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Abstract

Advances in science and technology have significantly improved our quality of life over the

past decades. For example, wireless communication systems have evolved from basic voice services

to delivering high-definition video for entertainment or business conferences at an accelerating pace.

Furthermore, progress in cyber-physical systems has led to the development of brain-computer

interfaces and wireless body area networks with the vision of advanced pervasive healthcare,

anytime and anywhere. The primary motivation of this dissertation is to improve the performance

of the next-generation multi-service communication and medical cyber-physical systems.

The research has been concentrated in physical (PHY)/medium access control (MAC) layer

aspects (such as channel modeling, waveform design, scheduling, and interference management)

of wireless communication systems and signal processing algorithms for medical cyber-physical

system. More specifically, the dissertation addresses the following topics:

Inter-Numerology Interference Management for 5G Mobile Network: The next-generation com-

munication technologies are evolving towards increased flexibility in various aspects. Although

orthogonal frequency division multiplexing (OFDM) remains as the waveform of the upcoming

fifth-generation (5G) standard, the new radio provides flexibility in waveform parametrization

(a.k.a. numerology) to address diverse requirements. However, managing the peaceful coexistence

of mixed numerologies is challenging due to inter-numerology interference (INI). The utilization

of adaptive guards in both time and frequency domains is proposed as a solution along with a

multi-window operation in the PHY layer. Since the allowed interference level depends on the

numerologies operating in the adjacent bands, the potential of adaptive guards is further increased

and exploited with a MAC layer scheduling technique as well in this study.

vii



In Vivo Channel Modeling for Wireless Body Area Networks: In vivo wireless body area networks

(WBANs) and their associated technologies are shaping the future of healthcare by providing conti-

nuous health monitoring and noninvasive surgical capabilities, in addition to remote diagnostic and

treatment of diseases. To fully exploit the potential of such devices, it is necessary to characterize

the communication channel which will help to build reliable and high-performance communica-

tion systems. An in vivo wireless communication channel characterization for male torso both

numerically and experimentally (on a human cadaver) is presented considering various organs. A

statistical path loss model is introduced, and the anatomical region-specific parameters are pro-

vided. Multipath propagation characteristics are also investigated to facilitate proper waveform

designs in the future wireless healthcare systems.

Frequency Recognition for SSVEP-based Brain-computer Interfaces: Brain-computer interfaces

(BCIs) and their associated technologies have the potential to shape future forms of communication,

control, and security. Specifically, the steady-state visual evoked potential (SSVEP) based BCIs

have the advantages of better recognition accuracy, and higher information transfer rate (ITR)

compared to other BCI modalities. To fully exploit the capabilities of such devices, it is necessary

to understand the underlying biological features of SSVEPs and design the system considering their

inherent characteristics. Bio-inspired filter banks (BIFBs) are introduced for improved SSVEP

frequency recognition. SSVEPs are frequency selective, subject-specific, and their power gets

weaker as the frequency of the visual stimuli increases. Therefore, the gain and bandwidth of the

filters are designed and tuned based on these characteristics while also incorporating harmonic

SSVEP responses in this study.

viii



Chapter 1: Introduction

Advances in science and technology have significantly improved our quality of life over the

past decades. For example, wireless communication systems have evolved from basic voice services

to delivering high-definition video for entertainment or business conferences at an accelerating

pace [1–3]. Furthermore, progress in medical cyber-physical systems has led to the development of

brain-computer interfaces and wireless body area networks with the vision of advanced pervasive

healthcare, anytime and anywhere [4–7]. The ongoing fifth-generation (5G) mobile network

standardization activities, the recent proposal calls from governmental organizations for wireless

body area networks research, and Silicon Valley’s great interest in brain-computer interfaces show

that this remarkable momentum will continue exponentially in the years ahead.

The primary motivation of this dissertation is to improve the performance of the next-

generation multi-service communication and medical cyber-physical systems. Fig. 1.1 illustrates

the research domains and principal concepts that are studied in this dissertation. The essential

background and the main contributions of this research are detailed in the following sections 1.

1.1 Foundations of Multi-Numerology OFDM Systems for 5G Mobile Network

The standardization activities of wireless mobile telecommunications were initiated with

analog standards that were implemented in the 1980s, and a new generation is being developed

almost every ten years to meet the exponentially growing market demand [9]. The transition from

analog to digital started in second-generation (2G) systems, along with the use of mobile data

services. The third-generation (3G) digital evolution allowed video calls and global positioning

system (GPS) services on mobile devices. The fourth-generation (4G) systems pushed the limits of

1Part of this chapter was published in [6, 8–11]. Permission is included in Appendix A.

1



5G
Mobile 

Network

Wireless
Body Area 
Network

Brain-
computer 
Interfaces

Multi-Service Communication Systems Medical Cyber-Physical Systems

Chapter 2 Chapter 3 Chapter 4

PHY/MAC Layer Aspects: Channel modeling, waveform 
design, scheduling, and interference management. 
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Figure 1.1: The research domains and main concepts that are studied in the dissertation.

data services further by better exploiting the time-frequency resources using orthogonal frequency-

division multiple access (OFDMA) as an air interface. Currently, the study of 5G has almost been

completed with harmony between academia, industry, and standardization entities [12], and the 5G

test networks have been launched in several cities around the globe.

The next-generation wireless communication technologies are envisioned to support a di-

verse service variety under the same network. As a recent example, the International Telecommu-

nications Union (ITU) [13] has defined the main use cases that are going to be supported in the 5G

mobile network as enhanced mobile broadband (eMBB), massive machine-type communications

(mMTC), and ultra-reliable low-latency communications (URLLC) as shown in Fig. 1.2. The ap-

plications which demand high data rate and better spectral efficiency fall into the eMBB category,

whereas the ones which require ultra-high connection density and low power consumption falls into

the mMTC category. Commonly, the industrial sensors or medical implants [6] should operate for

many years without a maintenance need, and accordingly, high energy efficiency and low device

complexity are essential for these mMTC services. Moreover, the mission-critical applications

such as remote surgery [8] or self-driving vehicles [14] are categorized in URLLC. A flexible air

interface is needed to meet these demanding service requirements under various channel conditions

2



(a) (b) (c)

Figure 1.2: 5G use cases: (a) Enhanced mobile broadband, (b) ultra-reliable low-latency
communications, and (c) massive machine type communications.

and system scenarios. Hence, the waveform, which is the main component of any air interface,

must be designed precisely to facilitate such flexibility.

1.1.1 Waveform Definition

Thewaveform defines the physical shape of the signal that carries themodulated information

through a channel. The information is mapped from the message space to the signal space at the

transmitter, and a reverse operation is performed at the receiver to recover the message in a

communications system. The waveform, which defines the structure and shape of the information

in the signal space, can be described by its fundamental elements: symbol, pulse shape, and

lattice [15]. The symbols constitute the random part of a waveform whereas the pulse shape and

the lattice form the deterministic part.

• Symbol: A symbol is a set of complex numbers in the message space that is generated

by grouping a number of bits together. The number of bits grouped within one symbol

determines the modulation order that has a high impact on the throughput.

• Pulse Shape: The form of the symbols in the signal plane is defined by the pulse shaping

filters. The shape of the filters determines how the energy is spread over the time and

frequency domains and has an important effect on the signal characteristics.

3
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Figure 1.3: Wireless communications in the presence of a multipath propagation.

• Lattice: The lattice is generated by sampling the time–frequency plane, and the locations of

samples define the coordinates of the filters in the time–frequency grid. The lattice geometry

might present different shapes such as rectangular and hexagonal according to the formation

and distances between the samples. Furthermore, the lattice can be exploited by including

additional dimensions such as space domain.

1.1.2 Wireless Communications in the Presence of Multipath Channel

A transmitted signal may arrive at a receiver either directly (i.e., line-of-sight (LOS)) or

after being reflected from various objects in the environment (i.e., non-line-of-sight (NLOS)).

These reflected signals from different surfaces travel through different paths and accordingly reach

the transmitter with different delays and gains. This propagation environment is usually referred

to as a multipath channel and illustrated in Fig. 1.3. Multipath propagation creates small-scale

(Rayleigh) fading effects on the received signal, as shown in Fig. 1.4.

The multipath channel causes dispersion in the time-domain and produces inter-symbol

interference (ISI). The dispersion in the time domain might lead to a frequency selective fading,
4
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Figure 1.4: Time and frequency dispersive multipath channel.

depending on the transmission bandwidth of the signal. The coherence bandwidth of the channel

(Bc) is defined as the bandwidth, in which the channel frequency response can be considered as

flat (i.e., highly correlated). It is inversely proportional to the delay spread in the propagation

environment. When the transmission bandwidth exceeds the coherence bandwidth of the channel,

the signal experiences a frequency selective fading.

The frequency selective fading and ISI result in significant communication performance

degradation. Channel equalizers are used to compensate for the ISI effect of the multipath channel.

The complexity of these equalizers depends on the number of resolvable channel taps. Single-
5



carrier systems transceive signals with shorter symbol duration compared to multi-carrier systems,

which utilize the same transmission bandwidth, and they resolve more channel taps. As a result,

sophisticated equalizers are required for broadband single-carrier systems.

Mobility in free space or LOS multipath propagation environments, where a single domi-

nant multipath component exists, leads to a Doppler shift issue. Handling the Doppler shift is

straightforward, and pilot based techniques can be used to estimate and compensate the frequency

offset resulting from the Doppler shift effect. However, if the number of multipath components is

large, and they arrive at a receiver from different angles, Doppler spread occurs. Doppler spread is

a combination of different Doppler shifts, and unlike the Doppler shift issue, it is hard to deal with

due to its random nature.

Mobility in a multipath channel causes dispersion in the frequency-domain. The dispersion

in the frequency domain might lead to a time selective fading, depending on the symbol duration of

the signal. The coherence time of the channel (Tc) is defined as the duration, in which the channel

time response can be considered as flat (i.e., highly correlated). It is inversely proportional to the

Doppler spread in the propagation environment. When the symbol duration exceeds the coherence

time of the channel, the signal experiences a time selective fading.

1.1.3 CP-OFDM and Multi-Numerology Systems

Orthogonal frequency-division multiplexing (OFDM) is the most popular multicarrier mo-

dulation scheme that is currently being deployed in many standards such as the downlink of 4G

LTE and the IEEE 802.11 family [16]. Its primary advantage over the single-carrier transmission

schemes is its ability to cope with frequency selective channels for broadband communications.

The transmission bandwidth is divided into several narrow sub-channels, and the data is transmit-

ted in parallel over these sub-channels with a set of narrow subcarriers. If the bandwidth of each

subcarrier is set to be less than the coherence bandwidth of the channel, each subcarrier experiences

a single-tap flat fading channel. As a result, the complex equalizers that are required for broadband

single-carrier communications to combat ISI can be avoided with a proper design. Also, OFDM
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systems utilize the spectrum in a very efficient manner due to the orthogonally overlapped subcar-

riers and allow flexible frequency assigning. A discrete OFDM signal on baseband is expressed as

follows:

sOFDM[n] =
N−1

∑
k=0

dke j2πnk/N (1.1)

where dk is the complex data symbol at subcarrier k, and N represents the total number of subcar-

riers. OFDM can easily be implemented by the inverse fast Fourier transform (IFFT) algorithm.

Afterward, the cyclic prefix (CP) is added by copying the last part of the IFFT sequence and appen-

ding it to the beginning as a guard interval. Its length is determined based on the maximum excess

delay of the channel, which is defined as the delay between the first and last received paths over the

channel. The CP-OFDM symbol formation at the transmitter is shown in Fig. 1.5. Also, a block

diagram of conventional CP-OFDM transmitter and receiver is shown in Fig. 1.6. The channel

between the transmitter and receiver can be considered as a filter, and a transmitted signal arrives

at a receiver after convolving with the channel. This convolution operation in the time-domain

corresponds to a multiplication operation in the frequency-domain if the channel is circular. The CP
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part of the OFDM signal ensures the circularity of the channel and enables easy frequency-domain

equalization (FDE) with a simple multiplication operation.

A major disadvantage of any multicarrier system, including CP-OFDM, is high peak-to-

average power ratio (PAPR) due to the random addition of subcarriers in the time domain [17]. For

instance, consider addition of sinusoidal signals with different frequencies and phase shifts. The

resulting signal envelope presents high peaks when the peak amplitudes of the different signals are

aligned at the same time. As a result of such high peaks, the power amplifier at the transmitter

operates in the nonlinear region causing a distortion and spectral spreading. In addition, as the

number of subcarriers increases, the variance of the output power increases as well.

Another critical issue related to the CP-OFDM systems is its high out of band emissions

(OOBE). The OFDM signal is well localized in the time domain with a rectangular pulse shape

that results in a sinc shape in the frequency domain. Especially, the sidelobes of the sincs at

the edge carriers cause significant interference and should be reduced to avoid adjacent channel

interference (ACI). Typically, OOBE is reduced by various windowing/filtering approaches along

with the guard band allocation to meet the spectral mask requirements of the various standards.

3GPP LTE standard uses 10% of total bandwidth as guard bands to handle this problem. However,

fixed guard allocation decreases the spectral efficiency.
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Figure 1.7: Multi-user OFDM spectrum: (a) Single numerology system, (b) multi-numerology
system.

Numerous waveforms have been proposed [9,18–22] considering disadvantages of OFDM,

but none of them can address all the requirements of the upcoming 5G standard [23]. Therefore,

OFDM remains as the waveform of the new radio [2,24,25], and a flexible waveform parametriza-

tion, which is also known as numerology [26, 27], is introduced to embrace diverse requirements

as shown in Fig. 1.7.

The channel conditions, use cases, and system scenarios are the most critical conside-

rations for the numerology design. For instance, a time-localized pulse shape is preferable for

time-dispersive channels (i.e., high delay spread scenario), while a frequency-localized pulse shape

is more suitable for frequency-dispersive channels (i.e., high Doppler spread scenario). Particu-

larly, the frequency domain localization is crucial for asynchronous transmissions across adjacent

subbands. Another degree of freedom, the subcarrier spacing in OFDM systems, should be kept

9



large to handle the Doppler spread in a highly mobile environment. On the other hand, a smaller

subcarrier spacing provides a longer symbol duration and decreases the relative redundancy that

is allocated for time dispersion. The reduced redundancy is especially important for the eMBB

services. Furthermore, reliability and latency are vital for mission-critical communications where

errors and retransmissions are less tolerable. Thus, a strict frequency localization and a short sym-

bol duration (i.e., large subcarrier spacing) are more practical for the URLLC applications. Also,

mMTC operates at a low power level to save energy and might seriously suffer from interference in

an asynchronous heterogeneous network. Therefore, a more localized pulse shape in the frequency

domain is more suitable in this case.

An efficient numerology design ensures better utilization of spectral resources and will

be one of the core technologies to embrace diverse requirements in the new radio. However,

managing the coexistence of multiple numerologies in the same network is challenging. Although

OFDM numerologies are orthogonal in the time domain, any mismatch in parametrization such as

subcarrier spacing leads to inter-numerology interference (INI) in the frequency domain [26, 28]

as shown in Fig. 1.7-(b).

Chapter 2 proposes the utilization of adaptive guards in both time and frequency domains

as a solution to INI issue along with a multi-window operation in the physical (PHY) layer. The

adaptivewindowing operation needs a guard duration to reduce the unwanted emissions, and a guard

band is required to handle the INI level on the adjacent band. The guards in both domains are jointly

optimized with respect to the subcarrier spacing, use case (i.e., service requirement), and power

offset between the numerologies. Also, the multi-window approach provides managing each side

of the spectrum independently in case of an asymmetric interference scenario. Since the allowed

interference level depends on the numerologies operating in the adjacent bands, the potential of

adaptive guards is further increased and exploited with a medium access control (MAC) layer

scheduling technique. The proposed INI-based scheduling algorithm decreases the need for guards

by allocating the numerologies to the available bands, considering their subcarrier spacing, power

level, and SIR requirements. Therefore, INI management is performed with a cross-layer (PHY

10



and MAC) approach in this study. The results show that the precise design that accommodates such

flexibility reduces the guards significantly and improves the spectral efficiency of multi-numerology

systems.

1.2 Foundations of In Vivo Channel Modeling for Wireless Body Area Networks

Technological advances in biomedical engineering have significantly improved the quality

of life and increased life expectancy ofmany people. One component of such advanced technologies

is represented by wireless in vivo sensors and actuators, such as pacemakers, internal drug delivery

devices, nerve stimulators, and wireless capsule endoscopes (WCEs). In vivo-wireless body area

networks (WBANs) [29] and their associated technologies are the next step in this evolution and

offer a cost efficient and scalable solution with the integration of wearable devices. In vivo-

WBAN devices can provide continuous health monitoring and reduce the invasiveness of surgery.

Furthermore, the patient information can be collected over a larger period of time and physicians

are able to perform more reliable analysis by exploiting this big data rather than relying on the data

recorded in short hospital visits [5, 30].

In order to fully exploit and increase further the potential of WBANs for practical appli-

cations, it is necessary to enhance our knowledge about the propagation of electromagnetic (EM)

waveforms in an in vivo communication environment (implant-to-implant and implant-to-external

device) and obtain accurate channelmodels that are necessary to optimize the systemparameters and

build reliable, efficient, and high-performance communication systems. In particular, creating and

accessing such a model is necessary for achieving high data rates, target link budgets, determining

optimal operating frequencies, and designing efficient antennas and transceivers including digital

baseband transmitter/receiver algorithms. Therefore, investigation of the in vivo wireless commu-

nication channel is crucial to obtain a better performance for in vivo-WBAN devices and systems.

Although, on-body wireless communication channel characteristics have been well investigated [5],

there are relatively few studies of in vivo wireless communication channels [6, 8, 31].
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While there exist multiple approaches to in vivo communications, EM communications is

the focus of the study. Since the EM wave propagates through a very lossy environment inside

the body and predominant scatterers are present in the near-field region of the antenna, in vivo

channel exhibits different characteristics than those of the more familiar wireless cellular andWi-Fi

environments. In this subsection, the foundations of in vivo channel characterization is discussed.

1.2.1 Human Body Models and Propagation Through Tissues

In order to investigate the in vivo wireless communication channel, accurate body models

and knowledge of the electromagnetic properties of the tissues are crucial. Human autopsymaterials

and animal tissues have been measured over the frequency range from 10 Hz to 20 GHz [32] and

the frequency-dependent dielectric properties of the tissues are modeled by four-pole Cole-Cole

equation, which is expressed as:

ε(ω) = ε∞ +
4

∑
m=1

∆εm

1+( jωτm)(1−αm)
+

σ

jωε0
, (1.2)

where ε∞ stands for the body material permittivity at terahertz frequency, ε0 denotes the free-space

permittivity, σ represents the ionic conductivity and εm, τm, αm are the bodymaterial parameters for

each anatomical region. The electromagnetic properties such as conductivity, relative permittivity,

loss tangent, and penetration depth can be derived using these parameters in Eq. 1.2.

Various physical and numerical phantoms have been designed in order to simulate the

dielectric properties of the tissues for experimental and numerical investigation. These can be

classified as homogeneous, multi-layered and heterogeneous phantom models. Although, hete-

rogeneous models provide more realistic approximation to the human body, design of physical

heterogeneous phantoms is quite difficult and performing numerical experiments on these models

is very complex and resource intensive. On the other hand, homogeneous or multi-layer models

cannot differentiate the EM wave radiation characteristics for different anatomical regions. Fig.

1.8 shows examples of heterogeneous physical and numerical phantoms.
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(a) (b)

Figure 1.8: Heterogeneous human body models: (a) HFSS® model, (b) physical phantom [33].

Analytical methods are generally viewed as infeasible and require extreme simplifications.

Therefore, numerical methods are used for characterizing the in vivo wireless communication

channel. Numerical methods provide less complex and appropriate approximations to Maxwell’s

equations via various techniques, such as uniform theory of diffraction (UTD), finite integration

technique (FIT), method of moments (MoM), finite element method (FEM) and finite-difference

time-domain method (FDTD). Each method has its own pros and cons and should be selected based

on the simulation model and size, operational frequency, available computational resources and

interested characteristics such as power delay profile (PDP), specific absorption rate (SAR), etc. A

detailed comparison for these methods is available in [32] and [34].

It may be preferable that numerical experiments should be confirmed with real measure-

ments. However, performing experiments on a living human is carefully regulated. Therefore,

anesthetized animals [35, 36] or physical phantoms, allowing repeatability of measurement re-

sults, [33, 37] are often used for experimental investigation. In addition, the first study conducted

on a human cadaver was reported in [38].
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Propagation in a lossy medium, such as human tissues, results in a high absorption of EM

energy. The absorption effect varies with the frequency dependent electrical characteristics of the

tissues, which mostly consist of water and ionic content [39]. The specific absorption rate (SAR)

provides a metric for the absorbed power amount in the tissue and is expressed as follows:

SAR =
σ |E|2

ρ
, (1.3)

where σ , E and ρ represent the conductivity of the material, the RMS magnitude of the electric

field and the mass density of the material, respectively. The Federal Communications Commission

(FCC) recommends the SAR to be less than 1.6 W/kg taken over a volume having 1 gram of

tissue [40].

When an EM plane wave propagates through the interface of two media having different

electrical properties, its energy is partially reflected and the remaining portion is transmitted through

the boundary of these mediums. Superposition of the incident and the reflected wave can cause a

standing wave effect that may increase the SAR values [39]. Amulti-layer tissue model at 403MHz,

where each layer extends to infinity (much larger than the wavelength of EM waves) is illustrated

in Fig. 1.9. The dielectric values and power transmission factors of this model were calculated

in [41]. If there is a high contrast in the dielectric values of mediums/tissues, wave reflection

at the boundary increases and transmitted power decreases. The limitations on communications

performance imposed by the SAR limit have been investigated in [40].

In addition to the absorption and reflection losses, EM waves also suffers from expansion

of the wave fronts (which assume an ever-increasing sphere shape from an isotropic source in free

space), diffraction and scattering (which depend on the EM wavelength). Section 1.2.3 discusses

in vivo propagation models by considering these effects in detail.

1.2.2 Frequency of Operation and Antenna Design Considerations

Since EM waves propagate through the frequency dependent materials inside the body,

the operating frequency has an important effect on the communication channel. Accordingly, the
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Figure 1.9: Multi-layer human tissue model at 403 MHz (εr: Permittivity, σ : Conductivity, Pτ :
Power transmission factor).

allocated and recommended frequencies including their effects for the in vivo wireless commu-

nications are summarized in this subsection. Furthermore, unlike free-space communications, in

vivo antennas are often considered to be an integral part of the channel and they generally require

different specifications than the ex vivo antennas [32, 42–44]. Hence, their salient differences as

compared to ex vivo antennas are described as well.

The IEEE 802.15.6 standard [29] was released in 2012 to regulate short-range wireless

communications inside or in the vicinity of the human body, and are classified as human-body com-

munications (HBC) [45], narrow band (NB) communications, and ultra-wide band communications

(UWB). The frequency bands and channel bandwidths (BW) allocated for these communication

methods are summarized in Table 1.1. An IEEE 802.15.6 compliant in vivo-WBAN device must

operate in at least one of these frequency bands.

NB communications operates at lower frequencies compared to UWB communications and

hence suffer less from absorption. This can be appreciated by considering Eq. 1.2 and Eq. 1.3

that describe the absorption as a function of frequency. The medical device radio communications

service (MedRadio uses discrete bands within the 401-457 MHz spectrum including international

medical implant communication service (MICS) band) and medical body area network (MBAN,

2360-2400 MHz) are allocated by the FCC for medical devices usage. Therefore, co-user inter-

15



Table 1.1: Frequency bands and bandwidths for the three different propagation methods in IEEE
802.15.6.

Propagation

Method

IEEE 802.15.6 Operating Freq. Bands

Frequency Band BW

Selected 

References

Narrow Band

Communications

402 - 405 MHz 300 kHz
[8], [11], [16], [17], 

[20], [24]420 - 450 MHz 300 kHz

863 - 870 MHz 400 kHz

[8], [16], [20],

[24]
902 - 928 MHz 500 kHz

950 - 956 MHz 400 kHz

2360 - 2400 MHz 1 MHz

[8], [20], [24], [28]
2400 - 2438.5 MHz 1 MHz

UWB

Communications

3.2 - 4.7 GHz 499 MHz

[7], [15], [20], [28] 
6.2 - 10.3 GHz 499 MHz

Human - Body

Communications

16 MHz 4 MHz
[14]

27 MHz 4 MHz

ference problems are less severe in these frequency bands. However, NB communications are

only allocated small bandwidths (1 MHz at most) in the standard as shown in Table 1.1. The

IEEE 802.15.6 standard does not define a maximum transmit power and the local regulatory bo-

dies limit it. The maximum power is restricted to 25 µW EIRP (Equivalent Isotropic Radiated

Power) by FCC, whereas it is set to 25 µW ERP (Equivalent Radiated Power) by ETSI (European

Telecommunication Standards Institute) for the 402-405 MHz band.

UWB communications is a promising technology to deploy inside the body due to its

inherent features including high data rate capability, low power, improved penetration (propagation)

abilities through tissues and low probability of intercept. The large bandwidths for UWB (499MHz)

enable high data rate communications and applications. Also, UWB signals are inherently robust

against detection and smart jamming attacks because of their extremely lowmaximumEIRP spectral

density, which is -41.3 dBm/Mhz [46]. On the other hand, UWB communications inside the body

suffer from pulse distortion caused by frequency dependent tissue absorption and the limitations

imposed by compact antenna design.
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Figure 1.10: EM propagation through tissue interface.

In vivo antennas are subject to strict size constraints and in addition, they need to be bio-

compatible. Although, copper antennas have better performance, only specific types of materials

such as titanium or platinum should be used for in vivo communications due to their noncorrosive

chemistry [5]. The standard definition of the gain is not valid for in vivo antennas since it includes

body effects [47]. As noted above, the gain of the in vivo antennas cannot be separated from the

body effects as the antennas are considered to be an integral part of the channel. Hence, the in vivo

antennas should be designed and placed carefully. When the antennas are placed inside the human

body, their electrical dimensions and gains decrease due to the high dielectric permittivity and high

conductivity of the tissues, respectively [48]. For instance, fat has a lower conductivity than skin

and muscle. Therefore, in vivo antennas are usually placed in a fat (usually subcutaneous fat) layer

to increase the antenna gain. This placement also provides less absorption losses due to shorter

propagation path. However, the antenna size becomes larger in this case. In order to reduce high

losses inside the tissues, a high permittivity, low loss coating layer can be used. As the coating

thickness increases, the antenna becomes less sensitive to the surrounding material [48].

Lossy materials covering the in vivo antenna change the electrical current distribution in

the antenna and radiation pattern. It is reported in [42] that directivity of in vivo antennas increases

due to curvature of body surface, losses and dielectric loading from the human body. Therefore,

this increased directivity should be taken into account as well in order not to harm the tissues in

the vicinity of the antenna.
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(a) (b)

(c) (e)(d)

Figure 1.11: Selected in vivo antenna samples: a) A dual-band implantable antenna [49], b) A
miniaturized implantable broadband stacked planar inverted-F antenna (PIFA) [50], c) A

miniature scalp-implantable [30], d) A wideband spiral antenna for WCE [35], e) An implantable
folded slot dipole antenna [51].

In vivo antennas can be classified into two main groups as electrical and magnetic antennas.

Electrical antennas, e.g., dipole antennas, generate electric fields (E-field) normal to the tissues,

while magnetic antennas, e.g., loop antennas produce E-fields tangential to the human tissues [39].

Normal E-field components at the medium interfaces overheat the tissues due to the boundary

condition requirements as illustrated in Fig. 1.10. The muscle layer has a larger permittivity value

than the fat layer and hence, the E-field increases in the fat layer. Therefore, magnetic antennas

allow higher transmission power for in vivo-WBAN devices as can be understood from Eq. 1.3.

In practice, magnetic loop antennas require large sizes, which is a challenge to fit inside the body.

Accordingly, smaller size spiral antennas having a similar current distribution as loop antennas can

be used for in vivo devices [35]. Representative antennas designed for in vivo communications are

shown in Fig. 1.11.
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1.2.3 EM Wave Propagation Models for In Vivo Communications

Up to this point, important factors for in vivo wireless communication channel characte-

rization, such as EM modeling of the human body, propagation through the tissues, selection of

the operational frequencies, and in vivo antenna design considerations have been reviewed. In this

subsection, EM wave propagation inside the human body considering the anatomical features of

organs and tissues is discussed. Also, the analytical and statistical path loss models are presented.

Since the EM wave propagates through a very lossy environment inside the body and predominant

scatterers are present in the near-field region of the antenna, in vivo channel exhibits different

characteristics than those of the more familiar wireless cellular and Wi-Fi environments.

EM wave propagation inside the body is subject-specific and strongly related to the location

of antenna as demonstrated in [37, 42, 52] and [53]. Therefore, channel characterization is mostly

investigated for a specific part of the human body. For example, the heart area has been studied for

implantable cardioverter defibrillator and pacemakers, while the gastrointestinal tract (GI) including

esophagus, stomach and intestine has been investigated for WCE applications. The bladder region

is studied for wirelessly controlled valves in the urinary tract and the brain is investigated for neural

implants [44,54]. Also, clavicle, arm and hands are specifically studied as they are affected less by

the in vivo medium.

When the in vivo antenna is placed in an anatomically complex region, path loss, a measure

of average signal power attenuation, increases [52]. This is the casewith the intestinewhich presents

a complex structure with repetitive, curvy-shaped, dissimilar tissue layers, while the stomach has a

smoother structure. As a result, the path loss is greater in the intestine than in the stomach even at

equal in vivo antenna depths.

Various analytical and statistical path loss formulas have been proposed for the in vivo

channel in the literature as listed in Table 1.2. These formulas have been derived considering

different shadowing phenomena for the in vivo medium. The initial three models are functions of

the Friis transmission equation [32], return loss and absorption in the tissues. These models are
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Table 1.2: A review of selected studied path loss models for various scenarios.

DEMIR et al.: STATE OF THE ART OF IN VIVO WIRELESS COMMUNICATION CHANNELS 5

Brain: [31], [46]

Right Neck & Shoulder: [30]

Clavicle: [16]

Esophagus: [6]

Left pectoral muscle: [30]

Heart: [29]

Stomach: [6], [29], [30], [34]

Arm: [16], [30]

Intestine: [6], [47]
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Fig. 5: Investigated anatomical human body regions.

as listed in Table III. These formulas have been derived
considering different shadowing phenomena for the in vivo
medium. The initial three models are functions of the Friis
transmission equation [4], return loss and absorption in the
tissues. These models are valid, when either the far field
conditions are fulfilled or few scattering objects exist between
the transmitter and receiver antennas.

In the first model, free space path loss (FSPL) is expressed
by the Friis transmission equation. FSPL mainly depends
on gain of antennas, distance and operating frequency. Its

Table II: Further details on the numerical phantom based
studies presented in Fig. 5.

Ref. Freq. Antenna Investigation Method

[9] 2.45 GHz Dipole Antennas
FDTD on human body model.

Experiment on three-layered model.

[16]
402 and 868 

MHz
Point sources FDTD on human body model.

[17] 402 - 405 MHz
Novel implant 

antennas
FEM on human body model.

[18] 3.1 - 10.6 GHz Monopole antennas FEM on multi-layer model.

[20]
433, 915, 2450 

and 5800 MHz
Dipole antennas

MoM on homogenous and

three-layer models.

[25] 1 - 6 GHz

Electric Field probes 

(Ideal Isotropic

Antennas)

FIT on human body model.

[26] 915 MHz Dipole Antennas FEM on human body model.

[27] 100 - 2450 MHz Waveguide Ports FIT on human body model.

[28] 402 - 405 MHz Loop Antennas
FDTD on human body model.

Experiment on homogeneous model.

dependency on distance is a result of expansion of the wave
fronts as explained in Section III. Additionally, FSPL is
frequency dependent due to the relationship between the
effective area of the receiver antenna and the wavelength. The
following two equations in Table III are derived including
antenna return loss and absorption in the tissues to the FSPL
model. Then, another analytical model, PMBA, calculates the
SAR over the entire human body for the far and near fields,
and gives the received power using the calculated absorption.

Table III: A review of selected studied path loss models for various scenarios.

Model Formulation

   FSPL Pr = PtGtGr(
λ

4πR
)2

       FSPL with RL Pr = PtGt(1− |S11|2)Gr(1− |S22|2)( λ
4πR

)2

  FSPL with RL and Absorption Pr = PtGt(1− |S11|2)Gr(1− |S22|2)( λ
4πR

)2(e−αR)2

   PMBA for near and far field Prn =
16δ(Pt−PNF )

πL2 Ae, Prf =
(Pt−PNF−PFF )λ2

4πR2 GtGr

      Statistical Model-A PL(d) = PL0 + n(d/d0) + S (d0 ≤ d)

         Statistical Model-B PL(d) = PL(d0) + 10nlog10(d/d0) + S (d0 ≤ d)

Pr/Pt stands for the received/transmitted power; Gr/Gt denotes the gain of the receiver/transmitter
antenna; λ represents the free space wavelength; R is the distance between transmitter and receiver
antennas; |S11| and |S22| are the reflection coefficients of receiver/transmitter antennas; α is the
attenuation constant; PNF /PFF is the loss in the near/far fields; Prn&Prf represents received power
for near and far fields; δ is Ae/A where Ae is the effective aperture and A is the physical aperture of
the antenna; L is the largest dimension of the antenna; d is the depth distance from the body surface;
d0 is the reference depth distance; n is the path loss exponent; PL0 is the intersection term in dB;
S denotes the random shadowing term. Abbreviations: FSPL represents free space path loss in the far
field, RL is the return loss, PMBA is the propagation loss model.

valid, when either the far field conditions are fulfilled or few scattering objects exist between the

transmitter and receiver antennas.

In the firstmodel, free space path loss (FSPL) is expressed by the Friis transmission equation.

FSPL mainly depends on gain of antennas, distance and operating frequency. Its dependency on

distance is a result of expansion of the wave fronts as explained in Section III. Additionally, FSPL

is frequency dependent due to the relationship between the effective area of the receiver antenna

and the wavelength. The following two equations in Table III are derived including antenna return

loss and absorption in the tissues to the FSPL model. Then, another analytical model, PMBA,

calculates the SAR over the entire human body for the far and near fields, and gives the received

power using the calculated absorption. Although, these analytical expressions provide intuition

about each component of the propagation models, they are not practical for link budget design as

similar to the wireless cellular environment.
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The free space path loss (FSPL) is expressed by the Friis transmission equation in the

first model in Table 1.2. The FSPL mainly depends on gain of antennas, distance, and operating

frequency. Its dependency on distance is a result of expansion of the wave fronts as explained in

Section III. Additionally, FSPL is frequency dependent due to the relationship between the effective

area of the receiver antenna and wavelength. The two equations of the FSPL model in Table 1.2 are

derived including the antenna return loss and absorption in the tissues. Another analytical model,

PMBA [55], calculates the SAR over the entire human body for the far and near fields, and gives

the received power using the calculated absorption. Although, these analytical expressions provide

intuition about each component of the propagation models, they are not practical for link budget

design as similar to the wireless cellular communication environment.

The channel modeling subgroup (Task Group 15.6), which worked on developing of IEEE

802.15.6 standard, submitted their final report on body area network (BAN) channel models in

November 2010. In this report, it is determined that Friis transmission equation can be used for

in vivo scenarios by adding a random variation term and the path loss was modeled statistically

with a log-normal distributed random shadowing S and path loss exponent n [46]. The path loss

exponent (n) heavily depends on environment and is obtained by performing extensive simulations

and measurements. In addition, the shadowing term (S) depends on the different body materials

(e.g. bone, muscle, fat, etc.) and the antenna gain in different directions [43]. The research efforts

on assessing the statistical properties of the in vivo propagation channel are not finalized, and there

are still many open research efforts dedicated to building analytical models for different body parts

and operational frequencies [33, 42, 43, 53, 56].

Chapter 3 presents an in vivo wireless communication channel characterization for male

torso both numerically and experimentally (on a human cadaver) considering various organs at

915 MHz and 2.4 GHz. A statistical PL model is introduced, and the anatomical region-specific

parameters are provided. It is found that the mean PL in dB scale exhibits a linear decaying

characteristic rather than an exponential decaying profile inside the body, and the power decay rate

is approximately twice at 2.4 GHz as compared to 915 MHz. Moreover, the variance of shadowing
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Figure 1.12: Functional model of an SSVEP-based BCI.

increases significantly as the in vivo antenna is placed deeper inside the body since the main

scatterers are present in the vicinity of the antenna. Multipath propagation characteristics are also

investigated to facilitate proper waveform designs in the future wireless healthcare systems. Results

show that the in vivo channel exhibit different characteristics than the classical communication

channels, and location dependency is very critical for accurate, reliable, and energy-efficient link

budget calculations.

1.3 Foundations of SSVEP based Brain-computer Interfaces

1.3.1 Brain-computer Interfaces

Scientific advances in neuroscience and biomedical engineering enabled a direct commu-

nication channel between the human brain and a computer. The electrical activity in the brain that

is produced by neuronal post-synaptic membrane polarity changes can be monitored to detect the

user’s intentions [57]. A brain-computer interface (BCI) [58] analyzes the brain signals and trans-

lates them into commands for external devices such as a speller device, wheelchair, robotic arm,

or a drone (Fig. 1.12). Since BCIs utilize the signals generated by the central nervous system, the

primary target of this technology is people with severe neuromuscular disorders (e.g., amyotrophic

lateral sclerosis, brain-stem stroke, spinal cord injury, and cerebral palsy). However, advanced BCI
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Figure 1.13: The number of articles on BCI research over years (The data is obtained from
PubMed on March 21, 2020).

systems serve healthy people as well by providing an alternative way of communication, control,

and security [59–61]. Hence, these systems have evolved to be a promising part of the body area

network [5, 6, 8, 62, 63]. There is a growing interest in BCI research, and the number of scientific

articles on this fascinating research field increases exponentially, as shown in Fig. 1.13.

1.3.2 Steady-state Visual Evoked Potentials

While there exist multiple approaches to measure brain activity (such as magnetoencepha-

logram (MEG), near-infrared spectroscopy (NIRS), electrocorticogram (ECoG), and functional

magnetic resonance imaging (fMRI)), electroencephalography (EEG) is widely used in BCI appli-

cations because of its high temporal resolution, which is essential for BCIs to work as real-time

systems [64]. In addition, EEG devices are inexpensive and portable. Various EEG signals could

serve to drive BCIs. For example, a distinctive oscillation pattern in EEG is observed when a

sensory stimulus such as visual or auditory is presented to a human. These oscillations are called

as evoked potentials (EPs), and they disappear after a short period. If the stimulus is repeated
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Figure 1.14: A comparison of various BCI modalities with respect to their training time and
information transfer rate [69].

at a regular rate, the EPs do not have time to decay, and it causes a periodic response which is

called as steady-state evoked potentials [65]. More specifically, a periodic visual stimulus with a

repetition rate higher than 6 Hz elicits steady-state visual evoked potentials (SSVEPs) which are

more prominent in the occipital region of the brain [4, 66]. The targets that evoke SSVEPs are

encoded in various ways [60, 67], and the users make a selection by shifting their attention to the

desired target in SSVEP based BCIs. Among other BCI modalities which depend on other EEG

signals (e.g., slow cortical potentials, sensorimotor rhythms, and event-related potentials), SSVEP

based BCIs have the advantage of high information transfer rate (ITR) and short training duration

to operate the device [68] as shown in Fig. 1.14 [69].

SSVEPs are sinusoidal-like waveforms, and they appear at the same fundamental frequency

of the driving stimulus and its harmonics (Fig. 1.15) [66]. However, spontaneous oscillations (i.e.,

background activity), which are not related to the stimulation, exist in theEEG recordings aswell and

a robust recognition algorithm is required to build a reliable BCI system. Numerous methods have

been proposed for SSVEP recognition in the last decade [68,70–75]. Power spectral density analysis

(PSDA) is a typical approach since the distinctive features of SSVEPs are observed in the frequency

domain [68]. However, PSDA is susceptible to noise, and long durations are needed to increase
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Figure 1.15: SSVEP response to frequency-coded stimuli at the occipital region of the brain.

the signal to noise ratio (SNR). A multivariable statistical method, namely canonical correlation

analysis (CCA) [70, 72] exploits the multiple channel covariance information to enhance SNR and

provide a better recognition accuracy compared to PSDA. Simple implementation, high robustness,

and better ITR performance have made CCA attractive in SSVEP recognition research. On the

other hand, CCA is not efficient to extract the discriminative information embedded in the harmonic

components of SSVEPs, and filter-bank canonical correlation analysis (FBCCA) [73] is proposed to

handle this issue. Although FBCCA captures the distinct spectral properties of multiple harmonic

frequencies successfully, it neglects any correlation information between SSVEP responses at

different frequencies [74]. Furthermore, this approach disregards the frequency selective nature of

SSVEPs due to the utilization of wide-band filters which cover the whole stimuli bandwidth.

Chapter 4 introduces bio-inspired filter banks (BIFBs) for improved SSVEP frequency

recognition. To fully exploit the capabilities of such devices, it is necessary to understand the

underlying biological features of SSVEPs and design the system considering their inherent cha-

racteristics. SSVEPs are frequency selective, subject-specific, and their power gets weaker as the

frequency of the visual stimuli increases. Therefore, the gain and bandwidth of the filters are desig-

ned and tuned based on these characteristics while also incorporating harmonic SSVEP responses.
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The BIFBs are utilized in the feature extraction stage to increase the separability of classes. This

method not only improves the recognition accuracy but also increases the total number of available

commands in a BCI system by allowing the use of stimuli frequencies that elicit weak SSVEP

responses. The BIFBs are promising particularly in the high-frequency band, which causes less

visual fatigue. Hence, the proposed approach might enhance user comfort as well. The BIFB

method is tested on two online benchmark datasets and outperforms the compared methods. The

results show the potential of bio-inspired design, and the findings will be extended by including

further SSVEP characteristics for future SSVEP based BCIs.
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Chapter 2: Inter-numerology Interference Management with Adaptive Guards

2.1 Introduction

The next generation communication systems including 5G are expected to support high

flexibility and a diverse range of services, unlike the previous standards. The IMT-2020 vision

defines the use cases into three main categories as enhanced mobile broadband (eMBB), massive

machine type communications (mMTC), and ultra-reliable low-latency communications (URLLC)

featuring 20 Gb/s peak data rate, 106/km2 device density, and less than 1 ms latency, respectively

[13]. The applications which demand high data rate and better spectral efficiency fall into the

eMBB category, whereas the ones which require ultra-high connection density and low power

consumption falls into the mMTC category. Moreover, the mission-critical applications, where

errors and retransmissions are less tolerable, are categorized in URLLC. Therefore, a flexible air

interface is required to meet these different requirements 2.

Orthogonal frequency-division multiplexing (OFDM) is the most popular waveform that

is currently being used in various standards such as 4G LTE and the IEEE 802.11 family [16].

It provides several tempting features such as efficient hardware implementation, low-complexity

equalization, and easy multiple-input-multiple-output (MIMO) integration. On the other hand,

OFDM seriously suffers from its high out-of-band emissions (OOBE), peak-to-average power ratio

(PAPR), and strict synchronization requirements. In addition, 4G LTE adopts a uniform OFDM

parameter configuration in pursuit of orthogonality and cannot serve different needs efficiently.

Numerous waveforms have been proposed [9,18–22] considering all these disadvantages, but none

of them can address all the requirements of the upcoming 5G standard [23]. Therefore, OFDM

2This chapter was published in [11]. Permission is included in Appendix A.
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remains as the waveform of the new radio [2, 24, 25], and a flexible waveform parametrization,

which is also known as numerology [26, 27], is introduced to embrace diverse requirements.

The channel conditions, use cases, and system scenarios are the most critical considerations

for the numerology design. For example, the subcarrier spacing of OFDM should be kept large

to handle the Doppler spread in a highly mobile environment. On the other hand, a smaller

subcarrier spacing provides a longer symbol duration and decreases the relative redundancy that

is allocated for time dispersion. An efficient numerology design ensures better utilization of

spectral resources and numerology multiplexing will be one of the core technologies in the new

radio [76]. However, managing the coexistence of multiple numerologies in the same network is

challenging. Although OFDM numerologies are orthogonal in the time domain, any mismatch

in parametrization, such as subcarrier spacing, leads to inter-numerology interference (INI) in

the frequency domain [26, 28]. Despite the fact that it is a new interference type, which will

be an issue for 5G, extensive research led to in-depth INI analyses and various INI management

techniques [26, 28, 77–83]. For instance, windowing [77, 78] and filtering [79, 81] operations are

performed at both transmitter and receiver side along with the guard band allocation to mitigate the

unwanted emissions from non-orthogonal numerologies. In addition, it is demonstrated that mixed

transparent waveform processing can be applied to optimize the complexity-performance trade-off

at transmitter and receiver separately [80]. Precoding techniques at the transmitter [82, 84] and

interference cancellation algorithms at the receiver [77] are also considered for multi-numerology

coexistence. Last but not least, waveform multiplexing [26,83] is suggested for mixed numerology

management as well. Among these physical (PHY) layer techniques, the windowing operation

has a relatively less complexity, which is almost at the same level compared to CP-OFDM [80].

Also, the windowing approach preserves the essential structure of the OFDM transceivers and

provides backward compatibility for the current OFDM-based systems. The windowing operation

requires an extra period, which extends the guard duration between the consecutiveOFDMsymbols.

Also, additional guard bands are still required between adjacent channels to deal with the INI. In

other words, better interference mitigation is realized with the cost of reduced spectral efficiency.
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Accordingly, the future communication systems have to optimize the guards in both time and

frequency domains to improve the spectral efficiency.

This chapter proposes the utilization of adaptive guards alongwith amulti-windowoperation

in the PHY layer to manage the INI, which is an issue in the mixed numerology systems. The guard

band and the window parameters that handle the guard duration are jointly optimized regarding the

subcarrier spacing, use case, and power offset between the numerologies. Also, the multi-window

technique provides managing each side of the spectrum independently in case of an asymmetric

interference scenario. Since the allowed interference level depends on the numerologies operating

in the adjacent bands, the potential of adaptive guards is further increased and exploited with a

medium access control (MAC) layer scheduling technique. The proposed INI-based scheduling

algorithm decreases the need for guards by allocating the numerologies to the available bands,

considering the subcarrier spacing, power level, and SIR requirements. Therefore, INI management

is performed with a cross-layer (PHY and MAC) approach in this study. The preliminary results

without a mixed-numerology guard optimization, a multi-window operation, or an elaborate INI-

based scheduling algorithm and its evaluation were presented in [85]. Recently, a U.S. patent [86]

is issued for the proposed technique and final research outcomes are published in [11] as well. The

main contributions of this chapter are listed as follows:

• The key parameters for guard allocation are identified considering a mixed numerology

system.

• The guards in both time and frequency domains are jointly optimized with respect to the

subcarrier spacing, use case, and power offset between the numerologies.

• An interference based scheduling algorithm is proposed to decrease the need for guards.

The remaining part of this chapter is structured as follows. Section 2.2 is dedicated to the

system model, and it describes the guard design methodology in detail. Section 2.3 presents the

guard optimization procedure considering the key parameters of the mixed numerology system.
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Section 2.4 introduces the INI-based scheduling algorithm along with the utilization of adaptive

guards. Finally, Section 2.5 summarizes the contributions and concludes Chapter 2.

2.2 System Model

Consider the uplink of a multiuser OFDM system, where asynchronous numerologies with

different subcarrier spacing, power level, and use case (i.e., service requirements) operate in the

same network. Each numerology can serve multiple synchronous user equipments (UEs) and is

assigned to a different bandwidth part (BWP) [24]. A transmitter windowing operation is performed

to improve the spectral localization of numerologies and manage interference level on the adjacent

BWPs. The guard duration that is allocated for the time-dispersive channel (i.e., TCP−Ch) is

fixed, and it is adequate to deal with the inter-symbol interference (ISI). Also, an extra guard

duration is needed for windowing operation. Various windowing functions have been compared

thoroughly [87] with different trade-offs between the main lobe width and the side lobe suppression.

The optimal windowing function is outside the scope of this paper, and a raised-cosine (RC)window

is utilized due to its low computational complexity and widespread use in the literature [15,88,89].

The RC window function [88] is formulated by the following equation:

g[n] =



1
2 +

1
2 cos

(
π + πn

αNT

)
0≤ n≤ αNT

1 αNT ≤ n≤ NT

1
2 +

1
2 cos

(
π− πn

αNT

)
NT ≤ n≤ (α +1)NT,

(2.1)

where α is the roll-off factor (0≤ α ≤ 1) and NT denotes the symbol length. The roll-off factor (α)

handles the taper duration of the RC window function. As α increases, the INI decreases with the

cost of increased redundancy. The transmitter windowing operation is shown in Fig. 2.1. Initially,

the guard duration is increased with an additional cyclic prefix (CP) and a newly added cyclic suffix

(CS). Afterward, the window function is applied to the extended symbol. The transition parts

(i.e., ramp-ups and ramp-downs) of adjacent symbols are overlapped to reduce the time-domain

overhead emerging from the windowing operation.
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Figure 2.1: Transmitter windowing operation and guard duration allocation.
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Figure 2.2: Guard band allocation between two numerologies considering the allowed
interference level (θ ) in the adjacent band.

Usually, thewindowing operation is not enough tomanage the inter-numerology interference

(INI), and non-negligible guard bands are still required. However, the total amount of guard band

(GB) or the length of guard duration (GD) which is needed for windowing operation depends on the

subcarrier spacing of the interference source, the required signal to interference ratio (SIR) level

of the numerology in its adjacent bands, and the power offset (PO) between them. The adaptive

guard concept is represented with two numerologies in Fig. 2.2 and can be generalized to multiple

numerologies by considering one pair at a time. The threshold for allowed interference level on the

adjacent band is represented with θ , and it is expressed as follows:

θ∆ f ,i = Pi−Pj +S j, (2.2)
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where Pi represents the in-band power of the interference source, S j denotes the required SIR in the

adjacent band to achieve a given target bit error rate considering device complexity for processing,

and ∆ f indicates the subcarrier spacing of the interference source. It should be noted that the

different use case requirements and device capabilities are reflected in the required SIR parameter,

power level, and subcarrier spacing. Also, θ∆ f implies an adaptive brick-wall type spectral mask

for a simple evaluation in this study. However, it is possible to extend it to more complicated mask

structures along with the adjacent channel leakage ratio (ACLR) threshold [90]. The guards in

both time and frequency domains are utilized regarding θ∆ f to achieve the desired SIR level of the

numerology on the adjacent band. Throughout the numerical evaluations in this study, GD (i.e.,

TCP−Win) and GB are adaptive, and these guards are optimized in Section 2.3. Also, a multi-window

operation [91] [92] can be performed in case of an asymmetric interference scenario to manage each

side of the spectrum independently considering θLe f t and θRight as shown in Fig. 2.3. The total CP

length must be kept the same for synchronicity when a multi-window operation is performed, and

the extra CP duration is reserved to solve possible time-domain issues. The remaining parameters

of the windowed-OFDM (W-OFDM) system are listed in Table 2.1.

The potential of adaptive guards is increased further, along with the utilization of INI-based

scheduling algorithm. Consider frequency domain multiplexed M asynchronous numerologies as

shown in Fig. 2.4. Different channel conditions, use cases, and system scenarios result in a change

in subcarrier spacing, power level, and SIR requirement of the numerologies as mentioned in

Section 2.1. The optimal numerology assignment is beyond the scope of this study, and the reader

is referred to [93] for more details on this topic. In this article, the spectral efficiency is optimized

while ensuring the required SIR levels for a given numerology set. The power level and SIR

requirement of each numerology are generated randomly in such a way that θ changes from 0 dB to

60 dB. Also, ∆ f gets discrete values of {15,30} kHz and {60,120} kHz with a uniform probability

distribution in the frequency range-1 (FR1, a.k.a. sub-6 GHz bands) and frequency range-2 (FR2,

a.k.a. millimeter-wave bands) [2], respectively. Assuming that the base station obtains all these
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Figure 2.3: (a) Asymmetric interference scenario in a mixed numerology network; (b) Block
diagram of the multi-window operation.

Table 2.1: Simulation parameters.

Parameter Value

Subcarrier Spacing (kHz) 15 30 60 120

TOFDM (µs) 66.7 33.3 16.7 8.3

TCP-channel (µs) 4.68 2.34 1.17 0.59

FFT Size 2048

Number of Active Subcarriers 1024

CPchannel Size 144

# OFDM Symbols 300

Window Type Multi-window

Window Function Raised Cosine
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Figure 2.4: Frequency domain multiplexed numerologies.

necessary information perfectly and there are M available subbands, it allocates the numerologies

to the available subbands out of M! possible arrangements intelligently considering the INI.

2.3 Optimization of the Adaptive Guards

Assuming that the data at each subcarrier are statistically independent and mutually ortho-

gonal, the power spectral density (PSD) of an OFDM signal is obtained by summing the power

spectra of individual subcarriers, and it is expressed by the following equation [94–96]:

Pf (x) =
σ2

d
T ∑

k
|G [( f − k∆ f )T ]|2 , (2.3)

where σ2
d represents the variance of the data symbols, T denotes the symbol duration, k stands for

the subcarrier index, ∆ f shows the subcarrier spacing, andG is the frequency domain representation

of pulse shaping window. An OFDM signal is well localized in the time domain with a rectangular

pulse shape, which is equivalent to a sinc shape in the frequency domain. The sidelobes of the sincs

result in a serious INI issue, and they should be reduced to prevent interference. Particularly, the
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frequency domain localization is crucial for asynchronous transmissions across adjacent subbands

and peaceful coexistence with other numerologies in the network. The sidelobes of RC function is

controlled with the parameter α as shown in the following relationship [97]:

G =
sin (π f T )

π f T
cos (πα f T )

1− (2α f T )2 0≤ α ≤ 1. (2.4)

Equation 2.3 and equation 2.4 show that the parameters T (i.e., ∆ f = 1/T ) and α have an important

effect on the PSD of W-OFDM. Figure 2.5 illustrates the effect of these parameters on the PSD

separately. It should be noted that a significant contribution to unwanted emissions in the passband

comes from RF front-end impairments as well, including power amplifier nonlinearities. However,

these impairments heavily depend on many implementation-dependent factors, such as the appli-

cation type, operational frequency, bandwidth of the signal, and complexity of the device, and are

not considered in this study.

In a mixed numerology network, the INI can be managed by windowing operation and

allocating guard band between adjacent numerologies as described in Section 2.2. Since the

windowing operation reduces the unwanted emissions with a cost of extra guard duration, the INI

management procedure boil downs to the adaptive utilization of guard duration (GD) and guard

band (GB) to achieve a desired interference threshold (θ ). Figure 2.6 demonstrates the required

GB and GD amounts for selected θ values considering a W-OFDM signal with ∆ f = 15 kHz.

Each α value in the figure represents a GD allocation to carry out windowing operation, and a GB

allocation to handle the rest of interference for a given θ .

A tremendous time-frequency resource is required to deal with the INI issue only with GB

or GD allocation. Hence, GB and GD have to be jointly optimized in order to improve the spectral

efficiency, which is measured as the information rate that can be transmitted over a given bandwidth.

This hyper-parameter optimization has been carried out by a grid search method through amanually

designated subset of the hyper-parameter space [98]. The spectral efficiency (η) is proportional

to the multiplication of efficiencies in the time and frequency domains, which are calculated as

follows:
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ηtime =
TOFDM

TOFDM +TCP−Ch +TCP−Win
, (2.5)

η f req =
OBW

OBW +(GB×2)
. (2.6)

Considering TOFDM, TCP−Ch, and occupied bandwidth (OBW ) are fixed parameters for a given ∆ f ,

the degrees of freedom that can be selected independently becomes only GB and GD (i.e., TCP−Win).

The optimization problem that looks for the optimal GB and GD pair can be defined as follows:

(GB, GD) = arg max
GB,GD

(ηtime×η f req) , (2.7)

subject to: Pi−Pj +S j ≤ θ∆ f ,i . (2.8)
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The spectral efficiencies for selected θ values are shown in Fig. 2.7. Each α value in the

figure is equivalent to a GB-GD pair for a given θ , and the peak value of each curve determines the

optimal pair. These optimal pairs are summarized in Table 2.2 along with the related parameters

for various ∆ f . The results reveal that the need for windowing diminishes as θ decreases, and

accordingly, the desired interference level can be accomplished only with a few guard subcarriers.

Also, the spectral efficiency increases with the decrease in θ . The change in required guards clearly

confirms that the adaptive guard design enhances the spectral efficiency significantly compared

to designing the mixed numerology system considering the worst case scenario (e.g., ηθ=45 dB =

85.98%whereas ηθ=20 dB = 92.53%). Despite the fact that the computational complexity increases

compared to traditional OFDM-based systems, the computation of the optimal GB-GD pairs is an

offline action that needs a one-time calculation. Therefore, a lookup table procedure can be used

to decrease complexity.
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Table 2.2: Optimal guard duration (GD) and guard band (GB) pairs for selected θ .

θ
[dB]

𝚫𝐟 = 𝟏𝟓 𝐤𝐇𝐳 𝚫𝐟 = 𝟑𝟎 𝐤𝐇𝐳 𝚫𝐟 = 𝟔𝟎 𝐤𝐇𝐳 𝚫𝐟 = 𝟏𝟐𝟎 𝐤𝐇𝐳

α
GD 
[μs]

GB 
[kHz]

η
[%]

α
GD 
[μs]

GB 
[kHz]

η
[%]

α
GD 
[μs]

GB 
[kHz]

η
[%]

α
GD 
[μs]

GB 
[kHz]

η
[%]

20 0.0000 0.00 74.88 92.53 0.0000 0.00 154.44 92.50 0.0000 0.00 249.83 92.68 0.0000 0.00 557.22 92.59

25 0.0033 0.23 210.11 90.65 0.0033 0.11 390.13 90.83 0.0033 0.06 857.94 90.60 0.0033 0.03 1582.9 90.79

30 0.0233 1.69 217.33 88.75 0.0167 0.60 534.34 88.79 0.0167 0.30 1037.3 88.88 0.0167 0.15 2121.9 88.81

35 0.0300 2.21 272.87 87.51 0.0267 0.98 609.44 87.47 0.0300 0.55 1083.9 87.53 0.0267 0.24 2426.1 87.49

40 0.0367 2.70 306.71 86.57 0.0300 1.11 715.19 86.59 0.0333 0.62 1318.6 86.58 0.0367 0.34 2449.7 86.57

45 0.0367 2.70 360.58 85.98 0.0367 1.35 722.70 85.98 0.0367 0.68 1434.8 86.01 0.0367 0.34 2886.1 85.98

2.4 Inter-numerology Interference (INI)-based Scheduling

The total guard amount is reduced with the joint optimization of the guard band (GB) and

guard duration (GD) for a given interference threshold (θ∆ f ) in Section 2.3. The optimization

results show that the spectral efficiency (η) decreases as θ increases. Also, the numerologies

with larger subcarrier spacing (∆ f ) require more guards, and they lead to lower η values in a

mixed numerology network. Since θ depends on the numerologies operating in the adjacent

bands, the potential of adaptive guards can be enhanced further along with the utilization of an

interference-based scheduling algorithm.

The proposed scheduling algorithm groups the numerologies and allocate them to the

available subbands considering the inter-numerology interference (INI). The numerologies with

similar subcarrier spacing, power level, and SIR requirements are arranged together in order to

decrease the mean θ in the network. Consequently, the need for guards reduces, and the spectral

efficiency improves. The steps of the proposed INI-based scheduling algorithm are listed as follows:

1. Sort the numerologies regarding their ∆ f value in an ascending/descending order.

2. Calculate the similarity metric for all numerologies as β j = SIR j−Pj.

3. Sort β in an ascending/descending order for the numerologies with the same ∆ f .

4. If β value repeats, sort based on power in the adjacent band.
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Table 2.3: Key parameters of randomly scheduled numerologies for adaptive guard allocation.

Band 1 2 3 4 5 6 7 8

Numerology ID 1 2 3 4 5 6 7 8

𝚫𝚫𝚫𝚫 [kHz] 30 15 15 30 15 15 30 15

Req. SIR [dB] 20 20 20 25 20 25 35 20

Rx Power [dBm] 0 -10 -15 0 -5 -25 -10 -20

Power Offset [dB] 10 -10, 5 -5, -15 15, 5 -5, 20 -20, -15 15, 10 -10

Intf. Thr. (θA, θB) [dB] 30 10, 25 15, 10 35, 25 20, 45 0, 20 40, 30 25

Band 1 2 3 4 5 6 7 8

Numerology ID 7 4 1 5 2 3 8 6

𝚫𝚫𝚫𝚫 [kHz] 30 30 30 15 15 15 15 15

Req. SIR [dB] 35 25 20 20 20 20 20 25

Rx Power [dBm] -10 0 0 -5 -10 -15 -20 -25

Power Offset [dB] -10 10, 0 0, 5 -5, 5 -5, 5 -5, 5 -5, 5 -5

Intf. Thr. (θA, θB) [dB] 15 45, 20 25, 25 15, 25 15, 25 15, 25 15, 30 15

Table 2.4: Key parameters of INI-based scheduled numerologies for adaptive guard allocation.

Band 1 2 3 4 5 6 7 8

Numerology ID 1 2 3 4 5 6 7 8

𝚫𝚫𝚫𝚫 [kHz] 30 15 15 30 15 15 30 15

Req. SIR [dB] 20 20 20 25 20 25 35 20

Rx Power [dBm] 0 -10 -15 0 -5 -25 -10 -20

Power Offset [dB] 10 -10, 5 -5, -15 15, 5 -5, 20 -20, -15 15, 10 -10

Intf. Thr. (θA, θB) [dB] 30 10, 25 15, 10 35, 25 20, 45 0, 20 40, 30 25

Band 1 2 3 4 5 6 7 8

Numerology ID 7 4 1 5 2 3 8 6

𝚫𝚫𝚫𝚫 [kHz] 30 30 30 15 15 15 15 15

Req. SIR [dB] 35 25 20 20 20 20 20 25

Rx Power [dBm] -10 0 0 -5 -10 -15 -20 -25

Power Offset [dB] -10 10, 0 0, 5 -5, 5 -5, 5 -5, 5 -5, 5 -5

Intf. Thr. (θA, θB) [dB] 15 45, 20 25, 25 15, 25 15, 25 15, 25 15, 30 15

5. Check P on both sides of the available band. If P is the same with the numerology in its

adjacent band, allocate the numerology with a higher SIR requirement to the edge.

The performance of the INI-based scheduling algorithm is evaluated numerically, and its

performance is compared with the performance of a random scheduling strategy. The allocation

probability to any given subband is 1/M for all numerologies (i.e., uniform probability distribution)

in the random scheduling strategy. Eight numerologies (i.e., M = 8) are considered in Monte Carlo

simulations, and a random parameter set is assigned to numerologies for each realization, as

discussed in Section 2.2. The key parameters of an exemplary realization, such as subcarrier

spacing, power level, and SIR requirement, are listed in Tables 2.3 and 2.4. The random scheduling

strategy and the INI-based scheduling strategy are implemented for the same parameter set, as

illustrated in Fig. 2.3 and Fig. 2.8, respectively. Although the guards in both time and frequency

domains are jointly optimized in the PHY layer for both cases, they utilize different scheduling

algorithms in the MAC layer. As a result, any performance difference can be attributed to the
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Figure 2.8: INI-based scheduled numerologies with various use cases.

proposed scheduling algorithm. Furthermore, a fixed guard allocation strategy is implemented

with the random scheduling method to demonstrate the effectiveness of the proposed adaptive

guard allocation. The guards are assigned considering the worst-case scenario (i.e., highest θ∆ f )

in the fixed guard allocation strategy.

The system performance is evaluated in terms of spectral efficiency (η) and the average

evaluation results (out of 100 independent realizations) for various guard allocation and scheduling

strategies, which are the fixed guard allocation with the random scheduling, the adaptive guard

allocation with the random scheduling, and the adaptive guard allocation with the INI-based

scheduling, are presented in Table 2.5. The results demonstrate that the GD and GB amounts are

reduced by 43% and 34%, respectively when the fixed guards are replaced with the adaptive guards

in the frequency range-1 (FR1) scenario. Also, the GD and GB amounts are reduced further by 10%

and 27%, respectively, when the proposed INI-based scheduling strategy is implemented instead of

the random scheduling strategy. It is worth to note that η is lower in the frequency range-2 (FR2)

case since more guards are required for the numerologies with higher ∆ f values due to their higher

unwanted emissions. Although it can be compensated with an increased number of subcarriers

(FR2 is suitable for wider bands), it is kept as fixed to 256 for a fair comparison with the FR1 case

in the numerical evaluations.
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Table 2.5: Spectral efficiency comparison for various guard allocation and scheduling strategies.

Scenario

Total Guard
Duration [μs]

Total Guard 
Band [kHz]

Spectral 
Efficiency [%]

FR1 FR2 FR1 FR2 FR1 FR2

Fixed Guards &
Random Scheduling

16.08 4.12 5018.4 1927.4 81.22 77.35

Adaptive Guards &
Random Scheduling

9.09 2.24 3335.7 1310.2 85.32 82.19

Adaptive Guards &
INI-based Scheduling

8.15 2.06 2428.8 971.9 87.10 84.65

The proposed INI-based scheduling strategy is particularly important when there is a severe

power imbalance between the numerologies (i.e., a set of synchronous UEs). The current mobile

networks adopted a power control mechanism in the uplink to manage interference between neig-

hboring bands. However, this solution restricts the UEs with better channel conditions to deploy

higher-order modulations and decreases the spectral efficiency. The proposed scheduling technique

can relax the power control mechanism and improve throughput. Also, it should be noted that

the channel-based scheduling can be performed to orthogonal/synchronous UEs within a given

numerology, whereas the INI-based scheduling can be performed to non-orthogonal/asynchronous

numerologies for reduced complexity.

2.5 Conclusions

A novel inter-numerology interference (INI) management technique with a cross-layer

approach is proposed in this study. The adaptive guards in both time and frequency domains are

utilized along with a multi-window operation in the PHY layer and jointly optimized considering

the use case, subcarrier spacing, and power offset between the numerologies. Since the allowed

interference level depends on the numerologies operating in the adjacent bands, the potential

of adaptive guards is further increased and exploited with a MAC layer scheduling technique.

The proposed INI-based scheduling algorithm decreases the need for guards by allocating the

numerologies to the available bands, considering their subcarrier spacing, power level, and SIR
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requirements. It is demonstrated that the optimized guard allocation and INI-based scheduling

algorithm improves the spectral efficiency significantly while taking into account the different use

case requirements and device capabilities.

The results show that the precise design that accommodates such flexibility reduces the

guards and improves the performance of mixed numerology systems. The INI management techni-

que is proposed on the transmitter side in the PHY layer along with a MAC layer scheduling

technique in this study. The guards are designed in such a way that it guarantees the required SIR

levels for each numerology in the network. Therefore, the theoretical upper bounds on the bit error

rate can be obtained in a straightforward way using the channel capacity equation [99]. However,

it will be extended to the receiver side as well for enhanced performance in the future. Also, a

practical receiver structure enables performance evaluation under various channel conditions and

impairments. Furthermore, the CP length for the multipath channel is assumed fixed and sufficient

for the delay spread. Nevertheless, some ISI can be allowed in order to suppress INI further for

a fixed guard duration, and the ISI vs. INI trade-off is worth investigating. Last but not least, the

proposed INI management technique with a cross-layer approach can be applied to other spectrally

enhanced OFDM systems [100–103] as well by optimizing the waveform parameters and guards

along with a proper scheduling mechanism. For example, a recent publication [79] demonstrated

the joint optimization of the filter parameters and guard band for filtered-OFDM (f-OFDM) only

in the PHY layer.

The next-generation wireless communication technologies are evolving towards increased

flexibility in various aspects. Enhanced flexibility is the key design consideration, especially to

be able to serve diverse requirements. Hence, the adaptive guard utilization must be a part of the

future communication systems.
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Chapter 3: Anatomical Region-Specific In Vivo Channel Characterization

3.1 Introduction

Chronic diseases and conditions such as diabetes, obesity, heart disease, and stroke are the

leading causes of death and disabilities in the United States 3. Treating people with these illnesses

accounts for 86%4 of the national health expenditure which is expected to be almost double in the

next ten years5. However, these are themost preventable andmanageable problems among all health

issues by committing to a healthier lifestyle. Continuous healthmonitoring helps to achieve this goal

by assisting people to engage in their healthcare and also allows physicians to performmore reliable

analysis by providing the data collected over a large period of time. In addition, exploitation of this

big data will replace the traditional “one-size-fits-all” model with more personalized healthcare

in the near future. Furthermore, noninvasive surgery and remote treatment are expected to lower

the risk of infection, reduce hospitalization time and accelerate recovery processes. All these

demanding requirements for an effective service quality in healthcare awakened a general interest

in wireless body area networks (WBANs) research [6,31,32,37,104–109]. One component of such

advanced technologies is represented by wireless in vivo sensors and actuators, e.g., pacemakers,

internal drug delivery devices, nerve stimulators, and wireless capsules as shown in Fig.3.1. In vivo

medical devices offer a cost efficient and scalable solution along with the integration of wearable

devices and help to achieve the vision of advanced pervasive healthcare, anytime and anywhere [6].

Besides healthcare, the use of in vivo-WBANs is also envisioned for many other applications

such as military, athletic training, physical education, entertainment, safeguarding, and consumer

electronics [5, 110].

3This chapter was published in [8]. Permission is included in Appendix A.
4http://www.cdc.gov/chronicdisease
5https://www.cms.gov
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Figure 3.1: In vivo-WBAN devices for various applications.

In vivo-WBANs and their associated technologies will shape the future of healthcare consi-

dering all the potentials and the critical role of these applications. To fully exploit the use of them

for practical applications, it is necessary to obtain accurate channel models that are mandatory to

build reliable, efficient, and high-performance communication systems. These models are requi-

red not only to optimize the quality of service metrics such as high data rate, low bit-error rate,

and latency but also to ensure the safety of biological tissues by careful link budget evaluations.

Although, on-body wireless communication channel characteristics have been thoroughly investi-

gated [104, 111], the studies on in vivo wireless communication channels (implant-to-implant and

implant-to-external device links) are limited. The in vivo channel exhibits different characteristics

than those of the more familiar wireless cellular and Wi-Fi environments since the electromagnetic

(EM) wave propagates through a very lossy environment inside the body, and dominant scatterers

are present in the near-field region of the antenna.

The IEEE 802.15.6 standard [112] was released in 2012 to regulate short-range wireless

communications inside or in the vicinity of the human body. According to this standard, in

vivo-WBAN devices operate in the medical device radio communications service (MedRadio)
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which uses discrete bands within the 401–457 MHz spectrum including the previous specification

called medical implant communication service (MICS) band. Despite the fact that MedRadio

bands provide satisfying propagation characteristics inside the human body [42], they suffer from

lower bandwidths and larger antenna size issues compared to the antennas designed to operate at

higher frequencies. Therefore, other frequency bands, such as industrial, scientific, medical (ISM)

and ultra-wide band (UWB) communications bands should also be considered in the upcoming

standards for in vivo wireless communications. It is also known that EM wave propagation inside

the human body is strongly related to the location of the antenna [37, 42] and hence, the in vivo

channel should be investigated for a specific anatomical part. For example, the gastrointestinal

tract has been studied for wireless capsule endoscopy applications [52], while the heart area has

been investigated for implantable cardioverter defibrillators and pacemakers [113]. Although many

in vivo path loss (PL) formulas were reported in the literature [33, 105–108, 113, 114], they do

not provide location specific PL model parameters to carry out accurate link budget calculations.

Moreover, detailed human body models are crucial in order to investigate the in vivo wireless

communication channel. Various phantoms have been designed to simulate the dielectric properties

of the tissues for numerical and experimental investigation. The validation of numerical studies with

real experimental measurements is required, however performing experiments on a living human

is strictly regulated. Therefore, physical phantoms [33,37,105] or anesthetized animals [106,107]

are often used for experimental investigations.

This chapter presents a numerical and experimental characterization of the in vivo wireless

communication channel for male torso considering various anatomical regions. The location

dependent characteristics of the in vivo channel are investigated by performing extensive simulations

at 915 MHz and 2.4 GHz using HFSS®. A statistical PL formula is introduced, and anatomical

region-specific parameters are provided. The multipath propagation characteristics of the in vivo

channel are examined by investigating the polarization and analyzing the delay spread, which is of

particular importance for broadband applications. In addition to the thorough simulation studies,

experiments are conducted on a human cadaver, and the results are compared with the numerical
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studies. The preliminary results were presented in [53] and [38]. To the best of authors’ knowledge,

this is the first study that investigates the in vivowireless channel for various anatomical regions both

numerically and experimentally on a human cadaver. The final research outcomes are published

in [8].

The rest of the chapter is organized as follows. Section 3.2 describes the simulation/ expe-

rimental setup and explains the measurement methodology in detail. Section 3.3 presents the in

vivo channel characterization based on the numerical and experimental investigation. A statistical

PL formula is provided along with the anatomical region-specific parameters, and multipath propa-

gation characteristics are examined thoroughly. Finally, Section 3.4 summarizes the contributions

and concludes Chapter 3.

3.2 Simulation and Measurement Settings

3.2.1 Simulation Setup

Analytical methods are viewed as infeasible and require extreme simplifications [32, 34].

Therefore, numerical methods, which provide less complex and appropriate approximations to

Maxwell’s equations, are preferred for characterizing the in vivo wireless communication channel.

In this study, we used ANSYS HFSS® 15.0 [115], which is a full-wave EM field simulator based on

the Finite Element Method (FEM). ANSYS also provides a detailed male human body model, and

it includes frequency dependent dielectric properties of over 300 parts (bones, tissues and organs)

with 2 mm resolution. This extensive simulation work was beyond the capability of personal

computers and advanced computing resources at the University of South Florida (USF) were used

to solve such large EM problems. Research Computing at USF hosts a computer cluster which

currently consists of approximately 500 nodes with nearly 7200 processors cores and 24TB of

memory in total.

The simulations were designed considering an implant to an external device (in-body to

on-body) communications scenario in the male torso with a similar measurement setup in [53].

Rather than using the whole body, the torso area was segmented into four sectors considering the
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major internal organs: heart, stomach, kidneys, and intestine as shown in Fig. 3.2a. In each region,

simulations were performed by rotating receiver (ex vivo) and transmitter (in vivo) antennas together

around the body with 22.5° angle increments (Fig. 3.2b). The ex vivo antenna was placed 5 cm

away from the body surface and the in vivo antenna was placed at ten different depths (from 10 mm

to 100 mm) inside the body for each ex vivo antenna location. In addition, antennas were placed in

the same orientation to avoid polarization losses.

The received power is expressed using the Friss equation (Eq. 3.1) for free space links [116]:

Pr = PtGt

(
1−|S11|2

)
Gr

(
1−|S22|2

)(
λ

4πR

)2

(3.1)

where Pt/Pr represents transmitted/received powers, Gt/Gr denotes the gain of the transmitter/

receiver antenna, λ stands for the free space wavelength, R is the distance between transmitter and

receiver antennas and |S11|, |S22| are the reflection coefficients of transmitter/receiver antennas.

Unlike free-space communications, in vivo antennas are often considered to be an integral part

of the channel [32] (i.e., the gain cannot be separated from the channel) and hence, they need

to be designed carefully. However, omnidirectional dipole antennas at 915 MHz and 2.4 GHz

were deployed in our simulations for simplicity. The dipole antenna length is proportional to the

wavelength, which varies with respect to both frequency and permittivity. Higher frequencies

compared to the MedRadio bands provide smaller antenna sizes, hence, they could be implanted

conveniently. In addition, the antennas were optimized inside the body with respect to the average

torso permittivity for each frequency towards obtaining maximum power delivery. Although

the antennas presented a good return loss (i.e., less than -7dB), they were perfectly matched by

compensating the
(

1−|S11|2
)
and

(
1−|S22|2

)
factors to yield a fair comparison for PL analysis.

Also, the mesh size was set to be less than λ/5 in this study.
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Figure 3.2: (a) Investigated anatomical regions; (b) In vivo and ex vivo antenna locations in
simulations.
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3.2.2 Experimental Setup

The numerical investigation was validated by conducting experiments on a human cadaver

in a laboratory environment. IstanbulMedipol University provided the ethical approval andmedical

assistance in this study. The preliminary results were presented in [38]. Animal organs are used to

represent human tissues as suggested in [33, 117, 118] and the decayed human internal organs in

this experiment were replaced with internal organs of a sheep. The male torso area was investigated

at 915 MHz by measuring the channel frequency response, i.e., S21( f ), through a vector network

analyzer (VNA). A tapered slot coplanar waveguide (CPW)-fed antenna [119] (in vivo) and a dipole

antenna (ex vivo) were used in our experiments with two coaxial cables each having a length of

2 meters as illustrated in Fig. 3.3. The frequency response of cables was subtracted from the

channel measurements by performing a calibration of the VNA. The antennas were wrapped with a

biocompatible polyethylene protective layer and sealed tightly in order not to contact the biological

tissues directly, which could lead to shortening the antennas. The antennas were tested before the

experiment and provided sufficient return loss inside the body during the experiments (i.e., less

than -7dB).

The in vivo antennawas placed at six different locations (Fig. 3.4) inside the body around the

heart, stomach, and intestine by the help of a physician. In vivo depthmeasurements were performed

using a digital caliper and the antennas were placed with the same orientation to avoid polarization

losses, similar to the simulations. The channel data was captured between the frequencies 905MHz

to 925MHz and post processed for further analysis inMATLAB®. Although the experimental setup

did not allow capturing the effects of circulatory and respiratory systems, it provides a more realistic

multipath propagation scenario than computer simulations or experiments which are conducted on

physical phantoms and anesthetized animals by providing EMwave propagation in an actual human

body.
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Figure 3.3: Experiment setup for the in vivo channel: 1) Vector network analyzer (VNA), 2)
human male cadaver, 3) coaxial cables, 4) a novel tapered slot CPW-fed antenna (in vivo), 5)

insulated dipole antenna (ex vivo).

Figure 3.4: Measurement locations on the human cadaver, where odd and even numbers represent
top and bottom of the corresponding organs respectively.
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Figure 3.5: Average path loss for four anatomical regions in the simulation environment at 2.4
GHz.

3.3 In Vivo Channel Characterization

3.3.1 Path Loss and Shadowing

The in vivo path loss (PL) expresses a measure of the average signal power attenuation

inside the body and is calculated as PL = −mean{|S21|} using the channel frequency response,

i.e., S21 [105, 106]. The location dependent characteristic of the in vivo PL was investigated for

two ISM bands, i.e., 915 MHz and 2.4 GHz. The EM wave propagates through various organs and

tissues regarding different antenna locations, and the PL changes significantly even for equal in vivo

depths. The location dependent characteristic of the channel is more dominant when the in vivo

antenna is placed deeper inside the body. Fig. 3.5 presents the mean PL for the investigated four

anatomical body regions in the simulation environment. Although the signal power attenuation

is similar for near-surface locations, complex body areas such as intestine cause higher PL due to

their dense structure beyond 30 mm in vivo depth.
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Figure 3.6: Average path loss on torso in the simulation environment at 915 MHz and 2.4 GHz.

Various analytical and statistical PL formulas have been proposed for the in vivo channel

[6]. Despite the fact that analytical expressions provide intuition about each component of the

propagation models, they are not practical for link budget design. According to the final report of

the IEEE 802.15.6 standard’s channel modeling subgroup, Friis transmission equation (Eq. 3.1)

can be used for in vivo scenarios by adding a random variation term [46, 120]. In this work, the in

vivo PL is modeled statistically as a function of depth by the following equation expressed in dB

scale:

PL (d) = PL0 +m (d/d0)+S (do ≤ d) (3.2)

where d represents the depth from the body surface in mm, d0 stands for the reference depth with a

value of 10 mm, PL0 denotes the intercept term in dB, m is the decay rate of the received power and

S denotes the random shadowing in dB, which presents a normal distribution for a fixed distance.

The power decay rate (m) heavily depends on the environment and is obtained by performing

extensive simulations and measurements. Also, the shadowing term (S) depends on the different
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Table 3.1: Variance of shadowing term (S) in dB for each in vivo depth.

body materials (e.g., bone, muscle, fat, etc.) and the antenna gain in different directions [113].

The proposed in vivo PL model is valid for 10 ≤ d ≤ 100mm and the communication channel

between an in vivo medical device, and a far external node could be considered as a combination

of two concatenated channels: “in-body to on-body” and “classical indoor channel”, if there

are no surrounding objects around the body [120]. It should be pointed out that the model is

antenna dependent as the majority of other WBAN propagation models in the literature, and this

phenomenon is needed to be taken into account for link budget calculations as well.

Figs. 3.7 shows the scatter plots of PL versus in vivo depth on torso in the simulation

environment at 915 MHz and 2.4 GHz. The mean PL is obtained using a linear regression model.

It is observed that the power decay rate (m) is approximately twice at 2.4 GHz due to the high

absorption in tissues as compared to 915MHz (Fig. 3.6). In addition, the variance of the shadowing

term, σ , becomes notably larger as the in vivo antenna is placed deeper inside the body as shown

in Table 3.1. This behavior can be interpreted using the fundamental statistics theorem which

states that the variance of independent random variables’ sum equals to the sum of the variances

of the random variables (scattering objects) involved in the sum. The in vivo channel exhibits a

different characteristic than the classical channels, due to the main scatterers present in the vicinity

of the antenna, and the variance of shadowing increases significantly compared to free space

communications.

The statistical in vivo PL model parameters in Eq. 3.2 are provided for each anatomical

regions in Tables 3.2 and 3.3, which were obtained by performing extensive simulations. By

interpreting them, it could be concluded that PL increases when the in vivo antenna is placed in an

anatomically complex region. For example, the intestine has a complex structure with repetitive,
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Figure 3.7: Scatter plots of path loss vs in vivo depth in the simulation environment at: (a) 915
MHz; (b) 2.4 GHz.
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Table 3.2: Statistical PL model parameters for anatomical regions.

Table 3.3: Statistical PL model parameters for anatomical directions.

curvy-shaped, dissimilar tissue layers, while the stomach exhibits a smoother structure. As a result,

the PL is greater in the intestine than in the stomach even at equal in vivo antenna depths. Also,

more radiation occurs in the posterior region than in the anterior region due to the human body

structure. To sum up, the location dependency is very critical for link budget calculations and the

target anatomical region should be taken into account to design a high-performance, energy-efficient

communications system inside the body.

The numerical studies were validated with experiments on a human cadaver at 915 MHz.

The in vivo antennas were placed at six different locations as shown in Fig. 3.4 and the ex vivo

antenna was placed 2 cm away from the body surface. Table 3.4 presents the PL values for

the selected in vivo locations and comparison of experimental results with numerical studies are
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Table 3.4: Experimental PL values for selected in vivo locations.

Table 3.5: Comparison of the statistical PL model parameters.

provided in Fig. 3.8. The discrepancies between the simulated and measured results exist due to

the additional losses (e.g., antenna distortion), which were not considered in the simulations and

the differences in experimental environment. The statistical in vivo PL model parameters are also

provided for the experimental study and compared with the numerical study in Table 3.5.

3.3.2 Multipath Characteristics

In addition to the PL and shadowing, multipath propagation characteristics of the in vivo

channel are also important and should be investigated to discuss proper waveform designs. Received

signal strength was explored for various antenna polarizations towards understanding the existence

of multipath reflections in the human body medium. As similar to the previous part, the dipole
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Figure 3.8: Path loss versus in vivo depth from the body surface at 915 MHz.

antennas at 915MHzwere deployed in the simulation environment, and theywere perfectlymatched

as mentioned in Section 3.2. The in vivo antenna was placed at 5 cm depth on the chest, and the

ex vivo antenna was placed 5 cm away from the body surface to investigate the “in-body to off-

body” link. As a baseline to compare with the in vivo channel, the antennas were separated from

each other by 10 cm in free space. The ex vivo antenna was rotated with 11.25o increments in

the YZ-plane for both scenarios as shown in Fig. 3.9 and the maximum available power at the

receiver for different polarization mismatch angles is presented in Fig. 3.10 . In the free space

link, the received power degrades dramatically as the polarization mismatch increases due to the

absence of multipath components, i.e., only line-of-sight components are effective on the received

signal strength. On the other hand, the received signal power does not change significantly with

polarization mismatch for in vivo medium. Therefore, it can be concluded that biological tissues

inside the human body do not absorb the EM waves completely at 915 MHz and allow reflections

that lead to multipath propagation. These reflections will cause small-scale fading which is defined

as variations over short distances due to constructive and destructive additions of the signals.
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Figure 3.9: Simulation setup for the in vivo polarization investigation.
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Figure 3.10: Received power for various polarization mismatch angles in the simulation
environment at 915 MHz.
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As a result of multipath propagation inside the human body, the amount of delay spread

should be understood to design an efficient in vivo communications systems. Therefore, power

delay profiles (PDPs) for various anatomical regions were extracted from the simulation results.

The in vivo antennas were placed at 5 cm depth on the torso, and the ex vivo antennas were placed

5 cm away from the body surface as shown in Fig. 3.11 for four different directions at 915 MHz.

The channel impulse response, h(t), was obtained by taking the inverse discrete Fourier transform

(IDFT) of the channel frequency response, S21. The PDP was calculated as PDP(t) = |h(t)|2 and

the total power is normalized to 1 as presented in Fig. 3.12. Related multipath channel statistics,

mean excess delay (τ), and RMS delay spread (στ ) are calculated to quantify the time dispersion

effect of the in vivo channel as follows [121]:

τ =

∑
i

τiP(τi)

∑
i

P(τi)
(3.3)

στ =

√
τ2− (τ)2 =

√√√√√√∑
i

τ2
i P(τi)

∑
i

P(τi)
−

∑
i

τiP(τi)

∑
i

P(τi)


2

(3.4)

where P(·) represents the received power in linear scale and, τi denotes the arrival time of the ith

path. These parameters for various anatomical directions are listed in Table 3.6 and it is observed

that the maximum difference in στ is 0.3 ns. Therefore, it can be stated that there is almost no

difference in delay spread for various locations when the antennas are implanted with 5 cm depth

on the torso.

RMS delay spread determines the coherence bandwidth (Bc) of the channel. It is a statistical

measure of the range of frequencies where the channel can be assumed as “flat” [116] and the 90%

Bc is estimated as follows:

Bc ≈
1

50στ

(3.5)
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Figure 3.11: Simulation setup for the in vivo delay spread investigation.

Table 3.6: In vivo multipath propagation statistics at 915 MHz.

The average στ at 5 cm in vivo depth is measured as 2.76 ns on the torso and 7.25 MHz coherence

bandwidth was predicted using Eq. 3.5. Theoretically, inter-symbol interference (ISI) is not a

critical problemwhen the signal bandwidth (BW) is less than Bc. Hence, the measured delay spread

should not cause serious ISI for narrow-band (NB) communications. However, this dispersion may

lead to a significant interference for UWB communications, which occupies a BW of greater than

500 MHz.

In frequency-selective channels (i.e., the signal BW is greater than Bc) single-carrier wa-

veforms might not exhibit a sufficient bit error rate (BER) performance without deploying complex

equalizers to solve the ISI problem. Nevertheless, power limitation is a major constraint for in

vivo-WBAN devices and hence, the complexity of signal processing operations must be low. Multi-

carrier systems are offered to provide a trivial solution for the ISI problem. For example, orthogonal
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Figure 3.12: Power delay profiles for each anatomical direction in the simulation environment at
915 MHz.

frequency division multiplexing (OFDM) based waveforms can easily handle delay spread using a

cyclic prefix. However, high peak-to-average-power ratio (PAPR) emerges as a common problem

in multi-carrier waveforms, and it makes the signal vulnerable against the non-linear characteristics

of the radio frequency (RF) front-end components. Since the in vivo-WBAN devices are restricted

in size, the use of high-quality components with high dynamic ranges is impractical. Therefore,

PAPR remains as an important issue and may still lead the designers to use single-carrier signaling

techniques. To sum up, there are tradeoffs in waveform selection considering the dispersive nature

of the in vivo channel and practical issues together. The system requirements in terms of throughput,

power efficiency, and signal quality need to be clearly identified, and the most proper waveform

technology should be selected accordingly.

3.4 Conclusions

This chapter presented the location dependent characteristics of the in vivowireless commu-

nications channel for male torso at 915 MHz and 2.4 GHz. Extensive simulations were performed
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using a detailed 3D human body model and measurements were conducted on a human cadaver.

A statistical in vivo path loss model is introduced along with the anatomical region-specific pa-

rameters. It is observed that the path loss in dB scale follows a linear decaying profile instead

of an exponential characteristic, and the power decay rate is approximately twice at 2.4 GHz as

compared to 915 MHz. In addition, the variance of shadowing increases significantly as the in vivo

antenna is placed deeper inside the body since the main scatterers are present in the vicinity of the

antenna. Results show that the location dependency is very critical for link budget calculations,

and the target anatomical region should be taken into account to design a high-performance in vivo

communications system without harming the biological tissues. Multipath propagation characte-

ristics are examined as well to facilitate proper waveforms inside the body by investigating various

antenna polarizations and PDPs. A mean RMS delay spread of 2.76 ns is observed at 5 cm in vivo

depth. Despite the fact that this dispersion may not cause significant ISI for NB communications,

it could be a serious issue for UWB communications.

The interest in WBANs is rapidly growing and in vivo medical devices are shaping the

future of healthcare. This study will contribute significantly to the upcomingWBAN standards and

hence, will lead to the design of better in vivo transmitter/receiver algorithms.
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Chapter 4: Bio-inspired Filter Banks for Frequency Recognition of SSVEP-based

Brain-computer Interfaces

4.1 Introduction

Scientific advances in neuroscience and biomedical engineering enabled a direct commu-

nication channel between the human brain and a computer 6. The electrical activity in the brain

that is produced by neuronal post-synaptic membrane polarity changes can be monitored to detect

the user’s intentions [57]. A brain-computer interface (BCI) [58] analyzes the brain signals and

translates them into commands for external devices such as a speller device, wheelchair, robotic

arm, or a drone. While there exist multiple approaches to measure brain activity, electroencepha-

lography (EEG) is widely used in BCI applications because of its high temporal resolution, which

is essential for BCIs to work as real-time systems [64]. In addition, EEG devices are inexpensive

and portable.

A distinctive oscillation pattern in EEG is observed when a sensory stimulus such as visual

or auditory is presented to a human. These oscillations are called as evoked potentials (EPs),

and they disappear after a short period. If the stimulus is repeated at a regular rate, the EPs do

not have time to decay, and it causes a periodic response which is called as steady-state evoked

potentials [65]. More specifically, a periodic visual stimulus with a repetition rate higher than 6 Hz

elicits steady-state visual evoked potentials (SSVEPs) which are more prominent in the occipital

region of the brain [4,66]. The targets that evoke SSVEPs are encoded in various ways [60,67], and

the users make a selection by shifting their attention to the desired target in SSVEP based BCIs.

Among other BCI modalities which depend on other EEG signals (e.g., slow cortical potentials,

6This chapter was published in [10]. Permission is included in Appendix A.
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Figure 4.1: SSVEP response to frequency-coded stimuli at the occipital region of the brain.

sensorimotor rhythms, and event-related potentials), SSVEP based BCIs have the advantage of high

information transfer rate (ITR) and short training duration to operate the device [68].

SSVEPs are sinusoidal-like waveforms, and they appear at the same fundamental frequency

of the driving stimulus and its harmonics (Fig. 4.1) [66]. However, spontaneous oscillations (i.e.,

background activity), which are not related to the stimulation, exist in theEEG recordings aswell and

a robust recognition algorithm is required to build a reliable BCI system. Numerous methods have

been proposed for SSVEP recognition in the last decade [68,70–75]. Power spectral density analysis

(PSDA) is a typical approach since the distinctive features of SSVEPs are observed in the frequency

domain [68]. However, PSDA is susceptible to noise, and long durations are needed to increase

the signal to noise ratio (SNR). A multivariable statistical method, namely canonical correlation

analysis (CCA) [70, 72] exploits the multiple channel covariance information to enhance SNR and

provide a better recognition accuracy compared to PSDA. Simple implementation, high robustness,

and better ITR performance have made CCA attractive in SSVEP recognition research. On the

other hand, CCA is not efficient to extract the discriminative information embedded in the harmonic

components of SSVEPs, and filter-bank canonical correlation analysis (FBCCA) [73] is proposed to

handle this issue. Although FBCCA captures the distinct spectral properties of multiple harmonic
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frequencies successfully, it neglects any correlation information between SSVEP responses at

different frequencies [74]. Furthermore, this approach disregards the frequency selective nature of

SSVEPs due to the utilization of wide-band filters which cover the whole stimuli bandwidth.

To fully exploit and further increase the potential of SSVEP based BCIs, it is necessary

to employ an accurate SSVEP model in the recognition algorithm. For example, the inclusion of

SSVEP harmonics in a recognition algorithm improves the accuracy [122] since the spontaneous

EEG oscillations typically do not present any harmonic components [123]. Also, the subject-

specific nature of SSVEPs is handled by an individualized parameter optimization and calibration

(e.g., time-window duration, number of harmonics considered, and electrode location) [68, 70].

Moreover, the SSVEP response is frequency selective, and its power gets weaker as the frequency

of the stimuli increases [64,66,67,71]. Although the power of EEG background activity decreases

as well with the increase in frequency (approximately with a 1/ f behavior [65]), the resultant SNR

is still considerably low at high frequencies. Hence, a visual stimulus at a high frequency can

almost be indistinguishable in the presence of noise as shown in Fig. 4.2. This inherent feature not

only results in a lower recognition accuracy but also causes exclusion of the stimulus frequencies

that evoke weak SSVEP response and decreases the total number of available commands in a BCI

system.

This chapter introduces bio-inspired filter banks (BIFBs) for improved SSVEP frequency

recognition. The BIFBs are designed considering the inherent biological characteristics of SSVEPs,

namely frequency selectivity, subject specificity, and harmonic SSVEP responses. They are utilized

in the feature extraction stage to increase the separability of classes. The proposed approach is

tested on datasets available online, and its performance is compared with the performances of

various SSVEP frequency recognition methods. The preliminary results without an elaborate

classification algorithm or a cross-validation procedure were presented in [109]. Also, a fair

performance comparison with the utilization of unit filters is provided to validate the effectiveness

of the proposed filter bank design in this study. The results show a notable ITR improvement with

the bio-inspired design and highlight the promising potential of BIFBs in the high-frequency band,
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Figure 4.2: The PSD of EEG signal when a visual stimulus at 28 Hz is presented to a participant.

which causes less visual fatigue. Hence, the proposed method leads to more reliable, efficient, and

user-friendly SSVEP-based BCI systems. The final research outcomes are published in [10].

This chapter is structured as follows. Section 4.2 describes the performance metrics,

evaluation methodology, and datasets. The proposed method is explained in detail, along with the

comparison methods. Section 4.3 presents the performance of the SSVEP recognition algorithms

and provides a thorough analysis of the results. Finally, Section 4.4 summarizes the contributions

and addresses future research directions.

4.2 Methods and Materials

4.2.1 Evaluation Metric

The most common measure to evaluate the performance of a BCI system is ITR [59], which

can be expressed in bits/minutes as follows:

IT R = s
[

log2(K +δ log2δ +(1−δ ) log2

(
1−δ

K−1

)]
(4.1)
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where K stands for the number of equiprobable commands, s denotes the commands performed

per minute, and δ represents the accuracy of target recognition. In general, the BCIs with high

ITR have a large number of commands. However, K is fixed in these datasets, and the ITR can be

boosted with the joint optimization of s and δ . Also, a threshold can be set either on s or δ based

on user comfort.

4.2.2 Datasets and Pre-processing

Two publicly-available datasets are utilized in this study to test the proposed method.

Dataset-A [71] consists of EEG recordings belong to four healthy subjects with normal or corrected

to normal vision. Small reversing black and white checkerboards were presented to the participants

sequentially (i.e., one stimulus at a time) at three different frequencies (8 Hz, 14 Hz, and 28 Hz)

during the recordings. The brain signal acquisition was performed at a sampling rate of 256 Hz

with 128 active electrodes using the ABC layout standard (https://www.biosemi.com/headcap.htm)

for electrode placement. The EEG recordings were re-referenced using the central Cz electrode and

band-pass filtered from 6 Hz to 35 Hz. The subjects experienced a visual stimulus for 15 seconds

in each trial. Each unique visual stimulus was repeated for five times, which corresponds to 60

trials (4 subjects x 3 stimuli x 5 repetitions) in total. Dataset-B [124], which is provided by another

research institute, consists of EEG recordings belong to four healthy subjects as well. A single

flickering box that changes color rapidly from black to white at seven different frequencies (6 Hz,

6.5 Hz, 7 Hz, 7.5 Hz, 8.2 Hz, 9.3 Hz, and 10 Hz) was used as the visual stimulus. The brain signal

acquisition was performed at a sampling rate of 512 Hz with three electrodes (Oz, Fpz, Pz) using

the 10-20 layout standard for electrode placement. The EEG recordings were referenced using the

electrode Fz, and an analog notch filter at 50 Hz was applied to suppress the power-line noise. The

subjects experienced a visual stimulus for 30 seconds in each trial. Each unique visual stimulus

was repeated at least three times with 92 trials in total.

An overview of these datasets is provided in Table 4.1, and the reader is referred to individual

references for a more detailed description of the datasets. Dataset-A is selected to include a stimulus
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Table 4.1: Overview of the SSVEP datasets.

Dataset
# of 

Subjects
# of 

Trials
Record
Length

Sampling
Rate

# of 
Channels

# of Stimulus
Frequencies

Stimulus Frequencies

A 4 60 15 s 256 128 3 8 Hz, 14 Hz, 28 Hz

B 4 92 30 s 512 3 7 6 Hz, 6.5 Hz, 7 Hz, 7.5 Hz, 8.2 Hz, 9.3 Hz, 10 Hz

at the high-frequency band that evokes weak SSVEP response, whereas Dataset-B is selected to

deal with the frequency selectivity even in a narrow band.

4.2.3 Proposed Method

The pre-processed EEG signal from the occipital channel Oz is segmented with an overlap,

and each segment is windowed using a Hamming function [125]. Afterward, the power spectral

density of the signal is estimated by the following equation:

SEEG[ f ] =
1
N

∣∣∣∣∣N−1

∑
n=0

EEG[n]w[n] e− j( 2π f n
N )

∣∣∣∣∣
2

(4.2)

where EEG[n] and w[n] represent the discrete EEG signal and Hamming window function, re-

spectively. The features for SSVEP frequency recognition are extracted by multiplying SEEG with

the frequency response of BIFBs. The filter banks are designed in such a way that they capture

the inherent biological characteristics of the SSVEPs. It is known that the SSVEPs are frequency-

selective, and their power gets weaker as the frequency of the visual stimuli increases [64,66,67,71].

Figure 4.3 presents the average SSVEP response power to pattern reversal stimuli ranging from 5.1

Hz to 84 Hz [71]. Especially, the stimuli at the high-frequency bands elicit weak responses and

make the recognition challenging. Consequently, the gain and bandwidth of the filters are designed

considering the frequency-selective nature of SSVEPs. Assume that there are K target stimulus

frequencies ( f̃k), where k = {1, ...,K}, in a BCI system. The array of filters in BIFBs is expressed

as follows:
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Figure 4.3: SSVEP response to pattern reversal stimuli ranging in frequency from 5.1 Hz to 84
Hz [71].

Hk
BIFB[ f ] :


f−( f̃k−BWk/2)

BWk
gk, ( f̃k−BWk/2)≤ f ≤ f̃k

( f̃k+BWk/2)− f
BWk

gk, f̃k ≤ f ≤ ( f̃k +BWk/2)

0, otherwise

(4.3)

where BWk and gk represent the bandwidth and gain of the kth filter, respectively. Initially, higher

bandwidth and gain are set to frequencies with low SSVEP response power. Subsequently, these

parameters are optimized for individual users in order to counter the subject-specific nature of

SSVEP response [68, 70]. A grid search algorithm performed this hyper-parameter optimization

through a manually specified subset of the hyper-parameter space [98]. It should be noted that

the initial parameter guesses considering the average SSVEP response decrease the computational

complexity. Also, SSVEPs occur at the fundamental frequency of the driving stimulus and its

harmonics, whereas spontaneous EEG oscillations typically do not present any harmonic compo-

nents [123]. Accordingly, filters at the SSVEP harmonic frequencies are included in the filter bank

design (i.e., HK+1
BIFB[ f ] for 2 f̃1, ..., HK+K

BIFB[ f ] for 2 f̃k) as well to improve the recognition accuracy as

shown in Fig. 4.4. Finally, the features are extracted using the BIFBs as follows:

xi = ∑
f

SEEG[ f ]H i
BIFB[ f ] i = 1, ...,2K (4.4)
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Figure 4.4: A bio-inspired filter design to capture SSVEP response at f̃k.

where xi represents the elements of feature vector X .

The extracted features for SSVEP recognition are classified with a logistic regression model

using the one-vs-all strategy. Assume K classes where each class represents a target stimulus

frequency. The hypothesis function predicts whether a given input belongs to kth class or not, and

it is formulated by the following equation:

hk
θ
(X̃) = g(θ T

k X̃) = 1

1+e−θT
k X̃
∀k (4.5)

where g represents the sigmoid function, X̃ denotes the augmented feature vector (i.e., [1,x1, ...x2K])

with a size of 2K+1, and θk stands for the mapping weight vector of kth class. θk is chosen in such

a way that it minimizes the cost function J(θk), which is a distance metric between the prediction

and the actual class label (y), by the following equation [126]:

J(θk) =
1
M

M

∑
m=1

[
−y(m) log

(
(hθ (X̃ (m))

)
− (1− y(m))
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Figure 4.6: Flowchart of the signal processing stages of an SSVEP-based BCI using the proposed
BIFBs.

× log
(

1−hθ (X̃ (m))
)]

+
λ

2M
∑

2K
j=1 θ 2

k j
∀k (4.6)

where
{(

X (m),y(m)
)

; m = 1, . . . ,M
}

represents the training set with M training examples and

y ε {0,1}. The leave-one-out cross-validation is performed to resample the training data for true

objectivity and its suitability for small datasets [127]. The last summative term in Eq. 4.6 prevents

over-fitting the classifier and its precision is controlled by the regularization parameter λ . J(θk) is

minimized with a gradient descent algorithm, and optimal θk is calculated for ∀k.

After the training stage, the probability that a given input belongs to each class is calculated

using the hypothesis function in Eq. 4.5, and the class with the highest probability is labeled as a

candidate frequency for recognition as follows:

fc = arg max
k

hk
θ (X) ∀k (4.7)

The candidate frequency is labeled as recognized (i.e., f f̂ = fc) when the same fc occurs at least

t times in the last T iterations, where the typical values for these parameters are three and four,

respectively. If the selection criteria are not satisfied during the given period, it is evaluated as

an unsuccessful recognition. A flowchart of the proposed BIFB method for SSVEP frequency

recognition is presented in Fig. 4.6.
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4.2.4 Comparison Methods

The performance of the proposed algorithm is compared with the performances of various

SSVEP frequency recognition algorithms. PSDA and CCA are selected as comparison methods

since they are the most common techniques in the literature to compare a new algorithm [72–74].

However, there is no training in these traditional approaches, and a direct comparison may not be

proper. Therefore, the BIFBs are replaced with unit filters (UFs), and a similar classical training

process is performed for classification to examine the effectiveness of the proposed bio-inspired

filter design fairly. Also, the parameters are optimized/calibrated to maximize the ITR performance

in all SSVEP frequency recognition methods.

4.2.4.1 UF

It is an SSVEP frequency recognition method, which follows a similar procedure to the

proposed scheme in Subsection 4.2.3 except for the utilization of BIFBs. Instead, the features are

extracted with unit filters, and they are expressed as follows:

Hk
UF [ f ] :

 1 ( f̃k−BWD)≤ f ≤ ( f̃k +BWD)

0 otherwise
∀k (4.8)

where D is the index for dataset, and BWD equals to 1 for Dataset-A whereas it is equal to 0.5 for

Dataset-B. Since the only difference between BIFB and UF methods is the filter type utilized in the

feature extraction stage (like a controlled experiment), any performance difference can be attributed

to the filter bank design.

4.2.4.2 PSDA

The EEG signal from the occipital channel is pre-processed, and PSD is estimated similar to

the proposed approach. Afterward, the peak of the spectrum is determined as the target frequency

( f f̂ ) in the traditional PSDA approach [68]. In this study, the harmonic responses are considered
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in the PSDA algorithm as well for a fair comparison. Initially, the class values, where each class

represents a target frequency, are calculated by summing the energy in the fundamental frequency

and harmonic bands. Subsequently, the class that has the maximum value is recognized as SSVEP

target frequency as follows:

ck = ∑
f

SEEG[ f ]Hk
UF [ f ]+∑

f
SEEG[ f ]HK+k

UF [ f ] (4.9)

f f̂ = max
k

ck ∀k (4.10)

4.2.4.3 CCA

The final comparison method, CCA, is a multivariable statistical method that aims to reveal

the underlying correlation between two sets of data [128] and has been widely used for SSVEP

frequency recognition [70]. If A is a multi-channel EEG signal, and B is the Fourier series of a

square-wave stimulus signal, CCA searches for the linear combination vectors (γa, γb) that maximize

the correlation between α = γT
a A and β = γT

b B by optimizing the following equation:

max
γaγb

ρ(α,β ) =
E[γT

a ABT γb]√
E[γT

a AAT γa]E[γT
b BBT γb]

(4.11)

The optimization problem in Eq. 4.11 can be solved by a generalized eigenvalue decomposition

[129], and the maximum correlation coefficient (ρ) is computed for each Bk. Finally, the SSVEP

target frequency is recognized as follows:

f f̂ = max
k

ρk ∀k (4.12)

A similar pre-processing procedure to PSDA is applied to the multi-channel EEG signal (i.e., A) in

CCA as well.
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4.3 Results and Discussion

The proposed BIFB method for SSVEP frequency recognition is tested on two datasets that

include EEG recordings of eight subjects in 152 trials. The system performance is evaluated in

terms of mean recognition time (MRT), recognition accuracy, and ITR by implementing a leave-

one-out cross-validation methodology. It is worth to note that ITR changes logarithmically with the

number of available commands in Eq. 4.1. The number of commands in each dataset is different,

and hence ITRs need to be interpreted separately. The performance of the proposed algorithm

is compared with three baseline methods, and the results are listed in Table 4.2 and Table 4.3.

The statistical significance of these results is examined by paired t-tests [130], and corresponding

p-values are presented in Table 4.4. No multiple comparison correction is considered since the

Table 4.2: Performance evaluation of SSVEP recognition algorithms on Dataset-A.

Dataset - A
Number of Commands = 3 [8 Hz, 14 Hz, 28Hz], MRT= Mean Recognition Time

Subject
# of 

Trials

PSDA CCA UF BIFB

MRT
(sec)

Acc. 
(%)

ITR 
(bits/min)

MRT
(sec)

Acc. 
(%)

ITR 
(bits/min)

MRT
(sec)

Acc. 
(%)

ITR 
(bits/min)

MRT
(sec)

Acc. 
(%)

ITR 
(bits/min)

I 15 5.00 66.67 4.00 3.50 73.33 8.26 5.85 86.67 9.08 5.40 100 17.61

II 15 7.00 73.33 4.13 2.50 66.67 8.00 4.50 80.00 8.84 5.55 100 17.13

III 15 5.00 73.33 5.78 4.25 66.67 4.71 4.70 100 20.23 4.27 100 22.29

IV 15 9.00 53.33 0.81 3.00 66.67 6.67 7.75 66.67 2.58 6.05 93.33 11.55

Table 4.3: Performance evaluation of SSVEP recognition algorithms on Dataset-B.

Dataset - B
Number of Commands = 7 [6Hz, 6.5Hz, 7Hz, 7.5Hz, 8.2Hz, 9.3Hz, 10Hz], MRT= Mean Recognition Time

Subject
# of 

Trials

PSDA CCA UF BIFB

MRT
(sec)

Acc. 
(%)

ITR 
(bits/min)

MRT
(sec)

Acc. 
(%)

ITR 
(bits/min)

MRT
(sec)

Acc. 
(%)

ITR 
(bits/min)

MRT
(sec)

Acc. 
(%)

ITR 
(bits/min)

I 24 7.25 87.50 16.06 5.25 87.50 22.18 4.55 88.42 26.23 4.47 88.38 26.67

II 26 3.75 80.77 25.66 3.50 80.77 27.50 3.43 88.73 35.15 3.03 88.31 39.36

III 21 3.75 80.95 25.80 3.50 85.71 31.65 3.80 80.95 25.48 5.19 100 32.45

IV 21 8.00 85.71 13.85 7.00 100 24.06 3.94 95.24 36.67 4.13 100 40.78
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Table 4.4: Statistical analysis of ITR difference between BIFB and comparison methods by using
paired t-test.

Compared Method
p-value

Dataset-A Dataset-B

BIFB vs PSDA p = 0.0015 p = 0.0460

BIFB vs CCA p = 0.0309 p = 0.0992

BIFB vs UF p = 0.0239 p = 0.0607

Table 4.5: SSVEP recognition accuracy performance for 28 Hz stimulus in Dataset-A.

Recognition
Method

Recognition
Accuracy

PSDA 15%

CCA 15%

UF 70%

BIFB 95%

study is restricted to a small number of planned comparisons, and the results of individual tests are

important [131].

The traditional PSDA approach requires longer time windows compared to the other three

methods to provide sufficient accuracy, which leads to a longer MRT and a lower ITR. A shorter

MRT not only improves the ITR but also diminishes the visual fatigue due to a reduced gazing

duration. Also, PSDA, as well as CCA, is incapable of detecting stimuli in the high-frequency

band. The low recognition accuracy of 28 Hz stimulus, which is presented in Table 4.5, explains

the poor performance results of these algorithms in Dataset-A. On the other hand, there are no

high-frequency stimuli in Dataset-B, but the frequency selectivity decreases the ITR performances

of PSDA, CCA, and UF.

PSDA and CCA have the advantage of not requiring training, and just a straightforward

calibration that includes the selection of electrode locations, number of harmonics, and time

window duration is sufficient to perform the recognition. However, these algorithms disregard the
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Figure 4.7: The mean recognition accuracy and ITR performance of the SSVEP recognition
methods.
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correlation information between the classes. A simple logistic regression model can capture the

between-class information and enhance performance. Another classification model may achieve

better performance. However, it is beyond the scope of this study, and [132–134] can be referred for

more detailed information. The SSVEP response is subject-specific, but the inter-trial variance is

low within a subject. Therefore, one-time individualized training is acceptable to acquire a higher

ITR. Furthermore, BIFB and UF implement the same classifier. However, a feature extraction stage

with BIFB, which captures the underlying biological features of SSVEPs, increases the separability

and outperforms UF for SSVEP frequency recognition in both datasets.

User comfort is another important criterion in BCI design besides the ITR. It is reported

that high-frequencies cause less visual fatigue induced by the flicker [68, 135]. The promising

performance of BIFBs in the high-frequency band may let the designers include this low SNR

band in their BCI system. As a result, the user discomfort caused by the flicker reduces, and also

ITR increases due to the increase in number of available commands. Furthermore, the number

of electrodes is critical for user comfort. Although it is preferable to have a dense sensor system

while mapping the brain, it is not suitable for practical BCI applications. In this study, BIFB

utilized the information from one electrode for the sake of simplicity. The results show that a

single-channel algorithm can provide superior performance compared to a multi-channel algorithm

(i.e., CCA), and enhance user comfort as well. However, the use of BIFBs is not restricted to

single-channel utilization, and recognition accuracy might be further improved by taking advantage

of multi-channel information in the feature extraction stage. For example, a simple way to utilize

the BIFBs with multi-channel EEG would be to apply them on signals from the occipital channels

and pass the weighted average of the extracted features to the feature classification stage.

4.4 Conclusions

A novel SSVEP recognition method that exploits the inherent biological characteristics of

SSVEPs is introduced in this study. TheBIFBs capture frequency selectivity, subject specificity, and

harmonic SSVEP responses in the feature extraction stage and enhance the separability of classes.
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The proposed method is tested on two benchmark datasets available online and outperforms several

recognized recognition algorithms. The BIFBs are promising particularly in the high-frequency

band where SNR is low. Hence, this method not only increases the ITR of an SSVEP based BCI

but also might improve its user comfort due to less visual fatigue. The results show the potential

of bio-inspired design, and the findings will be extended to include further SSVEP characteristics.

First, the best pulse shape to utilize in the filter banks remains unknown. The triangular filters

in this study might need to be replaced with another shape such as Gaussian or raised-cosine to

improve the performance further. Second, the BIFBs should incorporate the time-characteristics

of SSVEPs. The onset-delay of the response is frequency selective [71] and including this distinct

feature might increase the recognition accuracy as well. Last, the SSVEP response also strongly

depends on the stimuli type [67, 136], and the BIFB adaptation considering the visual stimuli

requires further investigation.
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Chapter 5: Concluding Remarks

The performance improvement techniques for next-generationmulti-service communication

andmedical cyber-physical systems are presented in this dissertation with interdisciplinary research

efforts. Considering both fields are global research priorities in the commercial and military

domains, the research outcomes will significantly accelerate the development, utilization, and

standardization of next-generation high-performance systems.

The wireless communication technologies are evolving towards increased flexibility in

various aspects. Enhanced flexibility is the key design consideration, especially to be able to

serve diverse requirements. Hence, the adaptive guard utilization must be a part of the future

communication systems. The research outcomes of Chapter 2 is well-suited to contribute to the

ongoing 5G mobile network development, and hopefully, it will provide a strong base for the 6G

discussions as well. Also, the interest inWBANs is rapidly growing, and in vivomedical devices are

already becoming an integral part of healthcare technologies. The research outcomes of Chapter 3

will contribute significantly to the upcomingWBAN standards and hence, will lead to the design of

better in vivo transmitter/receiver algorithms. Furthermore, BCIs and their associated technologies

will shape the future of communication, control, and security as a part of WBAN. Bio-inspired

designs such as the proposed techniques in Chapter 4 have the potential to be the key in enabling

the development of reliable, efficient, and high-performance BCI systems.
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