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Abstract 

This dissertation is composed of two parts. The first presents several approaches to enhance 

the performance of 5G wireless systems by using NOMA (Non-Orthogonal Multiple Access) as 

the multiple access technique under different scenarios and performance metrics. The second 

investigates the performance of a wireless system network using a mobility model to evaluate the 

channel capacity taking into account motion. Both studies are directed towards improving the 

system performance in wireless communication systems. 

In the first part, the optimum received power level for uplink power-domain NOMA with 

ideal Successive Interference Cancellation (SIC) reception is derived for any number of 

transmitters. The results show that the optimum received power level increases linearly (in dB) as 

the number of transmitters N are increased and the maximum required received signal-to-

interference-plus-noise ratio (SINR) increases exponentially (or equivalently, linearly in dB) with 

the number of users N. An interesting observation is that the optimum power levels are very similar 

to that of the µ-law encoding used in the pulse code modulation (PCM) speech companders. 

Next, a scalable, energy efficient, and high throughput medium access control (MAC) 

protocol, which is called the ALOHA-NOMA protocol, is proposed for Internet of Things (IoT) 

wireless 5G applications incorporating pure ALOHA with power domain NOMA. The simplicity 

of ALOHA and the superior throughput of NOMA and its ability to resolve collisions via use of a 

SIC receiver, makes ALOHA-NOMA an excellent candidate for a MAC protocol that can be 

utilized for a network of low complexity, low traffic IoT devices. The results show that the 

ALOHA-NOMA protocol significantly improves the throughput performance with respect to pure 
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ALOHA, e.g., a SIC receiver that separates 5 signals can boost the throughput of classical ALOHA 

from 0.18 to 1.27 and with 100 active IoT devices the throughput is increased (at a greater than 

linear rate) to 40. 

Following this, the bit error rate (BER) performance of a system with uplink power-domain 

NOMA and SIC reception using BPSK, QPSK, and 16-QAM modulations schemes in the presence 

of channel estimation errors is investigated. For each modulation level, two scenarios are 

considered: perfect channel estimation and a channel with estimation errors. The simulation results 

show that, for the two scenarios, the amount by which the BER of the SIC receiver increases as 

the modulation order is increased for a given noise level and the degree to which performance is 

degraded at high estimation error values. In addition to the BER performance study, for the same 

system model, a SIC detector degradation study in the presence of channel estimation errors, for 

the three modulations schemes, is presented. The study shows how the SIC degradation increases 

as a result of increasing the estimation errors and/or the modulation level. Somewhat surprisingly, 

for the three modulation schemes and for a small estimation error values, a linear relation is shown 

between the SIC degradation and the estimation error. 

Finally, a channel capacity analysis for a random waypoint (RWP) mobility model in a 

wireless system network is introduced. The channel capacity for this model is derived for a 

Rayleigh fading channel with a maximum ratio combining (MRC) diversity receiver. The effect 

of the number of receiver branches on the channel capacity is analyzed and then the derived 

channel capacity is compared with the classic Additive White Gaussian Noise (AWGN) Shannon 

capacity and the static model Rayleigh fading channel capacity. The results show the level that the 

derived channel capacity increases as the number of MRC branches is increased. Also, the 

comparison shows that the AWGN channel capacity is greater than the RWP model channel 
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capacity as it is not affected as severely by fading as the RWP mobility model. On the other hand, 

the RWP channel capacity is slightly larger than the static model Rayleigh fading channel capacity 

since severe fading will not affect the RWP model for as long a time duration as it affects the static 

Rayleigh model. 
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Chapter 1: Introduction 

The Fifth Generation (5G) mobile system have the potential to revolutionize societies and 

economics by providing anywhere and anytime connectivity for anyone and anything [1]- [2]. 

Therefore, intensive research on optimizing 5G wireless communication networks is progressing 

in different areas [3]-[5]. As a technology, 5G is considered as the successor to the current 4G 

Long Term Evolution (LTE) standard [6] and is expected to be released commercially in 2019-

2020. To address current subscriber demands, 5G will require new network and radio access 

technologies. Three application domains for 5G mobile network services and applications have 

been identified by the International Telecommunication Union (ITU) [7]: Enhanced Mobile 

Broadband (eMBB) [8], Massive Machine Type Communications (mMTC) [9], and Ultra-reliable 

and Low-latency Communications (URLLC) [10]. To support these services and applications 

requirements, 5G not only aims to support the need for higher data rates, broader coverage, and 

higher capacity, but also it is more encompassing than these tradional wireless metrics [11]. For 

example, eMBB networking must meet the demanding requirements for bandwidth services 

required by today’s evolving digital lifestyle, such as virtual reality (VR) and high definition (HD) 

video [12]. In addition, mMTC, which is also referred to as the Internet of Things (IoT) [13], must 

satisfy the requirements of high connection density, such as in smart buildings and cities. 

Furthermore, URLLC aims to meet the digital industry requirements of latency sensitive services, 

such as remote management, e-health, and automated driving [12]. These categories and 

applications are illustrated in Figure 1.1.  The communication demands of machine-to-human and 
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machine-to-machine type applications will also be supported by the 5G mobile communication 

system with the goal of making our life more convenient and safer [11]. 

 

Figure 1.1 Categories and applications of 5G system. 

1.1 Fifth Generation (5G) and IoT Requirements and Challenges 

 Here, we provide more detail to supplement the high-level 5G requirements  and target 

applications that have been introduced in the previous section re high data speeds, low latency, 

high capacity, and massive connectivity [14].      

• High data speed 

Practically, the high speed requirements of 5G technology will allow the data to transfer 

instantly. While 4G provides a maximum speed of 100 Mbps, 5G is expected to provide  

1 Gbps – 10 Gbps, which means that 5G is as much as a  hundred times faster than the 
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current 4G [12]. For example, the downloading of a high-definition movie, which might 

take 10 minutes to download in current 4G LTE, could take a matter of seconds using 

the 5G technology [15]. 

• Low Latency 

The latency is defined as the response time between the user request and the action 

being taken by a machine, application, etc. As a result, the 5G lower latency 

requirement of 1 ms and less will reduce the delay and improve the applications of 

streaming as video calling, online gaming, and live broadcasting events [16]. 

Additionally, lower latency will play a major factor in sensing and controlling 

applications as remote healthcare and autonomous vehicles [17]. 

• High capacity 

As a comparison to the current mobile technologies, the frequency bands of 5G will 

add more capacity which means that a greater capacity and additional spectrum will 

enable more data, more users, and faster connections [18].   

• Massive connectivity 

One difference between 5G and 4G LTE is that the 5G will be designed for multiple 

traffic types rather than one traffic type [19]. At the same time, each traffic type will 

have different requirements. It is expected that, using 5G, billions of machines and 

sensors will be connected to the network [20]. Basically,  connecting billions of devices 

without human intervention is at a scale not seen before. These objectives are illustrated 

in Figure 1.2. 
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Figure 1.2 Objectives for 5G wireless system [21]. Adapted with permission. 

The mobile activities that require buffering in 4G mobile networks will occur near- 

instantaneously in 5G mobile networks which means that the IoT is predicted to create a massive 

increase in the connections/number of devices across the wireless networks (Massive IoT) [22]. 

Massive IoT refers to the enormous number of IoT devices and sensors that are communicating 

with one another and typically transmitting data that is not delay sensitive. To support the devices 

that have long battery life with sending data of low data rates, Massive IoT should have deep 

coverage and density [21]. Typical applications include sensors that support smart cities, smart 

logistics, etc. Some of these applications of Massive IoT in 5G mobile networks are shown in 

Figure 1.3. 
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Figure 1.3 Massive IoT applications in 5G mobile networks. 

Many companies and research labs are focusing on the connectivity of  future services 

using IoT, and there substantial challenges that must be addressed in the IoT as a result of the 

increasing  number of connected devices [23]. Some of these challenges include:  

• Security: This represents one of the biggest challenges to protect personal data since 

the probability of a security breach increases as the number of devices is increased [24]. 

Because the Internet represents the backbone for IoT networks, there will be 

vulnerability to hacking and cyber attacking [25]. Private data and important 

information can be exposed by an IoT product with a poor design [19]. As a result, with 
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the many types of IoT devices and the different data they transmit, security is 

considered as a top concern [23]. 

• Connectivity:  Reliable, secure, and managed connectivity is essential to connect large 

numbers of devices [25]. A centralized paradigm to connect and authorize different 

devices/nodes in a network [20], is sufficient when ten, hundreds, or thousands of 

devices are involved. But, such a model will be a bottleneck when billions of devices 

join a network [19]. Consequently, future IoT networks will likely depend on 

decentralized networks to overcome network damage in case of a network server or 

other failures [24]. 

• Hardware and device compatibility: Since IoT will utilize a plurality of technologies, 

this will impose the requirement for novel software and hardware to connect the devices 

[25]. 

1.2 Fifth Generation (5G) Radio Access Technologies 

 To address 5G challenges, the integration of existing technologies with new radio access 

technologies, such as the recently introduced 5G New Radio (NR) standard is anticipated [26]. In 

addition, new frequency bands are expected to be used. Several important physical layer 

technologies, which will be crucial for 5G wireless system, are Massive Multiple-Input and 

Multiple-Output (MIMO) [27], millimeter wave (mmWave) [28], and non-orthogonal multiple 

access (NOMA) [29]. 

• Massive MIMO: This represents an extension of the MIMO technology [30] and it 

groups antennas arrays together at the transmitter and receiver to provide better 

throughput and spectrum efficiency [31]. Conventional MIMO uses a small numbers 

of antennas, say 20 or less, to transmit data. On the other hand, massive MIMO uses a 
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few hundred antennas at base station (BS) to simultaneously serve many tens of devices 

and terminals. Massive MIMO aims provide greater spectral efficiency by spatial 

multiplexing several terminals in the same time-frequency resource. Two major 

innovations  to improve capacity are offered by massive MIMO for 5G networks: 

beamforming and multi-user MIMO (MU-MIMO) [33]-[34], both of  which will play 

a major rule in increasing the total network capacity and the single-user throughput 

[35]. 

• Millimeter Wave (mmWave): Today, more data is consumed by more people and 

devices than ever before on existing radio spectrum bands of the mobile providers [36]. 

As a result, less bandwidth is assigned for everyone which causes more dropped 

connections and slower services [37]. To address this problem, providers started 

experimenting with mmWave transmission by using higher frequencies than those that 

have traditionally  been used [38]. Compared to the current used bands of sub-6 GHz, 

mmWave cellular systems operates in the 30-300 GHz band which gives it the ability 

to support data rates of multiple Gb/s owing to the large bandwidth [39]. In addition, 

very small components and antennas are used for the higher millimeter wavelengths 

compared to those for lower frequencies which offers a simpler design process for 

equipment [40]. Furthermore, the narrow beam and short range of these waves can lead 

to low interference from nearby radios and at the same time increase the security since 

the signals is restricted in small area [41]. As a result, mmWave is considered as another 

key enabling technology for 5G wireless networks. On the other hand, there are some 

challenges and constraints, related to the propagation in the mmWave frequency bands. 

For example, mmWave systems introduce a higher path loss due to the use of high 
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frequencies and in contrast to the microwave signals since they have less diffraction, 

mmWave signals are more vulnerable to blockages.  

• Non-Orthogonal Multiple Access (NOMA): NOMA has been proposed as a promising 

multiple access (MA) technique in order to meet the requirements for 5G wireless 

communications and enhance the performance in IoT networks to enable massive 

connectivity, high throughput, low latency, and high reliability [42]. In contrast to 

conventional orthogonal multiple access (OMA) [43], a key feature of NOMA is to 

support a higher number of users than the number of available orthogonal time, 

frequency, or code dimensions [44]. Basically, NOMA is divided in two main 

categories, namely, power-domain NOMA and code-domain NOMA [45]-[46]. 

NOMA utilizes successive interference cancellation (SIC) [47] at the receiver side to 

detect the desired signals and enhance the spectral efficiency [48]. A detailed 

discussion about NOMA features and a comparison between it and OMA will be 

introduced in the next chapter. 

1.3 Research Motivation 

 Over the past few decades, the wireless communication systems of 1G, 2G, 3G, and 4G 

have witnessed a revolution in their radio access technologies which are typically characterized by 

frequency division multiple access (FDMA), time division multiple access (TDMA), code division 

multiple access (CDMA), and orthogonal frequency division multiple access (OFDMA) as the key 

multiple access technologies [49]- [52]. These technologies belong to the category of orthogonal 

multiple access (OMA) where the resources are orthogonally allocated to multiple users in 

frequency, time, or code. As a result, the number of users that can be supported is limited by the 

available orthogonal dimensions [53]. Up till now good system performance can be achieved by 



9 

 

these technologies, but they still do not have the ability of addressing the 5G network challenges 

described above. To adequately serve the application classes of 5G, eMBB, mMTC, and URLLC, 

several challenges must be addressed, higher capacity, high spectral efficiency, massive 

connectivity, low latency [54]. As a result, NOMA has recently received significant attention for 

5G wireless networks and is considered as a strong candidate to overcome these challenges [55]. 

For example, with large numbers of connected IoT devices, NOMA is expected to meet the 

requirement that mMTC that can connect around one million devices per square kilometer [56].  

The objectives of this dissertation are to evaluate a novel approach for enhancing 5G system 

performance by utilizing NOMA as the multiple access technique for different application 

scenarios and performance metrics. Evaluating the optimum power levels of an uplink NOMA 

system and proposing a new NOMA-based medium access protocol to enhance the system 

throughput are some of the motivations of this dissertation that will be presented in the next section 

where the research areas of this dissertation are described. 

1.4 Contributions and Organization of This Dissertation 

 This dissertation is focused on enhancing the performance of 5G network using NOMA. 

The contributions presented in this dissertation are the following:  

• Optimum power levels for uplink NOMA for 5G wireless communication systems [57] 

Although massive MTC devices are usually power limited, they have applications with 

diverse quality of service (QoS) requirements such as, industrial automation and real-

time localization [58]. Therefore, energy efficient transmission is a crucial requirement 

in most cases and it is important to design an energy-efficient power control scheme 

for uplink NOMA systems with QoS constraints [59]. However, extensive research, in 

the literature, has been done on power control and power allocation to analyze the 
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performance of a NOMA system [60] – [63]. For example, in [60], a power allocation 

scheme under minimum rate constraints has been proposed for NOMA system. Our 

research is directed toward determining the optimum received uplink NOMA power 

levels using a SIC detector for any number of transmitters and then comparing the 

derived results of the optimum power levels [57]. 

• Medium access control (MAC) protocol for massive M2M IoT networks [64] 

  In M2M, tens of thousands of low complexity IoT devices can transmit to a gateway. 

Accordingly, a novel MAC protocol that is scalable, energy efficient and has high 

throughput is highly desirable. There are many studies that address MAC layer issues 

in M2M IoT communication [65]. Our research is directed toward proposing a scalable, 

energy efficient and high throughput MAC protocol for M2M IoT communication 

incorporating pure ALOHA [66] with power domain NOMA,  which is called the 

ALOHA-NOMA protocol [64]. The simplicity of ALOHA, and the superior throughput 

of non-orthogonal multiple access (NOMA), along with the  ability to resolve collisions 

via use of SIC receiver, makes ALOHA-NOMA a good candidate for a MAC protocol 

that can be utilized for low complexity IoT devices. 

• Uplink NOMA system bit error rate (BER) and SIC receiver degradation performance 

with channel estimation errors [67]-[68] 

 Our research is directed toward investigating the BER performance of a system with 

power-domain NOMA and SIC reception using BPSK, QPSK, and 16- QAM 

modulations schemes in the presence of channel estimation errors. A simulation study 

of the SIC receiver degradation of uplink NOMA due to channel estimation errors is 
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presented for BPSK, QPSK, and 16QAM modulation, where the degradation 

performance is analyzed for different channel estimation error values. 

• Channel capacity of a random waypoint (RWP) mobility model for 5G wireless 

networks system [69] 

 The performance behavior of the 5G wireless communications system is a key 

parameter in improving the system networks behavior [70]. The performance of 5G can 

be characterized using several parameters such as capacity, outage probability, and 

spectral efficiency, etc. Channel capacity represents a fundamental measure of 

performance in information theory,  as it defines the upper bound of the maximum 

transmission rate of data at a vanishingly small bit error rate (BER) [71]. Moreover, 

channel capacity is used to study the effect of multipath fading statistical models where 

the received signal power is characterized [72]. As discussed in the literature, static 

wireless networks have mostly been analyzed using these models [73]. In static models, 

the average received power is constant since the transmitter-receiver distance is 

constant. On the other hand, in mobile communication systems, the distance between 

the transmitter and receiver is not constant and it follows a somewhat random behavior. 

Several mobility models have been discussed in the literature, for example random 

waypoint (RWP) and random walk (RWM) models [74]- [75]. So far, a lot of research 

has been devoted to the study of wireless communication networks capacity in terms 

of static model only [76]- [77]. To our knowledge, it is notable that these studies have 

not been considered the dynamic case to find the channel capacity of the wireless 

system network. Our research is directed toward deriving the channel capacity for a 

RWP mobility model of a Rayleigh fading channel [78] using a maximum ratio 
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combining (MRC) diversity receiver [79] and determining the effect of the number of 

receiver branches on the channel capacity. In addition, the derived channel capacity 

result is compared with the classic Additive White Gaussian Noise (AWGN) Shannon 

capacity [80] and with the static model Rayleigh fading channel capacity. 

 The dissertation is organized as follows. Chapter 2 presents a literature review for the 

different research areas in this dissertation. Determining the optimum received power levels for 

uplink NOMA using a SIC receiver for any number of transmitter and comparing the result with 

the µ-law PCM voice coder output levels are introduced in Chapter 3. A new scalable, energy 

efficient, and high throughput MAC protocol for M2M IoT communication, ALOHA-NOMA, is 

presented in Chapter 4. In Chapter 5, the BER performance and SIC receiver degradation of uplink 

NOMA using different modulation schemes is analyzed in the presence of channel estimation 

errors and then the simulation results are introduced. The channel capacity of the RWP dynamic 

model of a Rayleigh fading channel using MRC receiver is derived in Chapter 6. Chapter 7 

summarizes the research contributions in this dissertation and provides future research directions. 
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Chapter 2: Literature Review 

In this chapter, a literature review of the prior art of the three main topics of this dissertation  

is provided. First, a review of the NOMA technology proposed for 5G wireless systems and the 

associated IoT networks are reviewed. In addition, some prior art NOMA performance studies are 

presented. Second, a brief review and prior art of the MAC protocols proposed as candidates for 

M2M communication are introduced. Finally, an overview of the channel capacity in 5G wireless 

networks using a dynamic mobility model is presented. 

2.1 NOMA in 5G Wireless Systems 

In the past few decades, cellular communication systems have grown rapidly moving 

towards a paradigm shift where the users will be provided connectivity through heterogeneous 

networks [81]. For cellular communications, radio access technologies are often characterized by 

their multiple access (MA) techniques [82]. Designing a suitable MA technique is an important 

aspect for improving the system capacity. The 1G cellular system is an analog voice system and 

uses FDMA to provide voices services and supports a 10 kbps data rate. 2G provides digital voice 

and text messages services, using TDMA/FDMA, with a date rate of 300 kbps. With 3G, mobile 

internet and integrated voice services are provided using CDMA with a 50 Mbps data rate. OFDM 

and SC-FDMA are used in 4G to support high capacity mobile multimedia with a 100 Mbps data 

rate [83]. Using these MA techniques, different orthogonal resources either in time, frequency, or 

code are allocated to different users and these techniques are categorized as Orthogonal Multiple 

Access (OMA) technologies [84]. Specifically, OFDMA (for the downlink) and SC-FDMA (for 

the uplink) were adopted as OMA technologies for 4G, which were standardized by the 3rd 
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Generation Partnership Project (3GPP) [85] as LTE and LTE-Advanced, to support the user’s 

quality of services (QoS) requirements. Using OFDMA, with multi-carrier transmission, the 

spectrum is divided into narrow-band 15 kHz subcarriers [86]. The interference between the 

adjacent subcarriers is eliminated by selecting the center frequency of each subcarrier in a way 

that ensures that all the subcarriers are mathematically orthogonal to each other and this eliminates 

interference between the adjacent subcarriers. So, the need of separating the subcarriers by means 

of a frequency guard-band is avoided by the orthogonality [87]. This represents one advantage of 

OFDMA. 

Although OFDMA offers some advantages, one of the disadvantages of OFDMA is its 

high peak-to-average power ratio (PAPR), which requires highly linear power amplifier [88]. The 

effect of a high PAPR reduces the power efficiency and increases the power consumption of 

mobile user equipment (UE) that shortens the battery life. In downlink transmission because of the 

availability of power at the base station (BS), this issue is not serious. But since a mobile user is 

limited by the battery capacity, it represents a major concern in uplink transmission [89]. In order 

to overcome this disadvantage of OFDMA, SC-FDMA, a modified version of OFDMA, has been 

adopted as the standard for LTE uplink multiple access transmission. Although the orthogonal 

subcarriers are used to transmit data symbols in SC-FDMA, they are transmitted sequentially 

rather than in parallel as in OFDMA with a lower PAPR. So, SC-FDMA was attractive for uplink 

transmission in LTE [90].  

The diversity of applications and requirements, high speed mobile internet, IoT 

applications, and smart applications that 5G networks will need to support is one of the biggest 

differences between 5G and the previous generations. 5G wireless systems are expected to provide 

high spectral efficiency, increased data rate, lower latency, and massive connectivity. Further, a 
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large number of wireless connections supporting IoT applications will represent a revolution of 

5G [91]. Consequently, it remains a challenge for OMA to satisfy these requirements of 5G. For 

example, the number of available orthogonal resources provides a limitation for the number of 

supported users in OMA, which means that it cannot support the 5G requirements of a huge 

number of connected IoT devices [92]. As a result, NOMA has been proposed as a promising MA 

candidate, for more efficient spectrum reuse. In contrast to OMA, the innovative principle of 

NOMA is to allow multiple users to share the same resources, either in time, frequency, or code 

[93]. In other words, one frequency channel is allocating to multiple users at the same time within 

the same cell [94] and Successive Interference Cancellation (SIC) is generally used at the receiver 

to recover the data.  To support IoT applications, a downlink version of NOMA, which is called 

multiuser superposition transmission (MUST) [95], has been proposed for 3GPP-LTE-Advanced 

networks which gives NOMA the ability to be compatible with the current and future 

communication systems. 

Comparisons between NOMA and OMA shows that NOMA provide a spectral efficiency  

and throughput substantially better than OMA [29], under certain conditions.  For example, in 

OFDMA, the overall system suffers from low throughput and spectral efficiency by assigning a 

specific frequency to each user whether or not the user has a good or bad channel. On the other 

hand, using NOMA, the same frequency resource may be assigned to multiple simultaneous users 

with good (strong received signal) and bad (weaker received signal) channel conditions [29]. And, 

ideally, a SIC detector eliminates the interference at the receiver. So, under certain circumstances 

enhanced spectral efficiency and throughput may be achieved by using NOMA rather than OMA. 

Furthermore, scheduling in OFDMA leads to high latency when a higher access priority is given 

to a user with good channel condition and a lower access priority may be assigned to a user with 
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bad channel conditions that creates high latency and unfairness problems. In contrast, by serving 

multiple users simultaneously with different channel conditions, NOMA can provide low latency 

and improved fairness in addition to high massive connectivity, where the number of supported 

users in OMA is restricted by the number of available orthogonal resources. Using 5G, the data 

rate is expected to be 10 times of the 4G data rate (1 Gb/s – 10 Gb/s). And the latency is 1 ms or 

less which is one-fifth of the 4G latency [29]. These requirements are expected to be met by using 

as a MA technique. Basically, NOMA is divided in two main categories, power-domain NOMA 

and code-domain NOMA. The key feature of power-domain NOMA is to allow different users to 

share the same time, frequency, and code, but with different, specified power levels. In code-

domain NOMA, different spread-spectrum codes are assigned to different users and are then 

multiplexed over the same time-frequency resources [45]. Different variations of these schemes 

have been proposed in the literature, e.g., sparse code multiple access (SCMA) [96] and multi-user 

shared access (MUSA) [97] have been proposed as code-domain NOMA schemes. In SCMA, 

according to a time-frequency domain codebook set, the coded bits of multiple data layer are 

directly mapped to a multi-dimensional sparse codeword, and the data of multiple users are 

transmitted on the same resources [98]. At the receiver side, for multiuser detection target, the 

message passing algorithm (MPA) is used [99]. The complexity of MPA is rather than high. On 

the other hand, in MUSA, non-orthogonal short sequences are used to spread the modulated 

symbols of multiple users among them and then these symbols are transmitted over the same time-

frequency resources [98]. The SIC detector is realized at the receiver side for multi-user detection 

(MUD) process which has a complexity lower than MPA. The main objective of this dissertation 

focuses on power-domain NOMA instead of the code-domain NOMA, and further discussion of 

different code-domain NOMA schemes can be found in [100]- [105]. 
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The key concept of power-domain NOMA is that different power levels are assigned to 

different users according to their channel quality, while sharing the same resources of time, 

frequency, and code among multiple users. At the receiver side, a SIC detector is applied, in the 

uplink and downlink, to separate and decode the superimposed signal of multi-user signals by 

exploiting the power difference between them [106]-[107]. Using SIC each user’s signal is 

successively decoded. For example, after the user’s signal with the highest power is decoded, then 

it is subtracted from the combined signal before decoding the next user’s signal. In other words, 

as one of the user signals is decoded, the residual user signal is considered as noise. The process 

is repeated until the last signal is decoded, with each decoding having the benefit of the former 

signals having been removed [108]. Practically, users are ordered depending on their signal 

strengths. So, the SIC receiver first decodes the strongest signal, then it subtracts this signal from 

the combined signal, and finally the weakest is detected in the presence of only noise. The basic 

concept of using power-domain NOMA in the downlink and uplink is presented next. 

2.1.1 Uplink and Downlink NOMA 

For uplink NOMA system, SIC is applied at the base station (BS). Different users signals  

are transmitted to the BS and different channel coefficients are associated with the received signal 

at the SIC. For simplicity, an uplink NOMA model of two users that have different channel 

coefficients is considered. Assuming that the two users transmits their signal at the same time and 

frequency and are synchronized with each other. The BS receives the superimposed signal of the 

two users and then SIC is applied to decode each signal. The received signal at the BS is the 

superimposed signal of the two users but with different channel coefficients. Assuming user 1 has 

a signal of �� with channel coefficient ℎ� and user 2 has a signal of �� with channel coefficient ℎ�, 
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respectively. Additionally, user 1 and user 2 have corresponding power coefficients as �� and ��, 

respectively. This model is illustrated in Figure 2.1 as shown below.  

 

Figure 2.1 Uplink power-domain NOMA system of two users. 

Assuming that �� represents the strongest signal, then the analysis of this model is 

explained as follows. The signal of the first user ��, which has power ��, is transmitted to the BS 

through a channel with known coefficient ℎ�. In the same way, the second user signal ��, with 

power ��, is sent to the BS with a known channel coefficient ℎ�. As the power coefficients �� are 

included in the users signals ��, the received signal, at the base station (BS), �, is given as: 

                                                   � = 	ℎ�	�� +	ℎ��� + �,																																															(2 − 1)                                              

where � is the AWGN with zero mean and variance ��. 
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The SIC receiver is used at the BS to decode the two received signals in two stages. In the  

first stage, the SIC receiver detects the strongest signal of user 2 from the superimposed signal and 

noise as given in (2-1), and the other signal is considered as a noise (or interference). Then, the 

decoded signal of user 2 is subtracted from the superimposed signal and the signal of user 1 is 

decoded. 

 

Figure 2.2 Illustration of SIC detection at the BS. 

In downlink NOMA system, the same analysis of uplink NOMA can be followed but the 

SIC detector is applied at the receiver side of users instead of the BS. As a comparison, there are 

some differences between the two systems. The implementation of multi-user detection and 

interference cancellation is of greater complexity in the downlink than in uplink because the lack 

of a centralized processing unit and the limited mobile users processing capabilities [109]. 

However, it is likely that downlink NOMA does not scale in capacity, especially, when the number 

of users is large as envisioned in IoT networks. In addition, the SIC receiver in downlink NOMA 

needs to successfully decode the user signals and for the same issue of large number of users any 

error propagation in the detection process may remarkably reduce the NOMA performance [110]. 
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Therefore, the research studies in this dissertation focus on using uplink NOMA instead of 

downlink NOMA. 

Several research studies of the performance of uplink NOMA system are in [111] – [115].  

For example, in [111], a power allocation scheme has been proposed and then the throughput 

maximization for uplink NOMA under the total transmission power constraints with minimum rate 

requirements of users has been investigated. The results show that the throughput uplink NOMA 

performance with the proposed scheme is much better than OMA for different users date rate. In 

[112], the authors have introduced an algorithm to investigate the optimal power allocation for 

uplink NOMA and derive an expression for the optimal closed-form power allocation. The 

proposed scheme and the simulation results demonstrate a performance enhancement of the 

proposed algorithm compared to OMA system. The resource allocation problem for uplink multi-

carrier NOMA in a device-to-device (D2D) underlaid cellular network has been investigated in 

[113]. The existence of D2D pairs, where adjacent users/terminals use a direct link to communicate 

rather than sending their signals to the BS or central node, leads the NOMA users to have different 

degree of interference. An algorithm has been proposed to model the user clustering and solve the 

power allocation problem [113]. The results show the convergence of proposed algorithm which 

achieve near optimal performance in addition to higher fairness than in OMA. In [114], the authors 

have examined the uplink NOMA performance by proposing an uplink NOMA system with 

cooperative full-duplex relaying (CFR-NOMA) in which the near user acts as a full-duplex relay 

for the far user. The investigation of the outage probability and average sum rate has been 

introduced by deriving closed-form analytical expressions on the outage probability and average 

sum rate [115]. In addition, optimal power allocation scheme to maximize the average sum rate 
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has been studied. The simulations result show that a significant improvement in the outage 

probability and average sum rate has been observed over the conventional uplink OMA. 

In this dissertation, an analysis for the optimum received power levels of uplink power-

domain NOMA, using a SIC detector, is presented in Chapter 3. The optimum received power 

level is determined for any number of transmitter. Then, the results are compared with µ-law PCM 

levels to give some intuitive insight as to the significance of the optimum power levels. To address 

the requirements of M2M IoT communication, a new MAC protocol, which is called ALOHA-

NOMA is proposed and discussed in Chapter 4. The performance of uplink power-domain NOMA 

is studied in this dissertation where the BER performance is investigated in the presence of channel 

estimation errors for uplink NOMA and SIC reception using BPSK, QPSK, and 16- QAM 

modulations schemes. Furthermore, for the same uplink NOMA system, the SIC degradation is 

analyzed for different channel estimation error values in terms of the bit error rate (BER). These 

studies are presented in Chapter 5 of this dissertation. 

2.2 MAC Protocols for M2M Communication 

In Wireless Sensor Networks (WSN) [116], which is a rapidly growing application area, 

randomly distributed sensors are used by a set of nodes to monitor environmental or physical 

conditions such as, motion, pressure, temperature, etc., which are widely used in different 

applications of life as health, military, traffic control, and manufacturing applications [117]. WSNs 

generally experience performance degradation due to, insufficient coverage, scalability, 

congestion, and lack of robustness. Similarly, the sensors nodes are distributed in large numbers 

of places and they have limitations of coverage area and power consumption [118]. To understand 

WSN behavior, it is important to analyze the network performance. In addition to the above 

mentioned issues, some parameters like throughput and delay are important in characterizing WSN 
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performance. However, energy efficiency represents an important metric to measure WSN 

performance, since energy consumption represents a main problem for WSNs that often leads to a 

node failure [119]. MAC protocols play a major role in WSNs due to their ability of establishing 

a communication link to transfer data and save energy that results in enhancing the WSN 

performance [120]. 

In the open systems interconnection (OSI) model [121], the MAC is a sublayer in the data  

link layer (DLL) [122] which is the second layer of the OSI model. Many MAC protocols have 

been standardized by the Institute of Electrical and Electronics Engineers (IEEE), as Ethernet 

(IEEE 802) standards [123], for local area networks (LAN) and metropolitan area networks 

(MAN) [124]-[125]. Actually, the IEEE divided the DLL in two sublayers: logical link control 

(LLC) [126] which is the above sublayer that represents the control sub-layer, and the MAC layer 

which is the lower sub-layer. This is illustrated in Figure 2.3. Mainly, the MAC function is to 

provide channel access and an addressing mechanism that allow each available node on the 

network to communicate with other nodes on the same or other network [120]. 

 

Figure 2.3 Illustration of DLL in OSI model. 
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MAC protocols, can be classified into three main categories, contention-based [127], 

scheduled-based (contention-free) [128], and hybrid protocols [129]. The MAC categories and 

their assigned protocols are show in Figure 2.4 and explained next. 

 

Figure 2.4 Examples of MAC protocols in WSNs. 

• Contention-based protocols 

In these protocols, which are referred as random access protocols, the nodes are allowed 

to access the shared wireless medium independently. Although these protocols can 

provide good adaptive and scalable features, the nodes cannot know when the channel 

is available to send their packets. Therefore, many nodes send their packets and access 

the channel at the same time. This results in a collision which represents a major 

performance limitation for these protocols [127]. ALOHA, also called pure ALOHA 

[66], slotted-ALOHA [130], and Carrier Sense Multiple Access (CSMA) [131] 

represent well known contention-based protocols.  
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In ALOHA, which was developed at the University of Hawaii, each user generates 

packets and all of them have the same fixed length time period. When a user has a 

packet to transmit, the packet is immediately transmitted. The sender waits for an 

acknowledgement that the transmission has been correctly received. When a 

transmission of a packet does not interfere with any other packet transmission, the 

transmitted packet is received correctly. But if two or more packet transmissions 

overlap in time, a collision occurs and neither of the colliding packets is received 

correctly and they have to be retransmitted. The throughput, which is defined as the 

average number of successfully transmitted packets per unit of time, is the major 

ALOHA performance metric. The maximum throughput that can be supported by 

ALOHA is 18%, which is considered a low throughput, as a result of collisions. 

In slotted ALOHA, which is an improved version of the original ALOHA, the channel 

time is divided into discrete intervals (slots) and a packet can be sent only at the 

beginning of the time slot and only one packet can be sent by each time slot. Slotted 

ALOHA doubles the throughput of ALOHA, to 36%, [130]. 

Although ALOHA and slotted ALOHA are simple, their efficiency is low.  As a result, 

if the users listen to the channel before transmitting their packets, a lot of collisions can 

be avoided and this is the concept of CSMA [131]. In CSMA, only one user can 

transmit, otherwise a collision occurs and leads to data packet loss. CSMA initiates 

transmission when the user needs sending the data over the channel. In this case, each 

CSMA listens to the channel to check for any other in-progress transmissions. If a 

transmission is detected, then the user waits for it to end before transmitting their data. 

CSMA is commonly used in Ethernet (IEEE 802.3) networks [123]. CSMA with 
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Collision Detection (CSMA/CD) and CSMA with Collision Avoidance (CSMA/CA) 

represent two types of CSMA [132]-[133]. Simply, in CSMA/CD, the channel is 

monitored after a packet is sent to check if the transmission is successful or not. A 

successful transmission means that the transmission process is completed; otherwise, 

the packet is sent again [132]. In contrast, the idea of CSMA/CA is that each user should 

have the ability to receive while transmitting, in order to detect a collision from other 

users [133]. 

• Scheduled-based (contention-free) protocols 

In contention-free protocols only one sensor node is allowed to access the channel at 

any given time, which avoids collisions [134]. Actually, at any given time, resources 

are allocated to individual nodes to guarantee that each resource is accessed by only 

one node [128]. Based on these resources, frequency, time, or code, one of three 

scheduled protocol are used. These protocols are, FDMA, TDMA, and CDMA.  

• Hybrid Protocols 

In these protocols, the advantages of the TDMA scheduled based protocol and the 

CSMA contention-based protocol are combined where the data packets are transmitted 

using TDMA [129]. As compared to the contention and scheduled categories protocols, 

hybrid protocol can support better flexibility in addition to that they are considered as 

energy efficient protocols. 

For massive number of devices in IoT, M2M enables connectivity between them [135]. 

M2M has some network challenges related the large number of connected devices such as quality 

of service (QoS), scalability, enhanced throughput, and network resources management. In 

addition, power consumption and changing of the service requirements based on the existing 
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applications are also considered as challenges for M2M [136]. As a result, MAC protocols play a 

major role in the performance of M2M communication [137]. For example, ZigBee (IEEE 

802.15.4) [138], which is one of the most used technologies for IoT, is considered as a potential 

candidate for M2M communication [139]. In ZigBee, the contention-based CSMA/CA is used to 

reduce the collisions.  

The incorporation and development of MAC protocols for M2M communications is a very  

current research area [140]- [142]. In [140], an access control algorithm, which is called adaptive 

traffic load slotted ALOHA, has been proposed to avoid the access M2M network congestion 

under high traffic loads and improves the resources utilization. The results show that the proposed 

algorithm is robust against different traffic loads and the access successful rate is increased 

dramatically.  In [141], a hybrid MAC protocol for M2M protocols has been proposed. In this 

protocol, orthogonal codes for channel contention are used and a logical queue is used to schedule 

the nodes. The results show that the proposed protocol is more efficient and provides better packet 

delivery ratio than the well-known distributed queuing collision avoidance (DQCA) in addition to 

it is simplicity of implementation. A scalable hybrid MAC protocol, based on CSMA and TDMA, 

has been designed in [142] for heterogeneous M2M networks. The protocol organizes the 

contention and the reservation process of different devices two parts: transmission only period 

(TOP) and contention only period (COP) to enhance the M2M network energy consumption which 

is investigated by the resulting results and showed the effectiveness of the proposed protocol. 

However, the increasing number of node density in M2M may add a limitation on using 

the contention-based protocol according to the resulting collisions which results in poor 

performance [143].  Although IEEE 802.11 [144] represents the most widely used protocols and 

uses CSMA/CA, it cannot be widely used for M2M according to its inability to be capable of  
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increasing the network size (not scalable) and large amount of wasted energy as a result of the 

collision, and the control packets overhead [145]. Contention-free protocols offer dynamic 

adaptation in their operation but this needs additional overhead which limit the overall 

improvement.  For example, CDMA protocol is not suitable for low-cost M2M applications 

according to its complexity as a result of the near-far problem which needs a power control 

technique to address it.  

In this dissertation, the simplicity of ALOHA and the superior throughput of NOMA [by  

resolving the collisions using SIC detector] has been utilized to propose a novel MAC protocol to 

address the requirements of M2M IoT communication. The proposed protocol is called ALOHA-

NOMA [64]. The analysis show that the proposed protocol is scalable, energy efficient, and has 

high throughput which makes it a good candidate for a MAC protocol to be utilized for low 

complexity IoT devices [64]. More details about the proposed ALOHA-NOMA protocol and its 

performance are introduced in Chapter 4. 

2.3 Channel Capacity of 5G Wireless Networks Using Dynamic Random Waypoint (RWP) 

Mobility Model 

Channel capacity, which was defined by Claude Shannon as the upper bound on the 

maximum rate at which information can be reliably transmitted over a communication channel 

[80], represents one several parameters that are used to characterized the performance of 5G 

wireless network systems, in addition to outage probability and spectral efficiency [146]. As a 

result, these parameters can measure the network quality and capacity, respectively. As is well 

known, the channel capacity in an AWGN environment was derived by Shannon in 1948 [80]. 

Several decades later, the channel capacity for fading environments was introduced [147]-[148] 
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and the effect of multipath fading statistical models, which to date have primarily considered the 

static wireless network model, has been studied and measured by calculating the channel capacity.   

Average received power represents a primary parameter that characterize the system 

behavior. In addition to its use as a received signal strength indicator to help in designing of power  

control and handover algorithms, it is central to determining wireless networks capacity [149]. In 

static models, it is given as given as a function of the transmitted power, transmitter-receiver 

distance, and path loss exponent. Since the transmitter-receiver distance is constant, in static 

models, the average received power is constant [150]. In contrast, in mobile systems, the 

transmitter-receiver distance is not fixed and it follows a random pattern. The variation of received 

signal power occurs due to node mobility, distance dependent path loss, and multipath fading 

which results in time varying received power, which, in general, that does not exhibit the same 

behavior as static wireless networks. Several mobility models have been discussed in the literature 

and a popular used one is called the random waypoint (RWP) model [74]. This model, which was 

proposed by Johnson and Maltz [151], describes how the mobile users (nodes) change their 

velocity and location over time in addition to their movement pattern. The concept of RWP will 

be introduced in Chapter 6. 

The channel capacity of wireless communication networks has been studied in the literature 

in static models as introduced in [152]-[154]. In [152], the authors have been presented an 

architecture for analyzing the capacity when Device-to-Device (D2D) communications share the 

channel resources with cellular links.  The authors in [153] have been studied the achievable 

transmission capacity of secondary users in heterogeneous networks. In [154], the optimal D2D 

transmission capacity and density in different bands have been studied. It is notable that, the 

dynamic case, in these studies, have not determined the channel capacity of the wireless system 
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network. Recent research [155] and [156], has studied the outage probability in a dynamic model. 

In [155], an expression of the outage probability in dynamic mobility model over a Rayleigh fading 

channel has been derived. In [156], the distribution probability density (PDF) function and the 

outage probability of dynamic mobility model has been derived over a (η-µ) fading channel. This 

research discussed the outage probability not the channel capacity. 

In Chapter 6 of this dissertation, the RWP mobility model channel capacity of a Rayleigh  

fading channel, using a maximum ratio combining MRC diversity receiver, is derived. Then, the 

derived result is compared with the AWGN Shannon capacity and the capacity of a static model 

Rayleigh fading channel.  

2.4 Concluding Remarks 

In this chapter, an overview of NOMA techniques in 5G wireless systems and related 

performance research studies were presented. Then, the MAC protocols that are used in M2M and  

IoT applications and the corresponding challenges were introduced. Finally, an overview of 5G 

wireless network channel capacity using dynamic RWP mobility was presented. 
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Chapter 3: Uplink Non-Orthogonal Multiple Access (NOMA) Optimum Received Power 

Levels1 

3.1 Introduction 

As it is mentioned earlier in Chapter 1 and Chapter 2, the multiple access technique plays 

a major role in 5G mobile system performance.  NOMA has been proposed as promising multiple 

access technique in order to meet the stringent requirements for 5G wireless communications and 

enhance the performance in IoT networks such as, high throughput, low latency, high reliability, 

and massive connectivity. As a result, NOMA is considered as a strong candidate for 5G 

applications and consequently it is important to investigate the performance of the 5G wireless 

communications system using this technology for different scenarios and performance metrics. 

In this chapter, an analysis of uplink power-domain NOMA is presented to evaluate the 

optimum received power levels. The relation is determined for any number of transmitters, using 

an optimized SIC detector that can decode the transmitted signals by cancelling the interference. 

The optimum received power levels are derived, and compared with the result of the well-known 

µ-law pulse code modulation (PCM) levels [157] to point an unexpected and striking similarity 

between the two systems. 

The system model of the proposed scenario is presented in the next section. Then, the 

derived result and the comparison study is introduced and analyzed. Finally, the conclusions of 

this chapter is presented in the last section. 

                                                           

1 The content of this chapter has been published in [57], and it is included in this dissertation with a 

permission. Permission is included in Appendix A. 
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3.2 System Model 

Without loss of generality, the system model first considers an uplink NOMA system of 

three mobile users and a BS receiver and the result is then generalized for N users. The 

corresponding system diagram is illustrated in Figure 3.1. Using NOMA, a  frequency channel is 

allocated to multiple simultaneous users within the same cell with good (strong received signal) 

and bad (weaker received signal) channel conditions2. And, ideally, the SIC detector is applied at 

the receiver side to recover the data and eliminate the interference by using successive interference 

cancellation [47]. 

 

Figure 3.1 Uplink power-domain NOMA with ideal SIC reception. 

                                                           

2 Once the channel attenuation has been determined, the power of the received signals can be adjusted by 

varying the transmitter powers.  We will assume that this has been accomplished and we refer to “strong” 

and “weak” signals received at the base station. 
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NOMA with SIC exploits the signal-to-interference-plus-noise ratio (SINR) difference 

among users because of the non-uniform power allocation at the user transmitters. It will be 

assumed that the three users transmit their signal at the same time and frequency and are 

synchronized with each other. The superimposed signal of the three users, with different channel 

coefficients, is received by the BS and then SIC is applied to decode each signal. By assuming that 

the third user signal �� is the strongest signal and the first user signal �� as the weakest signal,  the 

model analysis is explained as follows. The first user signal ��, which is scaled by a power 

coefficient ��, is transmitted to the BS through a channel with known coefficient ℎ�. Similarly, the 

signal of the second user ��, which is scaled by a power coefficient ��, is transmitted to the BS 

through a channel with known coefficient ℎ�. Furthermore, the signal of the third user ��, which 

is scaled by a power coefficient ��, is transmitted to the BS through a channel with known 

coefficient ℎ�. As the power coefficients �� are included in the users signals ��, the superimposed 

signal at the base station (BS), which is defined as �, is given as: 

� = 	ℎ�	�� +	ℎ�	�� +	ℎ�	�� + �,																																															(3 − 1) 

where the parameter � is the  well-known Additive White Gaussian Noise (AWGN) with zero 

mean and variance ��. 

 The SIC receiver, at the BS, decodes the three received signals in three successive stages. 

In the first stage, the strongest signal of the third user is first decoded from the superimposed signal 

and the other users signals are considered as noise (or interference). After that, the decoded signal 

of the third user is subtracted from the delayed and stored combined received signal. Then, the 

second user signal is decoded in the second stage and the first user signal is considered as 

interference. Finally, in the third stage, the weakest signal of the first user is decoded, only in the 

presence of AWGN, after the decoded signal of the second user is subtracted from the combined 
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signal. The concept of using a SIC receiver for successive decoding the three signals is illustrated 

in Figure 3.2.    

 

Figure 3.2 The SIC detector at the BS for three users. 

In this research, the optimum received power levels of uplink power-domain NOMA, using 

a SIC detector, is determined for any number of transmitters [57]. Then, a comparison between the 

obtained results of the optimum power levels with µ-law PCM levels is introduced to demonstrate 

a surprising connection between the two systems The optimum received power level is determined 

for each signal so as to achieve the same bit error rate (BER) for each received signal. The optimum 

received power level for each transmitter is computed and then compared with a specified value 

(threshold value) of SINR to achieve the same BER for each signal. The optimum received power 

level is derived for the case of three transmitters and then it is generalized for N transmitters.  

To derive the general formula for the optimum received power levels, the signal power of 

the first transmitter ��	is determined and then it is compared with the required threshold SINR. 



34 

 

The required SINR is assumed to be the same for each signal. The value �� such that �� can be 

accurately received is 

																																		
��ℎ�

�

���
= ����,																																																											(3 − 2) 

which is rewritten as 

					�� =	
���

ℎ�
� ����.																																																											(3 − 3) 

Similarly, the second transmitter power, ��, is computed via the iterative equation 

																																																														��	ℎ�
� = 		����	�	��ℎ�

� +	����																																								(3 − 4) 

Substituting (3-3) in (3-4) gives that 

															�� =	
���

ℎ�
� 	����	(���� + 1).																																							(3 − 5) 

As observed in (3-5), the power value �� depends on the power value of the first 

transmitter	��. The same rule is iteratively applied to determine	��, which depends on the previous 

values of 	�� and 	�� and is determined to be 

	��	ℎ�
� = 		����	�	��ℎ�

� +	��ℎ�
� +	���� 

			�� =	
���

ℎ�
� 	����	(	����

� + 2	���� + 1).																												(3 − 6) 

This iteration is extended for N transmitters and the optimum received power levels are 

determined as a function of the noise power value, ���, channel coefficient ℎ�, and the required 

SINR as 

 

																														�� 	ℎ�
� = 		����	�	��ℎ�

� +	��ℎ�
� +⋯+	��!�ℎ�!�

� + ���� 

�� =	
���

ℎ�
� 		����	(	1 + ����	)

�!�, " = 1,2, … ,�.																				(3 − 7) 
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In next section, the optimum received power level for different N and SINR are described 

and compared to the optimum receive power level results with the µ-law PCM levels results. 

3.3 Optimum Received Power Levels 

In this section, the derived optimum received power levels relation, (3-7), is evaluated 

using MATLAB for different values of N and different values of SINR (in dB). In Figure 3.3, the 

optimum received power levels for different values of N, where SINR= 2 dB is fixed for each user, 

is presented.   

 

Figure 3.3 Received power levels for different number of transmitters N and SINR = 2 dB. 
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The optimal received power levels for several values of SINR are depicted in Figure 3.4. 

 

Figure 3.4 Received power levels for N = 10 and different SINR values. 
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As given in (3-7) and shown in Figure 3.3 and Figure 3.4, for an AWGN channel and 

constant SINR, the optimum received power level increases as the number of transmitters increases 

and the channel gain of one user does not affect the power level of another user (when it is perfectly 

canceled by the SIC receiver). 

A comparison between the optimum power levels derived above and the µ-law compander 

power levels was investigated. The motivation being similar criteria (constant SINR for each 

signal) for the SIC receiver and constant Signal/(Quantizing Noise) for each PCM (µ-law 

compander sample level). The µ-law compander used in classic telephony PCM is given as [157] 

																								%(�) = &'�(�)	
(�	(1 + 	)	|�|	)
(�	(1 + 	))

,																																																																(3 − 7) 

where � is the signal input amplitude and the companding parameter µ is equal to 255 in the 

standard PCM system in North-America and Japan.  

Assuming an AWGN channel, the optimum power levels are very similar to the µ-law 

encoding used in PCM speech companders, where the ratio of signal power to quantization noise 

is kept constant. As shown in Figure 3.5, a µ-law compander has a linearly increasing relation in 

the companded signal and is remarkably similar to the optimum received NOMA power levels 

shown in Figure 3.3 and Figure 3.4. As noted above, this similarity is because the design criteria 

for µ-law coding, keeping the ratio of the signal power to quantization noise constant for all signal 

levels, is very similar to the NOMA requirement of constant received SINR for each received 

signal. 
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Figure 3.5 NOMA optimum power levels versus µ-law levels. 
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3.4 Concluding Remarks 

In this chapter, a formula for the optimum received power levels for uplink power-domain 

NOMA with ideal SIC reception was derived. The derived results show that the optimum received 

power level increases linearly (in dB) as the number of transmitters N is increased and the 

maximum required received SINR increases exponentially (or equivalently, linearly in dB) with 

the number of users N. An interesting observation is that the optimum power levels are very similar 

to that of the µ-law encoding used in the PCM speech companders. 
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Chapter 4: ALOHA-NOMA Protocol for Massive Machine-to-Machine (M2M) of IoT 

Communication3 

4.1 Introduction 

The anticipated rapid growth of both the number of connected devices and the data volume 

that is expected to be associated with the IoT applications, has substantially increased the 

likelihood of massive M2M type communication within 5G wireless communication systems. 

M2M communication without human intervention, which is expected to constitute a significant 

portion of the IoT, leads to a rethinking of the medium access control (MAC) layer. In M2M, it is 

possible that tens of thousands of low complexity IoT devices will transmit to a gateway. 

Accordingly, a novel MAC protocol that is scalable, energy efficient and has high throughput is 

highly desirable. This MAC protocol must be compatible with the low complexity requirements 

of IoT devices, which have limited battery and memory, as well. 

As discussed in Chapter 2, contention-free MAC protocols such as TDMA, FDMA or 

CDMA cannot provide high throughput to meet the demands of large number of IoT devices due 

to control overhead and unused empty slots, and furthermore they are not scalable. On the other 

hand, contention-based protocols such as CSMA/CA performs well only for small networks and 

they do not have sufficient throughput for large scale networks due to collisions. The same issues 

are valid for the familiar ALOHA and slotted ALOHA protocols. Moreover, CSMA/CA is energy 

                                                           

3 The content of this chapter has been published in [57], and it is included in this dissertation with a 

permission. Permission is included in Appendix A.  
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inefficient, since it requires continuous channel monitoring and there is a significant overhead due 

to control packets that are not compatible with the limited battery requirements of IoT devices. 

The main aim of this research is to propose a scalable, energy efficient and high throughput 

MAC protocol for M2M communication. The simplicity of ALOHA and the superior throughput 

of non-orthogonal multiple access (NOMA) and its ability to resolve collisions via use of a SIC 

receiver, makes ALOHA-NOMA [64] an excellent candidate for a MAC protocol that can be 

utilized for low complexity IoT devices. It is worth noting that the main impediments of ALOHA, 

which are the low throughput and high collision rate, can be overcome with NOMA. The proposed 

ALOHA-NOMA protocol is a promising method that does not require any scheduling, where the 

IoT devices may transmit to the gateway at the same time on the same frequency band. The 

protocol is also energy efficient such that the devices are not obliged to listen to the channel, and 

has high throughput as will be demonstrated in this chapter. 

There are many studies that address MAC layer issues in M2M communication, e.g., see 

[65] and references therein. Among those, the combination of slotted ALOHA with an interference 

cancellation (SIC) [47] receiver proposed in [158]-[160] are the closest protocols to the proposed 

ALOHA-NOMA in this paper. However, there are salient differences in the proposed ALOHA-

NOMA protocol with the prior art. First, ALOHA-NOMA uses pure ALOHA instead of slotted 

ALOHA, because slotted ALOHA requires synchronization of hundreds or thousands of IoT 

devices in time domain conflicts with the simplicity requirement of IoT devices. Second, the power 

levels of IoT devices in ALOHA-NOMA are quite important to resolve the collisions in the 

gateway by the SIC receiver and they are adjusted by cooperating with the gateway. 

The contributions of this research work are 3-fold. First, a novel scalable, energy efficient, 

high throughput MAC protocol is proposed to be utilized for IoT applications that have low 
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complexity devices. Following that, a dynamic frame structure that provides great flexibility to 

accommodate the changing number of IoT devices is defined and is compatible with the proposed 

protocol. Finally, the superiority of the proposed ALOHA-NOMA is demonstrated in terms of 

throughput. 

This chapter is organized as follows. In the next section, Section 4.2, the proposed 

ALOHA-NOMA protocol is introduced, and then a frame structure for ALOHA-NOMA is 

presented in Section 4.3. After that, the superiority of the proposed method regarding throughput 

with respect to pure ALOHA is discussed in Section 4.4 with its numerical results are presented in 

Section 4.5. Finally, the chapter ends with the concluding remarks in Section 4.6. 

4.2 ALOHA-NOMA Protocol for IoT Applications 

There is a research challenge in meeting both the low complexity requirements of IoT 

devices with the high throughput needs of a large IoT network. The synergistic combination of the 

low complexity ALOHA protocol with the promising high throughput feature of NOMA can be 

an appealing MAC protocol for IoT applications, dubbed ALOHA-NOMA. Note that the 

requirement of increased throughput makes orthogonal multiple access (OMA) protocols 

insufficient in providing network throughput.  NOMA has emerged as a promising solution in 5G 

networks. 

The ALOHA protocol, which was proposed nearly 50 years ago, has appealing features for  

IoT applications owing to its simplicity in implementation and compatibility with distributed 

systems. The main bottleneck of ALOHA systems is the low throughput caused by the high 

number of collisions, which can be improved by using NOMA. Furthermore, one of the major 

impediments to M2M communication, signaling overhead, can be minimized by the combination 

of ALOHA and NOMA. Signaling overhead is reduced in the estimation phase of the proposed 
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protocol in which the number of active devices are estimated by the gateway, which is discussed 

in the next section, by the unique feature of ALOHA and NOMA where each user is able to 

transmits whenever it wants. Accordingly, the overhead to establish a connection between the IoT 

device and the gateway can be drastically reduced before communication begins. This issue is 

further explained in Section 4.3.  

Many IoT devices that are transmitting simultaneously on the same frequency with 

different power levels to the IoT gateway can be separated via use of a SIC receiver employed at 

the IoT gateway. A sample illustration of this scenario is depicted in Figure 4.1. 

 

Figure 4.1 A use case for ALOHA-NOMA in the smart home with IoT. 
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In this model, IoT devices send their data to the IoT gateway on demand using the ALOHA-

NOMA protocol and the IoT gateway distinguishes the signals using a SIC receiver. One of the 

biggest advantage of ALOHA-NOMA in this topology is that ability to support different 

heterogeneous devices that belong to different providers without the need for a specific network 

configuration. 

The proposed ALOHA-NOMA protocol is scalable in terms of throughput versus the 

number of nodes. With this protocol, any node can transmit whenever it wants so that any number 

of nodes can join or leave the network without any network management involvement before 

communicating. It is an energy efficient protocol that resolves collisions, within limit on the 

number of simultaneous transmissions, and thus minimizes retransmission. As mentioned 

previously, ALOHA-NOMA increases the conventional ALOHA throughput significantly. That 

is, the normalized throughput increases more than linearly with the total number of users as 

discussed in Section 4.4. The main drawback of the proposed protocol is the increased 

computational complexity of SIC receiver due to the high number of nodes. However, this can be 

easily managed, because gateways are much more powerful devices than the low power IoT 

devices. 

4.3 Dynamic Frame Structure for ALOHA-NOMA Protocol 

One of the main practical challenges in the proposed ALOHA-NOMA protocol is the 

determination of the proper power levels of IoT devices; this is critical for the SIC receiver to be 

able to successfully distinguish the signals. Indeed, the adjustments of power levels is the only 

control that must be done for IoT applications before ALOHA-NOMA-based information transfer 

begins. To address this challenge, a dynamic frame structure with great flexibility in 

accommodating the changing number of devices is designed, i.e., when a group of IoT devices 
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joins or leaves the network the same frame structure is employed. Such a scheme provides great 

flexibility in adapting to changing network environments. This structure is fundamentally different 

than that of a OMA system, where a new user arrival can completely change the overall frame 

structure such that the additional user must be assigned at a resource (e.g., time slot, frequency, or 

code) within the frame. 

The proposed frame structure is periodic and basically composed of five phases. An 

illustration of the proposed periodic frame structure is given in Figure 4.2. 

 

Figure 4.2 The proposed frame structure. 
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Accordingly, the gateway first transmits a beacon signal. Next, the IoT devices with 

packets to transmit send “dummy” (without data content) packets to help the gateway estimate the 

total number of active devices in the medium. The number of IoT devices are estimated at each 

period via multi-hypothesis testing [161], and the SIC receiver is implemented to decode a fixed 

number of different packets. A SIC receiver that can process m signals is denoted as SIC(m) and 

m is referred as the SIC degree. Detecting the number of signals using multiple hypothesis testing 

was previously addressed in [162]. If the total number of devices detected is less than or equal to 

m, the number of signals is broadcast to the transmitters. If the total number of devices that are 

detected exceeds m, a back-off command is issued. Each device randomly picks a number/identity 

that maps to the appropriate power level and all the devices transmit their packets to the gateway, 

and provided that each of the devices has (randomly) picked a different identity (i.e., power level) 

the messages are detected and acknowledged. The fifth phase, an acknowledged (ACK) packet, 

can contain the unique IoT device numbers corresponding to successfully decoded packets so that 

each device can understand whether its packet is successfully received. Note that this frame 

structure is preserved when the number of IoT devices changes, which provides great flexibility, 

because the length of first three phases is fixed independently of the number of IoT devices. 

Although one can consider that the first three phases and the ACK phase decrease throughput 

efficiency, they are considerably shorter than the fourth phase or payload. 

To give more detail on the protocol, the gateway initially transmits a beacon signal and in  

the second phase, all IoT devices that send packets in this frame transmit simultaneously on the 

same frequency to the IoT gateway using an ALOHA protocol. Then, the IoT gateway estimates 

the number of IoT devices by multi-hypothesis testing and the SIC receiver is set to decode this 

number of IoT devices using NOMA. Notice that it would lead to easier implementation if all IoT 
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devices are registered to the gateway instead of multi-hypothesis testing, however, this may 

significantly increase the length of control phase and thus decrease the payload or throughput 

considering the large number of IoT devices. A popular method in multi-hypothesis testing that 

can be used to find the number of IoT devices at the gateway is based on the Bonferroni Inequality 

[161] which states that, given any set of events, the probability of their union is smaller than or 

equal to the sum of their probabilities. 

More precisely, M independent null hypotheses are tested such as ��, ��, …, �� where ��  
is the event that ��	 user exists (i.e., transmits). Each of the hypothesis has corresponding 
-values,  


�, 
�, …, 
�, respectively. The number N is the total number of the true null hypothesis or the 

total number of IoT devices in the medium such that N≤ M. The value of N is unknown at the 

gateway and estimated probabilistically. Accordingly, the probability of having N active IoT 

devices can be specified as 

																														�		�	������	��	���	�������	� = 	 	1 − 	!	�"	!�#" ,																															4 − 1�	 
where α is determined using the Bonferroni Inequality given by 

																																																	�	 %&'�� ≤	 !)*
�

+,�
- 	≤ 	!.																																																																	4 − 2� 

Once the total number of IoT devices, N, is estimated, the SIC receiver at the gateway decodes the 

N strongest signals. Assuming IoT devices send their address/ID in the “dummy” packet, the 

gateway decodes these packets and broadcasts the number of devices with these addresses/IDs in 

the third phase. The devices who don’t get detect their address/ID, do not transmit a payload. Those 

devices that detect their address/ID from the gateway message change their power according to 

the power back-off scheme as proposed in [162]. In particular, each device randomly selects their 

power levels among the set of optimal values introduced in Chapter 3. For the receiver to work 
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properly, the transmitters must have chosen different power levels. The active IoT devices that do 

not detect their address/ID from the gateway may increase their transmit powers slightly in the 

next round. This will affect the outcome of the multi-hypothesis testing as well. In the fourth phase, 

the payload information is sent to the gateway by all the IoT devices that detected their address/ID 

from the gateway. The fourth phase of the proposed frame structure can be considered as pure 

NOMA. The successfully detected packets are acknowledged in the last phase. This procedure 

repeats periodically. 

4.4 Throughput of ALOHA-NOMA 

One of the most critical parts of the proposed frame structure depends on the determination 

of the number of IoT devices in the second-phase. If only pure ALOHA was used in the second 

phase, the performance would be unsatisfactory since only 18% of the IoT devices can be detected 

at a time on average. To address this problem, the ALOHA protocol is replaced with ALOHA-

NOMA in the second phase of the proposed frame structure. Accordingly, the number of devices 

are first estimated according to the superposed signal strength based on multi-hypothesis testing 

as was done in [162]. Note that in this phase the aim is not to detect the packets, but only to estimate 

the number of active devices. Once the number of active devices is estimated, the SIC receiver is 

set to decode this number of signals and the packets are detected. It is worth emphasizing that at 

each round the power level of each device randomly and independently changes, and thus SIC 

receiver can successfully recover the signals if the devices selected distinct power levels. These 

two consecutive parts inside the second phase are denoted as ALOHA and NOMA, respectively, 

which explains the reason of referring to this protocol as ALOHA-NOMA. 

The main aim of this section is to specify the throughput increase of ALOHA-NOMA with 

respect to pure ALOHA. The ALOHA throughput can be considerably increased by working in 
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conjunction with NOMA, which will allow simultaneous users to successfully communicate with 

the gateway during the vulnerable period which is, in ALOHA, represents the total period of time 

when collision may occur for a packet. 

A SIC receiver that can successfully detect m transmissions, where SIC(m) means that the 

receiver can detect, at most, m signal, so successful reception will occur when there are m or fewer 

arrivals (transmissions) which occurs with probability 

																							�		���������0	1�2���������� = 	�	�	��	0���	2����20��.																													4 − 3� 
Assuming a large number of IoT devices, the Poisson distribution is a reasonable model  

for the probability of � transmissions during the vulnerable time period and is given by 

									��	���������0	1�2����������� = 24���	�#�56�! ,																																													4 − 4� 
where the parameter 4 represents the arrival rate (packets/ second), the T is the packet length 

period, and � = 0,1,2, … ,�.  
Since the probability of “success” is the probability of m or fewer arrivals (with different 

power levels), the throughput, which can be defined as the time fraction during which the useful 

information can be carried on the channel, is given as 

																							:�	 =	; 	2<��	�#�=2	� − 1�! = 	 �
#�=
2 	; 2� 	<�� − 1�!

>

�,�
,

>

�,�
																																																								4 − 5� 

where G = gT is the normalized offer load. 

In order to find the relation between the maximum throughput of ALOHA-NOMA for 

different values of m, (4-5) is used to compute the maximum throughput for each value of m. For 

m =1, the maximum throughput is defined by differentiating (4-5) with respect to G and equating 

to zero as 
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																							�:�	�< = 	 −2 ∗	�#�= ∗ 2<� + 2 ∗ �#�=�2 ∗ 0! = 0.																																																								4 − 6� 
 Solving for G in (4-6) gives the familiar result of G = 1/2. Substituting G=1/2 in (4-5) for 

m = 1, gives the familiar result of ALOHA throughput of 18%. The same process may be applied 

with m = 2. The throughput, using (4-5) with m = 2, is 

												:�		C�	>,� =	;2<��	�#�=2� − 1�!
�

�,�	
=	 2<��	�#�=2 ∗ 0! +	2<���#�=2 ∗ 1! .																																									4 − 7� 

 The maximum throughput is obtained by differentiating (4-7) with respect to G and 

equating the result to zero as 

																																		�:�		�< = 	�#�=2 	E2 + 4< − 8<�G = 0.																																																														4 − 8� 
Solving (4-8), the roots of G are 0.809 and -0.309. Therefore, to find the maximum 

throughput of ALOHA using NOMA with m =2, G = 0.8090 is substituted in (4-5) and the result 

is given as 

																																						:�		>CH	C�	=,I.JIKI	C+L	>,� = 0.42.																																																													4 − 9� 
As shown in (4-9), for m =2, the maximum throughput of ALOHA-NOMA is increased 

from 18% to 42%. For m = 3, the maximum throughput is 

																																				:�		>CH	C�	=,	�.�NOJ	C+L	>,N = 0.686.																																																							4 − 10� 
These procedures can be applied for any number of m to determine the maximum 

throughput for the ALOHA-NOMA system [again assuming distinct power levels so that the SIC 

detector can properly operate]. 

4.5 Numerical Results 

 The throughput of ALOHA-NOMA is numerically evaluated for different values of m. The 

performance measure is the maximum throughput, as specified in the previous section. As shown 
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in Figure 4.3, the maximum throughput of ALOHA-NOMA increases with a slope that is (slightly) 

greater than linear with m ranging from 1 to 5. Notice that the familiar result of ALOHA 

throughput, which is 0.18, is observed at m = 1 in Figure 4.3 for the ALOHA-NOMA system.  

 

Figure 4.3 ALOHA-NOMA maximum throughput as a function of m	≤5. 

The maximum throughput with m is plotted for a large number of active transmitters, for 

m = 20 and m = 100 in Figure 4.4 and Figure 4.5, respectively. These results depict that the 
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maximum throughput increases with a greater than linear slope as the number of active IoT users, 

m, increases. 

 

Figure 4.4 ALOHA-NOMA maximum throughput as a function of m	≤20. 
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Figure 4.5 ALOHA-NOMA maximum throughput as a function of m ≤100. 

4.6 Concluding Remarks 

This chapter presented a novel MAC layer protocol for IoT applications incorporating pure 

ALOHA with power domain NOMA, which is called the ALOHA-NOMA protocol. ALOHA-

NOMA, a simple, easy to implement, distributed, and is a scalable protocol in terms of throughput 
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vs the number of IoT nodes.  In addition, it is compatible with the low complexity requirements of 

IoT devices. The ALOHA-NOMA is energy efficient, since the SIC receiver at the gateway will 

minimize the retransmissions of IoT devices and does not need to listen the channel continuously. 

A dynamic frame structure was introduced that is robust to the changing number of devices, so 

that estimation of the number of active IoT devices transmitted in ALOHA is accomplished using 

multi-hypothesis testing that detects the packets of IoT devices using a NOMA SIC-based receiver. 

The ALOHA-NOMA protocol significantly improves the throughput performance with respect to 

pure ALOHA, e.g., a SIC receiver that separates 5 signals can boost the throughput of classical 

ALOHA from 0.18 to 1.27 and with 100 active IoT devices the throughput is increased (at a greater 

than linear rate) to 40.  
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Chapter 5: Performance of Uplink Non-Orthogonal Multiple Access (NOMA) in the 

Presence of Channel Estimation Errors4 

5.1 Introduction 

In this chapter, the BER performance of a system with power-domain NOMA and SIC [47] 

reception using BPSK, QPSK, and 16-QAM modulations schemes in the presence of channel 

estimation errors is investigated. The analysis considers two scenarios for each modulation level: 

perfect (ideal) channel estimation and a channel with estimation errors. The simulations results are 

introduced and compared for each modulation scheme/level. The ideal case investigates the effect 

of SNR variation on the SIC detector error rate with perfect channel estimation. In addition, a 

simulation study of the SIC receiver degradation of uplink NOMA due to channel estimation errors 

is presented for BPSK, QPSK, and 16-QAM modulation, where the degradation performance is 

analyzed for different channel estimation error values. Similarly, the simulation results are 

analyzed and compared for each modulation scheme. 

This chapter is organized as follows. In Section 5.2, the system model of a two-user uplink 

NOMA system with SIC reception is presented. Then, the simulation results of the BER 

performance for different modulation schemes with and without channel estimation errors is 

introduced in Section 5.3. In Section 5.4, the simulation study of the SIC receiver degradation of 

uplink NOMA due to channel estimation errors is investigated. Finally, the chapter ends with the 

concluding remarks in Section 5.5. 

                                                           

4 The content of this chapter has been published in [67] and [68], and it is included in this dissertation 

with a permission. Permission is included in Appendix A. 
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5.2 System Model           

 As in the model that was presented in Chapter 3, the corresponding diagram of an uplink 

NOMA system, which consists of two users and a BS receiver, is illustrated in Figure 5.1.  

 

Figure 5.1 A system model for a two user uplink NOMA. 

As discussed in Chapter 3 and shown in this figure, the two users transmit their signal at 

the same time and frequency, are synchronized with each other, the first user transmits its signal, 

�� scaled by a power coefficients ��, to the BS over a channel with (scalar) coefficient ℎ�. The 

second user sends its signal, �� with its power coefficients ��, to the BS with channel coefficient 

ℎ�. The superimposed signal of the two users, �, is received by the BS and it is represented as 

																																																															� = 	ℎ��� + ℎ��� + 
,																																																										(5 − 1) 

where 
 is the additive white Gaussian noise (AWGN) with zero mean and variance ��.  
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Using the same assumptions as in Chapter 2 where the second user signal is considered as 

the strongest signal, then the SIC receiver is used at the BS to decode the two received signals in 

two stages. First, the SIC receiver detects the strongest signal of user 2 from the superimposed 

signal and noise that are given in (5-1), and the other signal is considered as noise. Then, the 

decoded signal of user 2 is subtracted from the combined received signal and the signal of the first 

user is decoded only in the presence of AWGN. The concept and operation of a SIC detector is 

explained in Chapter 2 and Chapter 3. 

In Chapter 3, the optimum received uplink power levels using a SIC detector for any 

number of transmitters were determined. The analysis in this chapter assumed that there is a 

constant and known channel during the estimation and communication process. In addition, a 

constant channel estimation error, �, is assumed. Furthermore, the received power levels are set to 

the optimum levels as determined in Chapter 3.  

This research focuses on studying the BER performance of a two-user uplink NOMA using 

a SIC detector for different modulation schemes. First, the BER performance, with various 

modulations schemes, is studied assuming no channel estimation error (perfect channel 

estimation). Second, the effect of a channel estimation error on each modulation scheme is 

investigated. 

For the ideal scenario, the methodology assumes that the two users signals create the 

BPSK, PSK and 16-QAM signals. In addition, AWGN noise has been generated and then it is 

added to the two transmitted signals at the receiver side as shown in (5-1). Taking into account the 

channel attenuation, the power coefficients �� and �� have been selected so that the received 

signals are the optimum values as introduced in Chapter 3 and are communicated using the Slotted 
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Aloha-NOMA (SAN) protocol as introduced in [64] and [164]. In the present analysis, user 2 is 

assumed to be detected first by the SIC detector.  

Similarly, for the case with channel estimation errors, the BER performance is investigated 

for the different modulation schemes. In addition to the same assumptions in the perfect estimation 

case, there are some additional assumptions. With channel estimation errors, the received signal 

powers are selected to be the values that would be optimal when there are no channel estimation 

errors. The estimation error, �, is defined as the absolute value of the difference between the 

channel coefficient and its estimated value normalized to the magnitude of the channel coefficient. 

So that, the error value is considered as a percentage value (normalized to the channel coefficient). 

The results have been simulated for different values of channel estimation error. For simplicity, 

we show the results for 0.15 and 0.25 estimation errors. 

5.3 Simulation Results and Analysis 

Based on the assumptions in Section 5.2, the two scenarios are simulated for the three 

modulation schemes and the results are analyzed. The simulation results for perfect channel 

estimation of BPSK uplink NOMA system with two users is shown in Figure 5.2. As expected, 

the figure shows that user 2 has better BER performance than user 1. In this case, the parameter 

that affects the performance of SIC detection is the ratio of user 2’s power to the combination of 

user one’s power plus the noise power. 

 As assumed, the SIC detector will detect user 2’s signal first from the superimposed 

received signal plus noise. The noise power will have a significant effect on the detection of user 

1 since the receiver first performs subtraction of the detected user 2’s signal in addition to 

processing the noise. After detecting user 2’s signal with the SIC receiver, the remaining signal, 

assuming correct detection of user 2, is user 1’s signal in the presence of noise. So the lower power 
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level of user 1’s signal makes detection more vulnerable to noise than user 2 and this leads to a 

larger BER for this user as compared to user 2. 

 As shown in Figure 5.2, the BER for user 2 at SNR = 0 dB is equal to 0.01 compared to 

0.15 for user 1 at the same SNR of 0 dB. Furthermore, for SNR = 5 dB, user 2 has a BER of 0.001 

and user 1 has a BER of 0.10. Note that decreasing the SNR makes the SIC detector experience an 

increased error rate, especially for user one which has a lower power level.     

 

Figure 5.2 BER vs. SNR for two BPSK uplink NOMA users with perfect channel estimation. 
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The simulation results for BPSK modulation, but with channel estimation errors is shown 

in Figure 5.3. In this figure, two channel estimation errors, 0.15 and 0.25, are evaluated. 

 

Figure 5.3 BER vs. SNR for two BPSK uplink NOMA users with different channel estimation 

errors. 

In addition to the affecting parameters of the perfect case, adding an estimation error 

degrades the SIC detection process and the BER performance. Assuming detection of user 2’s 
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signal first by the SIC detector, the remaining signal after detection user 2’s signal is user 1’s signal 

with an added estimation error in addition to the noise. This degrades signal reception and leads to 

a degraded BER compared to the perfect case. As expected, increasing of the estimation error, 

increases the BER. For example, at SNR = 15 dB, the BER for user 1 is equal to 0.01 for 0.15 

channel estimation error compared to a BER of 0.007 for perfect estimation at the same SNR value. 

At SNR = 15 dB, the BER for user 1 is equal to 0.32 for 0.25 channel estimation error which is 

higher than the BER of 0.007 for perfect estimation and 0.01 for 0.15 channel estimation error at 

the same SNR value. As a result of the degradation in the SIC receiver, at higher estimation error 

values, the BPSK and the higher modulation schemes show a very high BER and a flattened 

performance (i.e., an error floor) in comparison to the perfect estimation and the given channel 

estimation errors results. The flattened performance and the SIC degradation are explained in the 

next section discussing SIC degradation.  

The same analysis can be followed for higher modulation schemes, QPSK and 16-QAM, 

as shown in Figure 5.4 and Figure 5.5, respectively. In these figures, the results for various channel 

estimation errors are demonstrated. For the perfect channel estimation, at SNR = 5 dB, the BER 

of user 2 for QPSK modulation is equal to 0.005 compared to 0.14 for user 1 at the same SNR. On 

the other hand, for 16-QAM, the BER for user 2 at SNR = 5 dB is equal to 0.04 compared to 0.20 

for user 1 at the same SNR. As a result, the BER performance of user 1 becomes worse for the 

same reason discussed in the perfect estimation of BPSK and at the same time increasing the 

modulation level increases the degradation of the BER. 
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Figure 5.4 BER vs. SNR for two QPSK uplink NOMA users with different channel estimation 

errors. 
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Figure 5.5 BER vs. SNR for two 16-QAM uplink NOMA users with different channel estimation 

errors. 
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For the channel estimation error scenario, 16-QAM has a higher BER than QPSK BER. 

For example, with a channel estimation error of 0.15, at SNR = 15 dB, the QPSK BER of user 1 

is equal to 0.03 compared to 0.017 for the perfect estimation at the same SNR value. In addition, 

for the same channel estimation error analysis, at SNR = 15 dB and 0.15 channel estimation error, 

16-QAM of user 1 has a BER of 0.17 compared to 0.07 for the perfect estimation at the same SNR 

value. 

The BER of QPSK, assuming 0.25 channel estimation error, of user 1 is equal to 0.06 at 

SNR = 15 dB compared to 0.017 for perfect estimation and 0.03 for 0.15 channel estimation error 

at the same SNR. Furthermore, for 0.25 channel estimation error, the 16-QAM BER of user 1 at 

SNR = 15 dB is 0.20 compared to 0.07 for perfect estimation and 0.17 for 0.15 channel estimation 

error at the same SNR. As similar to the BPSK analysis, for high estimation error values, the 

performance of QPSK and 16-QAM has an error floor and it is flattened with a high BER.  

As a result, with increased channel estimation error, the BER is also increased and further 

increases with increased modulation order. An interesting observation is that, at high channel 

estimation error, the results for the three modulation schemes indicate a very high BER and a 

flattened performance as compared to the perfect estimation and the given channel estimation 

errors results. This is due to the degradation in the SIC receiver that results in high BER which is 

introduced and defined next. 

5.4 SIC Receiver Degradation for Uplink NOMA with Channel Estimation Errors 

In this section, a simulation analysis of the SIC receiver degradation of a two user uplink 

NOMA due to channel estimation errors is presented. The results have been simulated using 

BPSK, QPSK, and 16-QAM. Furthermore, the degradation performance is analyzed for different 

channel estimation error values. 
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The study of the BER with channel estimation errors has been accomplished in Section 5.3. 

This study is focused on quantifying the SIC degradation in terms of the channel estimation error. 

 For the three modulation schemes, the same procedures are followed which are: 

• SIC receiver degradation is defined as when the estimation error curves start deviating 

from the ideal (no estimation error) curve for a given BER. This is shown as a 

difference in SNR (dB) between the ideal curve and the curves with different channel 

estimation errors values. In other words, for each modulation scheme and for a given 

BER, when the difference between the ideal (no channel estimation error) BER vs SNR 

curve and the corresponding estimation error curve begin to deviate, then this is 

considered as the onset of SIC degradation. 

• It is assumed that a 1dB difference marks the beginning of degradation. For simplicity, 

for each scheme, differences of 1 dB, 4 dB, and 8 dB in SNR have been considered and 

then the channel estimation error values that lead to these differences have been 

determined. In addition, the result where the curve is flattened (i.e., an error floor 

occurs) has been determined for each modulation scheme. In these cases, the relation 

is shown as a function of BER versus the channel estimation errors. 

• The results of the SIC degradation versus the channel estimation errors are introduced 

separately for each modulation level and then the three results are combined in the same 

figure to compare them. 

Starting with the SIC degradation case for BPSK modulation, the three differences between 

user 1 channel estimation error curves and the ideal (no estimation curve) are shown in Figure 5.6. 

For a BER of 10-3, an estimation error value of 0.10 leads to a SIC degradation of 1 dB in SNR. 

Similarly, an estimation error of 0.28 leads to a SIC degradation of 4 dB SNR. Furthermore, a SIC 
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degradation of 8 dB difference is achieved with a 0.52 estimation error. Similarly, as discussed in 

Section 5.3, the effect of increasing the BER by increasing the channel estimation error is observed 

where more BER degradation is shown as the estimation error increases. The detection of user 1 

is significantly affected by the noise power because the detected signal of user 2 is already 

subtracted by the detector, assuming a correct detection of user 2, in addition to processing the 

noise. Therefore, this makes the user 1 detection process, which has a lower received power level, 

more vulnerable to noise than user 2. Therefore, a larger BER occurs for user 1 as compared to 

user 2. 

 An interesting observation is that, for a high channel estimation error, a flattened 

performance result is shown as it is compared to the ideal channel estimation case. The flattened 

performance is defined when a difference in SNR (dB), for a given BER, between a given 

estimation error curve and ideal curve reaches to infinity. The simulation results show that the 

performance for BPSK is flattened (i.e., an error floor is reached at an estimation error of 0.86) 

and the SIC becomes useless.  

 The analysis for QPSK is shown in Figure 5.7. As illustrated, the BER increases as the 

channel estimation error and the modulation level are increased. Following the same procedures 

for determining the SIC degradation of the BPSK, the simulation results of QPSK, for a BER of 

10-3, show that a SIC degradation of 1 dB SNR is achieved at an estimation error value of 0.052 

compared to 0.1 for the BPSK for the same degradation level. In addition, an estimation error of 

0.17 leads to a SIC degradation of 4 dB SNR compared to 0.28 for BPSK. However, the same SIC 

degradation level of 8 dB SNR is occurred at an estimation error of 0.34 compared to 0.52 to get 

the same level in the BPSK case. At high channel estimation error, a flattened performance result 



67 

 

for the QPSK is occurred at 0.66 channel estimation error compared to an estimation error of 0.86 

for the BPSK flattened performance. 

 

Figure 5.6 SIC degradation vs. channel estimation errors of a BPSK uplink NOMA system for 

BER = 10��. 
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Figure 5.7 SIC degradation vs. channel estimation errors of a QPSK uplink NOMA system for 

BER = 10��. 
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Using the same analysis of the BPSK and QPSK, the results of the 16-QAM are shown in 

Figure 5.8. 

 

Figure 5.8 SIC degradation vs. channel estimation errors of a 16-QAM BPSK uplink NOMA 

system for BER = 10��. 
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As illustrated in this figure, as the modulation level increases, a higher SIC degradation 

level occurs for lower estimation error values. For example, for BER = 10-3, a SIC degradation 

level of 1 dB SNR occurs at an estimation error value of 0.04 compared to 0.1 for BPSK and 0.052 

for QPSK with the same degradation level of 1 dB SNR. Also, an estimation error of 0.1 leads to 

a 4 dB SNR degradation level compared to 0.17 for QPSK and 0.28 for BPSK. Similarly, a SIC 

degradation of 8 dB occurs at an estimation error of 0.24 compared to 0.34 for QPSK and 0.54 for 

the BPSK. However, the performance of 16-QAM is flattened at an estimation error of 0.49 

compared to a channel estimation error of 0.66, which leads to a flattened performance for QPSK 

and 0.86 for BPSK, respectively. 

According to the results in Figure 5.6, Figure 5.7, and Figure 5.8, more detail for the SIC 

degradation is shown Figure 5.9. In this figure, a relation between the SIC degradation and the 

channel estimation error is presented for the three modulation schemes. 

The figure shows that, as expected, for the three modulation schemes, increasing of the 

estimation error increases the SIC degradation. Similarly, increasing of the modulation order, 

increases the SIC degradation. The BPSK curve shows that, for a BER = 10-3, an estimation error 

of 0.2 leads to a SIC degradation of 3 dB SNR. Additionally, a SIC degradation of 8 dB SNR 

results from a 0.52 estimation error. As illustrated, it is observed that there is a linear relation (in 

dB) between the SIC degradation and the estimation error for small values of estimation error and 

that the curve deviates from this linearity, for BPSK, at an estimation error value of 0.7. By 

increasing the estimation error value, the curve starts sloping upward quickly until the performance 

is flattening, at 0.86 as shown in Figure 5.6, and this means that SIC becomes useless. This means 

that no matter how much the SNR is increased the BER is not reduced. 
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Figure 5.9 SIC degradation vs. channel estimation errors for uplink NOMA system with different 

modulation schemes for BER = 10��. 

Similarly, for QPSK and BER = 10-3, the relationship between the SIC degradation and the 

estimation error shows that an estimation error of 0.2 leads to a SIC degradation of 5 dB compared 

to a 3 dB for the same estimation error value of the BPSK. In addition, a SIC degradation of 10 
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dB occurs at an estimation error of 0.42 compared to an estimation error of 0.6 for the same 

degradation level of 10 dB for BPSK. 

In the same way, the relationship for QPSK starts as a linear relation for small values of 

estimation error. After that, the curve deviates from linearity at an estimation error of 0.54. Then, 

by increasing the estimation error value, the curve starts sloping upward quickly for higher 

estimation error values and the SIC becomes useless as a result of the flattened performance that 

occurs at an estimation error of 0.66 compared to an estimation error of 0.86 that leads to a flattened 

performance for the BPSK.  

In summary, for QPSK, the same degradation level of the SIC detector occurs at an 

estimation error lower than the one of the BPSK. This is expected since a higher modulation level 

leads to higher BER for lower estimation error values which means that a higher degradation level 

is observed faster than the case of the lower modulation level.  

 The 16-QAM curve follows the same logical flow as the BPSK and QPSK curves. The 

relation starts as a linear relation and then the curve deviates from linearity with increasing 

estimation error. After that, it starts sloping upward quickly. As a comparison, Figure 5.9 shows 

that a 5 dB SNR degradation level occurs at an estimation error of 0.15 where the same degradation 

level is occurred at 0.2 estimation error for the QPSK and at 0.32 estimation error for the BPSK. 

Furthermore, for 16-QAM, an estimation error of 0.3 leads to a degradation level of 10 dB where 

this degradation level occurs at an estimation error of 0.42 for QPSK and 0.6 for BPSK. However, 

the 16-QAM result shows that the curve deviates from linearity at 0.44 that is lower than the values 

of 0.54 of QPSK and 0.7 of the BPSK. Similarly, for high estimation error values, the 16-QAM 

curve starts sloping upward quickly and the SIC becomes useless as a result of the flattened 
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performance that occurs at an estimation error of 0.49 compared to an estimation error of 0.86 for 

BPSK and 0.66 for QPSK modulation.  

5.5 Concluding Remarks 

In this chapter, the BER performance of two-user uplink NOMA system using various 

modulation levels, BPSK, QPSK, and 16-QAM, in the presence of channel estimation errors was 

investigated. For each modulation level, two scenarios have been considered: perfect channel 

estimation and a channel with estimation errors. As expected, the simulation results for perfect 

channel estimation show that the BER of the SIC receiver increases as the modulation order is 

increased. Similarly, with channel estimation errors, the BER increases as the estimation error is 

increased for a given noise level. As a result of the degradation in the SIC receiver at a high 

estimation error value, all the modulation levels results show a very high BER compared to the 

perfect and lower estimation errors results. 

Furthermore, for the same modulation levels, a simulation study of the SIC receiver 

degradation of uplink NOMA due to different channel estimation errors was presented. As 

expected, increasing the estimation error and the modulation scheme increases the SIC degradation 

level. However, for a higher modulation level, the same SIC degradation level is observed at lower 

estimation errors than the ones of lower modulation level. In addition, for high estimation errors, 

the performance of the three modulations start sloping upward quickly which leads to a flattened 

performance (i.e., an error floor condition). Somewhat surprisingly, for the three modulation levels 

with a small estimation error, a linear relation is shown between the SIC degradation in dB and the 

estimation error. This result will aid system designers in realizing practical 5G NOMA-based SIC 

receivers. 
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Chapter 6: Channel Capacity in a Dynamic Random Waypoint (RWP) Mobility Model5 

6.1 Introduction 

 As introduced earlier in Chapter 1, channel capacity represents a key parameter that is used 

to characterize the capacity of 5G wireless network systems. The studying of such performance 

parameters is central to enhancing the quality and capacity of wireless networks. Channel capacity 

is a basic limit on the performance of communication media. In 1948 Claude Shannon defined the 

channel capacity as the upper bound on the maximum rate at which information can be reliably 

transmitted over a communication channel [80]. In particular, he derived the channel capacity for 

Additive White Gaussian Noise (AWGN) channel. Subsequently, the channel capacity for fading 

environments was introduced and the channel capacity has been used to study the maximum 

capacity effects of various multipath fading statistical models. To date, static wireless networks 

have mostly been used to analyze using these models. In this chapter, the capacity of a dynamically 

fading wireless channel model is analyzed. 

The average received power represents a primary parameter that characterize the system 

behavior and it is used as an indicator in designing power control and determining wireless network 

capacity. The average received power level, in static models, is generally a function of the 

transmitter-receiver distance, transmitted power, and path loss exponent. Owing to constant 

transmitter-receiver distance in these models, the average received power is constant. In contrast, 

in mobile systems, the transmitter-receiver distance is not fixed and it follows a random pattern. 

                                                           

5 The content of this chapter has been published in [69], and it is included in this dissertation with a 

permission. Permission is included in Appendix A. 
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This variation of received signal power depends upon node mobility, distance dependent path loss, 

and multipath fading which results in time varying received power, which, in general, does not 

exhibit the same behavior as static wireless networks. The Random waypoint (RWP) mobility 

model [74], which is one of several mobility models, is a popular model. This model describes 

how the mobile users (nodes) change their velocity and location over time in addition to their 

movement pattern.  

Recent research [155] and [156], has studied the outage probability in a dynamic model. In 

[155], an expression of the outage probability using the above dynamic mobility model over a 

Rayleigh fading channel has been derived. In [156], the distribution probability density (PDF) 

function and the outage probability with a dynamic mobility model has been derived over an eta-

mu (η-µ) fading channel, where η-µ is the distribution that describes the variation of the signal 

envelope in channels with different powers of in-phase and quadrature components. However, 

these research studies addressed the outage probability not the channel capacity. 

In this chapter, the channel capacity for a RWP mobility model of a Rayleigh fading 

channel using a maximum ratio combining (MRC) diversity receiver [79], which represents an 

antenna diversity technique to mitigate the multipath fading effect, is derived. The effect of the 

number of receiver branches on the channel capacity is determined, and the channel capacity is 

compared with the classic AWGN Shannon capacity and the static model Rayleigh fading channel 

capacity. 

This chapter is organized as follows. The derivation of the channel capacity for a RWP 

model is presented in the next section. Then, in Section 6.3, the numerical results and the 

comparison of the channel capacity of RWP mobility model with the classic AWGN Shannon 
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capacity and the static model Rayleigh fading channel capacity are introduced and analyzed. 

Finally, the conclusion of this chapter is presented in the last section. 

6.2 Channel Capacity of RWP Mobility Model 

As discussed in Section 1, in a mobile wireless network, the nodes are mobile and because 

of that the distance between these nodes is random. As a result, multipath fading is time varying 

in nature. So, it is appropriate to investigate the mobility effect and evaluate the performance of 

mobile wireless network in terms of the channel capacity. 

In order to conduct this study, one of the widely available dynamic mobility models is 

assumed, which is the RWP model [74]. In the RWP model, each mobile user (node) selects one 

location in the network as a destination. Then, this node travels with random and uniform velocity 

toward its destination at velocity [0, Vmax], where Vmax is the maximum velocity for each mobile 

node [74]. The direction and the velocity of each mobile node are independently chosen. After 

reaching its destination, the mobile node stops for a random period of time. After this time period, 

the mobility node selects a new random destination and start moving towards it in the same 

scenario in the previous case. More details about RWP model are available in [165]. 

Since the channel in this study is a fading channel, one of the major factors that affects the 

modeling of the fading channel is the distributions that are used to characterize the channel. In our 

model, the channel is assumed to have a Rayleigh distribution. With a receiver that uses an 

optimum combiner diversity technique, MRC, with N-branches, results in the SNR being the sum 

of the SNR of each individual diversity branch. The receiving node can mitigate the effect of fading 

channel and improve the channel capacity of the channel model. This improvement is investigated 

in Section 6.3 and numerical results are presented. 
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An expression for the channel capacity of a dynamic RWP mobility model of a Rayleigh 

fading channel using MRC at the receiver will now be derived. The channel capacity � of a fading 

channel is given as [166]: 

																																																												� = �	� ���	 
 �Ω�	�����	��,
�

Ω�
																																																					�6 − 1� 

where B is the channel bandwidth in [Hz]. The parameter � is the random variable that defines the 

distance distribution between the mobile device (node) and the access point. The parameter ����� 
is the probability density function (PDF) of received power. And Ω represents the average 

received signal power. As mentioned above, the averaged received power depends on the 

transmitter-receiver distance, this means that the distance from the transmitter to the receiver is 

reflected in the average received power Ω which is the minimum acceptable SNR for 

communications. 

To evaluate (6-1) it is necessary to determine ����� based on the assumed model. The 

received power PDF of a RWP mobility model with an N-branch MRC is given in [155] as 
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where �� is the transmitted power. The parameter ! is the path loss exponent. The parameter ,�#� 
is the Gamma function which is defined in [167]. Furthermore, the function %	�: , ∶� is called the 

lower incomplete gamma function [168]. 

 By substituting the PDF of the RWP dynamic model of (6-2) in (6-1), the resulting channel 

capacity of the RWP channel is given as 
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 Using [169] and Mathematica software [170] to solve the integral in (6-3), the dynamic 

RWP mobility model channel capacity of Rayleigh fading using N-branches of MRC is given as: 

�	 = 	 16	Γ�#� 	�	Ω�1/�	��	/� 	29	Ω�� 	!	 4Γ	 
N	 +	 2!� − 	%	 &
# + 2!�	 , Ω�� )	6
− 4	!���� 		4Γ	 
N		 3!� − 	%	 &
# + 3!�	 , Ω�� )	6

+	Ω1� 	
 1���
	� 8−	8−	9 + 4	 
 1���

�� ����9 	!		%	 
#	, Ω�� �

− 	6	 8−3 + 2	 
 1���
�� ����9 	:;<=;�>	[	@A	B, A1,1BC, @A0,0, #B, A	BC, Ω�� 	]	9F , �6 − 4� 

where the ‘Meijer G-function’ function [171] is a very general function that reduces to simpler 

special functions in many common cases. 

6.3 Numerical Results 

 Based on the result in (6-4), Mathematica software [170] has been used to investigate the 

relation of the channel capacity versus SNR, where the thermal noise fixed at unity. The path loss 

exponent ! has been assumed to be 3. The results have been analyzed by normalizing the resulting 

channel capacity with respect to the channel bandwidth �. In Figure 6.1, the effect of the number 

of MRC branches, N, on the resulting proposed model channel capacity has been depicted. 

As expected in Figure 6.1, increasing the number of branches, N, leads to improved channel 

capacity. With these results it is founded that, for example, in the absence of diversity N =1, the 

proposed channel capacity is equal to approximately 6 bps/Hz for SNR = 20 dB. As N is increased, 

for example N = 3, the channel capacity is increased to 8.3 bps/Hz for the same value of SNR, 

respectively. Therefore, the channel capacity of a dynamic RWP Rayleigh channel for N = 3 is 
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increased by 38.3% compared to no diversity. As a result, by combining more diversity branches, 

the channel capacity is increased since the effect of the fading will be decreased. Furthermore, as 

expected for a large N, the �IJK saturates since the maximum effective receiver diversity is 

realized. 

 

Figure 6.1 The effect of the number of branches, N, on the RWP model channel capacity. 
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A comparison between the RWP channel capacity (�IJK ) with the AWGN channel 

Shannon capacity (�LJMN) and the static model Rayleigh fading channel capacity (�IOPQRSTU) is 

shown in Figure 6.2. 

 

Figure 6.2 The RWP mobility model channel capacity (�IJK) in comparison with the AWGN 

(�LJMN) and the static model Rayleigh fading channel capacities (�IOPQRSTU). 
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The figure shows that the AWGN channel capacity is better than the RWP model channel 

capacity. For example, for SNR = 15 dB, �LJMN = 5.1 bps/Hz, whereas �IJK = 4.48 bps/Hz. For 

SNR = 20 dB, �LJMN = 6.7 bps/Hz, whereas �IJK = 6.11 bps/Hz. Therefore, the channel capacity 

of the suggested dynamic RWP model is reduced by 14% for SNR = 15 dB and by 10% for SNR = 

20 dB, respectively. The AWGN channel capacity has a larger channel capacity as it is not affected 

as severely by fading as in the RWP mobility model. However, the comparison of the resulting 

channel capacity (�IJK) with the static model Rayleigh fading channel capacity (�IOPQRSTU) shows 

that the �IJK is slightly larger than the �IOPQRSTU for the same SNR. For example, for SNR = 15 dB, 

�IOPQRSTU = 4.31 bps/Hz, whereas �IJK = 4.48 bps/Hz. For SNR = 20 dB, �IOPQRSTU = 5.87 bps/Hz, 

whereas �IJK = 6.11 bps/Hz. Therefore, the channel capacity of the suggested dynamic RWP 

model (�IJK) is approximately increased by 4% for SNR = 15 dB and SNR = 20 dB, respectively. 

The reason is that severe fading will not affect the RWP model for as long a time period as it 

affects the static Rayleigh model. 

6.4 Concluding Remarks 

In this chapter, an expression for the channel capacity of a dynamic RWP mobility model 

based on a Rayleigh fading channel, with a MRC receiver, was derived. The result shows that the 

channel capacity increases as the number of MRC branches, N, is increased, e.g., the resulting 

channel capacity is increased from 6 bps/Hz at N = 1 to 8.3 bps/Hz at N = 3 for the same value of 

SNR = 20 dB. However, the resulting channel capacity for a large N saturates since the maximum 

effective receiver diversity is realized. In addition, the derived channel capacity result was 

compared with the classic AWGN Shannon capacity and with the static model Rayleigh fading 

channel capacity. The numerical results show that the dynamic RWP mobility channel capacity 

(�IJK) is lower than the AWGN channel capacity (�LJMN� as expected. For example, the proposed 
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model channel capacity (�IJK) is decreased by 10% compared to the AWGN channel capacity 

(�LJMN� at the same SNR = 20 dB as a result of the AWGN channel capacity is not affected as 

severely by fading as in the RWP mobility model. However, the comparison of the resulting 

channel capacity with the static model Rayleigh fading channel capacity V�IOPQRSTUW reflects that 

the derived result shows a slightly better channel capacity for the same SNR. For example, for  

SNR= 20 dB, the channel capacity of the RWP model is increased by 4% compared to the well-

known result of the static model Rayleigh fading channel capacity. The result is expected since 

severe fading will not affect the RWP model for as long a time period as it affects the static 

Rayleigh model. 
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Chapter 7: Conclusions and Future Directions 

7.1 Main Contributions and Conclusions 

In this dissertation, an approach for enhancing 5G system performance by using NOMA 

(Non-Orthogonal Multiple Access) as the multiple access technique was investigated under 

different scenarios and performance metrics.  

In Chapter 3, a relation for the optimum received power level for uplink power-domain 

NOMA with ideal Successive Interference Cancellation (SIC) reception was derived for any 

number of transmitters. The results show that the optimum received power level increases linearly 

(in dB) as the number of transmitters N are increased and the maximum required received SINR 

increases exponentially (or equivalently, linearly in dB) with the number of users N. Since the 

requirement of constant SNR, for each signal detection, is similar to that in Pulse Code Modulation 

(PCM) voice coding, of constant Signal-to-Quantizing Noise for each signal level, it was observed 

that the optimum power levels are very similar to the output levels of µ-law encoding used in the 

PCM speech companders. 

In Chapter 4, a new MAC protocol (ALOHA-NOMA) for Machine to Machine (M2M) 

communication was presented. The ALOHA-NOMA protocol is an easy to implement, scalable, 

energy efficient, and a high throughput MAC protocol. The superior throughput of the ALOHA-

NOMA protocol is a result of using NOMA along with the ability to resolve collisions via use of 

a SIC receiver (when the SIC receiver is operating in a “good” signal-to-noise” environment). As 

a result, the simplicity of ALOHA with the superior throughput of NOMA makes ALOHA-NOMA 

a good MAC candidate for low complexity IoT applications. For example, ALOHA-NOMA 
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significantly improves the throughput performance with respect to the pure ALOHA, e.g., a SIC 

receiver that separates 5 signals can boost the throughput of classical ALOHA from 0.18 to 1.27. 

In Chapter 5, the BER performance of uplink power-domain NOMA and SIC detector, 

using BPSK, QPSK, and 16-QAM modulations levels, in the presence of channel estimation error 

was analyzed. For each modulation level, two scenarios have been considered: perfect channel 

estimation and a channel with estimation errors. For perfect channel estimation, as expected, the 

simulation results show that the BER of the SIC receiver increases as the modulation order is 

increased. Similarly, with channel estimation errors, the BER increases as the estimation error is 

increased for a given noise level and the performance is degraded at high estimation error values.  

In addition to the BER performance study, for the same system model, a SIC detector 

degradation study in the presence of channel estimation errors, for the three modulations schemes, 

was presented. As expected, the results show that the SIC degradation increases as a result of 

increasing the estimation errors and/or the modulation level. Somewhat surprisingly, for the three 

modulation schemes and for a small estimation error values, a linear relation is shown between the 

SIC degradation and the estimation error. This result will aid system designers in realizing practical 

5G NOMA-based SIC receivers. 

In Chapter 6, a channel capacity analysis for a random waypoint (RWP) mobility model in  

a wireless system network was introduced. The expression for the channel capacity for this model 

was derived for a Rayleigh fading channel and with a maximum ratio combining (MRC) diversity 

receiver. The effect of the number of receiver branches on the channel capacity was analyzed. The 

derived channel capacity was compared with the classic AWGN Shannon capacity and the static 

model Rayleigh fading channel capacity. The results show that, as expected, the derived channel 

capacity increases as the number of MRC branches is increased. Also, the AWGN channel capacity 
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is greater than the RWP model channel capacity as it is not affected as severely by fading as the 

RWP mobility model. On the other hand, the RWP channel capacity is slightly larger than the 

static model Rayleigh fading channel capacity since severe fading will not affect the RWP model 

for as long a duration as it affects the static Rayleigh model. 

7.2 Future Directions 

Beyond what has been presented throughout the contributions in this dissertation, there are  

some promising directions for future work can be further explored. For example: 

• Investigate the ALOHA-NOMA protocol using other performance metrics such as 

latency and fairness, as well as extending the analysis for a fading channel.  

• Investigate the use of the proposed protocol for more demanding IoT applications for 

a larger number of devices, critical latency requirements, and the need for power 

control for each device.  

• Compare the performance of ALOHA-NOMA with other MAC protocols such as 

TDMA/CSMA protocol. 

• Analyze the channel capacity of RWP model using other fading channel models such 

as the Rician fading channel.  

• Investigate that the performance of 5G wireless system with integrated NOMA and 

mmWave beamforming.  
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