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Abstract 

Autonomous robots are employed in numerous areas. In this thesis, it is proposed to design 

and build a self-controlled wheeled vehicle to deliver food. 

As there are many applications of an autonomous agent for indoor and outdoor 

environments, this study is conducted on indoor settings whereas all the requirements and design 

processes are achieved for both operational boundaries. 

The fundamental approach is to design and implement a Wheeled Mobile Robot (WMR), 

and to test skid-steering performance on proposed trajectories using a System Engineering 

approach. From this point of view, system requirements in mechanical, electrical, and software are 

evaluated, and overall system is divided into subblocks which are motor processor, image 

processor, and central processor. 

One of main concerns is indoor and outdoor positioning. While outdoor tasks are widely 

solved in terms of the Global Positioning System (GPS) technology, indoor navigation appears 

with challenges. Hence, it is aimed to acquire a deeper understanding in mobile robot indoor 

localization through Deep Neural Networks (DNN) and learning algorithms.   
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Chapter 1: Introduction 

1.1 Concept of Description 

A four-wheeled robot, named “DeLRo”, is designed for delivery mission from point A to 

point B. To accomplish this primary task, it is examined through four different majors which are 

system dynamical behavior, kinematic capability, control hierarchy, and robot positioning. To that 

end, project management is handled with a System Engineering (SE) mindset following the “V” 

diagram, shown in Fig. 1.1, as a fundamental guidance. 

 

Figure 1.1 System engineering “V” model [1] 
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1.2 Overview of Proposal 

This thesis aims to design, develop, and implement a wheeled autonomous robot for 

delivering tasks using a System Engineering approach for the design, test, verification, and 

validation processes. 

1.3 Contribution and Organization 

Kinematic modeling bridges the geometric properties and the capabilities of the platform. 

Hence, the mechanical design is bounded by the control input of the system. The dynamic design 

includes the measurement of the system responses under different physical scenarios, while the 

kinematic approach analyzes to estimate DeLRo’s behavior with respect to the environmental 

settings. 

Ultimately, this study presents a guide on how to analyze and to design a complete system 

from a holistic perspective. As it is crucial to use systems engineering approach in designing of 

such a complex system, it aids to stay on track and to tackle those detouring instances by 

acknowledging the five pillars of SE which are concept of operation, requirements, high level 

design, verification, and validation processes. 

This thesis document is composed in five additional chapters. The requirements of project 

and calculation of robot dynamics are introduced in Chapter 2. Chapter 3 studies the mathematical 

modelling of system kinematics. The four-wheeled architecture and the control principles are 

presented in Chapter 4 including the motor control hierarchy of the design using a Proportional 

Integral Derivative (PID) control algorithm. Chapter 5 describes the robot localization 

methodology utilizing the Reinforcement Learning and Deep Neural Networks (DNN) for a pre-

planned task. 
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Chapter 2: DeLRo Dynamic Modeling 

As it is fundamental to develop and execute the mathematical model of a dynamic system, 

in this section we aim to derive the mathematical equilibrium to estimate and track robot’s 

behavior.  

Dynamic design of the robot has been theoretically completed and validated within the 

campus environment. In this regard, the first observation of the bot maneuverability is carried out 

in the USF Tampa campus. According to the regulations, minimum width of sidewalks is to be 5 

feet [2], and DeLRo ’s proposed dimension is 30 inches by 30 inches which is considered to be 

remained under the half of the minimum sidewalk width (1ft = 12in). 

 

Figure 2.1 Comparison of operating spaces of a bicycle rider and DeLRo.
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2.1 System Requirements 

The minimum preferred operating area is calculated as 30 in same as the bike rider’s spatial 

dimensions [3]. In this case, the number of scenarios are illustrated in Fig.2.2 which is facilitated 

by pedestrians and DeLRo on sidewalks. One significant approach is evaluation of the location 

and orientation of active objects on the runway. Four different scenarios are considered in scaling 

of the bot sizes to avoid confliction on the pathway.  

 

Figure 2.2 DeLRo and pedestrian accommodation on sidewalk. (The icons are obtained 

from https://www.iconfinder.com/) 

In Fig. 2.2(a) the robot tracks the person in the same direction at 1.5 mph which is under 

average human walking speed. The distance between the robot and the person is the preferred 

https://www.iconfinder.com/
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operating zone, 60 in. Fig. 2.2(b) represents that DeLRo stops and waits for the pedestrian who 

approaches to the bot in the case of sidewalk being under the minimum dimensions. Fig. 2.2(c) 

shows a typical robot-human pass scenario and the robot keeps the right pass behavior. 

The average occupancy of two persons passing by is 56 inches [4]. In this case, the bot fits 

approximately equivalent space to an individual. For the scenarios which remains under 30 inches 

width, it is assumed that robot convoys a person by giving priority pass. Based on the observations 

and calculations it is resolved to design a wheeled agent which is 30 inches width, 30 inches length 

and 21inches height. 

Physical capability of a system leads many fundamental questions to research on and to start 

building: How many wheels would be appropriate to run the robot? How much payload is allowed? 

What are the speed requirements? How much power is required for minimum? As environmental 

conditions limit the design, all these factors are cross-functional in architecture of the platform. A 

key point is to estimate torque parameter which brings a great significance for wheel dynamics 

that connect chassis to ground. In order to achieve this, it is required to create various scenarios 

based on these factors which aid to narrow the scope and reach the final parameter. After trade-off 

processes, the best and efficient parameters are listed in the following table. 

Table 2.1 DeLRo design requirements 

Parameter Value 

𝑊𝐺 Gross Weight 80  [𝑙𝑏] 

𝑟 Wheel Radius 4

12
  (4 [in]) 

[𝑓𝑡] 

𝜐 Speed 2.2(~1.5[ mph]) 
[
𝑓𝑡

𝑠
] 

α Maximum Slope 40 𝑑𝑒𝑔𝑟𝑒𝑒 

 Number of Wheels 4   
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After a certain period of researching on motors, it is chosen to employ a brushless dc hub 

motor (BLDC) for the reasons which are being compact in structure and presenting high efficiency, 

power and torque capabilities. 

 

Figure 2.3 Wheel rotational and linear speed 

• Angular velocity:  

𝜔 = 12
𝜈 60

𝜋 2 𝑟
[
𝑟𝑒𝑣

𝑚𝑖𝑛
] ;     1 [𝑓𝑒𝑒𝑡] = 12 [𝑖𝑛]                                  (2.1) 

• Acceleration: 

a =
∆𝑣

∆𝑡
=

𝜈𝑓𝑖𝑛𝑎𝑙 − 𝜈𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝑡𝑓𝑖𝑛𝑎𝑙 − 𝑡𝑖𝑛𝑖𝑡𝑖𝑎𝑙
[
𝑓𝑡

𝑠2
]                                                       (2.2) 

While there are many factors such as power consumption, sidewalk occupancy, weight, 

and torque, velocity is essentially predicted depending on the acceleration capability of DeLRo. 

Table 2.2 DeLRo performance requirements 

Parameter Value 

𝜔 Angular velocity 63 [
𝑟𝑒𝑣

𝑚𝑖𝑛
] 

a Acceleration 1.47 
[
𝑓𝑡

𝑠2
] 

𝑡𝛼 Acceleration time 1.49 [𝑠] 

𝑡𝑜 Operation Time 2  [ℎ] 

𝜂 Efficiency 85  [%] 
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2.2 Calculations and Capabilities 

2.2.1 Four Wheeled Skid-Steering Drive System 

Skid-steer system is commonly used in numerous robotics applications to facilitate a 

advanced load capacity, agile maneuverability, and high traction force by adjusting the number of 

wheels [5]. In addition, simplicity of the mechanical design is another great advantage. Therefore, 

it removes steering complexity and slippery problem in majority of the cases. On the other hand, 

controllability of the system still has challenges on odometry inconsistency and wheel 

synchronization.  

 

Figure 2.4 Wheel dynamics on ground level. 𝐹𝑥, 𝑅𝑥, 𝐹𝑦, 𝐹𝑧, and 𝜏 are tractive force, reactive 

force, lateral force, gravitational force, and applied torque, respectively. 

 

 

As illustrated in the Fig.2.4, 𝐹𝑥 is the tractive force which is occurred between the wheels 

and the ground as the consequence of applied torque (𝜏). The wheel should overcome the static 

friction to start rolling [6]. 

𝐹𝑥 ≥  µ
𝑠𝑠

∗ 𝑅𝑥                                                                                               (2.3) 

In Eq. (2.3), µ𝑠𝑠 is static frictional coefficient that is utilized when the surfaces are 

stationary. It is selected as 0.8 for rubber - concrete interaction. On the other hand, µ𝑘𝑠 is known 

as the sliding frictional coefficient or kinetic frictional coefficient which occurs after the motion 

started between the objects. It is approximated around 0.45 [7].  
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2.2.2 Resistant Forces 

All the force vectors on wheel motion which are introduced in Fig. 2.4 should be calculated 

to estimate torque. Hence, there are three different high level force equations considered which are 

rolling resistance force, ground slope effect, and aerodynamic resistivity. 

1. Wheel rolling resistance force 

𝑅𝑟 = 𝐶𝑟𝑟𝑊𝐺                                                                                         (2.4) 

where 𝐶𝑟𝑟 is rolling resistance coefficient, which is 0.01 for rubber wheel on concrete, and 0.08 

for on glazed ceramic floor.  

2. Ground slope 

𝑅𝑔 = 𝑊G sin 𝛼                                                                                     (2.5) 

In Eq. (2.5) 𝛼 stands for inclination on ground. In our test runs it is assumed as zero.  

3. Aerodynamic Drag Force 

This force acts in opposite direction as decelerative effect on robot’s frontal area which is 

approximately measured as 𝐴 = 2.77𝑓𝑡2 (202𝑖𝑛). 𝐶𝑑 is the air resistance coefficient and is 

assumed to be 1.05 for cubic shaped objects. Air density (𝜌) is 0.00238 [
𝑠𝑙𝑢𝑔

𝑐𝑢 𝑓𝑡
]. 

𝑅𝑑 =
1

2
𝐶𝑑 𝐴 𝜌 𝜐2                                                                                (2.6) 

Thus, the total resistant force is gathered as given in Eq. (2.7). 

𝑅𝑥𝑡𝑜𝑡𝑎𝑙
= 𝑅𝑟 + 𝑅𝑔 + 𝑅𝑑                                                                    (2.7) 
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Figure 2.5 Wheel dynamics at α degree slope. 

In our case, 

1. Rolling resistance: 

𝑅𝑟 = 0.08 ∗ 80 𝑙𝑏 = 6.4 𝑙𝑏𝑓. 

2. Ground slope affect at different inclination (𝛼): 

▪ 𝛼 = 0, 

𝑅𝑔 = 80 𝑙𝑏 ∗ sin 0 = 0 𝑙𝑏𝑓; 

▪ 𝛼 = 15,  

𝑅𝑔 = 80 𝑙𝑏 ∗ sin 15 = 20.7 𝑙𝑏𝑓; 

▪ 𝛼 = 20, 

𝑅𝑔 = 80 𝑙𝑏 ∗ sin 20 = 27.4 𝑙𝑏𝑓; 

▪ 𝛼 = 40, 

𝑅𝑔 = 80 𝑙𝑏 sin 40 = 51.4 𝑙𝑏𝑓. 

3. Aerodynamic drag force: 

𝑅𝑑 =
1

2
1.05 2.77𝑓𝑡2  0.00238

𝑠𝑙𝑢𝑔

𝑐𝑢 𝑓𝑡
∗ (2.2

𝑓𝑡

𝑠
)
2

= 0.17 𝑙𝑏𝑓 

Finally, the sum of the resistive forces is derived at different slopes (𝛼) as follows.  

▪ 𝛼 = 0, 
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𝑅𝑥𝑡𝑜𝑡𝑎𝑙
= 𝑅𝑟 + 𝑅𝑔 + 𝑅𝑑 = 6.4 𝑙𝑏𝑓 + 0 𝑙𝑏𝑓 + 0.17 𝑙𝑏𝑓 = 6.57 𝑙𝑏𝑓 

▪ 𝛼 = 15, 

𝑅𝑥𝑡𝑜𝑡𝑎𝑙
= 27.3 𝑙𝑏𝑓 

▪ 𝛼 = 20, 

𝑅𝑥𝑡𝑜𝑡𝑎𝑙
= 34 𝑙𝑏𝑓 

▪ 𝛼 = 40, 

𝑅𝑥𝑡𝑜𝑡𝑎𝑙
= 58 𝑙𝑏𝑓 

The gross weight which is 80 pounds is distributed to wheels homogenously. In this case 

each wheel has gravity force (𝐹𝑧) under approximately one-fourth of mass. In order to specify 

motor parameters for each wheel, it is required to answer how much tractive torque is demanded 

to beat the resistance. The total torque (𝜏𝑡) and power (𝑃) is calculated as follows. 

∑𝐹 = 𝑚a                                                                                          (2.8) 

𝐹𝑥 −  µ𝑠𝑠𝑅𝑥 =
𝑊G

4
a𝑥                                                                         (2.9) 

𝐹𝑦 − 𝑅𝑦 =
𝑊G

4
a𝑦, ( 𝐹𝑦 = 0)                                                         (2.10) 

𝑊Ga𝑥 = 𝐹𝑥𝑡𝑜𝑡𝑎𝑙
−  µ𝑠𝑠𝑅𝑥𝑡𝑜𝑡𝑎𝑙

                                                        (2.11) 

𝑊Ga𝑥 = 
𝜏𝑡

𝑟
−  µ𝑠𝑠

𝜏𝑅𝑥

𝑟
                                                                    (2.12) 

𝜏𝑡 = 𝑟𝑊Ga𝑥 +  µ𝑠𝑠𝜏𝑅𝑥                                                                   (2.13) 

𝑃𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙 = 0.0118 𝜏𝑡 𝜔                                                            (2.14) 

𝑃𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 = 𝑃𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙  (
1

𝑛
)                                                       (2.15) 

In Eq. (2.14) 0.0118 is conversion factor. The description of the factor is illustrated in 

following equilibriums. 
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1 [ℎ𝑝]  =  745.699872 [𝑤𝑎𝑡𝑡]                                                    (2.16) 

𝑃ℎ𝑝 =
𝜏𝑡 𝜔

5252
(𝑙𝑏𝑓𝑡 𝑟𝑒𝑣/𝑚𝑖𝑛) =

1

12

𝜏𝑡 𝜔

5252
[𝑙𝑏. 𝑖𝑛 𝑟𝑒𝑣/𝑚𝑖𝑛]      (2.17) 

𝑃𝑤 = 𝑃ℎ𝑝 745.7 = 745.7
1

12

𝜏𝑡 𝜔

5252
                                              (2.18) 

𝑃𝑤 = 0.0118 𝜏𝑡  𝜔 [𝑙𝑏. 𝑖𝑛 𝑟𝑒𝑣/𝑚𝑖𝑛]                                              (2.19) 

Table 2.3 Estimated torque and power values at different climbing angles 

Parameter Value Unit 

Ground Slope  0𝑜 15𝑜 20𝑜 40𝑜 [𝑑𝑒𝑔𝑟𝑒𝑒] 

Angular velocity 

(𝜔) 

63 63 63 63 [
𝑟𝑒𝑣

𝑚𝑖𝑛
] 

Acceleration (a) 1.47 1.47 1.47 1.47 
[
𝑓𝑡

𝑠2
] 

Wheel Radius (𝑟) 0.33 0.33 0.33 0.33 [𝑓𝑡] 

Total resistant force 

(𝑅𝑥) 

6.57  27.3  34  58 [𝑙𝑏𝑓] 

Torque (𝜏𝑡) 40.1  46.8  48.3  54.7  [𝑙𝑏. 𝑖𝑛] 

Power (𝑃𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙) 29.8  37.8 35.9  40.7 [𝑤𝑎𝑡𝑡] 

Power (𝑃𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙) 35.1  44.5  42.2  47.9 [𝑤𝑎𝑡𝑡] 

Efficiency (𝑛) 85 85 85 85 [%] 

 

Motor performance curve can be predicted in terms of the given formulas below by 

deploying design and performance parameters. In Eq. (2.20) 𝜏𝑠 is maximum stall torque while 

motor is not rotating which is approximated to 100 [lb.in]. 𝜔0 indicates maximum velocity of the 

motor without load and it is assumed to be 900 [rev/min]. Lastly, 𝐼0 and 𝐼𝑠 are no-load current and 

stall current, respectively.  

𝜏 = 𝜏𝑠(1 −
𝜔

𝜔0
)                                                                                  (2.20) 
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𝐼 = 𝐼0 + (𝐼𝑠 − 𝐼0)(1 −
𝜏

𝜏𝑠
)                                                                (2.21) 

𝑃 = 0.0118 𝜏 𝜔
1

𝑛
                                                                             (2.22) 

 

 

Figure 2.6 Estimated motor performance graph 

2.2.3 Pivot Turning 

First, skid-steering operation is preferably conducted on a flat indoor surface. Fig. 2.7 

illustrates DeLRo’s geometrical dimensions, and “O” is assumed as geometrical center and the 

center of Mass (CoM) of the bot. Hence, this enables a lightweight computation in system 

dynamics. Dimensions are as same as the real design, and the mass distribution is presumed as 

homogenous. 
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Figure 2.7 DeLRo 2-dimensional dynamic scheme 

 

Table 2.4 DeLRo’s 2D spatial specifications 

Dimensions Value Unit 

A 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑟𝑜𝑏𝑜𝑡 30 [𝑖𝑛] 

B 𝑤𝑖𝑑𝑡ℎ 𝑜𝑓 𝑡𝑟𝑢𝑛𝑘 21.5  [𝑖𝑛] 

C 𝑤𝑖𝑑𝑡ℎ 𝑜𝑓 𝑟𝑜𝑏𝑜𝑡 24  [𝑖𝑛] 

D 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑤ℎ𝑒𝑒𝑙𝑠 16  [𝑖𝑛] 

u 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑐𝑒𝑛𝑡𝑟𝑎𝑙 𝑝𝑜𝑖𝑛𝑡 𝑎𝑛𝑑 𝑤ℎ𝑒𝑒𝑙 14.5 [𝑖𝑛] 

z ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ 𝑡𝑜𝑤𝑎𝑟𝑑 𝑤ℎ𝑒𝑒𝑙 𝑎𝑥𝑖𝑠 12  [𝑖𝑛] 

y 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ 𝑡𝑜𝑤𝑎𝑟𝑑 𝑤ℎ𝑒𝑒𝑙 𝑎𝑥𝑖𝑠 8  [𝑖𝑛] 

∅ 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝑤ℎ𝑒𝑒𝑙 8  [𝑖𝑛] 

Aforementioned forces are shown in Fig. 2.8 to present a descriptive picture of tractive 

(𝐹𝑥𝑖
), lateral (𝐹𝑦𝑖

), reactive (𝑅𝑥𝑖
), and friction forces  (𝐹𝑥𝑟𝑖

) for 𝑖 = 1,2,3,4. Omega (Ω) is spin 

rate or angular turning speed of the body. To remember, in Eq. (2.3) traction force should achieve 

the reactive force to enable the wheel’s forward rotation. However, this principle remains plain 

while lateral forces participate in resistance torque  (𝜏𝑅𝑥) beside the tractive torque (𝜏𝑡) [8]. 



 

14 

 

 

Figure 2.8 DeLRo’s pivot turning diagram 

𝜏𝑅𝑥 = 𝜏𝑅𝑥1
+ 𝜏𝑅𝑥2

+ 𝜏𝑅𝑥3
+ 𝜏𝑅𝑥4

                                                 (2.23) 

𝜏𝑡 = 𝜏𝑡1 + 𝜏𝑡2 + 𝜏𝑡3 + 𝜏𝑡4                                                               (2.24) 

Eq. (2.25) is fundamental for pivot turning.  

𝜏𝑡 ≥ 𝜏𝑅𝑥                                                                                                      (2.25) 

 Therefore, wheel tractive torque is given in Eq. (2.26) for 𝑖 = 1,2,3,4. 

𝜏𝑡𝑖
=

𝜏𝑡

4
;                                                                                             (2.26) 

𝜏𝑅𝑥𝑖
=

𝜏𝑅𝑥

4
;                                                                                                (2.27) 

Resistant torque is also presented above. Total moment value is the key point to initiate the 

movement of the agent. In order to gather the equivalent formula of pivot turning, the total moment 

in DeLRo’s center is obtained as in Eq. (2.28)   

𝜏𝑡𝑖

𝑟
𝑧 ≥

𝑊𝐺

4
 µ

𝑘𝑠
 𝑦                                                                               (2.28) 
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According to the equation above the minimum torque value for each wheel is estimated as 

greater than 24 [lb.in].In this case the total traction thrust cannot be under 96 [lb.in] for rubber 

wheel on concrete surface which utilizes the kinetic (or sliding) friction coefficient approximation, 

µ𝑘𝑠, is around 0.45. 

In addition to tractive torque, it is also required to calculate the spin rate (Ω) which is the 

rotation speed at zero radius skid steer turn on 0-degree ground.  

Ω =
ω r

𝑢
cos 𝜃 [

𝑟𝑒𝑣

𝑚𝑖𝑛
]                                                                      (2.28) 

Ω =
2 π

60

ω r

𝑢
cos 𝜃 [ 

𝑟𝑎𝑑

𝑠
]                                                               (2.29) 

According to Eq. (2.29) the period of a complete turn can be determined. For instance, once 

a wheel rotates at 100 RPM and a full circle is 2π radian, full rotation is fulfilled in 2.62 seconds.  

2π [rad]

2.4 [
rad
s ]

= 2.62 [𝑠]                                                                        (2.30) 

Table 2.5 Estimated spin rates at several wheel angular speeds 

Parameter Value Unit 

Angular velocity (ω) 80 90 100 110 [
𝑟𝑒𝑣

𝑚𝑖𝑛
] 

Spin rate (Ω) 18.3 20.6 22.3 25 [
𝑟𝑒𝑣

𝑚𝑖𝑛
] 

Spin rate (Ω) 1.9 2.2 2.4 2.6 
[
𝑟𝑎𝑑

𝑠
] 

Torque (𝜏𝑥) 96  96 96 96  [𝑙𝑏. 𝑖𝑛] 

Power (𝑃𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙) 90.62 102  113.3  124.6  [𝑤𝑎𝑡𝑡] 

Power (𝑃𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙) 113.3  127.4  141.6  155.8  [𝑤𝑎𝑡𝑡] 

Efficiency (η) 85 85 85 85 [%] 
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Eventually, 350 [watt] BLDC hub (in-wheel) motor is selected. One of the reasons is that 

presenting high torque capacity while eliminating dependency on additional shafting and 

transmission components Hence, choosing a BLDC driver circuit becomes advantageous. Another 

usefulness is in-circuit hall-effect sensor for concise position readings in the circuit feedback loop.  

 

Figure 2.9 Vendor’s motor performance curve 

BLDC hub motors have a wide range of applications in electric bicycles, scooters, cars, 

and so on. Hence, hub motors, which are also known as direct-driven hub wheels are directly 

driven through magnetic field between stator coils and rotor magnets, present good acceleration, 

convincing lifecycle, and high efficiency and power [9].  

Table 2.6 Brushless DC hub motor specifications 

Motor Ratings and Parameters Value Unit 

Power 350 [𝑊𝑎𝑡𝑡𝑠] 
Torque 90 [𝑙𝑏. 𝑖𝑛] 
Voltage 39 [𝑉𝑜𝑙𝑡𝑠] 
Current 10 [𝐴] 
Diameter 8 [𝑖𝑛] 
Weight 6.4 [𝑙𝑏] 
Efficiency 85 [%] 
Speed 825 [𝑟𝑒𝑣/𝑚𝑖𝑛] 
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Chapter 3: 4-Wheeled Robot Kinematic Model 

 

Figure 3.1 DeLRo’s simulated view on SolidWorks© 

In this section, the mathematical equilibriums of robot kinematics are described and state-

space model of 4-wheeled skid-steering system is developed. Hence, it is aimed to estimate the 

velocity, acceleration, position, and orientation of the bot. 

3.1 DeLRo Kinematic Background 

DeLRo is a four wheeled robot and it is considered moving in two-dimensional global 

coordinate system which is defined as (𝑋𝐺 , 𝑌𝐺) in Figure 3.3.  
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Figure 3.2 Force diagram. CoR represents the center of rotation. 

 

𝐹𝑥𝐿 = 𝐹𝑥1 + 𝐹𝑥2, 𝐹𝑥𝑅 = 𝐹𝑥3 + 𝐹𝑥4                                          (3.1) 

𝑅𝑥𝐿 = 𝑅𝑥1 + 𝑅𝑥2, 𝑅𝑥𝑅 = 𝑅𝑥3 + 𝑅𝑥4                                       (3.2) 

𝐹𝑦𝑓
= 𝐹𝑦1 + 𝐹𝑦4, 𝐹𝑦𝑟

= 𝐹𝑦2 + 𝐹𝑦3                                           (3.3) 

𝑊Ga𝑥 =  𝐹 cos𝜑 −  µ𝑠𝑠(𝑅 cos𝜑 − 𝐹𝑦 sin𝜑)                               (3.4) 

𝑊Ga𝑦 = 𝐹 sin𝜑 −  µ𝑠𝑠(𝑅 sin𝜑 + 𝐹𝑦 cos𝜑)                                (3.5) 

 Therefore, vehicle’s moment equation can be written as in Eq. (3.6). 𝐼𝑂 represents moment 

of inertia of the entire bot, �̈� denotes spin acceleration (Ω̇), and 𝑀𝑟 means resistive moment. 

𝑀𝑟 =
𝐶

2
𝑅𝑥𝑅 cos𝜑 −

𝐶

2
𝑅𝑥𝐿 cos𝜑 + 

𝐷

2
𝐹𝑦𝑓

 cos 𝜑 −
𝐷

2
𝐹𝑦𝑟

 cos 𝜑                                                  (3.6) 

𝐼𝑂�̈� =
𝐶

2
(𝐹𝑥𝑅 − 𝐹𝑥𝐿) − 𝑀𝑟                                                              (3.7) 

While it is non-steering system, wheels are powered through left and right group of motor 

drivers. Each wheel is equipped with hall effect sensors which produces 5V peak to peak electrical 

square waves.  
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3.2 Model Analysis and Simulation 

3.2.1 Skid-Steering Model 

In cartesian coordinate system, Center of Mass (CoM) is represented as O reference point 

that is the geometrical midpoint of DeLRo which has symmetrical properties in x and y axes. 

Center of Rotation (CoR) is identified to illustrate turning kinematics (𝑥𝐶𝑜𝑅 , 𝑦𝐶𝑜𝑅 ) [10], [11], [12]. 

Hence, it allows comprehensive modeling and simulating of waypoint-oriented tasks that is 

explained in Chapter 5 in details.  

 

Figure 3.3 DeLRo kinematic model 

Pose vector is defined as in Eq. (3.8). 𝑋, 𝑌, 𝜑 denote lateral coordinate, longitudinal 

coordinate, and orientation respectively.  

𝑞 = [
𝑋
𝑌
𝜑

]                                                                                                (3.8) 
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Hence, vehicle’s body velocity is given in terms of lateral and longitudinal speeds in Eq. 

(3.9). 

𝜐 = [𝜐𝑥, 𝜐𝑦]
𝑇
                                                                                         (3.9) 

and velocities of wheels can be denoted as in Eq. (3.10) and Eq. (3.11). 

𝜐1 = [𝜐1𝑥, 𝜐1𝑦]
𝑇
, 𝜐2 = [𝜐2𝑥, 𝜐2𝑦]

𝑇
                                                    (3.10) 

𝜐3 = [𝜐3𝑥, 𝜐3𝑦]
𝑇
, 𝜐4 = [𝜐4𝑥, 𝜐4𝑦]

𝑇
                                                   (3.11) 

It is designed that set of left wheels (M1 and M2) has the common accelerating capability, 

and therefore longitudinal velocities are equal, as the right wheels (M3 and M4). Similarly, lateral 

speeds are identical. 

𝜐1𝑥 = 𝜐2𝑥 , 𝜐3𝑥 = 𝜐4𝑥                                                                        (3.12) 

𝜐1𝑦 = 𝜐3𝑦 , 𝜐2𝑦 = 𝜐4𝑦                                                                        (3.13) 

 

Figure 3.4 Relationship between turning spin rate (Ω) and wheel angular speed (𝜔) 

As depicted in Fig. 3.4, it can be considered that velocity of the left sided motors is 

degraded to zero to find the body orientation.  

𝜐𝐿 = 𝜐1𝑥 = 𝜐2𝑥, 𝜐𝑅 = 𝜐3𝑥 = 𝜐4𝑥                                                     (3.14) 
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Eq. (3.14) can also be written in Eq. (3.15) to culminate to body longitudinal speed by 

accumulating linear velocities of the motors. 

𝜐𝑥 =
𝜐𝐿 + 𝜐𝑅

2
                                                                                    (3.15) 

𝜐𝐿 =
𝜐1 + 𝜐2

2
, 𝜐𝑅 =

𝜐3 + 𝜐4

2
                                                          (3.16) 

𝜐𝐿 =
𝜔1 + 𝜔2

2
𝑟, 𝜐𝑅 =

𝜔3 + 𝜔4

2
𝑟                                                 (3.17) 

𝜐𝑅 − 𝜐𝐿 =  Ω𝐶                                                                                  (3.18) 

(𝜔3 + 𝜔4)

2
𝑟 −

(𝜔1 + 𝜔2)

2
𝑟 =  Ω𝐶                                              (3.19) 

Based on the given parameters in Table 2.5, forward kinematic equation can be written in 

Eq (3.20).  

[

𝜐𝑥

𝜐𝑦

Ω 
] =

𝑟

4
[

1 1 1
0 0 0

−
1

𝐶
−

1

𝐶

1

𝐶

    

1
0
1

𝐶

] [

𝜔1

𝜔2

𝜔3

𝜔4

]                                             (3.20) 

where 𝜐𝑥 is longitudinal speed of the bot is the accumulation of the speeds of the wheels. Since 

lateral velocities have comparatively less greatness, are approximated to zero in the calculations 

[13]. 

Inverse kinematic equation can be also derived in Eq. (3.21).  

[

𝜔1

𝜔2

𝜔3

𝜔4

] =
1

𝑟
[

1 0 −𝐶
1 0 −𝐶
1 0 𝐶
1 0 𝐶

] [

𝜐𝑥

𝜐𝑦

Ω 
]                                                          (3.21) 

Simultaneous position of the bot is calculated through x-y local coordinate base. In this 

case, a relationship can be created between global X-Y coordinate system and the robot’s inherent 

x-y positioning frame. Thus, this approach allows to track immediate pose of the platform on a 

proposed trajectory [14]. 
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�̇� = �̇�𝑜 = 𝜐𝑥 cos𝜑 − 𝜐𝑦 sin 𝜑                                                      (3.22) 

�̇� = �̇�𝑜 = 𝜐𝑥 sin𝜑 + 𝜐𝑦 cos𝜑                                                      (3.22) 

�̇� =  Ω                                                                                                (3.23) 

�̇� = [
�̇�
�̇�
�̇�

] = [
�̇�𝑜

�̇�𝑜

Ω

] = [
𝑐𝑜𝑠𝜑 −𝑠𝑖𝑛𝜑 0
𝑠𝑖𝑛𝜑 𝑐𝑜𝑠𝜑 0

0 0 1
] [

𝜐𝑥

𝜐𝑦

Ω
]                          (3.24) 

Linear speed of the wheels (𝜐𝑖 = {𝜐1, 𝜐2, 𝜐3, 𝜐4}) is represented in terms of multiplication 

of distance vectors which is between wheels (𝑑𝑖 = {𝑑1, 𝑑2, 𝑑3, 𝑑4}) and CoR (𝑥𝐶𝑜𝑅 , 𝑦𝐶𝑜𝑅), and 

wheel angular velocities (𝜔𝑖 = {𝜔1, 𝜔2, 𝜔3, 𝜔4}). 

𝜐𝑖𝑥 = 𝑟 𝜔𝑖                                                                                          (3.25) 

𝜐𝑖 = 𝑑𝑖 Ω                                                                                           (3.26) 

𝜐𝑖𝑥 = −𝑑𝑖𝑦 Ω,      𝜐𝑖𝑦 = 𝑑𝑖𝑥 Ω                                                      (3.27) 

Although we ignore the lateral slipping, it must be considered as a non-holonomic 

constraint. In this case, 𝑑𝑜𝑥, the longitudinal component of 𝑑𝑜 which is distance between CoR and 

CoM, denotes the slip that is depicted in Fig. 3.2 and is given in Eq. (3.28). 

 𝜐𝑦 + 𝑑𝑜𝑥 Ω = 0                                                                                (3.28) 

and if we reorganize Eq. (3.24) to obtain 𝜐𝑦 by multiplying �̇� with (−sin𝜑) and �̇� with (cos𝜑), 

we accumulate the Eq. (3.29). 

(−sin𝜑 )�̇� = (−sin𝜑 )(𝜐𝑥 cos𝜑 − 𝜐𝑦 sin𝜑)                          (3.29) 

(cos𝜑 )�̇� = (cos𝜑 )(𝜐𝑥 sin𝜑 + 𝜐𝑦 cos𝜑)                                (3.30) 

−sin𝜑 �̇� + cos𝜑 �̇� = 𝜐𝑦                                                               (3.31) 

Rewriting Eq. (3.21) only for a wheel’s rotational speed, it is given in the following 

equation. 
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𝜔1 =
1

𝑟
(𝜐𝑥 − 𝐶�̇�)                                                                            (3.32) 

If we repeat the same calculation that is done for Eq. (3.29), this time we can derive 𝜐𝑥 in 

Eq. (3.35). 

(cos 𝜑 )�̇� = (cos𝜑)(𝜐𝑥 cos𝜑 − 𝜐𝑦 sin𝜑)                                (3.33) 

(sin𝜑 )�̇� = (sin𝜑 )(𝜐𝑥 sin𝜑 + 𝜐𝑦 cos𝜑)                                (3.34) 

cos𝜑 �̇� + sin𝜑 �̇� = 𝜐𝑥                                                                  (3.35) 

Hence, the wheel angular velocity can be described in terms of the components of �̇� from 

Eq. (3.24) and it is given in Eq. (3.38). 

[

𝜔1

𝜔2

𝜔3

𝜔4

] =
1

𝑟
[

cos𝜑 sin𝜑 −𝐶
cos𝜑 sin𝜑 −𝐶
cos𝜑 sin𝜑 𝐶
cos𝜑 sin𝜑 𝐶

] [
�̇�
�̇�
�̇�
]                                            (3.36) 

𝜔1 =
1

𝑟
(cos𝜑 �̇� + sin𝜑 �̇� − 𝐶�̇�)                                              (3.37) 

�̇� = [
�̇�
�̇�
Ω

] =
𝑟

4
[

cos𝜑 cos𝜑 cos𝜑 cos𝜑
sin𝜑 sin 𝜑 sin𝜑 sin𝜑

−
1

𝐶
−

1

𝐶

1

𝐶

1

𝐶

] [

𝜔1

𝜔2

𝜔3

𝜔4

]                (3.38) 

Linear non-holonomic constraint matrix can be identified as in Eq. (3.39). 

[−sin𝜑 cos𝜑 𝑑𝑜𝑥] [
�̇�𝑜

�̇�𝑜

Ω

] = 𝐴𝑇(𝑞)�̇� = 0,          Ω = �̇�       (3.39) 

where 𝐴𝑇(𝑞) is defined as [−sin𝜑 cos𝜑 𝑑𝑜𝑥]. Our control input parameters are wheel angular 

velocity.  

DeLRo, as explained before and shown in Fig. 3.4, is designed and built based on left (M1, 

M2) and right sided (M3, M4) controllable motor sets. This means, wheels are driven through 
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individual motor drivers, and each wheel group is commanded in term of a common control 

parameter. Generalized pseudo velocity (𝜂) is defined [15] in Eq. (3.40).  

𝜂 = [

𝜐𝑥

𝜐𝑦

Ω
]                                                                                            (3.40) 

�̇� = 𝑆(𝑞)𝜂                                                                                          (3.41) 

[
�̇�
�̇�
�̇�
] = 𝑆(𝑞) [

𝜐𝑥

𝜐𝑦

Ω
] , 𝑆(𝑞) =    [

𝑐𝑜𝑠𝜑 −sin𝜑 0
sin𝜑 𝑐𝑜𝑠𝜑 0

0 0 1
]           (3.42) 

 

 

Figure 3.5 Motions of DeLRo. 

3.3 Lagrange Dynamical Equations 

Mostly for non-holonomic systems, utilization of energy equations instead of time variant 

equilibriums is an efficient way to model vehicle kinematics. Lagrange methodology is the one to 

approximate to actual performance [16]. General Lagrangian equation is given in Eq. (3.43). 

𝐿 = 𝑇 − 𝑈, 𝑈 = 0                                                                    (3.43) 
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where 𝑇 is the kinetic energy of the agent, and 𝑈 is potential energy, which is permanent and can 

be assumed zero since the planar motion is executed. Thus, Lagrange formulation is deployed to 

predict DeLRo’s dynamic behavior as presented in Eq. (3.44). 

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕�̇�
)

𝑇

− (
𝜕𝐿

𝜕𝑞
)
𝑇

= 𝑢                                                                   (3.44) 

In the given formula, 𝑢 represents external forces. Overall kinetic energy of the bot is given 

in Eq. (3.45). Where 𝑇𝐺 and 𝑇𝑂 represent vehicle’s overall and rotational kinetic energy.  

𝑇 = 𝑇𝐺 + 𝑇𝑂                                                                                      (3.45) 

𝑇 =
1

2
𝑊𝐺𝜐2 +

1

2
 𝐼𝑂Ω 2                                                                   (3.46) 

where 𝑊𝐺 is DeLRo’s gross weight, 𝜐 is the linear velocity of the robot,  Ω denotes spin rate, 𝐼𝑂  

is moment of inertia of the entire body and 𝜔𝑖 is wheel angular speed.  

𝑑

𝑑𝑡
(
𝜕𝑇

𝜕�̇�
) − (

𝜕𝐿

𝜕𝑞
) = [

𝑑

𝑑𝑡
(
𝜕𝑇𝐺

𝜕�̇�
) +

𝑑

𝑑𝑡
(
𝜕𝑇𝑂

𝜕�̇�
) ] − [

𝜕𝑇𝐺

𝜕𝑞
+

𝜕𝑇𝑂

𝜕𝑞
] (3.47) 

𝑑

𝑑𝑡
(
𝜕𝑇𝐺

𝜕�̇�
) =

𝑑

𝑑𝑡
(

𝜕

𝜕�̇�
(
1

2
𝑊𝐺(�̇�2 + �̇�2))) = 𝑊𝐺�̈� + 𝑊𝐺�̈�      (3.48) 

𝑑

𝑑𝑡
(
𝜕𝑇𝑂

𝜕�̇�
) =

𝑑

𝑑𝑡
(

𝜕

𝜕�̇�
(
1

2
 𝐼𝑂�̇�2)) = 𝐼𝑂�̈�                                       (3.49) 

𝜕𝑇𝐺

𝜕𝑞
=

𝜕

𝜕𝑞
(
1

2
𝑊𝐺(�̇�2 + �̇�2)) = 0                                                (3.50) 

𝜕𝑇𝑂

𝜕𝑞
=

𝜕

𝜕𝑞
(
1

2
 𝐼𝑂�̇�2) = 0                                                                (3.51) 

Therefore, overall Lagrangian equilibrium results in Eq. (3.52).  

𝑑

𝑑𝑡
(
𝜕𝑇

𝜕�̇�
) − (

𝜕𝐿

𝜕𝑞
) = 𝑊𝐺�̈� + 𝑊𝐺�̈� + 𝐼𝑂�̈�                                      (3.52) 
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[

𝑊𝐺 0 0
0 𝑊𝐺 0
0 0 𝐼𝑂

] [
�̈�
�̈�
�̈�
] − 0 [

�̇�
�̇�
�̇�
] = 𝑢                                                 (3.53) 

Considering non-holonomic constraints which is mentioned in Eq. (3.39), dynamic model 

can be represented in terms of 𝑀(𝑞) mass-inertia, 𝑉(𝑞, �̇�) Coriolis and centrifugal forces, 𝐹(�̇�) 

friction forces,  𝐺(𝑞) gravity forces, 𝐸(𝑞) torque transformation, and 𝐴(𝑞) constraint coefficient 

matrices [17]. 

𝑀(𝑞)�̈� + 𝑉(𝑞, �̇�) + 𝐹(�̇�) + 𝐺(𝑞) = 𝐸(𝑞)𝜏 − 𝐴𝑇(𝑞)𝜆           (3.54) 

Hence, taking second derivative of pose vector (𝑞) which is defined in Eq. (3.8), the 

following is derived.  

�̈� = �̇�(𝑞)𝜂 + 𝑆(𝑞)�̇�                                                                         (3.55) 

𝑀(𝑞)(�̇�(𝑞)𝜂 + 𝑆(𝑞)�̇�)   + 𝑉(𝑞, �̇�) + 𝐹(�̇�) + 𝐺(𝑞) = 𝐸(𝑞)𝜏 − 𝐴𝑇(𝑞)𝜆                                   (3.56) 

By multiplying 𝑆(𝑞) with both sides of the Eq. (3.56), we can simplify the equation.  

𝑆𝑇(𝑞)[𝑀(𝑞)(�̇�(𝑞)𝜂 + 𝑆(𝑞)�̇�)   + 𝑉(𝑞, �̇�) + 𝐹(�̇�) + 𝐺(𝑞)] = 𝑆𝑇(𝑞)[𝐸(𝑞)𝜏 − 𝐴𝑇(𝑞)𝜆]      (3.57) 

𝑀(𝑞)(𝑆𝑇(𝑞)�̇�(𝑞)𝜂 + 𝑆𝑇(𝑞)𝑆(𝑞)�̇�)   + 𝑆𝑇(𝑞)𝑉(𝑞, �̇�) + 𝑆𝑇(𝑞)𝐹(�̇�) + 𝑆𝑇(𝑞)𝐺(𝑞)

= 𝑆𝑇(𝑞)𝐸(𝑞)𝜏 − 𝑆𝑇(𝑞)𝐴𝑇(𝑞)𝜆                                                                               (3.58) 

 

It can be assumed that 𝑆𝑇(𝑞)𝐴𝑇(𝑞)𝜆 = 0 while 𝑑𝑜𝑥 = 0 since the agent is symmetrically 

designed (see Fig. 2.7), 𝐺(𝑞) = 0 for planar motion on 0 degree slope ground, 𝑉(𝑞, �̇�) is neglected, 

and  𝑆𝑇(𝑞)�̇�(𝑞) = 0 [18]. Hence, the simplified form of Eq. (3.58) can be derived as follows.  

𝑀(𝑞)𝑆𝑇(𝑞)𝑆(𝑞)�̇� + 𝑆𝑇(𝑞)𝐹(�̇�) = 𝑆𝑇(𝑞)𝐸(𝑞)𝜏                      (3.59) 

Through the dynamic equations in Eq. (2.8-2.12), we can complete Lagrange formula.   

𝑀𝑟 = 𝐼𝑂Ω̇ =
𝐶

2
𝑅𝑥𝑅 cos 𝜑 −

𝐶

2
𝑅𝑥𝐿 cos𝜑 + 

𝐷

2
𝐹𝑦𝑓

 cos 𝜑 −
𝐷

2
𝐹𝑦𝑟

 cos 𝜑                           (3.60) 
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𝑊Ga𝑥 = 𝐹𝑥 cos𝜑 −  µ𝑠𝑠(𝑅 cos𝜑 − 𝐹𝑦 sin𝜑)                           (3.61) 

𝑊Ga𝑦 = 𝐹𝑦 sin𝜑 −  µ𝑠𝑠(𝑅 sin𝜑 + 𝐹𝑦 cos𝜑)                            (3.62) 

 

[

𝑊𝐺 0 0
0 𝑊𝐺 0
0 0 𝐼𝑂

] [

a𝑥

a𝑦

Ω̇

] =

[
 
 
 
 

1

𝑟

1

𝑟
0 0

−𝐶

2𝑟

𝐶

2𝑟]
 
 
 
 

[
𝜏𝐿

𝜏𝑅
] −  µ𝑠𝑠 [

𝑅𝑥

0
0

]                (3.63) 

𝑆𝑇(𝑞) = [−
𝑐𝑜𝑠𝜑 sin𝜑 0
sin𝜑 𝑐𝑜𝑠𝜑 0

0 0 1
]                                                     (3.64) 

 

𝐌 = 𝑆𝑇(𝑞)𝑀(𝑞)𝑆(𝑞)�̇�                                                                   (3.65) 

𝐅 = 𝑆𝑇(𝑞)𝐹(�̇�)                                                                                (3.66) 

𝐄 = 𝑆𝑇(𝑞)𝐸(𝑞)                                                                                (3.67) 

Thus, by substituting 𝑆𝑇(𝑞) and 𝑆(𝑞), we can derive 𝐌 in Eq. (3.68), and in terms of Eq. 

(2.10) and Eq. (2.26), the following equilibriums can be written.  

�̃� + �̃� = �̃�𝛕                                                                                       (3.68) 

�̃� = [

𝑊𝐺 0 0
0 𝑊𝐺 0
0 0 𝐼𝑂

] [−
𝑐𝑜𝑠𝜑 sin𝜑 0
sin𝜑 𝑐𝑜𝑠𝜑 0

0 0 1
] [

𝑐𝑜𝑠𝜑 − sin𝜑 0
sin 𝜑 𝑐𝑜𝑠𝜑 0

0 0 1
] [

�̇�𝑥

�̇�𝑦

Ω̇

]                                     (3.69) 

�̃� = [

𝑊𝐺 0 0
0 𝑊𝐺 0
0 0 𝐼𝑂

] [
1 0 0
0 1 0
0 0 1

] [

�̇�𝑥

�̇�𝑦

Ω̇

] = [𝑊𝐺 𝑊𝐺 𝐼𝑂] [

�̇�𝑥

�̇�𝑦

Ω̇

]                                                    (3.70) 

�̃� = [𝑊𝐺 𝑊𝐺 𝐼𝑂] [

�̇�𝑥

�̇�𝑦

Ω̇

] =
1

𝑟
[

cos𝜑 cos𝜑 cos𝜑 cos𝜑
sin𝜑 sin𝜑 sin𝜑 sin𝜑

−
𝐶

2
−

𝐶

2

𝐶

2

𝐶

2

] [

𝜏𝑥1

𝜏𝑥2

𝜏𝑥3

𝜏𝑥4

] − µ𝑠𝑠 [

𝑅𝑥

𝑅𝑦

𝑅Ω

]                 (3.71) 
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[
 
 
 
 
 
 
 
�̇�
�̇�
�̇�
𝜐�̇�

𝜔1̇

𝜔2̇
𝜔3̇
𝜔4̇]

 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
cos 𝜑 − sin𝜑 0
sin𝜑 cos𝜑 0

0 0 1
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0]

 
 
 
 
 
 
 

[

𝜐𝑥

𝜐𝑦

Ω
] +

[
 
 
 
 
 
 
 
 
 
 
 
 
 

0 0 0 0
0 0 0 0
0 0 0 0
1

𝑊𝐺𝑟

1

𝑊𝐺𝑟

1

𝑊𝐺𝑟

1

𝑊𝐺𝑟

−
𝐶

4𝐼𝑂𝑟
−

𝐶

4𝐼𝑂𝑟

𝐶

4𝐼𝑂𝑟

𝐶

4𝐼𝑂𝑟

−
𝐶

4𝐼𝑂𝑟
−

𝐶

4𝐼𝑂𝑟

𝐶

4𝐼𝑂𝑟

𝐶

4𝐼𝑂𝑟

−
𝐶

4𝐼𝑂𝑟
−

𝐶

4𝐼𝑂𝑟

𝐶

4𝐼𝑂𝑟

𝐶

4𝐼𝑂𝑟

−
𝐶

4𝐼𝑂𝑟
−

𝐶

4𝐼𝑂𝑟

𝐶

4𝐼𝑂𝑟

𝐶

4𝐼𝑂𝑟]
 
 
 
 
 
 
 
 
 
 
 
 
 

[

𝜏𝑥1

𝜏𝑥2

𝜏𝑥3

𝜏𝑥4

]                        (3.72) 
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Chapter 4: DeLRo’s Control System 

 

Figure 4.1 DeLRov0.5 interior layout (MDx: Motor driver) 

4.1 State Space Modeling 

Mathematical modeling is key point to design and analyze a control system that enables to 

predict system behaviors.  

 

Figure 4.2 Typical closed-loop control system 
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4.1.1 Motor Control Modeling 

 

Figure 4.3 DC Motor electrical circuit 

A general DC motor circuit is illustrated in Figure 4.3. As our brushless motor mechanism 

does not have any gearbox or external shafting components, it is assumed that the load is directly 

driven by motor stator magnetic interaction. The torque is transmitted to the load with minimum 

loss which is proportional to friction coefficient (B). Kirchhoff voltage equation is given in Eq. 

(4.1). 

𝑉(𝑡) = 𝐼(𝑡)𝑅 + 𝐿
𝑑𝐼(𝑡)

𝑑𝑡
+ 𝐸(𝑡)                                                      (4.1) 

DeLRo’s proposed wheels are BLDC hub (in-wheel) motors which are described with 

details in Chapter 2. In order to design this system, it is required to analyze the mathematical model 

of electromechanics with bottom-up approach. Therefore, motor modeling is the base for the entire 

agent.  

 

Figure 4.4 Simplified BLDC hub motor circuit 
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A brushless DC motor consists of three phases which are represented with components of 

motor phase voltages, Ua, Ub, Uc, phase currents, Ia, Ib, Ic, resistance, R, inductance, L, and back 

EMF, E, in Figure 4.4. Thus, the motor phase voltage equation is derived in Eq. (4.2).  

[

𝑈𝑎(𝑡)
𝑈𝑏(𝑡)
𝑈𝑐(𝑡)

] = [
𝑅 0 0
0 𝑅 0
0 0 𝑅

] [

𝐼𝑎(𝑡)
𝐼𝑏(𝑡)
𝐼𝑐(𝑡)

] + [
𝐿 0 0
0 𝐿 0
0 0 𝐿

]
𝑑

𝑑𝑡
[

𝐼𝑎(𝑡)
𝐼𝑏(𝑡)
𝐼𝑐(𝑡)

] + [

𝐸𝑎(𝑡)
𝐸𝑏(𝑡)
𝐸𝑐(𝑡)

] (4.2) 

𝐸(𝑡) = 𝐾𝑒𝜔(𝑡)                                                                                    (4.3) 

In equilibrium (4.3) 𝐾𝑒 denotes back EMF constant and 𝜔(𝑡) represents rotor speed. And 

the motor generates a torque which is the total electromechanical torque [lb.in] is given by Eq. 

(4.4). 

𝜏𝑒(𝑡) =
1

𝜔(𝑡)
[𝐸𝑎(𝑡)𝐼𝑎(𝑡) + 𝐸𝑏(𝑡)𝐼𝑏(𝑡) + 𝐸𝑐(𝑡)𝐼𝑐(𝑡)]              (4.4) 

The torque can also be described as in Eq. (4.5). 

𝜏𝑒(𝑡) = 𝐽
𝑑𝜔(𝑡)

𝑑𝑡
+ 𝐵𝜔(𝑡) + 𝜏𝑙(𝑡)                                                  (4.5) 

where J, B, and 𝜏𝑙 are motor inertia, friction coefficient, and load torque, respectively. Motor 

torque constant (𝐾𝑡) is given with the denominator 𝐼(𝑡) armature current in following equation. 

𝐾𝑡 =  
𝜏𝑒(𝑡)

𝐼(𝑡)
 [
𝑙𝑏. 𝑖𝑛

𝐴
]                                                                          (4.6) 

From Eq. (4.6) 𝐼(𝑡) is derived in Eq. (4.7). 

𝐼(𝑡)  =   
𝜏𝑒(𝑡)

𝐾𝑡
=

𝐽𝑑𝜔(𝑡)

𝐾𝑡𝑑𝑡
+

𝐵𝜔(𝑡)

𝐾𝑡
+

𝜏𝑙(𝑡) 

𝐾𝑡
                                 (4.7) 

𝑉(𝑡) is obtained in Eq. (4.8) by substituting Eq. (4.7) and Eq. (4.3) in Eq. (4.1). Hence, 

 

𝑉(𝑡) = [
𝐽𝑑𝜔(𝑡)

𝐾𝑡𝑑𝑡
+

𝐵𝜔(𝑡)

𝐾𝑡
+

𝜏𝑙(𝑡)

𝐾𝑡
] 𝑅 + 𝐿

𝑑

𝑑𝑡
[
𝐽𝑑𝜔(𝑡)

𝐾𝑡𝑑𝑡
+

𝐵𝜔(𝑡)

𝐾𝑡
+

𝜏𝑙(𝑡) 

𝐾𝑡
] + 𝐸(𝑡)  (4.8) 
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= 𝑅
𝐽𝑑𝜔(𝑡)

𝐾𝑡𝑑𝑡
+ 𝑅𝐵

𝜔(𝑡)

𝐾𝑡
+ 𝑅

𝜏𝑙(𝑡)

𝐾𝑡
+ 𝐿

𝐽𝑑2𝜔(𝑡)

𝐾𝑡𝑑𝑡2
+ 𝐿𝐵

𝑑𝜔(𝑡)

𝐾𝑡𝑑𝑡
+ 𝐿

𝑑𝜏𝑙(𝑡)

𝐾𝑡𝑑𝑡
+

𝑅

𝐾𝑡
𝜏𝑙(𝑡) 

=
𝐿𝐽

𝐾𝑡

𝑑2𝜔(𝑡)

𝑑𝑡2
+

(𝑅𝐽 + 𝐿𝐵)

𝐾𝑡

𝑑𝜔(𝑡)

𝑑𝑡
+

(𝑅𝐵 + 𝐾𝑒𝐾𝑡)

𝐾𝑡
𝜔(𝑡) +

𝐿

𝐾𝑡

𝑑𝜏𝑙(𝑡)

𝑑𝑡
+

𝑅

𝐾𝑡
𝜏𝑙(𝑡) (4.9) 

Assuming the model is not associated with any load, 𝜏𝑙(𝑡) is taken zero value in Eq. (4.9). 

𝑉(𝑡) =
𝐿𝐽

𝐾𝑡

𝑑2𝜔(𝑡)

𝑑𝑡2
+

(𝑅𝐽 + 𝐿𝐵)

𝐾𝑡

𝑑𝜔(𝑡)

𝑑𝑡
+

(𝑅𝐵 + 𝐾𝑒𝐾𝑡)

𝐾𝑡
𝜔(𝑡) (4.10) 

As we obtain a linear model of BLDC motor, in order to accumulate the transfer function 

of the system Laplace transform can be utilized in Eq. (4.12).  

𝑉(𝑠) = ∫ 𝑉(𝑡)𝑒−𝑠𝑡𝑑𝑡
∞

0

                                                                  (4.11) 

𝑉(𝑠)

𝜔(𝑠)
=    

𝐿𝐽

𝐾𝑡
𝑠2 +

(𝑅𝐽 + 𝐿𝐵)

𝐾𝑡
𝑠 +

(𝑅𝐵 + 𝐾𝑒𝐾𝑡)

𝐾𝑡
                       (4.12) 

𝑇(𝑠) =
𝜔(𝑠)

𝑉(𝑠)
=    

𝐾𝑡

𝐿𝐽𝑠2 + (𝑅𝐽 + 𝐿𝐵)𝑠 + (𝑅𝐵 + 𝐾𝑒𝐾𝑡)
          (4.13) 

Multiplying (
1

𝐿𝐽
) by Eq. (4.13), general transfer function expression is derived in Eq. (4.14).   

𝑇(𝑠) =
𝜔(𝑠)

𝑉(𝑠)
=    

𝐾𝑡
𝐿𝐽⁄

𝑠2 +
(𝑅𝐽 + 𝐿𝐵)

𝐿𝐽 𝑠 +
(𝑅𝐵 + 𝐾𝑒𝐾𝑡)

𝐿𝐽

              (4.14) 

In this case, there is few assumptions considered to have a simplified equation. Friction 

coefficient B is approximated to zero (𝐵 ≅ 0), 𝑅𝐽 ≫ 𝐿𝐵 and 𝐾𝑒𝐾𝑡 ≫ 𝑅𝐵. Therefore, reorganizing 

Eq. (4.14) we get simplified transfer function of BLDC Motor circuit in Eq. (4.15). 

𝑇(𝑠) =
𝜔(𝑠)

𝑉(𝑠)
=    

𝐾𝑡

𝐿𝐽

𝑠2 +
𝑅
𝐿 𝑠 +

𝐾𝑒𝐾𝑡

𝐿𝐽

                                            (4.15) 
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State-space representation of this equation can be obtained by state variables 

𝜔(𝑡) 𝑎𝑛𝑑 �̇�(𝑡) in following statement.  

[
�̇�(𝑡)
�̈�(𝑡)

] = [
0 1

−
𝐾𝑒𝐾𝑡

𝐿𝐽
−

𝑅

𝐿
] [

𝜔(𝑡)
�̇�(𝑡)

] + [
0
𝐾𝑡

𝐿𝐽
] 𝑉(𝑡)                          (4.16) 

𝑦(𝑡) = [1 0] [
𝜔(𝑡)

�̇�(𝑡)
]                                                                     (4.17) 

As described in Eq. (4.3) and Eq. (4.6), motor torque constant, 𝐾𝑡, and motor voltage 

constant, 𝐾𝑒, are calculated through the measurement tests as conducted in [19]. 

𝐾𝑒 =
E

𝜔𝑡𝑒𝑠𝑡 
[

𝑉𝑜𝑙𝑡𝑠

𝑟𝑒𝑣/𝑚𝑖𝑛
]                                                                  (4.18) 

Table 4.1 BLDC motor constant measurements 

Parameters Value Unit 

V𝑝ℎ𝑎𝑠𝑒 = 𝑉𝑙−𝑙/√3 9.23 [𝑉𝑜𝑙𝑡𝑠] 

I (no load) 0.12 [𝐴] 
R 0.32 [𝑂ℎ𝑚𝑠] 
E = V𝑝ℎ𝑎𝑠𝑒 − IR 9.19 [𝑉𝑜𝑙𝑡𝑠] 

𝜔𝑡𝑒𝑠𝑡 500 [𝑟𝑒𝑣/𝑚𝑖𝑛] 
L 0.586 [𝑚𝐻] 
J 5.95E-05 [𝑙𝑏𝑓. 𝑖𝑛. 𝑠2] 
Ke = E/𝜔𝑡𝑒𝑠𝑡 0.018 

[
𝑉𝑜𝑙𝑡𝑠

𝑟𝑒𝑣/𝑚𝑖𝑛
] 

Kt =
𝜏𝑒

I
= Ke√3/(0.0118) 2.64 

[
𝑙𝑏. 𝑖𝑛

𝐴
] 

Parameters are calculated as shown in Table 4.1. Hence, Eq. (4.15) can be rewritten in Eq. 

(4.19). 

𝑇(𝑠) =
𝜔(𝑠)

𝑉(𝑠)
=    

2.64
0.586 5.95 10−5

𝑠2 +
0.32
0.586

𝑠 +
0.018 2.64

0.586 5.95 10−5

               (4.19) 

𝑇(𝑠) =
𝜔(𝑠)

𝑉(𝑠)
=    

75716.3

𝑠2 + 0.546𝑠 + 1362.9
                                  (4.20) 

Thus, state-space model of the motor is also reorganized in Eq. (4.21) and Eq. (4.22).  
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[
�̇�(𝑡)
�̈�(𝑡)

] = [
0 1

−1362.9 −0.546
] [

𝜔(𝑡)

�̇�(𝑡)
] + [

0
75716.3

] 𝑉(𝑡)            (4.21) 

𝑦(𝑡) = [1 0] [
𝜔(𝑡)

�̇�(𝑡)
]                                                                     (4.22) 

 

Figure 4.5 Simple closed-loop plant response 

If we consider this closed-loop system, it is essential to study transient and steady-state 

response. Thus, transient state parameters which are represented by percent overshoot (P.O.), 

settling time (𝑡𝑠), peak time (𝑡𝑝), and rise time (𝑡𝑟) enable to verify the approximations on circuit 

performance. As Figure 4.5 illustrates, the oscillation lasts until that steady-state value is reached 

and this is known as “Underdamped case”.  

𝐺(𝑠) =
𝐶(𝑠)

𝑅(𝑠)
= 𝑘

𝜔𝑛
2

𝑠2 + 2𝜁𝜔𝑛 + 𝜔𝑛
2
                                          (4.23) 

In Eq. (4.23) 𝑘 is gain, 𝜔𝑛 is natural (oscillation) frequency of the system, and 𝜁 is damping 

ratio. 

𝐶(𝑠) = 𝑒(𝑠)𝑇(𝑠) = [𝑅(𝑠) − 𝐶(𝑠)]𝑇(𝑠)                                    (4.24) 

𝐺(𝑠) =
𝑇(𝑠)

1 + 𝑇(𝑠)
                                                                             (4.25) 
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If we substitute the motor transfer function in Eq. (4.25) and apply step input function 

(R(s)=1/s) as depicted in Fig. 4.5 we get second order system in Eq. (4.26).  

𝐶(𝑠) =
75716.3

𝑠(𝑠2 + 0.546𝑠 + 77092.2)
                                            (4.26) 

𝐶(𝑠) = 1.018
77092.2

𝑠(𝑠2 + 0.546𝑠 + 77092.2)
                                (4.27) 

Thus, oscillation frequency 𝜔𝑛 = √77092.2 = 277.65 [𝐻𝑧], damping ratio 𝜁 = 9.8E − 4, 

and gain 𝑘 = 1.018 are obtained in Eq. (4.27). In this case, transient specifications can be derived.  

𝑃. 𝑂. = 100e
(

−𝜁𝜋

√1−𝜁2
)

                                                                        (4.28) 

𝑡𝑝 =
𝜋

𝜔𝑛√1 − 𝜁2
                                                                              (4.29) 

𝑡𝑟 =
𝜋 − tan−1(√1 − 𝜁2/𝜁)

𝜔𝑛√1 − 𝜁2
                                                        (4.30) 

𝑡𝑠 ≈
4

𝜁𝜔𝑛
, for 2% if the damping ratio 𝜁 ≪ 1                         (4.31) 

As a result, signal refinement is necessary in terms of tuning algorithms. We utilize 

Proportional-Integral-Derivative (PID) controller to minimize transient period in BLDC motor 

driving. 

 

Figure 4.6 Underdamped case. Settling time (𝑡𝑠) = 14.7 [s], peak time(𝑡𝑝) = 0.0113 [s], rise 

time (𝑡𝑟) = 0.00566 [s], percent overshoot (P. O. ) = 99.7%. 



 

36 
 

4.1.2 PID Control 

Speed controlling is critical to maintain stable performance with a quick steady-state 

response. Hence, there are many tuning methods have been studied in past, such as Ziegler-Nichols 

[20], ITAE [21], Fuzzy PID [22], Neural Network [23], and so on. It is aimed to utilize Ziegler-

Nichols in this part of the project.  

 

Figure 4.7 General PID controller block scheme 

�̅�𝐿(𝑡) = 𝐾𝑃𝑒𝐿(𝑡) + 𝐾𝐼 ∫ 𝑒𝐿(𝜏)
𝑡

0

𝑑𝜏 + 𝐾𝐷  
𝑑𝑒𝐿(𝑡)

𝑑𝑡
                    (4.32) 

�̅�𝐿(𝑠) = 𝐾𝑃 [𝐸𝐿(𝑠) +
𝐾𝐼

𝐾𝑃𝑠
𝐸𝐿(𝑠) +

𝐾𝐷

𝐾𝑃
 𝑠𝐸𝐿(𝑠)]                      (4.33) 

𝐶(𝑠) =  
�̅�𝐿(𝑠)

𝐸𝐿(𝑠)
= 𝐾𝑃 [1 +

𝐾𝐼

𝐾𝑃𝑠
+

𝐾𝐷

𝐾𝑃
 𝑠]                                    (4.34) 

In Eq. (4.32) �̅�𝐿(𝑡) is output signal of the controller which refines rotational speed of the 

left wheel set to the target level, 𝜔𝐿𝑅𝑒𝑓
(𝑡). According to the performance requirements (Table 

2.3), the wheels rotates at 63 [rev/min] which is set point of the agent’s velocity. 𝑒𝐿(𝑡) denotes 

error signal between encoder output, 𝜔𝐿, and desired angular speed to be minimized by the 
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controller. 𝐾𝑃, 𝐾𝐼 , and 𝐾𝐷 represent proportional, integral, and derivative gains, respectively. 

Hence, the equation can be organized as in Eq. (4.35) giving parameters to adjust PID controller 

performance.  

𝐶(𝑠) =  
�̅�𝐿(𝑠)

𝐸𝐿(𝑠)
= 𝐾𝑃 [1 +

1

𝑇𝐼𝑠
+ 𝑇𝐷 𝑠]                                       (4.35) 

Table 4.2 Ziegler-Nichols (ZN) method of tuning 

Control 𝐊𝐏 𝐓𝐈 𝐓𝐃 

P 0.5𝐾𝑢 - - 

PI 0.45𝐾𝑢 𝑇𝑢/1.2 - 

PID 0.60𝐾𝑢 𝑇𝑢/2 𝑇𝑢/8 

Basic ZN tuning procedure consists of four steps beginning with a simple Proportional (P) 

circuit. 

1. Set 𝑇𝐼 and 𝑇𝐷 zero to find ultimate gain (𝐾𝑢) and oscillation frequency (1/𝑇𝑢).   

2. Start adding to 𝐾𝑃 value in a small scale until observing a constant oscillation on 

transient response.  

3. Then 𝐾𝑃 = 𝐾𝑢, and 𝑇𝑢 = constant oscillation period [𝑠]. 

4. Finally, update the parameters (𝑇𝐼 and 𝑇𝐷) according to Table 4.2.  

 

Figure 4.8 Single phase plant response: 𝐾𝑢 = 0.2,  𝑇𝑢 = 0.49 [𝑠] 
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In Figure 4.8 Simulink PID tuning model depicts a single-phase speed response of BLDC 

plant. Hence, it can be concluded that ZN method is approved on a simple closed-loop controller.  

 

Figure 4.9 Simulated motor speed graph (MATLAB-Simulink©) 

Considering Motor Processor Block (MPB), it is required to remember that there are many 

processes and delay time to simply drive the motors. Hence, the design of the complete circuit is 

as given in Figure 4.10. In accordance with test results, lag times are measured with respect to the 

process blocks (motor processor, DAC, 3-phase dc inverter, BLDC motor driver).  

 

 

Figure 4.10 Complete design of the control block and estimated system response. Ku =
0.00116,  Tu = 0.17 [s] 
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As shown in Fig. 4.10, transient response time is over 10 seconds.  

4.2 Block Diagram of Operation 

DeLRo has three main subsystems which are motor, central, and image processors units. 

Raspberry Pi3 and Nvidia Jetson TX2 programming boards are employed, and Controller Area 

Network (CANBus) communication protocol which allows to transmit data at 1[Mb/s] rate is 

established between the processors [24]. 

 

Figure 4.11 DeLRo’s overall block diagram 
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Figure 4.12 Throttle D/A converter circuit 

As illustrated in Fig. 4.12, the motors are driven through analog voltage signal. Therefore, 

a digital to analog signal converter (DAC) MAX539 is deployed. Serial Peripheral Interface (SPI) 

protocol allows to transmit data from microprocessor to DAC. Processing lag time is measured as 

30ms. 

 

Figure 4.13 DAC response lag time. 
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In Fig. 4.13 each grid represents 1 [volt] for yellow line and 2 [volts] for SPI datain pin in 

vertical, and 10ms time resolution in horizontal. In this case, it is seen that 30ms time delay 

between input and output pin. Unipolar configuration is to get positive output.  

𝑉𝑜𝑢𝑡 = +2(𝑉𝑑𝑑) (
𝑑𝑎𝑡𝑎𝑖𝑛

2𝑑𝑎𝑡𝑎_𝑙𝑒𝑛𝑔𝑡ℎ(𝑑𝑎𝑡𝑎𝑖𝑛)
)                                      (4.36) 

In order to rotate the wheels at 63 [rev/min], it is required to produce 1.350 [volts] in the 

output of the DAC output.  

𝑉𝑜𝑢𝑡 = +2(𝑉𝑑𝑑) (
𝑏𝑖𝑛_𝑡𝑜_𝑑𝑒𝑐(001000101001)

2𝑑𝑎𝑡𝑎_𝑙𝑒𝑛𝑔𝑡ℎ(001000101001)
)                  (4.37) 

As Fig. 4.15 shows a basic circulatory path simulation is executed. Path diameter is around 

3.20 [𝑓𝑡], vehicle moves at 3.1 [𝑓𝑡/𝑠], and angular velocities of the wheels are 63 and 120 

[𝑟𝑒𝑣/𝑚𝑖𝑛].  

 

Figure 4.14 Hall-effect buffer amplifier circuit 
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Figure 4.15 MATLAB-Simulink circle path simulation 
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Chapter 5: DeLRo Localization 

Localization is one of the main challenges in mobile robotics. While outdoor tasks are 

commonly accomplished with GPS utilization, indoor positioning appears with challenges [25, 

26]. Building structures have attenuative effects on microwave signals, and this requires additional 

equipment for an adequate signal transmission in the operational environments. Instead of wireless 

signal deployment, landmarks are created to compute the current location by placing on the walls. 

Hence, it is aimed to acquire a deeper understanding in mobile indoor localization through 

Reinforcement Learning and Deep Neural Networks (DNN). In our scenario the robot possesses 

the floor layout in his database which consists of 10 sequential landmarks. Point-to-point 

navigation is studied autonomously by deploying avoiding collision, scene recognition, and 

environmental immediate mapping. After initialization of the agent, it proceeds through the halls 

and senses landmarks to verify its current flowing position.  

Floor map is created as a 2-dimensional 95x90 array, and each value represents a 1 𝑓𝑡2 

area. As occupancy grid methodology is deployed, what3words grid location approach is the main 

reference that brings an innovative solution to remove the whole address determination chaos from 

human life [27]. Thanks to this three-word combination, it becomes more precise to address an 

instant point in general sense. 
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(a) 

 

(b) 

Figure 5.1 Projection of USF Engineering Building (ENB) (a) 4th floor on 

https://what3words.com, (b) Estimated trajectory in 4th floor of USF Engineering building. 

Image processor block contains 2 camera units which are Mynt Eye 1030s stereo camera 

for proximity sensing, depth mapping and spatial coordinate tracking, and Leopard CSI camera 

for video processing. 

https://what3words.com/
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Figure 5.2 Image processor block components and system architecture 

5.1 Indoor Localization 

In our scenario robot has two floor (1st and 4th floors) layouts in database. After 

initialization of the robot, platform proceeds through the hall until sensing verification mark on 

the wall to compare current location with map in database. There are four waypoints of QR codes 

on the walls in 1st floor and ten waypoints in 4th floor which are recognizable by the robot. It has 

been designed that there are two cameras as sensor to complete a visionary based localization.  

5.1.1 Hardware Setup 

 

Figure 5.3 MYNT EYE S1030 stereo depth camera and IMU coordinate axis 

Stereo camera has wider FOV compared the CSI camera. Stereo and depth resolutions are 

752x480 at 60 fps and depth range is up to 18 meters. Six axis built-in IMU sensor allows to stream 

real time spatial location.  
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Figure 5.4 Leopard IMX185 CSI camera specifications 

 

Figure 5.5 Geometrically distance projection between camera and object. f: focal length 

[mm], d: distance between lens and object [mm], s: distance between sensor and object [mm] 

 
𝑓

𝑑
=

𝑠𝑒𝑛𝑠𝑜𝑟 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛
                                                                (5.1) 

 

Figure 5.6 DeLRo’s Field of View (FOV) representation. 

Depth sensor and CSI camera are mounted on the nearest points to minimize 

nonsynchronous frames. Therefore, most of the cases, images are required to be overlapped from 

both sources. Depth camera is placed 3.2 inches above the CSI cam. 
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Figure 5.7 Screen shots of stereo and CSI cameras from DeLRo’s perspective. 

In order to perform the stereo camera, calibration is required by conducting in a few steps, 

which is proposed in Mynt Eye SDK installation guide [28] and practiced in a wider perspective 

by this study [29].  

 

Figure 5.8 9x7x60mm chess board layout is used for calibration. In given prompt, the input 

format is: -x -width -y -height -s -square in meter. 

 

Figure 5.9 Reprojection errors and parameters. 
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Recommended reprojection error is under 1, and it is obtained 0.182 pixels for left and 

0.247 pixels for right eyes that seems pretty good as illustrated in Fig. 5.9. 

5.1.2. Object Detection 

In this project, a deep learning method which Convolutional Neural Networks (CNN) is 

deployed to observe, detect, and evaluate the markers [30], [31]. Hence, various models and 

pretrained networks are tested. As there are 10 different waypoints to be classified which are shown 

in Figure 5.9, these custom patterns are created in a sophisticated way to observe how they are 

efficient and accurate instead of using such simplistic geometrical shapes.  

 

Figure 5.10 Custom indoor waypoints 

Machine learning practices are usually run with multidimensional arrays which is the key 

element of CNN architecture is called “Kernel” or simply a matrix form. Kernel convolution which 

is also known as filter calculation is essential for image processing [32]. Filters also refer to 3D 

structures of multiple kernels stacked. For CNN it is used 2D kernels which is the same as 

dimensional property as filter. The convolution of two functions, 𝑓(𝑡) ∗ 𝑔(𝑡) in continuous time 

is described in Eq. (5.2).  

(𝑓 ∗ 𝑔)(𝑡) = ∫ 𝑓(𝜏)𝑔(𝑡 − 𝜏)𝑑𝜏
∞

−∞
                                                (5.2)  

If 𝐺(𝑚, 𝑛) is a feature matrix, Eq. (5.4) in discrete time is formulated as follow.  
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(𝑓 ∗ 𝑔)(𝑚) = ∑ 𝑓(𝑗)

∞

𝑗=−∞

𝑔(𝑚 − 𝑗)                                                (5.3) 

𝐺(𝑚, 𝑛) = (𝑓 ∗ 𝑔)(𝑚, 𝑛)                                                                 (5.4) 

𝐺(𝑚, 𝑛) = ∑ ∑ 𝑓(𝑗, 𝑘)

∞

𝑘=−∞

𝑔(𝑚 − 𝑗, 𝑛 − 𝑘) 

∞

𝑗=−∞

                         (5.5) 

Cross-correlation 2D convolution form which is accepted by ML community for real-

valued functions is shown in Eq. (5.6). 

(𝑓 + 𝑔)(𝑚, 𝑛) = ∑ ∑ 𝑓(𝑗, 𝑘)

∞

𝑘=−∞

𝑔(𝑚 + 𝑗, 𝑛 + 𝑘) 

∞

𝑗=−∞

             (5.6) 

 

Figure 5.11 An illustration of essential 2-dimensional convolution on 3-channel input image.  

Once the 3x3 filter is applied to image channels, then these layers are summed to a 

150x150x1 single layer, and this process is returned for 64 kernels (150x150x64). 
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Figure. 5.12 VGG-16 pretrained model architecture. 

Our dataset consists of 9991 training, 4994 validation, and 5000 test images in 10 classes. 

In order to avoid unnecessary effort on creating a new model from scratch which requires too much 

training and huge number of hyperparameters not a guaranteed way to succeed a reasonable 

accuracy [33], fine-tuning a pre-trained network is much more feasible.  

 

Figure 5.13 Examples from our custom dataset, and instances of an augmented image 

In our CNN model, in order to observe the performance, the dataset is trained through 

VGG16 network without augmentation. As presented in Fig. 5.12, training accuracy reaches at 

96%, and validation accuracy remains under 60%. This shows a typical overfitting case that can 
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be solved with several methods which are data augmenting, increasing the amount of image 

dataset, cross-validation, and adding dropout layer.  

 

Figure 5.14 Accuracy and loss curves. 

Considering we have less data, and patterns have common features, it is required to 

increase the data distribution for each instance. For instance, an image can be reproduced in various 

conditions such as lightning, angle, size, and morphology. At this point, this is achieved by 

utilizing “ImageDataGenerator” from Keras library [34]. Training and validation datasets are 

modified, and the result is illustrated in Fig. 5.14.  

 

Figure 5.15 Improvement is remarkably visible, and variance is removed on the curves. It seems 

training accuracy falls to around 85% while validation accuracy reaches over 80% at 30 of 

epochs. 

It is critical to fine-tune the higher layers due to overfitting concern. In this case, the last 

three layers are fine-tuned, and classifier is retrained.  
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Figure 5.16 Total memory is approximately 27MB per image. Total parameters are 17M 

parameters. 
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5.1.3 Indoor Lab Environment 

Markers are placed in 10 different points to be detected by the robot. As seen on Fig. 5.17 

(b) starting position is illustrated with a green arrow, and waypoints are marked through blue 

squares which can have more than one navigation markers. The purpose is here to create a path in 

floor plan and detect the markers to verify it is current position throughout the process.  

5.2 Mapping and Path Planner 

 

(a)                                                   (b) 

Figure 5.17 Projection of USF Engineering Building (ENB). (a) 4th floor on 

https://what3words.com, (b) Approximated grid map of ENB on MATLAB 

A method for digitizing the floor plan which is what3words grid location system is 

employed. They composed this location method through a permanent three words representing a 

3m by 3m square grid that removes the whole address determination chaos from human life. In 

terms of a three-word combination, it is possible to address a precise point simultaneously. As one 

of the system requirements, pose verification of operation is handled through two map 

configurations which are constructed in Python environment. The purpose of creating two different 

scaled layouts is to minimize computation time of path planning task. Due to size of the 67x98 

https://what3words.com/
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matrix requires a great computation delay, it is minimized to 22x33 layout. Hence, the scaling is 

completed at 1/3 rate. 

 

(a) 

 

(b)                                              (c) 

Figure 5.18 Simplified grid maps. (a)ENB on what3words (b) 67𝑥98𝑥1 𝑚2area (c) 21𝑥33𝑥3 𝑚2 

area 

5.2.1 Occupancy Grid and Q Learner Design 

There are two key elements which are environment and a dynamic agent that are considered 

as in part of a reinforcement learning system. The agent is a wheeled mobile robot in our designed 

environmental setting.  
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Figure 5.19 ENB 1st floor path planning 

The primary step in running of the platform is to launch the relationship between state, 

action, and reward, since the agent moves into a state by choosing an action depending on the 

reward at time intervals. In this case, it is required to take an action because of a decision. This 

decision-making mechanism is called Markov Decision Process (MDP) [35]. 

𝑀 = (𝑆, 𝐴, 𝑃, 𝑅, 𝛾)                                                                               (5.7) 

Table 5.1 Markov decision process parameters 

Parameter Definition 

S 𝑆𝑒𝑡 𝑜𝑓 𝑠𝑡𝑎𝑡𝑒𝑠 

A 𝑆𝑒𝑡 𝑜𝑓 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 

P 𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑃(𝑠`|𝑠, 𝑎) 

R 𝑅𝑒𝑤𝑎𝑟𝑑𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑅(𝑠)𝑖𝑠 𝑟𝑒𝑤𝑎𝑟𝑑 𝑣𝑎𝑙𝑢𝑒 𝑓𝑜𝑟 𝑠𝑡𝑎𝑡𝑒 𝑠 

𝛾 𝐷𝑖𝑠𝑐𝑜𝑢𝑛𝑡 𝑓𝑎𝑐𝑡𝑜𝑟 (0 < 𝛾 < 1) 

Bellman equation is given in Eq. (5.8) 

𝑉𝜋(𝑠) = 𝑅(𝑠) + γ∑𝑃(𝑠′|𝑠, 𝜋(𝑠))𝑉𝜋(𝑠′) 

𝑠∈𝑆

                                (5.8) 

Optimal value is gathered through the following function.  

𝑉∗(𝑠) = 𝑅(𝑠) + γmax
𝑎∈𝐴

∑𝑃(𝑠′|𝑠, 𝑎)𝑉∗(𝑠′)

𝑠∈𝑆

                            (5.9) 

• Policy evaluation: 
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�̂�𝜋(𝑠) ∶= 𝑅(𝑠) + γ∑𝑃(𝑠′|𝑠, 𝜋(𝑠))�̂�𝜋(𝑠′)

𝑠∈𝑆

 , ∀s ∈ S              (5.10) 

• Value iteration: 

�̂�∗(𝑠) ∶= 𝑅(𝑠) + γmax
𝑎∈𝐴

∑ 𝑃(𝑠′|𝑠, 𝑎)�̂�∗(𝑠′)𝑠∈𝑆  , ∀s ∈ S        (5.11)  

Transition function and reward function are also defined as in Eq. (5.12) and (5.13). 

 𝑠′ = 𝑇(𝑠, 𝑎)                                                                                       (5.12) 

 𝑟 = 𝑅(𝑠, 𝑎)                                                                                        (5.13) 

In order to reach the optimal reward distribution, the greedy policy is executed over the 

probable actions. Through Q learning and MDP algorithms optimal paths are derived and 

evaluated. Dynamic programming principles are employed to obtain optimal policy giving 

maximum reward and short path over the grids from start point to the end. In figure (5.12) the 

result of policy iteration is demonstrated. 

1. Initialization  

2. 𝑉(s) ∈ ℝ and π(s)  ∈ A(s) arbitrarily for all s ∈ S 

3. Policy Evaluation 

4. Repeat 

5. ∆← 0 

6. For each s ∈ S 

7. v ← 𝑉(𝑠) 

8. 𝑉(𝑠) ← ∑ 𝑝(𝑠′, 𝑟|𝑠, 𝜋(𝑠))[𝑟 + 𝛾𝑉(𝑠′)]𝑠′,𝑟  

9. ∆← max(∆, |v − 𝑉(s)) 

10. until  ∆< Ɵ (a small positive number) 

11. Policy Improvement 

12.  policy-stable ←True 

13. For each s ∈ S 

14. Previous action← π(s) 

15. π(s) ← argmax𝑎 ∑ 𝑝(𝑠′, 𝑟|𝑠, 𝑎[𝑟 + 𝛾𝑉(𝑠′)])𝑠′,𝑟  

16. If previous action  ≠ π(s),  

17. then policy-stable ← False 

18. If policy-stable, then stop  

19. return V≈ 𝑣∗ and π ≈ 𝜋∗ 

20. else go to 3 
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Chapter 6: Results 

 

Figure 6.1 DeLRo’s overall view 

 

Figure 6.2 Test results of our trained dataset. Green rectangles represent that prediction is 

successful, while reds illustrate false predictions.
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As Fig. 6.2 shows test results are presented with “Pred” and “Act” abbreviations in the 

titles, which represent predicted and actual labels from zero to nine. Test accuracy is obtained as 

78%. One of the reasons is that some markers have quite similar properties. Label “7” and “1” is 

one of the instances, and “9” and “6” are identical, which have common features due to being 

vertically and horizontally flipped in datasets. These cases lead to uncertain prediction on test 

images. Finally, the next step is to improve the dataset to achieve accuracy over %95. This rate is 

not too far to reach, even 78% percent success is achieved through less dataset (around 1000 

images for training, 500 images for validation and 500 images for testing).  

 

 

Figure 6.3 Q-Learner path generation results. Each image possesses a little black dot which 

represents our robot. It is divided into 9 steps, and each step contains marker detecting and path 

generating based on the floor plan. 

 It is aimed to create these separate paths and merge them into one route. It is achieved on 

Spyder (Python 3.7) environment, and since this is an offline process the route map is stored in 

central processor database.  
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Figure 6.4 Throttle percentage vs. motor speed curve
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