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ABSTRACT 

Assessment of oil spills in the ocean using passive remote sensing (i.e., reflected sun light) faces 

two challenges: detect oil presence/absence and quantify oil volume. While the optical properties of oil 

allow it to be differentiated from the surrounding marine environment, sun glint can facilitate oil 

presence/absence detection because the oil-water spatial contrast is enhanced due to wave dampening. 

However, sun glint also modulates the magnitude and shape of the spectral reflectance of surface oil. In 

addition to this difficulty, the most critical challenge is how to quantify oil volume (or thickness) through 

remote sensing. To date, such quantifications have mainly been based on laboratory hyperspectral 

measurements over known oil volume for both oil emulsions and non-emulsions. Application of such 

laboratory-based methods to the real ocean environment faces two significant problems: 1) the observing 

conditions can be dramatically different (e.g., presence sun glint), and 2) lack of remote sensors with 

sufficient spectral bands and spatial resolution to apply the laboratory-based methods or to address the 

heterogeneity of oil slicks.  

The objectives of this research are to understand oil slick reflectance spectra in the marine 

environment, delineate oil footprint, and develop practical methods to classify oil emulsions from non-

emulsions and classify oil thickness, thus providing useful tools for oil spill assessment and for decision-

making during an oil spill accident. Specifically, the objectives are to: 1) understand the various spatial and 

spectral oil-water contrasts in optical remote sensing imagery under different observing conditions; 2) 

develop algorithms and schemes to detect oil slicks, classify oil type (oil emulsion versus non-emulsion), 

and estimate oil thicknesses using multiband optical remote sensing imagery; and 3) apply the algorithms 

and schemes in the assessment of oil spill accidents. The Gulf of Mexico (GoM) is selected as the focus of 

this research because the continental slope of the GoM is recognized as a major hydrocarbon province 
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with widely distributed natural hydrocarbon seeps and where two of the largest marine oil spills occurred 

(the Ixtoc-I oil spill in 1979 and Deepwater Horizon oil spill in 2010).  

The several approaches used to address these objectives include: 1) a literature search; 2) 

controlled tank measurements to understand oil-water spatial and spectral contrasts under various 

observing conditions; 3) a multi-sensor analysis to examine the spatial and spectral characteristics of oil 

slicks; 4) a step-wise classification scheme to classify oil type and oil thickness; and, 5) the application of 

the developed methods to several oil spill events through case studies. 

Firstly, a thorough review of previous laboratory-developed reflectance—thickness relationships 

of both crude oil and oil emulsion is performed and compared to reflectance spectra collected by several 

satellite and airborne sensors (MERIS, MODIS, MISR, Landsat, AVIRIS) from the Deepwater Horizon oil spill 

(Chapter 2). Interpretation of the oil-water spatial and spectral contrasts under different observing 

conditions suggests that besides oil thickness, several other factors also affect oil–water spatial and 

spectral contrasts. These include sun glint strength, oil emulsification state, optical properties of 

surrounding water, and spatial and spectral resolutions of remote sensing imagery.  

The impact of sun glint strength on oil slick detection is further investigated in Chapter 3, where 

concurrent (1-2 hours) image pairs collected by MODIS/Terra, MODIS/Aqua, and VIIRS over the same oil 

slicks from natural seeps are used to quantify the sun glint threshold, under which thin oil films cannot be 

observed. The threshold is determined to be 10-5–10-6 sr-1 for MODIS Terra and MODIS Aqua, and 10-6–10-

7 sr-1 for VIIRS.  

The impact of pixel resolution on spill detection is evaluated by studying oil slick morphology and 

size distributions for different oil thickness classes derived by the USGS using fine spatial resolution (~7.6 

m) hyperspectral AVIRIS imagery collected over the Deepwater Horizon oil spill in the GoM (Chapter 4). 

Oil slicks are found to be elongated in shape for all thickness classes (≤50 μm but thicker than sheen, 50—

200 μm, 200—1000 μm, and >1000 μm). They are found to be highly heterogeneous as well, where most 
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of the medium-resolution (30-m) pixels would be mixtures of different thickness classes of oil, or mixtures 

of oil and oil-free water. According to the AVIRIS derived results, to detect oil thicker than sheen with oil 

fractional pixel coverage >50% for at least half of the oil containing pixels, a 30-m or higher spatial 

resolution sensor would be needed. This suggests that most satellite remote sensing must consider mixed 

pixels when conducting analysis of spatial and spectral contrasts. 

Based on the above understandings of oil-water spatial and spectral contrasts under different sun 

glint conditions, a stepwise classification scheme is proposed to extract oil features, classify oil types (oil 

emulsion versus non-emulsion), and classify oil thicknesses of each type under no glint condition and 

under various sun glint conditions in multiband optical imagery (Chapter 5). After oil feature extraction, 

reflectance in the Near Infrared and ShortWave Infrared (SWIR) bands is used to classify oil type, where 

elevated reflectance indicates oil emulsions. For oil emulsions, a histogram matching technique is used to 

compare the multiband measurements with hyperspectral AVIRIS measurements to classify oil thickness 

under various sun glint conditions. For the non-emulsion oil, a ratio between SWIR and blue bands is used 

to classify oil thickness. Furthermore, the spectral bands deemed necessary to apply the step-wise 

classification scheme and to discriminate false-positives are determined to be 480, 560, 670, 860, and 

1600 nm.  

The methods developed above are applied to several oil spill events as case studies (Chapter 6, 7 

and 8). The Ixtoc-I oil spill footprint (over its > 9-month spill period) has been mapped with Landsat 

Multispectral Scanner and Coastal Zone Color Scanner (Chapter 6). The satellite-derived oil trajectory 

patterns agree well with physical modeling and field observations in the past. Another case study focuses 

on the ongoing oil spill in the MC-20 site in the northern GoM, where the spill is assessed systematically 

using medium- to high-resolution (10-30 m) optical remote sensing imagery between 2004 and 2016 

(Chapter 7). These data allow for the determination of oil slick presence frequency and average spill size; 

further, the cumulative oil footprint are derived with daily discharge rate estimated. Finally, a multi-sensor 
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day-and-night approach, along with numerical modeling is used to track an oil tanker collision event in 

the East China Sea, where the unique value of VIIRS night time data is demonstrated (Chapter 8).  

In summary, this dissertation provides a better understanding of oil-water spatial and spectral 

contrasts in multi-band optical remote sensing imagery, from which a step-wise classification scheme is 

developed to extract oil slick features, classify oil emulsion from non-emulsion, and estimate oil 

thicknesses in each type. The methods are then used in several case studies to assess oil spills. Although 

further research is still required to refine the methods and to provide direct field validation, the findings 

here expand our current knowledge in remote sensing of oil spills using multiband optical imagery. In 

particular, when compared with the remote sensing capacity during the DeepWater Horizon oil spill 

(where satellite remote sensing could only provide maps of oil presence/absence), the findings here 

suggest that much better data products can be derived from existing satellite platforms, to not only show 

oil presence/absence, but to also classify oil type and thickness, in future spills, for improved response 

and assessment. 
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CHAPTER 1: 

INTRODUCTION 

 

1. Oil spills in the Gulf of Mexico  

Based on a report from the National Research Council (NRC, 2003), more than 1,300,000 metric 

tons of oil are released to the sea worldwide annually. For oil released into the ocean, more than 45% is 

from natural seeps, about 38% is from land-based sources, 12% comes from transportation activities such 

as oil tankers and pipelines, and 5% is from oil and gas exploration or production activities.  Natural oil 

seeps have limited ecological impacts because the chronic rate of release allows surrounding ecosystems 

to adapt (Fisher, 1990; MacDonald et al. 1989; Sassen et al. 1999). Oil spill accidents, however, often 

release a large volume of hydrocarbons in a relatively short time period, thus potentially causing 

devastating impacts on the environment. Hydrocarbons can be toxic to multiple levels of the food web, 

from microscopic plankton (Almeda et al., 2014; Paul et al. 2013), to fishes and marine mammals 

(Schwacke et al., 2014; Venn-Watson et al., 2015). Massive oil spills may also contaminate shorelines 

(Michel et al., 2013) and deposit sediments to the seafloor (Chanton et al., 2015; Valentine et al., 2014), 

which may have long-term adverse impacts on the environment.  

The Gulf of Mexico (GoM) contributes more than 98% of the outer continental shelf oil production 

in the United States (BSEE, 2018), and has been identified as one of the most highly polluted regions due 

to oil spills from oil tankers (Burgherr, 2007; Vieites et al., 2004). Moreover, the GoM has experienced two 

of the largest accidental oil spills in history, the DeepWater Horizon (DWH) oil spill in 2010, and the Ixtoc-

I oil spill in 1979. The explosion and sinking of the DWH oil rig on 20 April 2010 in the northern GoM 

released an estimated 4.0 million barrels (3.19 million barrels after deducting recovered oil, U.S. vs BP et 
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al., 2015) of crude oil from a depth of ~1500 m (Crone and Tolstoy, 2010; McNutt et al., 2011), until the 

oil well was capped on 15 July 2010. The Ixtoc-I oil well, located in the Bay of Campeche, Mexico, blew out 

on 3 June 1979 and released oil at a depth of 50 m. It was not until 23 March 1980, 290 days after the 

blowout, that the well was finally capped (Jernelöv and Liden, 1981). The spill released 475,000 metric 

tons (3.3 million barrels, Patton et al., 1981) of crude oil from the well site (Jernelöv and Liden, 1981), 

making it the second largest accidental marine spill in history. In addition to these major oil spills, natural 

seeps are widely distributed across the GoM (De Beukelaer et al., 2003; MacDonald, 2015). Using 

Synthetic Aperture Radar (SAR) data, MacDonald et al. (2015) identified 914 distinct seep zones 

concentrated on the Texas-Louisiana Slope. 

Crude oil released into the ocean undergoes a series of physical, chemical and biological processes, 

including oil spreading, wind and wave advection, evaporation, emulsification, dissolution, natural 

dispersion, sedimentation, photochemical oxidation, and biodegradation (NRC, 2003; Fingas, 2012). Oil 

on the sea surface will spread horizontally by gravity, viscosity, surface tension, winds, and currents (NRC, 

2003; Fingas, 2012). Evaporation has the greatest effect on the amount of oil remaining on the surface 

after a spill. A light crude oil can lose more than 20% of its initial volume within a few hours of the spill 

(NRC, 2003). Another important weathering process is emulsification. Water-in-oil emulsification is the 

process of water getting entrained into oil in the form of small droplets. Mesostable emulsions and stable 

emulsions have reddish-brownish colors and stable emulsions often have water content greater than 60% 

(NRC, 2003). The formation of emulsions substantially increases the perceived spill volume and the 

viscosity as well, considerably slowing down the evaporation and biodegradation process and making 

cleanup operations more difficult (Fingas, 2012). 
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2. Satellite remote sensing of oil spills   

With synoptic and frequent observations, remote sensing serves a vital role in assessing oil spills 

(Leifer et al., 2012; Fingas and Brown, 2014). The most frequently used remote sensing techniques include 

SAR, optical remote sensing, and thermal infrared imagery. Because oil can dampen both short-gravity 

and capillary waves on the ocean surface, a reduction in the backscattering SAR signal can be observed in 

oil containing image pixels under optimal wind conditions (Brekke and Solberg, 2005). SAR offers synoptic 

data under all sky conditions. However, Bio-films and bio-slicks (e.g., Sargassum mat and algal blooms), 

threshold wind areas, and wind sheltering can also cause negative contrast in SAR imagery. This makes it 

difficult to distinguish oil slicks from false-positives (Brekke and Solberg, 2005; Leifer et al., 2012). 

Moreover, SAR has been primarily used to detect oil extent instead of estimating oil thickness. Recent 

efforts suggest that SAR may be used to detect oil emulsions by volumetric fraction of oil (Garcia-Pineda 

et al., 2013; Jones and Holt, 2018; Macdonlad et al, 2015; Minchew, 2012), yet these preliminary 

demonstrations require further research to establish reliable algorithms. 

Passive optical remote sensing is also widely used in oil spill detections (Leifer et al., 2012; Hu et 

al., 2009). Optical imagery from satellite sensors is useless under cloudy conditions, however, this 

weakness is compensated by wide-swaths (e.g., 2300 km for MODIS and 3300 km for VIIRS). Such wide-

swath sensors can provide repeated coverage at any location in 1-2 days (more often in polar regions), at 

the price of reduced spatial resolutions (~300 m – 1 km) compared with SAR observations. Taking 

advantage of satellite constellations, recent medium-to high-resolution (finer than 30 m) sensor’s revisit 

frequency has been greatly increased. For example, Sentinel-2 Multispectral Instrument (MSI, 10—60 m 

spatial resolution) has a revisit frequency of every five days when two satellites are combined, 

DigitalGlobe satellite constellation (including WorldView-1, GeoEye-1, WorldView-2, WorldView-3 and 

WorldView-4) offers intraday revisits around the globe at a spatial resolution <2 m, Pléiades 1A/1B 

constellation offers a daily revisit capability to any point on the globe at a spatial resolution of 2.8 m, and 
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the Planetscope satellites provide a revisit frequency of once per day globally at a spatial resolution of 3—

4 m. All these optical remote sensing satellite measurements, therefore, provide tremendous potentials 

in remote sensing of oil spills, yet our ability to realize such potential is still technically challenging.  

Optical detection and quantification of floating oil on the ocean surface are based on the sun glint 

effect and optical properties of oil. First (and similar to SAR detections), the dampening of surface waves 

will enhance the spatial contrast of oil from water when under sun glint conditions (Hu et al., 2009; 

Jackson and Alpers, 2010). This sun glint effect in optical remote sensing, based on the same capillary-

dampening principle of oil detection by SAR (Brekke and Solberg, 2005; Hu et al., 2011), has been used to 

detect oil slicks on the ocean surface (Macdonald, 1993; Adamo et al., 2009; Hu et al., 2009; Sun and Hu, 

2016). The sun glint effect is actually caused by two factors: 1) dampening of the sea-surface capillary 

waves or gravity waves under optimal wind conditions, causing either higher or lower reflectance from oil 

than from water (Hu et al., 2009; Jackson and Alpers, 2010; Lu et al., 2016) and 2) the difference of 

refractive index between oil and water results in different Fresnel reflection, contributing additionally to 

the enhanced oil-water contrast (Lu et al., 2016). Oil also has different optical properties from water, with 

reflectance varying along increasing oil thickness: crude oils are characterized by high absorption in the 

blue band, which exponentially decays with increasing wavelengths. This results in lower reflectance in 

the blue and green wavelengths, as oil thickness increases (Wettle et al., 2009; Lu et al., 2013; Svejkovsky 

and Muskat, 2006; Fig. 1.1a). When oil is emulsified, the mixture of water molecules enables strong 

scattering in red, near infrared (NIR), and shortwave infrared (SWIR) wavelengths (Clark et al., 2010; 

Svejkovsky et al., 2012; Fig. 1.1b), thus exhibiting enhanced reflectance in the NIR-SWIR. Thick emulsified 

oil is also featured by C-H absorption at 1200 nm, 1700 nm and 2300 nm. The absorption depth at those 

featured wavelengths are associated with oil thicknesses by laboratory measurements − the thicker the 

oil emulsion, the deeper absorption depth in these wavelengths (Clark et al., 2010). 
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The spectral characteristics of oil can be used to infer relative oil thickness from optical remote 

sensing imagery (Lu et al., 2013; Wettle et al., 2009; Clark et al., 2010). Indeed, the laboratory-based look-

up-tables (LUTs) of relating spectral reflectance to oil thickness have been used to map thicknesses of 

thick emulsions from the DWH oil spill in the GoM with hyperspectral data collected by airborne sensor 

Airborne Visible / Infrared Imaging Spectrometer (AVIRIS) (Clark et al., 2010).  

 

 

Figure 1. 1: a) Laboratory measured reflectance of oil on water with different thicknesses of Gippsland 
crude (Wettle et al., 2009). Note that reflectance in the blue spectra decreases with increasing oil 
thickness, but reflectance in the red spectra remains relatively stable. Figure reprinted from Wettle et al. 
(2009) with copyright permission from the publisher. b) Laboratory measured reflectance spectra of 60:40 
oil-water emulsions with various oil thickness (Clark et al., 2010). The oil sample was collected in the Gulf 
of Mexico from the DWH oil spill. Figure reprinted from Clark et al. (2010). Note its dramatic contrast from 
panel a: with increasing oil thickness, there is little reflectance change in the blue-green wavelengths but 
there is dramatic reflectance change in the NIR-SWIR wavelengths. 
 

The optical characteristics of oil and the laboratory-based LUT make it possible, at least in 

principle, to detect, classify (emulsion versus non-emulsion), and quantify oil thickness. However, these 

techniques face significant challenges when applied to satellite sensors such as Landsat or MODIS over 

the real ocean environment. These challenges include: 1) the presence of sun glint that makes these LUT-

based approaches inapplicable; 2) that oil can be in the forms of emulsions and non-emulsions, yet these 

LUT-based approaches were designed for either oil emulsion or non-emulsion only; 3) the lack of spectral 

bands to apply the hyperspectral techniques; and 4) the spatial heterogeneity of oil (Sun et al., 2016) 

 
(a) (b) 
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makes the laboratory-based LUT invalid when applied to coarse-resolution data; other challenges include 

rough sea conditions that mix surface oil with water, and clouds that prevent any observation from 

satellites. 

On the other hand, during accidental oil spills, the most available optical satellite sensors are 

Landsat (30-m), Sentinel-2/MSI (10-m), MODIS (250-m), VIIRS (375-m), and commercial high spatial 

resolution satellites (e.g., WorldView-3, 1.24 m). During a marine spill incident, optical satellites play a 

role in the ongoing situational awareness and possibly in tactical decision-making. Developing practical 

methods is an important step to fully utilize these systems.   

 

3. Research objectives 

The objectives of this research are to understand oil slick reflectance spectra in optical remote 

sensing imagery in the marine environment, to delineate oil footprint, and to develop practical methods 

to classify oil emulsions from non-emulsions and classify oil thickness. Meeting them will provide useful 

tools for oil spill assessment and for decision-making during an oil spill accident. The specific research 

objectives are: 

1) Understand the various spatial and spectral oil-water contrasts in optical remote sensing 

imagery under different observing conditions. 

2) Develop algorithms and schemes to detect oil slicks, classify oil type (oil emulsion versus non-

emulsion), and estimate oil thicknesses using multiband optical remote sensing imagery. 

3) Apply the algorithms and schemes in assessment of oil spill accidents. 

 

4. Dissertation outline 

To fulfill the research objectives described above, the dissertation is composed of four major 

components focusing on the understanding oil spectral variability in the real marine environment 
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(Chapter 2), quantifying environmental factors which affect oil spill detection and thickness estimation 

(Chapter 3 and Chapter 4), developing algorithms and stepwise schemes in classification of oil emulsions 

and non-emulsions as well as classification of oil thicknesses (Chapter 5), and assessing historical and 

ongoing oil spill accidents (Chapter 6, Chapter 7 and Chapter 8). Finally, the research findings are 

summarized, with recommendations provided on the use of optical remote sensing to detect and quantify 

oil spills. 

Specifically, Chapter 2 presents various oil reflectance spectra and its contrast with water under 

different observing conditions. By examining the oil–water spectral contrasts from several multiband and 

hyperspectral measurements observed during the DWH oil spill, and by comparing the laboratory 

experimental results, the spatial/spectral contrasts of various oil slicks with water has been interpreted 

(Objective 1). In addition to oil thickness signal from oil optical properties, several other factors also affect 

oil–water spatial/spectral contrasts, including sun glint strength, oil emulsification state, optical 

properties of oil covered water, and spatial/spectral resolutions of remote sensing imagery. Despite the 

technical challenges, the results show that it is still possible to differentiate emulsified oil from non-

emulsified oil under most circumstances, and it is possible to classify relative oil thickness for both 

emulsified and non-emulsified oil (Objective 2). 

To further understand sun glint impact on oil spatial contrast with water (Objective 1), natural oil 

slicks in the western Gulf of Mexico are used to determine the sun glint requirement for the remote 

detection of surface oil films in Chapter 3. The threshold is determined using the same-day image pairs 

collected by MODIS Terra, MODIS Aqua, and VIIRS over the same oil slick locations where at least one of 

the sensors captures oil slicks. The determined sun glint thresholds here will provide critical information 

on which images are affected by sun glint impacts, thus reducing false negative detection and provides 

guidance for oil slicks detection, and classification (Objective 1 and Objective 2). 
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Using high spatial resolution (~7.6 m) hyperspectral AVIRIS derived oil slicks over the Deepwater 

Horizon oil spill in the Gulf of Mexico, slick lengths, widths and length/width ratios are statistically 

estimated in Chapter 4 to characterize oil slick morphology for different thickness classes. This provides a 

better understanding of the heterogeneity of oil slicks and the remote sensing spatial resolution that 

required to detect oil slicks and estimate oil thicknesses (Objective 1). According to results from the oil 

slicks detected by AVIRIS during the DWH oil spill, in order to detect oil thicker than sheen, with oil 

fractional pixel coverage >50% for at least half of the oil containing pixels, a 30-m or higher spatial 

resolution sensor would be needed.  

Based on the above understandings of reflectance spectra of various slicks under different sun 

glint conditions, a stepwise scheme is then proposed to: extract oil slick features, classify emulsified oil 

from non-emulsified oil, and classify oil thicknesses via multiband optical remote sensing imagery in 

Chapter 5 (Objective 2). The elevated reflectance spectral features in the NIR (~860 nm) and SWIR (~1600 

nm) bands were used to extract oil emulsions; increased and decreased reflectance caused by sun glint 

(in the visible to SWIR bands) was used to classify thick and thin oils. A band ratio model was used to 

classify the relative thicknesses of oil emulsions and thick oil. Required bands for the classifications and 

for discriminating oil from false positives were discussed in the chapter (Objective1 and Objective 2).  

In Chapter 6 to Chapter 7, the methods developed above are applied to the assessment of 

historical (Ixtoc-I oil spill) and ongoing (MC-20 oil spill) oil spill accidents (Objective 3). The Ixtoc-I oil spill 

footprint was derived using archived Landsat/MSS and CZCS imagery, in which the detected general 

patterns of oil trajectory agreed well with previously modelled results. The resulting cumulative oil 

footprint map was used to guide recent field measurements.  

In Chapter 7, the ongoing MC-20 oil spill is assessed by Landsat and Sentinel-2/MSI imagery 

between 2004 and 2016, with statistical analysis of oil presence frequency in cloud-free images, oil slicks 

area, cumulative oil contaminated area, and an estimated oil discharge rate per day. Additional analysis 
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suggests that the detected oil slick distribution can be largely explained by surface currents, winds, and 

density fronts. 

Chapter 8 shows a case example of satellite remote sensing being used in response to an oil spill 

accident, where a combination of multisensor day and night satellite imagery was used (Objective 3). An 

analysis of a recent SANCHI oil tanker collision event in January 2018 in the East China Sea showed that 

when traditional techniques using synthetic aperture radar or daytime optical imagery could not provide 

timely and adequate coverage, the VIIRS Nightfire product and Day/Night Band can be used to track the 

drifting ablaze tanker’s pathway and locations. A numerical model to combine surface currents and wind 

can also simulate the tanker’s locations. Satellite remote sensing during daytime shows smoke plumes 

and spilled oil on the ocean surface, some of which appears to be oil emulsion. This study demonstrates 

that a combination of all available remote sensing and modeling techniques can provide effective means 

to monitor marine accidents and oil spills to assist event response. 

Chapter 9 summarizes major findings from this research, with recommendations provided for 

optical remote sensing of oil spills as well as for future research directions. 
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CHAPTER 2: 

SPECTRAL VARIABILITY OF OIL SLICKS UNDER DIFFERENT OBSERVING CONDITIONS 

 

1. Note to Reader 

This chapter have been accepted for publication by the journal of IEEE Transactions on Geoscience 

and Remote Sensing, doi:10.1109/TGRS.2018.2876091, and have been reproduced with permission from 

IEEE. The paper is provided in Appendix A.  This paper is focused on understanding the spectral variability 

of oil slicks under different observing conditions and interpreting environmental factors that contribute 

to the oil-water spatial/spectral contrasts besides oil type and thickness. A brief summary of this paper is 

provided below. 

APPENDIX A – The challenges of interpreting oil–water spatial and spectral contrasts for the estimation 

of oil thickness: Examples from satellite and airborne measurements of the Deepwater Horizon oil spill 

(Sun and Hu, 2018) 

Oil reflectance spectra—thickness relationships of both crude and emulsified oil measured by 

previous laboratory experiments have been reviewed, and the published results are then 

compared with reflectance spectra collected by several satellite and airborne sensors (MERIS, 

MODIS, MISR, Landsat, AVIRIS) from the Deepwater Horizon oil spill. Interpretation of the 

spatial/spectral contrasts of various oil slicks under different environmental conditions suggest 

that besides oil thickness, several other factors also affect oil–water spatial/spectral contrasts, 

which include sun glint strength, oil emulsification state, optical properties of oil covered water, 

and spatial/spectral resolutions of remote sensing imagery. Despite the technical challenges, the 

results show that it is still possible to separate emulsified oil from non-emulsified oil under most 
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circumstances, and it is possible to classify relative oil thickness for both emulsified and non-

emulsified oil. 
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CHAPTER 3:  

SUN GLINT REQUIREMENTS FOR THE REMOTE DETECTION OF SURFACE OIL FILMS 

 

1. Note to Reader 

This chapter have been previously published in Geophysical Research Letters, 43, 309-316, and 

have been reproduced with permission from John Wiley and Sons. The paper is provided in Appendix B.  

This paper quantifies sun glint requirement for the remote detection of surface oil films in order to better 

understand the impact of sun glint on oil-water contrast. A brief summary of this paper is provided below. 

APPENDIX B – Sun glint requirement for the remote detection of surface oil films (Sun and Hu, 2016) 

It has been known that the presence of sun glint can enhance oil-water spatial contrast and thus 

facilitating oil slick detection in optical imagery. However, the strength of sun glint required to 

detect thin oil films has never been quantified objectively. Natural oil slicks in the western Gulf of 

Mexico are used to determine the sun glint threshold required for optical remote sensing of oil 

films. Thin oil films from the natural seeps are used here to minimize reflectance signal from oil 

optical properties (absorption and scattering). The threshold is determined using the same-day 

image pairs collected by Moderate Resolution Imaging Spectroradiometer (MODIS) Terra, MODIS 

Aqua, and Visible Infrared Imaging Radiometer Suite (VIIRS) (N = 2297 images) over the same oil 

slick locations where at least one of the sensors captures the oil slicks. For each sensor, statistics 

of sun glint strengths, represented by the normalized glint reflectance (LGN, sr-1), when oil slicks 

can and cannot be observed are generated. The LGN threshold for oil film detections is determined 

to be 10-5–10-6 sr-1 for MODIS Terra and MODIS Aqua, and 10-6–10-7 sr-1 for VIIRS. Below these 

thresholds, no oil films can be detected, while above these thresholds, oil films can always be 
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detected except near the critical-angle zone where oil slicks reverse their contrast against the 

background water. The sun glint thresholds determined here will provide critical information on 

which images (or which portions of an image) can be used to search for oil, thus reducing false 

negative detection. Optimal wind speed for sun glint detection of oil films has also been explored 

in the study.  
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CHAPTER 4: 

 OIL SLICK MORPHOLOGY, HETEROGENEITY, AND THEIR IMPLICATIONS FOR OIL SPILL REMOTE 

SENSING 

 

1. Note to Reader 

This chapter have been previously published in Marine Pollution Bulletin, 103, 276-285, and have 

been reproduced with permission from Elsevier. The paper is provided in Appendix C. This paper 

characterizes oil slick morphology for different thickness classes in order to better understand the 

heterogeneity of oil slicks and its implication for remote sensing spatial resolution to detect oil slicks and 

estimate oil thicknesses. A brief summary of this paper is provided below. 

APPENDIX C – Oil slick morphology derived from AVIRIS measurements of the Deepwater Horizon oil 

spill: Implications for spatial resolution requirements of remote sensors (Sun et al., 2016) 

Oil is highly heterogeneous on the ocean surface. Oil slick size distributions, and especially slick 

size for different oil thickness classes, can be very useful in interpreting oil footprint and thickness 

for sensors with different resolutions, in helping to make management decisions. Taking 

advantage of oil thicknesses that derived by fine spatial resolution (~7.6 m) hyperspectral AVIRIS 

data collected over the Deepwater Horizon oil spill in the Gulf of Mexico, slick lengths, widths and 

length/width ratios are estimated to characterize oil slick morphology for different thickness 

classes. All AVIRIS-detected oil slicks (N = 52,100 continuous features) are binned into four 

thickness classes: ≤50 μm but thicker than sheen, 50—200 μm, 200—1000 μm, and >1000 μm. 

The median lengths, widths, and length/width ratios of these classes range between 22 and 38 m, 

7–11 m, and 2.5–3.3, respectively. The AVIRIS data are further aggregated to 30-m (Landsat 
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resolution) and 300-m (MERIS resolution) spatial bins to determine the fractional oil coverage in 

each bin. It is found that most pixels in MODIS and MERIS resolution will have thick oil coverage 

of only a few percent of a given pixel footprint, thus mixed pixel must be considered for spectral 

and spatial analyses using these coarse spatial resolution sensors. If 50% fractional pixel coverage 

is required to detect oil with thickness greater than sheen for most oil containing pixels, a 30-m 

resolution sensor would be needed, according to results from detected oil slicks in the DWH oil 

spill by AVIRIS. Landsat may be an optimal compromise between spatial resolution and swath 

width in order to capture actual thick-oil coverage within a pixel and full oil spill footprint. 
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CHAPTER 5:  

CLASSIFICATION OF OIL TYPE AND THICKNESS USING MULTIBAND OPTICAL REMOTE SENSING 

 

Abstract 

Optical characteristics of oil floating on water have been determined from laboratory 

measurements. However, the laboratory-based relationships between oil type/thickness and spectral 

reflectance face significant challenges when applied to multiband satellite sensors in the real marine 

environment, because of sun glint perturbations and because of the lack of hyperspectral bands. In this 

study, a stepwise classification scheme is proposed to extract oil features, classify oil types (oil emulsion 

versus non-emulsion), and classify oil thicknesses of each type under no glint condition and under various 

sun glint conditions in multiband optical imagery. After oil feature extraction, reflectance in the Near 

Infrared (NIR) and ShortWave Infrared (SWIR) bands is used to classify oil type, where elevated reflectance 

indicates oil emulsions. For the oil emulsions, a histogram matching is used to compare with hyperspectral 

Airborne Visible / Infrared Imaging Spectrometer (AVIRIS) measurements to classify oil thickness under 

various sun glint conditions. For the non-emulsion oil, a ratio between SWIR and blue bands is used to 

classify oil thickness. The spectral bands deemed necessary to apply the step-wise classification scheme 

and to discriminate false-positives are 480, 560, 670, 860, and 1600 nm. Application of the step-wise 

classification scheme to multiband sensors for the DeepWater Horizon oil spill leads to reasonable spatial 

patterns for oil slicks of different types and thicknesses, suggesting that it cannot only be used for 

retrospective analysis, but also serve as a practical means for assessment of oil spill events to facilitate 

mitigation efforts. 
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Keywords: Oil spill, optical remote sensing, hyperspectral, multi-spectral, oil emulsion, Landsat, MSI, 

AVIRIS; WorldView-2 

 

1. Introduction 

Detection of oil presence and quantifying oil thickness (or volume) on the surface ocean requires 

understanding of spectral and spatial contrasts between oil and water. As shown in the previous chapter, 

these contrasts have been characterized in laboratory measurements by other researchers. Basically, 

crude oils are characterized by high absorption in the blue band, which exponentially decays with 

increasing wavelengths, resulting in lower reflectance in the blue with increasing amount of oil (Wettle et 

al., 2009; Lu et al., 2013; Svejkovsky and Muskat, 2006). When oil is emulsified, the mixture of water 

enables strong scattering in red and near infrared (NIR) and shortwave infrared (SWIR) wavelengths (Clark 

et al., 2010; Svejkovsky et al., 2012), thus showing enhanced reflectance in the NIR-SWIR. Ongoing 

research suggests that these spectral characteristics of oil could be used to infer relative oil thickness from 

optical remote sensing imagery (Lu et al., 2013; Wettle et al., 2009; Clark et al., 2010; Svejkovsky and 

Muskat, 2006; Svejkovsky et al., 2012). In particular, the laboratory-based look-up-tables (LUTs) of relating 

spectral reflectance to oil thickness have been used to map oil emulsion thicknesses from the DeepWater 

Horizon (DWH) oil spill in the Gulf of Mexico (GoM) with hyperspectral data collected by the airborne 

Airborne Visible / Infrared Imaging Spectrometer (AVIRIS) (Clark et al., 2010). 

The known optical characteristics of oil on water and the laboratory-based LUTs make it possible, 

at least in principle, to detect, classify (oil emulsion versus non-emulsion), and quantify oil thickness or 

volume. However, these LUTs face significant challenges when applied to multiband satellite sensors (i.e., 

Landsat) over the real ocean environment. These challenges include the presence of sun glint that makes 

these laboratory-based LUTs inapplicable, co-existence of multiple oil types (emulsion versus non-

emulsion), and lack of spectral bands to apply the hyperspectral techniques developed from laboratory 
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measurements. The goal of this study is to develop a practical method to detect surface oil and to classify 

oil types (emulsion versus non-emulsion) and classify oil thicknesses of each type using existing multiband 

sensors such as Landsat Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), Operational 

Land Imager (OLI), Sentinel-2 MultiSpectral Instrument (MSI), and WorldView-2 under various observing 

conditions. 

 

2. Data and Methods 

 

2.1 Field experiments 

An oil tank experiment was conducted on 27 March 2018 by the seawall of the USF campus at St. 

Petersburg, Florida. Known volumes of Alaskan North Slope (ANS) crude and emulsified oil were put on 

the water surface in two identical black plastic oval tanks, each with a size of 1.3-m in length, 0.9-m in 

width, and 0.5-m in depth. The experimental setup is shown in Fig. 5.1. Initially, oil on the surface spread, 

but not completely evenly in the tank even after a few minutes. Surface oil thickness was therefore 

estimated as the oil volume divided by area of the tank. This thickness represents the equivalent thickness 

if oil was evenly distributed in the tank. Reflectance spectra were collected between 10 am and 1 pm local 

time (Eastern Daylight Time) using a portable SR-1900 Spectroradiometer (manufactured by Spectral 

Evolution, Inc) with 8° field of view at a height of ~1.5 meters above the tank. The spectrometer measures 

spectral reflectance in the wavelength range of 280—1900 nm, with a spectral resolution of ≤4 nm in 

280—1000 nm and ≤10 nm in 1000—1900 nm. The resulting reflectance spectra were averaged over three 

separate measurements, with each measurement an average of ten continuous scans. The ANS emulsions 

with a 60:40 oil-to-water ratio were created by mixing oil and water in a food blender and then blended, 

after which the emulsions were put in a pan for six hours.  The process was repeated three times. Another 

field experiment was conducted at the National Oil Spill Response Research & Renewable Energy Test 
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Facility (Ohmsett) in September — October 2017. Ohmsett features an above-ground concrete test tank 

of 203 m long by 20 m wide by 3.4 m deep. The tank is filled with 2.6 million gallons of clear saltwater. 

Four 6.1 x 6.1 m PVC squares and nine 1.6 x 1.6 m PVC squares with different volumes of oil within the 

squares were setup in the middle of the tank (Fig. 5.2), with the purpose of being measured by WorldView-

2 satellite sensor to evaluate the sensor’s capacity in determining oil thickness from pure oil pixels within 

the squares. A known volume of HOOPS crude oil was transferred to the 6.1 m squares and 1.6 m squares 

on 29 September 2017, in order to create different thicknesses of pure oil within the squares, assuming 

the oil could be evenly distributed in the squares. Concurrent with the squares setup, there was also a 

bulk discharge of 400 gallons of HOOPS crude oil in the southern part of the tank (Fig. 5.2). The bulk 

discharged oil was well confined in a small region by booms to the south and water springs from below to 

the north. 

 

 

Figure 5. 1: a) Oil experiment in a water tank by the USF College of Marine Science campus seawall in St. 
Petersburg, Florida. Shaojie Sun and Chuanmin Hu were measuring the oil spectral reflectance using the 
SR-1900 spectrometer (photo credit: George Graettinger). Two identical tanks were set side by side, each 
other with same volume of b) crude oil and c) oil emulsions. 
 

(a) 
(b) 

(c) 
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Figure 5. 2: Oil spill experiment at the Ohmsett facility in September 2017. a) Four 6.1 x 6.1 m squares, b) 
nine 1.6 x 1.6 m squares containing different volume of oil and clear water in the Ohmsett tank. The 
marked thicknesses in (a) were calculated as oil volume divided by the square area, assuming even 
distribution of the oil. c) Bulk discharge of 400 gallons of HOOPS crude oil south of the square setup region 
on 27 September 2017. 
 

2.2 Optical imagery processing 

Airborne Visible / Infrared Imaging Spectrometer (AVIRIS) measurements on 17 May 2010 over 

the DWH oil spill were used to test the multiband models to be developed in this study. AVIRIS collected 

hyperspectral data from 380 to 2500 nm in 224 spectral bands at a ground resolution of about ~7.6 m per 

image pixel on 17 May 2010. The data were first converted to apparent reflectance (R(λ), dimensionless) 

by the USGS using the ACORN atmospheric correction module (AIG, 2001). R(λ) was then used by the USGS 

to derive oil volume per pixel (https://pubs.usgs.gov/of/2010/1167/downloads/figure16c-geotiff.tif) of oil 

emulsions using the Tetracorder spectral shape matching algorithm described in Clark et al. (2003, 2010). 

Average oil thickness per pixel was then calculated as volume divided by the area of the pixel. Therefore, 

the oil thicknesses used in this study does not include water that is contained in the oil emulsions, but it 

simply indicates “oil” thickness after converting the emulsions into pure oil. The derived thickness map at 

7.6-m resolution was reduced to 30-m resolution after spatial binning in order to accommodate the spatial 

resolutions of Landsat sensors (TM, ETM+, and OLI) (Sun et al., 2016). 

(a) 6.1x6.1 m squares 

(b) 1.6x1.6 m squares 

(c) Bulk oil discharge 
5 mm 

0.5 mm 

1 mm 2 mm 
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Landsat TM and ETM+ data over the DWH oil spill and OLI data over the MC-20 oil spill were 

obtained from the USGS/EarthExplorer, and then processed to generate Rayleigh-corrected Reflectance 

(Rrc(λ), dimensionless) using the ACOLITE software (20180611.0). Sun glint strength of the Landsat 

imagery was evaluated using the sun glint coefficient (LGN, in units of sr-1), estimated with the Cox and 

Munk (1954) model, wind speed, and solar and satellite geometry. Wind speed was retrieved from the 

Reanalysis-2 wind speed product of the National Centers for Environmental Prediction (NCEP). Solar and 

satellite geometry of Landsat measurement was calculated using the USGS “Landsat Angles Creation Tools” 

(https://landsat.usgs.gov/solar-illumination-and-sensor-viewing-angle-coefficient-file). Landsat cloud 

masks were created using the software Fmask (version 4.0, from https://github.com/gersl/fmask) through 

an object-based cloud and cloud shadow detection algorithm (Qiu et al., 2017; Zhu et al., 2015; Zhu et al., 

2012). 

In determining the best approaches to classify oil type (emulsion versus non-emulsion) and oil 

thickness, different band combinations and band ratios were tested, based on the principles of the 

spectral and spatial contrasts between oil and water. Furthermore, in order to convert the relative 

thickness into absolute thickness values, a method of histogram matching was developed to force the oil 

volume distributions derived from the multiband measurements to agree with AVIRIS-derived oil 

thickness maps. The underlying assumption is that under similar weathering conditions and in 

approximately similar locations relative to the DWH oil platform, the statistics of oil thickness observed 

from both measurements should be similar, regardless of the sun glint conditions. The various 

relationships between oil type/thickness and multiband reflectance under different conditions were used 

to construct the LUTs. 

 

 

 

https://landsat.usgs.gov/solar-illumination-and-sensor-viewing-angle-coefficient-file
https://github.com/gersl/fmask
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3. Results 

 

3.1 Oil emulsion 

Field experiments. The oil tank experiment showed increased reflectance in the NIR and SWIR 

wavelengths corresponding to thick emulsions (Fig. 5.3a). This agrees well with previous results by Clark 

et al. (2010). As shown in pictures in Fig. 5.3b, oil emulsions were not uniformly distributed in the tank 

due to their high viscosity, and actually formed scattered patches under calm conditions. The oil occupied 

surface area was estimated from digital photos taken above the tank, which was then used with the total 

oil volume to calculate the realistic oil thickness assuming all oil patches had the same oil thickness. For 

simplicity, oil thickness was also calculated as the total volume divided by the total tank area. In both 

approximations, oil thickness increased with oil volume, as shown in Table 5.1. The elevated reflectance 

in the NIR and SWIR wavelengths was a result of both increased emulsion thickness and increased 

emulsion coverage in the tank. 

Table 5. 1: Oil thickness from oil emulsions in the water tank (Fig. 5.2). The first column is the thickness 
calculated from the oil volume and tank area, representing the equivalent thickness if oil were evenly 
distributed on the entire tank surface. The last column is the realistic thickness calculated from the oil 
volume and oil-occupied area. A subset of the tank area was selected for separating oil emulsion from 
water to avoid shadows from the tank. As the tank shadows changed with time, the total number of pixels 
here are different for different scenarios  

Thickness 

from volume 

(μm) 

Emulsion 

(# of pixels) 

Water 

(# of pixels) 

Total 

# of pixels 

Emulsion/total 

ratio 

Realistic 

thickness(μm) 

750 110,000 200,000 310,000 0.36 2,000 

500 100,000 190,000 290,000 0.35 1,400 

100 36,000 230,000 260,000 0.14 730 

50 35,000 240,000 280,000 0.13 390 

10 26,000 190,000 220,000 0.12 86 

5 19,000 190,000 210,000 0.09 56 
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Figure 5. 3: a) Reflectance spectra from the tank experiment; (b) corresponding to different thickness of 
the oil emulsion. Note the elevated reflectance in the NIR to SWIR wavelengths in response to increased 
thicknesses (in μm). Here thickness is calculated as the total oil volume divided by the area of the tank. 
The pictures in (b) show different oil emulsion appearance and distribution in the tank. Note that the oil 
emulsion is very patchy and never homogeneous in the tank. 
 

Hyperspectral AVIRIS imagery. A true color reflectance composite (R: 638; G: 550, B: 463 nm) 

shows reddish to brownish colors for oil emulsions in two selected regions (Figs. 5.4a and 5.4b) in AVIRIS 

run 10 over the DWH oil spill on 17 May 2010. A false color composite (R: 1612; G: 860, B: 638 nm), 

however, reveals mostly brownish colors in Fig. 5.4c and greenish to brownish colors in Fig. 5.4d. These 

different colors represent different oil emulsion states. The corresponding USGS oil fraction product (Clark 

et al., 2010) indicates that the green colored emulsions in Fig. 5.4d have a higher water content while the 

brown colored emulsions in Fig. 5.4c have more oil fractions in the emulsions (Figs. 5.4e and 5.4f). Spectra 

of selected points in Figs. 5.4e and 5.4f display different spectral shapes (Fig. 5.5), where the reflectance 

magnitude at 860 nm relative to reflectance at 1612 nm is an indicator of oil water fractions in the oil 

emulsions: higher reflectance at 860 nm indicate more water content in the emulsions, while higher 

reflectance at 1612 nm indicate more oil content in the emulsions (Fig. 5.5). The reflectance magnitude 

at 1612 nm is also related to the average oil thickness (i.e., total oil volume divided by the pixel size), as 

demonstrated in the USGS derived oil thickness map (Clark et al., 2010, in Figs. 5.4g and 5.4h).  

(a) Oil emulsion spectra 

0.3 μm 5 μm 

50 μm 500 μm 

(b) Oil emulsion pictures 
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Figure 5. 4: True-color composite of oil slicks in two selected regions (a) and (b) in the AVIRIS imagery on 
17 May 2010 during the DWH oil spill; False-color composites using different bands are shown in (c) and 
(d), respectively; Oil fraction maps in (e) and (f) and oil thickness maps in (g) and (h) are from USGS (Clark 
et al., 2010). Black droplet in the inset indicates the DWH oil platform location, while the locations of (a) 
and (b) are also annotated. 
 

       

Figure 5. 5: Hyperspectral (a) and multispectral (b) reflectance spectra from AVIRIS in the selected 
locations in Figs. 5.4c and 5.4d, annotated with USGS derived oil fraction and oil thickness of the pixel. 
 

Sun and Hu (2018) used a band ratio of SWIR (1612 nm) to blue (472 nm) to quantify relative oil 

thickness in the region of Fig. 5.4a, with higher ratios indicating thicker oil. Here the relationship of this 

(a) (b) 
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band ratio to USGS derived oil thicknesses (Clark et al., 2010) was re-assessed using statistical analysis 

from all the USGS mapped emulsion pixels of AVIRIS runs on 17 May 2010, which captured >30% of the 

core oil spill area (Sun et al., 2016). The statistical relationship in Fig. 5.6 shows that the relative emulsion 

thickness estimated from the SWIR to blue band ratio is tightly related to the absolute thickness estimated 

from the Clark et al. (2010) hyperspectral approach (R2 = 0.61, n = 497681, p <0.05, unbiased mean relative 

error = 139%), with the estimated thickness (T, μm) being modeled as:  

log10 (T) = 1.3303*log10 (RTI) + 1.8346                                                                (1) 

where RTI is the Relative oil Thickness Index, calculated as the band ratio of SWIR (1612 nm) to blue 

(472nm) of AVIRIS images. 

 

 

Figure 5. 6: Scatter plot of relative thickness index (RTI, this study) versus USGS derived absolute oil 
thickness (Clark et al., 2010). 
 

Multiband Landsat imagery 

Similar emulsion-induced colors in the false color composite (R: 1650; G: 835, B: 661 nm) have 

also been observed in the same day (17 May 2010) ETM+ image (Figs. 5.7 and 5.8) over the DWH oil spill. 

Figs. 5.7a and 5.4a, and Figs. 5.7b and 5.4b represent approximately the same regions (both regions are 
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within two km), although oil slicks were not at the same locations because the ETM+ image was collected 

four hours earlier than the AVIRIS image. Fig. 5.7a shows the brownish to reddish colors due to oil 

emulsions, while Fig. 5.7b shows the greenish colors due to oil emulsions, similar to the color patterns 

observed from the AVIRIS false color composite in those two regions. The AVIRIS image was captured 

under negligible sun glint conditions, while the ETM+ image was under weak sun glint in Fig. 5.7a (LGN = 

~3E-3 sr-1) and strong sun glint in Fig. 5.7b (LGN = ~1E-2 sr-1), confirming the validity of identifying emulsion 

using the false color composite under both sun glint and non-glint conditions. While sun glint increases 

reflectance, the increase is spectrally flat, with minimal influence on the relative magnitudes between 

~800 and ~1600 nm, as long as glint-induced reflectance is comparable to, or smaller than, the oil-water 

contrast in the absence of glint. The reflectance spectra (Fig. 5.8) of selected pixels in Fig. 5.7 clearly 

display the reflectance peaks in the 1650-nm or 835-nm band. Under weak sun glint conditions (Fig. 5.7a, 

LGN = ~3E-3 sr-1), emulsions display lower than water reflectance in the blue green bands, but higher than 

water reflectance in the NIR and SWIR bands. This is because the emulsion signal overweighs sun glint 

caused negative contrast with water, while the negative contrast is due to oil’s modulation of surface 

roughness. Under strong glint conditions (Fig. 5.7b, LGN = ~1E-2 sr-1), emulsions show higher than water 

reflectance in all wavelengths, but still with a local peak in the 835-nm band. Because glint-induced 

reflectance is rather spectrally flat, RTI is still a reasonable indicator of oil emulsion thicknesses. However, 

because glint is red rich in reflectance (similar to a sunset due to higher scattering in shorter wavelengths), 

the relationship between RTI and absolute oil thicknesses may change with sun glint strength, suggesting 

that separate relationships may need to be derived for different sun glint conditions. 
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Figure 5. 7: False-color composite (R: 1650; G: 835, B: 661 nm) of ETM+ imagery on 17 May 2010 showing 
brownish to reddish colors in (a) and mostly greenish colors in (b); (a) and (b) show slick features close 
(within 2 km) to locations in Fig. 5.4a and Fig. 5.4b, respectively. (c) and (d) show the classified oil emulsion 
and emulsion thickness in the two regions. 
 

The oil emulsions were classified using the elevated reflectance features in the NIR and SWIR 

bands (Figs. 5.7c and 5.7d, where the stepwise scheme was described in Section 3.3). As expected, sun 

glint may alter the relationship between RTI and absolute thickness, making it difficult to establish a 

universal relationship between reflectance ratio and oil thickness. Thus, a method of histogram matching 

was used to establish a relationship between RTI and oil thicknesses, where the former may be under 
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various glint conditions and the latter was derived by USGS from AVIRIS measurements. When the two 

images were both taken from similar locations relative to the DWH platform with similar areal coverage, 

I assume the oil thickness frequency distribution to be unchanged between the two images. This 

assumption is consistent with the popular rule of thumb used by the community, where 90% of the spilled 

oil is located in about 10% area of the oil footprint (NOAA, 2016). As long as the image covered a large 

portion of the total spilled area including both thin and thick oil, this assumption may be reasonable. 

Moreover, the AVIRIS measurements on 17 May 2010 sampled more than 30% of the core spill area, and 

these AVIRIS flight lines captured both the edge and the center of the spill, including both thick and thin 

oil regions (Sun et al., 2016). Therefore, the AVIRIS-derived thickness frequency distribution may 

represent a typical oil emulsion thickness frequency distribution during the DWH oil spill in during 17 May 

2010 and other days. The derived RTI cumulative frequency histogram was then compared to and forced 

to match the AVIRIS thicknesses cumulative frequency histogram (Hu et al., 2018). Fig. 5.9 shows the RTI 

histogram as compared to the AVIRIS derived thickness histogram after histogram matching. The sun glint 

coefficient (LGN) for the ETM+ image is 1.4E-2 sr-1, and the estimate thickness (T, μm) from the ETM+ is:  

Log10 (T) = 11.424*log10 (RTI) + 0.3026                                                                 (2) 

where RTI is the band ratio of SWIR (1650 nm) to blue (479nm) in the ETM+ image. Such derived thickness 

maps are shown in Figs. 5.7c and 5.7d, which show similar thickness distributions as in Figs. 5.4c and 5.4d. 

Table 5. 2: RTI-thickness relationships derived from histogram matching between Landsat RTI and AVIRIS-
derived oil emulsion thickness (T, μm). These relationships vary with sun glint strength corresponding to 
each Landsat image. RTI is the band ratio of SWIR (1650 nm) to blue (479nm) in the ETM+ image, and ratio 
of SWIR (1678 nm) to blue (486 nm) in the TM image 

Date Sensor LGN (sr-1) Emulsion Area (km2) Relationship 

5/1/2010 ETM+ ~ 1.5E-2 7.9 Log10 (T) = 8.0853*log10 (RTI) + 0.68 

5/10/2010 ETM+ ~ 6.0E-3 11.3 Log10 (T) = 4.6102* log10 (RTI) + 0.5116 

5/25/2010 TM ~ 3.0E-3 7.8 log10 (T) = 2.3601* log10 (RTI) + 1.1704 
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Figure 5. 8: Oil emulsion spectra in the two regions in Fig. 5.7 
 

 

Figure 5. 9: Histograms of cumulative frequency from AVIRIS-derived oil thickness (after data binning to 
30-m resolution) and from ETM+ derived oil thickness using the ETM+ RTI. 
 

The same approach was used to classify and quantify oil emulsions from Landsat images in May 

2010 (1 May 2010 ETM+, 10 May 2010 ETM+, and 25 May TM) under different sun glint conditions. In 

each case, the RTI histogram was forced to match the AVIRIS-derived thicknesses histogram, with image-

specific coefficients derived between RTI and thickness. The false color composite imagery, spectra of 
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selected pixels of emulsions, and the histograms are displayed in Figs. 5.10, 5.11, and 5.12 for 1 May 2010 

ETM+, 10 May 2010 ETM+, and 25 May TM, respectively. These images were collected under different sun 

glint conditions, where the RTI-thickness relationship varied among images, as listed in Table 5.2.  

 

 

Figure 5. 10: a) False-color composite (R: 1650; G: 835, B: 661 nm) of ETM+ imagery on 1 May 2010. b) 
Classified oil emulsions and estimated emulsion thickness. c) Oil emulsion spectra from selected locations 
in (a). d) Histograms of cumulative frequency from AVIRIS-derived oil thickness (after data binning to 30-
m resolution) and from ETM+ derived oil thickness using the ETM+ RTI. 
 

(c) (d) 
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Figure 5. 11: a) False-color composite (R: 1650; G: 835, B: 661 nm) of ETM+ imagery on 10 May 2010. b) 
Classified oil emulsions and estimated emulsion thickness. c) Oil emulsion spectra from selected locations 
in (a). d) Histograms of cumulative frequency from AVIRIS-derived oil thickness (after data binning to 30-
m resolution) and from ETM+ derived oil thickness using the ETM+ RTI. 
 

 

 

 

 

(c) 
(d) 
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Figure 5. 12: False-color composite (R: 1678; G: 839, B: 660 nm) of TM imagery on 25 May 2010 showing 
brownish to reddish colors in (a) and mostly greenish colors in (b); (c) and (d) show the classified oil 

(e) (f) 
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emulsions and the estimated emulsion thickness in (a) and (b), respectively. e) Oil emulsion spectra in 
selected locations in (a) and (b). f) Histograms of cumulative frequency from AVIRIS-derived oil thickness 
(after data binning to 30-m resolution) and from TM derived oil thickness using the TM RTI. 

 

3.2 Non-emulsion 

Field experiments. The tank experiment shows that when oil is very thin (≤1 µm), crude oil 

reflectance is higher than water in the visible wavelengths (400-700 nm, in Fig. 5.13). This is apparently 

due to enhanced Fresnel reflectance because oil has a higher refraction index than water. However, when 

oil becomes thicker (≥5 µm), there is a clear trend of decreased reflectance in the visible wavelengths with 

increased oil thicknesses until oil thickness reaches 100 - 500 µm. Compared to reflectance in the visible 

wavelengths, reflectance in the NIR and SWIR wavelengths shows minimal changes. These results agree 

well with previous laboratory studies of crude oil (Wettle et al., 2009). Most importantly, reflectance in 

the NIR and SWIR bands is very low (<0.5%, Fig. 5.13) for all thickness, which contrasts the enhanced NIR 

and SWIR reflectance of oil emulsions (e.g., 4% - 15% in the 1650-nm band with emulsion thicknesses from 

50 to 750 µm, Fig. 5.3). 

 

 

Figure 5. 13: a) Reflectance spectra of Alaskan North Slope crude oil with various oil thicknesses (in μm) 
in a water tank. Here thickness is calculated as the total volume divided by the area of the tank. b) Pictures 
showing crude oil appearances with different thicknesses. 
 

0.3 μm 5 μm 

50 μm 500 μm 

(a) Crude oil spectra (b) Crude oil pictures 
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The Ohmsett experiment in September – October 2017 was designed to measure crude oil of 

known thickness using a high-resolution WorldView image. The WorldView-2 image on 1 October 2017 

(Fig. 5.14) shows two of the 6.1 m squares without oil and the other two (designed to have surface oil of 

1 and 2 mm thick) with some oil on the southern side of the squares (Figs. 5.14 and 5.15). The square with 

1-mm oil shows oil covering only ~1/8 of the square, while the square with 2-mm oil shows oil covering 

~1/3 of the square. Some of the 1.6-m squares had more than half the square covered by oil, and the 

WorldView-2 multispectral image (Fig. 5.14b) also shows the impact of the bridge and bridge shadows on 

the 1.6-m squares. South of the 6.1 m squares, there was a black tarp on the bottom (Fig. 5.15c). Further 

south, Fig. 5.15d shows thick crude oil patch against the tank wall, which was also captured in the 

WorldView-2 image. Further south (Fig. 5.15e and 5.15f), the images show the thickest oil in the tank, a 

result of oil accumulation by booms from the south and by water springs from the north. This region 

contained most of the 400 gallons bulk discharged oil. Assuming the area contained half of the 400-gallon 

discharged oil at the time of the WorldView-2 image, the crude oil could have an average thickness of ~10 

mm in this area.  

Spectra of selected pixels in those areas show decreased reflectance with increased oil thickness 

in the blue and green bands, and minimal changes in the NIR bands (Fig. 5.16). This agrees well with our 

own tank experiment (Section 3.1) and previous studies (Wettle et al. 2009). However, the reflectance 

spectrum of the tarp is similar to that from thick oil (Fig. 5.16), suggesting that it is difficult to distinguish 

differences between the two. Oil in the two selected regions (red rectangles) in Fig. 5.14b was classified 

by comparing to the nearby clear water pixels: if both the blue (478 nm) and green (546 nm) bands were 

significantly lower than those of clean water (oil-water reflectance difference > two standard deviations 

of 20 x 20 water pixels), the pixel was identified as a crude oil pixel. Then, a NIR (832 nm) to blue (478 nm) 

band ratio was used to estimate relative thickness of the identified crude oil, with higher ratio indicating 
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thicker oil. The classified oil pixels and estimated relative thickness are shown in Fig. 5.14c. The thickness 

patterns agree well with field-based visual inspections (Fig. 5.15). 

 

 

Figure 5. 14: Crude oil in the Ohmsett tank as viewed by WorldView-2 on 1 October 2017. a) Pan 
sharpened true color image (R: 659 nm; G: 546 nm; B: 478 nm), b) multispectral true color image with the 
two red rectangular box regions selected for oil classification, and c) results of classified crude-oil pixels 
and estimated relative thickness of the crude oil in the two selected regions. 
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Figure 5. 15: Digital photos taken on 2 October 2017 of the targets in Fig. 5.14a. 
 

 

Figure 5. 16: a) Top of atmosphere (TOA) reflectance of selected pixels in Fig. 5.14 and b) reflectance 
difference after subtracting the nearby water reflectance. 
 

(a) 6.1x6.1 m Squares (b) 1.6x1.6 m Squares 

(c) Bottom Tarp (d) Thick oil against wall 

(e) Bulk thick oil (f) Bulk thick oil 

1 mm 
2 mm 

(a) (b) 
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Multiband imagery under sun glint conditions. Fig. 5.17 shows oil slicks that are usually observed 

from Landsat and Sentinel-2/MSI imagery in the MC-20 region. Reflectance spectra from selected oil-

containing pixels and nearby oil-free pixels are shown in Fig. 5.18, where the former can be either higher 

or lower than the latter, and with spatial contrast enhanced by the sun glint effect (LGN = ~1E-2sr-1, Hu et 

al., 2009; Sun et al., 2016). Sun glint strength is a function of satellite view angles, solar angles, and sea 

surface roughness (Cox and Munk, 1954; Jackson and Alpers, 2010). The effect of sun glint modulation on 

oil-water contrast can be visualized clearly by the examples in Fig. 19, where the Multi-angle Imaging 

SpectroRadiometer (MISR) images were collected over the same oil slicks of the DWH oil spill but at nine 

different camera zenith angles within 8 minutes (Sun and Hu, 2018). Under strong sun glint (CamZ = 0, LGN 

= 6.6E-2 sr-1 in Fig. 5.19), oil slicks all display positive contrasts from water, with thicker oil displaying higher 

positive contrast. The thin oil slicks change from positive contrast to negative contrast for zenith angle of 

forward 26.1o (LGN = 1E-2 sr-1 in Fig. 5.19) and afterward 26.1o (LGN = 8.2E-4 sr-1 in Fig. 5.19) cameras. Here, 

the thin slicks undergo a brightness reversal from positive contrast to negative contrast, an effect 

observed by previous studies (Hu et al., 2009; Jackson and Alpers, 2010). Thick oil, however, still shows 

positive contrast from water, but at a lower magnitude (Fig. 5.19). There is a smooth transition that with 

decreased sun glint strength (from 6.6E-2 sr-1 to 1E-2 sr-1 and 8.2E-4 sr-1), sun glint induced reflectance 

decreases in both thick and thin oil, with thin oil slick turning from positive to negative contrast first 

because of its relatively small positive contrast when sun glint strength is high. Therefore, under the same 

sun glint conditions when slicks of both positive and negative contrasts co-exist in the same location (i.e., 

same solar/viewing geometry and same environmental conditions), slicks of positive contrast appear to 

be thicker than slicks of negative contrast. Thus, slicks of positive contrast in Fig. 5.17 indicate thicker oil 

than the corresponding slicks of negative contrast.  
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Figure 5. 17: a) OLI true color image (R: 655; G: 561, B: 483 nm) on 4 May 2014 showing oil slicks in the 
vicinity of the MC-20 site; b) classified thick and thin oil. The blue arrows indicate wind vectors. 

 

 

Figure 5. 18: a) Reflectance spectra of selected pixels in Fig. 5.17a, and b) reflectance difference after 
subtracting the nearby water reflectance. 

(a) (b) 
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Figure 5. 19: False-color RGB (R: 867 nm, G: 558 nm, B: 446 nm) composite MISR images taken at UTC 
16:43 (at nadir, ±4 minutes among all cameras) on 17 May 2010 in nine camera view angles (Sun and Hu, 
2018), with sun glint strengths annotated for the black arrow pointed regions. Positive angles indicate 
forward looking and negative angles indicate backward looking. The black droplet indicates the location 
of the DWH oil platform. The color strips on the bottom of top row are due to missing data in one or more 
bands. 
 

Using the above concept, oil pixels can be first classified as thick and thin oil (i.e., sheen). If an oil 

pixel has either reflectance of blue and green bands, or NIR and SWIR bands significantly greater than the 

reference water reflectance, the pixel would be classified as thick oil. RTI will then be used to classify 

relative thicknesses from the thick oil pixels, with higher ratio indicate thicker oil. Details of the 

classification scheme are described in Section 3.3. The classification results are shown in Fig.  5.17b as an 
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example. The classification results appear to be reasonable as one can clearly visualize the thin oil 

orientation in windrows parallel to the wind direction and the smooth transitions from thin to thick oil 

(Fig.  5.17b), with the thickest oil patches in the downwind direction (IPIECA-IOGP, 2015; NOAA, 2016). 

 

3.3 Classification scheme 

With all the analysis above, this section summarizes the stepwise classification scheme used to 

classify oil type and thickness with multiband optical imagery from Landsat ETM+. While ETM+ imagery is 

used here as an example, similar schemes can be developed for other multiband sensors as long as they 

equipped with appropriate spectral bands. 

First, pre-processing is required to delineate oil slicks and determine sun glint strength, including: 

• Download the Landsat Level-1 radiance data 

• Process to Rrc (using the ACOLITE software) 

• Generate true color and false color composite (R: 1650; G: 835, B: 661 nm) images from the 

Rrc reflectance 

• Outline the regions of interest (ROIs) containing visually interpreted oil extent (not the oil 

slicks themselves) using ROI tools in ENVI or similar software (e.g., the red polygon in Fig. 

5.21a) 

• Outline the ROIs for reference water (e.g., the green polygon in Fig. 5.20b) and determine 

the kernel size according to the oil slick sizes (e.g., 100 x 100 pixels), within which water pixels 

will be used in calculating the statistics 

• Calculate sun glint coefficient (LGN) using the angle files and wind speed data 

• Apply cloud mask to mask cloud and cloud shadows (i.e., using Fmask software to prepare 

cloud mask).  
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The classification is a pixel-wise classification that searches every non-cloud pixel in the potential 

oil polygons (red polygons in Fig. 5.20 for example), finds the nearest reference water pixel in the 

reference water areas (green polygons in Fig. 5.20 for example), opens a kernel window centered at the 

nearest water pixel (100 x 100 pixels kernel for example), and then calculates the mean and standard 

deviation of reflectance for each band from water pixels in the kernel window. Spectral bands used in this 

classification are blue (479 nm), green (561 nm), red (661 nm), NIR (835 nm), SWIR1 (1650 nm), and SWIR2 

(2208 nm). Similar bands can be found from other multiband sensors including TM, OLI, Sentinel-2/MSI 

and WorldView-3.  

The reflectance of each potential oil pixel is first compared to water reflectance from the nearest 

reference water window. If the difference is statistically significant (>2 standard deviations) in at least two 

of the bands (the reason of using two bands is to filter random sensor noise), the pixel will be classified as 

an oil-containing pixel. Otherwise, the potential oil pixel will be classified as a water pixel. The generated 

true color and false color composite images are used to roughly outline oil extent ROIs based on oil’s 

spatial contrast with water (e.g., positive or negative contrast under sun glint, negative contrast of crude 

oil in true color imagery without sun glint, and reddish or greenish colors of oil emulsions in false color 

composite imagery). The following procedures will then be used to rule out false-positives and to refine 

the oil-water boundary within the ROIs.  

Secondly, the oil pixels are classified into oil emulsions and non-emulsions. The reflectance peaks 

in the 835-nm and 1650-nm bands are used to classify oil emulsions: if the above-classified oil pixels follow 

rule 1 or 2 below, they will be classified as oil emulsions; if the above-classified oil pixels follow rule 1 or 

2 but does not follow rule 3, they will be rejected as being oil pixels as they may be floating algae pixels.  

1) If peak reflectance happens in the 1650-nm band, then verify if the following are true: 

Rrc_1650 (oil) > Rrc_1650 (water); Rrc_2208 (oil) > Rrc_2208 (water); Rrc_835 (oil) > Rrc_835 
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(water); Rrc_1650 (oil) > Rrc_835 (oil); Rrc_1650 (oil) > Rrc_661 (oil); Rrc_1650 (oil) > Rrc_2208 

(oil); 

2) If peak reflectance happens in the 835-nm band, verify if the following are true: Rrc_835 (oil) > 

Rrc_835(water); Rrc_661 (oil) > Rrc_661 (water); Rrc_1650 (oil) > Rrc_1650 (water); Rrc_835 (oil) 

≥ Rrc_1650 (oil); Rrc_835 (oil) > Rrc_661 (oil); 

3) If Rrc_661 (oil) is < Rrc_561 (oil), the pixel is rejected as being an oil pixel but likely a pixel 

containing floating algae. 

Thirdly, after applying the above classification to separate oil emulsions from non-emulsions, two 

separate steps are used for oil emulsions and non-emulsions, respectively. For oil emulsions, the RTI 

(Rrc_1650/Rrc_472) is used to estimate the relative thicknesses of the classified oil-emulsion pixels using 

two models in equations (1), and relationships in Table 5.2 whose corresponding sun glint coefficients 

bracket the sun glint coefficient from the image of interest, with results linearly interpolated between the 

two model results. For non-emulsions, if sun glint impact is negligible (LGN <1E-5~1E-6sr-1, Sun and Hu, 

2016), both Rrc_479 and Rrc_560 are significantly lower than water, and both Rrc_1650 and Rrc_835 are 

no different than water, the same RTI (Rrc_1650/Rrc_472) is then used to estimate the relative 

thicknesses of the classified non-emulsion pixels, with higher values indicating thicker oil. 

Most of the oil slicks observed in the multiband images are under the influences of sun glint 

(LGN>1E-5~1E-6sr-1), showing positive or negative contrasts or both (e.g., Figure. 5.17).  In this case, pixels 

will be classified as thick oil if both Rrc_835 and Rrc_1650 or both Rrc_479 and Rrc_561 are significantly 

higher than water. All other pixels will be classified as thin oil. The RTI (Rrc_1650/Rrc_472) is then used to 

indicate the relative thicknesses of the classified thick oil pixels, with higher values indicating thicker oil. 

Finally, the results of the individual outputs are merged together and stored in shapefiles and 

geotiff images. The entire step-wise classification scheme is illustrated in Fig. 5.20. 
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Figure 5. 20: Flow chart of the step-wise classification scheme to classify oil type and thickness from 
multiband remote sensing imagery. RTI: Relative Thickness Index defined as the ratio between SWIR 
(~1600 nm) and blue bands (~480 nm). 
 

Fig. 5.21 shows an example of the classification results from the 1 May 2010 ETM+ image over the 

DWH location. It is clear that while most of the oil pixels contain thin oil, there are both oil emulsions and 

non-emulsions.  

 

4. Discussions 

An elevated reflectance in the NIR (~860 nm) band is often an indicator of oil emulsions. 

Furthermore, the ~1600-nm SWIR band is directly related to the oil volume contained in the emulsions. 
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Therefore, both the ~860-nm and the ~1600-nm bands provide critical information of oil emulsions for 

this specific method, and are both required for classifying oil types and thicknesses when considering the 

use of optical data. 

 

 

Figure 5. 21: a) False-color composite (R: 1650; G: 835, B: 661 nm) of ETM+ imagery on 1 May 2010 during 
the DWH oil spill. b) Results from the proposed classification scheme, with enlarged window showing 
details of the classified oil emulsion in the same region as in Fig. 5.10. 
 

However, oil emulsion is not the only cause of elevated NIR and SWIR reflectance. For example, 

floating algae such as Sargassum also occur frequently in the GoM (Hu et al., 2015), which also cause 

elevated NIR and SWIR reflectance (Fig. 5.22). While oil emulsion reflectance is rather smooth (i.e., lack 

of features) from green to red and to the NIR band (Fig. 5.3), Sargassum reflectance spectra show strong 

chlorophyll absorption features around 675 nm (Fig. 5.22, Hu et al., 2015). This absorption feature is 

within the bandwidth of the TM and ETM+ red bands, and also covered partially by the OLI red band. By 
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examining and contrasting the spectral shape between the green, red, and NIR bands, Sargassum or other 

floating algae may be discriminated from oil emulsions, following the rules described in Section 3.3-3. 

Blue bands are sensitive to oil presence/absence and changes in thicknesses because of the high 

absorption of oil in the blue (Clark et al., 2010; Wettle et al., 2009), thus essential in classification of 

thicknesses of both emulsions and non-emulsions. Therefore, in summary, the required bands for oil type 

(emulsions versus non-emulsions) and thickness classifications are blue (~480 nm), green (~560 nm), red 

(~ 670 nm), NIR (~860 nm), and SWIR (~1600 nm). Most of these bands can be found in typical multiband 

sensors such as Landsat (TM, ETM+, and OLI), MSI, and WorldView-3. 

 

 

Figure 5. 22: Typical reflectance of floating Sargassum, overlaid with positions of ETM+ green (green 
color), red (red color) and NIR (grey color) bands. 
 

Oil spill response activities require oil maps to be delivered in a timely manner (Leifer et al., 2015), 

usually within an hour by experienced observers on airplanes for tasking appropriate assets. The 

classification scheme here is a pixel-wise classification method, thus the turn over time is heavily 

dependent on the searching extent. Currently, with the existing computing speed it takes up to two hours 

processing time from raw data downloading to final shapefiles output for oil spill that comprises a couple 
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of kilometers in width and a few tens of kilometers in length in Landsat images. However, it may take 

more than 12 hours to process images of large oil spills (e.g., the DWH oil spill), with oil spill size of 

hundreds of kilometers by a few tens of kilometers. With the current turn over time, the classification 

scheme may still provide useful products for oil spill response during prolonged oil spills, large spills and 

oil spills in remote locations, especially when considering satellite remote sensing’s advantages of large 

coverage, repeatable measurements and global coverage over the traditional airborne observations. The 

turn over time may be decreased through algorithm refinement in the near future, for example by using 

an object-based classification scheme (Blaschke, 2010) instead of the pixel-wise method presented in this 

study. 

A statistical analysis of oil-water contrast over natural seep locations in the GoM shows that thin 

oil films have positive contrast from water in the MODIS 859-nm band for LGN >0.025 sr-1 (Sun and Hu, 

2018). Under such strong sun glint conditions, sun glint induced reflectance increase may be comparable 

to, or even overwhelm, the original emulsion signals in the ~480-nm and ~1600-nm bands. As can be seen 

from Figs. 5.9, 5.10, 5.11, and 5.12, RTI has a better histogram matching with emulsion thickness when 

LGN is 3E-3 to 6E-3 sr-1. Therefore, the classification scheme to quantify thicknesses of oil emulsions is 

applicable for LGN <1E-2 sr-1, while oil emulsion pixels can still be extracted (although not quantified) when 

LGN is >1E-2 sr-1. 

The methodology to classify thick oil from thin oil under sun glint conditions (LGN <0.025 sr-1 and 

LGN >1E-5~1E-6sr-1) is based on the concept that under the same solar/viewing geometry and 

environmental conditions, thick and thin oil modulate differently on reflected sun light. However for slicks 

over large distances (e.g., a few tens of kilometers to >100 kilometers in a Landsat image), the satellite 

view angles and wind conditions are different in locations spatially separated. Therefore, the method 

proposed here to classify thick oil from thin oil and to classify relative thicknesses of thick oil is applicable 

only to oil slicks spatially close or at similar sun glint levels. 
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Finally, all classification results here are only verified through consistency checks (e.g., spectral 

shapes, comparison with AVIRIS, slick orientation relative to wind, etc.), rather than through direct field 

observations. The lack of direct field validation not only applies to this study, but is rather universal in 

remote sensing of oil spills. In addition to the fast-changing nature of oil spills (field surveys are difficult 

to plan), the fundamental problem is the lack of a reliable method to measure oil thickness in the field for 

both thick and thin oil, especially when oil is patchy (e.g., Figs. 5.1 and 5.3). This technical challenge needs 

to be addressed in order to advance the science of oil spill remote sensing. 

 

5. Conclusions 

In this study, a stepwise classification scheme is proposed to classify oil type (oil emulsion versus 

non-emulsion) and classify oil thickness of each type under no glint conditions and under various sun glint 

conditions in multiband optical imagery. The elevated spectral reflectance features in the NIR (~860 nm) 

and SWIR (~1600 nm) bands are used to identify oil emulsions. Increased and decreased reflectance in 

the visible to SWIR bands due to sun glint perturbation are used to classify thick from thin oil. The SWIR 

(~1600 nm) to blue (~480 nm) band ratio is used to classify the relative thicknesses of oil emulsions and 

thick oil. A look-up-table is developed to quantify oil emulsion thickness under different sun glint 

conditions using the relative thickness index (RTI). The classification results agree with field observations 

from the Ohmsett facility oil spill test, and the mapped oil emulsion thickness patterns agree with 

thickness map from USGS derived from hyperspectral airborne AVIRIS measurements. 

Required bands for the classification scheme and for discriminating oil from false positives are 

discussed in the study, where the combination of blue (~480 nm), green (~560 nm), red (~ 670 nm), NIR 

(~860 nm) and SWIR (~1600 nm) appear to fulfill the requirements of the classification method proposed 

here. Most of these bands can be found in typical multiband optical sensors such as Landsat (TM, and 

ETM+, OLI), MSI, and WorldView-3. Although direct validation from field experiments is impossible due to 
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lack of field sampling methods to measure oil thickness, the classification scheme is based on the spectral 

characteristics of oil reflectance under different observing conditions, thus providing a practical method 

for oil spill assessment in both retrospective analysis and to facilitate mitigation. 
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CHAPTER 6:  

OIL SPILL ASSESSMENT OF THE IXTOC-I ACCIDENT 

 

1. Note to Reader 

This chapter have been previously published in Marine Pollution Bulletin, 101, 632-641, and have 

been reproduced with permission from Elsevier. The paper is provided in Appendix D.  This paper applies 

methods and theories of optical remote sensing in the assessment of a historical oil spill – the 1979 Ixtoc-

I oil spill. A brief summary of this paper is provided below. 

APPENDIX D – Surface oil footprint and trajectory of the Ixtoc-I oil spill determined from Landsat/MSS 

and CZCS observations (Sun et al., 2015) 

The Ixtoc-I oil spill occurred in 1979 in shallow waters (50 m) of the Bay of Campeche, Mexico. A 

large portion of the released oil from this second largest accidental marine oil spill in history 

reached the surface. This study assesses the oil spill footprint using remote sensing data collected 

by Landsat Multispectral Scanner and Coastal Zone Color Scanner. General patterns of oil 

trajectory are found to the northwest and north, nearly parallel to the coastline of the western 

Gulf of Mexico (GoM) with possible oil landing on Mexican and Texas beaches. Field observations 

at selected beaches and islands along the coast of the western and southern GoM during and 

after the spill confirm these satellite-based findings. And the result oil footprint map and 

cumulative frequency map were also used to help to determine field sampling locations and for 

ecological impact analysis.  
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CHAPTER 7:  

ASSESSMENT OF THE MC-20 OIL SPILL 

 

1. Note to Reader 

This chapter have been previously published in Marine Pollution Bulletin, 136, 141-151, and have 

been reproduced with permission from Elsevier. The paper is provided in Appendix E. This paper uses 

medium- to high-resolution (10-30 m) optical remote sensing imagery to assess the ongoing MC-20 oil 

spill in the northern Gulf of Mexico. A brief summary of this paper is provided below. 

APPENDIX E – Remote sensing assessment of oil spills near a damaged platform in the Gulf of Mexico 

(Sun et al., 2018) 

An oil platform in the Mississippi Canyon 20 (MC-20) site was damaged by Hurricane Ivan in 

September 2004. In this study, medium- to high-resolution (10-30 m) optical remote sensing 

imagery is used to systematically assess oil spills near this site for the period between 2004 and 

2016. Image analysis detects no surface oil in 2004, but ~40% of the cloud-free images in 2005 

show oil slicks, and this number increases to ~70% in 2006-2011, and >80% since 2012. For all 

cloud-free images from 2005 through 2016 (including those without oil slicks), delineated oil slicks 

show an average oil coverage of 14.9 km2/image, with an estimated oil discharge rate of ~50 to 

~1700 barrels/day, and a cumulative oil-contaminated area of 1,900 km2 around the MC-20 site. 

Having remote sensing observation of oil slicks in the same day (or a few consecutive days from 

different sensors) improves the understanding of oil slick movement over short temporal periods, 

especially in this region influenced by a large river plume. For the most part, oil slick distribution 

agrees well with circulation patterns that are largely controlled by the Mississippi River plume, 
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but can also be affected by direct wind forcing. The location of the river induced fronts with 

respect to the oil source also contributes to both onshore propagation and longer-term pathways 

of the hydrocarbons. Moreover, wind forces may dominate the oil spreading process when the 

Mississippi River plume does not encompass the MC-20 site.   
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CHAPTER 8:  

CASE STUDY:  THE OIL TANKER COLLISION AND OIL SPILL EVENT IN THE EAST CHINA SEA 

 

1. Note to Reader 

This chapter have been previously published in Geophysical Research Letters, 45, 3212-3220, and 

have been reproduced with permission from John Wiley and Sons. The paper is provided in Appendix F. 

This paper demonstrates a multisensor day and night approach of satellite remote sensing in response to 

an oil spill accident. A brief summary of this paper is provided below. 

APPENDIX F – Tracking an oil tanker collision and spilled oils in the East China Sea using multisensor day 

and night satellite imagery (Sun et al., 2018) 

The Iranian oil tanker SANCHI, carrying ~1 million U.S. barrels of condensate oil, collided with a 

grain freighter on 6 January 2018 in the East China Sea. The accident caused SANCHI on fire and 

tilted, drifting ablaze for a week, until it exploded and sunk on 14 January 2018. Traditional 

techniques using synthetic aperture radar or daytime optical imagery turn out not providing 

timely and adequate coverage for this specific case. In this study, however, Visible Infrared 

Imaging Radiometer Suite Nightfire product and Day/Night Band data demonstrate their values 

in tracking the oil tanker’s drifting pathway and locations when all other means are not as 

effective for the same purpose. Such pathway and locations can also be reproduced with a 

numerical model, with root-mean-square error of <15 km. High-resolution optical imagery after 4 

days of the tanker’s sinking reveals oil spill area >350 km2 near the tanker sinking site. This study 

demonstrates that a combination of all available remote sensing and modeling techniques can 

provide effective means to monitor marine accidents and oil spills to assist event response.  
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CHAPTER 9:  

SUMMARY AND CONCLUSIONS 

 

1. Research findings and potential impacts 

While optical remote sensing has the capacity to detect oil under sun glint and non-glint 

conditions, differentiating oil from false-positives, identifying oil emulsions, and quantifying oil 

thicknesses, fully realizing this capacity faces many challenges in the real marine environment using 

available multiband remote sensing imagery. These challenges include sun glint induced distortion in the 

reflectance spectra, mixed pixels from the heterogeneous oil patches, and insufficient spectral resolution 

to apply the laboratory-based hyperspectral algorithm to multiband optical imagery (Sun and Hu, 2018). 

These challenges have all been addressed in this dissertation, although continued research is still required 

to have complete solutions. 

Specifically, of these challenges, the sun glint requirement for detecting thin oil films has been 

quantified. The threshold of sun glint strength (LGN) is determined to be 10-5–10-6 sr-1 for Moderate 

Resolution Imaging Spectroradiometer (MODIS) on the Terra and Aqua satellites, and 10-6–10-7 sr-1 for 

Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi-NPP satellite (Sun and Hu, 2016). Below 

these thresholds, oil films cannot be detected; above these thresholds oil films can always be detected 

except near the critical-angle zone where oil slicks reverse their contrast against the background water. 

The relationship between oil-water reflectance contrast and sun glint strength has also been statistically 

analyzed, with results showing that when LGN is <0.001 sr-1, the negative oil-water contrast (at 859 nm) of 

thin oil films is very small, and the contrast turns to be positive when LGN is > ~0.025 sr-1 (Sun and Hu, 2018). 
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The sun glint thresholds determined here will provide critical information on which images (or which 

portions of an image) can be used to search for oil, thus reducing false negative detection. 

The spatial heterogeneity of oil slicks, and slick size distributions of different thickness classes 

from the DeepWater Horizon (DWH) oil spill, have been characterized for the first time by using high 

spatial resolution (~7.6 m) hyperspectral AVIRIS data (Sun et al., 2016). Most oil slicks are found to be 

elongated, with a medium length/width ratio ranging from 2.5 to 4.6 depending on the thickness class: oil 

of >200 μm thick covers only 5% of the total oiled area but contains >45% of the total oil volume, 

confirming the rule of thumb that thick oil covers a small area but contains a considerably larger amount 

of oil. The characterized slick sizes of different thickness classes have significant implications on 

interpreting oil footprint and thickness for sensors with different resolutions. It is found that spectral and 

spatial analyses, or modeling using coarse-resolution sensors such as MODIS, need to consider mixed 

pixels for thick oil, as most pixels will have thick oil coverage in only a few percent of a given pixel. If non-

commercial satellite is the only available means, Landsat/Sentinel-2 might be the best compromise 

between spatial resolutions and temporal resolutions in order to capture actual thick-oil coverage within 

a pixel and full oil-spill footprint. On the other hand, commercial satellite data (e.g., DigitalGlobe satellite 

constellation) can greatly expand oil spill detection capability in both spatial (< 2m spatial resolution) and 

temporal resolutions (daily revisit with an imaging swath of <20 km).  

Moreover, a stepwise classification scheme is proposed to extract oil features, classify oil types 

(oil emulsion versus non-emulsion), and classify oil thicknesses of each type under no glint conditions and 

under various sun glint conditions using multiband optical imagery. Most of the required spectral bands 

used in the application of the step-wise classification scheme, and to discriminate false-positives, can be 

found in typical multiband sensors such as Landsat (TM, ETM+, and OLI), MSI, and WorldView-3. This 

classification scheme may greatly expand the capacity to classify oil emulsions from non-emulsions, and 
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classify oil thicknesses of different types using current multiband optical sensors (under various sun glint 

conditions), thus providing a practical method for oil spill assessment and to facilitate mitigation. 

Based on the above methods and current understanding of oil-water spatial and spectral contrasts 

in optical remote sensing imagery, several oil spill accidents have been assessed, including both historical 

and ongoing oil spills. The Ixtoc-I oil spill footprint has been delineated for its >9-month spill period, 

providing the first comprehensive map of oiled area from the spill (Sun et al., 2015). The cumulated oil 

footprint map has been used to guide field sampling, and has provided independent information to 

compare with physical modeling (Duran et al., 2018) and to assess the spill's potential impact on the 

benthic ecosystem. Moreover, the use of time-series remote sensing data provides oil presence frequency, 

slick size, cumulative area, and estimated oil discharge rate of oil spills near the Mississippi Canyon 20 

(MC-20) site between 2004 and 2016 (Sun et al., 2018a), thus filling a knowledge gap of this long-term 

and ongoing spill. The study of oil slick changes over time in the MC-20 region also improves the 

understanding of how oil slicks respond to a large river plume. The study of the oil tanker collision event 

in the East China Sea shows the value of VIIRS night time data in response to an oil spill accident in addition 

to traditional synthetic aperture radar and optical detections (Sun et al., 2018b). A combination of multi-

sensor, day and night data along with a numerical model may serve as a template in responding to similar 

collision and/or spill events in the future. 

 

2. Future research 

 

2.1 Field measurements along with multiband or hyperspectral imaging cameras 

One notoriously difficult problem in oil spill remote sensing research is the lack of direct field 

validation. Although indirect validation of the derived maps in this research is provided through spectral 

analysis and cross-sensor consistency checks, development of practical ways to validate remote sensing 
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maps of oil type and thickness is still immediate and critically needed to further progress in this subject 

area.  

Such a challenge cannot be addressed with just a technological innovation to sample oil accurately 

in the field, but must be addressed through coordinated efforts between field and remote sensing 

measurements. This is because that even if oil thickness can be determined accurately from in situ 

measurements, it is still extremely difficult to use these measurements to validate remote sensing 

interpretations because of the difficulty in matching in situ measurements with large image pixels (often 

30 x 30 m, see Chapter 5). Therefore, multi-spectral or hyperspectral imaging cameras may be required 

to measure oil reflectance for each oil patch if the cameras are mounted on fixed platforms or used on 

low-altitude aircrafts (either manned or un-manned). In such measurements, because of the super-high 

resolution (sub-meter) each pixel may be a “pure” pixel containing uniform oil type and thickness, from 

which reflectance spectrum is obtained to apply the classification algorithm. Then, a recently developed 

Oil Thickness Sampler (WM-OTS, Garcia-Pineda et al., 2018) can be used to measure oil thickness from 

identified “pure” pixels, providing direct field validation. The two measurements together can also be 

used to develop new algorithms to classify oil type and estimate oil thickness, as the WM-OTS is 

demonstrated to measure oil thickness from 5 μm to 2 cm with a resolution of 10 μm in the laboratory 

setting. The above scheme can be tested by making simultaneous measurements over the MC-20 site 

under real marine oil spill condition. 

 

2.2 Assessment of potential environmental impacts of natural hydrocarbon seeps in the Gulf of 

Mexico 

Oil spill accidents are difficult to predict, and it is therefore often difficult to plan field trips to 

assess environmental impacts in a timely fashion. In the Gulf of Mexico (GoM), however, natural oil seeps 

are known to be a major source of oil input, thus serving as surrogates to evaluate the potential 
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environmental impacts of oil spills. Laboratory experiments suggest that high concentrations of crude oil 

may restrain phytoplankton growth while low concentrations of crude oil may even promote growth 

(Huang et al., 2011). In situ measurements in the natural seep zones also show elevated chlorophyll 

concentrations in surface waters (D’souza et al., 2016). Temperature and nutrient profiles suggest that 

this may be attributed to nutrient upwelling generated by the buoyant plume. Other possible reasons 

include an indirect ‘top-down’ effect by Protistan grazers, which may be tolerant to crude oil 

contamination (Rogerson and Berger, 1981). The grazers predate on bacteria that compete with 

phytoplankton for nutrients in the presence of crude oil. While a field-based study is plausible, it is unclear 

whether the findings can be generalized for all natural seeps in the northern GoM. Therefore, it will be 

important to assess how natural hydrocarbon seeps (e.g., the 914 distinct seep zones identified in 

MacDonald et al., 2015) may influence phytoplankton using satellite-estimated chlorophyll as a proxy. 

 

3. Conclusions 

In conclusion, the most noteworthy finding from this research is that once the oil-water spatial 

and spectral contrasts under different observing conditions are well understood, it is straightforward to 

implement a classification scheme to classify oil type (emulsion versus non-emulsion) and oil thickness 

using multi-band remote sensing data. During the DWH oil spill, nearly all satellite remote sensing efforts 

from both Federal agency (e.g., NOAA) and academia could only provide maps of oil presence/absence 

with little information on oil thicknesses and oil types (oil emulsion versus non-emulsion).  Retrospective 

analysis of the DWH oil spill using Landsat imagery indicates that besides oil presence/absence, 

information of oil emulsion status, emulsion thicknesses, and information on relative thicknesses of non-

emulsions can also be provided in future spills following the step-wise classification scheme proposed 

here. On the other hand, more work is required to accurately determine absolute oil thickness for both 

oil emulsions and non-emulsions, and more laboratory measurements are necessary to fully understand 
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the oil–water spectral contrasts for different oil types and different water types. Most importantly, 

reliable techniques to measure oil thickness in the field need to be developed, where the ongoing oil spill 

in the MC-20 site in the northern GoM may serve as a good experimental site to test both remote sensing 

and in situ techniques. 
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