading failures [20], we hope to observe a power-law behavior in the distribution of cascade sizes,

which suggests the importance of community structures of interaction graphs in cascade behavior.

Figure 5.1 shows the key components required the reliability studies in this chapter.

5.1 Related Prior Work

Forecasting cascade sizes is a challenge in the reliability analysis of power grids. In the study

in [76], a correlation graph-based statistical model, known as the co-susceptibility model, is used

to predict cascade size distributions in transmission network of power grids using individual failure

probabilities of transmission lines as well as failure correlations between transmission lines found
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from the correlation matrix. The study exploits the idea that groups of components that have higher

correlations are likely to fail together and uses the correlation matrix to find such co-susceptible

groups which is an approximate estimate of the cascade size given an initial trigger failure. Similar

idea is used in the studies in [3, 4], where components within the same community are assumed to

be likely to fail together and the size of communities gives an approximation of cascade sizes. The

study in [65] also characterizes size of cascades by using the states of the Markov chain to find the

probability distribution of the number of generations in a cascade.

In this section, we briefly review the probabilistic [29, 34, 48, 49, 152, 153] and graph-based

models [65, 105] related to this work that focus on characterization and prediction of cascade sizes.

In a group of works in literature, it has been discussed that branching process [48, 49] can

provide an abstract model for outage distribution in cascading failures. In branching process models,

outages are grouped into generations, where each generation is a sequence of components that failed

within a short time-frame. Each component in a generation can independently produce a random

number of child outages based on a Poisson offspring distribution, with a specific propagation rate.

Thus, historical transmission line outage data was used to estimate static propagation rates for all

generations [48] and varying propagation rates for each generation [49] to predict the probability

distribution of subsequent line outages given distribution of initial failures.

Probabilistic models in the studies in [29, 34, 152, 153], are used for stochastic modeling

of cascading failures. In the study in [152], a regeneration-based probabilistic approach was used

for characterizing the probability of reaching an arbitrary blackout size at any time given initial

power grid conditions, which included loading level, maximum capacity of the set of failed lines, and

number of failed lines. In the extended study in [29], an analytically tractable Markov chain model
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was developed, in which the states represented the critical grid conditions identified in the study

in [152]. Additionally, operational characteristics i.e., loading level, load shedding constraints, and

line tripping threshold were also considered for determining transition rates. This model was used

to analytically predict the probability of blackout in time and also asymptotically determine the

probability mass function of blackout size. The study in [153] extended the Markov model in [29]

to consider the effect of interdependencies between power and communication systems on cascade

size distributions. In the study in [34], the operational characteristics discussed in [29], was used

to study specific conditions which led to power-law behavior on the probability mass function of

blackout size.

In addition to probabilistic models, graph-based models [65, 105] have also been used for an-

alyzing cascades and their size distribution. In the study in [105], a correlation matrix constructed

using cascade data of failure/functional statuses of transmission lines, is used for predicting distri-

bution of cascade sizes. And in the study in [65], a Markov chain constructed using transmission line

outage data, where states represented generations of line outages, was used to predict distribution of

cascades of varying sizes. The work presented in this chapter, belongs to both of the aforementioned

categories as it provides a MC model based on the structures embedded in the interaction graphs

of power grids for analysis of cascading failures.

5.2 Markov Chain Formulation

Using the concepts discussed in the previous sections, we propose a Markov chain (MC)

framework to model the cascade size evolution using the community structures in the interaction

graph of the power grid. As mentioned earlier, communities tend to trap failure propagation inside
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and thus, provide an estimate on the likelihood of various cascade sizes depending on the size of the

community, where the failures started, and the communities that failures can propagate to.

We define the state space of the MC based on all possible combinations of the set of com-

munities C in the interaction graph IG. We consider two variables as the state variables of the MC:

(1) variable S representing the set of communities, which have been involved in the cascade process

(communities with failed components) and (2) a binary variable I representing the condition that

the cascade is contained within existing communities and thus, cascade stops with an absorbing

state for MC (i.e., I = 1) or not (i.e., I = 0). Let X(t) denote the state of the MC at time t ≥ 0

using pair (S(t), I(t)).

To illustrate the MC model and its state space, consider the example interaction graph for

a power grid shown in Fig. 5.2-a. Assume that applying a community detection algorithm on this

graph identifies three disjoint communities, named C1, C2, and C3, as shown in the figure. Given

these communities, there are fourteen possible states for the MC in which, half of the states are

transient and half are absorbing (due to binary variable I) as below. Thus, the state space of the MC

for the system in Fig. 5.2-a is: S = {({C1}, 0), ({C1}, 1), (({C2}, 0)), ({C2}, 1), ({C3}, 0), ({C3}, 1),

({C1, C2}, 0), ({C1, C2}, 1), ({C1, C3}, 0), ({C1, C3}, 1), ({C2, C3}, 0), ({C2, C3}, 1), ({C1, C2, C3}, 0),

({C1, C2, C3}, 1). For an interaction graph with n number of communities, the number of transient

states in the MC is
∑n

r=1
n!

(n−r)!r! , where r represents the number of communities involved in the

cascade process. While the number of states can be large for large values of n, the number of com-

munities in interactions graphs are generally much smaller than the number of nodes in the graph

and thus, state space explosion will not occur for interaction graphs of power grids.
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We define the transitions among the MC states by exploiting the connections among the

communities. As the connections (overlap/bridge components) among the communities result in

propagation of failures among the communities, they cause the state of the MC to change by

involving more communities in the cascade process. We assume that in each transition of the

MC, at most one new community will get involved in the cascade process (cascade will propagate

to a new community through the connections with communities in the current state of the MC).

This simplifying assumption can be justified by considering that time has been divided into small

instances and only one new community can get involved at each time instance. This assumption

help in finding the transition probabilities and make the transition matrix of the MC sparse. We

also assume that if the cascade gets contained in the communities that have already been involved

in the cascade process based on current state of the MC, then the MC will transit to an absorbing

state with same set of communities. Thus, in our MC, three types of state transitions are possible:

1. transition from a transient state to another transient state with one additional community when

failures propagate to a new community,

2. transition from a transient state to an absorbing state with the same set of communities when

cascade stops, and

3. finally, transition from an absorbing state to itself representing that the state of the system will

not change with regards to cascading failures when it stops.

Note, the set of communities in each MC state provides an estimate of the cascade size. Specifically,

we assume that the number of failed components at each state of the MC can be found by adding

up the sizes of the set of communities in that state.
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Figure 5.2: Markov chain framework of an example of community structures. (a) Example of three
disjoint communities. (b) Markov chain and the transition probabilities derived using the
community structure with three disjoint communities and weights of interactions shown in (a).
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To formulate the transition probabilities among the states in the MC, we utilize the sizes

of the communities, the number of overlap/bridge nodes among communities, and the weight of

influences/interaction links between communities. As the first step towards formulating the tran-

sition probabilities, we define the contribution of a single node u ∈ Ci that has interaction links

to nodes in community Cj (i.e., node u is an overlap or bridge node), in the propagation of failure

from community Ci to community Cj as

CFP (u) =

∑
v∈Cj ,j 6=iwu,v∑
q∈LIG wu,q

. (5.1)

In the context of various types of communities, in equation (1) we have: (i) for the case of

disjoint communities of directed interaction graphs: wu,v is the weight of the interaction link from

o-bridge node u to i-bridge node v and wu,q is the weight of the interaction link from o-bridge node

u to node q, (ii) for the case of disjoint communities of undirected graphs: wu,v is the weight of the

interaction link connecting bridge node u to bridge node v and wu,q is the weight of the interaction

link connecting bridge node u to node q, and (iii) for the case of overlapped communities of directed

as well as undirected graphs: wu,v is the weight of the interaction link connecting overlap node u

to overlap node v and wu,q is the weight of the interaction link connecting overlap node u to node

q. Note, for all the above discussed cases, node q can be a member of any community including

communities Ci and Cj .

In the next step toward formulating the transition probabilities, we need to consider the

cumulative effect of all the overlap/bridge nodes among the communities. Specifically, the contri-

bution of: (i) all o-bridge nodes in community Ci in the case of disjoint communities of directed

graphs, (ii) all bridge nodes in community Ci in the case of disjoint communities of undirected
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graphs, and (iii) all overlap nodes in community Ci in the case of overlapped communities of both

directed and undirected graphs; will be added up. For the case of transitioning from a state with a

single involved community to a state with two involved communities we have:

p(({Ci}, 0)→ ({Ci, Cj}, 0)) =

∑
z∈Ci

CFP (z)

|Ci|
, (5.2)

where |Ci| is the size of community Ci and p(({Ci}, 0)→ ({Ci, Cj}, 0)) is the probability of transition

from transient state X(t) = ({Ci}, 0) to transient state X(t + 1) = ({Ci, Cj}, 0) with one new

additional community. E.g., in the MC of Fig. 5.2-b, contribution of o-bridge node f to failure

propagation in community C1 i.e. CFP (f) is 1/(1+1+6+6) = 1/14 and probability of transition

from transient state ({C2}, 0) to transient state ({C1, C2}, 0) is 1/(14× 3) = 1/42.

To generalize, the probability of transition from a transient state ({Ci, Cj , · · · , Cr}, 0) to a

transient state ({Ci, Cj , · · ·Cq, Cr+1}, 0) with one new additional community can be defined as:

p(({Ci, Cj , · · · , Cr}, 0)→ ({Ci, Cj , · · · , Cq, Cr+1}, 0)) =

∑
z∈O{Ci,Cj,··· ,Cr}

CFP (z)

|{Ci, Cj , · · · , Cr}|
, (5.3)

where O{Ci,Cj ,··· ,Cr} is the set of all o-bridge, bridge, or overlap nodes of the set of communities

{Ci, Cj , · · · , Cq}, which have interaction links to nodes in community Cq+1; and |{Ci, Cj , · · · , Cq}|

is the sum of sizes of all communities in the set {Ci, Cj , · · · , Cq}. Note, for calculating the sum of

sizes of overlapped communities, repeated entries of overlap components are counted only once.

The probability of transition from a transient state X(t) = (S(t), 0) to its associated ab-

sorbing state X(t + 1) = (S(t + 1), 1) (i.e., absorbing state with the same set of communities

as that of the transient state, i.e., S(t) = S(t + 1)), describes the probability of failure of non-
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overlap/non-bridge nodes (i.e., nodes that belong to a single community). This type of transition

implies that failure of non-overlap/non-bridge nodes of a community spreads failures to other com-

ponents within the community itself only and failures are contained within involved communities.

The probability of transition from transient state X(t) = (S(t), 0) to its associated absorbing state

X(t+ 1) = (S(t+ 1), 1) will be the complement of probabilities of transition to all other transient

states from state X(t). Finally, the only possible transition from an absorbing state will be to itself,

such that p((S(t), 1)→ (S(t+ 1), 1)) for S(t) = S(t+ 1) is one.

5.3 Evaluation and Results

In this section, we use the community structures derived using the Infomap disjoint, In-

fomap overlap, and conductance-based community detection algorithms in the influence-based and

correlation-based interaction graphs of power grids. The results and analysis for these studies have

been discussed in detail in Chapter 2 and Chapter 3. In this chapter, our main focus and discussion

is on the characterization of cascade sizes using our community-based MC.

5.3.1 Distribution of Cascade Sizes

To characterize the contribution of community structures in the distribution of cascade sizes,

we use the MC formulation discussed in Section 5.2. We numerically calculate the average steady

state distribution of the MC as well as cascade size distribution for various initial states of the

system depending on where the failures started.

First, we look at the steady state distribution of the MC for the average case when the

cascade can start from any community with equal probability. We evaluate this probability distri-

bution for three interaction graphs including interaction graphs based on H ≥ 0.6, H ≥ 0.7, and
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Figure 5.3: Log scaled probabilities of cascade sizes when cascade has equal probability to start
from any community, for communities identified using Infomap disjoint (in red) and Infomap
overlap (in blue) over the influence-based interaction graph of (a) H ≥ 0.6, (b) H ≥ 0.7, and
correlation-based interaction graph of (c) CR ≥ 0.7.

CR ≥ 0.7. These results are presented in Fig. 5.3. The y-axis in Fig. 5.3 shows the log scaled

distribution of probability of occurrences with respect to various cascade sizes in the x-axis. The

range of cascade sizes in the x-axis shown in Fig. 5.3 correspond to the LCC of the thresholded

graphs shown in Table 3.1 of Chapter 3. Based on these results, we observe that small cascade sizes

are more probable compared to large cascade sizes. For example, in Fig. 5.3-a for H ≥ 0.6, the

probability of occurrence of cascade size in the range of 2 to 32 failures is 0.83 (seen as 100 due to

log scale), while the probability of occurrence of cascade size in the range of 129 to 143 is small.
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Table 5.1: Community and overlap/bridge sizes for influence-based interaction graph H with
threshold 0.6

Community Infomap Disjoint Infomap Overlap
No. of
nodes

No. of
bridges

No. of
nodes

No. of
overlaps

1 31 14 32 13
2 17 7 17 7
3 16 5 18 6
4 21 11 29 16
5 26 12 28 14
6 7 3 7 3
7 3 3 6 6
8 2 1 3 3
9 6 3 3 1
10 5 5 8 5
11 6 6 6 6
12 3 3 5 4

These results are in agreement with the cascade size distributions found based on other historical

and simulation data in [20]. This power-law based distribution of cascade sizes suggests that large

cascade sizes are rare but their occurrence cannot be neglected. These large cascade sizes can be

attributed to failure propagation caused by the size of overlap/bridge nodes as well as the strength

of interaction of these nodes with other communities.

Next, we look at the cascade size distribution conditioned on the community that failures

started in. In Fig. 5.4, for communities identified using Infomap disjoint for H ≥ 0.6, we observe

that each community has a distinct role in the probability of occurrence of various cascade sizes. For

example, probability of occurrence of large cascade size of range 129 to 143 is highest for community

11 compared to other communities. This can be attributed to the large number of bridge nodes

compared to the community size and the strong weight of the interaction links of the bridge nodes.

As seen in Table 5.1, community 11 has 6 nodes and all 6 nodes are bridge nodes, as such failures
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Figure 5.4: Log scaled probabilities of cascade sizes when cascade initiates from any community,
for communities identified using Infomap disjoint over the influence-based interaction graph of H
≥ 0.6.

in community 11 has very high likelihood of spreading to other communities. We observe similar

results for other interaction graphs with different thresholds and community structures as well.

To normalize the effect of size of the initial community on cascade size, we also look at

the number of ultimate failure per node failure in the initial community. As shown in Fig.5.5, for

both Infomap disjoint and Infomap overlap, we observe that communities 1 to 5 induce smaller

cascade sizes (from 1 to 10) shown in the expanded figure on the top, whereas communities 6 to

12 induce larger cascade sizes (from 1 to 72) shown in the main figure. This behavior is due to

the larger size and smaller number of overlap/bridge nodes for communities 1 to 5 and vice versa

situation for communities 6 to 12, as shown in Table 5.1. Thus, the contribution of nodes in smaller

sized communities in causing large cascades are more prominent compared to nodes in larger sized

communities.

99



1-10
11-20

21-40
41-60

61-72

Cascade size per node failure

 
 10-8 
 
 10-4 
 
 100 
 
 
 
 

Pr
ob

ab
ilit

y 
of

 o
cc

ur
re

nc
es Com 1

Com 2
Com 3
Com 4
Com 5
Com 6
Com 7
Com 8
Com 9
Com 10
Com 11
Com 12

1-2 3-4 5-7 8-10
 10-12  
 10-8  
 10-4  
 100  

Figure 5.5: Log scaled probabilities of cascade sizes induced by failure of one component belonging
to different communities, for communities identified using Infomap disjoint over the
influence-based interaction graph of H ≥ 0.6.

5.4 Summary and Conclusions

In this chapter, we developed a Markov Chain model to track the evolution of the cascading

failures through communities embedded in interaction graphs. We discussed that the communities

in interaction graphs can reveal important properties related to cascading failures as they tend to

trap failures. We used this property and showed that the probability distribution of cascade sizes

exhibited power-law behavior as observed in previous studies and historical data. This suggested

that community structures affect the behavior of cascading failures and bear important information

about cascade processes.
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Chapter 6: Reliability Analysis of Interdependent Infrastructures Using Interaction

Graphs

In this chapter, an integrated framework for the power grid and electric vehicle (EV) charging

infrastructure is proposed and built using an abstract probabilistic framework, which can capture

the role of structure of the systems on the dynamics to model the dynamics and specifically, the

demand and traffic distribution in EV charging infrastructures. The goal of the model applied to

EV charging infrastructures is to identify incentives, when and where they are needed, to design

dynamic energy pricing signals based on the state of both the power and transportation systems,

such that the incentives help in appropriate distribution of load in both systems and orchestrating

their operation. Based on the proposed integrated model, we identify incentives in terms of charging

prices using an algorithm based on topological sort on the active influence graph of the charging

infrastructure. We will show that the identified incentives based on this model lead to higher

probabilities of stable and balanced systems both for the power and transportation systems. This

study is an effort towards promoting the need and importance of integrated frameworks for modeling

and analysis of smart cities.

6.1 Related Prior Work

We review the related work in two main categories. First, we briefly review recent efforts on

Portions of this chapter were published in Smartgreens [5] and Springer, Cham [6]. Copyright permissions from
the publishers are included in Appendix A.
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modeling, simulation, operation and design of integrated and interdependent infrastructure frame-

works for smart cities. Second, as the focus of this study is on charging infrastructures, we review the

related work on different aspects of design, operation and optimization of charging infrastructures.

6.1.1 Integrated and Interdependent Infrastructures for Smart Cities

Critical infrastructures and particularly their reliability has been the focus of many recent

research efforts. The role of integrated, interdependent infrastructures in designing efficient smart

cities has been emphasized by smart-city research community [154]. Moreover, the vision of smart

cities has been described in different ways among practitioners and academia [154]. Hall [155]

visioned the smart city as a city that monitored and integrated conditions of all of its critical

infrastructures to optimize its resources and services to its citizens. In the last decade a large body

of work has emerged in modeling and understanding interdependent infrastructures. The general

concepts of interdependencies among critical infrastructures, challenges in modeling interdependent

systems and their control and recovery mechanisms have been intensively discussed in [156], [157],

[158], [159]. These works mainly discuss the intrinsic difficulties in modeling interdependent systems

and suggest new methodologies for their modeling and simulation as a single coupled system.

The majority of such integrated, theoretical frameworks has been focused on analyzing the

reliability of coupled systems and the negative aspects of the interdependencies among critical

infrastructures [160], [161], [162]. For instance, one of the problems of concern in interdependent

infrastructures is their reliability to cascading failures and propagation of faults. Recently, many

researchers have studied cascading failures in interdependent systems (see for example, [161, 163]

and references therein).

102



The work presented in this chapter is an effort to present an abstract and unified framework

to model interactions among infrastructures, which can be used to design various smart-city solutions

based on the state of interacting systems, for instance, the pricing mechanism based on the state of

the EV charging infrastructure and the electric grid.

6.1.2 Charging Infrastructures

In recent years, a large body of work is focused on optimal placement of EV charging stations

[10, 18, 164–170]. In particular, optimization formulations with various criteria have been used for

addressing this problem [18, 165–167]. Examples of such criteria include, maximizing sustainability

from the environment, economics and society perspective [165], minimizing the trip time of EV’s to

access charging stations [166], minimizing trip and queuing time [167], and maximizing the coverage

of charging stations [18]. In the work presented in [164], [169], the set cover algorithm is used to

optimize the location of charging stations from a set of possible locations. In addition, agent-based

[168] and game-theoretic approaches [10], [170] have also been adopted in characterizing optimal

deployment of charging infrastructures. Reference [171] presents a more detailed review of various

approaches used for the optimal deployment of EV charging stations.

Another research aspect of charging infrastructures is their pricing mechanisms. Studies

of traditional fueling infrastructures [172], [173] show that the price of fuel impact the behavior

of drivers, which suggests that the charging price for EVs can also impact the users’ choice and

behavior. Specifically, authors in [174], discuss that the optimal placement of charging stations

will be insufficient to handle rapid changes in traffic patterns and urbanization, hence an efficient

pricing model that also minimize the social cost of traffic congestion and congestion at EV charging

stations is needed. As another example, the impact of energy price and the interplay between the
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price and other factors, such as cost and emissions, on the charging decisions have been studied in

[17]. Besides the studies on the impact of price on charging decisions and traffic patterns, some

efforts are focused on designing and optimizing pricing and analyzing their impact on the users’

behavior and the system operation. Examples of such efforts include the work presented in [11],

which uses a game theoretical approach to study the price competition among EV charging stations

with renewable power generators and also discusses the benefits of having renewable resources at

charging stations. Similarly, game-theoretic approaches that model a game between the electric grid

and their users, specifically for EV charging, in order to design pricing schemes, have been studied,

for example in [175]. The model in [175] provides strategies to EV chargers to choose the amount

of energy to buy based on a pricing scheme to operate the charging infrastructures at their optimal

levels.

The work presented in this chapter is closest to the studies on pricing mechanism design

and also the interplay between the electric and EV charging infrastructures. At the same time, it is

different in the approach as it considers the stochastic dynamics of the interdependent EV charging

infrastructures and the power grid and their interactions in designing the charging prices at stations.

6.2 System Model for Interdependent EV Charging and Power Infrastructures

In this section, we describe our system model for the interdependent EV charging and

power infrastructures; however, the model is adequately general to be applied to any interdependent

infrastructure with interacting components. We first discuss the system model of the EV charging

infrastructure, which receives energy from the power grid infrastructure. Then, we discuss the

system model of the power grid infrastructure, where the EV charging infrastructure is assumed to

104



be the only source of load for the power infrastructure. In our extended system model, in addition

to the EV charging infrastructure as one source of load, the power infrastructure model also includes

other types of loads (residential or commercial). Finally, we discuss the integrated system model

of the EV charging with the system model of the power grid infrastructure. The schematics of the

integrated system model of the EV charging infrastructure with the power system model is depicted

in Figure 6.1. Similarly, the integrated system model of the EV charging infrastructure with the

extended power system model is depicted in Figure 6.2.

As the figures show, our study considers three layers in the integrated system: (1) the

power/electric grid layer, (2) the EV charging infrastructure layer, and (3) the cyber layer, which

enables the collaborative solution for the pricing between EV charging layer and power grid layer.

Our model is mainly focused on the power and the EV charging infrastructures. While the cyber

layer is not a part of the theoretical model, we will discuss its key role in Section 6.3. The key

interactions among the layers of this system can be summarized as following. The EV charging in-

frastructure receives energy from the power grid and thus, the load on charging stations may affect

the load on power substations. The pricing scheme, which depends on the state of both power and

EV charging infrastructures, will be communicated through the cyber layer to the users. Finally,

the communicated price will affect the load distribution over the charging infrastructure and subse-

quently, the load on power substations. In case of the extended model, the residential/commercial

loads also effect the load on power substations and consequently, the pricing policy.

6.2.1 System Model of EV Charging Infrastructure

We denote the set of charging stations in a region by CS = {CS1, CS2, ..., CSk}. For

simplicity, we assume that the charging stations are distributed over a grid region such that each
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(a)

(b)

Figure 6.1: Integrated system model of interdependent networks of power and EV charging
stations and the role of cyber infrastructure.

cell in the grid holds one charging station as shown in Figure 6.1 (a) and Figure 6.2 (a). The

charging stations are connected over a directed graph G = (CS, Ec), where Ec represents the set

of directed links specifying the possibility of travel between charging stations for the users. For

instance, eij ∈ Ec implies that users in the cell containing the station CSi can travel to station

CSj for charging. These links help in specifying the constraints on the travel for charging, e.g.,

based on the distance that the users are willing to travel and the distance that a EV with the

need for charging can travel before it runs out of energy. We will explain later that when the right

incentives are applied, there is a likelihood for each user to travel to other stations with direct links

(a probabilistic behavior). In this dissertation, we focus on a graph, in which charging stations in

adjacent cells are connected. Other graphs with different topologies can also be considered and will

not change the model.
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Figure 6.2: Extended integrated system model of interdependent networks of power and EV
charging stations and the role of cyber infrastructure.

6.2.2 System Model of Power Grid Infrastructure

In this section, we describe the power infrastructure layer for the system model in Figure 6.1.

In this dissertation, the intra-system model for the power infrastructure only considers the power

grid substations denoted by S = {S1, S2, ..., Sm} and their internal dynamics (as will be explained in

Section 6.2.5). Although the presented model for power system still does not capture the complete

power grid model and dynamics with generators and power lines; it enables an abstraction for points

of contact with the EV charging infrastructure and components which will directly impact it. To

model the inter-system interactions between the power and charging infrastructures, we assume that

multiple charging stations belong to the distribution network of one substation. And as such, we

consider a set of inter-system links denoted by L, where Lij ∈ L specifies that charging station CSi

affect the load of substation Sj . In this model, CSi ∈ CS should have a link to one specific Sj ∈ S

while each Sj can have multiple incoming links from different geographically co-located charging

station. Also, note that there will be no links from Sj to any node in CS. Such interactions
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and the effects of power substations on charging stations will be indirectly through the incentives

communicated by the cyber layer.

6.2.3 Extended Model of Power Grid Infrastructure

Next, we describe the power infrastructure layer for the extended model in Figure 6.2. In

this dissertation, we consider the power grid loads (e.g., residential or commercial loads) denoted

by B = {B1, B2, ..., Bk} and substations denoted by S = {S1, S2, ..., Sm} (similar to the set of

substations S defined in the power system model in Section 6.2.2) and their internal dynamics (as

will be explained in Section 6.2.5) as well as the intra-system interactions (based on the physics of

the electricity that can lead to propagation of voltage or current stresses and instabilities among

substations). This represents a simplified model for a power system that is an extension to the

system model discussed in Section 6.2.2, which only considered individual substations with no

interactions among the substations.

The links among substations and residential/commercial loads are defined as following. The

residential/commercial loads and substations are connected over a directed graph G = (B ∪ S, Ep),

where link eij ∈ Ep from load node to substation implies that the load is receiving energy from that

substation and link eij ∈ Ep between two substations imply that they can affect each others stress

level and stability. In this model, we assume that there is no link from substation to loads.

The inter-system interactions between the power and charging infrastructures, are the same

as the interactions discussed in the system model of Section 6.2.2. We assume that multiple charging

stations belong to the distribution network of one substation. And as such, the set of inter-system

links denoted by L, where Lij ∈ L specify that charging station Ci affects the load of substation Sj .
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Similar to the system model, CSi ∈ CS should have a link to one specific Sj ∈ S while each Sj can

have multiple incoming links from different geographically co-located charging station. Also, there

are no links from Sj to any node in CS. Such interactions and the effects of power substations on

charging stations is indirectly communicated through the incentives by the cyber layer.

6.2.4 Integrated System Model of EV Charging and Power Infrastructure

Based on the above discussion, the total integrated system of the EV charging and power

infrastructure, is named as the integrated system model and is denoted by a graph as Gp =

(CS ∪ S, Ec ∪ L). Similarly, the total integrated system of the EV charging and extended power

infrastructure, is named as the extended integrated system model and is denoted by a graph as

Ge = (CS ∪S ∪B, Ec∪Ep∪L). However, the model for the system is not simply a graph. Next, we

will explain how each component in these graphs stochastically and dynamically evolve and interact

with other components. We will specifically present a model to capture such dynamics. We have

chosen a probabilistic approach for the modeling as various aspects of this system is stochastic. For

instance, the state of a charging station (e.g., being busy or not) varies probabilistically at different

times of the day and week and due to EV users mobility pattern and behavior. The state of the

load in a substation also varies due to stochastic nature of the demand. The interactions among

components are also stochastic and as components influence each other depending on their state.

For instance, if charging stations, which have a link to substation Sj , become busy and overloaded

with lots of demand then, this increased demand will increase the likelihood of Sj to become over-

loaded and hinder the stability of the power grid. In such cases, it would be ideal to distribute

the load in the system using pricing incentives to increase the willingness of EV users to travel to
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other charging stations. These stochastic interactions and dynamics will be modeled in an influence

framework as explained next.

6.2.5 Influence Model for Integrated Infrastructures

Here, we briefly review the Influence Model (IM) as first introduced in [176], [111] and

present an IM-based framework for modeling the integrated charging and power infrastructures.

The IM is a framework consisting of a weighted and directed graph of interconnected nodes,

in which, the internal stochastic dynamics of each node is represented by a Markov chain (MC)

and the states of the nodes varies in time due to the internal transitions of MCs as well as the

external transitional influences from other nodes. The weights on the directed links represent the

strength of influences that nodes receive from one another. In the following, we put the IM model in

perspective with respect to the integrated charging and power infrastructures. In our model, graph

Gp and graph Ge with different types of links and nodes (as introduced in Section 6.2.4) will serve

as the underlying graph for the IM. To represent the internal dynamics of nodes, we consider that

the state of the charging stations can be abstracted to three levels: (1) underloaded, (2) normal,

and (3) overloaded. As such, we define a MC with state space of size three for each CSi ∈ CS.

These states help in describing the load (in terms of power demand) on a charging station at each

time.

In general, the state of a CSi may change due to departure or arrival of EV users. On the

other hand, we model a substation Sj with an internal MC, which has two possible states: normal

and stressed. These states specify if a power substation is overloaded and stressed or it is working

under normal conditions. We also model the residential/commercial load Bj (in the case of extended
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power system model) with an internal MC, which has three possible states including underloaded,

normal and overloaded, similar to the CSi states.

The transition probability matrix of the internal MC for a node, say node i ∈ CS ∪S in the

case of integrated system model (node i ∈ CS ∪ S ∪ B in the case of extended integrated system

model), is denoted by Aii, which is an m×m row stochastic matrix, where m is the size of the state

space. We use a data driven approach to characterize the transition probabilities of these internal

MCs based on datasets of system dynamics and simulations as will be explained later. The links in

the graphs Gp and Ge specify the influence relation among the nodes.

In particular, for the integrated system model, there are two types of influences in our

model: (1) when a charging station influences another charging station, then it means there is a

likelihood that it will send users (using proper incentives) to the influenced station; (2) when a

charging station influences a power substation, then it means that there is a likelihood that the

charging station increases the load on the power substation to a level that could change the state of

the power substations (e.g., from normal to stressed). In the case of the extended integrated system

model, there are two additional influences in addition to the ones considered in the integrated system

model: (1) when a substation influences another substation, then it means that there is a likelihood

that the substation stresses the other substation if it is stressed or helps a stressed substation to

stabilize if it is normal; and (2) when a residential/commercial load node influences a substation

then it means that it increases the load on the power substation to a level that could change the

state of the power substations.

The weights on the links also specify the strength of the influence. The influences among

the nodes of the network is captured by the influence matrix denoted by D, where each element
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dij is a number between 0 and 1 representing the amount of influence that node i receives from

node j. The larger the dij is, the greater the influence that node i receives from node j; with the

two extreme cases being dij = 0 meaning that node i does not receive any influence from node j

and dij = 1 meaning that the next state of node i deterministically depends on the state of node j.

Note that receiving influence from a node itself (self influence), i.e., dii, specifies how much the state

evolution of a node depends on its internal MC. The total influence that a node receives should add

up to unity i.e.,
∑n

j=1 dij = 1, and therefore, matrix D is a row stochastic matrix too.

In IM, the status of a node, say node i, at time t is denoted by si[t], a vector of length m,

where m is the number of possible states for the node. At each time, all the elements of si[t] are 0

except for the one which corresponds to the current state of the node (with value 1). In our model,

si1[t], si2[t], and si3[t] correspond to overloaded, normal and underloaded states, respectively, for

charging stations and residential/commercial loads. Similarly, si1[t] and si2[t] correspond to normal

and stressed states for power substations, respectively. The statuses of all the nodes concatenated

together as S[t] = (s1[t]s2[t]...sn[t]) described the state of the whole system in time t, where n =

|CS ∪ S| in the case of the system model (n = |CS ∪ S ∪ B| in the case of the extended system

model) and |.| denotes the cardinality of the set.

The influence matrix D specifies how much two nodes influence each other. In order to

specify how the states of the nodes will change due to the influences, we also need state-transition

matrices Aij , which capture the probabilities of transiting to various states due to the state of the

influencing node. Matrix Aii represents the special case of self-influence, which is described by the

internal MC of the node. Note that the Aij matrices are row stochastic. In the general IM [176],

the collective influences among the nodes in the network is summarized in the total influence matrix
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H defined as:

H = D′ ⊗ {Aij} =


d′11A11 · · · d′1nA1n

...
. . .

...

d′n1An1 · · · d′nnAnn

 , (6.1)

where D′ is the transpose of the matrix D and ⊗ is the generalized Kronecker multiplication of

matrices [176]. Finally, based on the the total influence matrix H the evolution equation of the

model is defined as

p[t+ 1] = S[t]H, (6.2)

where vector p[t+ 1] describes the probability of various states for all the nodes in the network in

the next time step. Steady state analysis of IM has some similarities with that of MCs and has

been discussed for various scenarios in [176], [111]. For a more detailed discussion on the IM please

refer to [176], [111].

6.2.5.1 Constraint-based Influence Model

The work in [177] extends the original IM to a constraint or rule-based influence framework

such that the influences among the nodes can dynamically get activated and deactivated depending

on the state of the system. Also, as explained in [177], influences can change the state of the

influencer as well (e.g., EV charging stations can transition from overload to normal due to sending

load to another charging station). The study in [177] specifically defined a constraint matrix C,

where the entry cij for i, j ∈ CS ∪ S (or i, j ∈ CS ∪ S ∪ B) is a binary variable specifying whether

node i gets influenced by node j or not. In particular, cij = 1 indicates that node i gets influenced

by node j and cij = 0 indicates otherwise. Moreover, each node always influences itself based on its
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internal MC (i.e., cii = 1 for all i ∈ CS∪S in the case of the integrated system model (i ∈ CS∪S∪B

in the case of the extended integrated system model)). As explained in [177], one can define the

value of cij according to boolean logic to capture the rules of interactions in the network. In

other words, cijs are functions of the state of the nodes. For instance, when a charging station

in the EV charging infrastructure is in overloaded state and based on Gp (or Ge), it has a link to

another station, which is underloaded, the influence over that link should get activated to motivate

the EV users to travel from the overloaded state to underload state. These types of rules can be

specified using boolean functions such as the following examples. Function cij = si3sj1 + si2sj1,

where i, j ∈ CS specifies the rules that can be applied to the transport layer of the model to show

influences from charging station j to charging station i. Specifically, a transport node i will receive

influence from transport node j if node i is underloaded and node j is overloaded or if node i is

normal and node j is overloaded. Also, the power substations receive influences from the charging

stations because overloaded charging stations can cause a power substation to go to overloaded

state. Example of boolean function describing this rule is ck` = sk1
∏
j∈CSSk

sji + sk2
∏
j∈CSSk

sji,

where k ∈ S and ` ∈ CS and CSSk
⊆ CS is the set of charging stations connected to the power

substation k. Specifically, a power substation, say k will receive influence from charging station `

when all the charging stations connected to the power substation are overloaded. As a power station

is generally built with a capacity to accommodate large demand, the power substation will go to

a stressed state provided that all the influence links connected to it are activated. This is just one

example of influence rule and other conditions to specify the rules are also possible.

Note that as the goal of the integrated study of these two systems is to increase the prob-

ability of having power substations in normal conditions and charging stations not overloaded, the
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interaction rules defined in C should support this goal. In order to achieve this goal, the influences

among the charging stations should be engineered such that it forces the whole system toward de-

sirable states. The second type of influence, which is from the charging station to power substations

cannot be engineered and we assume that when the charging stations, which are receiving power

from substations, are overloaded they influence (increase the likelihood) the substation to transit

to a stressed state (similarly for the load buses influencing substations in the case of the extended

integrated system model).

In [177], the constraint matrixC and the influence matrixD are used to define the constraint-

based influence matrix denoted by E, as

E = D ◦C + I ◦ (D× (1−C′)), (6.3)

where ◦ is the Hadamard product (aka entrywise product), 1 is the matrix with all elements equal to

1 and C′ is the transpose of matrix C. Using E, the IM-based state evolutions can be summarized

as

H = E′ ⊗ {Aij}, (6.4)

and p[t+ 1] = S[t]H.

As discussed in [177], this formulation may or may not allow the asymptotic analysis of

the behavior of the system. However, regardless of the existence of the analytical solution, this

model can be used for Monte-Carlo simulation of the behavior of the system in order to study how

influences and interactions affect the state of the whole system. Based on this formulation, as the

state of the system varies in time, various sets of influences get activated. Note that in IM, when
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a node influences another node, it may result in state change for the influenced node based on

the adjusted transition probabilities that are captured through H and the formulation of p[t + 1].

As such, an activated influence in our model increases the probability of transitioning to a normal

state for an underloaded charging station due to receiving load from the influencer (based on our

definition of influence). In the real-world, proper incentives for the users are needed to make sure

that the influences occur (transfer of load from one charging station to another). As such, to achieve

the goal of the system which is increasing the probability of normal states, we use the status of the

influence links (active or inactive) to guide the charging price design as discussed next.

Algorithm 2 Algorithm for Price Assignment to Charging Stations

1: Input : Graph of active influences, Gt(CS, Ea(t)). A maximum electricity price limit A and a
reduction factor in price, α.

2: Output : Charging price in each charging station in C such that the price of the influencer
station is higher than the influenced station.

3: Calculate the topological sort T for Gt.
4: for i=1 to |C| do
5: if |I(T(i))| = 0 then
6: Price(T(i)) = A
7: else
8: Price(T(i))=

∑
j∈I(T(i)) Price(j)/|I(T(i))|

9: end if
10: end for
11: Return Price.

6.3 Designing Charging Prices for Improved Reliability

The models described in the previous section need an external factor in real-world scenarios

to provoke an EV user to travel from one charging station to another for charging (i.e., activating

the described influence between charging stations in real-world). This external factor can be in

terms of incentives or hampers that an EV user may get if they move from one cell to another.

A good incentive would be lower charging prices (whenever the influence should be active) in the
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station, which should receive some load. The lower prices can motivate the EV users to move from

their currently occupied cell to the other station. However, not every EV user will respond to such

incentives in the same way and thus, not every user will travel from the initial cell. Particularly, the

probabilistic nature of the IM helps in capturing the random behavior of the users. Intuitively, the

higher the influence strength the more we expect that the users travel to the other station, which

can help in characterizing the price reduction that is needed. A key point to notice is that the cyber

layer plays a key role in letting the desired influences to occur and to let the system identify its

next states based on IM. Specifically, the cyber layer should communicate the lower charging price

only to the users in the initial cell of concern. Otherwise, if the reduced price is communicated in

the system globally and all the EV users in the city know about the reduced price in a station,

this will activate influences among neighbor stations (neighbors are defined as according to Gp or

Ge) that should not be activated according to the IM model. Thus, in order to only activate the

influences that the IM model identifies for leading the system to a more balanced system in each

step, the cyber layer plays a key role in communicating the prices to the right EV users based on

their location.

In our model based on IM, whenever the set of activated influence links varies, we need to

identify new set of prices for each station such that if station say i has an active influence link to

station j, then the price at station i should be higher than that of station j. To identify the set

of prices that satisfy this condition in the whole system, we apply Algorithm 2. This algorithm is

similar to a constrained graph coloring problem. However, the problem of price assignment to the

stations based on the above constraint is solvable with complexity O(|CS|+ |E|), which is because

the graph of active influences denoted by Gt(CS, Ea(t)) and obtained from simulation of IM at step
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t is a directed and acyclic graph (DAG) (note that Ea(t) ⊆ E , also note that Ea(t) does not include

self-influences as they do not affect the pricing). This property is due to the rule set with the goal of

balancing the load in the system, which never result in a cycle in the graph of active influences. In

other words, the rule set in the model is very important to ensure that the load is not circulating in

the system and purposely directed to the proper charging stations. Algorithm 2 for price assignment

uses a topological sort of the graph and then assigns the prices based on the identified order such

that the prices ensure that the stations appearing later in the topological sort have lower prices (as

they should receive influences or loads). In our algorithm, we consider a maximum price limit of A

and each price reduction occurs by a constant α. The values of A and α are considered fixed for

simplicity, but can be variable and adjusted based on other factors in the system. In this algorithm,

function I(.) receives a node and returns the set of nodes, which influences the input node.

6.4 Evaluation and Results

In order to demonstrate the process of assigning prices to the charging stations dynamically

as the system evolves in time, while trying to lead the EV charging and power system to more

balanced states, we use the following two example networks:

1. Figure 6.3 with 12 charging stations, which receive their energy from the two substations.

2. Figure 6.4 with 12 charging stations, three substations, in which two of them directly deliver

electricity to the charging stations, and two load buses.

6.4.1 Transition Probabilities of Charging Station Nodes

For both these example networks, we use a data driven approach to extract some of the
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Substation

Substation

Transport Nodes

Figure 6.3: Integrated charging and power infrastructures model with twelve charging stations and
two substations. (i.e., graph Gp).

parameters of the IM using available data sets of traffic information. Specifically, we used the taxi

data in [178], which contains GPS trajectories of 536 taxis in San Francisco, California from May 17,

2009 - July 10, 2009 to estimate the self-influence transition probabilities of the twelve EV charging

nodes, denoted by Aiis. An example of Aii based on the dataset is shown in Equation (6.5), where

rows and columns are ordered from overload (O) to normal (N) and then underload (U):

Aii =

O N U


O 0.89473684 0.1052632 0.00000000

N 0.07262570 0.8770950 0.05027933

U 0.07142857 0.2142857 0.71428571

(6.5)
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Figure 6.4: Integrated charging and power infrastructures model with twelve charging stations,
three substations and two load buses. (i.e., graph Ge).

In addition to Aiis, which characterize the internal dynamics of each charging station, we

also need to consider inter-state transition probabilities Aijs to specify how the influences between

two stations result in state transitions. An example of Aij is shown in Equation (6.6), in which

each column specifies the probability of transition to overload, normal, and underload, respectively,

depending on each row, which specifies the state of the influenced node. For simplicity and due to

lack of detailed information in the datasets to characterize this matrix for all cells, we have simplified

this matrix to have equal transition probabilities independent of the state of the influenced node

(i.e., the same rows). Based on our model and the rules of influences, in order to lead the systems

to balanced states, a charging station only tries to send load to another charging station if the other

station is not overloaded. As such, the last row of the matrix in Equation (6.6) does not play a role

in the analysis.
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Aij =

O N U


O 0.2 0.5 0.3

N 0.2 0.5 0.3

U 0.2 0.5 0.3

(6.6)

6.4.2 Transition Probabilities of Power Substation Nodes

We discuss the transition probabilities of the states of the power substations in the following

two categories for integrated system model and the extended integrated system model.

6.4.2.1 Integrated System Model

For the integrated system model, an example of self-influence transition probabilities Aii

for power substations is shown in Equation (6.7), where rows and columns are ordered from normal

(N) to stressed (S). We do not consider the intra-power interactions and matrix Aii compensates

for the missing information of the intra system interactions that can cause state changes.

Aii =

N S
N 0.8 0.2

S 0.5 0.5

(6.7)

According to Equation (6.7), when the system is stressed (i.e., the second row on the matrix in

(6.7)), there is an equal chance to get into normal or stressed state based on internal dynamics. As

part of influences in IM-based model, whenever charging stations go back to normal or underloaded

states, they can externally help the power substation to transit back to the normal state.
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6.4.2.2 Extended Integrated System Model

Similarly, in the case of the extended integrated system model, an example of inter-state tran-

sition probabilities Aij for power substations is shown in Equation (6.8), where rows and columns

are ordered from normal (N) to stressed (S) to capture the influence among substations depending

on their normal or stressed states:

Aij =

N S
N 0.4 0.6

S 0.2 0.8

(6.8)

We assume that the internal dynamics of each power substation, i.e., self-influence transition

probabilities Aii can be captured by an identity matrix implying that the internal state of the

substations can only change due to influences (i.e., without influences, the probability of transition

to the other state is zero). To model the stochastic residential/commercial loads, we consider the

Aii shown in Equation (6.9) to consider the stochastic dynamics of loads (which can also be derived

using a data-driven approach using load profile datasets).

Aii =

O N U


O 0.5 0.3 0.2

N 0.25 0.5 0.25

U 0.1 0.4 0.5

(6.9)

The set of rules for this study can be described as: (1) for charging stations, node i gets

influenced by node j if and only if node i is underloaded and node j is overloaded or node i is in
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Figure 6.5: Two samples of activated influence links for the extended integrated model shown in
Figure 6.4.
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Figure 6.6: Two samples of activated influence links for the extended integrated model shown in
Figure 6.3.

normal state and node j is overloaded, and (2) for the influences between the power substations and

the charging stations, the power substation gets influenced by a charging station only (in the case

of the integrated system model) or charging station as well as load bus (in the case of the extended

integrated system model), if the power station is normal and the charging stations or load buses

receiving power service from the substation are overloaded or if the power substation is stressed and

the charging stations are normal or underloaded.
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Figure 6.7: Number of charging stations in each iteration in: (a) underloaded, (b) normal, and (c)
overloaded states.

6.4.3 Numerical Results

As mentioned earlier, based on the state of the components in the system, the influences

among nodes may get activated and deactivated. In Figure 6.5, we show two samples of active

influence graphs for the extended integrated system model shown in Figure 6.4. The activated

links between charging stations suggest that the load should be transferred from one station to the
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Figure 6.8: Number of power substations in each iteration in: (a) normal, and (b) stressed states.
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Figure 6.9: Aggregated state distribution for overloaded, normal and underloaded states for
charging stations for the system model shown in Figure 6.3 and Figure 6.4.

station on the end of the directed link. Also, Figure 6.6 shows the integrated system model and the

activated links for the setting defined in Equation (6.7).

Using the integrated system model shown in Figure 6.3 with the transition probabilities

for charging stations discussed in Section 6.4.1 and transition probabilities for power substations

discussed in 6.4.2.1, the set of activated influences in each iteration prompts a change of state in

the charging stations and power substations, as shown in Figures 6.7 and 6.8. Specifically, Figures

6.7 (a), (b), and (c) show the distribution of the number of charging stations in underload, normal

and overload states in each iteration. Similarly, Figures 6.8 (a) and (b) show the distribution of the

number of power substations in normal and stressed states in each iteration. Similar observations

are obtained for the extended integrated system model shown in Figure 6.4 with the transition

probabilities for charging stations discussed in Section 6.4.1 and transition probabilities for power

substations as well as residential/commercial loads discussed in 6.4.2.2.
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Figure 6.10: Aggregated state distribution for normal and stressed states for the power substations
for the system model shown in Figure 6.3 and Figure 6.4.

Although the distributions are fluctuating, it can be observed from Figure 6.9 and Figure

6.10 that the aggregated behavior of the system is helping the system towards being balanced (e.g.,

the likelihood of normally loaded charging stations and normal power substations is higher than

other states). The results in Figures 6.9, 6.10, 6.11, and 6.12 are obtained over 1000 steps of the IM

simulation. Figure 6.11 shows the state distribution of the charging stations and power substations

with various initial states for the extended integrated system model. Similar observations are

obtained for the integrated system model.

6.4.4 Rules of Interactions

An important aspect of the influence model is the set of rules that specify how the nodes

should interact and influence each other. To show how the rules of the interactions affect the behavior

of the system, here, we have considered other influence rules similar to the rules of interactions

defined in [177] as follows:
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Figure 6.11: State distribution of charging stations and power substations with various initial
states for the components using the extended integrated system model in Figure 6.4.
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Figure 6.12: State distribution of charging stations and power substations with all charging
stations and residential/commercial loads initially overloaded and all power substations initially in
normal states for different rules of interactions using the extended integrated system model in
Figure 6.4.

1. Rule 1: Node i gets influenced by node j if and only if (iff) node i is underloaded and node j is

overloaded or node i is in normal state and node j is overloaded.

2. Rule 2: Node i gets influenced by (receives workload from) node j iff node i is underloaded and

node j is overloaded.

3. Rule 3: Node i gets influenced by node j iff node i is underloaded and node j is overloaded or

node i is underloaded and node j is in normal state.
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4. Rule 4: Node i gets influenced by node j iff either node i is underloaded and node j is overloaded,

node i is underloaded and node j is in normal state or node i is in normal state and node j is

overloaded.

5. Rule 5: Node i gets influenced by node j iff either node i is underloaded and node j is overloaded,

node i is underloaded and node j is in normal state, node i is in normal state and node j is overloaded

or node i is in normal state and node j is in normal state too.

Note that these rules only focus on the interactions/influences among the charging sta-

tions. Figure 6.12 shows the state distribution of nodes with all charging stations and residen-

tial/commercial loads initially overloaded and all power substations initially normal for different

rules applied to the extended integrated system model in Figure 6.4. It can be seen that rule 5

performs the worst among all five rules as the number of overloaded charging stations are higher

compared to other rules for the extended integrated system model shown in Figure 6.3. Similar

results are observed for the integrated system model shown in Figure 6.4.

6.4.5 Optimal Charging Prices

To design the incentives that enable influences and lead to the above discussed results, we

need to design the prices for each charging station. To do so, we have used Algorithm 2 over the

active influence graph obtained at each step of the simulation, whenever there is a change in the

active influence graphs. Note that Algorithm 2 receives graphs similar to the ones shown in Figure

6.5 where the self-edges are omitted. The price assignment based on this algorithm at each station

is shown in Table 6.1 for the extended integrated system model (which considers intra-power system

dynamics as well as residential/commercial loads), for the sample steps of our simulation (with Rule
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Table 6.1: Charging prices in the EV charging stations over various iterations for the extended
integrated system model.

Charging Stations
Iteration 1 2 3 4 5 6 7 8 9 10 11 12
1 A A A A A A A A A A A A
99 A A A A-α A-α A-α A A A A-α A-α A-α
368 A-α A A A A A A A A A A A
562 A-α A A A A A A A A A A A
600 A A-α A-α A A A A-α A-α A-α A A A
653 A-α A A A-α A A-α A A A A-α A-α A-α
779 A A-α A-α A A A A-α A-α A-α A A A
987 A A A A-α A-α A-α A A A A-α A-α A-α
993 A A-α A A A-α A A-α A A A A A-α

1). It can be observed from the table that all twelve stations have the same price of A initially but

the prices vary over the network as the stochastic dynamics of the system change the states of the

nodes.

We showed our study of collaborative pricing solution between the EV charging and electric

infrastructures based on our IM-based model. Key takeaways from our results include: (1) by

designing proper rules of interactions among the integrated systems, the load distribution can be

improved in both systems, (2) the pricing assignment based on the obtained active influence graph

enables the implementation of appropriate influences and (3) the intra-system and inter-system

influences and dynamics both affect the overall behavior and thus, change the obtained pricing

schemes.

6.5 Summary and Conclusions

In this chapter, we discussed the interdependence of critical infrastructures of smart cities

and thus, the importance of considering collaborative solutions among them for designing services.
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To do so, we proposed a synergistic approach towards modeling and analysis of critical interdepen-

dent infrastructures that enabled capturing the state and stochastic dynamics of inter and intra-

system interactions. To demonstrate the benefit of collaborative solutions, in this dissertation,

we focused on interdependent EV charging and power infrastructures and developed an integrated

framework for modeling their interactions based on influence model, which is a networked Markov

chain framework. We also proposed an algorithm, which assigned prices to charging stations based

on the set of active links that lead to more balanced systems. We discussed the role of the cyber

infrastructure in enabling this pricing scheme, which considers the state of both charging stations

and power systems. The work presented in this chapter is an effort towards stimulating collabora-

tion among various critical infrastructures and analyzing them using integrated models to develop

collaborative solutions for smart cities.
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Chapter 7: Conclusions and Future Directions

This dissertation is an effort towards improving the reliability of the power grid and its

interdependent infrastructures and illustrated several experiments to show the importance of using

interaction graphs in such analyses. In power grids, the complex phenomena of cascading failures,

which can propel a grid towards large blackouts, was evaluated using community structures within

interaction graphs. This dissertation provides key insight about the underlying interactions among

the components of the system during cascading failures and that protection of critical components

identified using the community structures can help in reducing the risk of blackouts. Further,

community structures were used to formulate a Markov chain framework for characterizing and

predicting the size of cascades; in which, the results revealed that the community structure-based

Markov Chain produced heavy tailed cascade size distributions, typically found in historical data and

previous studies of cascading failures [20]. These results suggest that community structures within

interactions graphs bear critical information about the cascade process in power grids. Similarly,

reliability of the interdependent power grid and EV charging infrastructure was evaluated using the

influence model, a networked Markov chain framework, to model the stochastic interactions shared

among the infrastructures. We observed that charging prices designed to motivate EV drivers to

travel to appropriate locations could lead to balanced states in both systems. Together, these

studies illustrate that global properties of various systems studied using interaction graphs can be

useful in understanding and improving the reliability of the respective infrastructures and help in
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designing dependable and resilient infrastructures. Future work arising from the present studies in

this dissertation are discussed next.

In this dissertation, two different data-driven interaction graphs were constructed using

influence-based and correlation-based techniques. These graphs heavily rely on cascade data and as

such, interactions/influences among components and their strengths may be overestimated or under-

estimated based on the applied method and the dataset itself. In future, these techniques can be fur-

ther improved to extract useful statistics and information without overestimation/underestimation

problems. Furthermore, these graphs were constructed using simulation data and further analyses

can include historical datasets as well. This process can validate the technique used in constructing

the graph by showing historical trends such as power law behavior in cascade size distributions.

Also, our studies showed that operating settings, such as the power grid loading level, af-

fected the constructed interaction graphs and consequently, led to different criticality of components

for different operating settings. For real-time mitigation of cascading failures, a single and compu-

tationally inexpensive interaction graph that models all possible operating setting conditions needs

to be created and is an interesting challenge ahead for researchers.

While studying the role of community structures in the interaction graphs, our studies relied

on thresholding the dense interactions/influences in the interaction graphs to obtain community

structures that could model both microscopic and macroscopic properties relative to the scale of

the graph. This process essentially removed less dominant interactions that acted as noise. In

future, identifying techniques to reduce the number of interaction links in the graphs can be useful

for reducing the computational complexity of constructing the graphs and finding the community

structures. We also used two specific community detection techniques, but many other techniques

132



can be used for identifying different types of patterns and structures in the interaction graphs. This

can cross validate the most efficient structure for cascading failure studies.

One of the techniques used for verifying the criticality of the components identified using

the community-based centrality measure was the power simulation-based technique, in which, the

transmission capacities of the lines were increased for handling larger power flows. This technique

can substantially reduce the risk of large blackouts, as shown in our simulations. In future, other cost

effective mitigation mechanisms that can be implemented in real time, such as switching off trans-

mission lines during propagation of failures itself should be studied using the community structures

by removal of critical components such as bridge or overlap nodes from the interaction graphs.

In our community structure-based Markov chain framework, we numerically analyzed the

cascade size distributions based on the trapping property of community structures. However, a

complete analytical characterization of the Markov chain framework can be extremely useful in

predicting cascade sizes and mitigating the risk of large blackouts in real time for power grids of

larger scales and sizes. This is an open research problem and needs to be undertaken in future.

While this dissertation focused on analyzing cascading failures using community structures

of standalone power grids, additional analyses of community structures of interdependent infras-

tructures subjected to cascading failures can model complex inter and intra influences/interactions

in the infrastructures. Further, the community-based centrality metric can identify critical com-

ponents in the interdependent infrastructures. And the general verification techniques such as the

data-driven, SI simulation, and graph-based efficiency analysis can be used to verify criticality of

components identified in the interdependent infrastructures. Further, the community-based Markov

chain framework can also be extended to include additional infrastructures.
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