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On the p(x)-Laplace equation in Carnot groups

Robert D. Freeman

Abstract

In this thesis, we examine the p(x)-Laplace equation in the context of Carnot groups. The p(x)-Laplace

equation is the prototype equation for a class of nonlinear elliptic partial differential equations having so-

called nonstandard growth conditions. An important and useful tool in studying these types of equations is

viscosity theory. We prove a p(·)-Poincaré-type inequality and use it to prove the equivalence of potential

theoretic weak solutions and viscosity solutions to the p(x)-Laplace equation. We exploit this equivalence

to prove a Radó-type removability result for solutions to the p-Laplace equation in the Heisenberg group.

Then we extend this result to the p(x)-Laplace equation in the Heisenberg group.
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Chapter 1

Introduction

The focus of this dissertation concerns analytic and geometric properties of solutions to partial differential

equations in sub-Riemannian spaces. Sub-Riemannian spaces are manifolds in which tangent vectors to

curves can lie only in certain restricted directions. Thus, the (topological) dimension of the tangent space

is less than the (topological) dimension of the manifold. Therefore, sub-Riemannian spaces are a class of

metric spaces whose underlying geometry behaves unlike standard Euclidean Rn. Sub-Riemannian spaces

are used to model phenomena in which motion is restricted, such as driving a four-wheeled vehicle or travel

through mountainous terrain. In order to mimic the algebraic structure of standard Euclidean Rn, we will

focus on Carnot groups, a subset of sub-Riemannian spaces that have an algebraic (non-abelian) group law.

One key partial differential equation under consideration is the p-Laplace equation, which is the standard

prototype equation of potential theory. One can replace the constant p with an appropriate function p(x)

to produce another key partial differential equation, the p(x)-Laplace equation. The p(x)-Laplace equation

is the prototype equation modeling nonstandard growth. Equations exhibiting nonstandard growth appear

frequently in various applications. For instance, electrorheological fluids are viscous fluids defined by their

capability to drastically change mechanical properties with dependence on an applied electric field. The

model for treating the electric field as a variable is characterized by nonstandard growth and is utilized in

many technological applications. (See [RR1] and [RR2].) Nonstandard growth conditions also model image

enhancement and restoration. For instance, given an observed noisy image, a model exhibiting nonstandard

growth can be constructed to exploit general anisotropic diffusion in a way that the speed and diffusion at

each location depend on the local behavior. The advantages of this type of model are that it accommodates

the local image information. (See [CLR].)

We will explore algebraic and geometric properties of pointwise weak solutions, called viscosity solu-

tions, to the p-Laplace equation and the p(x)-Laplace equation. Our main focus will be the p(x)-Laplace

equation in Carnot groups, including specifically in the well-known Heisenberg group Hn. In order to
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achieve our goal, we must first establish existence-uniqueness of viscosity solutions to the p(x)-Laplace

equation.

Our objective is to expand the well-known Euclidean results into a sub-Riemannian environment. Because

of the differing geometric structure, the Euclidean proofs do not directly apply, and so new proofs must be

constructed.

We first recall the Laplacian in the Euclidean setting. Let Ω ⊂ Rn be a (bounded and connected) domain

and v : ∂Ω→ R be a continuous function. The classical Dirichlet boundary value problem concerns finding

a function u : Ω→ R of appropriate regularity such that

{ −∆u = 0 in Ω

u = v on ∂Ω.

Recall the Laplace equation −∆u = −div (∇u) = 0 is linear in that given solutions u and v and real

numbers α and β, then αu+ βv is also a solution.

We may extend the Dirichlet problem to a fixed p where 1 < p < ∞. The p-Dirichlet boundary value

problem involves finding a function u : Ω→ R of appropriate regularity such that

{ −div(|∇u|p−2∇u) = 0 in Ω

u = v on ∂Ω.

The above p-Laplace equation, namely

−div(|∇u|p−2∇u) = 0, (1.1)

is the Euler-Lagrange equation for the p-Dirichlet energy integral on Ω, which is given by:

1

p

∫
Ω
|∇u|pdx.

Note that the Laplacian corresponds to p = 2.

Observe that the p-Laplace equation is not linear like the classic Laplace equation. However, it is known

that solutions of Equation (1.2) can be scaled. That is, if u is a solution to the p-Laplace equation and α and

β are real numbers, then αu+ β is also a solution.

The Dirichlet problem can also be extended from the fixed exponent case to the variable exponent case.
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Let Ω ∈ Rn be a domain and assume 1 < p(x) <∞ where p(x) ∈ C1(Ω) and x ∈ Ω. The p(x)-Dirichlet

boundary value problem involves finding a function u : Ω→ R of appropriate regularity such that

{ −div(|∇u|p(x)−2∇u) = 0 in Ω

u = v on ∂Ω.

The above p(x)-Laplace equation, namely

−∆p(x)u = −div(|∇u|p(x)−2∇u) = 0, (1.2)

is the Euler-Lagrange equation for the p(x)-Dirichlet energy integral on Ω, which is given by:

∫
Ω

1

p(x)
|∇u|p(x)dx.

Note that the p(x)-Laplace equation is not linear or in general scalable. Indeed, if u is a solution to the

p(x)-Laplace equation, then in general, αu + β is not a solution when α = ±1. This leads to major

differences among the structure of the classic Laplace, the p-Laplace, and the p(x)-Laplace equations.

When considering solutions to the classic Laplace equation, representation formulas play a fundamental

role. For solutions to the p-Laplace or the p(x)-Laplace equation, these representation formulas cannot be

employed, but rather, are replaced by estimates. (See [Se] and [Tr].) In the constant exponent case, the

standard estimates employed are independent of the solution, whereas in the variable exponent case, these

estimates do depend upon the solution itself.

Another major difference between the constant p-Laplace equation and the variable p(x)-Laplace equa-

tion can be observed when considering each in nondivergent form. Recall the p-Laplace equation in nondi-

vergent form can be found by formally computing the divergence. This process produces:

−∆pu = −
(
‖∇u‖p−2trace((D2u)) + (p− 2)‖∇u‖p−4〈(D2u)∇u,∇u〉

)
= 0, (1.3)

where (D2u) is the standard Hessian matrix. On the other hand, the same process applied to the p(x)-
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Laplace equation produces the divergence form, which is given by:

−
(
‖∇u‖p(x)−2tr((D2u)) + (p(x)− 2)‖∇u‖p(x)−4〈(D2u)∇u,∇u〉 (1.4)

+ ‖∇u‖p(x)−2 log(‖∇u‖)〈∇p(x),∇u〉
)

= 0.

Obviously, in the variable exponent case, there is a log term that does not appear in the constant exponent

case.

The Euclidean variable exponent Dirichlet problem can therefore be extended to Carnot groups, which

is a major focus of this dissertation. Let Ω ⊆ G be a domain, where G is a Carnot group. Also assume

1 < p(x) <∞ for x ∈ Ω. This dissertation is concerned with the p(x)-Laplace equation in Carnot groups,

which is given by

−∆p(x)u = −div(‖∇0u‖p(x)−2∇0u) = 0. (1.5)

Here u ∈ C1
sub(Ω) and ∇0 is the horizontal gradient. (See Chapter 2 for relevant definitions.) Observe that

Equation (1.5) is the Euler-Lagrange equation for the p(x)-Dirichlet energy integral on Ω, or

∫
Ω

1

p(x)
|∇0u|p(x)dx,

where u : Ω → G is of appropriate regularity. In nondivergent form, the p(x)-Laplace equation in Carnot

groups can be formally computed to produce the equation

−
(
‖∇0u‖p(x)−2trace((D2u)?) + (p(x)− 2)‖∇0u‖p(x)−4〈(D2u)?∇0u,∇0u〉 (1.6)

+ ‖∇0u‖p(x)−2 log(‖∇0u‖)〈∇0p(x),∇0u〉
)

= 0,

where (D2u)? is the symmetrized horizontal second derivative matrix. (Again, see Section 2.2 for the

definitions.) The geometric structure of Carnot groups presents even more difficulties pertaining to the

estimates on the solutions to the p(x)-Laplace equation, as seen in Chapters 3 and 4.

In Chapter 2, we review some definitions and key properties of the Heisenberg group, Carnot groups,

and variable exponent Lebesgue and Sobolev spaces. We also present a p(x)-Poincaré-type inequality in

Section 2.3.2 that is necessary in Chapter 3 to achieve the equivalence of potential theoretic weak solutions
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and viscosity solutions to the p(x)-Laplace equation in general Carnot groups, under reasonable restrictions.

Then, in Chapter 4, as an application of both the equivalence from Chapter 3 and viscosity theory, we obtain

a Radó-type removability theorem for solutions to the p(x)-Laplace equation in the Heisenberg group.
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Chapter 2

Background and Motivating Results

2.1 The Heisenberg Group Hn

We first recall some fundamental definitions and key properties of the Heisenberg group Hn. We begin

with R2n+1 using the coordinates (x1, x2, . . . , x2n, x2n+1). We consider the vector fields {Xi, Xj , X2n+1},

where the index i ranges from 1 to n and the index j ranges from n+ 1 to 2n, defined by

X1 :=
∂

∂x1
− xn+1

2

∂

∂x2n+1

...

Xi :=
∂

∂xi
− xn+i

2

∂

∂x2n+1

...

Xn :=
∂

∂xn
− x2n

2

∂

∂x2n+1

Xn+1 :=
∂

∂xn+1
+
x1

2

∂

∂x2n+1

...

Xj :=
∂

∂xj
+
xj−n

2

∂

∂x2n+1

...

X2n :=
∂

∂x2n
+
xn
2

∂

∂x2n+1

and

X2n+1 :=
∂

∂x2n+1
.
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These vector fields obey the relations

[Xi, Xj ] =


X2n+1 j = i+ n

0 otherwise.

For all i and j, we also have

[Xi, X2n+1] = 0 and [Xj , X2n+1] = 0.

These relations generate a Lie Algebra denoted hn that decomposes as a direct sum

hn = V1 ⊕ V2,

where V1 is spanned by the Xi’s and Xj’s, and V2 is spanned by X2n+1. We endow hn with an inner

product 〈·, ·〉 and related norm ‖ · ‖ so that this basis is orthonormal. The corresponding Lie Group is called

the general Heisenberg group of dimension n and is denoted by Hn. With this choice of vector fields the

exponential map can be used to identify elements of hn and Hn with each other via

2n∑
k=1

xkXk + x2n+1X2n+1 ∈ hn ↔ (x1, x2, . . . , x2n, x2n+1) ∈ Hn.

In particular, for any x, y in Hn, written as

x = (x1, x2, . . . , x2n, x2n+1) and y = (y1, y2, . . . , y2n, y2n+1),

the group multiplication law is given by

x · y =

(
x1 + y1, x2 + y2, . . . , x2n + y2n, x2n+1 + y2n+1 +

1

2

n∑
i=1

(xiyn+i − xn+iyi)

)

= x+ y +

(
0, 0,

1

2

n∑
l=1

(xlyn+l − xn+lyl)

)
.
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The natural metric on Hn is the Carnot-Carathéodory metric given by

dCC(x, y) := inf
Γ

∫ 1

0
‖γ′(t)‖dt

where Γ is the set of all curves γ such that γ(0) = x, γ(1) = y and γ′(t) ∈ V1. By Chow’s theorem, (See,

for example, [Be].) any two points can be connected by such a curve, which makes dCC(x, y) a left-invariant

metric on Hn. This metric induces a homogeneous norm on Hn, denoted | · |, by

|x| = dCC(0, x)

and we have the estimate

|x| ∼
2n∑
k=1

|xk|+ |x2n+1|
1
2 .

This estimate leads us to define the left-invariant gauge N which is bi-Lipschitz equivalent to the Carnot-

Carathéodory metric and is given by

N (x) :=

( 2n∑
k=1

x2
k

)2

+ 16x2
2n+1

 1
4

.

We define the Heisenberg balls B(x, r) and the Heisenberg gauge balls BN (x, r) in the obvious way.

Given a smooth function u : Hn → R, we define the horizontal gradient by

∇0u := (X1u,X2u, . . . ,X2nu),

the full gradient by

∇u := (X1u,X2u, . . . ,X2nu,X2n+1u),

and the symmetrized horizontal second derivative matrix (D2u)? by

((D2u)?)ab :=
1

2
(XaXbu+XbXau).

The main operator we are concerned with is the horizontal p(x)-Laplacian for 1 < p(x) <∞ defined by

∆p(x)u := div(‖∇0u‖p(x)−2∇0u),
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which is a specific type of operator in an important class of operators in potential theory as detailed in [HH]

and [HKM].

A function u is C1
sub(Ω) if Xiu, Xju are continuous in Ω for all i and j; and u is C2

sub(Ω) if XaXbu is

continuous in Ω for all 1 ≤ a ≤ 2n and 1 ≤ b ≤ 2n.

We remark that when n = 1, we have the first Heisenberg group, H1. Using the classical coordinates

(x, y, z), we consider the vector fields {X,Y, Z} defined by

X :=
∂

∂x
− y

2

∂

∂z

Y :=
∂

∂y
+
x

2

∂

∂z

Z :=
∂

∂z
= [X,Y ] .

Note for these vector fields, we have

[X,Z] = [Y, Z] = 0.

For any two points p = (x1, y1, z1) and q = (x2, y2, z2), the group multiplication law is given by

p · q =

(
x1 + x2, y1 + y2, z1 + z2 +

1

2
(x1y2 − x2y1)

)
.

Let u : H1 → R be a smooth function. The horizontal gradient of u is given by

∇0u = (Xu, Y u) ,

the full gradient by

∇u = (Xu, Y u, Zu) ,

and the symmetrized second derivative matrix
(
D2u

)? by

(D2u)?=

 XXu 1
2(XY u+ Y Xu)

1
2(XY u+ Y Xu) Y Y u


.
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Moreover, p(x)-Laplace equation in Hn for 1 < p(x) <∞ is defined by

−∆p(x)u := −div
(
‖∇0u‖p(x)−2∇0u

)
= X

(
‖∇0u‖p(x)−2Xu

)
+ Y

(
‖∇0u‖p(x)−2Y u

)
. (2.1)

For a more complete treatment of the Heisenberg group, the interested reader is directed to [Be], [B3],

[F], [FS] [G], [He], [K], [St] and the references therein.

2.2 Carnot Groups

The Heisenberg group Hn is the simplest nontrivial Carnot group. We therefore turn our focus to some

fundamental definitions and key properties of general Carnot groups. We begin by denoting an arbitrary

Carnot group in RN by G and its corresponding Lie Algebra by g. Recall that g is nilpotent and stratified,

resulting in the decomposition

g = V1 ⊕ V2 ⊕ · · · ⊕ Vl

for appropriate vector spaces that satisfy the Lie bracket relation [V1, Vj ] = V1+j . The Lie Algebra g is

associated with the group G via the exponential map exp : g → G. Since this map is a diffeomorphism, we

can choose a basis for g so that it is the identity map. Denote this basis by

X1, X2, . . . , Xn1 , Y1, Y2, . . . , Yn2 , Z1, Z2, . . . , Zn3

so that

V1 = span{X1, X2, . . . , Xn1}

V2 = span{Y1, Y2, . . . , Yn2}

V3 ⊕ V4 ⊕ · · · ⊕ Vl = span{Z1, Z2, . . . , Zn3}.

We endow g with an inner product 〈·, ·〉 and related norm ‖ · ‖ so that this basis is orthonormal. Clearly,

the Riemannian dimension of g (and so G) is N = n1 + n2 + n3. However, we will also consider the

homogeneous dimension of G, denoted Q, which is given by

Q =

l∑
i=1

i · dimVi.
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We also recall that vectors Xi at the point x ∈ G can be written as

Xi(x) =

N∑
j=1

aij(x)
∂

∂xj

forming the n1 ×N matrix A with smooth entries Aij = aij(x).

Before proceeding with the calculus, we recall the group and metric space properties. Since the exponen-

tial map is the identity, the group law is the Baker-Campbell-Hausdorff formula. (See, for example, [Bo].)

For our purposes, this formula is given by

x · y = x+ y +
1

2
[x, y] +R(x, y) (2.2)

where R(x, y) are terms of order 3 or higher. The identity element of G will be denoted by 0 and called

the origin. There is also a natural metric on G, which is the Carnot-Carathéodory distance, defined for the

points x and y as

dC(x, y) = inf
Γ

∫ 1

0
‖γ′(t)‖dt,

where Γ is the set of all curves γ such that γ(0) = x, γ(1) = y and γ′(t) ∈ V1. By Chow’s theorem, (See,

for example, [Be].) any two points can be connected by such a curve, which means dC(x, y) is an honest

metric. Define a Carnot-Carathéodory ball of radius r centered at a point x0 by

B(x0, r) = {x ∈ G : dC(x, x0) < r}.

In addition to the Carnot-Carathéodory metric, there is a smooth (off the origin) gauge. This gauge is

defined for a point x = (ζ1, ζ2, . . . , ζl) with ζi ∈ Vi by

N (x) =

( l∑
i=1

‖ζi‖
2l!
i

) 1
2l!

(2.3)

and it induces a distance dN given by

dN (x, y) = N (x−1 · y).

This distance is bi-Lipschitz equivalent to the Carnot-Carathéodory metric. We define a gauge ball of radius
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r centered at a point x0 by

BN (x0, r) = {x ∈ G : dN (x, x0) < r}.

In this environment, a smooth function u : G→ R has the horizontal derivative given by

∇0u = (X1u,X2u, . . . ,Xn1u)

and the symmetrized horizontal second derivative matrix, denoted by (D2u)?, with entries

((D2u)?)ab =
1

2
(XaXbu+XbXau)

for a, b = 1, 2, . . . , n1. We also consider the semi-horizontal derivative given by

∇1u = (X1u,X2u, . . . ,Xn1u, Y1u, Y2u, . . . , Yn2u).

With these derivatives, we have the following natural definition:

Definition 2.2.1. A function f : G→ R is C1
sub(G) if∇0f is continuous. A function f : G→ R is C2

sub(G)

if ∇1f and XiXjf is continuous for all i, j = 1, 2, . . . n1.

Remark 2.2.2. C2
sub is different from Euclidean C2. Consider the function u : H1 → R defined by

u(x, y, z) = z
3
2 . Then all Euclidean second derivatives are 0, except

∂2

∂z2
=

3

4z
1
2

,

which clearly does not exist at the origin. However, the Z vector field in H1 is a second derivative, and the

second partial derivative of u with respect to z in H1 is

Zu =
3

2
z

1
2 ,

which clearly exists at the origin.

We next let p : G→ (1,∞), called a variable exponent, be in C(G) and let Ω be a bounded domain in G.

Using the variable exponent p(x), we define the p(x)-Laplacian of a smooth function u for 1 < p(x) <∞
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by

∆p(x)u = div(‖∇0u‖p(x)−2∇0u) =

n1∑
i=1

Xi(‖∇0u‖p(x)−2∇0u)

= ‖∇0u‖p(x)−2trace((D2u)?) + (p(x)− 2)‖∇0u‖p(x)−4〈(D2u)?∇0u∇0u〉

+ log(‖∇0u‖)‖∇0u‖p(x)−2〈∇0p(x)u∇0u〉.

Note that just as in the Euclidean case, there is a first-order term involving log(‖∇0u‖) that does not appear

in the case when p(x) is constant. Also note that if p(x) is constant, then we have the standard p-Laplacian

in Carnot groups. (See [B1].)

2.3 Variable Exponent Lebesgue and Sobolev Spaces

2.3.1 Variable Exponent Lebesgue and Sobolev Spaces in General Carnot Groups

In this section, we review some key properties of variable exponent Lebesgue spaces and Sobolev spaces

employing the variable exponent. Let Ω be a bounded domain in a Carnot group G. (Note that G could be

the Heisenberg group Hn.) Let the variable exponent p : Ω→ [1,∞] be a measurable function. We denote

the following

p+ = sup
x∈Ω

p(x) and p− = inf
x∈Ω

p(x)

and we will assume throughout this section that

1 < p− ≤ p+ <∞

holds in compact subsets of Ω.

We define the variable exponent Lebesgue space as in [Lu1]: Lp(x)(Ω) is the space of measurable func-

tions u on Ω such that the modular %p(x) satisfies

%p(x)(u) =

∫
Ω
|u(x)|p(x)dx <∞.

Moreover, we use the Luxemburg norm:

‖u‖Lp(x)(Ω) = inf

{
λ > 0 :

∫
Ω

∣∣∣∣u(x)

λ

∣∣∣∣p(x)

dx ≤ 1

}
.
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Note that because p+ <∞, Lp(x)(Ω) equipped with this norm is a Banach space. Also note that if p(x) is

constant, then Lp(x)(Ω) reduces to the standard Lebesgue space Lp(Ω).

The definition of the norm produces the following relationship between the modular and the norm:

min{‖u‖p
+

Lp(x)(Ω)
, ‖u‖p

−

Lp(x)(Ω)
} ≤ %p(x)(u) ≤ max{‖u‖p

+

Lp(x)(Ω)
, ‖u‖p

−

Lp(x)(Ω)
}. (2.4)

Lemma 2.3.1 ([BF1], Propostion 3.1). These inequalities (2.4) directly imply for any sequence

{uk}k∈N
k→∞−→ u, we have:

%p(x)(u− uk)→ 0 ⇐⇒ ‖u− uk‖Lp(x)(Ω) → 0 (2.5)

as k →∞.

Proof. Assume ‖u− uk‖Lp(x)(Ω) → 0 as k →∞. We then have

‖u− uk‖p
−

Lp(x)(Ω)
→ 0 and ‖u− uk‖p

+

Lp(x)(Ω)
→ 0.

By inequality (2.4) we have %p(x)(u− uk)→ 0.

Now assume %p(x)(u− uk)→ 0 as k →∞. By definition we have

∫
Ω
|u(x)− uk(x)|p(x)dx→ 0.

Given ε > 0, choose k0 so that ∫
Ω
|u(x)− uk0(x)|p(x)dx < ε.

Because for λ > 0, we have
1

λp(x)
≤ 1

λp−

we then conclude ∫
Ω

∣∣∣∣u(x)− uk0(x)

λ

∣∣∣∣p(x)

dx ≤ ε 1

λp−
.

Therefore,

‖u− uk0‖Lp(x)(Ω) = ε
1
p− .

The result follows since ε was arbitrary.

14



The following Lemma gives key properties of the modular.

Lemma 2.3.2 ([BF1], Lemma 3.2). Let %p(x)(u) be defined as above. Then:

a) %p(x)(u) is convex,

b) %p(x)(u) = 0 if and only if u = 0,

c) if 0 < %p(x)(u) <∞, then λ 7→ %p(x)(
u
λ) is continuous and decreasing on the

interval [1,∞),

d) %p(x)(
u

‖u‖
Lp(x)(Ω)

) ≤ 1 for every u with 0 < ‖u‖Lp(x)(Ω) <∞.

Proof. Let u, v ∈ Lp(x)(Ω). Then for all t ∈ [0, 1], we have

%p(x)(tu(x) + (1− t)v(x)) =

∫
Ω
|tu+ (1− t)v|p(x)dx

≤
∫

Ω
|tu|p(x)dx+

∫
Ω
|(1− t)v|p(x)dx =

∫
Ω
tp(x)|u|p(x)dx+

∫
Ω

(1− t)p(x)|v|p(x)dx

≤
∫

Ω
t|u|p(x)dx+

∫
Ω

(1− t)|v|p(x)dx = t%p(x)(u) + (1− t)%p(x)(v)

so Property a) holds. Properties b) and c) are straightforward and omitted. Property d) is proved in [KR,

Lemma 2.9].

We then have the following corollary of Properties a), b), and d) of Lemma 2.3.2:

Corollary 2.3.3 ([BF1], Corollary 3.3). If ‖u‖Lp(x)(Ω) ≤ 1, then %p(x)(u) ≤ ‖u‖Lp(x)(Ω).

Proof. Assume ‖u‖Lp(x)(Ω) ≤ 1. If ‖u‖Lp(x)(Ω) = 0, then Equation (2.4) implies %p(x)(u) = 0, which

implies u = 0 by Property b) of Lemma 2.3.2, and the claim is true trivially. We therefore assume that

0 < ‖u‖Lp(x)(Ω) ≤ 1. Then by Property d) of Lemma 2.3.2,

%p(x)

(
u

‖u‖Lp(x)(Ω)

)
≤ 1.

Since ‖u‖Lp(x)(Ω) ≤ 1 and also since % is convex by Property a) of Lemma 2.3.2, we have, writing ‖u‖ for

‖u‖Lp(x)(Ω),

%p(x)(u) = %p(x)

(
‖u‖u
‖u‖

)
≤ ‖u‖%p(x)

(
u

‖u‖

)
≤ ‖u‖.
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Given functions u ∈ Lp(x)(Ω) and v ∈ Lq(x)(Ω), where the conjugate exponent q(x) of p(x) is defined

pointwise, we have a form of Hölder’s inequality (cf. [KR, Theorem 2.1], [DHHR, Lemma 3.2.20]):

∫
Ω
|u| |v| dx ≤ 2 ‖u‖Lp(x)(Ω)‖v‖Lq(x)(Ω). (2.6)

Additionally, if 1 < p(x)− ≤ p(x)+ <∞, then the dual of Lp(x)(Ω) is Lq(x)(Ω) and Lp(x)(Ω) is reflexive.

We finish this section by recalling some key properties of variable exponent Sobolev spaces for Carnot

groups. Let Ω ⊂ G be a domain in G. We will use the following notation and definition for the variable

exponent Sobolev space W 1,p(x)(G) with p+ <∞ (cf. [HHP1]):

W 1,p(x)(G) =

{
f ∈ Lp(·)(G), |∇0f | ∈ Lp(·)(G) :

∫
G
|f(x)|p(x) + |∇0f(x)|p(x)dx <∞

}
,

where we use the norm:

‖f‖W 1,p(x)(G) = ‖f‖Lp(x)(G) + ‖∇0f‖Lp(x)(G),

which makes W 1,p(x)(G) a Banach space ([HHP1, Theorem 3.4]). Similarly, we define the variable expo-

nent Sobolev space W 1,p(x)(Ω) for p+ <∞ as:

W 1,p(x)(Ω) =

{
f ∈ Lp(·)(Ω), |∇0f | ∈ Lp(·)(Ω) :

∫
Ω
|f(x)|p(x) + |∇0f(x)|p(x)dx <∞

}
.

Replacing Lp(x)(Ω) by Lp(x)
loc (Ω), we define the spaceW 1,p(x)

loc (Ω), which consists of functions f that belong

to W 1,p(x)
loc (Ω′) for all open sets Ω′ b Ω, in the natural way.

Lastly, we define the function %1,p(·) : W 1,p(·)(Ω)→ [0,∞) by

%1,p(·)(f) = %p(·)(f) + %p(·)(|∇0f |).

2.3.2 A p(·)-Poincaré-type Inequality for Variable Exponent Sobolev Spaces with

Zero Boundary Values in Carnot Groups 1

We will need a p(·)-Poincaré-type inequality to achieve some of our results, namely for the equivalence of

potential theoretic weak solutions and viscosity solutions to the p(x)-Laplace equation. We begin by defin-

ing Sobolev p(·)-capacity and quasicontinuity in the Carnot group setting. These definitions are adopted

1A Note to Reader: This section has been reproduced from [BF1].
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from the metric space version of the variable exponent case. (See [HHP1].) For the metric space version of

the fixed exponent case, see [KM].

Definition 2.3.4. For U ⊂ G, denote

Sp(·)(U) = {u ∈W 1,p(·)(G) : u ≥ 1 in an open set containing U}.

Functions in Sp(·)(U) are said to be p(·)-admissible for U . We note that since the norm in W 1,p(·)(G)

decreases under truncation, we can choose those u ∈ U such that 0 ≤ u ≤ 1. The Sobolev p(·)-capacity of

U is then defined as:

Cp(·)(U) = inf
u∈Sp(·)(U)

%1,p(·)(u) = inf
u∈Sp(·)(U)

∫
G

(|u(x)|p(x) + |∇0u(x)|p(x))dx.

In the case that Sp(·)(U) = ∅, we set Cp(·)(U) = ∞. Furthermore, by standard arguments, the set

function U 7→ Cp(·)(U) is an outer measure. The proof of the next lemma follows the Euclidean case

([HHKV1, Theorem 3.1]) and is omitted.

Lemma 2.3.5. The set function U 7→ Cp(·)(U) is an outer measure. In other words,

i) Cp(·)(∅) = 0.

ii) [Monotonicity] If U1 ⊂ U2, then Cp(·)(U1) ≤ Cp(·)(U2).

iii) [Subadditivity] If Ui ⊂ G for i = 1, 2, ..., then

Cp(·)

( ∞⋃
i=1

Ui
)
≤
∞∑
i=1

Cp(·)(Ui).

Lemma 2.3.6 ([BF1], Lemma 3.5). The set function U 7→ Cp(·)(U) is an outer capacity.

Proof. To prove we have an outer capacity, we must show

i) Cp(·)(∅) = 0.

ii) If U1 ⊂ U2, then Cp(·)(U1) ≤ Cp(·)(U2).

iii) Let U ⊂ G. Then for all open subsets Ω and V such that U ⊂ V ⊂ Ω ⊂ G, we have

Cp(·)(U) = inf
U⊂V⊂Ω

Cp(·)(V).
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Items i) and ii) are proved in Lemma 2.3.5 so we show iii). Let U ⊂ G and V ⊂ Ω be open such that

U ⊂ V ⊂ Ω. By ii) we have Cp(·)(U) ≤ Cp(·)(V), which implies

Cp(·)(U) ≤ inf
U⊂V⊂Ω

Cp(·)(V).

On the other hand, fix ε > 0 and let U ⊂ G and V ⊂ Ω be open sets such that U ⊂ V ⊂ Ω. Then by ii)

again, we have Cp(·)(U) ≤ Cp(·)(V) so we can find a function u ∈ Sp(·)(U) such that U ⊂ V and

Cp(·)(U) ≤ inf
U⊂V⊂Ω

Cp(·)(V) ≤ Cp(·)(V) ≤
∫
G

(|u(x)|p(x) + |∇0u(x)|p(x))dx ≤ Cp(·)(U) + ε,

so iii) follows by letting ε→ 0.

Definition 2.3.7. A function u : G → R is said to be p(·)-quasicontinuous in G if for every ε > 0 there

exists an open set Ω with Cp(·)(Ω) < ε such that u is continuous on G \ Ω. Moreover, for a subset U of G,

we say that a claim holds p(·)-quasieverywhere in U if it holds everywhere except possibly in a set K ⊂ U

where K has zero p(·)-capacity.

We will need the following lemma in order to show the uniqueness result of the minimizer of the p(·)-

Dirichlet energy integral. Kilpeläinen [Ki] gives a more general topological proof of Statement (i) for any

outer capacity. Statement (ii) is well-known in the fixed exponent case [KKM, Remark 3.3]. The proof in

the variable exponent case is identical and omitted.

Lemma 2.3.8. Let 1 < p− ≤ p+ < ∞, and let u,v be p(·)-quasicontinuous functions in G. Suppose that

Ω ⊂ G is open. Then we have the following:

(i) If u = v a.e. in Ω, then u = v p(·)-quasieverywhere in Ω.

(ii) If u ≤ v a.e. in Ω, then u ≤ v p(·)-quasieverywhere in Ω.

Now we consider a Sobolev p(·)-capacity based on p(·)-quasicontinuous functions. For U ⊂ G and

1 < p− ≤ p+ <∞, we let

S̃p(·)(U) = {u ∈W 1,p(·)(G) : u is p(·)− quasicontinuous and u ≥ 1 p(·)− quasieverywhere in U},
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and then define

C̃p(·)(U) = inf
u∈S̃p(·)(U)

∫
G

(|u(x)|p(x) + |∇0u(x)|p(x))dx.

As above, in the case that S̃p(·)(U) = ∅, we set C̃p(·)(U) =∞.

Because Carnot groups are locally compact doubling spaces, they satisfy the so-called density condition

that continuous functions with compact support are dense in Lp(·)(G). [HHP2, Theorem 3.3]. (Recall that

p+ <∞.) This fact gives us the next theorem. To prove it, we will need some lemmas. The Euclidean case

for each of the lemmas is given in the citations. The proofs are identical and omitted.

Lemma 2.3.9. [HHKV1, Lemma 5.1] Let 1 < p− ≤ p+ < ∞. For every Cauchy sequence of functions

{ui}i∈N such that for all i ∈ N, ui is continuous and ui ∈ W 1,p(·)(G), there is a subsequence of {ui}

converging to u pointwise p(·)-quasieverywhere in G. Additionally, outside a set of arbitrary small p(·)-

capacity, the convergence is uniform.

Lemma 2.3.10. [HHKV1, Theorem 5.2] Let p satisfy the density condition with 1 < p− ≤ p+ < ∞. For

every u ∈ W 1,p(·)(G), there exists a p(·)-quasicontinuous function v ∈ W 1,p(·)(G) such that u = v almost

everywhere in G.

Theorem 2.3.11 ([BF1], Theorem 3.9). If 1 < p− ≤ p+ < ∞ and U ∈ G, then Cp(·)(U) ≤ C̃p(·)(U).

Moreover, in Carnot groups, we have equality.

Proof. The proof parallels the proof of Theorem 2.2 (a) in [HHKV1], which proves this condition in Eu-

clidean space and follows the proof of Theorem 3.4 in [KKM] for the fixed exponent case in metric measure

spaces. We will need the following standard inequality (see, for instance, [MZ, Lemma 1.1]) for arbitrary

ζ, η ∈ R and every δ > 0:

|ζ + η|m ≤ (1 + δ)m−1|ζ|m +
(

1 +
1

δ

)m−1
|η|m (2.7)

for 1 ≤ m < ∞. Let v ∈ S̃p(·)(U) and, by truncation, assume that 0 ≤ v ≤ 1. Fix 0 < ε < 1 and choose

open set V with Cp(·)(V) < ε so that v = 1 on U \ V and so that v restricted to G \ V is continuous. Also

define the set

W = {x ∈ G \ V | v(x) > 1− ε} ∪ V.
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Then U \ V ⊂ W \ V by definition. Next, choose u ∈ Sp(·)(V) such that

∫
V

(|u(x)|p(x) + |∇0u(x)|p(x))dx < ε

and such that 0 ≤ u ≤ 1. Therefore, by definition of Sp(·)(V), we must have u = 1 in an open set containing

V . Defining z = v
1−ε + u implies z ≥ 1 almost everywhere in (W \ V) ∪ V = W . Since W is an open

neighborhood of U , then z ∈ Sp(·)(U). Then we have by Equation (2.7), for every δ > 0,

%p(·)(z) =

∫
G

∣∣∣∣ v(x)

1− ε
+ u(x)

∣∣∣∣p(x)

dx

≤
∫
G

∣∣∣∣ v(x)

1− ε

∣∣∣∣p(x)

(1 + δ)p(x)−1dx+

∫
G
|u(x)|p(x)

(
1 +

1

δ

)p(x)−1
dx

≤ (1 + δ)p
+−1

∫
G

∣∣∣∣ v(x)

1− ε

∣∣∣∣p(x)

dx+
(

1 +
1

δ

)p+−1
∫
G
|u(x)|p(x)dx

≤ (1 + δ)p
+−1

∫
G

|v(x)|p(x)

(1− ε)p(x)
dx+

(
1 +

1

δ

)p+−1
∫
G
|u(x)|p(x)dx

≤ (1 + δ)p
+−1

∫
G

|v(x)|p(x)

(1− ε)p+ dx+
(

1 +
1

δ

)p+−1
∫
G
|u(x)|p(x)dx

<
(1 + δ)p

+−1

(1− ε)p+

∫
G
|v(x)|p(x)dx+

(
1 +

1

δ

)p+−1
ε

=
(1 + δ)p

+

(1− ε)p+

1

1 + δ

∫
G
|v(x)|p(x)dx+

(
1 +

1

δ

)p+ δ

1 + δ
ε

≤
(

1 + δ

1− ε

)p+ ∫
G
|v(x)|p(x)dx+

(
1 +

1

δ

)p+

ε,

where the strict inequality follows from the choice of u such that %1,p(·)(u) < ε and so

∫
G
|u(x)|p(x)dx < ε.

Now choosing δ = ε
1

2p+ yields

(
1 + δ

1− ε

)p+

=

(
1 + ε

1
2p+

1− ε

)p+

→ 1

and (
1 +

1

δ

)p+

ε =
(

1 +
1

ε
1

2p+

)p+

ε
( 1
p+ )p+

=
(
ε

1
p+ + ε

1
2p+

)p+

→ 0

20



as ε→ 0. Therefore,

%p(·)(z) ≤
∫
G
|v(x)|p(x)dx = %p(·)(v). (2.8)

Similarly, we can show that

%p(·)(|∇0z|) ≤
∫
G
|∇0v(x)|p(x)dx = %p(·)(|∇0v|), (2.9)

where the strict inequality comes from the choice of u such that %1,p(·)(u) < ε and so

∫
G
|∇0u(x)|p(x)dx < ε.

Equations (2.8) and (2.9) imply %1,p(·)(z) ≤ %1,p(·)(v), and since v was chosen arbitrarily, then we have

Cp(·)(U) ≤ C̃p(·)(U).

Now we assume that p satisfies the density condition and we finish the proof of the theorem by using

Lemma 2.3.10 to show the reverse inequality, namely C̃p(·)(U) ≤ Cp(·)(U). Let U ⊂ G. Choose u ∈

Sp(·)(U) and let Ω be open with U ⊂ Ω and such that u ≥ 1 on Ω. Then Lemma 2.3.10 gives us the

existence of a p(·)-quasicontinuous function ũ ∈ G such that ũ = u a.e in Ω. Hence, ũ ≥ 1 a.e. in Ω. By

Lemma 2.3.8 we have ũ ≥ 1 p(·)-quasieverywhere in Ω. It follows that ũ ≥ 1 p(·)-quasieverywhere in U

so ũ ∈ S̃p(·)(U). Therefore, C̃p(·)(U) ≤ Cp(·)(U) and equality follows.

The next lemma is an extension of Lemma 2.3.9 in that the regularity of the functions ui is relaxed.

The fixed exponent metric measure space case corresponds to [KKM, Lemma 3.5] and a sharpening of that

statement in variable exponent Euclidean case corresponds to [HHKV1, Lemma 2.3]. We will use the latter

case since the additional result that u is p(·)-quasicontinuous is needed to prove Theorem 2.3.14.

Lemma 2.3.12 ([BF1], Lemma 3.10). Let 1 < p− ≤ p+ < ∞. Suppose that {ui}i∈N ⊂ W 1,p(·)(G) is a

sequence of p(·)-quasicontinuous functions that converge in W 1,p(·)(G) to the function u. Then u is p(·)-

quasicontinuous and there is a subsequence {uik}k∈N that converges pointwise to u p(·)-quasieverywhere

in G.
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Proof. There exists a subsequence of {ui}i∈N, which we also denote {ui}i∈N, such that

∞∑
i=1

2ip
+‖u− ui‖W 1,p(x) < 1.

For i = 1, 2, ..., we denote Ui = {x ∈ G : |ui(x)− ui+1(x)| > 2−i} and Vj =
⋃∞
i=j Ui.

Then clearly 2i|ui − ui+1| ∈ S̃p(·)(Ui). By Theorem 2.3.11, we have

Cp(·)(Ui) ≤
∫
G

(2i|ui − ui+1|)p(x) + |∇0(2i(ui − ui+1))|p(x)dx ≤ 2ip
+‖ui − ui+1‖W 1,p(x) .

By the subadditivity of the Sobolev p(·)-capacity, we then have

Cp(·)(Vj) ≤
∞∑
i=j

Cp(·)(Ui) ≤
∞∑
i=j

2ip
+‖ui − ui+1‖W 1,p(x) .

Since
⋂∞
j=1 Vj ⊂ Vj for every j, the monotonicity of the Sobolev p(·)-capacity implies

Cp(·)

( ∞⋂
j=1

Vj
)
≤ lim

j→∞
Cp(·)(Vj) = 0.

Furthermore, we have ui → u pointwise in G \
⋂∞
j=1 Vj , and so the convergence

p(·)-quasieverywhere in G follows.

It remains to show that u is p(·)-quasicontinuous. This means we must show that for every ε > 0 there

exists an open set with Sobolev p(·)-capacity less then ε such that u is continuous in the complement. Let

ε > 0. Using the first half of this proof, there is a set Vj ⊂ G such that Cp(·)(Vj) < ε
2 and such that ui → u

pointwise in G \ Vj . Since each ui is p(·)-quasicontinuous in G by assumption, for each i ∈ N we can

choose open setsWi ⊂ G, such that Cp(·)(Wi) <
ε

2i+1 and such that ui restricted to G \ Wi is continuous.

LetW =
⋃
iWi. Then we have, via subadditivity,

Cp(·)(W) = Cp(·)

( ∞⋃
i=1

Wi

)
<

ε

2
.

We use the subadditivity of the the Sobolev p(·)-capacity to obtain

Cp(·)(Vj ∪W) ≤ Cp(·)(Vj) + Cp(·)(W) <
ε

2
+
ε

2
= ε.
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Furthermore,

|ur(x)− uk(x)| ≤
k−1∑
m=r

|um(x)− um+1(x)| ≤
k−1∑
m=r

2−m < 2r−l

for all x ∈ G \ (Vj ∪W) and every k > r > j. This implies we have uniform convergence in G \ (Vj ∪W),

and thus u is continuous in G \ (Vj ∪W).

Now we are ready to define variable exponent Sobolev spaces with zero boundary values, denoted

W
1,p(x)
0 (Ω), as in [KKM]:

Definition 2.3.13. The function u belongs to W 1,p(x)
0 (Ω) if there exists a p(·)-quasicontinuous function

ũ ∈ W 1,p(x)(G) such that u = ũ almost everywhere in Ω and ũ = 0 quasieverywhere in G \ Ω. With this

definition, we have the norm

‖u‖
W

1,p(x)
0 (Ω)

= ‖ũ‖W 1,p(x)(G).

Furthermore, we say that the p(·)-quasicontinuous function ũ ∈ W 1,p(x)(G) is a canonical representative

of the function u ∈W 1,p(x)
0 (Ω) if u = ũ almost everywhere in Ω and ũ = 0 p(·)-quasieverywhere in G\Ω.

Note that the norm does not depend on the choice of the quasicontinuous representative since Cp(·)(Ω) =

0 means the measure of Ω is 0.

The Euclidean version of the next theorem is Theorem 3.1 in [HHKV1]. The metric space version using

Newtonian spaces is Theorem 3.4 in [HHP1]. The proof is standard and omitted.

Theorem 2.3.14. Assume 1 < p− ≤ p+ <∞. Then W 1,p(x)
0 (Ω) is a Banach space.

In addition, we have the following key identification, whose proof follows that of [HHKV1, Theorem

3.3]. (Cf. [AH, Section 9.2].)

Theorem 2.3.15. Let Ω ⊂ G be open. Then

(C∞0 (Ω)) = W
1,p(x)
0 (Ω),

where C∞0 (Ω) is the set of continuous, infinitely differentiable functions with compact support in Ω and

(C∞0 (Ω)) denotes the closure of C∞0 (Ω) in W 1,p(x)(Ω).

The next theorem holds in any metric measure space. [HHP1, Section 2.2] and [KR, Theorem 2.8].
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Theorem 2.3.16. Let Ω ∈ G be open. Suppose 0 < |Ω| <∞ and q(x) ≤ p(x) for a.e. x ∈ Ω. Then

Lp(x)(Ω) ↪→ Lq(x)(Ω).

Moreover, we have

‖f‖Lq(·) ≤ (1 + |Ω|)‖f‖Lp(·) .

We use Theorem 2.3.16 in variable exponent Lebesgue spaces to show this next theorem in variable

exponent Sobolev spaces with zero boundary values. The Carnot proof is similar to the Euclidean proof of

[HHKV1, Theorem 3.4] with the obvious modifications.

Theorem 2.3.17. Let 1 < q−, p+ < ∞ and q(x) ≤ p(x) for a.e. x ∈ G. Assume Ω ⊂ G is a bounded,

open set. Then

W
1,p(·)
0 (Ω) ↪→W

1,q(·)
0 (Ω).

Moreover, the norm of the embedding operator does not exceed 1 + |Ω|.

In order to use the direct method for calculus of variations, the functional must be defined on a reflexive

space. To that end, we have the next theorem.

Theorem 2.3.18 ([BF1], Theorem 4.5). Assume 1 < p− ≤ p+ <∞. Then W 1,p(·)
0 (Ω) is reflexive.

Proof. A closed subspace of a reflexive space is also reflexive. We know that the space Lp(·)(G) is reflexive

and thus K̂ := Lp(·)(G)×Lp(·)(G) is a reflexive space. SinceW 1,p(·)
0 (Ω) is isomorphic to a closed subspace

of K̂ by the isomorphism Φ : W
1,p(·)
0 (Ω)→ K̂ defined by u 7→ (u,∇0u), we are done.

Now we are ready to prove a p(·)-Poincaré type inequality for variable exponent Sobolev spaces with

zero boundary values, stated as Theorem 2.3.19 below. Assume Ω ⊂ G is open. For any open set A in G,

we use the following notation:

p+
A = ess sup

x∈A∩Ω
p(x) and p−A = ess inf

x∈A∩Ω
p(x)

and assume that

1 < p−A ≤ p+
A <∞

holds in compact subsets of Ω. Recall that we use Q to denote the homogeneous dimension of G. Let

BN̂ (x, δ) be a gauge ball of radius δ, centered at x (recall Equation (2.3)). If p+
Ω < ∞ and if there exists
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δ > 0 such that for every point x ∈ Ω either

p−BN̂ (x,δ) ≥ Q or p+
BN̂ (x,δ) ≤

Qp−BN̂ (x,δ)

Q− p−BN̂ (x,δ)

holds, then the variable exponent p is said to satisfy the jump condition in Ω with constant δ. Observe that

if Ω is bounded and p is continuous in Ω, then there is some δ > 0 such that p satisfies the jump condition

in Ω. We will also use the following notation in the next proof:

p∗BN̂ (x,δ)(x) =



Q·p−
B
N̂

(x,δ)

Q−p−
B
N̂

(x,δ)

if p−B(x,δ) < Q,

p+
BN̂ (x,δ) if p−BN̂ (x,δ) ≥ Q.

Note that

1

p∗BN̂ (x,δ)

=
1

p−BN̂ (x,δ)

− 1

Q
when p−B(x,δ) < Q and we always have p∗ > p−BN̂ (x,δ).

The Euclidean version for the variable exponent p(·)-Poincaré-type inequality is Theorem 4.1 in [HHKV1].

Theorem 2.3.19 ([BF1], Theorem 5.1, A p(·)-Poincaré-Type Inequality). Let Ω ∈ G be a bounded open set

and assume that p satisfies the jump condition in Ω with δ > 0. Then for every u ∈W 1,p(x)
0 (Ω), we have

‖u‖Lp(x)(Ω) ≤ C‖∇0u‖Lp(x)(Ω),

where C is independent of u.

Proof. Since Ω is compact, then there exist x1, ..., xj such that for any set D ⊂ Ω, we have

D ⊂
j⋃
i=1

BN̂ (xi, δ),

whereBN̂ (xi, δ) is a gauge ball of radius δ, centered at xi, for all i such that 1 ≤ i ≤ j. LetBi = BN̂ (xi, δ)

and let ũ be the canonical representative of u. Then u = ũ almost everywhere in Ω and ũ = 0 p(·)-
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quasieverywhere in G \ Ω. Since ũ is a canonical representative of u, by Theorem 2.3.16 we obtain

‖u‖Lp(·)(Ω) = ‖ũ‖Lp(·)(G) ≤
j∑
i=1

‖ũ‖Lp(·)(Bi) ≤ (1 + |Ω|)
j∑
i=1

‖ũ‖
L
p∗
Bi (Bi)

.

Then by the triangle inequality, where ũBi is the average of ũ over the balls Bi,

(1 + |Ω|)
j∑
i=1

‖ũ‖
L
p∗
Bi (Bi)

≤
(
1 + |Ω|

) j∑
i=1

(
‖ũ− ũBi‖

L
p∗
Bi (Bi)

+ ‖ũBi‖
L
p∗
Bi (Bi)

)

≤
(
1 + |Ω|

) j∑
i=1

(
‖ũ− ũBi‖

L
p∗
Bi (Bi)

+ |ũBi | ‖χBi‖
L
p∗
Bi (Bi)

)
,

where χBi is the characteristic function of the ball Bi.

Next, we estimate ‖ũ− ũBi‖
L
p∗
Bi (Bi)

and then |ũBi |, both in terms of ‖∇0u‖Lp(·)(Ω). To accomplish this,

we will apply a Sobolev-Poincaré inequality for ‖ũ− ũBi‖
L
p∗
Bi (Bi)

and a classical type Poincaré inequality

for |ũBi | (see, for example, [Je], [DGP, Theorem 2.1]) By the global Poincaré inequality on metric balls,

for the fixed exponent case presented by Jerison [Je] (and restated in [DGP, Theorem 2.1]), and Theorem

2.3.16 we have a constant C independent of ũ such that for every i = 1, ..., j,

‖ũ− ũBi‖
L
p∗
Bi (Bi)

≤ C‖∇0ũ‖
L
p−
Bi (Bi)

≤ C(1 + |Bi|)‖∇0ũ‖Lp(·)(Bi).

The doubling property for gauge balls, namely |B(x, δ)| ≤ CδQ where C = C(Q), gives us

‖ũ− ũBi‖
L
p∗
Bi (Bi)

≤ C(Q, δ)‖∇0u‖Lp(·)(Ω).

Next, the Poincaré inequality in Carnot groups [Je] implies

|ũBi | = AV G

∫
Bi
|u|dx ≤ C(Q, δ,Bi)

∫
Bi
|∇0u|dx ≤ C(Q, δ)(1 + |Ω|)‖∇0u‖Lp(·)(Ω).
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It follows that

‖u‖Lp(·)(Ω) ≤
(
1 + |Ω|

) j∑
i=1

(
‖ũ− ũBi‖

L
p∗
Bi (Bi)

+ |ũBi | ‖χBi‖
L
p∗
Bi (Bi)

)

≤ C(Q, δ,Ω)

j∑
i=1

(
‖∇0u‖Lp(·)(Ω) + ‖∇0u‖Lp(·)(Ω) ‖χBi‖Lp

∗
Bi (Bi)

)
≤ C(Q, δ,Ω)‖∇0u‖Lp(·)(Ω).

The proof is complete.

We finish this section with a brief discussion about p(·)-Dirichlet energy integral minimizers in Carnot

groups. Let O ⊂ G be an open set and let w ∈ W 1,p(·)(O). The energy operator corresponding to the

boundary value function w, acting on the space W 1,p(·)
0 (O) is defined by

I
p(·)
O,w(u) =

∫
O
|∇0u(x) +∇0w(x)|p(x)dx. (2.10)

We want to find a function that minimizes the values of Ip(·)
O,w on W 1,p(·)

0 (O). This task is equivalent to

finding a p(·)-Dirichlet energy minimizing function. To show that a minimizer exists, we follow the same

path as the fixed exponent case in [Sh] and the variable exponent case in [HHKV2]. We will need the next

lemma from functional analysis, but first we recall some definitions. Let B be a reflexive Banach space. An

operator I is convex if for all t ∈ [0, 1] and each pair u, v ∈ B, we have

I(tu+ (1− t)v) ≤ tI(u) + (1− t)I(v).

Also, I is said to be lower semicontinuous if I(u) ≤ lim infi→∞ I(ui) whenever ui is a sequence of

elements in B such that ui → u. Finally, I is coercive if I(ui)→∞ whenever ‖ui‖B →∞.

Lemma 2.3.20. Let B be a reflexive Banach space. If I : B → R is a convex, lower semicontinuous, and

coercive operator, then there exists an element in B that minimizes I .

Now we are ready to show the existence of the minimizer.

Theorem 2.3.21 ([BF1], Theorem 6.2). LetO ⊂ G be a bounded open set. Assume that p satisfies the jump
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condition in O and 1 < p− ≤ p+ <∞. Then there exists a function u ∈W 1,p(·)
0 (O) such that

I
p(·)
O,ω(u) = inf

v∈W 1,p(·)
0 (O)

I
p(·)
O,ω(v). (2.11)

Proof. We know that W 1,p(·)
0 (O) is a reflexive Banach space by Theorems 2.3.14 and 2.3.18. We will show

that the operator Ip(·)
O,ω is convex, lower semicontinuous, and coercive. Then by Lemma 2.3.20, we will have

the existence of a minimizer. For every fixed 1 < p <∞, x→ xp is convex so that

(t|u(x)|+ (1− t)|v(x)|)p(x) ≤ t|u(x)|p(x) + (1− t)|v(x)|p(x) (2.12)

for every 0 < t < 1, every x ∈ O, and for every u, v ∈ W
1,p(·)
0 (O). Therefore it follows that Ip(·)

O,ω

is convex. Next, we show that Ip(·)
O,ω is lower semicontinuous. Let {ui} be a sequence of functions in

W
1,p(·)
0 (O) that converge to u ∈ W

1,p(·)
0 (O). Then ∇0(ui + w) → ∇0(u + w) in Lp(·)(O). That is,

‖∇0(ui + w)−∇0(u+ w)‖Lp(x)(O) → 0 as i→∞. By Equation (2.5), we have

%p(x)(∇0(ui + w)−∇0(u+ w))→ 0 as i→∞.

By [HHKV1, Lemma 2.6], this produces

%p(x)(∇0(ui + w))
i→∞−→ %p(x)(∇0(u+ w)).

Because Carnot groups are a metric space, we have that the sequential lower semicontinuity of the operator

I
p(·)
O,ω implies it is lower semicontinuous.

It remains to show that the operator Ip(·)
O,ω is coercive. Assume that ‖ui‖W 1,p(·)

0 (O)
→∞. Then by Theorem

2.3.19 (p(·)-Poincaré Inequality), ‖∇0ui‖Lp(·)(O) →∞ so then

‖∇0ui +∇0w‖Lp(·)(O) → ∞ as i → ∞. It follows that Ip(·)
O,ω → ∞ as i → ∞ since p+ < ∞. Therefore

I
p(·)
O,ω is coercive and the proof is complete.

We also need the following theorem concerning uniqueness of the p(·)-quasicontinuous representative.

The proof is identical to that of [HHKV2, Theorem 5.3] and omitted.

Theorem 2.3.22 ([BF1], Theorem 6.3). The p(·)-quasicontinuous representative ũ of the minimizing func-

tion u in Equation (2.11) is unique up to a set of zero p(·)-capacity.
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We conclude with a theorem whose proof matches that of [HHKV2, Theorem 5.4]:

Theorem 2.3.23 ([BF1], Theorem 6.4). Let 1 < p− ≤ p+ < ∞ and u ∈ W 1,p(·)
0 (O). Then u minimizes

I
p(·)
O,ω(u)

if and only if

∫
O
p(x)|∇0u(x) +∇0w(x)|p(x)−2(∇0u(x) +∇0w(x)) · ∇0(v(x)− u(x))dx ≥ 0, (2.13)

for every v ∈W 1,p(·)
0 (O) and w ∈W 1,p(·)

0 (O) such that u− w ∈W 1,p(·)
0 (O).

2.4 Notions of Solutions to the p(x)-Laplace Equation and Some Preliminary Results

We now turn our attention to a few different notions of solutions to the p(x)-Laplacian where we assume

that 1 < p(x) < ∞ and Ω ⊂ G. Note that all of the definitions and results in this section apply in the

Heisenberg group; in other words, we can take Ω ⊂ Hn. The main goal of Chapter 3 is achieved by relating

three different notions of solutions to the p(x)-Laplace equation, namely

−∆p(x)u = −div(‖∇0u‖p(x)−2∇0u) = 0 (2.14)

in a bounded domain Ω.

We begin by considering weak solutions to Equation (2.14).

Definition 2.4.1. The function u ∈W 1,p(x)
loc (Ω) is a weak solution to Equation (2.14) if

∫
Ω
‖∇0u‖p(x)−2〈∇0u∇0φ〉dx = 0

for all φ ∈ C∞0 (Ω). A weak solution to Equation (2.14) is also called p(x)-harmonic.

In addition to weak solutions, we define weak supersolutions and weak subsolutions to Equation (2.14).

Definition 2.4.2. The function u ∈W 1,p(x)
loc (Ω) is a weak supersolution to Equation (2.14) if

∫
Ω
‖∇0u‖p(x)−2〈∇0u∇0φ〉dx ≥ 0

for all nonnegative φ ∈ C∞0 (Ω). The function u ∈ W 1,p(x)
loc (Ω) is a weak subsolution to Equation (2.14) if
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-u is a weak supersolution. That is, the function u ∈W 1,p(x)
loc (Ω) is a weak subsolution to Equation (2.14) if

∫
Ω
‖∇0u‖p(x)−2〈∇0u∇0φ〉dx ≤ 0

for all nonnegative φ ∈ C∞0 (Ω).

For some of our results, namely the equivalence of potential theoretic weak solutions and viscosity solu-

tions to the p(x)-Laplace equation in Chapter 3, we will need to do more. In turn, we must consider weak

solutions to a wider class of equations. Letting ε ≥ 0 be a real parameter, we consider equations of the form

−∆p(x)u = −div(‖∇0u‖p(x)−2∇0u) = ε (2.15)

in a bounded domain Ω. Note that Equation (2.14) corresponds to Equation (2.15) with ε = 0. We define

ε-weak solutions to Equation (2.15) and then ε-weak super and subsolutions to Equation (2.15).

Definition 2.4.3. The function u ∈W 1,p(x)
loc (Ω) is an ε-weak solution to Equation (2.15) if

∫
Ω
‖∇0u‖p(x)−2〈∇0u∇0φ〉dx = ε

∫
Ω
φdx

for all φ ∈ C∞0 (Ω). A weak solution to Equation (2.14) (or 0-weak solution to Equation (2.15)) is also

called p(x)-harmonic.

In addition to ε-weak solutions, we define ε-weak supersolutions and ε-weak subsolutions in the natural

way.

Definition 2.4.4. The function u ∈W 1,p(x)
loc (Ω) is an ε-weak supersolution to Equation (2.15) if

∫
Ω
‖∇0u‖p(x)−2〈∇0u∇0φ〉dx ≥ ε

∫
Ω
φdx

for all nonnegative φ ∈ C∞0 (Ω). The function u ∈ W 1,p(x)
loc (Ω) is an ε-weak subsolution to Equation (2.15)

if -u is an ε-weak supersolution.

Remark 2.4.5. 1. Using these definitions when ε1 > ε2 ≥ 0, we observe that an ε1-weak solution is an

ε2-weak supersolution and an ε2-weak solution is an ε1-weak subsolution.

2. If u ∈W 1,p(x)(Ω), we may use test functions in W 1,p(x)
0 (Ω) via standard approximation arguments.
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Next, we have the following comparison principle, whose proof is identical to the Euclidean version and

omitted ([JLP, Lemma 5.1]).

Lemma 2.4.6. Let u and v be functions in W 1,p(x)(Ω) such that (u− v)+ ∈W 1,p(x)(Ω). If

∫
Ω
|∇0u|p(x)−2〈∇0u∇0φ〉dx ≤

∫
Ω
|∇0v|p(x)−2〈∇0v∇0φ〉dx

for all positive test functions φ ∈W 1,p(x)(Ω), then u ≤ v almost everywhere in Ω.

Corollary 2.4.7. Let u ∈W 1,p(x)(Ω) be a ε-weak subsolution to Equation (2.15) and let

v ∈W 1,p(x)(Ω) be a ε-weak supersolution to Equation (2.15) in Ω. If

γ ≡ min{v − u, 0} ∈W 1,p(x)
0 (Ω), then u ≤ v almost everywhere in Ω.

We can now formulate the existence-uniqueness of p(x)-harmonic functions. For the case of the p-

Laplacian in Carnot groups, see [HKM, Lemma 3.17] and [HH, Section 4.10].

Theorem 2.4.8. Given a bounded domain Ω with boundary data Θ ∈ W 1,p(x)(Ω), there is a unique p(x)-

harmonic function u that satisfies u−Θ ∈W 1,p(x)
0 (Ω).

Next, we define p(x)-superharmonic functions:

Definition 2.4.9. The function u : Ω→ R ∪ {∞} is p(x)-superharmonic if the following hold:

1. u is lower semicontinuous,

2. u is finite almost everywhere, and

3. the comparison principle holds: For each subdomain D ⊂⊂ Ω, a p(x)-harmonic function g in D that is

continuous in D with g ≤ u on ∂D implies g ≤ u in D.

A function u is p(x)-subharmonic if -u is p(x)-superharmonic. That is, the function u : Ω → R ∪ {−∞}

is p(x)-subharmonic if the following hold:

1. u is upper semicontinuous,

2. u is finite almost everywhere, and

3. the comparison principle holds: For each subdomain D ⊂⊂ Ω, a p(x)-harmonic function g in D that is

continuous in D with g ≥ u on ∂D implies g ≥ u in D.
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We remark that in the second condition in both definitions, we have required u to be finite almost ev-

erywhere. This is different from the case in which p(x) is constant where it is only assumed that a p-

superharmonic function is not identically +∞ in each component. We need the stronger condition for the

characterization of p(x)-superharmonic functions as pointwise increasing limits of 0-weak supersolutions

to Equation (2.15) [HHKLM].

We will need some basic facts about p(x)-superharmonic functions. We use the notation:

u∗(x) = ess lim inf
y→x

u(y).

First, every weak supersolution has a lower semicontinuous representative which is p(x)-superharmonic.

See [HKL, Theorem 4.1] and [HHLN, pg 18].

Theorem 2.4.10. Let u be a weak supersolution in Ω. Then u = u∗ almost everywhere and u∗ is p(x)-

superharmonic.

We also have the following converse [HHKLM, Corollary 6.6].

Theorem 2.4.11. A locally bounded p(x)-superharmonic function is a weak supersolution.

We then conclude that a function is a weak solution (p(x)-harmonic) if it is both p(x)-superharmonic and

p(x)-subharmonic.

Now we turn our attention to viscosity solutions. Consider Equation (2.14) in nondivergence form.

Namely,

−
(
‖∇0u‖p(x)−2trace((D2u)?) + (p(x)− 2)‖∇0u‖p(x)−4〈(D2u)?∇0u∇0u〉 (2.16)

+ ‖∇0u‖p(x)−2 ln(‖∇0u‖)〈∇0p(x)∇0u〉
)

= 0

in a bounded domain Ω. Before we define viscosity solutions, we will need the following definitions.

Definition 2.4.12. Given the upper semicontinuous function u : Ω ⊂ G→ R, we may define the set of test

functions that touch u from above at x0, denoted T A(u, x0), and given a lower semicontinuous function v,

we may define the set of test functions that touch v from below at x0, denoted T B(v, x0). Namely,

T A(u, x0) = {φ : Ω→ R | φ ∈ C2
sub(Ω), φ(x0) = u(x0), φ(x) > u(x) for x near x0}

T B(v, x0) = {φ : Ω→ R | φ ∈ C2
sub(Ω), φ(x0) = v(x0), φ(x) < v(x) for x near x0}.
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Definition 2.4.13. The function u : Ω → R ∪ {∞} is a viscosity supersolution to Equation (2.16) if the

following hold:

1. u is lower semicontinuous,

2. u is finite almost everywhere, and

3. For x0 ∈ Ω, φ ∈ T B(u, x0) with ∇0φ(x0) 6= 0 satisfies

−∆p(x)φ(x0) ≥ 0.

Note that a function u is a viscosity subsolution to Equation (2.16) if −u is a viscosity supersolution. That

is, the function u : Ω→ R ∪ {−∞} is a viscosity subsolution to Equation (2.16) if the following hold:

1. u is upper semicontinuous,

2. u is finite almost everywhere, and

3. For x0 ∈ Ω, φ ∈ T A(u, x0) with∇0φ(x0) 6= 0 satisfies

−∆p(x)φ(x0) ≤ 0.

A function u is a viscosity solution to Equation (2.16) if it is both a viscosity supersolution and a viscosity

subsolution.

Remark 2.4.14. The condition that ∇0φ(x0) 6= 0 in the definition is irrelevant in the case 2 ≤ p(x) <∞,

since then the p(x)-Laplace equation is well-defined. In fact, when p(x) ≥ 2, whether we include the

condition that ∇0φ(x0) 6= 0 or not, the same class of solutions is produced (see [JLM, Remark 2.4]).

However, in the singular case, the p(x)-Laplace equation has singularities at points where the gradient is

zero. For our purposes, we take this definition for 1 < p(x) <∞.

In Chapter 3, we will also need to consider viscosity solutions to the following equation: for κ ∈ R+, let

Fκ(u) = max{‖∇1u‖ − κ,−∆p(x)u}, (2.17)

where we recall that∇1 is the semi-horizontal derivative.
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Definition 2.4.15. The function u : Ω→ R∪{−∞} is a viscosity subsolution to Fκ(u) = 0 if the following

hold:

1. u is upper semicontinuous,

2. u is finite almost everywhere, and

3. For x0 ∈ Ω, µ ∈ T A(u, x0) with∇0µ(x0) 6= 0 satisfies

Fκµ(x0) ≤ 0.

The function v : Ω→ R ∪ {∞} is a viscosity supersolution to Fκ(v) = 0 if the following hold:

1. v is lower semicontinuous,

2. v is finite almost everywhere, and

3. For x0 ∈ Ω, ν ∈ T B(u, x0) with∇0ν(x0) 6= 0 satisfies

Fκν(x0) ≥ 0.

The function w : Ω→ R∪{±∞} is a viscosity solution to Fκ(w) = 0 if it is both a viscosity supersolution

and a viscosity subsolution to Fκ(w) = 0.

Remark 2.4.16. Note that if u is a viscosity subsolution to Fκ(u) = 0, then u is a viscosity subsolution to

−∆p(x)u = 0. Also, if v is a viscosity supersolution to −∆p(x)v = 0, then v is a viscosity supersolution to

Fκ(v) = 0. However, the converse implications are not true. A viscosity supersolution v to Fκ(v) = 0 has

two possible properties: either v is a viscosity supersolution to−∆p(x)v = 0 or v is a viscosity subsolution to

−∆p(x)v = 0 and ‖∇1v‖ > κ in the C2
sub viscosity sense. An analogous observation holds for subsolutions.

The next lemma relates p(x)-harmonic functions to viscosity solutions. The proof is standard and omitted.

Lemma 2.4.17. [B2, Lemma 3.5][JLP, Theorem 4.1] A p(x)-sub(super-)harmonic function is a viscosity

sub(super-)solution to Equation (2.16). It follows that a p(x)-harmonic function is a viscosity solution to

Equation (2.16).

We have the following Corollary due to Remark 2.4.16.

Corollary 2.4.18. A p(x)-superharmonic function is a viscosity supersolution to Fκ(u) = 0.
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Chapter 3

Equivalence of Potential Theoretic Weak and Viscosity Solutions to the p(x)-

Laplace Equation 1

This chapter focuses on the equivalence of potential theoretic weak solutions and viscosity solutions to the

p(x)-Laplace equation in Carnot groups. To achieve our goal, we first need to show that viscosity solutions

and p(x)-harmonic solutions coincide. Then the equivalence is immediate. While a routine argument is used

to show that p(x)-harmonic solutions are viscosity solutions, the converse implication is more involved. We

will need to consider viscosity solutions to the nondivergence form of the p(x)-Laplace equation, which we

recall for easier reference in this chapter, is defined by

−
(
‖∇0u‖p(x)−2trace((D2u)?) + (p(x)− 2)‖∇0u‖p(x)−4〈(D2u)?∇0u,∇0u〉 (3.1)

+ ‖∇0u‖p(x)−2 log(‖∇0u‖)〈∇0p(x),∇0u〉
)

= 0

in a bounded domain Ω in G. Moreover, we will need to consider viscosity solutions to

Fκ(u) = max{‖∇1u‖ − κ,−∆p(x)u}, (3.2)

for κ ∈ R+. We will first show a preliminary comparison principle with respect to weak solutions of

−∆p(x)u = −div(‖∇0u‖p(x)−2∇0u) = −ε, (3.3)

and viscosity subsolutions to Equation (3.2). Finally, we will also mention the divergence form of the

p(x)-Laplace equation. Namely,

−∆p(x)u = −div(‖∇0u‖p(x)−2∇0u) = 0. (3.4)

1A Note to Reader: This chapter has been reproduced from [BF2].
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We need a comparison principle to achieve the equivalence of potential theoretic weak and viscosity

solutions. Specifically, we want to prove

Theorem 3.0.1 ([BF2], Lemma 4.11). Assume p(x) is C1(Ω). Fix ε > 0. Let Ω be a bounded domain in

G, let v be a continuous ε-weak solution and let u be a viscosity subsolution to Fκ(u) = 0 so that u ≤ v on

∂Ω. Then u ≤ v in Ω.

The proof combines the Euclidean approach of [JLP] along with the monotonicity proof done in [B2]. The

proof here will follow the standard argument but need some careful estimates, utilizing the Carnot Group

Maximum Principle (See [B1].) to the fullest extent. Here we cannot follow the Euclidean case since that

approach relies on the C1,α estimates of the weak solutions, which is unknown in general Carnot groups.

In particular, the lack of regularity theory is the motivation for the restriction ‖∇1u‖ ≤ C in the viscosity

sense. Under this restriction, we prove a comparison principle for viscosity subsolutions and viscosity

supersolutions to the p(x)-Laplace equation. This result leads to showing that when 1 < p(x) < ∞, weak

solutions to Equation (3.3), viscosity solutions to Equation (3.1), and viscosity solutions to Equation (3.2)

all coincide. (For the equivalence of all three, see Corollary 3.0.8.)

Before we can prove Theorem 3.0.1, we recall a technical lemma whose Euclidean version is Lemma 5.3

in [JLP]. The p-Laplacian case in Carnot groups is stated in [B1], and its proof is done in the Heisenberg

group as Lemma 4.1 in [B2]. The proof is identical and omitted.

Lemma 3.0.2. [B2, Lemma 4.1] Assume 1 < p(x) <∞ and Ω ⊂ G. Let v ∈ W 1,p(x)
loc (Ω) be a continuous

ε-weak solution to the p(x)-Laplace equation in Ω. Let x0 ∈ Ω and let φ ∈ C2
sub(Ω) be a function such that

υ − φ has a strict local minimum at x0. Then

lim sup
x→x0,x 6=x0

(
−
(

∆p(·)φ
)

(x)

)
≥ ε

provided that∇0φ(x0) 6= 0 or x0 is an isolated critical point.

Note that in the case when p(x) ≥ 2 continuity gives us −∆p(x)φ(x0) ≥ ε and so we have ∇0(x0) 6= 0

near x0. In the case when 1 < p(x) < 2, −∆p(x)φ(x) has a singularity at the critical points.

Finally, we will consider the function ϕ : G×G→ R given by

ϕ(x, y) =
1

m

N∑
i=1

(
(x · y−1)i

)m
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for some large even positive integer m > 4. We note that 4 is chosen so that ϕ is C2
sub. Here (x · y−1)i is

the i-th component of x · y−1. We are now ready to Prove Theorem 3.0.1.

Proof of Theorem 3.0.1. We follow the standard argument and assume u− v has a strict interior maximum

in Ω and find a contradiction. Now assume that u− v > 0 occurs at the interior point x0 ∈ Ω. Consider the

functions Ψj : G×G→ R defined by

Ψj(x, y) = u(x)− v(y)− jϕ(x, y)

with m chosen so that m > max{4, p−

p−−1
,p+ + 2}. Combining the methods in [CIL], [B1], and [JLP],

we let the maximum of Ψj occur at the point (xj , yj) ∈ u(Ω) × u(Ω). By the Carnot Group Maximum

Principle [B1, Lemma 3.6], xj and yj tend to x0 as j →∞ and

(jηj ⊕ jξj ,Xj) ∈ J
2,+
u(xj) and (jηj ⊕ jξj ,Yj) ∈ J

2,−
v(yj),

where jηj ⊕ jξj ∈ V1 ⊕ V2, and Xj and Yj are defined as in [B1, Lemma 3.6]. Recall that

J
2,+
u(xj), J

2,−
v(yj) are the set-theoretic closures of the second order superjet and subjet, respectively.

Since we only need the horizontal gradient in the p(x)-Laplacian term and not the semi-horizontal gradient,

we will only consider jηj .

Claim 3.0.3 ([BF2], Claim 4.12). By passing to a subsequence if needed, we may assume ηj(xj , yj) 6= 0.

Proof of Claim 3.0.3. Fix j > 0. By definition, we have for any x and y,

u(x)− v(y)− jϕ(x, y) ≤ u(xj)− v(yj)− jϕ(xj , yj)

and so when x = xj , we have

v(y) ≥ v(yj) + jϕ(xj , yj)− jϕ(xj , y).

Defining the function β(y) by

β(y) = v(yj) + jϕ(xj , yj)− jϕ(xj , y)− ϕ(yj , y)
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we see that

v(y)− β(y) = v(y)− v(yj)− jϕ(xj , yj) + jϕ(xj , y) + ϕ(yj , y)

and so v − β has a strict local minimum at the isolated critical point yj .

Applying Lemma 3.0.2, we have

lim sup
y→yj

(
−
(

∆p(·)β
)

(y)

)
≥ ε. (3.5)

Now set F (y) = −jϕ(xj , y)−ϕ(yj , y). Then by the definition of β(y) and the non-divergence form of the

p(·)-Laplacian, we have

|
(
∆p(y)β

)
(y)| . ‖∇0F (y)‖p(y)−2

(∣∣∣∣trace(D2F (y))? + ‖(D2F (y))?‖
∣∣∣∣ (3.6)

+ log(‖∇0F (y)‖)〈∇0p(y),∇0F (y)〉

)
.

We note that given the standard vectors ek with every entry 0 except for the k-th entry, which is equal to

1, we see that for any matrix A,

trace(A) =
∑
〈Aek, ek〉

and so

|trace(D2F (y))?| . ‖(D2F (y))?‖.

Then from Inequality (3.6), we have

|
(
∆p(y)β

)
(y)| . ‖∇0F (y)‖p(y)−2

(
‖(D2F (y))?‖+ log(‖∇0F (y)‖)〈∇0p(y),∇0F (y)

)
〉

. ‖∇0F (y)‖p(y)−2

(
‖(D2F (y))?‖+ log(‖∇0F (y)‖) ‖∇0p(y)‖ ‖∇0F (y)‖

)
. ‖∇0F (y)‖p(y)−2‖(D2F (y))?‖+ C‖∇0F (y)‖p(y)−1| log(‖∇0F (y)‖)|,

where the second inequality follows from the Cauchy-Schwartz inequality. Since j is fixed, the second

derivative term is bounded. Then using the smoothness of ϕ(x, y) and the fact that we are in a bounded
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domain, we have

lim
y→yj

(−
(
∆p(y)β

)
(y)) . ‖∇0F (yj)‖p(yj)−2‖(D2F (y))?‖

+ lim
y→yj

(
C‖∇0F (y)‖p(y)−1| log(‖∇0F (y)‖)|

)
. ‖j∇0ϕ(xj , yj)‖p(yj)−2 + lim sup

y→yj

(
C‖∇0F (y)‖p(y)−1| log(‖∇0F (y)‖)|

)
∼ ‖ − jη(xj , yj)‖p(yj)−2 + lim sup

y→yj

(
C‖∇0F (y)‖p(y)−1| log(‖∇0F (y)‖)|

)
.

We consider the second term. Note that ‖∇0F (y)‖ → 0 as y → yj . We therefore conclude

lim sup
y→yj

(
C‖∇0F (y)‖p(x)−1| log(‖∇0F (y)‖)|

)
= 0.

It follows that if xj and yj are points so that η(xj , yj) = 0, then

lim sup
y→yj

(
−
(

∆p(·)β
)

(y)

)
≤ 0.

This contradicts Equation (3.5) since ε > 0.

Now, u is a viscosity subsolution to Fκ(u) = 0. That is,

max{‖∇1u‖ − κ,−∆p(x)u} ≤ 0.

Then ‖∇1u‖ ≤ κ and we have

0 ≥ −
(
‖jηj(xj , yj)‖p(xj)−2trace

(
Xj
)?

+ (p(xj)− 2)‖jηj(xj , yj)‖p(xj)−4〈Xj jηj(xj , yj), jηj(xj , yj)〉

+ ‖jηj(xj , yj)‖p(xj)−2 log(‖jηj(xj , yj)‖) 〈jηj(xj , yj),∇0p(xj)〉
)
.

Using Lemmas 2.4.17 and 3.0.2 along with the definition of J2,−, we have ‖∇1u‖ ≤ κ and

ε ≤ −
(
‖jηj(xj , yj)‖p(yj)−2trace

(
Yj
)?

+ (p(yj)− 2)‖jηj(xj , yj)‖p(yj)−4〈Yj jηj(xj , yj), jηj(xj , yj)〉

+ ‖jηj(xj , yj)‖p(yj)−2 log(‖jηj(xj , yj)‖)〈jηj(xj , yj),∇0p(yj)〉
)
.
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Subtracting these two inequalities yields

0 < ε < ‖jηj(xj , yj)‖p(xj)−4

(
‖jηj(xj , yj)‖2trace

(
Xj
)?

+ (p(xj)− 2)〈Xj jηj(xj , yj), jηj(xj , yj)〉

+ ‖jηj(xj , yj)‖2 log(‖jηj(xj , yj)‖) 〈jηj(xj , yj),∇0p(xj)〉
)

+ ‖jηj(xj , yj)‖p(yj)−4

(
− ‖jηj(xj , yj)‖2trace

(
Yj
)? − (p(yj)− 2)〈Yj jηj(xj , yj), jηj(xj , yj)〉

− ‖jηj(xj , yj)‖2 log(‖jηj(xj , yj)‖) 〈jηj(xj , yj),∇0p(yj)〉
)
.

≤ ‖jηj(xj , yj)‖p(xj)−4

(
‖jηj(xj , yj)‖2trace

(
Xj
)?

+ (p(xj)− 2)〈Xj jηj(xj , yj), jηj(xj , yj)〉
)

− ‖jηj(xj , yj)‖p(yj)−4

(
‖jηj(xj , yj)‖2trace

(
Yj
)?

+ (p(yj)− 2)〈Yj jηj(xj , yj), jηj(xj , yj)〉
)

+ ‖jηj(xj , yj)‖p(xj)−2 log(‖jηj(xj , yj)‖) 〈jηj(xj , yj),∇0p(xj)〉

− ‖jηj(xj , yj)‖p(yj)−2 log(‖jηj(xj , yj)‖) 〈jηj(xj , yj),∇0p(yj)〉

:= ωxj − ωyj + τxj − τyj .
(3.7)

We know ‖jηj(xj , yj)‖ ≤ κ <∞ and by the claim, we also know that ‖jηj(xj , yj)‖ 6= 0.

First, let’s consider the terms τxj − τyj . We continue as in [JLP]. We first note that for some r ∈

[p(xj),p(yj)],

∣∣∣‖jηj‖p(xj)−2 − ‖jηj‖p(yj)−2
∣∣∣ =

∣∣∣elog(‖jηj‖p(xj)−2) − elog(‖jηj‖p(yj)−2)
∣∣∣

≤
∣∣∣∣∂e(r−2) log(‖jηj‖)

∂r

∣∣∣∣∣∣∣p(xj)− p(yj)
∣∣∣

=
∣∣∣ log(‖jηj‖)

∣∣∣ ‖jηj‖r−2
∣∣∣p(xj)− p(yj)

∣∣∣.
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Since p(x) ∈ C1(G), we have

τxj − τyj = 〈‖jηj‖p(xj)−2 log ‖jηj‖jηj ,∇0p(xj)〉 − 〈‖jηj‖p(yj)−2 log ‖jηj‖jηj ,∇0p(yj)〉

≤ ‖jηj‖p(xj)−2 log ‖jηj |ηj · ∇0p(xj)− ‖jηj‖p(yj)−2 log ‖jηj‖jηj · ∇0p(yj)

+ ‖jηj‖p(xj)−1
∣∣ log ‖jηj‖

∣∣ ∇0p(yj)− ‖jηj‖p(xj)−1 log ‖jηj‖∇0p(yj)

≤ ‖jηj‖p(xj)−1 log |jηj |
∣∣∣∣∇0p(xj)−∇0p(yj)

∣∣∣∣
+ ‖jηj‖

∣∣ log ‖jηj‖
∣∣ |∇0p(yj)|

∣∣∣∣‖jηj‖p(xj)−2 − ‖jηj‖p(yj)−2

∣∣∣∣
≤ ‖jηj‖p(xj)−1 log |jηj |

∣∣∣∣∇0p(xj)−∇0p(yj)

∣∣∣∣
+ ‖jηj‖

∣∣ log ‖jηj‖
∣∣ |∇0p(yj)|

(∣∣∣ log(‖jηj‖)
∣∣∣ ‖jηj‖r−2

∣∣∣p(xj)− p(yj)
∣∣∣)

≤ ‖jηj‖p(xj)−1 log |jηj |
∣∣∣∣∇0p(xj)−∇0p(yj)

∣∣∣∣
+ Ĉ‖jηj‖r−1

∣∣ log ‖jηj‖
∣∣2 ∣∣∣p(xj)− p(yj)

∣∣∣,
where the constant Ĉ comes from the fact that |∇0p(yj)| ≤ Ĉ. Since

p(xj) > 1 and ‖jηj(xj , yj)‖ ≤ κ

by assumption, and xj → x0 as j → ∞, then we have ‖jηj‖p(xj)−1 log ‖jηj‖ is bounded. Therefore, due

to the continuity of x 7→ ∇0p(x),

‖jηj‖p(xj)−1
(

log ‖jηj‖
) ∣∣∣∣∇0p(xj)−∇0p(yj)

∣∣∣∣→ 0

as j →∞. Similarly, we have

Ĉ‖jηj‖r−1
∣∣∣ log ‖jηj‖

∣∣∣2 ∣∣∣p(xj)− p(yj)
∣∣∣→ 0

as j →∞. It follows that τxj − τyj → 0 as j →∞.

In order to proceed, we will need some calculations. We first consider a more convenient way to write

ωxj − ωyj . We use the following notation, which is similar to [JLP]. For any vector ξ 6= 0, we say ξ ⊗ ξ is
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the matrix with entries ξiξj . Let

A(x, ξ) = |ξ|p(x)−2

(
I + (p(x)− 2)

ξ

|ξ|
⊗ ξ

|ξ|

)
,

B(x, ξ) = 〈|ξ|p(x)−2 log |ξ|ξ,∇0p(x)〉, and

γ(x, ξ,X ) = trace(A(x, ξ)X ) +B(x, ξ),

where x ∈ Ω, ξ ∈ RN , and X is a symmetric N ×N matrix. Then

γ
(
x,∇0f(x),

(
D2f(x)

)?)
= trace

(
A(x,∇0f(x))

(
D2f(x)

)?)
+B(x,∇0f(x)) = ∆p(x)f(x),

provided∇0f 6= 0.

We also observe that

A
1
2 (x, ξ) = |ξ|

p(x)
2
−1

(
I + C(x)

ξ

|ξ|
⊗ ξ

|ξ|

)
,

where

C(x) = (p(x)− 1)
1
2 − 1. (3.8)

So now since u is a viscosity subsolution to Fκ(u) = 0, then

−trace
(
A(xj , jηj(xj , yj))Xj

)
−B

(
xj , jηj(xj , yj)

)
≤ 0, (3.9)

and again using Lemmas 2.4.17 and 3.0.2 along with the definition of J2,−, we have

−trace
(
A(yj , jηj(xj , yj))Yj

)
−B

(
yj , jηj(xj , yj)

)
≥ ε. (3.10)

Therefore taking the difference of the Equations (3.9) and (3.10) is an analogous form of Equation (3.7),

where B
(
xj , jηj(xj , yj)

)
−B

(
yj , jηj(xj , yj)

)
is analogous to τxj − τyj .
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Moreover, since

trace
(
A(xj , jηj(xj , yj))Xj

)
= trace

(
A

1
2 (xj , jηj(xj , yj))A

1
2 (xj , jηj(xj , yj))Xj

)
= trace

((
A

1
2 (xj , jηj(xj , yj))

)T
Xj A

1
2 (xj , jηj(xj , yj))

)
=

n1∑
k=1

XjA
1
2
k (xj , jηj(xj , yj)) ·A

1
2
k (xj , jηj(xj , yj)),

where A
1
2
k (xj , jηj(xj , yj)) is the k-th column of A

1
2 (xj , jηj(xj , yj)) and A

1
2
k (yj , jηj(xj , yj)) is the k-th

column of A
1
2 (yj , jηj(xj , yj)). Then

n1∑
k=1

XjA
1
2
k (xj , jηj) ·A

1
2
k (xj , jηj)−

n1∑
k=1

YjA
1
2
k (yj , jηj) ·A

1
2
k (yj , jηj)

is an analogous form of ωxj − ωyj . By [B1, Lemma 3.6],

ωxj − ωyj :=

n1∑
k=1

XjA
1
2
k (xj , jηj) ·A

1
2
k (xj , jηj)−

n1∑
k=1

YjA
1
2
k (yj , jηj) ·A

1
2
k (yj , jηj)

≤ j〈
(
D2
xϕ
)?

(xj · y−1
j )
(
A

1
2
k (xj , jηj)−A

1
2
k (yj , jηj)

)
,
(
A

1
2
k (xj , jηj)−A

1
2
k (yj , jηj)

)
〉(3.11)

+ j〈M
(
A

1
2
k (xj , jηj)⊕A

1
2
k (yj , jηj)

)
,
(
A

1
2
k (xj , jηj)⊕A

1
2
k (yj , jηj)

)
〉

+ j‖M‖2
(
‖A(xj)

TA
1
2
k (xj , jηj)⊕A(yj)

TA
1
2
k (yj , jηj)‖2

)
,

whereM is the 2N × 2N matrix

(
D2
xjxjϕ(xj , yj) D2

xjyjϕ(xj , yj)

D2
yjxjϕ(xj , yj) D2

yjyjϕ(xj , yj)

)
,

and M is the 2n1 × 2n1 matrix

(
0 1

2(W −W T )

1
2(W T −W ) 0

)
,
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where W is the n1 × n1 matrix with entries

Wab = Xa(x)Xb(y)ϕ(xj , yj).

We first consider the second term of Equation (3.11):

j〈M
(
A

1
2
k (xj , jηj)⊕A

1
2
k (yj , jηj)

)
,
(
A

1
2
k (xj , jηj)⊕A

1
2
k (yj , jηj)

)
〉.

Before we estimate, we note from [B1, Lemma 3.6] that we have

Xb(y)ϕ(xj , yj) = −Xb(x)ϕ(xj , yj).

We write αA
1
2
k (xj , jηj) and αA

1
2
k (yj , jηj) to denote the α-th entry of the column vector A

1
2
k (xj , jηj) and

A
1
2
k (yj , jηj), respectively. Similarly, we write αηj to denote the α-th entry of the vector ηj . We note that:

〈M
(
A

1
2
k (xj , jηj)⊕A

1
2
k (yj , jηj)

)
,
(
A

1
2
k (xj , jηj)⊕A

1
2
k (yj , jηj)

)
〉

=
1

2
〈(W −W T )

(
A

1
2
k (yj , jηj)

)
,
(
A

1
2
k (xj , jηj)

)
〉

+
1

2
〈(W T −W )

(
A

1
2
k (xj , jηj)

)
,
(
A

1
2
k (yj , jηj)

)
〉

=
1

2

[
〈W
(
A

1
2
k (yj , jηj)

)
,
(
A

1
2
k (xj , jηj)

)
〉+ 〈W T

(
A

1
2
k (xj , jηj)

)
,
(
A

1
2
k (yj , jηj)

)
〉
]

+
1

2

[
− 〈W T

(
A

1
2
k (yj , jηj)

)
,
(
A

1
2
k (xj , jηj)

)
〉 − 〈W

(
A

1
2
k (xj , jηj)

)
,
(
A

1
2
k (yj , jηj)

)
〉
]

= 〈(W T −W )
(
A

1
2
k (xj , jηj)

)
,
(
A

1
2
k (yj , jηj)

)
〉

=

N∑
a,b

(W T −W )ab bA
1
2
k (xj , jηj) aA

1
2
k (yj , jηj).

But we know

(
W T −W

)
ab

=

(
Xb(x)Xa(y)ϕ(xj , yj)−Xa(x)Xb(y)ϕ(xj , yj)

)
=

(
Xa(x)Xb(x)ϕ(xj , yj)−Xb(x)Xa(x)ϕ(xj , yj)

)
= [Xa, Xb](x)ϕ(xj , yj)

=

n2∑
l=1

dabl Yl(x)ϕ(xj , yj),
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where {Yl(x)} is a basis for V2. It follows that

N∑
a,b

(W T −W )ab bA
1
2
k (xj , jηj) aA

1
2
k (yj , jηj)

=

N∑
a,b

[Xa, Xb](x)ϕ(xj , yj) bA
1
2
k (xj , jηj) aA

1
2
k (yj , jηj)

=
N∑
a<b

[Xa, Xb](x)ϕ(xj , yj) bA
1
2
k (xj , jηj) aA

1
2
k (yj , jηj)

+

N∑
a>b

[Xa, Xb](x)ϕ(xj , yj) bA
1
2
k (xj , jηj) aA

1
2
k (yj , jηj)

=

N∑
a<b

[Xa, Xb](x)ϕ(xj , yj)

(
bA

1
2
k (xj , jηj) aA

1
2
k (yj , jηj)− aA

1
2
k (yj , jηj) bA

1
2
k (xj , jηj)

)

=
N∑
a<b

n2∑
l=1

dabl Yl(x)ϕ(xj , yj)‖jηj‖
p(xj)

2
−1‖jηj‖

p(yj)

2
−1

[(
δbk + C(xj)

j2
bηj kηj
‖jηj‖2

)
×

(
δak + C(yj)

j2
kηj aηj
‖jηj‖2

)
−
(
δak + C(xj)

j2
aηj kηj
‖jηj‖2

)(
δbk + C(yj)

j2
kηj bηj
‖jηj‖2

)]

=
N∑
a<b

n2∑
l=1

dabl Yl(x)ϕ(xj , yj)‖jηj‖
p(xj)

2
−1‖jηj‖

p(yj)

2
−1

[
δbkδak + C(xj)

bηj kηj
‖ηj‖2

δak

+ C(yj)
aηj kηj
‖ηj‖2

δbk + C(xj)C(yj)
bηj aηj kη

2
j

‖ηj‖4

− δakδbk + C(xj)
aηj kηj
‖ηj‖2

δbk

− C(yj)
bηj kηj
‖ηj‖2

δak − C(xj)C(yj)
aηj bηj kη

2
j

‖ηj‖4

]

=

N∑
a<b

n2∑
l=1

dabl Yl(x)ϕ(xj , yj)‖jηj‖
p(xj)

2
−1‖jηj‖

p(yj)

2
−1
(
C(xj)− C(yj)

)(
bηj kηj
‖ηj‖2

δak −
aηj kηj
‖ηj‖2

δbk

)
≤ 2κ̂κ

p(xj)+p(yj)

2
−2
(
C(xj)− C(yj)

)
= κ̃

(
C(xj)− C(yj)

)
,

where C is defined in Equation (3.8). Moreover, κ̃ < ∞ since p+ < ∞, κ < ∞ and∑N
a<b

∑n2
l=1 d

ab
l Yl(x)ϕ(xj , yj) < κ. Note that here we explicitly use the full implication of the constraint
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∇1u ≤ κ.

Now let j →∞. Then then by the continuity of x 7→ p(x), we have

j〈M
(
A

1
2
k (xj , jηj)⊕A

1
2
k (yj , jηj)

)
,
(
A

1
2
k (xj , jηj)⊕A

1
2
k (yj , jηj)

)
〉

. κ̃
(
C(xj)− C(yj)

)
→ κ̃

(
C(x0)− C(x0)

)
= 0.

Next, we control the third term of Equation (3.11), namely

j‖M‖2
(
‖A(xj)

TA
1
2
k (xj , jηj)⊕A(yj)

TA
1
2
k (yj , jηj)‖2

)
.

We have an estimate for the matrix ‖M‖2, so we only consider

‖A(xj)
TA

1
2
k (xj , jηj)⊕A(yj)

TA
1
2
k (yj , jηj)‖2.

Since every entry of the vector A
1
2
k (xj , jηj) is bounded and sinceA(xj) has (finite) smooth entriesAkl(xj),

then every entry in the vector A(xj)
TA

1
2
k (xj , jηj) is bounded. A similar argument applies for every entry

in the vector A(yj)
TA

1
2
k (yj , jηj). It follows that

‖A(xj)
TA

1
2
k (xj , jηj)⊕A(yj)

TA
1
2
k (yj , jηj)‖2 < H <∞.

Therefore, by [B1, Lemma 3.6],

j‖M‖2
(
‖A(xj)

TA
1
2
k (xj , jηj)⊕A(yj)

TA
1
2
k (yj , jηj)‖2

)
. Cj

(
ϕ(xj , yj)

) 2m−4
m .

Since m > 4 then 2m−4
m = 2− 4

m > 1 and so

j‖M‖2
(
‖A(xj)

TA
1
2
k (xj , jηj)⊕A(yj)

TA
1
2
k (yj , jηj)‖2

)
→ 0

as j →∞.

Finally, we estimate the first term of Equation (3.11), or

j〈
(
D2
xϕ
)?

(xj · y−1
j )
(
A

1
2
k (xj , jηj)−A

1
2
k (yj , jηj)

)
,
(
A

1
2
k (xj , jηj)−A

1
2
k (yj , jηj)

)
〉.
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Arguing as above, we have (D2
x)?ij ∈ V2 and thus (D2

x)?ij ≤ H <∞. We then have

j〈
(
D2
xϕ
)?

(xj · y−1
j )
(
A

1
2
k (xj , jηj)−A

1
2
k (yj , jηj)

)
,
(
A

1
2
k (xj , jηj)−A

1
2
k (yj , jηj)

)
〉

. ‖A
1
2 (xj , jηj)−A

1
2 (yj , jηj)‖22.

We first consider

‖A(xj , jηj)−A(yj , jηj)‖2 (3.12)

≤
∣∣∣‖jηj‖p(xj)−2 − ‖jηj‖p(yj)−2

∣∣∣+
∣∣∣‖jηj‖p(xj)−4(p(xj)− 2)− ‖jηj‖p(yj)−4(p(yj)− 2)

∣∣∣.
Since ‖jηj‖ ≤ κ < ∞ for all j by assumption, then there is a convergent subsequence such that ‖jηj‖ →

ϑ ∈ V1 as j →∞. Using the continuity of x 7→ p(x), we then have

∣∣∣‖jηj‖p(xj)−2 − ‖jηj‖p(yj)−2
∣∣∣→ ∣∣∣‖ϑ‖p(x0)−2 − ‖ϑ‖p(x0)−2

∣∣∣ = 0

as j →∞, and

∣∣∣‖jηj‖p(xj)−4(p(xj)− 2) − ‖jηj‖p(yj)−4(p(yj)− 2)
∣∣∣

→
∣∣∣‖ϑ‖p(x0)−4(p(x0)− 2)− ‖ϑ‖p(x0)−4(p(x0)− 2)

∣∣∣ = 0

as j →∞.

It follows that

‖A(xj , jηj)−A(yj , jηj)‖22 → 0 (3.13)

as j →∞.

Thus, we have shown that ωxj − ωyj → 0 as j →∞. It follows that Equation (3.7) implies

0 < ε ≤ ωxj − ωyj + τxj − τyj → 0

as j →∞, and we have our contradiction.
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The next Lemma extends the Euclidean case for the p(x)-Laplacian ([JLP, Lemma 5.2]) and the Carnot

case of the p-Laplacian ([B1, Lemma 5.9]). Here we cannot follow the Euclidean case in [JLP] since the

proof depends on C1,α regularity of the solutions, and this is not known for Carnot groups.

Lemma 3.0.4 ([BF2], Lemma 4.13). Suppose Ω is a bounded and open set and p(x) is continuous. Let v

be a p(x)-harmonic function in Ω. For each ε ≥ 0, let vε be the continuous ε-weak solution to v on the

boundary. Then vε → v pointwise as ε→ 0.

Proof. First, we show that vε → v in Lp(x), by following the argument in [JLP]. Since vε minimizes the

functional (see [BF1, Theorem 6.2])

f 7→
∫

Ω

(
1

p(x)
‖∇0f‖p(x) − εf

)
dx,

then ∫
Ω
‖∇0vε‖p(x)dx ≤ C

∫
Ω

(
‖∇0v‖p(x) + ε|vε − v|

)
dx,

and so by Hölder’s Inequality (2.6),

∫
Ω
‖∇0vε‖p(x)dx ≤ C

(∫
Ω
‖∇0v‖p(x)dx+ ε‖1‖Lq(x)(Ω)‖vε − v‖Lp(x)(Ω)

)
.

By the p(·)-Poincaré inequality (See Section 2.3.2), we have

∫
Ω
‖∇0vε‖p(x)dx ≤ C

(∫
Ω
‖∇0v‖p(x)dx+ ε‖∇0vε −∇0v‖Lp(x)(Ω)

)

and so using the modular inequalities (2.4), we see

∫
Ω
‖∇0vε‖p(x)dx ≤ C

(
1 + ‖∇0v‖p

+

Lp(x)(Ω)
+ ε(‖∇0v‖Lp(x)(Ω) + ‖∇0vε‖Lp(x)(Ω))

)
.

Using the modular inequalities once more, we have:

‖∇0vε‖p
−

Lp(x)(Ω)
≤
∫

Ω
‖∇0vε‖p(x)dx ≤ C

(
1 + ‖∇0v‖p

+

Lp(x)(Ω)
+ ε(‖∇0v‖Lp(x)(Ω) + ‖∇0vε‖Lp(x)(Ω))

)
,
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which implies that

‖∇0vε‖p
−

Lp(x)(Ω)
− Cε‖∇0vε‖Lp(x)(Ω) ≤ C

(
1 + ‖∇0v‖p

+

Lp(x)(Ω)
+ ε‖∇0v‖Lp(x)(Ω)

)

so that for all ε > 0 small enough, we have:

‖∇0vε‖Lp(x)(Ω) ≤ C
(

1 + ‖∇0v‖p
+

Lp(x)(Ω)

) 1
p−

(3.14)

where C is a constant independent of ε. Since 1 < p− and 1 + ‖∇0v‖p
+

Lp(x)(Ω)
≥ 1,

it follows that

‖∇0v −∇0vε‖Lp(x)(Ω) ≤ C
(

1 + ‖∇0v‖p
+

Lp(x)(Ω)

)
. (3.15)

Let v − vε ∈ W 1,p(x)(Ω) be a test function in Equations (3.3), where ε > 0 and (3.4). Subtracting these

equations yields

∫
Ω
〈‖∇0v‖p(x)v − ‖∇0vε‖p(x)vε,∇0v −∇0vε〉dx = ε

∫
Ω

(vε − v)dx. (3.16)

Since

ε

∫
Ω

(vε − v)dx ≤ Cε‖1‖Lq(x)(Ω)‖vε − v‖Lp(x)(Ω) ≤ Cε‖∇0vε −∇0v‖Lp(x)(Ω),

where we have used Hölder’s Inequality (2.6) and a p(·)-Poincaré Inequality, [BF2, Theorem 5.1]. Here,

since C is independent of the function vε − v, we have an upper bound by Equation (3.15):

ε

∫
Ω

(vε − v)dx ≤ Cε
(

1 + ‖∇0v‖p
+

Lp(x)(Ω)

)
. (3.17)

Before continuing, we will need the following well-known vector inequalities:

〈|η|m−2η − |ζ|m−2ζ, η − ζ〉 ≥

 22−m|η − ζ|m if m ≥ 2,

(m− 1) |η−ζ|2
(|η|−|ζ|)2−m if 1 < m < 2

(3.18)

for all η, ζ ∈ RN . We now find a lower bound for the left-hand side of Equation (3.16). Following the
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vector inequalities above, we split the set Ω into the subsets:

Ω1 := {x ∈ Ω : 1 < p(x) < 2} and Ω2 := {x ∈ Ω : p(x) ≥ 2}.

For Ω2, it follows from the vector inequality (3.18) that

∫
Ω2

‖∇0v −∇0vε‖p(x)dx ≤
∫

Ω2

2p(x)−2〈‖∇0v‖p(x)−2∇0v − ‖∇0vε‖p(x)−2∇0vε,∇0v −∇0vε〉dx

≤ C
∫

Ω2

〈‖∇0v‖p(x)−2∇0v − ‖∇0vε‖p(x)−2∇0vε,∇0v −∇0vε〉dx. (3.19)

For Ω1, we introduce the notation:

p̂− := inf
Ω1

p(x) and p̂+ := sup
Ω1

p(x).

By Hölder’s Inequality (2.6), we have:

∫
Ω1

‖∇0v −∇0vε‖p(x)dx ≤ C
∥∥∥∥ ‖∇0v −∇0vε‖p(x)

(‖∇0v‖+ ‖∇0vε‖)
p(x)

2
(2−p(x))

∥∥∥∥
L

2
p(x) (Ω1)

× ‖(|∇0v|+ |∇0vε|)
p(x)

2
(2−p(x))‖

L
2

2−p(x) (Ω1)

≤ C max
p∈{p̂−,p̂+}

(∫
Ω1

‖∇0v −∇0vε‖2

(‖∇0v‖+ ‖∇0vε‖)2−p(x)
dx

) p
2

×
(

1 +

∫
Ω1

(‖∇0v‖+ ‖∇0vε‖)p(x)dx

) 1
2

,

where the second inequality follows from the modular inequalites (2.4). By the vector inequality (3.18) and

the fact that 1 < p̂−, p̂+ ≤ 2, we have

max
p∈{p̂−,p̂+}

(∫
Ω1

‖∇0v −∇0vε‖2

(‖∇0v‖+ ‖∇0vε‖)2−p(x)
dx

) p
2

≤ max
p∈{p̂−,p̂+}

C

(∫
Ω1

〈‖∇0v‖p(x)−2∇0v − ‖∇0vε‖p(x)−2∇0vε,∇0v −∇0vε〉dx
) p

2

.
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Young’s inequality then implies

max
p∈{p̂−,p̂+}

(∫
Ω1

‖∇0v −∇0vε‖2

(‖∇0v‖+ ‖∇0vε‖)2−p(x)
dx

) p
2

(3.20)

≤ C

(
δ

2

2− ˆp− + δ
− 2

ˆp−

∫
Ω1

〈‖∇0v‖p(x)−2∇0v − ‖∇0vε‖p(x)−2∇0vε,∇0v −∇0vε〉dx
)

for any 0 < δ < 1, to be chosen below. Now, using Inequality (3.14), we can bound the term (1 +∫
Ω1

(|∇0v|+ |∇0vε|)p(x)dx). Indeed, using the same argument as in the beginning of the proof, we see since

v + vε minimizes the functional

u→
∫

Ω1

(
1

p(x)
‖∇0(u)‖p(x) − εu

)
dx

and so we have, by (3.14),

1 +

∫
Ω1

(‖∇0v‖+ ‖∇0vε‖)p(x)dx ≤ 1 + C(1 + ‖∇0v‖p
+

Lp(x)(Ω)
)

1
p− ),

which implies

(
1 +

∫
Ω1

(‖∇0v‖+ ‖∇0vε‖)p(x)dx

) 1
2

≤
(

1 + C(1 + ‖∇0v‖p
+

Lp(x)(Ω)
)

1
p−

) 1
2

.

Therefore, by adjusting the constant C, we have by inequality (3.20):

∫
Ω1

‖∇0v −∇0vε‖p(x)dx (3.21)

≤ C

(
δ

2

2− ˆp− + δ
− 2

ˆp−

∫
Ω1

〈‖∇0v‖p(x)−2∇0v − ‖∇0vε‖p(x)−2∇0vε,∇0v −∇0vε〉dx
)
,

where C depends on the functions v and p, |Ω|, diam(Ω), and the dimension Q, but not on ε or δ. We

combine the estimates (3.19) and (3.21) to obtain

∫
Ω
‖∇0v −∇0vε‖p(x)dx

≤ C

(
δ

2

2−p̂− + δ
− 2

p̂−

∫
Ω
〈‖∇0v‖p(x)−2∇0v − ‖∇0vε‖p(x)−2∇0vε,∇0v −∇0vε〉dx

)
.
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Using (3.16) and (3.17) and then choosing δ = ε
(2−p̂−)p̂−

4 , we have

∫
Ω
‖∇0v −∇0vε‖p(x)dx

≤ C(δ
2

2−p̂− + δ
− 2

p̂− ε‖∇0v −∇0vε‖Lp(x)(Ω))

≤ Cε
p−
2 (1 + ‖∇0v −∇0vε‖Lp(x)(Ω)).

By estimate (3.15), we see

∫
Ω
‖∇0v −∇0vε‖p(x)dx ≤ Cε

p−
2
(
1 + Ĉ(1 + ‖∇0v‖p

+

Lp(x)(Ω)
)
)
≤ Cε

p−
2 (1 + ‖∇0v‖p

+

Lp(x)(Ω)
).

It follows from the modular inequalities (Inequality (2.4)) that

‖∇0v −∇0vε‖Lp(x)(Ω) → 0 as ε→ 0.

Therefore, employing Equation (3.16) and, once again, the modular inequalities, we have

‖v − vε‖Lp(x)(Ω) → 0 as ε→ 0,

and so vε → v in Lp(x)(Ω).

Now, to complete the proof, we follow the argument in [B2]. We may assume that ε ≤ 1 and recall, as

mentioned above, that if ε1 > ε2, then vε2 is a weak subsolution to Equation (3.3) for ε1. By the comparison

principle, Corollary 2.4.7, we have that vε2 ≤ vε1 when ε1 > ε2. Specifically, for all ε > 0, we have v ≤ vε.

Therefore, it follows that

ω = lim
ε→0

vε = inf
ε>0
{vε}

exists and v ≤ ω. Since vε → ω pointwise, then |vε|p(x) → |ω|p(x). We apply the Lebesgue Dominated

Convergence Theorem with v1 as the dominator and conclude that vε → ω in Lp(x)(Ω), so that actually we

have v = ω, and the proof is complete.

Combining the previous lemmas, we obtain the following consequence.

Lemma 3.0.5 ([BF2], Lemma 4.14). Suppose Ω is a bounded domain and p(x) is C1. Then viscosity

subsolutions to Fκ(u) = 0 are p(x)-subharmonic.
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Proof. Fix κ ∈ R+. We let u be a viscosity subsolution to Fκ(u) = 0 that is not p(x)-subharmonic. Then

there is a p(x)-harmonic function v so that u ≤ v on ∂Ω but for some x0 ∈ Ω, we have u(x0) > v(x0). For

ε ≤ 1, we let vε be ε-weak solutions equal to v on ∂Ω so that u ≤ vε on ∂Ω. By Lemma 3.0.4 we conclude

for some ε near 0, u(x0) > vε(x0), contradicting Theorem 3.0.1.

By Lemma 2.4.17, Lemma 3.0.5, and Remark 2.4.16 we have the following corollary:

Corollary 3.0.6 ([BF2], Corollary 4.15). Suppose Ω is a bounded domain and p(x) isC1. Then for κ ∈ R+,

u is a viscosity subsolution to Fκ(u) = 0

=⇒ u is p(x)-subharmonic =⇒ u is a viscosity subsolution to −∆p(x)u = 0,

and

v is p(x)-superharmonic =⇒ v is a viscosity supersolution to −∆p(x)v = 0

=⇒ v is a viscosity supersolution to Fκ(v) = 0.

As a consequence of the corollary, we obtain the following comparison principle. The proof is similar to

[JLP, Theorem 4.4].

Theorem 3.0.7 ([BF2], Theorem 4.16). Let κ ∈ R+. Let v be a viscosity supersolution to −∆p(x)v = 0

and let u be a viscosity subsolution to −∆p(x)u = 0 such that ‖∇1u‖ ≤ C, in the viscosity sense, and such

that u ≤ v on ∂Ω. Then u ≤ v in Ω.

Proof. Without loss of generality, assume ‖∇1u‖ ≤ C. Since u is a viscosity subsolution to −∆p(x)u = 0,

then the condition that ‖∇1u‖ ≤ C implies there is a κ ∈ R+ such that u is a viscosity subsolution to

Fκ(u) = 0. By Lemma 3.0.5, u is p(x)-subharmonic so that for any δ > 0, there exists a smooth subdomain

D ⊂⊂ Ω such that

u < v + δ in Ω \D.

By semicontinuity, there exists a smooth function ϕ such that

u < ϕ < v + δ on ∂D.
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Let h be the unique weak solution to −∆p(x)h = 0 with boundary values ϕ. Then

u < h < v + δ on ∂D.

For ε > 0, let hε be the unique ε-weak continuous solution to Equation 3.3 such that hε−h ∈W 1,p(x)
0 (D).

Since u is a viscosity subsolution to Fκ(u) = 0, then Theorem 3.0.1 implies u ≤ hε in D. Now, Lemma

3.0.4 implies u ≤ h in D.

Using the same argument in a symmetric way, we have h ≤ v + δ in D, and therefore u ≤ v + δ in D.

This means we have u ≤ v + δ in D and in Ω \ D, and it follows that u ≤ v + δ in Ω. We complete the

argument by letting δ → 0.

We have the following corollary to Theorem 3.0.7, which is the main result of this chapter:

Corollary 3.0.8 ([BF2], Corollary 4.17). Suppose Ω is a bounded domain and p(x) is C1 with 1 < p(x) <

∞ and assume that ‖∇1u‖ ≤ C in the viscosity sense. Let κ > C. Then viscosity sub(super)solutions to

Fκ(u) = 0 and p(x)-sub(super)harmonic functions coincide. In particular, u is p(x)-harmonic if and only

if u is a 0-viscosity solution to Equation (3.1) if and only if u is a viscosity solution to Fκ(u) = 0.

Proof. In light of Corollary 3.0.6 we only need to show

u is a viscosity subsolution to −∆p(x)u = 0 =⇒ u is p(x)-subharmonic

=⇒ u is a viscosity subsolution to Fκ(u) = 0 (3.22)

and

v is a viscosity supersolution to Fκ(v) = 0

=⇒ v is a viscosity supersolution to −∆p(x)v = 0 =⇒ v is p(x)-superharmonic. (3.23)

We show Equation (3.22) first. Since ‖∇1u‖ ≤ C < κ in the viscosity sense, it is clear that u is a viscosity

subsolution to −∆p(x)u = 0 implies that u is a viscosity subsolution to Fκ(u) = 0. Then Equation (3.22)

follows from Corollary 3.0.6.

Now we show Equation (3.23). Assume v is a viscosity supersolution to Fκ(v) = 0. Then again our con-

dition that ‖∇1v‖ ≤ C < κ in the viscosity sense implies that v is a viscosity supersolution to−∆p(x)v = 0.
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Now since v is a viscosity supersolution, then −v is a viscosity subsolution. Then by Equation (3.22), −v

is p(x)-subharmonic, and it follows that v is p(x)-superharmonic.
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Chapter 4

Removability of a Level Set in the Heisenberg Group

4.1 The Case of the p-Laplace Equation 1

In [JL1], Juutinen and Lindqvist produce a proof in the Euclidean environment for removability of level

sets for weak solutions to the p-Laplace Equation

−∆pu := −div(|∇u|p−2∇u) = 0 (4.1)

in Ω ⊆ Rn is a domain and 1 < p <∞. They employ arguments presented in [Kr] and [M] and rely on the

equivalence of weak and viscosity solutions to achieve a Radó type result. Specifically, the authors prove

that if u is a C1(Ω) viscosity solution to Equation (4.1) in the set Ω \ {x ∈ Ω : u(x) = 0}, then it is a

viscosity solution to Equation (4.1) in Ω.

The proof in [JL1] relies heavily on the Euclidean geometry of Rn. It is natural to ask if this argument

can be extended to sub-Riemannian spaces, which possess a different geometric structure. We consider the

well-known Heisenberg group and can answer this question in the affirmative. The Euclidean proof invokes

properties of (Euclidean) hypersurfaces. Motivated by [JL2], we provide an alternative to this methodology

in the Heisenberg group by using results and techniques from [FSS]. We combine this with [B2, Corollary

4.8] which shows the equivalence of p-harmonic functions and viscosity solutions to Equation (4.1) in order

to produce the following theorem:

Theorem 4.1.1 ([BFF1], Main Theorem). Assume 1 < p <∞. Let Ω ⊆ Hn be a domain, and suppose that

u ∈ C1
sub(Ω) is p-harmonic in the set Ω \ {x ∈ Ω : u(x) = 0}. Then u is p-harmonic in Ω.

The approach to proving Theorem 4.1.1 can be summarized as follows:

I. We begin by considering Theorem 4.1.1 in terms of viscosity solutions. Identifying ∆p with an ap-

propriate symmetric matrix acting on the horizontal second derivative matrix, we observe that if u fails
1A Note to Reader: This section has been reproduced from [BFF1]. This work has been submitted for review.
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to be a viscosity sub(super)solution at a point z, then there exists a test function which has a nonzero

horizontal gradient at z. We then employ the Heisenberg implicit function theorem of [FSS] to produce

a family of smooth functions whose level set is a gauge-ball tangent to the test function at z.

II. We choose a compact set B centered at the critical point to produce key properties.

III. We then compare directional derivatives and produce a contradiction.

A key result needed to prove Theorem 4.1.1 is the following lemma:

Lemma 4.1.2 ([BFF1], Lemma 1.1). Assume 1 < p <∞ and let u ∈ C1
sub(Ω). If u is p-harmonic in

Ω \ {x ∈ Ω : ∇0u(x) = 0},

then u is p-harmonic in Ω.

Proof. Let u be p-harmonic in Ω \D, where D := {x ∈ Ω : ∇0u(x) = 0}. Then by Corollary 3.0.8, we

know that u is a viscosity solution to Equation (4.1) in Ω \ D. If ϕ is a touching function (from above or

below) at the point z ∈ Ω, then by regularity of u and ϕ we must have

∇0ϕ(z) = ∇0u(z). (4.2)

If z ∈ D, then Definition 2.4.13 is satisfied since Equation (4.2) implies that ∇0ϕ(z) = 0. In other words,

u is a viscosity solution at each point of D. We conclude that u is a viscosity solution to Equation (4.1) in

all of Ω, and therefore u is p-harmonic in all of Ω by Corollary 3.0.8.

To prove Theorem 4.1.1, we follow the argument in [JL2, Theorem 2.2], which is based on a proof similar

to that of the classical Hopf maximum principle. Before we prove Theorem 4.1.1, we mention some notation

we will use throughout this section. For any vector ξ 6= 0, we let ξ⊗ ξ be the matrix with entries ξiξj . Then

we define A : R2n × R2n → S2n:

A(x, ξ) := |ξ|p−2

(
I + (p− 2)

ξ

|ξ|
⊗ ξ

|ξ|

)
= |ξ|p−2I + (p− 2)|ξ|p−4ξ ⊗ ξ,

(4.3)

and note that Aij has continuous entries. We have a lemma involving some key properties of A.
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Lemma 4.1.3 ([BFF1], Lemma 4.1). Let Ω ⊆ Hn and suppose u ∈ C1
sub(Ω). Define the mapping A as in

Equation (4.3). Then for 1 < p <∞:

(a) A is symmetric.

(b) We can write

−∆pu = −A
(
x,∇0u(x)

)
◦ (D2u)?(x),

where M ◦N is the trace of the matrix resulting from the matrix product MN .

Proof. Notice that item (a) is trivially true by the construction of A. Observe that because trace(·) is a linear

functional,

−A(x,∇0u) ◦ ((D2u)?(x)) = −‖∇0u‖p−2

(
I + (p− 2)

∇0u

‖∇0u‖
⊗ ∇0u

‖∇0u‖

)
◦ (D2u)?(x)

= −‖∇0u‖p−2trace
[
(D2u)?(x)

]
− (p− 2)

[
‖∇0u‖p−4

(
∇0u⊗∇0u

)
◦ (D2u)?(x)

]
= −‖∇0u‖p−2trace

[
(D2u)?

]
− (p− 2)‖∇0u‖p−4〈(D2u)?∇0u,∇0u〉

= −∆pu

where we note (
∇0u⊗∇0u

)
◦ (D2u)?(x) = 〈(D2u)?∇0u,∇0u〉

since (D2u)?(x) is symmetric.

Now, we are ready to prove Theorem 4.1.1. Owing to Corollary 3.0.8, we may restate Theorem 4.1.1 in

terms of viscosity solutions. That is, we seek to prove the following:

Theorem 4.1.4 ([BFF1], Theorem 4.2). Assume 1 < p < ∞. Let Ω ⊆ Hn and suppose u ∈ C1
sub(Ω) is a

viscosity solution to

−∆pu = −div(‖∇0u‖p−2∇0u) = 0

in Ω \ {x ∈ Ω : u(x) = 0}. Then u is a viscosity solution in Ω.

Proof. Let Z := {x ∈ Ω : u(x) = 0} and suppose u ∈ C1
sub(Ω) is a viscosity solution to

−∆pu = −div(‖∇0u‖p−2∇0u) = 0
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in Ω \Z, but u is not a viscosity solution in all of Ω. That is, we assume that there is some point z ∈ Z such

that u is not both a viscosity supersolution and viscosity subsolution to the p-Laplace equation. Without

loss of generality, we may assume u is not a viscosity subsolution to the p-Laplace equation. That is, there

is some z ∈ Z and ϕ ∈ C2
subΩ) such that ϕ ∈ T A(u, z) and

−∆pϕ(z) > 0, (4.4)

or equivalently

−A
(
z,∇0ϕ(z)

)
◦ (D2ϕ)?(z) > 0

by item (c) of Lemma 4.1.3. Recall we may assume that∇0ϕ(z) 6= 0.

By our assumptions and the construction of A, for any ε > 0 chosen sufficiently small, there exists a

constant C > 0 such that for all x in the Heisenberg gauge ball BN (z, ε), we have

‖∇0ϕ(x)‖ > C, ‖∇0u(x)‖ > C, and −A
(
x,∇0ϕ(x)

)
◦ (D2ϕ)?(x) > C. (4.5)

Next, define the operator L, acting on a C2
sub function v, by

Lv(x) := −A
(
x,∇0u(x)

)
◦ (D2v)?(x). (4.6)

Since A is continuous in its entries by construction, then

‖A
(
x,∇0ϕ(x)

)
−A

(
x,∇0u(x)

)
‖ → 0 as x→ z.

Then it follows that

|A
(
x,∇0ϕ(x)

)
◦ (D2ϕ)?(x)−A

(
x,∇0u(x)

)
◦ (D2ϕ)?(x)| → 0 as x→ z. (4.7)
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By Equation (4.21), we have

C < −A
(
x,∇0ϕ(x)

)
◦ (D2ϕ)?(x)

=
[
−A

(
x,∇0ϕ(x)

)
◦ (D2ϕ)?(x) +A

(
x,∇0u(x)

)
◦ (D2ϕ)?(x)

]
−A

(
x,∇0u(x)

)
◦ (D2ϕ)?(x)

=:
[
T1

]
+ T2.

By Equation (4.22), we see that

[
T1

]
=
[
−A

(
x,∇0ϕ(x)

)
◦ (D2ϕ)?(x) +A

(
x,∇0u(x)

)
◦ (D2ϕ)?(x)

]
→ 0

as x→ z. It follows that

[
T1

]
+ T2 → −A

(
z,∇0u(z)

)
◦ (D2ϕ)?(z)

as x→ z. Therefore we can write

Lϕ(x) = −A
(
x,∇0u(x)

)
◦ (D2ϕ)?(x) >

C

2
(4.8)

for x ∈ BN (z, ε), replacing ε > 0 by a smaller value if necessary.

Claim 4.1.5 ([BFF1], Claim 4.3). Define θ := ϕ− u. Then:

(A) θ(z) = 0.

(B) θ(x) ≥ 0 in BN (z, ε).

(C) Lθ(x) > C
2 > 0 in BN (z, ε) \ Z in the viscosity sense.

Proof. First observe that items (A) and (B) are trivially true by the definition of θ since ϕ touches u from

above. It remains to show item (C).

We consider ψ ∈ C2
sub(Ω) touching θ from below at x ∈ BN (z, ε) \ Z. Then for y near x, we have by

definition

0 ≤ θ(y)− ψ(y) = ϕ(y)− u(y)− ψ(y).
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This leads to

u(y) ≤ ϕ(y)− ψ(y).

Since θ(x) = ψ(x) implies u(x) = ϕ(x)− ψ(x), we have ϕ− ψ ∈ T A(u, x). Combining this fact with

the identity −∆pu(x) = Lu(x) from Property (b) of Lemma 4.1.3, we have

L
(
ϕ− ψ

)
(x) ≤ 0.

It follows from Equation (4.8) that
C

2
< Lϕ(x) ≤ Lψ(x).

Now since ∇0ϕ(z) 6= 0, there exists 1 ≤ k ≤ 2n such that Xkϕ(z) 6= 0. Then appealing to the

Heisenberg Implicit Function Theorem [FSS, Proposition 3.12], there exists a continuous function f such

that, locally at z, we may write the set

{x ∈ BN (z, ε) : ϕ(x) = 0}

as the graph of f . The continuity of f implies that for sufficiently small δ > 0 we may find an x̃ ∈ BN (z, ε)

such that we have δ = dN (x̃, z) := N (x̃−1 · z) and

BN (x̃, δ) ⊂ {x ∈ BN (z, ε) : ϕ(x) < 0}.

Set

ω(x) :=
σ

2

(
δ4 − d4

N (x, x̃)
)

=
σ

2

δ4 −

( 2n∑
l=1

(xl − x̃l)2

)2

+ 16

(
x2n+1 − x̃2n+1 +

1

2

n∑
i=1

(xn+ix̃i − xix̃n+i)

)2


=
σ

2
δ4 − σ

2

( 2n∑
l=1

(xl − x̃l)2

)2

− 8σ
(
x2n+1 − x̃2n+1 +

1

2

n∑
i=1

(xn+ix̃i − xix̃n+i)
)2

=:
σ

2
δ4 − σ

2

( 2n∑
l=1

(xl − x̃l)2

)2

− 8σΦ(x, x̃),
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where we assume that σ > 0 and we delay our choice of particular σ for the moment. Then we have

ω ∈ C2
sub(BN (x̃, δ)) and so by definition of ω and the vector fields, with 1 ≤ i ≤ n < j ≤ 2n, we compute:

Xiω(x) = −2σ(xi − x̃i)
2n∑
l=1

(
(xl − x̃l)2

)
+ 8σx̃i+nΦ + 8σxi+nΦ

and

Xjω(x) = −2σ(xj − x̃j)
2n∑
l=1

(
(xl − x̃l)2

)
− 8σx̃iΦ− 8σxj−nΦ.

Claim 4.1.6 ([BFF1], Claim 4.4). For appropriate choice of σ > 0, Lω ≤ C
4 in BN (x̃, δ).

Proof. For convenience, we define a function F : BN (x̃, δ) → R implicitly by the equation ω(x) =

σF (x). From the construction ofA(x, ξ) and the definition of F , it is clear that the entries ofA(x,∇0u(x)),

(D2F )?(x) are continuous. From this, we observe that

LF (x) = trace
[
A(x,∇0u(x)) ·

(
D2F

)?
(x)
]

(where · is the matrix product) is continuous; and by the compactness ofBN (x̃, δ) it follows that there exists

C(δ) > 0 such that

Lω(x) ≤
∣∣∣trace

[
A(x,∇0u(x)) ·

(
D2ω

)?
(x)
]∣∣∣ = σ |LF (x)| < σC(δ)

onBN (x̃, δ). Since δ > 0 is fixed and C(δ) depends only on δ, C(δ) is fixed. Choosing σ sufficiently small,

we therefore achieve the desired inequality.

By definition of ω, we have ω ≡ 0 on ∂BN (x̃, δ). Thus by Claim 4.1.5, we have

ω ≤ θ (4.9)

on ∂BN (x̃, δ).

Claim 4.1.7 ([BFF1], Claim 4.5). We have ω ≤ θ in BN (x̃, δ).
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Proof. Suppose there is some point ỹ ∈ BN (x̃, δ) such that

θ(ỹ)− ω(ỹ) = min
y∈BN (x̃,δ)

[θ(y)− ω(y)] < 0. (4.10)

From Inequality (4.9), we must have ỹ ∈ BN (x̃, δ) because ỹ 6∈ ∂BN (x̃, δ). Equation (4.10) therefore

implies that we have

ω + [θ(ỹ)− ω(ỹ)] ∈ T B(θ, ỹ).

Claim 4.1.5 then asserts Lω(ỹ) ≥ C
2 . However, this contradicts Claim 4.1.6. We then conclude that ω ≤ θ

in BN (x̃, δ).

Claim 4.1.7 and the fact that ω is 0 on the boundary of the ball motivate the following claim:

Claim 4.1.8 ([BFF1], Claim 4.6). Suppose for some x ∈ ∂BN (x̃, δ) we have θ(x) = 0 = ω(x). Then

denoting the outward Heisenberg normal to ∂BN (x̃, δ) at x by ν, we have

∂θ

∂ν
(x) ≤ ∂ω

∂ν
(x). (4.11)

Proof. To ensure that we remain in the domain of definition, we will consider only negative multiples of ν.

Therefore we let h < 0 and observe that

θ(x+ hν)

h
≤ ω(x+ hν)

h
.

This implies at once that

lim
h↑0

θ(x+ hν)− θ(x)

h
≤ lim

h↑0

ω(x+ hν)− ω(x)

h
,

from which Inequality (4.23) follows.

Recalling the definition of ω, it follows that

∇0ω(z) = 〈α1, α2, ..., αk, ..., α2n〉
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where

αk =


−2σ

(
(zk − x̃k)

∑2n
l=1

(
(zl − x̃l)2

)
− 4Φ(z, x̃)(x̃k+n + zk+n)

)
, 1 ≤ k ≤ n

−2σ

(
(zk − x̃k)

∑2n
l=1

(
(zl − x̃l)2

)
+ 4Φ(z, x̃)(x̃k−n + zk−n)

)
, n+ 1 ≤ k ≤ 2n.

Next, the exterior normal at z to BN (x̃, δ) is given by [AF] and [DGN] as

ν = 〈β1, β2, ..., βk, ..., β2n〉

where we have:

βk =


2

(
(zk − x̃k)

∑2n
l=1

(
(zl − x̃l)2

)
− 4Φ(z, x̃)(x̃k+n + zk+n)

)
, 1 ≤ k ≤ n

2

(
(zk − x̃k)

∑2n
l=1

(
(zl − x̃l)2

)
+ 4Φ(z, x̃)(x̃k−n + zk−n)

)
, n+ 1 ≤ k ≤ 2n.

Then

ν · ∇0ω(z) =
2n∑
k=1

αkβk

= −4σ

[ n∑
i=1

(
(zi − x̃i)

2n∑
l=1

(
(zl − x̃l)2

)
− 4Φ(z, x̃)(x̃i+n + zi+n)

)2

+

2n∑
j=n+1

(
(zj − x̃j)

2n∑
l=1

(
(zl − x̃l)2

)
+ 4Φ(z, x̃)(x̃j−n + zj−n)

)2]

= −4σ
n∑
i=1

(
(zi − x̃i)

2n∑
l=1

(
(zl − x̃l)2

)
− 4Φ(z, x̃)(x̃i+n + zi+n)

)2

− 4σ

2n∑
j=n+1

(
(zj − x̃j)

2n∑
l=1

(
(zl − x̃l)2

)
− 4Φ(z, x̃)(x̃j−n + zj−n)

)2

< 0

since σ > 0. Invoking Claim 4.1.8 for x = z, we have shown that:

dθ

dν
(z) ≤ dω

dν
(z) = ν · ∇0ω(z) < 0,

which is a contradiction since∇0θ(z) = 0, implying ν · ∇0θ(z) = 0. Therefore, u is a viscosity solution of

−∆pu = 0 in all of Ω.
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By [B2, Corollary 4.8] and Theorem 4.1.4 we conclude that Theorem 4.1.1 holds.

We conclude this section with a brief discussion about our assumption that u ∈ C1
sub(Ω). In [JL2] the

authors demonstrate that weakened regularity such as u ∈ Lip(Ω) is insufficient to guarantee the Euclidean

cases of the above-proven results; the counterexample that follows is an adaptation of that work to the setting

Hn. In particular, we will produce a Heisenberg Lipschitz function u such that:

(i) u is a viscosity solution to the p(x)-Laplace equation for 2 ≤ p < ∞ in B \ Z where B is a Carnot-

Carathéodory ball centered at 0 and Z is defined as above.

(ii) 0 ∈ Z.

(iii) u is not a viscosity solution of the p-Laplace equation at 0.

Fix ξ0 =
〈
ξ1

0 , . . . , ξ
2n
0 , 0

〉
∈ hn \ {0}. For R > 0, define the function u : B(0, R) → R by (abusing

notation since the exponential map is the identity)

u(x) := 2
∣∣〈ξ0, x〉

∣∣ = 2

∣∣∣∣ 2n∑
k=1

ξk0xk

∣∣∣∣.
Then u(0) = 0 and u ∈ C1

sub(B(0, R) \ Z).

Claim 4.1.9 ([BFF1], Claim 5.1). The function u is Heisenberg Lipschitz on B(0, R).

Proof. Let x, y ∈ B(0, R). Employing the Cauchy-Schwarz inequality,

|u(x)− u(y)| ≤ 2

∣∣∣∣∣
2n∑
k=1

ξk0 (xk − yk)

∣∣∣∣∣
≤ 2 max

1≤k≤2n

∣∣∣ξk0 ∣∣∣
[ 2n∑

k=1

(xk − yk)

]2
 1

2

≤ 2
√

2n max
1≤k≤2n

∣∣∣ξk0 ∣∣∣
(

2n∑
k=1

(xk − yk)2

) 1
2

=: C(ξ0, n)

(
2n∑
k=1

(xk − yk)2

) 1
2

.

(4.12)

Comparing the terminal line of (4.12) to the Euclidean distance dEucl(·, ·) and invoking [NSW, Proposition
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1.1], there exists a constant C1 = C1(B(0, R)) > 0 so that

|u(x)− u(y)| ≤ C(ξ0, n)dEucl(x, y) ≤ C1 · C(ξ0, n)dCC(x, y).

Since B(0, R), ξ0, and n are fixed, we conclude that u is Heisenberg Lipschitz.

Fixing x0 ∈ B(0, R) \ Z, for 1 ≤ i ≤ n < j ≤ 2n we compute

Xiu(x0) = ±ξi0

Xju(x0) = ±ξj0

XiXju(x0) = ±1

2
ξ2n+1

0 = 0

XjXiu(x0) = ∓1

2
ξ2n+1

0 = 0

XiXiu(x0) = 0

XjXju(x0) = 0.

It follows that (D2u)? = 0 off Z, and so −∆pu = 0 in B(0, R) \ Z in the classical sense.

Again abusing notation, we consider the function

φ(x) := 〈ξ0, x〉+
1

2
〈(ξ0 ⊗ ξ0)x, x〉 = 〈ξ0, x〉+

1

2
(〈ξ0, x〉)2 .

Then φ ∈ C2
sub(B(0, R)) and φ(0) = 0 = u(0).

Claim 4.1.10 ([BFF1], Claim 5.2). φ ∈ T B(u, 0).

Proof. Since u is Heisenberg Lipschitz, there exists δ > 0 so that x0 ∈ B(0, δ) implies

u(x0) = |u(x0)− u(0)| < 2, (4.13)

that is, |〈ξ0, x0〉| < 1. In particular, we have (〈ξ0, x0〉)2 < |〈ξ0, x0〉| < 1 Then we have shown

φ(x0) < |〈ξ0, x0〉|+
1

2
|〈ξ0, x0〉| < u(x0)

for x0 near to 0. Since φ(0) = u(0), our claim is proven.
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We compute: 

Xiφ(0) = ξi0

Xjφ(0) = ξj0

XiXiφ(0) =
(
ξi0
)2

XjXjφ(0) =
(
ξj0
)2

XiXjφ(0) = ξj0ξ
i
0

XjXiφ(0) = ξj0ξ
i
0.

From the above,

∇0φ(0) = ξ0 := 〈ξ1
0 , . . . , ξ

2n
0 〉 ∈ R2n \ {0}

and (
(D2φ)?(x)

)
a,b

= ξa0ξ
b
0 for all 1 ≤ a, b ≤ 2n.

Then for 2 ≤ p <∞, we have

−∆pφ(0) = −‖∇0φ(0)‖p−2trace[(D2φ)?(0)]− (p− 2)‖∇0φ(0)‖p−4〈(D2φ)?(0)∇0φ(0),∇0φ(0)〉

= −‖ξ0‖p−2
2n∑
k=1

(
ξk0

)2
− (p− 2)‖ξ0‖p−4〈η, ξ0〉.

where we define

η :=

〈
ξ1

0

2n∑
k=1

(ξk0 )2, . . . , ξ2n
0

2n∑
k=1

(ξk0 )2

〉
∈ R2n.

Simplification yields

−∆pφ(0) = −‖ξ0‖p−2
2n∑
k=1

(
ξk0

)2
− (p− 2)‖ξ0‖p−4

[
2n∑
k=1

(
ξk0

)2
]2

= −(p− 1)‖ξ0‖p < 0.

Because φ ∈ T B(u, 0), the definition of viscosity solutions implies that u is not a supersolution to the

p-Laplace equation.
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4.2 The Case of the p(x)-Laplace Equation 2

In [JLP, Section 7], the authors extended the Radó-type removability result of [JL1] to p(x)-harmonic

functions in Rn as an application of the equivalence of potential theoretic weak solutions and viscosity

solutions to the p(x)-Laplace equation. Specifically, they obtain the removability of level sets for viscosity

solutions to the p(x)-Laplace equation, which is given by

−∆p(x)u(x) := −div
(
|∇u(x)|p(x)−2∇u(x)

)
= 0 (4.14)

in Ω ⊆ Rn for 1 < p(x) <∞, where u ∈ C1(Ω) and p ∈ C1(Ω).

The purpose of this section is to extend the constant exponent results in Section 4.1 pertaining to the

removability of level sets for viscosity solutions to the p-Laplace equation in the Heisenberg group to the

variable exponent case. Consequently, this also extends the application in Euclidean space [JLP, Section 7]

to the Heisenberg group. Recall the p(x)-Laplace equation in the Heisenberg group is defined by:

−∆p(x)u(x) := −div
(
‖∇0u(x)‖p(x)−2∇0u(x)

)
= 0 (4.15)

in Ω ⊆ Hn for 1 < p(x) < ∞ where p ∈ C1
sub(Ω). Also recall the nondivergent form of the p(x)-Laplace

equation (for easier reference in this section) is given by:

−
(
‖∇0u‖p(x)−2trace((D2u)?) + (p(x)− 2)‖∇0u‖p(x)−4〈(D2u)?∇0u,∇0u〉 (4.16)

+ ‖∇0u‖p(x)−2 log(‖∇0u‖)〈∇0p(x),∇0u〉
)

= 0

in a bounded domain Ω ⊂ Hn, where u ∈ C1
sub(Ω) and p ∈ Csub

1(Ω). (Note that we need p ∈ C1
sub(Ω) in

order to apply the viscosity theory.) The main result of this section is the following theorem:

Theorem 4.2.1 ([BFF2], Main Theorem). Let Ω ⊆ Hn be a bounded domain and assume 1 < p(x) < ∞

with p ∈ C1
sub(Ω). Suppose u ∈ C1

sub(Ω) is a viscosity solution to Equation (4.16) in

Ω \ {x ∈ Ω : u(x) = 0}. Then u is a viscosity solution to Equation (4.16) in Ω.

The outline of the proof of Theorem 4.2.1 follows the proof of the fixed exponent case in Section 4.1, but

requires modifications owing ultimately to the variable exponent, and in turn, the logarithmic term which

2A Note to Reader: This section has been reproduced from [BFF2]. This work has been submitted for review.
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does not appear when the exponent is constant. A necessary instrument we will use to prove Theorem 4.2.1

is the following theorem:

Theorem 4.2.2 ([BFF2], Theorem 1.1). Assume 1 < p(x) < ∞ with p ∈ C1
sub(Ω). Let Ω ⊆ Hn be a

domain, and suppose that u ∈ C1
sub(Ω) is a viscosity solution to the p(x)-Laplace equation in

Ω \ {x ∈ Ω : ∇0u(x) = 0}. Then u is a viscosity solution to the p(x)-Laplace equation in Ω.

Proof. Let u be a viscosity solution to Equation (4.16) in Ω \ {x ∈ Ω : ∇0u(x) = 0}. If ϕ is a touching

function, touching (from above or below) at the point z ∈ Ω, then by regularity of u and ϕ, we must have

∇0ϕ(z) = ∇0u(z).

By the definition of viscosity solutions, if ∇0ϕ(z) = 0 = ∇0u(z), then we have nothing to prove. If

∇0u(z) 6= 0, then by the definition of feeble viscosity solutions we have that u is viscosity solution in

Ω.

Before we prove Theorem 4.2.1, we mention some notation we will use throughout this section. For any

vector ξ 6= 0, we let ξ ⊗ ξ be the matrix with entries ξiξj . Then we define A : R2n × R2n → S2n:

A(x, ξ) = |ξ|p(x)−2

(
I + (p(x)− 2)

ξ

|ξ|
⊗ ξ

|ξ|

)
(4.17)

= |ξ|p(x)−2I + (p(x)− 2)|ξ|p(x)−4ξ ⊗ ξ,

and note that Aij has continuous entries. We also define B : R2n × R2n → R:

B(x, ξ) = |ξ|p(x)−2 log |ξ|〈ξ,∇0p(x)〉, (4.18)

and note that B is continuous in both x and ξ. We have a lemma involving some key properties of A and B.

Lemma 4.2.3 ([BFF2], Lemma 5.1). Let Ω ⊆ Hn and assume 1 < p(x) < ∞ with p ∈ C1
sub(Ω). Define

the mapping A as in Equation (4.17). Then:

(a) A is symmetric.

(b) We can write

−∆p(x)u(x) = −A (x,∇0u(x)) ◦ (D2u)?(x)−B (x,∇0u(x)) , (4.19)
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where M ◦N is the trace of the matrix resulting from the matrix product MN .

Proof. Notice that item (a) is trivially true by the construction of A. Observe that

−A(x,∇0u) ◦ ((D2u)?(x)) = −‖∇0u‖p(x)−2

(
I + (p(x)− 2)

∇0u

‖∇0u‖
⊗ ∇0u

‖∇0u‖

)
◦ (D2u)?(x)

= −‖∇0u‖p(x)−2trace((D2u)?(x))

− (p(x)− 2)‖∇0u‖p(x)−4
(
‖∇0u‖ ⊗ ‖∇0u‖

)
◦ (D2u)?(x)

= −‖∇0u‖p(x)−2trace((D2u)?)

− (p(x)− 2)‖∇0u‖p(x)−4〈(D2u)?∇0u,∇0u〉

where we write

(‖∇0u‖ ⊗ ‖∇0u‖) ◦ (D2u)?(x) = 〈(D2u)?∇0u,∇0u〉

since (D2u)?(x) is symmetric. Then we have

−A(x,∇0u) ◦ ((D2u)?(x))−B (x,∇0u(x))

= − ‖∇0u‖p(x)−2trace((D2u)?)− (p(x)− 2)‖∇0u‖p(x)−4〈(D2u)?∇0u,∇0u〉

− |∇0u|p(x)−2 log |∇0u|〈∇0u,∇0p(x)〉

= −∆p(x)u(x).

Item (b) follows.

We now prove our main result. The proof below is the variable exponent version of the fixed exponent

case in Section 4.1 and incorporates many necessary modifications.

Proof of Theorem 4.2.1. Let Z := {x ∈ Ω : u(x) = 0} and suppose u ∈ C1
sub(Ω) is a viscosity solution to

−∆p(x)u = −div
(
‖∇0u‖p(x)−2∇0u

)
= 0

in Ω \ Z, but u is not a viscosity solution in Ω. That is, we assume that there is some point z ∈ Z such that

u is not both a viscosity supersolution and viscosity subsolution to the p(x)-Laplace equation. Without loss

of generality, we may assume u is not a viscosity subsolution to the p(x)-Laplace equation. That is, there is
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some z ∈ Z and ϕ ∈ sub2(Ω) such that ϕ ∈ T A(u, z) and

−∆p(x)ϕ(z) > 0, (4.20)

or equivalently

−A
(
z,∇0ϕ(z)

)
◦ (D2ϕ)?(z)−B

(
z,∇0ϕ(z)

)
> 0

by item (b) of Lemma 4.2.3. We may assume without loss of generality that∇0ϕ(z) 6= 0.

By our assumptions and the construction of A and B, for any ε > 0 chosen sufficiently small, there exists

a constant C > 0 such that for all x in the Heisenberg gauge ball BN (z, ε), we have

(4.21)

‖∇0ϕ(x)‖ > C, ‖∇0u(x)‖ > C, and −A
(
x,∇0ϕ(x)

)
◦ (D2ϕ)?(x)−B (x,∇0ϕ(x)) > C.

We denote

Ã(x) := A (x,∇0u(x))

and

B̃(x) := B (x,∇0u(x)) .

Observe

‖ [A (x,∇0ϕ(x)) +B (x,∇0ϕ(x))]−
[
Ã(x) + B̃(x)

]
‖

= ‖
[
A (x,∇0ϕ(x))− Ã(x)

]
+
[
B (x,∇0ϕ(x))− B̃(x)

]
‖

=: ‖T + S‖ ≤ ‖T ‖+ ‖S‖.

Since A is continuous in its entries by construction, then

‖T ‖ → 0 as x→ z.

Moreover, since B is continuous in both x and ∇0u(x) by construction, then

‖S‖ → 0 as x→ z.
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It follows that

‖T ‖+ ‖S‖ → 0 as x→ z. (4.22)

By Equation (4.21), we have

C < −A (x,∇0ϕ(x)) ◦ (D2ϕ)?(x)−B (x,∇0ϕ(x))

= −A (x,∇0ϕ(x)) ◦ (D2ϕ)?(x)−B (x,∇0ϕ(x))

+ Ã(x) ◦ (D2ϕ)?(x) + B̃(x)

− Ã(x) ◦ (D2ϕ)?(x)− B̃(x)

=
[
Ã(x) ◦ (D2ϕ)?(x)−A (x,∇0ϕ(x)) ◦ (D2ϕ)?(x)

+ B̃(x)−B (x,∇0ϕ(x))
]

− Ã(x) ◦ (D2ϕ)?(x)− B̃(x)

=:
[
T + S

]
− S̃.

By Equation (4.22), we see that

[
T + S

]
→ 0

as x→ z. It follows that

[
T + S

]
− S̃ → −Ã(z) ◦ (D2ϕ)?(z)− B̃(z)

as x→ z. Therefore we can write

−Ã(x) ◦ (D2ϕ)?(x)− B̃(x) >
C

2

for x ∈ BN (z, ε), replacing ε > 0 by a smaller value if necessary.

Claim 4.2.4 ([BFF2], Claim 5.2). Define θ := ϕ− u. Then:

(A) θ(z) = 0.
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(B) θ(x) ≥ 0 in BN (z, ε).

(C) −Ã(x) ◦ (D2θ)?(x) ≥ C
2 > 0 in BN (z, ε) \ Z in the viscosity sense.

Proof of Claim 4.2.4. First observe that items (A) and (B) are trivially true by the definition of θ since ϕ

touches u from above. It remains to show item (C).

We consider ψ ∈ sub2(Ω) touching θ from below at x ∈ BN (z, ε) \ Z. Then for y near x, we have by

definition

0 ≤ θ(y)− ψ(y) = ϕ(y)− u(y)− ψ(y).

This leads to

u(y) ≤ ϕ(y)− ψ(y).

Since θ(x) = ψ(x) implies u(x) = ϕ(x) − ψ(x), we have ϕ − ψ ∈ T A(u, x). Owing to the fact that

u ∈ sub1(Ω) we have∇0u(x) = ∇0(ϕ− ψ)(x), and from Property (b) of Lemma 4.2.3:

−Ã(x) ◦
(
(D2[ϕ− ψ])?(x)

)
− B̃(x) ≤ 0.

Since (D2[ϕ − ψ])?(x) = (D2ϕ)?(x) − (D2ψ)?(x), the trace operation on matrices is linear, and the

operation of multiplication of matrices is distributive, then we can write

−Ã(x) ◦
(
(D2[ϕ− ψ])?(x)

)
= −Ã(x) ◦

(
(D2ϕ)?(x)

)
+ Ã(x) ◦

(
(D2ψ)?(x)

)
.

It follows that

0 <
C

2
≤ −Ã(x) ◦

(
D2ϕ

)?
(x)− B̃(x) ≤ −Ã(x) ◦

(
D2ψ

)?
(x)

and we have the claim.

Now, since ∇0ϕ(z) 6= 0, there exists 1 ≤ k ≤ 2n such that Xkϕ(z) 6= 0. Then appealing to the

Heisenberg Implicit Function Theorem [FSS, Proposition 3.12], there exists a continuous function f such

that, locally at z, we may write the set

{x ∈ BN (z, ε) : ϕ(x) = 0}

as the graph of f . The continuity of f implies that for sufficiently small δ > 0 we may find an x̃ ∈ BN (z, ε)
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such that we have δ = dN (x̃, z) := N (x̃−1 · z) and

BN (x̃, δ) ⊂ {x ∈ BN (z, ε) : ϕ(x) < 0}.

Set

ω(x) :=
σ

2

(
δ4 − d4

N (x, x̃)
)

=
σ

2

δ4 −

( 2n∑
l=1

(xl − x̃l)2

)2

+ 16

(
x2n+1 − x̃2n+1 +

1

2

n∑
i=1

(xn+ix̃i − xix̃n+i)

)2


=
σ

2
δ4 − σ

2

( 2n∑
l=1

(xl − x̃l)2

)2

− 8σ
(
x2n+1 − x̃2n+1 +

1

2

n∑
i=1

(xn+ix̃i − xix̃n+i)
)2

=:
σ

2
δ4 − σ

2

( 2n∑
l=1

(xl − x̃l)2

)2

− 8σΦ(x, x̃),

where we assume that σ > 0 and we delay our choice of particular σ for the moment. Then we have

ω ∈ sub2(BN (x̃, δ)) and so by definition of ω and the vector fields, with 1 ≤ i ≤ n < j ≤ 2n, we compute:

Xiω(x) = −2σ(xi − x̃i)
2n∑
l=1

(
(xl − x̃l)2

)
+ 8σx̃i+nΦ(x, x̃) + 8σxi+nΦ(x, x̃)

Xjω(x) = −2σ(xj − x̃j)
2n∑
l=1

(
(xl − x̃l)2

)
− 8σx̃iΦ(x, x̃)− 8σxj−nΦ(x, x̃).

In order to obtain necessary results, we state a property of ω which parallels part (C) of Claim 4.2.4:

Claim 4.2.5 ([BFF1], Claim 4.4). For appropriate choice of σ > 0,

Ã(x) ◦ (D2ω)?(x) ≤ C

4

in BN (x̃, δ).

We now present two claims we need to finish the proof. Each of these claims is proved in Section 4.1

where the variable exponent is constant. The proofs here are identical and omitted.

Claim 4.2.6 ([BFF1], Claim 4.5). ω ≤ θ in BN (x̃, δ).
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Claim 4.2.7 ([BFF2], Claim 4.6). Suppose for some x ∈ ∂BN (x̃, δ) we have θ(x) = 0 = ω(x). Then

denoting the outward Heisenberg normal to ∂BN (x̃, δ) at x by ν, we have

∂θ

∂ν
(x) ≤ ∂ω

∂ν
(x). (4.23)

Recalling the definition of ω, it follows that

∇0ω(z) = 〈α1, α2, ..., αk, ..., α2n〉

where

αk =


−2σ

(
(zi − x̃i)

∑2n
l=1

(
(zl − x̃l)2

)
− 4Φ(z, x̃)(x̃i+n + zi+n)

)
, 1 ≤ k ≤ n

−2σ

(
(zj − x̃j)

∑2n
l=1

(
(zl − x̃l)2

)
+ 4Φ(z, x̃)(x̃j−n + zj−n)

)
, n+ 1 ≤ k ≤ 2n.

Next, referencing [AF] in order to compute the exterior normal at z to the Heisenberg gauge ball, denoted

ν = 〈β1, β2, ..., βk, ..., β2n〉,

we have:

βk =


2

(
(zi − x̃i)

∑2n
l=1

(
(zl − x̃l)2

)
− 4Φ(z, x̃)(x̃i+n + zi+n)

)
, 1 ≤ k ≤ n

2

(
(zj − x̃j)

∑2n
l=1

(
(zl − x̃l)2

)
+ 4Φ(z, x̃)(x̃j−n + zj−n)

)
, n+ 1 ≤ k ≤ 2n.
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Then

ν · ∇0ω(z) =
2n∑
k=1

αkβk

= −4σ

[
n∑
i=1

(
(zi − x̃i)

2n∑
l=1

(
(zl − x̃l)2

)
− 4Φ(z, x̃)(x̃i+n + zi+n)

)2

+
2n∑

j=n+1

(
(zj − x̃j)

2n∑
l=1

(
(zl − x̃l)2

)
+ 4Φ(z, x̃)(x̃j−n + zj−n)

)2 ]

= −4σ
n∑
i=1

(
(zi − x̃i)

2n∑
l=1

(
(zl − x̃l)2

)
− 4Φ(z, x̃)(x̃i+n + zi+n)

)2

− 4σ
2n∑

j=n+1

(
(zj − x̃j)

2n∑
l=1

(
(zl − x̃l)2

)
− 4Φ(z, x̃)(x̃j−n + zj−n)

)2

< 0

since σ > 0. Invoking Claim 4.2.7 for x = z, we have shown that:

dθ

dν
(z) ≤ dω

dν
(z) = ν · ∇0ω(z) < 0,

which is a contradiction since∇0θ(z) = 0, implying ν · ∇0θ(z) = 0. Therefore, u is a viscosity solution of

−∆p(x)u = 0 in all of Ω.

Remark 4.2.8. We remark about our assumption: u ∈ C1
sub(Ω). At the end of Section 4.1, we showed

through a counterexample that in the Heisenberg group, weakened regularity such as u ∈ Lip(Ω), where

Ω ⊆ Hn, is insufficient to guarantee even the fixed exponent cases of the results proved above (see [BFF1,

Section 5]).

4.3 Equivalence in the Heisenberg Group Revisited 3

In Chapter 3, we showed that potential theoretic weak solutions and viscosity solutions to the p(x)-

Laplace equation in Carnot groups coincide under reasonable assumptions. We conclude this chapter by

revisiting this equivalence in the Heisenberg group. In particular, we mention the following modification

specific to the Heisenberg group Hn, with an argument also in Hn, validating the modification. Additionally,

we have a Radó-type result as an immediate application of the equivalence.

3A Note to Reader: This section has been reproduced from [BFF2]. This work has been submitted for review.
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Theorem 4.3.1 ([BFF2], Theorem 6.1). Let Ω ⊆ Hn be a bounded domain and assume 1 < p(x) < ∞

with p ∈ C1
sub(Ω). Also assume u ∈ C1

sub(Ω) and that X2n+1u is bounded in the viscosity sense in Ω. Then

u is p(x)-harmonic if and only if it is a viscosity solution to the p(x)-Laplace equation.

Proof. Since the Heisenberg group Hn is the simplest nontrivial Carnot group, we can apply our proof of

Corollary 3.0.8 from Chapter 3 ([BF2, Corollary 4.17]), provided we can show our situation yields an upper

bound for the full gradient. Since u ∈ C1
sub(Ω) there exists C1(Ω) > 0 such that

‖∇0u‖ ≤ C1(Ω)

in Ω. BecauseX2n+1u is bounded in the viscosity sense, there also exists C2(Ω) > 0 such that for all y ∈ Ω

and all ψ ∈ T A(u, y) we will have

‖X2n+1ψ(y)‖ ≤ C2(Ω).

Defining C(Ω) := max
{
C1(Ω), C2(Ω)

}
we have that for all y ∈ Ω and all ϕ ∈ T A(u, y)

‖∇ϕ‖ ≤ ‖∇0ϕ‖+ ‖X2n+1ϕ‖ ≤ 2C(Ω). (4.24)

Since C(Ω) depends only upon Ω, then C(Ω) is fixed and we have an upper bound for the full gradient in

the viscosity sense. We now can apply the proof in [BF2, Corollary 4.17] to achieve the equivalence.

Under reasonable restrictions and applying Theorem 4.3.1 and Theorem 4.2.1, we have the following

Radó-type result as an application:

Corollary 4.3.2 ([BFF2], Theorem 6.2). Let Ω ⊆ Hn be a bounded domain and assume 1 < p(x) < ∞

with p ∈ C1
sub(Ω). Also assume u ∈ C1

sub(Ω) and that X2n+1u is bounded in the viscosity sense in Ω. If u

is p(x)-harmonic in Ω \ {x ∈ Ω : u(x) = 0}, then u is p(x)-harmonic in Ω.

Proof. Applying Theorem 4.3.1 and Theorem 4.2.1, we know that u is a viscosity solution to Equation

(4.16) in Ω. Since u ∈ C1
sub(Ω) andX2n+1u is bounded in the viscosity sense, we may apply Theorem 4.3.1

to conclude that u is p(x)-harmonic in Ω.
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Variable Exponents , Lecture Notes in Mathematics 2017, Springer: Heidelberg. 2011. Subellip-

tic Estimates and Function Spaces on Nilpotent Lie Groups. Ark. Mat. 1975, 13, 161–207.

[F] Folland, G.B. Subelliptic Estimates and Function Spaces on Nilpotent Lie Groups. Ark. Mat.

1975, 13, 161–207.

[FS] Folland, G.B.; Stein, Elias M. Hardy Spaces on Homogeneous Groups; Princeton University

Press: Princeton, NJ. 1982.

79



[FSS] Franchi, Bruno.; Serapioni, Raul.; Serra Cassano, Francesco. Regular Submanifolds, Graphs and

Area Formula in Heisenberg Groups. In Advances in Mathematics. 2007, 211 (1), 152–203. DOI:

10.1016/j.aim.2006.07.015.

[G] Gromov, Mikhael. Metric Structures for Riemannian and Non-Riemannian Spaces; Birkhäuser
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[K] Kaplan, Aroldo. Lie Groups of Heisenberg Type. Rend. Sem. Mat. Univ. Politec. Torino 1983

Special Issue 1984, 117–130.
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