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ABSTRACT

Assessment of oil spills in the ocean using passive remote sensing (i.e., reflected sun light) faces
two challenges: detect oil presence/absence and quantify oil volume. While the optical properties of oil
allow it to be differentiated from the surrounding marine environment, sun glint can facilitate oil
presence/absence detection because the oil-water spatial contrast is enhanced due to wave dampening.
However, sun glint also modulates the magnitude and shape of the spectral reflectance of surface oil. In
addition to this difficulty, the most critical challenge is how to quantify oil volume (or thickness) through
remote sensing. To date, such quantifications have mainly been based on laboratory hyperspectral
measurements over known oil volume for both oil emulsions and non-emulsions. Application of such
laboratory-based methods to the real ocean environment faces two significant problems: 1) the observing
conditions can be dramatically different (e.g., presence sun glint), and 2) lack of remote sensors with
sufficient spectral bands and spatial resolution to apply the laboratory-based methods or to address the
heterogeneity of oil slicks.

The objectives of this research are to understand oil slick reflectance spectra in the marine
environment, delineate oil footprint, and develop practical methods to classify oil emulsions from non-
emulsions and classify oil thickness, thus providing useful tools for oil spill assessment and for decision-
making during an oil spill accident. Specifically, the objectives are to: 1) understand the various spatial and
spectral oil-water contrasts in optical remote sensing imagery under different observing conditions; 2)
develop algorithms and schemes to detect oil slicks, classify oil type (oil emulsion versus non-emulsion),
and estimate oil thicknesses using multiband optical remote sensing imagery; and 3) apply the algorithms
and schemes in the assessment of oil spill accidents. The Gulf of Mexico (GoM) is selected as the focus of
this research because the continental slope of the GoM is recognized as a major hydrocarbon province
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with widely distributed natural hydrocarbon seeps and where two of the largest marine oil spills occurred
(the Ixtoc-I oil spill in 1979 and Deepwater Horizon oil spill in 2010).

The several approaches used to address these objectives include: 1) a literature search; 2)
controlled tank measurements to understand oil-water spatial and spectral contrasts under various
observing conditions; 3) a multi-sensor analysis to examine the spatial and spectral characteristics of oil
slicks; 4) a step-wise classification scheme to classify oil type and oil thickness; and, 5) the application of
the developed methods to several oil spill events through case studies.

Firstly, a thorough review of previous laboratory-developed reflectance—thickness relationships
of both crude oil and oil emulsion is performed and compared to reflectance spectra collected by several
satellite and airborne sensors (MERIS, MODIS, MISR, Landsat, AVIRIS) from the Deepwater Horizon oil spill
(Chapter 2). Interpretation of the oil-water spatial and spectral contrasts under different observing
conditions suggests that besides oil thickness, several other factors also affect oil-water spatial and
spectral contrasts. These include sun glint strength, oil emulsification state, optical properties of
surrounding water, and spatial and spectral resolutions of remote sensing imagery.

The impact of sun glint strength on oil slick detection is further investigated in Chapter 3, where
concurrent (1-2 hours) image pairs collected by MODIS/Terra, MODIS/Aqua, and VIIRS over the same oil
slicks from natural seeps are used to quantify the sun glint threshold, under which thin oil films cannot be
observed. The threshold is determined to be 10°-10° sr for MODIS Terra and MODIS Aqua, and 10°-10
" sr for VIIRS.

The impact of pixel resolution on spill detection is evaluated by studying oil slick morphology and
size distributions for different oil thickness classes derived by the USGS using fine spatial resolution (~7.6
m) hyperspectral AVIRIS imagery collected over the Deepwater Horizon oil spill in the GoM (Chapter 4).
Oil slicks are found to be elongated in shape for all thickness classes (<50 um but thicker than sheen, 50—

200 um, 200—1000 um, and >1000 um). They are found to be highly heterogeneous as well, where most
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of the medium-resolution (30-m) pixels would be mixtures of different thickness classes of oil, or mixtures
of oil and oil-free water. According to the AVIRIS derived results, to detect oil thicker than sheen with oil
fractional pixel coverage >50% for at least half of the oil containing pixels, a 30-m or higher spatial
resolution sensor would be needed. This suggests that most satellite remote sensing must consider mixed
pixels when conducting analysis of spatial and spectral contrasts.

Based on the above understandings of oil-water spatial and spectral contrasts under different sun
glint conditions, a stepwise classification scheme is proposed to extract oil features, classify oil types (oil
emulsion versus non-emulsion), and classify oil thicknesses of each type under no glint condition and
under various sun glint conditions in multiband optical imagery (Chapter 5). After oil feature extraction,
reflectance in the Near Infrared and ShortWave Infrared (SWIR) bands is used to classify oil type, where
elevated reflectance indicates oil emulsions. For oil emulsions, a histogram matching technique is used to
compare the multiband measurements with hyperspectral AVIRIS measurements to classify oil thickness
under various sun glint conditions. For the non-emulsion oil, a ratio between SWIR and blue bands is used
to classify oil thickness. Furthermore, the spectral bands deemed necessary to apply the step-wise
classification scheme and to discriminate false-positives are determined to be 480, 560, 670, 860, and
1600 nm.

The methods developed above are applied to several oil spill events as case studies (Chapter 6, 7
and 8). The Ixtoc-I oil spill footprint (over its > 9-month spill period) has been mapped with Landsat
Multispectral Scanner and Coastal Zone Color Scanner (Chapter 6). The satellite-derived oil trajectory
patterns agree well with physical modeling and field observations in the past. Another case study focuses
on the ongoing oil spill in the MC-20 site in the northern GoM, where the spill is assessed systematically
using medium- to high-resolution (10-30 m) optical remote sensing imagery between 2004 and 2016
(Chapter 7). These data allow for the determination of oil slick presence frequency and average spill size;

further, the cumulative oil footprint are derived with daily discharge rate estimated. Finally, a multi-sensor
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day-and-night approach, along with numerical modeling is used to track an oil tanker collision event in
the East China Sea, where the unique value of VIIRS night time data is demonstrated (Chapter 8).

In summary, this dissertation provides a better understanding of oil-water spatial and spectral
contrasts in multi-band optical remote sensing imagery, from which a step-wise classification scheme is
developed to extract oil slick features, classify oil emulsion from non-emulsion, and estimate oil
thicknesses in each type. The methods are then used in several case studies to assess oil spills. Although
further research is still required to refine the methods and to provide direct field validation, the findings
here expand our current knowledge in remote sensing of oil spills using multiband optical imagery. In
particular, when compared with the remote sensing capacity during the DeepWater Horizon oil spill
(where satellite remote sensing could only provide maps of oil presence/absence), the findings here
suggest that much better data products can be derived from existing satellite platforms, to not only show
oil presence/absence, but to also classify oil type and thickness, in future spills, for improved response

and assessment.



CHAPTER 1:

INTRODUCTION

1. Oil spills in the Gulf of Mexico

Based on a report from the National Research Council (NRC, 2003), more than 1,300,000 metric
tons of oil are released to the sea worldwide annually. For oil released into the ocean, more than 45% is
from natural seeps, about 38% is from land-based sources, 12% comes from transportation activities such
as oil tankers and pipelines, and 5% is from oil and gas exploration or production activities. Natural oil
seeps have limited ecological impacts because the chronic rate of release allows surrounding ecosystems
to adapt (Fisher, 1990; MacDonald et al. 1989; Sassen et al. 1999). Qil spill accidents, however, often
release a large volume of hydrocarbons in a relatively short time period, thus potentially causing
devastating impacts on the environment. Hydrocarbons can be toxic to multiple levels of the food web,
from microscopic plankton (Almeda et al., 2014; Paul et al. 2013), to fishes and marine mammals
(Schwacke et al., 2014; Venn-Watson et al., 2015). Massive oil spills may also contaminate shorelines
(Michel et al., 2013) and deposit sediments to the seafloor (Chanton et al., 2015; Valentine et al., 2014),
which may have long-term adverse impacts on the environment.

The Gulf of Mexico (GoM) contributes more than 98% of the outer continental shelf oil production
in the United States (BSEE, 2018), and has been identified as one of the most highly polluted regions due
to oil spills from oil tankers (Burgherr, 2007; Vieites et al., 2004). Moreover, the GoM has experienced two
of the largest accidental oil spills in history, the DeepWater Horizon (DWH) oil spill in 2010, and the Ixtoc-
| oil spill in 1979. The explosion and sinking of the DWH oil rig on 20 April 2010 in the northern GoM
released an estimated 4.0 million barrels (3.19 million barrels after deducting recovered oil, U.S. vs BP et
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al., 2015) of crude oil from a depth of ~1500 m (Crone and Tolstoy, 2010; McNutt et al., 2011), until the
oil well was capped on 15 July 2010. The Ixtoc-1 oil well, located in the Bay of Campeche, Mexico, blew out
on 3 June 1979 and released oil at a depth of 50 m. It was not until 23 March 1980, 290 days after the
blowout, that the well was finally capped (Jernelév and Liden, 1981). The spill released 475,000 metric
tons (3.3 million barrels, Patton et al., 1981) of crude oil from the well site (Jernelév and Liden, 1981),
making it the second largest accidental marine spill in history. In addition to these major oil spills, natural
seeps are widely distributed across the GoM (De Beukelaer et al.,, 2003; MacDonald, 2015). Using
Synthetic Aperture Radar (SAR) data, MacDonald et al. (2015) identified 914 distinct seep zones
concentrated on the Texas-Louisiana Slope.

Crude oil released into the ocean undergoes a series of physical, chemical and biological processes,
including oil spreading, wind and wave advection, evaporation, emulsification, dissolution, natural
dispersion, sedimentation, photochemical oxidation, and biodegradation (NRC, 2003; Fingas, 2012). Qil
on the sea surface will spread horizontally by gravity, viscosity, surface tension, winds, and currents (NRC,
2003; Fingas, 2012). Evaporation has the greatest effect on the amount of oil remaining on the surface
after a spill. A light crude oil can lose more than 20% of its initial volume within a few hours of the spill
(NRC, 2003). Another important weathering process is emulsification. Water-in-oil emulsification is the
process of water getting entrained into oil in the form of small droplets. Mesostable emulsions and stable
emulsions have reddish-brownish colors and stable emulsions often have water content greater than 60%
(NRC, 2003). The formation of emulsions substantially increases the perceived spill volume and the
viscosity as well, considerably slowing down the evaporation and biodegradation process and making

cleanup operations more difficult (Fingas, 2012).



2. Satellite remote sensing of oil spills

With synoptic and frequent observations, remote sensing serves a vital role in assessing oil spills
(Leifer et al., 2012; Fingas and Brown, 2014). The most frequently used remote sensing techniques include
SAR, optical remote sensing, and thermal infrared imagery. Because oil can dampen both short-gravity
and capillary waves on the ocean surface, a reduction in the backscattering SAR signal can be observed in
oil containing image pixels under optimal wind conditions (Brekke and Solberg, 2005). SAR offers synoptic
data under all sky conditions. However, Bio-films and bio-slicks (e.g., Sargassum mat and algal blooms),
threshold wind areas, and wind sheltering can also cause negative contrast in SAR imagery. This makes it
difficult to distinguish oil slicks from false-positives (Brekke and Solberg, 2005; Leifer et al., 2012).
Moreover, SAR has been primarily used to detect oil extent instead of estimating oil thickness. Recent
efforts suggest that SAR may be used to detect oil emulsions by volumetric fraction of oil (Garcia-Pineda
et al., 2013; Jones and Holt, 2018; Macdonlad et al, 2015; Minchew, 2012), yet these preliminary
demonstrations require further research to establish reliable algorithms.

Passive optical remote sensing is also widely used in oil spill detections (Leifer et al., 2012; Hu et
al.,, 2009). Optical imagery from satellite sensors is useless under cloudy conditions, however, this
weakness is compensated by wide-swaths (e.g., 2300 km for MODIS and 3300 km for VIIRS). Such wide-
swath sensors can provide repeated coverage at any location in 1-2 days (more often in polar regions), at
the price of reduced spatial resolutions (¥300 m — 1 km) compared with SAR observations. Taking
advantage of satellite constellations, recent medium-to high-resolution (finer than 30 m) sensor’s revisit
frequency has been greatly increased. For example, Sentinel-2 Multispectral Instrument (MSI, 10—60 m
spatial resolution) has a revisit frequency of every five days when two satellites are combined,
DigitalGlobe satellite constellation (including WorldView-1, GeoEye-1, WorldView-2, WorldView-3 and
WorldView-4) offers intraday revisits around the globe at a spatial resolution <2 m, Pléiades 1A/1B

constellation offers a daily revisit capability to any point on the globe at a spatial resolution of 2.8 m, and



the Planetscope satellites provide a revisit frequency of once per day globally at a spatial resolution of 3—
4 m. All these optical remote sensing satellite measurements, therefore, provide tremendous potentials
in remote sensing of oil spills, yet our ability to realize such potential is still technically challenging.
Optical detection and quantification of floating oil on the ocean surface are based on the sun glint
effect and optical properties of oil. First (and similar to SAR detections), the dampening of surface waves
will enhance the spatial contrast of oil from water when under sun glint conditions (Hu et al., 2009;
Jackson and Alpers, 2010). This sun glint effect in optical remote sensing, based on the same capillary-
dampening principle of oil detection by SAR (Brekke and Solberg, 2005; Hu et al., 2011), has been used to
detect oil slicks on the ocean surface (Macdonald, 1993; Adamo et al., 2009; Hu et al., 2009; Sun and Hu,
2016). The sun glint effect is actually caused by two factors: 1) dampening of the sea-surface capillary
waves or gravity waves under optimal wind conditions, causing either higher or lower reflectance from oil
than from water (Hu et al., 2009; Jackson and Alpers, 2010; Lu et al., 2016) and 2) the difference of
refractive index between oil and water results in different Fresnel reflection, contributing additionally to
the enhanced oil-water contrast (Lu et al., 2016). Qil also has different optical properties from water, with
reflectance varying along increasing oil thickness: crude oils are characterized by high absorption in the
blue band, which exponentially decays with increasing wavelengths. This results in lower reflectance in
the blue and green wavelengths, as oil thickness increases (Wettle et al., 2009; Lu et al., 2013; Svejkovsky
and Muskat, 2006; Fig. 1.1a). When oil is emulsified, the mixture of water molecules enables strong
scattering in red, near infrared (NIR), and shortwave infrared (SWIR) wavelengths (Clark et al., 2010;
Svejkovsky et al., 2012; Fig. 1.1b), thus exhibiting enhanced reflectance in the NIR-SWIR. Thick emulsified
oil is also featured by C-H absorption at 1200 nm, 1700 nm and 2300 nm. The absorption depth at those
featured wavelengths are associated with oil thicknesses by laboratory measurements - the thicker the

oil emulsion, the deeper absorption depth in these wavelengths (Clark et al., 2010).



The spectral characteristics of oil can be used to infer relative oil thickness from optical remote
sensing imagery (Lu et al., 2013; Wettle et al., 2009; Clark et al., 2010). Indeed, the laboratory-based look-
up-tables (LUTs) of relating spectral reflectance to oil thickness have been used to map thicknesses of
thick emulsions from the DWH oil spill in the GoM with hyperspectral data collected by airborne sensor

Airborne Visible / Infrared Imaging Spectrometer (AVIRIS) (Clark et al., 2010).
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Figure 1. 1: a) Laboratory measured reflectance of oil on water with different thicknesses of Gippsland
crude (Wettle et al., 2009). Note that reflectance in the blue spectra decreases with increasing oil
thickness, but reflectance in the red spectra remains relatively stable. Figure reprinted from Wettle et al.
(2009) with copyright permission from the publisher. b) Laboratory measured reflectance spectra of 60:40
oil-water emulsions with various oil thickness (Clark et al., 2010). The oil sample was collected in the Gulf
of Mexico from the DWH oil spill. Figure reprinted from Clark et al. (2010). Note its dramatic contrast from
panel a: with increasing oil thickness, there is little reflectance change in the blue-green wavelengths but
there is dramatic reflectance change in the NIR-SWIR wavelengths.

The optical characteristics of oil and the laboratory-based LUT make it possible, at least in
principle, to detect, classify (emulsion versus non-emulsion), and quantify oil thickness. However, these
techniques face significant challenges when applied to satellite sensors such as Landsat or MODIS over
the real ocean environment. These challenges include: 1) the presence of sun glint that makes these LUT-
based approaches inapplicable; 2) that oil can be in the forms of emulsions and non-emulsions, yet these

LUT-based approaches were designed for either oil emulsion or non-emulsion only; 3) the lack of spectral

bands to apply the hyperspectral techniques; and 4) the spatial heterogeneity of oil (Sun et al., 2016)



makes the laboratory-based LUT invalid when applied to coarse-resolution data; other challenges include
rough sea conditions that mix surface oil with water, and clouds that prevent any observation from
satellites.

On the other hand, during accidental oil spills, the most available optical satellite sensors are
Landsat (30-m), Sentinel-2/MSI (10-m), MODIS (250-m), VIIRS (375-m), and commercial high spatial
resolution satellites (e.g., WorldView-3, 1.24 m). During a marine spill incident, optical satellites play a
role in the ongoing situational awareness and possibly in tactical decision-making. Developing practical

methods is an important step to fully utilize these systems.

3. Research objectives

The objectives of this research are to understand oil slick reflectance spectra in optical remote
sensing imagery in the marine environment, to delineate oil footprint, and to develop practical methods
to classify oil emulsions from non-emulsions and classify oil thickness. Meeting them will provide useful
tools for oil spill assessment and for decision-making during an oil spill accident. The specific research
objectives are:

1) Understand the various spatial and spectral oil-water contrasts in optical remote sensing

imagery under different observing conditions.

2) Develop algorithms and schemes to detect oil slicks, classify oil type (oil emulsion versus non-

emulsion), and estimate oil thicknesses using multiband optical remote sensing imagery.

3) Apply the algorithms and schemes in assessment of oil spill accidents.

4. Dissertation outline
To fulfill the research objectives described above, the dissertation is composed of four major

components focusing on the understanding oil spectral variability in the real marine environment



(Chapter 2), quantifying environmental factors which affect oil spill detection and thickness estimation
(Chapter 3 and Chapter 4), developing algorithms and stepwise schemes in classification of oil emulsions
and non-emulsions as well as classification of oil thicknesses (Chapter 5), and assessing historical and
ongoing oil spill accidents (Chapter 6, Chapter 7 and Chapter 8). Finally, the research findings are
summarized, with recommendations provided on the use of optical remote sensing to detect and quantify
oil spills.

Specifically, Chapter 2 presents various oil reflectance spectra and its contrast with water under
different observing conditions. By examining the oil-water spectral contrasts from several multiband and
hyperspectral measurements observed during the DWH oil spill, and by comparing the laboratory
experimental results, the spatial/spectral contrasts of various oil slicks with water has been interpreted
(Objective 1). In addition to oil thickness signal from oil optical properties, several other factors also affect
oil-water spatial/spectral contrasts, including sun glint strength, oil emulsification state, optical
properties of oil covered water, and spatial/spectral resolutions of remote sensing imagery. Despite the
technical challenges, the results show that it is still possible to differentiate emulsified oil from non-
emulsified oil under most circumstances, and it is possible to classify relative oil thickness for both
emulsified and non-emulsified oil (Objective 2).

To further understand sun glint impact on oil spatial contrast with water (Objective 1), natural oil
slicks in the western Gulf of Mexico are used to determine the sun glint requirement for the remote
detection of surface oil films in Chapter 3. The threshold is determined using the same-day image pairs
collected by MODIS Terra, MODIS Aqua, and VIIRS over the same oil slick locations where at least one of
the sensors captures oil slicks. The determined sun glint thresholds here will provide critical information
on which images are affected by sun glint impacts, thus reducing false negative detection and provides

guidance for oil slicks detection, and classification (Objective 1 and Objective 2).



Using high spatial resolution (~7.6 m) hyperspectral AVIRIS derived oil slicks over the Deepwater
Horizon oil spill in the Gulf of Mexico, slick lengths, widths and length/width ratios are statistically
estimated in Chapter 4 to characterize oil slick morphology for different thickness classes. This provides a
better understanding of the heterogeneity of oil slicks and the remote sensing spatial resolution that
required to detect oil slicks and estimate oil thicknesses (Objective 1). According to results from the oil
slicks detected by AVIRIS during the DWH oil spill, in order to detect oil thicker than sheen, with oil
fractional pixel coverage >50% for at least half of the oil containing pixels, a 30-m or higher spatial
resolution sensor would be needed.

Based on the above understandings of reflectance spectra of various slicks under different sun
glint conditions, a stepwise scheme is then proposed to: extract oil slick features, classify emulsified oil
from non-emulsified oil, and classify oil thicknesses via multiband optical remote sensing imagery in
Chapter 5 (Objective 2). The elevated reflectance spectral features in the NIR (~860 nm) and SWIR (~1600
nm) bands were used to extract oil emulsions; increased and decreased reflectance caused by sun glint
(in the visible to SWIR bands) was used to classify thick and thin oils. A band ratio model was used to
classify the relative thicknesses of oil emulsions and thick oil. Required bands for the classifications and
for discriminating oil from false positives were discussed in the chapter (Objectivel and Objective 2).

In Chapter 6 to Chapter 7, the methods developed above are applied to the assessment of
historical (Ixtoc-1 oil spill) and ongoing (MC-20 oil spill) oil spill accidents (Objective 3). The Ixtoc-I oil spill
footprint was derived using archived Landsat/MSS and CZCS imagery, in which the detected general
patterns of oil trajectory agreed well with previously modelled results. The resulting cumulative oil
footprint map was used to guide recent field measurements.

In Chapter 7, the ongoing MC-20 oil spill is assessed by Landsat and Sentinel-2/MSI imagery
between 2004 and 2016, with statistical analysis of oil presence frequency in cloud-free images, oil slicks

area, cumulative oil contaminated area, and an estimated oil discharge rate per day. Additional analysis



suggests that the detected oil slick distribution can be largely explained by surface currents, winds, and
density fronts.

Chapter 8 shows a case example of satellite remote sensing being used in response to an oil spill
accident, where a combination of multisensor day and night satellite imagery was used (Objective 3). An
analysis of a recent SANCHI oil tanker collision event in January 2018 in the East China Sea showed that
when traditional techniques using synthetic aperture radar or daytime optical imagery could not provide
timely and adequate coverage, the VIIRS Nightfire product and Day/Night Band can be used to track the
drifting ablaze tanker’s pathway and locations. A numerical model to combine surface currents and wind
can also simulate the tanker’s locations. Satellite remote sensing during daytime shows smoke plumes
and spilled oil on the ocean surface, some of which appears to be oil emulsion. This study demonstrates
that a combination of all available remote sensing and modeling techniques can provide effective means
to monitor marine accidents and oil spills to assist event response.

Chapter 9 summarizes major findings from this research, with recommendations provided for

optical remote sensing of oil spills as well as for future research directions.
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CHAPTER 2:

SPECTRAL VARIABILITY OF OIL SLICKS UNDER DIFFERENT OBSERVING CONDITIONS

1. Note to Reader
This chapter have been accepted for publication by the journal of IEEE Transactions on Geoscience
and Remote Sensing, doi:10.1109/TGRS.2018.2876091, and have been reproduced with permission from
IEEE. The paper is provided in Appendix A. This paper is focused on understanding the spectral variability
of oil slicks under different observing conditions and interpreting environmental factors that contribute
to the oil-water spatial/spectral contrasts besides oil type and thickness. A brief summary of this paper is
provided below.
APPENDIX A — The challenges of interpreting oil-water spatial and spectral contrasts for the estimation
of oil thickness: Examples from satellite and airborne measurements of the Deepwater Horizon oil spill
(Sun and Hu, 2018)
Oil reflectance spectra—thickness relationships of both crude and emulsified oil measured by
previous laboratory experiments have been reviewed, and the published results are then
compared with reflectance spectra collected by several satellite and airborne sensors (MERIS,
MODIS, MISR, Landsat, AVIRIS) from the Deepwater Horizon oil spill. Interpretation of the
spatial/spectral contrasts of various oil slicks under different environmental conditions suggest
that besides oil thickness, several other factors also affect oil-water spatial/spectral contrasts,
which include sun glint strength, oil emulsification state, optical properties of oil covered water,
and spatial/spectral resolutions of remote sensing imagery. Despite the technical challenges, the
results show that it is still possible to separate emulsified oil from non-emulsified oil under most
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circumstances, and it is possible to classify relative oil thickness for both emulsified and non-

emulsified oil.
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CHAPTER 3:

SUN GLINT REQUIREMENTS FOR THE REMOTE DETECTION OF SURFACE OIL FILMS

1. Note to Reader
This chapter have been previously published in Geophysical Research Letters, 43, 309-316, and
have been reproduced with permission from John Wiley and Sons. The paper is provided in Appendix B.
This paper quantifies sun glint requirement for the remote detection of surface oil films in order to better
understand the impact of sun glint on oil-water contrast. A brief summary of this paper is provided below.
APPENDIX B — Sun glint requirement for the remote detection of surface oil films (Sun and Hu, 2016)
It has been known that the presence of sun glint can enhance oil-water spatial contrast and thus
facilitating oil slick detection in optical imagery. However, the strength of sun glint required to
detect thin oil films has never been quantified objectively. Natural oil slicks in the western Gulf of
Mexico are used to determine the sun glint threshold required for optical remote sensing of oil
films. Thin oil films from the natural seeps are used here to minimize reflectance signal from oil
optical properties (absorption and scattering). The threshold is determined using the same-day
image pairs collected by Moderate Resolution Imaging Spectroradiometer (MODIS) Terra, MODIS
Aqua, and Visible Infrared Imaging Radiometer Suite (VIIRS) (N = 2297 images) over the same oil
slick locations where at least one of the sensors captures the oil slicks. For each sensor, statistics
of sun glint strengths, represented by the normalized glint reflectance (Len, srt), when oil slicks
can and cannot be observed are generated. The Lgn threshold for oil film detections is determined
to be 10°-10° sr! for MODIS Terra and MODIS Aqua, and 10°-107 sr! for VIIRS. Below these
thresholds, no oil films can be detected, while above these thresholds, oil films can always be
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detected except near the critical-angle zone where oil slicks reverse their contrast against the
background water. The sun glint thresholds determined here will provide critical information on
which images (or which portions of an image) can be used to search for oil, thus reducing false
negative detection. Optimal wind speed for sun glint detection of oil films has also been explored

in the study.
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CHAPTER 4:
OIL SLICK MORPHOLOGY, HETEROGENEITY, AND THEIR IMPLICATIONS FOR OIL SPILL REMOTE

SENSING

1. Note to Reader
This chapter have been previously published in Marine Pollution Bulletin, 103, 276-285, and have
been reproduced with permission from Elsevier. The paper is provided in Appendix C. This paper
characterizes oil slick morphology for different thickness classes in order to better understand the
heterogeneity of oil slicks and its implication for remote sensing spatial resolution to detect oil slicks and
estimate oil thicknesses. A brief summary of this paper is provided below.
APPENDIX C — Qil slick morphology derived from AVIRIS measurements of the Deepwater Horizon oil
spill: Implications for spatial resolution requirements of remote sensors (Sun et al., 2016)
Oil is highly heterogeneous on the ocean surface. Qil slick size distributions, and especially slick
size for different oil thickness classes, can be very useful in interpreting oil footprint and thickness
for sensors with different resolutions, in helping to make management decisions. Taking
advantage of oil thicknesses that derived by fine spatial resolution (~7.6 m) hyperspectral AVIRIS
data collected over the Deepwater Horizon oil spill in the Gulf of Mexico, slick lengths, widths and
length/width ratios are estimated to characterize oil slick morphology for different thickness
classes. All AVIRIS-detected oil slicks (N = 52,100 continuous features) are binned into four
thickness classes: <50 um but thicker than sheen, 50—200 um, 200—1000 um, and >1000 um.
The median lengths, widths, and length/width ratios of these classes range between 22 and 38 m,
7-11 m, and 2.5-3.3, respectively. The AVIRIS data are further aggregated to 30-m (Landsat
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resolution) and 300-m (MERIS resolution) spatial bins to determine the fractional oil coverage in
each bin. It is found that most pixels in MODIS and MERIS resolution will have thick oil coverage
of only a few percent of a given pixel footprint, thus mixed pixel must be considered for spectral
and spatial analyses using these coarse spatial resolution sensors. If 50% fractional pixel coverage
is required to detect oil with thickness greater than sheen for most oil containing pixels, a 30-m
resolution sensor would be needed, according to results from detected oil slicks in the DWH oil
spill by AVIRIS. Landsat may be an optimal compromise between spatial resolution and swath

width in order to capture actual thick-oil coverage within a pixel and full oil spill footprint.
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CHAPTER 5:

CLASSIFICATION OF OIL TYPE AND THICKNESS USING MULTIBAND OPTICAL REMOTE SENSING

Abstract

Optical characteristics of oil floating on water have been determined from Ilaboratory
measurements. However, the laboratory-based relationships between oil type/thickness and spectral
reflectance face significant challenges when applied to multiband satellite sensors in the real marine
environment, because of sun glint perturbations and because of the lack of hyperspectral bands. In this
study, a stepwise classification scheme is proposed to extract oil features, classify oil types (oil emulsion
versus non-emulsion), and classify oil thicknesses of each type under no glint condition and under various
sun glint conditions in multiband optical imagery. After oil feature extraction, reflectance in the Near
Infrared (NIR) and ShortWave Infrared (SWIR) bands is used to classify oil type, where elevated reflectance
indicates oil emulsions. For the oil emulsions, a histogram matching is used to compare with hyperspectral
Airborne Visible / Infrared Imaging Spectrometer (AVIRIS) measurements to classify oil thickness under
various sun glint conditions. For the non-emulsion oil, a ratio between SWIR and blue bands is used to
classify oil thickness. The spectral bands deemed necessary to apply the step-wise classification scheme
and to discriminate false-positives are 480, 560, 670, 860, and 1600 nm. Application of the step-wise
classification scheme to multiband sensors for the DeepWater Horizon oil spill leads to reasonable spatial
patterns for oil slicks of different types and thicknesses, suggesting that it cannot only be used for
retrospective analysis, but also serve as a practical means for assessment of oil spill events to facilitate

mitigation efforts.
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AVIRIS; WorldView-2

1. Introduction

Detection of oil presence and quantifying oil thickness (or volume) on the surface ocean requires
understanding of spectral and spatial contrasts between oil and water. As shown in the previous chapter,
these contrasts have been characterized in laboratory measurements by other researchers. Basically,
crude oils are characterized by high absorption in the blue band, which exponentially decays with
increasing wavelengths, resulting in lower reflectance in the blue with increasing amount of oil (Wettle et
al., 2009; Lu et al., 2013; Svejkovsky and Muskat, 2006). When oil is emulsified, the mixture of water
enables strong scattering in red and near infrared (NIR) and shortwave infrared (SWIR) wavelengths (Clark
et al.,, 2010; Svejkovsky et al., 2012), thus showing enhanced reflectance in the NIR-SWIR. Ongoing
research suggests that these spectral characteristics of oil could be used to infer relative oil thickness from
optical remote sensing imagery (Lu et al., 2013; Wettle et al., 2009; Clark et al., 2010; Svejkovsky and
Muskat, 2006; Svejkovsky et al., 2012). In particular, the laboratory-based look-up-tables (LUTs) of relating
spectral reflectance to oil thickness have been used to map oil emulsion thicknesses from the DeepWater
Horizon (DWH) oil spill in the Gulf of Mexico (GoM) with hyperspectral data collected by the airborne
Airborne Visible / Infrared Imaging Spectrometer (AVIRIS) (Clark et al., 2010).

The known optical characteristics of oil on water and the laboratory-based LUTs make it possible,
at least in principle, to detect, classify (oil emulsion versus non-emulsion), and quantify oil thickness or
volume. However, these LUTs face significant challenges when applied to multiband satellite sensors (i.e.,
Landsat) over the real ocean environment. These challenges include the presence of sun glint that makes
these laboratory-based LUTs inapplicable, co-existence of multiple oil types (emulsion versus non-

emulsion), and lack of spectral bands to apply the hyperspectral techniques developed from laboratory
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measurements. The goal of this study is to develop a practical method to detect surface oil and to classify
oil types (emulsion versus non-emulsion) and classify oil thicknesses of each type using existing multiband
sensors such as Landsat Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), Operational
Land Imager (OLI), Sentinel-2 MultiSpectral Instrument (MSI), and WorldView-2 under various observing

conditions.

2. Data and Methods

2.1 Field experiments

An oil tank experiment was conducted on 27 March 2018 by the seawall of the USF campus at St.
Petersburg, Florida. Known volumes of Alaskan North Slope (ANS) crude and emulsified oil were put on
the water surface in two identical black plastic oval tanks, each with a size of 1.3-m in length, 0.9-m in
width, and 0.5-m in depth. The experimental setup is shown in Fig. 5.1. Initially, oil on the surface spread,
but not completely evenly in the tank even after a few minutes. Surface oil thickness was therefore
estimated as the oil volume divided by area of the tank. This thickness represents the equivalent thickness
if oil was evenly distributed in the tank. Reflectance spectra were collected between 10 am and 1 pm local
time (Eastern Daylight Time) using a portable SR-1900 Spectroradiometer (manufactured by Spectral
Evolution, Inc) with 8° field of view at a height of ~1.5 meters above the tank. The spectrometer measures
spectral reflectance in the wavelength range of 280—1900 nm, with a spectral resolution of <4 nm in
280—1000 nm and £10 nm in 1000—1900 nm. The resulting reflectance spectra were averaged over three
separate measurements, with each measurement an average of ten continuous scans. The ANS emulsions
with a 60:40 oil-to-water ratio were created by mixing oil and water in a food blender and then blended,
after which the emulsions were put in a pan for six hours. The process was repeated three times. Another

field experiment was conducted at the National Qil Spill Response Research & Renewable Energy Test
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Facility (Ohmsett) in September — October 2017. Ohmsett features an above-ground concrete test tank
of 203 m long by 20 m wide by 3.4 m deep. The tank is filled with 2.6 million gallons of clear saltwater.
Four 6.1 x 6.1 m PVC squares and nine 1.6 x 1.6 m PVC squares with different volumes of oil within the
squares were setup in the middle of the tank (Fig. 5.2), with the purpose of being measured by WorldView-
2 satellite sensor to evaluate the sensor’s capacity in determining oil thickness from pure oil pixels within
the squares. A known volume of HOOPS crude oil was transferred to the 6.1 m squares and 1.6 m squares
on 29 September 2017, in order to create different thicknesses of pure oil within the squares, assuming
the oil could be evenly distributed in the squares. Concurrent with the squares setup, there was also a
bulk discharge of 400 gallons of HOOPS crude oil in the southern part of the tank (Fig. 5.2). The bulk
discharged oil was well confined in a small region by booms to the south and water springs from below to

the north.

Figure 5. 1: a) Oil experiment in a water tank by the USF College of Marine Science campus seawall in St.
Petersburg, Florida. Shaojie Sun and Chuanmin Hu were measuring the oil spectral reflectance using the
SR-1900 spectrometer (photo credit: George Graettinger). Two identical tanks were set side by side, each
other with same volume of b) crude oil and c) oil emulsions.
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Figure 5. 2: Oil spill experiment at the Ohmsett facility in September 2017. a) Four 6.1 x 6.1 m squares, b)
nine 1.6 x 1.6 m squares containing different volume of oil and clear water in the Ohmsett tank. The
marked thicknesses in (a) were calculated as oil volume divided by the square area, assuming even
distribution of the oil. c) Bulk discharge of 400 gallons of HOOPS crude oil south of the square setup region
on 27 September 2017.

2.2 Optical imagery processing

Airborne Visible / Infrared Imaging Spectrometer (AVIRIS) measurements on 17 May 2010 over
the DWH oil spill were used to test the multiband models to be developed in this study. AVIRIS collected
hyperspectral data from 380 to 2500 nm in 224 spectral bands at a ground resolution of about ~7.6 m per
image pixel on 17 May 2010. The data were first converted to apparent reflectance (R(A), dimensionless)
by the USGS using the ACORN atmospheric correction module (AlG, 2001). R(A) was then used by the USGS
to derive oil volume per pixel (https://pubs.usgs.gov/of/2010/1167/downloads/figure16c-geotiff.tif) of oil
emulsions using the Tetracorder spectral shape matching algorithm described in Clark et al. (2003, 2010).
Average oil thickness per pixel was then calculated as volume divided by the area of the pixel. Therefore,
the oil thicknesses used in this study does not include water that is contained in the oil emulsions, but it

III

simply indicates “oil” thickness after converting the emulsions into pure oil. The derived thickness map at
7.6-m resolution was reduced to 30-m resolution after spatial binning in order to accommodate the spatial

resolutions of Landsat sensors (TM, ETM+, and OLI) (Sun et al., 2016).
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Landsat TM and ETM+ data over the DWH oil spill and OLI data over the MC-20 oil spill were
obtained from the USGS/EarthExplorer, and then processed to generate Rayleigh-corrected Reflectance
(Rrc(A), dimensionless) using the ACOLITE software (20180611.0). Sun glint strength of the Landsat
imagery was evaluated using the sun glint coefficient (L, in units of sr?), estimated with the Cox and
Munk (1954) model, wind speed, and solar and satellite geometry. Wind speed was retrieved from the
Reanalysis-2 wind speed product of the National Centers for Environmental Prediction (NCEP). Solar and
satellite geometry of Landsat measurement was calculated using the USGS “Landsat Angles Creation Tools”

(https://landsat.usgs.gov/solar-illumination-and-sensor-viewing-angle-coefficient-file). Landsat cloud

masks were created using the software Fmask (version 4.0, from https://github.com/gersl/fmask) through

an object-based cloud and cloud shadow detection algorithm (Qiu et al., 2017; Zhu et al., 2015; Zhu et al.,
2012).

In determining the best approaches to classify oil type (emulsion versus non-emulsion) and oil
thickness, different band combinations and band ratios were tested, based on the principles of the
spectral and spatial contrasts between oil and water. Furthermore, in order to convert the relative
thickness into absolute thickness values, a method of histogram matching was developed to force the oil
volume distributions derived from the multiband measurements to agree with AVIRIS-derived oil
thickness maps. The underlying assumption is that under similar weathering conditions and in
approximately similar locations relative to the DWH oil platform, the statistics of oil thickness observed
from both measurements should be similar, regardless of the sun glint conditions. The various
relationships between oil type/thickness and multiband reflectance under different conditions were used

to construct the LUTs.
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3. Results

3.1 Oil emulsion

Field experiments. The oil tank experiment showed increased reflectance in the NIR and SWIR
wavelengths corresponding to thick emulsions (Fig. 5.3a). This agrees well with previous results by Clark
et al. (2010). As shown in pictures in Fig. 5.3b, oil emulsions were not uniformly distributed in the tank
due to their high viscosity, and actually formed scattered patches under calm conditions. The oil occupied
surface area was estimated from digital photos taken above the tank, which was then used with the total
oil volume to calculate the realistic oil thickness assuming all oil patches had the same oil thickness. For
simplicity, oil thickness was also calculated as the total volume divided by the total tank area. In both
approximations, oil thickness increased with oil volume, as shown in Table 5.1. The elevated reflectance
in the NIR and SWIR wavelengths was a result of both increased emulsion thickness and increased
emulsion coverage in the tank.
Table 5. 1: Qil thickness from oil emulsions in the water tank (Fig. 5.2). The first column is the thickness
calculated from the oil volume and tank area, representing the equivalent thickness if oil were evenly
distributed on the entire tank surface. The last column is the realistic thickness calculated from the oil
volume and oil-occupied area. A subset of the tank area was selected for separating oil emulsion from

water to avoid shadows from the tank. As the tank shadows changed with time, the total number of pixels
here are different for different scenarios

fr-or:C\I:glisr;e Emulsion Water Total Emulsio'n/total 'Realistic

(um) (# of pixels) | (# of pixels)| # of pixels ratio thickness(um)
750 110,000 200,000 310,000 0.36 2,000
500 100,000 190,000 290,000 0.35 1,400
100 36,000 230,000 260,000 0.14 730

50 35,000 240,000 280,000 0.13 390

10 26,000 190,000 220,000 0.12 86

5 19,000 190,000 210,000 0.09 56
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Figure 5. 3: a) Reflectance spectra from the tank experiment; (b) corresponding to different thickness of
the oil emulsion. Note the elevated reflectance in the NIR to SWIR wavelengths in response to increased
thicknesses (in um). Here thickness is calculated as the total oil volume divided by the area of the tank.
The pictures in (b) show different oil emulsion appearance and distribution in the tank. Note that the oil
emulsion is very patchy and never homogeneous in the tank.

Hyperspectral AVIRIS imagery. A true color reflectance composite (R: 638; G: 550, B: 463 nm)
shows reddish to brownish colors for oil emulsions in two selected regions (Figs. 5.4a and 5.4b) in AVIRIS
run 10 over the DWH oil spill on 17 May 2010. A false color composite (R: 1612; G: 860, B: 638 nm),
however, reveals mostly brownish colors in Fig. 5.4c and greenish to brownish colors in Fig. 5.4d. These
different colors represent different oil emulsion states. The corresponding USGS oil fraction product (Clark
et al., 2010) indicates that the green colored emulsions in Fig. 5.4d have a higher water content while the
brown colored emulsions in Fig. 5.4c have more oil fractions in the emulsions (Figs. 5.4e and 5.4f). Spectra
of selected points in Figs. 5.4e and 5.4f display different spectral shapes (Fig. 5.5), where the reflectance
magnitude at 860 nm relative to reflectance at 1612 nm is an indicator of oil water fractions in the oil
emulsions: higher reflectance at 860 nm indicate more water content in the emulsions, while higher
reflectance at 1612 nm indicate more oil content in the emulsions (Fig. 5.5). The reflectance magnitude

at 1612 nm is also related to the average oil thickness (i.e., total oil volume divided by the pixel size), as

demonstrated in the USGS derived oil thickness map (Clark et al., 2010, in Figs. 5.4g and 5.4h).
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(a) R: 638, G: 550, B: 463 nm (¢) R:1612, G: 860, B: 638 nm (e) Oil Fraction (2) Oil Thickness (pm)

Figure 5. 4: True-color composite of oil slicks in two selected regions (a) and (b) in the AVIRIS imagery on
17 May 2010 during the DWH oil spill; False-color composites using different bands are shown in (c) and
(d), respectively; Oil fraction maps in (e) and (f) and oil thickness maps in (g) and (h) are from USGS (Clark
et al., 2010). Black droplet in the inset indicates the DWH oil platform location, while the locations of (a)
and (b) are also annotated.
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Figure 5. 5: Hyperspectral (a) and multispectral (b) reflectance spectra from AVIRIS in the selected
locations in Figs. 5.4c and 5.4d, annotated with USGS derived oil fraction and oil thickness of the pixel.

Sun and Hu (2018) used a band ratio of SWIR (1612 nm) to blue (472 nm) to quantify relative oil

thickness in the region of Fig. 5.4a, with higher ratios indicating thicker oil. Here the relationship of this
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band ratio to USGS derived oil thicknesses (Clark et al., 2010) was re-assessed using statistical analysis
from all the USGS mapped emulsion pixels of AVIRIS runs on 17 May 2010, which captured >30% of the
core oil spill area (Sun et al., 2016). The statistical relationship in Fig. 5.6 shows that the relative emulsion
thickness estimated from the SWIR to blue band ratio is tightly related to the absolute thickness estimated
from the Clark et al. (2010) hyperspectral approach (R>=0.61, n = 497681, p <0.05, unbiased mean relative
error = 139%), with the estimated thickness (T, um) being modeled as:

log10(T) = 1.3303*log10 (RTI) + 1.8346 (1)
where RTl is the Relative oil Thickness Index, calculated as the band ratio of SWIR (1612 nm) to blue

(472nm) of AVIRIS images.
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Figure 5. 6: Scatter plot of relative thickness index (RTI, this study) versus USGS derived absolute oil
thickness (Clark et al., 2010).

Multiband Landsat imagery

Similar emulsion-induced colors in the false color composite (R: 1650; G: 835, B: 661 nm) have
also been observed in the same day (17 May 2010) ETM+ image (Figs. 5.7 and 5.8) over the DWH oil spill.

Figs. 5.7a and 5.4a, and Figs. 5.7b and 5.4b represent approximately the same regions (both regions are
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within two km), although oil slicks were not at the same locations because the ETM+ image was collected
four hours earlier than the AVIRIS image. Fig. 5.7a shows the brownish to reddish colors due to oil
emulsions, while Fig. 5.7b shows the greenish colors due to oil emulsions, similar to the color patterns
observed from the AVIRIS false color composite in those two regions. The AVIRIS image was captured
under negligible sun glint conditions, while the ETM+ image was under weak sun glint in Fig. 5.7a (Len=
~3E-3 sr'!) and strong sun glint in Fig. 5.7b (Len = ~1E-2 srl), confirming the validity of identifying emulsion
using the false color composite under both sun glint and non-glint conditions. While sun glint increases
reflectance, the increase is spectrally flat, with minimal influence on the relative magnitudes between
~800 and ~1600 nm, as long as glint-induced reflectance is comparable to, or smaller than, the oil-water
contrast in the absence of glint. The reflectance spectra (Fig. 5.8) of selected pixels in Fig. 5.7 clearly
display the reflectance peaks in the 1650-nm or 835-nm band. Under weak sun glint conditions (Fig. 5.7a,
Len = ~3E-3 sr'l), emulsions display lower than water reflectance in the blue green bands, but higher than
water reflectance in the NIR and SWIR bands. This is because the emulsion signal overweighs sun glint
caused negative contrast with water, while the negative contrast is due to oil’'s modulation of surface
roughness. Under strong glint conditions (Fig. 5.7b, Len = ~1E-2 sr't), emulsions show higher than water
reflectance in all wavelengths, but still with a local peak in the 835-nm band. Because glint-induced
reflectance is rather spectrally flat, RTl is still a reasonable indicator of oil emulsion thicknesses. However,
because glint is red rich in reflectance (similar to a sunset due to higher scattering in shorter wavelengths),
the relationship between RTI and absolute oil thicknesses may change with sun glint strength, suggesting

that separate relationships may need to be derived for different sun glint conditions.
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Figure 5. 7: False-color composite (R: 1650; G: 835, B: 661 nm) of ETM+ imagery on 17 May 2010 showing
brownish to reddish colors in (a) and mostly greenish colors in (b); (a) and (b) show slick features close
(within 2 km) to locations in Fig. 5.4a and Fig. 5.4b, respectively. (c) and (d) show the classified oil emulsion
and emulsion thickness in the two regions.

The oil emulsions were classified using the elevated reflectance features in the NIR and SWIR
bands (Figs. 5.7c and 5.7d, where the stepwise scheme was described in Section 3.3). As expected, sun
glint may alter the relationship between RTI and absolute thickness, making it difficult to establish a

universal relationship between reflectance ratio and oil thickness. Thus, a method of histogram matching

was used to establish a relationship between RTI and oil thicknesses, where the former may be under
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various glint conditions and the latter was derived by USGS from AVIRIS measurements. When the two
images were both taken from similar locations relative to the DWH platform with similar areal coverage,
| assume the oil thickness frequency distribution to be unchanged between the two images. This
assumption is consistent with the popular rule of thumb used by the community, where 90% of the spilled
oil is located in about 10% area of the oil footprint (NOAA, 2016). As long as the image covered a large
portion of the total spilled area including both thin and thick oil, this assumption may be reasonable.
Moreover, the AVIRIS measurements on 17 May 2010 sampled more than 30% of the core spill area, and
these AVIRIS flight lines captured both the edge and the center of the spill, including both thick and thin
oil regions (Sun et al.,, 2016). Therefore, the AVIRIS-derived thickness frequency distribution may
represent a typical oil emulsion thickness frequency distribution during the DWH oil spill in during 17 May
2010 and other days. The derived RTI cumulative frequency histogram was then compared to and forced
to match the AVIRIS thicknesses cumulative frequency histogram (Hu et al., 2018). Fig. 5.9 shows the RTI
histogram as compared to the AVIRIS derived thickness histogram after histogram matching. The sun glint
coefficient (Lgn) for the ETM+ image is 1.4E-2 sr'}, and the estimate thickness (T, um) from the ETM+ is:
Logio(T) = 11.424*log1o (RTI) + 0.3026 (2)
where RTl is the band ratio of SWIR (1650 nm) to blue (479nm) in the ETM+ image. Such derived thickness
maps are shown in Figs. 5.7c and 5.7d, which show similar thickness distributions as in Figs. 5.4c and 5.4d.
Table 5. 2: RTI-thickness relationships derived from histogram matching between Landsat RTl and AVIRIS-
derived oil emulsion thickness (T, um). These relationships vary with sun glint strength corresponding to

each Landsat image. RTl is the band ratio of SWIR (1650 nm) to blue (479nm) in the ETM+ image, and ratio
of SWIR (1678 nm) to blue (486 nm) in the TM image

Date Sensor | Len(sr') | Emulsion Area (km?) Relationship
5/1/2010 | ETM+ | ~1.5E-2 7.9 Logzo (T) = 8.0853*log1o (RTI) + 0.68
5/10/2010 | ETM+ | ~ 6.0E-3 11.3 Logio (T) =4.6102* logio (RTI) + 0.5116
5/25/2010 | TM | ~3.0E-3 7.8 logzo (T) = 2.3601* logo (RTI) + 1.1704
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Figure 5. 8: Oil emulsion spectra in the two regions in Fig. 5.7
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Figure 5. 9: Histograms of cumulative frequency from AVIRIS-derived oil thickness (after data binning to
30-m resolution) and from ETM+ derived oil thickness using the ETM+ RTI.

The same approach was used to classify and quantify oil emulsions from Landsat images in May
2010 (1 May 2010 ETM+, 10 May 2010 ETM+, and 25 May TM) under different sun glint conditions. In
each case, the RTI histogram was forced to match the AVIRIS-derived thicknesses histogram, with image-

specific coefficients derived between RTI and thickness. The false color composite imagery, spectra of
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selected pixels of emulsions, and the histograms are displayed in Figs. 5.10, 5.11, and 5.12 for 1 May 2010

ETM+, 10 May 2010 ETM+, and 25 May TM, respectively. These images were collected under different sun

glint conditions, where the RTI-thickness relationship varied among images, as listed in Table 5.2.
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Figure 5. 10: a) False-color composite (R: 1650; G: 835, B: 661 nm) of ETM+ imagery on 1 May 2010. b)
Classified oil emulsions and estimated emulsion thickness. c) Oil emulsion spectra from selected locations
in (a). d) Histograms of cumulative frequency from AVIRIS-derived oil thickness (after data binning to 30-
m resolution) and from ETM+ derived oil thickness using the ETM+ RTI.
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Figure 5. 11: a) False-color composite (R: 1650; G: 835, B: 661 nm) of ETM+ imagery on 10 May 2010. b)
Classified oil emulsions and estimated emulsion thickness. c) Oil emulsion spectra from selected locations
in (a). d) Histograms of cumulative frequency from AVIRIS-derived oil thickness (after data binning to 30-
m resolution) and from ETM+ derived oil thickness using the ETM+ RTI.
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Figure 5. 12: False-color composite (R: 1678; G: 839, B: 660 nm) of TM imagery on 25 May 2010 showing
brownish to reddish colors in (a) and mostly greenish colors in (b); (c) and (d) show the classified oil
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emulsions and the estimated emulsion thickness in (a) and (b), respectively. e) Qil emulsion spectra in
selected locations in (a) and (b). f) Histograms of cumulative frequency from AVIRIS-derived oil thickness
(after data binning to 30-m resolution) and from TM derived oil thickness using the TM RTI.

3.2 Non-emulsion

Field experiments. The tank experiment shows that when oil is very thin (<1 um), crude oil
reflectance is higher than water in the visible wavelengths (400-700 nm, in Fig. 5.13). This is apparently
due to enhanced Fresnel reflectance because oil has a higher refraction index than water. However, when
oil becomes thicker (25 um), there is a clear trend of decreased reflectance in the visible wavelengths with
increased oil thicknesses until oil thickness reaches 100 - 500 um. Compared to reflectance in the visible
wavelengths, reflectance in the NIR and SWIR wavelengths shows minimal changes. These results agree
well with previous laboratory studies of crude oil (Wettle et al., 2009). Most importantly, reflectance in
the NIR and SWIR bands is very low (<0.5%, Fig. 5.13) for all thickness, which contrasts the enhanced NIR

and SWIR reflectance of oil emulsions (e.g., 4% - 15% in the 1650-nm band with emulsion thicknesses from

50 to 750 um, Fig. 5.3).
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Figure 5. 13: a) Reflectance spectra of Alaskan North Slope crude oil with various oil thicknesses (in um)
in a water tank. Here thickness is calculated as the total volume divided by the area of the tank. b) Pictures
showing crude oil appearances with different thicknesses.
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The Ohmsett experiment in September — October 2017 was designed to measure crude oil of
known thickness using a high-resolution WorldView image. The WorldView-2 image on 1 October 2017
(Fig. 5.14) shows two of the 6.1 m squares without oil and the other two (designed to have surface oil of
1 and 2 mm thick) with some oil on the southern side of the squares (Figs. 5.14 and 5.15). The square with
1-mm oil shows oil covering only ~1/8 of the square, while the square with 2-mm oil shows oil covering
~1/3 of the square. Some of the 1.6-m squares had more than half the square covered by oil, and the
WorldView-2 multispectral image (Fig. 5.14b) also shows the impact of the bridge and bridge shadows on
the 1.6-m squares. South of the 6.1 m squares, there was a black tarp on the bottom (Fig. 5.15c). Further
south, Fig. 5.15d shows thick crude oil patch against the tank wall, which was also captured in the
WorldView-2 image. Further south (Fig. 5.15e and 5.15f), the images show the thickest oil in the tank, a
result of oil accumulation by booms from the south and by water springs from the north. This region
contained most of the 400 gallons bulk discharged oil. Assuming the area contained half of the 400-gallon
discharged oil at the time of the WorldView-2 image, the crude oil could have an average thickness of ~10
mm in this area.

Spectra of selected pixels in those areas show decreased reflectance with increased oil thickness
in the blue and green bands, and minimal changes in the NIR bands (Fig. 5.16). This agrees well with our
own tank experiment (Section 3.1) and previous studies (Wettle et al. 2009). However, the reflectance
spectrum of the tarp is similar to that from thick oil (Fig. 5.16), suggesting that it is difficult to distinguish
differences between the two. Qil in the two selected regions (red rectangles) in Fig. 5.14b was classified
by comparing to the nearby clear water pixels: if both the blue (478 nm) and green (546 nm) bands were
significantly lower than those of clean water (oil-water reflectance difference > two standard deviations
of 20 x 20 water pixels), the pixel was identified as a crude oil pixel. Then, a NIR (832 nm) to blue (478 nm)

band ratio was used to estimate relative thickness of the identified crude oil, with higher ratio indicating
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thicker oil. The classified oil pixels and estimated relative thickness are shown in Fig. 5.14c. The thickness

patterns agree well with field-based visual inspections (Fig. 5.15).

(a) Pan Sharpened (0.48 n}n (b) Multi-Spectral (1.92 m) ;I (¢) Thickness Classification

}

: Relative
Thickness

Figure 5. 14: Crude oil in the Ohmsett tank as viewed by WorldView-2 on 1 October 2017. a) Pan
sharpened true color image (R: 659 nm; G: 546 nm; B: 478 nm), b) multispectral true color image with the
two red rectangular box regions selected for oil classification, and c) results of classified crude-oil pixels
and estimated relative thickness of the crude oil in the two selected regions.
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Figure 5. 16: a) Top of atmosphere (TOA) reflectance of selected pixels in Fig. 5.14 and b) reflectance
difference after subtracting the nearby water reflectance.



Multiband imagery under sun glint conditions. Fig. 5.17 shows oil slicks that are usually observed
from Landsat and Sentinel-2/MSI imagery in the MC-20 region. Reflectance spectra from selected oil-
containing pixels and nearby oil-free pixels are shown in Fig. 5.18, where the former can be either higher
or lower than the latter, and with spatial contrast enhanced by the sun glint effect (Len= ~1E-2sr?, Hu et
al., 2009; Sun et al., 2016). Sun glint strength is a function of satellite view angles, solar angles, and sea
surface roughness (Cox and Munk, 1954; Jackson and Alpers, 2010). The effect of sun glint modulation on
oil-water contrast can be visualized clearly by the examples in Fig. 19, where the Multi-angle Imaging
SpectroRadiometer (MISR) images were collected over the same oil slicks of the DWH ail spill but at nine
different camera zenith angles within 8 minutes (Sun and Hu, 2018). Under strong sun glint (CamZ =0, Len
=6.6E-2 sr'tin Fig. 5.19), oil slicks all display positive contrasts from water, with thicker oil displaying higher
positive contrast. The thin oil slicks change from positive contrast to negative contrast for zenith angle of
forward 26.1° (Len = 1E-2 sr'tin Fig. 5.19) and afterward 26.1° (Len = 8.2E-4 srlin Fig. 5.19) cameras. Here,
the thin slicks undergo a brightness reversal from positive contrast to negative contrast, an effect
observed by previous studies (Hu et al., 2009; Jackson and Alpers, 2010). Thick oil, however, still shows
positive contrast from water, but at a lower magnitude (Fig. 5.19). There is a smooth transition that with
decreased sun glint strength (from 6.6E-2 sr'to 1E-2 srland 8.2E-4 sr'l), sun glint induced reflectance
decreases in both thick and thin oil, with thin oil slick turning from positive to negative contrast first
because of its relatively small positive contrast when sun glint strength is high. Therefore, under the same
sun glint conditions when slicks of both positive and negative contrasts co-exist in the same location (i.e.,
same solar/viewing geometry and same environmental conditions), slicks of positive contrast appear to
be thicker than slicks of negative contrast. Thus, slicks of positive contrast in Fig. 5.17 indicate thicker oil

than the corresponding slicks of negative contrast.
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Figure 5. 17: a) OLI true color image (R: 655; G: 561, B: 483 nm) on 4 May 2014 showing oil slicks in the
vicinity of the MC-20 site; b) classified thick and thin oil. The blue arrows indicate wind vectors.
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Figure 5. 18: a) Reflectance spectra of selected pixels in Fig. 5.17a, and b) reflectance difference after

subtracting the nearby water reflectance.
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Figure 5. 19: False-color RGB (R: 867 nm, G: 558 nm, B: 446 nm) composite MISR images taken at UTC
16:43 (at nadir, 4 minutes among all cameras) on 17 May 2010 in nine camera view angles (Sun and Hu,
2018), with sun glint strengths annotated for the black arrow pointed regions. Positive angles indicate
forward looking and negative angles indicate backward looking. The black droplet indicates the location
of the DWH oil platform. The color strips on the bottom of top row are due to missing data in one or more
bands.

Using the above concept, oil pixels can be first classified as thick and thin oil (i.e., sheen). If an oil
pixel has either reflectance of blue and green bands, or NIR and SWIR bands significantly greater than the
reference water reflectance, the pixel would be classified as thick oil. RTI will then be used to classify

relative thicknesses from the thick oil pixels, with higher ratio indicate thicker oil. Details of the

classification scheme are described in Section 3.3. The classification results are shown in Fig. 5.17b as an
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example. The classification results appear to be reasonable as one can clearly visualize the thin oil

orientation in windrows parallel to the wind direction and the smooth transitions from thin to thick oil

(Fig. 5.17b), with the thickest oil patches in the downwind direction (IPIECA-IOGP, 2015; NOAA, 2016).

3.3 Classification scheme

With all the analysis above, this section summarizes the stepwise classification scheme used to

classify oil type and thickness with multiband optical imagery from Landsat ETM+. While ETM+ imagery is

used here as an example, similar schemes can be developed for other multiband sensors as long as they

equipped with appropriate spectral bands.

First, pre-processing is required to delineate oil slicks and determine sun glint strength, including:

Download the Landsat Level-1 radiance data

Process to Rrc (using the ACOLITE software)

Generate true color and false color composite (R: 1650; G: 835, B: 661 nm) images from the
Rrc reflectance

Outline the regions of interest (ROIs) containing visually interpreted oil extent (not the oil
slicks themselves) using ROI tools in ENVI or similar software (e.g., the red polygon in Fig.
5.21a)

Outline the ROIs for reference water (e.g., the green polygon in Fig. 5.20b) and determine
the kernel size according to the oil slick sizes (e.g., 100 x 100 pixels), within which water pixels
will be used in calculating the statistics

Calculate sun glint coefficient (Lgn) using the angle files and wind speed data

Apply cloud mask to mask cloud and cloud shadows (i.e., using Fmask software to prepare

cloud mask).
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The classification is a pixel-wise classification that searches every non-cloud pixel in the potential
oil polygons (red polygons in Fig. 5.20 for example), finds the nearest reference water pixel in the
reference water areas (green polygons in Fig. 5.20 for example), opens a kernel window centered at the
nearest water pixel (100 x 100 pixels kernel for example), and then calculates the mean and standard
deviation of reflectance for each band from water pixels in the kernel window. Spectral bands used in this
classification are blue (479 nm), green (561 nm), red (661 nm), NIR (835 nm), SWIR1 (1650 nm), and SWIR2
(2208 nm). Similar bands can be found from other multiband sensors including TM, OLI, Sentinel-2/MSI
and WorldView-3.

The reflectance of each potential oil pixel is first compared to water reflectance from the nearest
reference water window. If the difference is statistically significant (>2 standard deviations) in at least two
of the bands (the reason of using two bands is to filter random sensor noise), the pixel will be classified as
an oil-containing pixel. Otherwise, the potential oil pixel will be classified as a water pixel. The generated
true color and false color composite images are used to roughly outline oil extent ROIs based on oil’s
spatial contrast with water (e.g., positive or negative contrast under sun glint, negative contrast of crude
oil in true color imagery without sun glint, and reddish or greenish colors of oil emulsions in false color
composite imagery). The following procedures will then be used to rule out false-positives and to refine
the oil-water boundary within the ROls.

Secondly, the oil pixels are classified into oil emulsions and non-emulsions. The reflectance peaks
inthe 835-nm and 1650-nm bands are used to classify oil emulsions: if the above-classified oil pixels follow
rule 1 or 2 below, they will be classified as oil emulsions; if the above-classified oil pixels follow rule 1 or
2 but does not follow rule 3, they will be rejected as being oil pixels as they may be floating algae pixels.

1) If peak reflectance happens in the 1650-nm band, then verify if the following are true:

Rrc_1650 (oil) > Rrc_1650 (water); Rrc_2208 (oil) > Rrc_2208 (water); Rrc_835 (oil) > Rrc_835
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(water); Rrc_1650 (oil) > Rrc_835 (oil); Rrc_1650 (oil) > Rrc_661 (oil); Rrc_1650 (oil) > Rrc_2208

(oil);

2) If peak reflectance happens in the 835-nm band, verify if the following are true: Rrc_835 (oil) >
Rrc_835(water); Rrc_661 (oil) > Rrc_661 (water); Rrc_1650 (oil) > Rrc_1650 (water); Rrc_835 (oil)
> Rrc_1650 (oil); Rrc_835 (oil) > Rrc_661 (oil);

3) If Rrc_661 (oil) is < Rrc_561 (oil), the pixel is rejected as being an oil pixel but likely a pixel
containing floating algae.

Thirdly, after applying the above classification to separate oil emulsions from non-emulsions, two
separate steps are used for oil emulsions and non-emulsions, respectively. For oil emulsions, the RTI
(Rrc_1650/Rrc_472) is used to estimate the relative thicknesses of the classified oil-emulsion pixels using
two models in equations (1), and relationships in Table 5.2 whose corresponding sun glint coefficients
bracket the sun glint coefficient from the image of interest, with results linearly interpolated between the
two model results. For non-emulsions, if sun glint impact is negligible (Len <1E-5~1E-6sr?, Sun and Hu,
2016), both Rrc_479 and Rrc_560 are significantly lower than water, and both Rrc_1650 and Rrc_835 are
no different than water, the same RTI (Rrc_1650/Rrc_472) is then used to estimate the relative
thicknesses of the classified non-emulsion pixels, with higher values indicating thicker oil.

Most of the oil slicks observed in the multiband images are under the influences of sun glint
(Len>1E-5~1E-6srl), showing positive or negative contrasts or both (e.g., Figure. 5.17). In this case, pixels
will be classified as thick oil if both Rrc_835 and Rrc_1650 or both Rrc_479 and Rrc_561 are significantly
higher than water. All other pixels will be classified as thin oil. The RTI (Rrc_1650/Rrc_472) is then used to
indicate the relative thicknesses of the classified thick oil pixels, with higher values indicating thicker oil.

Finally, the results of the individual outputs are merged together and stored in shapefiles and

geotiff images. The entire step-wise classification scheme is illustrated in Fig. 5.20.
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Figure 5. 20: Flow chart of the step-wise classification scheme to classify oil type and thickness from
multiband remote sensing imagery. RTI: Relative Thickness Index defined as the ratio between SWIR
(~1600 nm) and blue bands (~480 nm).

Fig. 5.21 shows an example of the classification results from the 1 May 2010 ETM+ image over the

DWH location. It is clear that while most of the oil pixels contain thin oil, there are both oil emulsions and

non-emulsions.

4. Discussions
An elevated reflectance in the NIR (~¥860 nm) band is often an indicator of oil emulsions.

Furthermore, the ~1600-nm SWIR band is directly related to the oil volume contained in the emulsions.
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Therefore, both the ~860-nm and the ~1600-nm bands provide critical information of oil emulsions for
this specific method, and are both required for classifying oil types and thicknesses when considering the

use of optical data.
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Figure 5. 21: a) False-color composite (R: 1650; G: 835, B: 661 nm) of ETM+ imagery on 1 May 2010 during
the DWH oil spill. b) Results from the proposed classification scheme, with enlarged window showing
details of the classified oil emulsion in the same region as in Fig. 5.10.

However, oil emulsion is not the only cause of elevated NIR and SWIR reflectance. For example,
floating algae such as Sargassum also occur frequently in the GoM (Hu et al., 2015), which also cause
elevated NIR and SWIR reflectance (Fig. 5.22). While oil emulsion reflectance is rather smooth (i.e., lack
of features) from green to red and to the NIR band (Fig. 5.3), Sargassum reflectance spectra show strong

chlorophyll absorption features around 675 nm (Fig. 5.22, Hu et al., 2015). This absorption feature is

within the bandwidth of the TM and ETM+ red bands, and also covered partially by the OLI red band. By
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examining and contrasting the spectral shape between the green, red, and NIR bands, Sargassum or other
floating algae may be discriminated from oil emulsions, following the rules described in Section 3.3-3.
Blue bands are sensitive to oil presence/absence and changes in thicknesses because of the high
absorption of oil in the blue (Clark et al., 2010; Wettle et al., 2009), thus essential in classification of
thicknesses of both emulsions and non-emulsions. Therefore, in summary, the required bands for oil type
(emulsions versus non-emulsions) and thickness classifications are blue (~480 nm), green (~560 nm), red
(~ 670 nm), NIR (~860 nm), and SWIR (~1600 nm). Most of these bands can be found in typical multiband

sensors such as Landsat (TM, ETM+, and OLI), MSI, and WorldView-3.
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Figure 5. 22: Typical reflectance of floating Sargassum, overlaid with positions of ETM+ green (green
color), red (red color) and NIR (grey color) bands.

Oil spill response activities require oil maps to be delivered in a timely manner (Leifer et al., 2015),
usually within an hour by experienced observers on airplanes for tasking appropriate assets. The
classification scheme here is a pixel-wise classification method, thus the turn over time is heavily
dependent on the searching extent. Currently, with the existing computing speed it takes up to two hours

processing time from raw data downloading to final shapefiles output for oil spill that comprises a couple
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of kilometers in width and a few tens of kilometers in length in Landsat images. However, it may take
more than 12 hours to process images of large oil spills (e.g., the DWH oil spill), with oil spill size of
hundreds of kilometers by a few tens of kilometers. With the current turn over time, the classification
scheme may still provide useful products for oil spill response during prolonged oil spills, large spills and
oil spills in remote locations, especially when considering satellite remote sensing’s advantages of large
coverage, repeatable measurements and global coverage over the traditional airborne observations. The
turn over time may be decreased through algorithm refinement in the near future, for example by using
an object-based classification scheme (Blaschke, 2010) instead of the pixel-wise method presented in this
study.

A statistical analysis of oil-water contrast over natural seep locations in the GoM shows that thin
oil films have positive contrast from water in the MODIS 859-nm band for Lgy >0.025 sr (Sun and Hu,
2018). Under such strong sun glint conditions, sun glint induced reflectance increase may be comparable
to, or even overwhelm, the original emulsion signals in the ~480-nm and ~1600-nm bands. As can be seen
from Figs. 5.9, 5.10, 5.11, and 5.12, RTI has a better histogram matching with emulsion thickness when
Len is 3E-3 to 6E-3 srl. Therefore, the classification scheme to quantify thicknesses of oil emulsions is
applicable for Len<1E-2 srl, while oil emulsion pixels can still be extracted (although not quantified) when
Len is >1E-2 srl.

The methodology to classify thick oil from thin oil under sun glint conditions (Ley <0.025 sr'tand
Len >1E-5~1E-6sr?) is based on the concept that under the same solar/viewing geometry and
environmental conditions, thick and thin oil modulate differently on reflected sun light. However for slicks
over large distances (e.g., a few tens of kilometers to >100 kilometers in a Landsat image), the satellite
view angles and wind conditions are different in locations spatially separated. Therefore, the method
proposed here to classify thick oil from thin oil and to classify relative thicknesses of thick oil is applicable

only to oil slicks spatially close or at similar sun glint levels.
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Finally, all classification results here are only verified through consistency checks (e.g., spectral
shapes, comparison with AVIRIS, slick orientation relative to wind, etc.), rather than through direct field
observations. The lack of direct field validation not only applies to this study, but is rather universal in
remote sensing of oil spills. In addition to the fast-changing nature of oil spills (field surveys are difficult
to plan), the fundamental problem is the lack of a reliable method to measure oil thickness in the field for
both thick and thin oil, especially when oil is patchy (e.g., Figs. 5.1 and 5.3). This technical challenge needs

to be addressed in order to advance the science of oil spill remote sensing.

5. Conclusions

In this study, a stepwise classification scheme is proposed to classify oil type (oil emulsion versus
non-emulsion) and classify oil thickness of each type under no glint conditions and under various sun glint
conditions in multiband optical imagery. The elevated spectral reflectance features in the NIR (~860 nm)
and SWIR (~1600 nm) bands are used to identify oil emulsions. Increased and decreased reflectance in
the visible to SWIR bands due to sun glint perturbation are used to classify thick from thin oil. The SWIR
(~1600 nm) to blue (~480 nm) band ratio is used to classify the relative thicknesses of oil emulsions and
thick oil. A look-up-table is developed to quantify oil emulsion thickness under different sun glint
conditions using the relative thickness index (RTI). The classification results agree with field observations
from the Ohmsett facility oil spill test, and the mapped oil emulsion thickness patterns agree with
thickness map from USGS derived from hyperspectral airborne AVIRIS measurements.

Required bands for the classification scheme and for discriminating oil from false positives are
discussed in the study, where the combination of blue (~¥480 nm), green (~560 nm), red (~ 670 nm), NIR
(~860 nm) and SWIR (~1600 nm) appear to fulfill the requirements of the classification method proposed
here. Most of these bands can be found in typical multiband optical sensors such as Landsat (TM, and

ETM+, OLI), MSI, and WorldView-3. Although direct validation from field experiments is impossible due to
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lack of field sampling methods to measure oil thickness, the classification scheme is based on the spectral
characteristics of oil reflectance under different observing conditions, thus providing a practical method

for oil spill assessment in both retrospective analysis and to facilitate mitigation.
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CHAPTER 6:

OIL SPILL ASSESSMENT OF THE IXTOC-I1 ACCIDENT

1. Note to Reader
This chapter have been previously published in Marine Pollution Bulletin, 101, 632-641, and have
been reproduced with permission from Elsevier. The paper is provided in Appendix D. This paper applies
methods and theories of optical remote sensing in the assessment of a historical oil spill —the 1979 Ixtoc-
| oil spill. A brief summary of this paper is provided below.
APPENDIX D — Surface oil footprint and trajectory of the Ixtoc-I oil spill determined from Landsat/MSS
and CZCS observations (Sun et al., 2015)
The Ixtoc- oil spill occurred in 1979 in shallow waters (50 m) of the Bay of Campeche, Mexico. A
large portion of the released oil from this second largest accidental marine oil spill in history
reached the surface. This study assesses the oil spill footprint using remote sensing data collected
by Landsat Multispectral Scanner and Coastal Zone Color Scanner. General patterns of oil
trajectory are found to the northwest and north, nearly parallel to the coastline of the western
Gulf of Mexico (GoM) with possible oil landing on Mexican and Texas beaches. Field observations
at selected beaches and islands along the coast of the western and southern GoM during and
after the spill confirm these satellite-based findings. And the result oil footprint map and
cumulative frequency map were also used to help to determine field sampling locations and for

ecological impact analysis.
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CHAPTER 7:

ASSESSMENT OF THE MC-20 OIL SPILL

1. Note to Reader
This chapter have been previously published in Marine Pollution Bulletin, 136, 141-151, and have

been reproduced with permission from Elsevier. The paper is provided in Appendix E. This paper uses

medium- to high-resolution (10-30 m) optical remote sensing imagery to assess the ongoing MC-20 oil

spill in the northern Gulf of Mexico. A brief summary of this paper is provided below.

APPENDIX E — Remote sensing assessment of oil spills near a damaged platform in the Gulf of Mexico

(Sun et al., 2018)
An oil platform in the Mississippi Canyon 20 (MC-20) site was damaged by Hurricane Ivan in
September 2004. In this study, medium- to high-resolution (10-30 m) optical remote sensing
imagery is used to systematically assess oil spills near this site for the period between 2004 and
2016. Image analysis detects no surface oil in 2004, but ~40% of the cloud-free images in 2005
show oil slicks, and this number increases to ~70% in 2006-2011, and >80% since 2012. For all
cloud-free images from 2005 through 2016 (including those without oil slicks), delineated oil slicks
show an average oil coverage of 14.9 km?/image, with an estimated oil discharge rate of ~50 to
~1700 barrels/day, and a cumulative oil-contaminated area of 1,900 km?around the MC-20 site.
Having remote sensing observation of oil slicks in the same day (or a few consecutive days from
different sensors) improves the understanding of oil slick movement over short temporal periods,
especially in this region influenced by a large river plume. For the most part, oil slick distribution
agrees well with circulation patterns that are largely controlled by the Mississippi River plume,
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but can also be affected by direct wind forcing. The location of the river induced fronts with
respect to the oil source also contributes to both onshore propagation and longer-term pathways
of the hydrocarbons. Moreover, wind forces may dominate the oil spreading process when the

Mississippi River plume does not encompass the MC-20 site.
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CHAPTER 8:

CASE STUDY: THE OIL TANKER COLLISION AND OIL SPILL EVENT IN THE EAST CHINA SEA

1. Note to Reader
This chapter have been previously published in Geophysical Research Letters, 45, 3212-3220, and

have been reproduced with permission from John Wiley and Sons. The paper is provided in Appendix F.

This paper demonstrates a multisensor day and night approach of satellite remote sensing in response to

an oil spill accident. A brief summary of this paper is provided below.

APPENDIX F — Tracking an oil tanker collision and spilled oils in the East China Sea using multisensor day

and night satellite imagery (Sun et al., 2018)
The Iranian oil tanker SANCHI, carrying ~1 million U.S. barrels of condensate oil, collided with a
grain freighter on 6 January 2018 in the East China Sea. The accident caused SANCHI on fire and
tilted, drifting ablaze for a week, until it exploded and sunk on 14 January 2018. Traditional
techniques using synthetic aperture radar or daytime optical imagery turn out not providing
timely and adequate coverage for this specific case. In this study, however, Visible Infrared
Imaging Radiometer Suite Nightfire product and Day/Night Band data demonstrate their values
in tracking the oil tanker’s drifting pathway and locations when all other means are not as
effective for the same purpose. Such pathway and locations can also be reproduced with a
numerical model, with root-mean-square error of <15 km. High-resolution optical imagery after 4
days of the tanker’s sinking reveals oil spill area >350 km? near the tanker sinking site. This study
demonstrates that a combination of all available remote sensing and modeling techniques can
provide effective means to monitor marine accidents and oil spills to assist event response.
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CHAPTER 9:

SUMMARY AND CONCLUSIONS

1. Research findings and potential impacts

While optical remote sensing has the capacity to detect oil under sun glint and non-glint
conditions, differentiating oil from false-positives, identifying oil emulsions, and quantifying oil
thicknesses, fully realizing this capacity faces many challenges in the real marine environment using
available multiband remote sensing imagery. These challenges include sun glint induced distortion in the
reflectance spectra, mixed pixels from the heterogeneous oil patches, and insufficient spectral resolution
to apply the laboratory-based hyperspectral algorithm to multiband optical imagery (Sun and Hu, 2018).
These challenges have all been addressed in this dissertation, although continued research is still required
to have complete solutions.

Specifically, of these challenges, the sun glint requirement for detecting thin oil films has been
quantified. The threshold of sun glint strength (Len) is determined to be 10°-10° sr! for Moderate
Resolution Imaging Spectroradiometer (MODIS) on the Terra and Aqua satellites, and 10°-107 sr! for
Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi-NPP satellite (Sun and Hu, 2016). Below
these thresholds, oil films cannot be detected; above these thresholds oil films can always be detected
except near the critical-angle zone where oil slicks reverse their contrast against the background water.
The relationship between oil-water reflectance contrast and sun glint strength has also been statistically
analyzed, with results showing that when Lgy is <0.001 sr'l, the negative oil-water contrast (at 859 nm) of

thin oil films is very small, and the contrast turns to be positive when Lgy is > ~0.025 srt (Sun and Hu, 2018).
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The sun glint thresholds determined here will provide critical information on which images (or which
portions of an image) can be used to search for oil, thus reducing false negative detection.

The spatial heterogeneity of oil slicks, and slick size distributions of different thickness classes
from the DeepWater Horizon (DWH) oil spill, have been characterized for the first time by using high
spatial resolution (~7.6 m) hyperspectral AVIRIS data (Sun et al., 2016). Most oil slicks are found to be
elongated, with a medium length/width ratio ranging from 2.5 to 4.6 depending on the thickness class: oil
of >200 um thick covers only 5% of the total oiled area but contains >45% of the total oil volume,
confirming the rule of thumb that thick oil covers a small area but contains a considerably larger amount
of oil. The characterized slick sizes of different thickness classes have significant implications on
interpreting oil footprint and thickness for sensors with different resolutions. It is found that spectral and
spatial analyses, or modeling using coarse-resolution sensors such as MODIS, need to consider mixed
pixels for thick oil, as most pixels will have thick oil coverage in only a few percent of a given pixel. If non-
commercial satellite is the only available means, Landsat/Sentinel-2 might be the best compromise
between spatial resolutions and temporal resolutions in order to capture actual thick-oil coverage within
a pixel and full oil-spill footprint. On the other hand, commercial satellite data (e.g., DigitalGlobe satellite
constellation) can greatly expand oil spill detection capability in both spatial (< 2m spatial resolution) and
temporal resolutions (daily revisit with an imaging swath of <20 km).

Moreover, a stepwise classification scheme is proposed to extract oil features, classify oil types
(oil emulsion versus non-emulsion), and classify oil thicknesses of each type under no glint conditions and
under various sun glint conditions using multiband optical imagery. Most of the required spectral bands
used in the application of the step-wise classification scheme, and to discriminate false-positives, can be
found in typical multiband sensors such as Landsat (TM, ETM+, and OLI), MSI, and WorldView-3. This

classification scheme may greatly expand the capacity to classify oil emulsions from non-emulsions, and
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classify oil thicknesses of different types using current multiband optical sensors (under various sun glint
conditions), thus providing a practical method for oil spill assessment and to facilitate mitigation.

Based on the above methods and current understanding of oil-water spatial and spectral contrasts
in optical remote sensing imagery, several oil spill accidents have been assessed, including both historical
and ongoing oil spills. The Ixtoc-I oil spill footprint has been delineated for its >9-month spill period,
providing the first comprehensive map of oiled area from the spill (Sun et al., 2015). The cumulated oil
footprint map has been used to guide field sampling, and has provided independent information to
compare with physical modeling (Duran et al., 2018) and to assess the spill's potential impact on the
benthic ecosystem. Moreover, the use of time-series remote sensing data provides oil presence frequency,
slick size, cumulative area, and estimated oil discharge rate of oil spills near the Mississippi Canyon 20
(MC-20) site between 2004 and 2016 (Sun et al., 2018a), thus filling a knowledge gap of this long-term
and ongoing spill. The study of oil slick changes over time in the MC-20 region also improves the
understanding of how oil slicks respond to a large river plume. The study of the oil tanker collision event
in the East China Sea shows the value of VIIRS night time data in response to an oil spill accident in addition
to traditional synthetic aperture radar and optical detections (Sun et al., 2018b). A combination of multi-
sensor, day and night data along with a numerical model may serve as a template in responding to similar

collision and/or spill events in the future.

2. Future research

2.1 Field measurements along with multiband or hyperspectral imaging cameras

One notoriously difficult problem in oil spill remote sensing research is the lack of direct field
validation. Although indirect validation of the derived maps in this research is provided through spectral

analysis and cross-sensor consistency checks, development of practical ways to validate remote sensing
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maps of oil type and thickness is still immediate and critically needed to further progress in this subject
area.

Such a challenge cannot be addressed with just a technological innovation to sample oil accurately
in the field, but must be addressed through coordinated efforts between field and remote sensing
measurements. This is because that even if oil thickness can be determined accurately from in situ
measurements, it is still extremely difficult to use these measurements to validate remote sensing
interpretations because of the difficulty in matching in situ measurements with large image pixels (often
30 x 30 m, see Chapter 5). Therefore, multi-spectral or hyperspectral imaging cameras may be required
to measure oil reflectance for each oil patch if the cameras are mounted on fixed platforms or used on
low-altitude aircrafts (either manned or un-manned). In such measurements, because of the super-high
resolution (sub-meter) each pixel may be a “pure” pixel containing uniform oil type and thickness, from
which reflectance spectrum is obtained to apply the classification algorithm. Then, a recently developed
Oil Thickness Sampler (WM-OTS, Garcia-Pineda et al., 2018) can be used to measure oil thickness from
identified “pure” pixels, providing direct field validation. The two measurements together can also be
used to develop new algorithms to classify oil type and estimate oil thickness, as the WM-OTS is
demonstrated to measure oil thickness from 5 um to 2 cm with a resolution of 10 um in the laboratory
setting. The above scheme can be tested by making simultaneous measurements over the MC-20 site

under real marine oil spill condition.

2.2 Assessment of potential environmental impacts of natural hydrocarbon seeps in the Gulf of

Mexico

Oil spill accidents are difficult to predict, and it is therefore often difficult to plan field trips to
assess environmental impacts in a timely fashion. In the Gulf of Mexico (GoM), however, natural oil seeps

are known to be a major source of oil input, thus serving as surrogates to evaluate the potential
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environmental impacts of oil spills. Laboratory experiments suggest that high concentrations of crude oil
may restrain phytoplankton growth while low concentrations of crude oil may even promote growth
(Huang et al., 2011). In situ measurements in the natural seep zones also show elevated chlorophyll
concentrations in surface waters (D’souza et al., 2016). Temperature and nutrient profiles suggest that
this may be attributed to nutrient upwelling generated by the buoyant plume. Other possible reasons
include an indirect ‘top-down’ effect by Protistan grazers, which may be tolerant to crude oil
contamination (Rogerson and Berger, 1981). The grazers predate on bacteria that compete with
phytoplankton for nutrients in the presence of crude oil. While a field-based study is plausible, it is unclear
whether the findings can be generalized for all natural seeps in the northern GoM. Therefore, it will be
important to assess how natural hydrocarbon seeps (e.g., the 914 distinct seep zones identified in

MacDonald et al., 2015) may influence phytoplankton using satellite-estimated chlorophyll as a proxy.

3. Conclusions

In conclusion, the most noteworthy finding from this research is that once the oil-water spatial
and spectral contrasts under different observing conditions are well understood, it is straightforward to
implement a classification scheme to classify oil type (emulsion versus non-emulsion) and oil thickness
using multi-band remote sensing data. During the DWH oil spill, nearly all satellite remote sensing efforts
from both Federal agency (e.g., NOAA) and academia could only provide maps of oil presence/absence
with little information on oil thicknesses and oil types (oil emulsion versus non-emulsion). Retrospective
analysis of the DWH oil spill using Landsat imagery indicates that besides oil presence/absence,
information of oil emulsion status, emulsion thicknesses, and information on relative thicknesses of non-
emulsions can also be provided in future spills following the step-wise classification scheme proposed
here. On the other hand, more work is required to accurately determine absolute oil thickness for both

oil emulsions and non-emulsions, and more laboratory measurements are necessary to fully understand
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the oil-water spectral contrasts for different oil types and different water types. Most importantly,
reliable techniques to measure oil thickness in the field need to be developed, where the ongoing oil spill
in the MC-20 site in the northern GoM may serve as a good experimental site to test both remote sensing

and in situ techniques.
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The Challenges of Interpreting Oil-Water Spatial
and Spectral Contrasts for the Estimation of
Oi1l Thickness: Examples From Satellite
and Airborne Measurements of the
Deepwater Horizon Oil Spill

Shaojie Sun

Abstract— Optical remote sensing is one of the most commonly
used techniques to detect oil in the surface ocean. This is
because oil has optical properties that are different from water
to modulate oil-water spatial and spectral contrasts. However,
understanding these contrasts is challenging because of variable
results from laboratory and field experiments as well as from
different observing conditions and spatial/spectral resolutions
of remote sensing imagery. Here, through reviewing published
oil-water spectral contrasts and analyzing remotely sensed spec-
tra collected by several satellite and airborne sensors (MERIS,
MODIS, MISR, Landsat, and AVIRIS) from the Deepwater Hori-
zon oil spill, we provide the interpretation of the spatial/spectral
contrasts of various oil slicks and discuss the challenges in such
interpretations. In addition to oil thickness, several other factors
also affect oil-water spatial/spectral contrasts, including sun glint
strength, oil emulsification state, optical properties of oil covered
water, and spatial/spectral resolutions of remote sensing imagery.
In the absence of high spatial- and spectral-resolution imagery,
a multistep scheme may be used to classify oil type (emulsion
and non-emulsion) and to estimate relative oil thickness for each
type based on the known optical properties of oil, yet such a
scheme requires further research to improve and validate.

Index Terms— AVIRIS, emulsification, hyperspectral, Landsat,
MERIS, MISR, MODIS, multispectral, oil spill, oil thickness,
optical remote sensing, resolution.

[. INTRODUCTION

HROUGH synoptic and frequent imaging capability,
remote sensing plays a vital role in oil spill response
and postspill assessment [1], [2]. Among the various remote
sensing techniques [1], [3]-[8], synthetic aperture radar (SAR)
is perhaps the most often used in oil spill assessment [3], [4].
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SAR offers medium- to high-resolution imagery under all
weather conditions, in which the dampening surface capillary
waves and short gravity waves by surface oil under optimal
wind conditions results in a reduced Bragg scattering signal,
making surface oil appear darker than surrounding water in
SAR imagery [3]. However, bio-films and bio-slicks (e.g..
Sargassum mat and algal blooms), threshold wind areas, and
wind sheltering can also cause negative contrast in SAR
imagery. This makes it difficult to distinguish oil slicks from
lookalikes [1], [3]. More importantly, SAR is used primarily
for oil detection (absence/presence) instead of oil thickness
quantification, although several recent studies demonstrated
that it might be possible to discriminate thick oil emulsion
from non-emulsion in SAR imagery [5], [9].

Optical remote sensing offers supplemental techniques in
oil detection and quantification, with various strengths and
weaknesses as compared with SAR. Weaknesses mainly result
from lack of coverage under cloudy conditions. Because, sta-
tistically, cloud cover occupies ~72% of the global ocean [10],
approximately three quarters of optical remote sensing data are
useless for oil spill studies. However, this weakness is com-
pensated for by wide-swath sensors like Moderate Resolution
Imaging Spectroradiometer (MODIS, 2300 km) and Visible
Infrared Imaging Radiometer Suite (VIIRS, 3300 km), which
can provide repeated coverage at any location in 1-2 days
(more often in polar regions), at the price of reduced spatial
resolutions (~300 m-1 km) compared with SAR observations.
‘When higher resolution data from Landsat or SPOT-like sen-
sors are used at reduced frequency, they may complement
the coarse-reselution data and improve the detection and
quantification capacity [11]. Indeed., low (or no) data cost,
wide coverage, and high revisit frequency make optical remote
sensing a reliable tool in oil spill studies [6], [12], [13].
Such a capacity may provide information that is difficult or
even impossible with SAR remote sensing because it may be
possible to differentiate oil type (emulsion or non-emulsion)
and estimate oil thickness (or volume) through multiple-band
optical remote sensing, but interpretation of multiband imagery
is technically challenging for a number of reasons. One
objective here is to demonstrate this capacity, while presenting
technical challenges for future studies.

0196-2892 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http/iwww.ieee.org/publications_standards/publications/rightsfindex.html for more information.
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Oil can be differentiated from water in two ways, making
absence/presence detection possible. First, similar to SAR
applications, oil can modulate surface waves, causing changes
in the surface Fresnel reflection of light that are detectable
under proper sun glint conditions [12], [14]-[17], in which
the minimal sun glint strength required to observe change
has been determined to be 1077-107° sr=! for MODIS and
1076-10=7 sr=! for VIIRS [18]. The oil-water contrast in
sun glint optical imagery, unlike in SAR imagery, can be
either positive or negative [12], [15], [16], [18]-[20] based
on sun glint strength (a function of solar/view geometry and
sea surface roughness). On the other hand, while sun glint
facilitates the absence/presence of oil detection, sun glint can
modulate both the magnitude and shape of spectral reflectance,
making oil type and/or thickness difficult to interpret (see the
following).

Second, different absorption and scattering properties of oil
from water also contribute to the oil-water contrast in optical
remote sensing imagery. Crude oil has strong absorption in
the short wavelengths, which decays exponentially toward
longer wavelengths [21]. When oil is emulsified, mixing with
waler creales oil-water particles that have strong scatlering
in all wavelengths, manifested in the red-near infrared (NIR)-
shortwave infrared (SWIR) wavelengths [22] because of water
molecule’s negligible scattering in these wavelengths. In addi-
tion, the higher refractive index of crude oil (~1.5) over
seawater (~1.34) leads to higher Fresnel reflection of oiled
surface. These different optical properties, as well as the sun
glint conditions mentioned above, collectively determine the
oil-water spatial and spectral contrast.

Although the principles are well known, in practice it has
been very difficult to develop inversion algorithms to infer the
oil type and thickness from the oil’s reflectance spectra. Many
experiments have been attempted for such inversions, mostly
under controlled laboratory environments, yet the results often
differ for many reasons [e.g., (Fig. 1}]. Wettle et al. [23]
showed dramatic reflectance changes in blue-green wave-
lengths only and no change in the NIR for different oil
thicknesses [Fig. 1(c)]. while Clark ef al. [22] showed the
opposite [Iig. 1(b)]. The results from such laboratory-based
measurements are always confounded in remote sensing
imagery collected from the ocean environments due to variable
solar/viewing conditions, wind, mixed pixels, and different
water properties from those in the laboratory experiments.

Our primary objective here is to compare, contrast, and
understand the various spectral responses of oil on water from
both published literature and new multisensor remote sensing
data collected from the DeepWater Horizon (DWH) oil spill,
in which interpretation challenges are demonstrated and a
preliminary solution to differentiate oil type and to quantify
relative oil thickness is presented. Furthermore, potential meth-
ods that deal with the various perturbation factors in these
interpretations are discussed.

II. DATA AND METHODS
A. Oil Spectra From Laboratorv-Based and
Well-Controlled Experiments

Numerous experiments have been conducted to deter-
mine the oil’s reflectance spectra using different oil types
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and experimental settings, Here, we select some repre-
sentative experiments to compare the results. Of these,
reflectance spectra of pure oil [Fig. 1(a)] were obtained
from Lammoglia and Filho [24], reflectance spectra of oil
emulsion [Fig. 1(b)] were obtained from Clark er al. [22],
and reflectance spectra of oil-on-water [Fig. 1(c). (d) and (e)]
were obtained from Wettle et al. [23], and Byfield [21],
respectively. These spectra were collected from the laboratory
measurements using artificial light sources. For comparison,
reflectance spectra collected from outdoor harbor water under
solar illumination [Fig. 1(f)] were obtained from Svejkovsky
and Muskat [25].

B. Oil Spectra From Remote Sensing Imagery

The explosion and sinking of the DHW oil rig on April 20,
2010 led to three months of continuous oil spill in the northern
Gulf of Mexico (GoM), releasing 3.19 million barrels of crude
oil into the ocean [26], [27]. In this paper, remote sensing data
from several satellite and airborne sensors were analyzed to
examine the spatial and spectral contrast of oil and oil-free
walter. These include the following.

1) Coarse-resolution data from MODIS, Medium Resolu-
tion Imaging Spectrometer (MERIS), and local mode
Multi-angle Tmaging SpectroRadiometer (MISR), all
obtained from the NASA Goddard Space Flight Cen-
ter (GSFC), MODIS and MERIS data were processed
with the software SeaDAS (version 7.0) to generate
Rayleigh-correcled reflectance (Ry(4), dimensionless)
and resampled to 250 m resolution, The MISR sensor
on board Terra views the earth simultaneously with nine
cameras and four spectral bands (446, 558, 672, and
867 nm) in all directions at a spatial resolution of 275 m.
Eight of the cameras point to zenith angles of 26.1°,
45.6°, 60.0°, and 70.5° forward (+) and afterward (—)
off nadir, respectively. with an additional nadir view
camera (0%) [28]. MISR L1B2 data were mapped to a
rectangular projection using “the HDF-EOS To GeoTIFF
Conversion Tool” (HEG, version 2.14), and then con-
verted to radiance using scale factors [28]. Solar/viewing
geometry data and top of atmosphere (TOA) reflectance
were acquired through the MISR INteractive eXplorer
(MINX, version 4.0) software.

2) Medium-resolution data (30 m) from Landsat Enhanced
Thematic Mapper Plus (ETM+), obtained from the U.S.
Geological Survey. The data were processed Lo generate
Rye(4) using the software ACOLITE (V20170718.0).
Oil-water reflectance difference was calculated as the
difference of Ry of 0il to the nearby oil-free water in
MERIS, MODIS, and Landsat images, the difference
of atmosphere corrected reflectance (also corrected for
aerosol besides Rayleigh scattering) in Airborne Visi-
ble/InfraRed Tmaging Spectrometer (AVIRIS) data.
High-resolution (7.6 m) data from AVIRIS, obtained
from the NASA’s Jet Propulsion Lab. During the DWH
oil spill, AVIRIS was deployed on an aircraft to collect
hyperspectral data (224 consecutive bands from 350 to
2500 nm). The data used in this paper were collected
on May 17, 2010 (run 10), with a spatial resolution of

3
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Contrasting reflectance spectra of oil on water measured under different conditions by several groups. (a) Pure oil: continuum removed reflectance

spectra of 17 pure oil samples obtained from the main Brazilian sedimentary basins show features of {a} O-H absorption at 1400 nm. C-H absorption features
at {b} 1720-1730 nm. {c} 1750-1760 nm, {d} 2310 nm, {e} 2350 nm [24]. Figure reprinted from Lammoglia and Tilho [24] with copyright permission from
the publisher. (b) Oil on water spectra: varying thicknesses of 60:40 oil-water mixing ratio emulsions over quartz plates on an empty painted black glass jar.
The emulsions were collected from the GoM during the DWII oil spill. Figure reprinted from Clark e al. [22]. (¢) Oil on water spectra: Gippsland crude oil
of different thicknesses on top of pure water, measured in a beaker. Figure reprinted from Wettle ef al. [23] with copyright permission from the publisher.
(d) Oil on water spectra: Gullfax crude oil of different thicknesses on artificial seawater. (e) Oil on water spectra: the same Gullfax crude oil of different
thicknesses on dockside scawater. igure reprinted from Byfield (1998, University of Southampton Ph.D. dissertation) [21] with permission from the author.
(f) Oil on water spectra: Arabian Medium Crude oil of different thicknesses over the background of seawater in Oceanside Harbor, CA, USA. Figure reprinted

from Svejkovsky and Muskat [25].

~7.6 m. Surface reflectance data were generated through
atmospheric correction [29], and then fine-tuned through
spectral malching with overflight calibration sites [30].
The AVIRIS [light time and direction were desired (o
avoid reflected sun glint [22].

Red—green—blue composite images were generated from all
five sensors: MERIS (R: 665, G: 560, and B: 443 nm), MODIS
(R: 645, G: 555, and B: 469 nm), AVIRIS (R: 638, G: 550,
and B: 462 nm), Landsat ETM+ (R: 661, G: 561, and B:
479 nm), and MISR (R: 867, G: 558, and B: 446 nm). Sun

glint reflectance (Lgx in units of sr~!) was estimated using
the model from [31], where the solar/viewing geometry was
known from the imagery and wind data were obtained from
the National Center of Environmental Prediction.

C. Simple Conceptual Model to Classify Oil Type and
Estimate Oil Thickness

Based on the published works and results of oil-water
spatial and spectral contrasts from the observations below,
a simple stepwise model is developed to classify oil type and
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quantify relative oil thickness, Because the model development
depends on analysis and interpretation of the oil-water con-
trasts, the method is detailed afler presenting the major results
of spectral analysis.

III. RESULTS
A. Laboratory Experimental Results From the Literature

1) Signature of Pure Oil: Many features on the ocean
surface can have broadband reflectance responses that make
spectral discrimination difficult or impossible. In contrast, pure
oil has narrowband reflectance signatures [Fig. 1(a)] in the
NIR-SWIR spectral range due to combinations of organic
molecules and compounds [24]: (a) at 1390/1410 nm due
to O-H first overtone and C-H combinations first overtone;
(b) at 1720-1730 nm from the combination of the CH3 and
CH2 stretching and the combination of symmetric and asym-
metric CH2 stretching; (¢) at 1750—1760 nm, overtone of the
CH2 vibration; (d) at 2310 nm, due to the combination of
the CH3 asymmetric axial deformation with the CH3 sym-
metric angular deformation; (¢) at 2350 nm, yielded by the
combination of the CH3 symmetric axial deformation and the
CH3 symmelric angular deformation; and () at 1190/1210 nm
some oil presents subtle spectral features as second overtones
of C-H. In their experiments, L.ammoglia and Filho [24]
did not find narrowband diagnostic features in the visible
wavelengths,

2) il on Water: The narrowband oil signature [Fig. 1(b)]
in the SWIR wavelength was observed from the DWH
waler-in-oil emulsion samples [22]. With 60:40 oil-water
mixing ratios, reflectance in the NIR-SWIR wavelengths
also increases with increasing oil thickness, and so do the
line depths in the SWIR wavelength corresponding to the
C-H compounds. These features (enhanced reflectance in the
NIR-SWIR and C-H line depth) serve as indicators of oil
emulsion, and their magnitudes can be used to infer oil thick-
ness [22] for fixed oil-water mixing ratios. Note that compared
to the NIR-SWIR wavelengths, there are negligible changes
in the visible wavelengths, especially in the blue—green.

In contrast to the Clark ef al. [22] measurements, the lab-
oratory experiments of Wettle ef al. [23] led to different
results. The Gippsland crude showed no reflectance change
in the NIR-SWIR wavelengths but monotonically decreased
blue—green reflectance with increasing oil thickness [Fig. 1(¢)].
This is understandable because when crude oil is not emul-
sified, the high absorption and relatively low scattering in
the short wavelengths lead to the reflectance shapes shown
in Fig. l(c). In the same experiment, the Australian north-
western shelf light condensate showed no apparent reflectance
change with increasing oil thickness, because this type of oil is
nearly transparent (e.g., ~100% light transmission from 400 to
1000 nm at a thickness of 200 pm, [23]).

Wetlle et al. [23] experimental results are consistent with
some of the experiments in Byfield [21], where Gullfax crude
shows decreased reflectance with increasing oil thickness when
oil is on artificial seawater [Fig. 1(d)]. What is different is that
such decreased reflectance also occurs in the NIR. When oil is
put on real seawater, the same crude oil first shows decreased
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reflectance with increasing oil thickness, but then increased
reflectance with increasing oil thickness [Fig. 1(e)]. Although
the reason is unclear, the former reflectance decrease might
be because the introduced higher reflectance from oil does
not compensate the suppressing effect of surface oil fresnel
reflection on signal from the water column, as oil’s reflection
spectra are not changing much when oil thickness is above a
certain threshold [Fig, 1(d) and (e)].

Overall, these laboratory experiments suggest that, at least
in principle, when crude oil is non-emulsified, reflectance
changes mainly occur in the blue—green wavelengths where
reflectance decreases with increasing oil thickness; when
oil is emulsified, reflectance changes mainly occur in the
NIR-SWIR wavelengths where reflectance increases with
increasing oil thickness. These observations may form the
basis to interpret remote sensing imagery.

When similar experiments are conducted outdoors in a
more realistic environment under ambient sunlight, different
water types and illumination conditions may cause results
to differ. Svejkovsky and Muskat [25] measured Arabian
Medium Crude oil in Oceanside Harbor, CA, USA, and
found that reflectance initially increased then decreased with
increasing oil thickness [Fig. 1(f)]. Reflectance of oil films
in the visible wavelengths is generally lower than that of
background water, with green wavelengths showing the largest
changes with increasing oil thickness. This is possibly because
unlike clear waters in laboratory experiments, turbid waters
in a natural environment often have reflectance maximum
in the green wavelengths because of strong absorption of
phytoplankton and/or colored dissolved organic matter in the
blue wavelengths and strong absorption of water molecules
in the red and NIR wavelengths. An increase in oil thickness
will thus “dampen”™ the green reflectance more than in other
wavelengths, Note that thin films in this experiment show
higher reflectance than water [Fig. 1(f)]. We believe this is
caused by increased Fresnel reflectance at the surface, which
is not compensated for by oil absorption because the oil is
very thin.

B. Results From Remote Sensing Imagery

The laboratory experiments above measured the reflectance
of oil on water under monotonic conditions for each
experiment: same oil type, same emulsification state, same
illumination and viewing conditions, same water type, and
same experimental setting. In remote sensing imagery, these
conditions may change from image to image and from pixel
to pixel. Furthermore, due to the natural patchiness of oil (i.e.,
heterogeneity), most oil-containing pixels are mixed pixels
with oil patches or slicks of different type and thickness within
a pixel [32]. These factors can confuse interpretations of the
oil-water spatial and spectral contrasts observed from remote
sensing imagery., Below we present examples from coarse-,
medium-, and high-resolution imagery to show the challenges
of interpreting the spatial and spectral oil-water contrasts.

1) Coarse-Resolution MERIS and MODIS Imagery:
Fig. 2 shows the oil-water spatial and spectral contrasts from
MERIS and MODIS imagery under different solar/viewing
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Fig. 2. MERIS and MODIS imagery showing oil slick spatial and spectral contrasts under different sun glint conditions. (a) Under strong sun glint. oil is

brighter than water. The sun glint coefficient (LGN, in units of st

1) calculated over water (Ral) is annotated. ‘The green symbol shows the location of the

Macondo well location. (b) Under weak sun glint, oil is darker than water. (c) Subscene of (b) is enlarged to show oil emulsions (inset photograph credited

122]). (d) Same

o Sonia Gallegos and Gregg Sw.

for the bottom left portion, most oil features observed in (b) are not observable. In all images

atial extent as in (b), image caplured by MODIS Aqua 3.5 h later with negligible sun glint. Except

denotes targets (i.e., oil slicks), and R denotes reference

(i.e., water). (e)—(h) Rayleigh corrected reflectance (Rye) spectra of oil and water as well as their difference for the four cases in (a)-(d).

geomelry. Fig. 2(a) was captured by MERIS on April 25,
2010, which shows strong positive oil-waler contrast under
strong sun glint conditions (Lgn = 4.5E-02 st h). Spectrally,
the oil spectra from three randomly selected locations are all
higher than the nearby water in all Visible-NIR wavelengths
[Tig. 2(¢)]. Because sun glint reflectance is red rich after
attenuation of the solar beam, the spectral shape of increased
reflectance toward the red-NIR does not indicate the spectral

shape under no or negligible sun glint. Indeed, under low
sun glint in the MERIS image collected on April 26, 2016
[Fig. 2(b), Lgny = 3.7E-04 st~1], none of the oil spectral
shapes from the Tb and Tc locations resemble those from
Fig. 2(a). From the Tb location, oil spectra show ncgative
contrast from water [Iig. 2(f)] for all wavelengths, with the
highest negative contrast shown in the blue wavelengths.
While the latter is caused by strong absorption of oil in the
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500 m) and due to oil patchiness.

blue wavelengths [Fig. 1(c) and (d)], the former is due to
dampening of the surface wave.

Under low or negligible sun glint condilions some spec-
tral shapes show characleristics of Lypical oil emulsion
[Fig. 2(c) and (g)]. The lower left portion of Fig. 2(b) is
enlarged in Fig. 2(c), in which the ring-shaped slick to the
cast of the Macondo well location shows brownish colors that
appear like oil emulsion [22]. Spectral analysis of Tfig. 2(g)
confirms this speculation, in which locations of Tc2, Tc3,
and Tc4 all show increased reflectance toward the NIR wave-
lengths. The spectral analysis also ruled out the possibility
of Irichodesmium and Sargassum mats because of the lack of
typical algac absorption features [33], [34]. Note that although
Tcl and TcS also show brownish colors in the RGB image
[Fig. 2(c)], they do not show clevated reflectance in the NIR,
thus representing non-cmulsion. Clearly, visual inspection of
the RGB images is not a reliable means to infer oil type:
spectral analysis is required for this purpose.

The MERIS-based observations are confirmed from MODIS
observations 3.5 h later, when MODIS data were col-
lected under negligible sun glint. The MODIS/Aqua image

in Fig. 2(d) shows similar patterns around the ring-shaped
slick bul less contrast in the non-emulsion Th locations com-
pared with the MERIS image in Fig. 2(b). Spectral analysis
in Fig. 2(h) shows negalive oil-waler contrast in the blue with
similar magnitudes to the MERIS spectra [Fig. 2(f)], resem-
bling strong blue-light absorption of non-emulsion [Fig. 1(b)].
Unlike Tig. 2(f) where oil-water contrast is negative cven
in the red-NIR wavelengths because of the presence of low
sun glint, there is negligible oil-water contrast in the red-NIR
wavelengths in Tig. 2(h) because sun glint is negligible. The
green waveleng(h (555 nm) shows posilive oil-waler contrast,
and we believe this is possibly an effect caused by mixed
pixels in patchy waters.

Fig. 3 presents two other examples from MERIS and
MODIS (30 min apart), respectively, in which, under negligi-
ble sun glint conditions, oil slicks of both ecmulsion, and non-
emulsion can be identified through spectral analysis. In several
randomly selected locations near the oil well (T1-T6), oil
spectra show typical decreased reflectance in the blue wave-
lengths [Fig. 3(¢) and (d)] in both MERIS and MODIS images
due to strong absorption in the blue, consistent with those from
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Fig. 4. (a) AVIRIS image captured on May 17, 2010 (run 10 at UTC 20:12) overlaid on the same-day MODIS Aqua image (negligible sun glint). Inset:

same-day MODIS Terra image (strong sun glint). Two regions (red rectang

long with AVIRIS s ) are sclected to show (b) and (c¢) oil-water spatial

contrasts and (d) spectral contrasts in using the same-day Landsat EIM+ (UTC 16:18), MODIS "lerra (UTC 16:40), MODIS Aqua (UTC 19:55), and AVIRIS.
Note the dramatic difference between TS and T3 on AVIRIS spectra, and dramatic difference between AVIRIS and other sensors on T3 and T5 spectra. The
local reflectance peaks around 645 and 859 nm in the MODIS Aqua spectra in (d) are due (o their different spatial resolution (250 m) from other bands

(1 km and 500 m) and due to oil patchiness.

laboratory measurements [23]. Some of the pixels do not show
negative contrasts in the blue or red-NIR wavelengths, likely
due to mixed pixels. Tor oil slicks that appear brownish in
the RGB images (T7 and T8), both MERIS and MODIS show
increased reflectance toward longer wavelengths, resembling
those reported in Clark et al. [22] for oil emulsion [Fig. 1(b)].
In the MODIS spectra there are several spikes al 645 and
859 nm; because ol different resolutions—these bands have
nadir resolution of 250 m, while most other bands have nadir
resolution of 1 km or 500 m, therefore they do not measure
the same arca, causing discontinuity in the spectra.

2) Higher-Resolution Landsat and AVIRIS Imagery: Oil
slicks are known to be patchy, leading to mixed pixels in
coarse-resolution imagery from MODIS and MIERIS as well
as from Landsat [32]. On the other hand, the high-resolution
(7.6 m) AVIRIS data, especially with the hyperspeciral
capacily o the SWIR wavelengths, can be used (0 gauge
the coarse- and medium-resolution multiband sensors on their
ability (o dilferentiate oil type and estimate oil thickness. The
examples shown in Fig. 4 demonstrate the comparison among
these sensors observed within 3.5 h in the same day over the
same oil slicks.
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Specifically, AVIRIS collected data along the southwesi—
northeast transect (run 10) on May 17, 2010 [Fig. 4(a)],
in which Landsat ETM+, MODIS/Terra, and MODIS/Aqua
data were also collected under different sun glint condi-
tions, In this set of images, both Landsat and MODIS/Terra
images are under strong sun glint (Lgy >~ 0.005 sr=! in
region 1), and MODIS/Aqua and AVIRIS are under negligible
sun glint,

Two regions were selected to diagnose and interpret the
oil-water spatial and spectral contrasts, with Region 1 closer
to the oil well showing more oil slicks. Oil-water reflectance
difference for selected locations from all four sensors is
presented in Fig. 4(d) in two groups as follows:

1) Landsat ETM+ and MODIS/Terra images (20 min apart)
with strong sun glint, Similar to the previous MERIS
and MODIS images with strong sun glint, the oil-water
spectral contrast is rather flat, with positive contrast
in most locations but slightly negative contrast in one
location (TS5, in Landsat ETM+) because of lower sun
glint. Overall, because of the modulation of sun glint to
the spectral shapes, it is difficult to interpret these spectra
in relation to oil type and oil thickness, especially when
considering the mixed pixels from these medium- and
coarse-resolution images.

2) MODIS/Aqua and AVIRIS images (20 min part) with
negligible sun glint. For region 1, both images show
brownish colors. MODIS/Aqua has much larger pixels
than AVIRIS, causing the features to be smeared. In this
region, all T1-T4 locations show elevated reflectance
in the NIR-SWIR wavelengths, indicating possible oil
emulsion. The corresponding AVIRIS spectra confirm
this observation except at T4. However, the contrasting
spectra at ‘T4 between MODIS/Aqua and AVIRIS do
not indicate inconsistency; it is simply a result of pixel
resolution. Likewise, for T5 in region 2, the dramatic
difference between MODIS/Aqua and AVIRIS spectra
is also due to their different resolutions: while AVIRIS
is focused on an oil emulsion pixel, most surrounding
pixels contain oil-free water or very thin oil films,
leading to smeared MODIS/Aqua pixel for T5.

From these comparisons, one may conclude that: 1) with
the presence of strong sun glint, interpretation of oil-water
spectral contrast is more difficult than with negligible sun glint;
2) under the latter circumstances, oil-water spectral contrast
can be dramatically different between coarse-resolution and
high-resolution sensors because of oil patchiness and mixed
pixels; and 3) although the presence of sun glint facilitates
visualizing oil-water spatial contrast, differentiating the oil
type and estimating oil thickness are more feasible without
strong sun glint. Indeed, the AVIRIS example in Fig. 4
clearly shows its potentials for differentiating oil type and
eslimating oil thickness, where most of those C-H absorption
signatures [22], [24] in the NIR-SWIR wavelengths (~1200,
1700, and 2300 nm) are clearly visible [Fig. 4(d)].

These comparisons show that sun glint strength is an impor-
tant factor affecting oil-water spatial contrast. Further analysis
of oil slicks from natural oil seeps in the GoM provided more
quantitative estimates of the perturbation of sun glint to oil-
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Fig. 5. Oil-water contrast (i.e., Ry difference between oil pixels and nearby
oil-free pixels) versus sun glint strength (LgN). calculated from =300 natural
slicks in the Gulf of Mexico using MODIS data. When Ly 1s < 0.001 sl
(red line). oil-water contrast of natural oil slicks (mostly thin films from
natural seeps) is very small, thus will not impact the interpretation of oil-water
contrast from oil emulsions, because the latter is dominated by the contrasting
optical properties of oil and water. Thin oil turns to show positive contrast
with water (at 859 nm) when Lgy is =~0.025 sr! {green line).

waler contrast for thin oil films, as shown in Fig. 5. More than
300 natural slicks were used in this analysis using the method
described in Sun and Hu [18]. When Lgy is < 1E-03 sr~! (red
line in Fig. 5), oil-water reflectance contrast from the natural
slicks (mostly thin oil films) is very small in the NIR band. For
oil emulsion, such small modulations would be overwhelmed
by the elevated NIR (and SWIR) reflectance from the oil
pixels, thus would not impact the image interpretation. For
stronger sun glint strength (e.g., > 0.01 sr~!), interpretation
of different oil types would become difficult.

3) Multiangle Imagerv: On May 17, 2010, in addition
to Landsat, MODIS, and AVIRIS [Fig. 4], MISR images
over the same DWH oil spill region were also obtained
[Fig. 6]. The nadir-viewing image has the highest sun glint
(Lgn = 6.6E-02 sr~'), where oil-water spatial contrast
is always positive regardless of the oil type, oil thickness,
or spectral bands [Fig. 6]. At a view angle of £+26.1°, sun
glint decreased to 1.OE-02 sr~! and 8. 4E-04 sr~!, respectively,
when thin oil showed negative oil-water contrast but thicker
oil still showed positive contrast. This negative to positive
contrast reversal can be visualized clearly along the artificial
transect (dashed red line) in Fig. 5. Furthermore, some reddish
slicks appear. for example, in the green outlined region.
Because the 867 nm band was used as the red channel in the
RGB composite, the reddish color results from enhanced NIR
reflectance, indicating oil emulsion. When the viewing angle
increased further, sun glint decreased, but the general spatial
contrast patterns for the three types of oil (i.e., thin, thicker,
and emulsion) remain the same even though the magnitudes
of contrasts change with the viewing angles. However, at large
angles (>607) when sun glint is negligible, oil-water contrast
for thin oil starts to disappear, a result that is consistent
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i

with [18] which concluded that under negligible sun glint
(Len = 1E-06 sr*]) thin oil films cannot be observed in
coarse-resolution imagery.

These observations are further demonstrated in Fig. 7,
in which oil-water contrasts from three representative oil
types: thin, thick, and emulsion. Under relatively low sun
elint (Lgx < 1E-04 sr™1) oil emulsion is dramatically
different from the other (wo Lypes, where there is significant
enhancement in the NIR reflectance. The other (wo Lypes
under low sun glint have more enhancement in the blue
wavelengths than in the NIR wavelengths. When sun glint
is extremely strong (nadir view), the magnitude of oil-water
contrast between oil emulsion and non-emulsion thick oil
reverses, with the latter being higher, What is interesting is that
under low sun glint, the oil-water contrast has a spectral shape
dramaltically different from those of the laboratory experiments
of Wettle et al. [23]; although the former shows a decrease
in contrast with increasing wavelengths, the latter shows the
opposite. This is possibly because of the different water types
between the northern GoM and the laboratory experiments,
but it does suggest difficulty when applying rules established
from laboratory experiments to the real environment.

=

Tig. 6. Talse color RGB (R: 867 nm, G: 558 nm, and B: 446 nm) composite MISR images taken at UTC 16:43 (at nadir, 4 min among all cameras),
May 17, 2010 in nine camera view angles, with sun glint strengths (from black arrow pointed thick oil regions) annotated. Positive angles indicate forward
looking and negative angles indicate backward looking. Oil slicks can be clearly visualized at three angles: nadir. 26.1° and —26.1°. Tor images collected at
other angles, it is difficult to visualize the oil-water contrast, although oil emulsion (reddish color) in the green outlined region can be discerned. Black arrows
indicate thick slicks. Annotated crosses on camera angle 26.1° image displayed spectral diagnose [Fig. 7] locations of oil emulsion (red cross), non-emulsion
thick oil (yellow cross) and thin oil (green cross). The dashed red line is an arbitrary transect to show reflectance changes across oil and water. shown in Fig. 8.

Fig. 8 shows (he spatial contrast of two MISR bands,
at 446 and 867 nm, respectively, along the artificial transect
across oil-free water, thin oil, thick oil, and oil emulsion.
Similar to previous results, strong sun glint on three of the
close to nadir view cameras makes it difficult to interpret oil
types, while stronger oil-water contrast is found at 867 nm
than at 446 nm under low sun glint, suggesting that the use
of NIR bands is preferred over blue bands for observing oil
emulsions.

C. Simple Stepwise Model to Classify Oil Types

Although the laboratory and remote sensing observations
above are not always consistent, several rules may be summa-
rized as follows.

1) Under strong sun glint (Lgy > 1E-03 sr=1), all
laboratory-established rules may fail. Not only is the
oil-contrast significantly enhanced for all oil types
[Fig. 5], but also the spectral shapes between visible
and NIR (and some SWIR) wavelengths also change.
Therefore, interpreting oil-water contrast and differen-
tiating oil types becomes very difficult. On the other
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hand, the presence of strong sun glint makes oil detec-
tion (presence/absence) much easier, because oil-water
contrast for thin oil films may disappear under negligible
sun glint (Lgy < LE-06 st—1) [18].

Under weak sun glint (Lgy < 1E-03 sr™' but
= 1E-06 sr~1) [Fig. 5], it is possible to differentiate the
three oil types: thin, thick, and emulsion. The last type
has enhanced NIR reflectance that can be differentiated
easily from the other two, thick oil has higher reflectance
in the red than thin oil,

3) Under negligible sun glint (Lgny < 1E-06 sr™h),
oil-water contrast for thin oil starts to disappear [18],
but the rules to differentiate thick non-emulsion from
emulsion still holds true.

While the second rule is known from the Clark ef al. [22]
experiment, the other two rules can be observed only through
remole sensing imagery analysis and not generalized from
previous lab-based experiments.

Based on these observations, a three-step simple classifica-
tion scheme was developed to classify oil type and relative
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oil thickness for each type using multiband data from AVIRIS
measurements. Specifically, five bands of AVIRIS were used
in the scheme: blue (472 nm), green (560 nm), NIR (860 nm),
and SWIR (1612 and 2208 nm). These three steps are as
follows,

1) Determine and delineate oil pixels using spatial con-
trast on each pixel. A crude oil-water boundary
was first determined through visual inspection, Then,
a 201 x 201 kernel was applied to each oil pixel to find
all nonoil pixels within the kernel, from which mean and
standard deviation of reflectance were calculated. If the
oil pixel showed a difference (from water) of < 2x stdev
in all five bands, it was reclassified as a nonoil pixel.

2) Classify oil types from the delineated oil pixels into two
types: emulsion and non-emulsion. If an oil pixel has a
contrast (referenced against the nearest nonoil pixels)
= 2% stdev of the nearest nonoil pixels in all the three
NIR and SWIR (860, 1612, and 2208 nm) bands, it is
classified as oil emulsion, otherwise it is classified as
non-emulsion.

3) Estimate relative oil thickness for both oil types. Oil
emulsion was quantified using the band ratio of SWIR
(1612 nm) to blue (472 nm): higher ratios indicate
thicker oil [22]. Non-emulsion was quantified also using
the band ratio of SWIR (1612 nm) to blue (472 nm):
higher ratios indicate thicker oil, according to the spec-
tral analysis above.

The three-step classification scheme (hereafter referred to as
multiband approach) was applied to multiband data extracted
from the hyperspectral AVIRIS data collected on May 17,
2010, with results shown in Fig, 9. Clearly, the classification
results in Fig. 9(b) agree well with the visual inspection of the
RGB image in Fig. 9(a). To further evaluate the performance of
the multiband approach, results from the USGS hyperspectral
approach by Clark et al. [22] (hereafter referred to as the
USGS approach or hyperspectral approach) are presented
in Figs. 9(c) and (d) and 10. The USGS approach has been
used to quantitatively map oil volumes for a large area [35].
which were used in the oil budget calculations for the DHW
oil spill [26], [36].

Fig. 9(c) shows that the USGS approach resulted in sim-
ilar spatial distribution patterns of oil emulsion as those
from the multiband approach [Fig. 9(b)], yet the former has
smaller footprint. This is because the USGS approach [22]
was designed to map only thick emulsions as opposed to
thin emulsions and non-emulsions, therefore representing a
conservative estimation. In contrast, the multiband approach
not only identified the same pixels of thick oil emulsions,
but also detected thin oil emulsion and non-emulsion pixels,
as shown in Fig. 9(b) and (d). A total of 14 205 AVIRIS pixels
(Table T) were classified as oil emulsion by the multiband
approach, 2616 of which agreed with the USGS-derived oil
emulsion pixels [Fig. 9(¢c)]. These 2616 pixels actually repre-
sent =>99.8% of all oil emulsion pixels identified by the USGS
approach [Table I]. The reflectance spectra of these 2616 pixels
display typical features in the NIR and SWIR bands for oil
emulsion [Fig. 9(d)]. Yet the oil emulsion pixels only identified
by the multiband approach also show similar features in the

TABLE 1

COMPARISON BETWEEN NUMBERS OF AVIRIS PIXELS CLASSIFIED AS
THREE TYPES (EMULSION, NON-EMULSION, AND WATER) FROM THE
MULTIBAND APPROACH PROPOSED IN THIS PAPER AND NUMBER
OF O1L EMULSION PIXELS DETERMINED FROM THE USGS
HYPERSPECTRAL APPROACH [22] FOR THE
AVIRIS IMAGE SHOWN IN FIG. &

# of USGS oil
AVIRIS # of Pixels cmulsion pixels
Pixel Type (this study) classified as the three
types in this study
Emulsion 14205 2616
Non-Emulsion 16021 2
Water 329618 3
Total 359844 2621

NIR and SWIR although at lower magnitudes [“additional
emulsion: this paper” in Fig. 9(d}]. suggesting the validity of
the multiband approach in identifying both thick oil emulsions
and thin oil emulsions. Those spectral features are clearly
different from the non-emulsion oil pixels [Fig. 9(d}]. whose
spectra are close to water reflectance in the NIR and SWIR
bands but different from water reflectance in the blue—green
bands. These results agree well with the spectral characteristics
determined from laboratory measurements in the absence
of sun glint, thus confirming the validity of the multiband
approach in classifying oil types. Furthermore, the relative
thickness estimated from the oil emulsion pixels using the
multiband approach is tightly related to the absolute thick-
ness estimated from the USGS approach from the common
oil emulsion pixels (R = 0.857, n = 2616, p < 0.05,
unbiased mean relative error (UMRE, defined in the following
equation) = 50%, as shown in Fig. 10), suggesting the validity
of the multiband approach in quantifying relative oil thickness:

(i — Vi

1 <& X
UMRE = — _ 1
n;‘ (N

0.5x; + 0.5y,

where x; and w; represent oil thickness estimated from
the multiband approach (this paper, after regression) and the
USGS hyperspectral approach [22], respectively. Note that the
data pairs do not appear to be in parallel with the regression
line because of: 1) the uneven data density in both ends of the
regression line and 2) different emulsion state (i.e., different
oil-to-water ratio in the emulsion), which may lead to different
relationship between the hyperspeciral results and multiband
results. However, despite the relatively large data spread,
the overall patterns between the hyperspectral and multiband
results agree well with guantified uncertainties (~50% in this
case).

Although AVIRIS provides hyperspectral data, the multi-
band approach used only five bands that are often available
in the commonly used multiband satellite sensors such as
MODIS, Landsat-8 Operational Land Imager, and Sentinel-
2 MultiSpectral Instrument. Therefore, the approach should
be applicable to those multiband sensors even though these
sensors have coarser resolution than AVIRIS. An example is
shown in Fig. 11, where the MODIS-derived relative thickness
and AVIRIS-derived oil thickness show similar spatial distri-
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Tig. 9. Demonstration of a three-step classification scheme to determine oil type and thickness using selected AVIRIS bands from region 2 in Fig. 4. The

first is to determine oiled pixels from the oil-water spatial contrast. The sccond is a classification of such determined oiled pixels in two categories: oil
emulsion and non-emulsion. The third is to classify relative oil thickness in both categories. (a) AVIRIS image taken on May 17, 2010. The RGB (R: 638 nm,
G: 550 nm, and B: 463 nm) image shows the color difference between oil emulsion and non-emulsion, with inset figures showing the location of AVIRIS
image in the GoM. (b) Multiband classification results of oil emulsion and non-emulsion and their relative thickness. (¢) Oil emulsion determined {rom the
hyperspectral data using the USGS approach [22]. Tlere the oil emulsion thickness was calculated as oil volume divided by the pixel size (7.6 x 7.6 |112].
The entire map is openly available at https:/pubs.usgs.gov/of/2010/1167/downloads/figure16¢-geotiff.tif. (d) Mean and standard deviation spectra of several
classified pixels, using both the USGS approach and the approach developed in this paper. “Oil Emulsion: USGS” indicates the oil pixels identified by the
TUSGS hyperspectral algorithm by Clark ef al. [22]. “Additional emulsion: this paper”™ and “non-cmulsion: this paper” indicate the oil pixels identified by the

multiband algorithm developed in this paper which were not identified by the USGS algorithm.

bution patterns. Indeed, the capacity of multiband MODIS
in estimating oil volume (and therefore thickness) has been
demonstrated in Hu et al. |37] but due to the presence of
strong sun glint a different approach was used to scale AVIRIS
eslimates using MODIS data. In the example of Fig. 11,
because of negligible sun glint, the multiband approach can
be applied to MODIS Ry data to estimate the relative oil
thickness.

IV. DISCUSSION
A. Oil Quantification Under Idealized Conditions

Based on the contrasting results from Wettle et al. [23] for
crude oil (i.e., non-emulsion) and Clark ef al. [22] for oil

emulsion, if oil-water contrasts in the real environment were
the same as in those lab-based experiments, it would be rather
simple to differentiate oil type and quantify absolute (instead
of relative) oil thickness. Specifically, the first two steps to
delineale oil and dillerentiate oil types would be identical as
in Section IIT-C, bul the last step would be different. In the last
step, once pixels of oil emulsion are determined, the lookup
table approach proposed by Clark et al. [22] can be used to
determine the absolute oil thickness. Also in the last step,
for pixels of non-emulsion oil, a simple two-layer radiative
transfer model could be used to determine the absolute oil
thickness, as shown in the following.

Assuming a (wo-layer system where the top layer is oil
and the bottom layer is waler, [ollowing the literature for
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(zem, y-axis) and multiband-derived relative thickness (dimensionless, x-axis)
from common oil emulsion pixels in Fig. 9.

modeling two-layer systems [38], the pixel’s reflectance R can
be expressed as

R 7 Ro(l — e 28T 4 Rye KT )

in which R, is the oil reflectance when the oil layer is very
thick (in practice, further increases in thickness would not lead
to reflectance change), Ry, is reflectance of the underneath
water (assuming to be same as nearby oil-free water), K is
the oil diffuse attenuation coefficient (assuming the same for
downwelling and upwelling, thus the factor of 2), and T is the
thickness of the oil layer. In (2), the reduction of reflectance
in the first term. Roe™ X7, is compensated for by the water’s
contribution below the surface layer, R,,e™2KT,
Then, we can derive the oil thickness as

1 Rw*RO
T=—In|—2 2 3
QKH(RfRO) @)

From (3), when both K and R, are known from the
laboratory measurements, in remote sensing imagery because
R, from oil-free pixels can be derived after atmospheric
correction, for each R (from the oil pixel) 7" can be derived.
From the Wettle et al. [23] experiment [Fig. 1(c)], a numer-
ical regression between R and T can be used to estimate
K and R,, which can be applied to remote sensing imagery
if oil optical properties in the ocean are the same as those in
the experiments.

Of course, oil in the real environment may be different. For
example, instead of Ry < R, [i.e., oil is darker than water,
as in Fig. 1(c)], Ry may be higher than R,,. However, in this
case both (2) and (3) still hold true, therefore T can still be
derived for each R if K and R, are known. When they are
unknown, a number of oil pixels can be used to determine
K and R, through numerical nonlinear regression using the
functional form of (2). The classification of relative thickness
of non-emulsions in Fig. 9(b) followed this principle.

B. Challenges in Oil Quantification Under
Realistic Conditions

The above conceptual scheme is for idealized situations.
Realistically, in addition to the complexity of measurements
in the real ocean environment, difficulty also comes from
the different results from laboratory measurements alone.
For example, the response of oil-on-water reflectance (o
increased oil thickness has been shown to be different between
Fig. 1(c) (monotonic changes in the blue—green wavelengths)
and Fig. 1(d) and (e) (more dramatic changes in the red
wavelengths when oil is relatively thick). This may be a result
of different crude oil types and different water properties
beneath the oil layer, but these contrasting results do cause
additional difficulty when interpreting remote sensing images,
especially when the optical properties of both oil and water
may be different from those of the laboratory experiments.
One such example [Fig. 1(f)] is shown in Svejkovsky and
Muskat [25].

Regardless of the different experimental results for non-
emulsions, the biggest challenge comes from the changing
observing conditions and complexity of the real environment.

1) Sun Glint “Contaminations”: While the presence of
sun glint (Lgn > 1E-06 sr™!, [18]) greatly facilitates
oil detection, it also distorts the spectral shape of
oil-water conirast, making oil thickness interpretation
more difficult [Figs. 2, 4-6, and 8]. When sun glint is
extremely strong (Lgn = 1E-02 st~ 1), because sun glint
is red rich in reflectance (similar to the sunset), distor-
tion makes it difficult to separate non-emulsion from
emulsion pixels [Fig. 7]. Clearly, for oil classification,
strong sun glint should be avoided. Under weak sun
glint (Lgy between 15-03 st~! and 1E-06 sr™1), oil
classification (thin, thick, and oil emulsion) is possible
with the established rules. Although it is unclear whether
quantifying absolute oil thickness is still possible due (o
the modulated reflectance shape, it may still be possible
to quantify relative oil thickness because the modulation
is unlikely to change the principle of band ratios.
Mixed Pixels: Oil slicks are typically very patchy due
to complex physical and chemical processes at different
scales [22], [39]), resulting in mixed pixels. Using
statistics of AVIRIS observations, Sun and Hu [32]
concluded that even for Landsat 30-m resolution pixels,
very few pixels are covered largely by thick oil. For
coarser-resolution imagery from MODIS, MERIS, and
MISR, only a small portion of any oil pixel is covered
by thick oil (this is why the spectra from MODIS
250 and 500 m land bands and 1 km ocean bands do
not appear smooth). In turn, the reflectance spectrum
of the oil pixel can be a mixture of thin oil, thick oil,
and oil emulsion. Because of this, oil-water spectral
contrast can be different from any laboratory measure-
ments, making interpretation difficult. Indeed, none of
the coarse-resolution oil-waler contrast spectra shown
above matches perfectly with those from laboratory
measurements, even under negligible sun glint. Mixed
pixels may be the primary cause of this discrepancy.

o]
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Fig. 11.  Comparison between (Top) multiband MODIS and (Bottom) Hyperspectral AVIRIS for their derived oil thickness from the classified oil emulsion
on May 17, 2010. The region corresponds to region 1 in Fig. 4, and the (a) and (¢) RGB images in the left column are the same as those in Fig. 4. (b) Relative
oil thickness image derived from MODIS multiband Ry data (469, 555, 645, and 859 nm) using the methods proposed in this paper. Instead of using NIR
and SWIR bands to classify oil emulsion, 645 and 859 nm bands were used for the MODIS classification here because of their higher spatial resolution (250
versus 500 m), which provide more detailed information. Accordingly, the band ratio of 859469 nm was used in quantifying the oil emulsion thickness. (d)
Absolute oil thickness image derived from AVIRIS hyperspectral data by the USGS [22] after binning to 250 m resolution. The MODIS bands have nadir
resolutions of 250-500 m, but for this scan-edge image the resolution is about 1-2 km.

3) Different Water Types: In the laboratory scttings, water
reflectance is often higher than oil reflectance in the
blue—green bands, resulting in negative oil-water con-
trast, and the contrast becomes stronger with increas-
ing oil thickness. In the real environment, because of
high absorption in the blue—green bands by colored
dissolved organic matter, water reflectance can be lower
than oil reflectance. This is believed to be the rea-
son why positive oil-water contrast is observed from
coarse-resolution imagery under negligible sun glint.
Insufficient Spectral Resolution: Although the C-II
absorptions [22], [24] in wavelengths around 1200,
1730, and 2300 nm [Fig. 1(a) and (b)] can be well
captured by hyperspectral sensors such as AVIRIS, they
cannot be captured by typical multiband sensors such
as MODIS and T.andsat. Therefore, although multiband
data can differentiate oil emulsions from others, the esti-
mation of oil thickness is only relative.

Finally, the most significant challenge is how to validate the
remote sensing interpretations. Even if oil thickness can be
determined accurately from in sity measurements (not shown
in the current literature), it is still extremely difficult to use
these measurements (o validale remole sensing interprelations
because ol the difficulty in malching in situ measurements
with image pixels that have large pixel size and oil patchiness.
Nevertheless, developing reliable in situ methods L0 measure
oil thickness in the ficld appears to be the most critical need
for oil spill remote sensing rescarch.

4

Ny

C. Recommendation for Future Efforts

In the absence of high-spatial high-spectral satellite or
airborne measurements, it appears that the best achievements

from coarse-resolution multiband measurements are classifica-
tion of oil types and relative thickness, if strong sun glint is
avoided during the measurements. Indeed, because of elevated
reflectance of oil emulsions in the NTR and SWIR bands, false-
color RGB images incorporating these bands may also be used
to qualitatively separate oil emulsions from non emulsions
(¢.g., Sun et al. [40]). Although the ability to classify oil types
and estimate relative oil thickness is very useful, especially
when determining the location of “actionable™ oil (i.c., can
be burned or skimmed) in near real time, yet more work is
required to determine absolute oil thickness. From the exam-
ples and discussions above, it is proposed that the following
are in immediate need to advance oil spill quantification:
First, more lab-based measurements are required to fully
understand oil-water spectral contrast under different emulsi-
fication conditions and different water environments. To sim-
ulate the real environmenl, the water tank needs Lo be large
enough (o minimize (he impact of internal reflection. Realistic
ocean water, with various waler turbidity and CDOM content,
needs to be used in the tank to simulate the real environment.
Given that there are only a handful of published laboratory
experiments in the literature, more is needed to better under-
stand oil-water contrasts. Second, innovative in sifu techniques
to measure oil thickness in the field need to be developed. Tven
il oil slicks are patchy, repeated oil thickness measurements
in a large area may provide statistically meaningful data to
validate remote-sensing-based interpretations. Finally, unlike
studies of ocean’s biogeochemical propertics where field mea-
surements can be well planned to determine the optimal
sampling time and location, most oil spill studics arc results
of oil spill response without strategic planning. This is simply
the nature of the problem. Ilowever, there are many natural
seeps in different ocean basins (e.g.. GoM, [41]), as well
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as continuous spills from damaged oil platform locations
(e.g., the Taylor platform, [42], [43]). These may serve as
natural laboratories to design field measurements together with
airborne remote sensing to develop, improve, and validate
algorithms.

In any case, all results and discussions in this paper refer
to optical remote sensing from the visible o the SWIR
wavelengths, There are other techniques (beyond the scope
of this paper) to estimate relative oil thickness, for example
through thermal remote sensing [44], [45] and SAR remote
sensing [5], [9]. It is desirable to compare the multiband
approach described here with those published in the literature
for a cross validation in future studies.

V. CONCLUSION

Optical remote sensing is one of the key techniques used
routinely to study oil spills, but interpretation of oil-waler
spatial and spectral contrasts is challenging because of differ-
ent results from laboratory experiments, variable observation
and ocean conditions, and lack of sufficient spatial and spectral
resolutions from most satellite sensors. However, through
inspection of the oil-water spectral contrasts from several
multiband and hyperspectral measurements of the DWH oil
spill and by comparing the laboratory experimental results,
it is shown that regardless of the technical challenges, it is
still possible to separate oil emulsions from non-emulsions
under most circumstances, and it is possible to classify rela-
tive oil thickness for both oil emulsions and non-emulsions.
Meanwhile, the conditions under which such classifications
are possible are discussed, and the immediate future efforts
required to improve such interpretations are also proposed.
Although still preliminary in nature, we hope that this paper
may help the research community to improve interpretation
of remote sensing imagery of oil spills, and help design
future laboratory and field experiments to improve and validate
algorithms.
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Sun glint requirement for the remote
detection of surface oil films
Shaojie Sun' and Chuanmin Hu'

TCo\lege of Marine Science, University of South Florida, St. Petersburg, Florida, USA

Abstract Natural cil slicks in the western Gulf of Mexico are used to determine the sun glint threshold required
for optical remote sensing of oil films. The threshold is determined using the same-day image pairs collected by
Moderate Resolution Imaging Spectroradiometer (MODIS) Terra (MODIST), MODIS Aqua (MODISA), and Visible
Infrared Imaging Radiometer Suite (VIIRS) (N'= 2297 images) over the same il slick locations where at least one of the
sensors captures the oil slicks. For each sensor, statistics of sun glint strengths, represented by the normalized glint
reflectance {Lgn, st ), when oil slicks can and cannot be observed are generated. The Lgy threshold for oil film
detections is determined to be 107 °~10"®sr™' for MODIST and MODISA, and 10 °-107sr " for VIIRS. Below
these thresholds, no oil films can be detected, while above these thresholds, oil films can always be detected
except near the critical-angle zone where oil slicks reverse their contrast against the background water.

1. Introduction

In addition to synthetic aperture radar (SAR) and other active sensors, passive optical remote sensing using
reflected sunlight has also been used to detect and monitor oil spills in the marine environments [Brekke and
Solberg, 2005; Fingas and Brown, 1997, 2014; Leifer et al,, 2012; Garcia-Pineda et al., 2013]. The principle of oil
detection on the ocean surface using SAR is through oil's dampening of surface capillary and short gravity
waves under certain wind conditions, resulting in reduced Bragg scattering signal and negative oil-water con-
trast in SAR imagery. In contrast, optical remote sensing of oil spill is based on the difference between oil and
water’s optical properties (absorption and scattering) in addition to the same wave damping effect as observed
in SAR imagery. The latter effect makes it possible to observe thin oil films in optical remote sensing imagery
under sun glint conditions [Adamo et al., 2009; Chust and Sagarminaga, 2007; De Carolis et al., 2014; Hu et al.,
2009; Jackson and Alpers, 2010; Macdonald et al, 1993]. In particular, Hu et al. [2009] reported that oil slicks from
natural seeps of the Gulf of Mexico (GoM) can be observed only when sun glint is present in the Moderate
Resolution Imaging Spectroradiometer (MODIS) imagery. However, the strength of sun glint required to detect
thin oil films has never been quantified objectively. It is therefore difficult or even impossible to answer the fol-
lowing question: if a cloud-free image does not show oil slicks, is it because there is no oil or because oil is not
detectable under that observing condition? Being able to answer this question is of critical importance to avoid
false negative detection. Thus, the objective of this study is to determine the sun glint threshold required for
detecting thin oil films in optical remote sensing imagery. This is achieved through comparing same-day
(usually within 1-2 h) imagery of multiple sensors over the same natural seeps.

2. Data and Methods

Instead of using a theoretical approach [e.g., Otremba and Piskozub, 2001, 2003; Otremba et al,, 2013], the sun
glint threshold in this study is determined through statistical analysis of multisensor imagery collected on
the same day. Such an analysis has two critical requirements: (1) oil slicks must be sufficiently thin so that their
modulation to the remote sensing signal is primarily through the wave damping effect and (2) there are
simultaneous measurements of the same oil slicks by two sensors, with oil slicks captured by at least one of
them (to assure there is indeed oil on the surface). For this reason, the natural oil slicks in the GoM are used
together with two MODIS sensors (on Terra and Aqua, respectively) and the recently launched Visible
Infrared Imaging Radiometer Suite (VIIRS).

2.1. GoM Natural Oil Slicks

Oil has its own optical properties, characterized by strong absorption in the short wavelengths and an exponential
decay toward longer wavelengths [Byfield, 1998; Howari, 2004; Ma et al,, 2009]. Emulsified oil is also characterized
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by strong scattering in the red-NIR (near-infrared)-SWIR (shortwave infrared) wavelengths, making oil appear dark
reddish [Clark et al, 2010]. Thick or emulsified oil, for example, during the Deepwater Horizon oil spill, can thus be
captured by MODIS imagery without sun glint [Hu et al, 2011]. To determine the sun glint threshold, the oil-water
contrast modulation through oil’s optical properties must be minimized, making it necessary to use thin oil films
to test the detectability under various sun glint strengths. The western GoM has long been known to have thin oil
slicks from natural seeps [Garcia-Pineda et al,, 2010; Hu et al, 2009; Macdonald et al.,, 1993]. These natural oil slicks
are very thin, usually 1 um or less, due to the high evaporation rate during their initial spreading after reaching the
ocean surface from the ocean floor [MacDenald et al, 2002]. The modulation of the surface reflectance by these
thin sheens is mostly through specular reflection [Adamo et al,, 2009], thus making them suitable for the purpose
of determining sun glint threshold.

2.2. Remote Sensing Data and Processing

MODIS Terra (MODIST) and MODIS Aqua (MODISA) Level 0 data between 2012 and 2014 were obtained from
NASA Goddard Space Flight Center and processed to calibrated radiance (Level 1B) using the SeaWiFS Data
Analysis System (SeaDAS, version 7.0). Then, ozone and Rayleigh correction were applied to generate
Rayleigh corrected reflectance (R, for all spectral bands, which were then mapped to a rectangular
projection at approximately 250 m per pixel to match the nominal resolution of the 645 and 859 nm bands.
The 500 m resolution bands of 469 and 555 nm were resampled to 250 m using a sharpening scheme. R, data
at 645,555, and 469 nm were used to compose the red-green-blue (RGB) images for visual inspection. During
this processing, the solar/viewing geometry (solar zenith, sensor zenith, and relative azimuth angles) for each
pixel was also recorded.

VIIRS Level 1 calibrated radiance data for the imagery bands (640, 865, and 1610 nm, 375 m resolution)
between 2012 and 2014 were obtained from the NOAA Comprehensive Large Array-data Stewardship
System and then mapped to a rectangular projection. To coregister with the MODIS images for cross compar-
ison, the VIIRS data were resampled to 250 m resolution, and RGB images were generated using the 1610 (R),
640 (G) and 865 nm (B) bands. Similar to MODIS processing, the solar/viewing geometry for each pixel was
recorded during the map projection. Although due to technical difficulties R,. data were not generated, this
study relies on the spatial contrast between adjacent oil and oil-free pixels, and the use of total radiance
instead of R, will therefore not impact any image interpretation or result.

2.3. Estimating Sun Glint Strength

Following the published literature for ocean color data processing [Wang and Bailey, 2001a; Zhang and Wang,
2010}, sun glint strength was defined as the normalized sun glint reflectance (Lgy, in units of sr ). Based on
the evaluation of several models using MODIS data, Zhang and Wang [2010] showed that the Cox and Munk
[1954] model performed the best and therefore was selected to estimate Lgy. The model inputs included
wind speed (to estimate the surface roughness) and solar/viewing geometry.

Wind speed data (4times a day) between 2012 and 2014 were obtained from the National Centers for
Environmental Prediction (NCEP). The NCEP wind product was gridded at 1° but was interpolated to 1km
resolution during processing [Wang and Bailey, 2001a]. For each MODIS or VIIRS pixel, with known wind speed
and solar/viewing geometry, Lgy was then derived using the above model.

2.4, Determine Lgy Threshold for Oil Film Detection

All images were visually inspected first, from which a total of 742 MODIST images, 735 MODISA images, and
820 VIIRS images were found to contain minimal cloud cover. These images were used to determine the Lgy
threshold for each sensor through the following steps.

1. Determine natural oil slicks from each image. Each RGB image was visually inspected using the color
stretch functions in software Environment for Visualizing Images (ENVI, version 4.8) to detect spatially
anomalous and elongated features as oil slicks tend to be elongated [Sun et al., 2015]. An objective
analysis was used to test whether the slick was statistically different from its surrounding water, which
calculated the difference between the pixel of interest and a 40 x 100 pixel window centered at the pixel.
If the difference was greater than 2 standard deviations from the mean value of the window, the pixel was
then classified as a statistically significant anomaly. The anomalies were compared with those determined
from other coregistered images using the same method. Recurrent anomalies at the same locations were
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regarded as oil slicks from natural seeps. In short, a spatially anomalous (after color stretch) feature was
regarded as a natural oil slick if {1} it is elongated, (2) it is recurrent in the same location, and (3) its spatial
contrast from surrounding waters is above 2 times standard deviation.

2. Determine Lgy threshold for each sensor. To determine Ly threshold for MODIST, each of the MODISA
and VIIRS images containing oil slicks was searched for its same-day MODIST image. Once the MODIST
image was found, Lgy from MODIST for the oil slick location (identified by either MODISA or VIIRS) was
recorded. Note that here the emphasis is the location instead of oil slick, as the MODIST image may or
may not reveal such slicks even though oil is known to exist at that time and location (from MODISA or
VIIRS). Together with the already established records for MODIST oil slicks and their associated Ly, a
library was created where each case of oil slick presence/absence in MODIST imagery was associated with
an Lgy value. Such a library was used to generate statistics (histogram) to determine below which Lgy
value (i.e., threshold) oil slicks could not be detected in MODIST imagery and to determine above which
Lgy value oil slicks could always be detected in MODIST imagery. The same method was applied to
MOIDSA and VIIRS, with thresholds determined for each sensor.

3. Results

Figure 1 shows several examples of the same-day image pairs where one sensor revealed oil presence
(first and second columns) while the paired sensor showed either oil presence or absence {third column).
The corresponding Ly value is annotated on each image. Figure 1a shows a case where both VIIRS and
MODISA revealed oil presence, where statistically significant anomalies were found over the slick pixels.
Figure 1b presents another case where the paired MODIST and VIIRS images both show oil slicks but with
opposite contrasts. The other three cases (Figures 1c-1e) are examples where one sensor shows oil presence
but the paired sensor does not.

A total of 2297 images between 2012 and 2014 (742 MODIST, 735 MODISA, and 820 VIIRS) were examined.
Of these, 136 images were found to show oil slicks, but these slicks were not detected by the same-day
images from other sensors; 167 same-day image pairs (from different sensors) were found to show oil slicks
at the same locations. The remaining images were not appropriate for the study purpose because they either
contained significant amount of cloud cover, did not form same-day image pairs, or did not show oil slicks in
either of the paired images.

The statistical results are displayed in histograms in Figure 2 to facilitate visualization and determination of
the Lgy threshold for oil film detection by each sensor. It is clear that the data for each sensor are separated
into two groups: oil exists and detected (red) and oil exists but not detected {blue). Therefore, the Lgy value
separating the blue and red groups was determined to be the threshold for the detection limit. Similar to any
other binary classifications (e.g., cloud detection), there is always a gray zone to separate the two classes. In
this case the Lgyy threshold for the detection limit was taken as a range and determined to be 107°=10"%sr "
for MODIST and MODISA and 1075-1077 st~ for VIIRS. Below the lower bound of this range, at least for 98%
of the cases oil films cannot be detected. Above the higher bound of this range, at least for 98% of the cases
oil films can always be detected. Within this range, oil films can sometimes be detected.

4. Discussion

The entire procedure was based on the assumption that between the same-day image pair oil slicks on the
surface, if any, did not change much. This is because all three polar orbiting satellites have an equatorial cross-
ing time of either late morning or early afternoon, making the time difference within at most 3 h. Indeed, time
difference for most image pairs was < 2 h. In such a short time oil slicks are unlikely to change dramatically
[Adamo et al.,, 2009]. This has been demonstrated in both Figures 1a (time difference: 18 min) and 1b (time
difference: 2 h and 23 min). Even for the latter case, the positions and shapes of identified oil slicks remained
nearly unchanged in both images, confirming such an assumption.

Itis interesting to see that VIIRS has improved capacity in detecting oil films than MODIST and MODISA, with
its Le threshold nearly 1 order of magnitude lower (1075-1077 versus 10~°~107%), Although there are some
uncertainties in the exact values, one can safely argue that VIIRS is more sensitive than MODIS in detecting oil
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Figure 1. Examples of image pairs collected on the same day by two different sensors showing their different capacity in detecting oil slicks. (a) Oil slicks detected by
both VIIRS and MODISA, (b) oil slicks detected by both MODIST and VIIRS, (c) oil slicks detected by VIIRS but not by MODIST, (d) oil slicks detected by MODISA but not by
VIIRS, and (e) oil slicks detected by MODIST but not by MODISA. The corresponding plots show reflectance (for MODISA and MODIST) or radiance (for VIIRS) in the red and
NIR bands along artificial transects across oil slicks (white/black lines in the images). For each selected point in the image (white/black crosses), sun glint strengths are
represented by the normalized glint reflectance (L, st 1). The blue triangles in the plots indicate outliers (>2 times standard deviation from the mean) along the
transect, which represent statistically significant difference and therefore are used quantitatively to verify presence or absence of oil slicks. Sample illustration of the slick
delineation and annotation of clouds and cloud shadow features is presented in Figure 1a MODISA image, while the detection rule is described in
section 2.4. The inset figure (in Figure 1e) shows the approximate locations of the study region in the Gulf of Mexico.
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Figure 2. Statistics of sun glint strengths (Lgy) where oil slicks exist can or cannot be detected from satellite images. (a) MODIST, {b) MODISA, and (c) VIIRS. Count on
the horizontal axis indicates number of images. The Lgn threshold for oil slick detection is about 107510 % st for Terra, 107°-10"% sr " for Aqua, and
1072107 sr" for VIIRS. For example, for MODIST, oil slicks cannot be detected if Lgy is < 107%sr™" but can be detected if LoN is > 1072 sr™ ", Between
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and 10°© st ' oil slicks may or may not be detected.

films under sun glint. This may be explained by the improved signal-to-noise ratio of VIIRS over MODIS in their
corresponding imaging bands [Xiong et al., 2014].

We want to emphasize that the findings here only apply to oil films where the oil’s influence to the image
signal (either R, or total radiance) is through primarily its modulation of surface waves. When oil is thicker,
oil's optical properties play more important roles in changing the image signal, and oil may be detected even
under negligible sun glint. This has been evidenced during the Deepwater Horizon oil spill through MODIS
observations [Hu et al., 2011]. The same reason could also be used to explain the rare cases in Figure 2 when
oil was observed in the blue zone. It is possible that some of the oil slicks could form thick layers under low
wind and weak currents. However, these cases are rare (<22%), thus would not impact the findings and
conclusions here. For the same reason, such detected Lgy thresholds can apply to biogenic surfactants
(from phytoplankton), below which the surfactants could not be detected even if they exist.

The Lgy thresholds have at least three significant implications for monitoring oil spills and studying oil
seeps. First, oil absence in cloud-free satellite imagery does not necessarily suggest that there is no oil,
but it can be due to unfavorable sun glint conditions. Only when L¢y is greater than the higher bound
of the threshold range can one conclude that there is indeed no oil. This information will then help
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Figure 3. (a) Seasonal glint coverage (glint defined as Lgy > Lgn threshold) in the MODIS Aqua swath at 25°N assuming wind speed =5m s~ ! Results for MODIS
Terra and VIIRS are similar. Note that the results for Lgy threshold = 10 " sr™" are the same as in Figure 4 of Hu et al. [2009]. (b) Wind speed distribution for all
sun glint images where oil slicks were identified (N =470 images). Note that the data for the two extremes (>8m s 'and<1ms ') were from the nearby buoys
(after adjustment to 10 m above surface), while other data were from NCEP.

make decisions during an oil spill on whether and where to put sampling or mitigation efforts. Second,
for the same reason, images associated with unfavorable sun glint conditions (Lgy < threshold) should
not be used to determine whether oil seeps release oil continuously. Instead, those images should be
regarded as “no data” when performing statistical analysis of oil seeps. In this regard, the Lgy thresholds
will help address the critical question of whether oil seeps in the GoM continuously release oil, as such
a question has been difficult to address with SAR observations due to their infrequent coverage or with
MODIS observations due to lack of knowledge whether oil absence in the image means no oil on the
ocean surface. Third, due to the limited number of images used in the original study, Hu et al. [2009]
assumed that Lgy > 10 *sr ! when calculating sun glint “size” in terms of kilometers in the east-west
direction for the GoM at 25°N. Such an assumption agreed with independent observations by Adamo
et al. [2009]. The findings here suggest that the Lgy threshold is at least 1 order of magnitude lower
(10 %sr ), leading to increased sun glint size usable for slick detection. Figure 3a shows that when
10° was used as the threshold, the estimated sun glint size was significantly higher than the original
estimation using the 10 threshold [Hu et al,, 2009]. Even during the winter, a significant portion of
MODIS and VIIRS images meets the criteria of Lgy =10 >sr ', thus suitable for detecting oil films.

Lgy is a function of wind, and it is therefore desirable to know which wind conditions are optimal for slick
detection. While the optimal wind speed required to detect thin oil slicks in SAR imagery has been reported
to vary slightly (e.g, 3 to 7-10m s~ in Brekke and Solberg [2005];3.5 to 7m s~ in Garcia-Pineda et al, [2009]),
a general consensus is that the wind limits are around 1.5-10m s~ [Fingas and Brown, 2014], beyond which
thin oil cannot be observed in SAR imagery. In this study, for all images where slicks were identified, wind
ranged between 0.3 and 8.3 ms~" (Figure 3b), with 1.0-8.0m s~ for > 99% of the oil slick images. On the
accuracy of wind conditions, the extremes {<1. 0 and >8.0ms ') of original NCEP wind data were substi-
tuted by data obtained from the nearest National Data Buoy Center buoys (after adjustment to 10 m above
sea surface) in this analysis. Clearly, these results are comparable to those reported in the literature, further
confirming that optical detection of thin cil films in sun glint imagery is primarily due to the wave damping
effect. There are three cases showing wind speed of < 1.0 ms~" (Figure 3b), possibly because these optical
channels are more sensitive than SAR to wave damping-induced spatial contrast.

While the judgment on the sun glint conditions is through the use of Lgy, in practice a researcher or a flight pilot
may not have an easy way to calculate Lgy even when the solar/viewing geometry and wind are all known. As a
simple guide, Figure 4 provides Ly as a function of solar zenith and sensor zenith angles at four relative azi-
muth angles (0°, 90°, 270°, and 180°) and two wind speeds (3ms "and 6ms ). The Lgy thresholds are also
annotated. From these graphs, one may make a quick and relatively accurate judgment on whether the mea-
surement geometry under certain wind conditions favors the detection of thin oil films. Note that NCEP wind
product is known to contain about 20% uncertainties without any obvious bias when evaluated against buoy
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Figure 4. Lgy (sr~") as a function of solar zenith angle, sensor zenith angle, their relative azimuth, and wind speed. For illustration purpose only several values of
relative azimuth and wind speed are chosen. The Lgy thresholds to observe thin oil films are highlighted with dashed lines. The relative azimuth is defined as
180° when the Sun and the sensor are at mirroring positions.

data [Wang and Baifey, 2001b). A sensitivity analysis indicated that when wind speed was 20% underestimated,
Len would also be underestimated (1 order of magnitude lower for Lgy around 10 sr™'). When wind speed
was 20% overestimated, Lgy around 107> sr™' would be overestimated by 4 times.

Note that the results obtained here are for the lower detection limit with low sun glint strengths. For extre-
mely strong sun glint (Lgy ~0.05 st~ [Hu et al., 2009]), oil slicks may reverse their contrast from negative to
positive around a critical angle [Jackson and Alpers, 2010]. In the narrow transition zone oil slicks lose their
contrast from water. However, the transition zone is typically small {several kilometers for a sensor at
700 km altitude), thus would not impact the statistics here.

Finally, the detection capacity will also depend on a sensor’s sensitivity (i.e., signal-to-noise ratio), and appli-
cation of the findings here to other sensors may therefore require some caution before a similar study is con-
ducted for the specific sensor of interest.

5. Conclusion

For the first time, sun glint requirement for detecting oil films in optical remote sensing imagery from the
three widely used ocean color sensors is quantified through multisensor comparisons, with the following
two main findings:

1. Lgn threshold for oil film detections is 10°=10"%sr~' for MODIST and MODISA, and 10°°-10""sr~" for
VIIRS. Below the lower bounds of these thresholds, no oil films can be detected, while above the upper
bounds oil films can always be detected;

2. The optimal wind range for the three sensors is 1.0-8ms ', while the lower and upper bounds are found
to be 0.3 and 8.3ms ' from this analysis.

The sun glint thresholds determined here will provide critical information on which images (or which portions
of an image) can be used to search for oil, thus reducing false negative detection and improving statistics for oil
slick occurrence. From these results, the image portion suitable for detecting oil films has been found to be
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higher than previously thought, further reinforcing the conclusion that optical remote sensing imagery
provides a significant data source to complement SAR and other observations to study oil spills.
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Using fine spatial resolution (~7.6 m) hyperspectral AVIRIS data collected over the Deepwater Horizon oil spill in
the Gulf of Mexice, we statistically estimated slick lengths, widths and length/width raties to characterize oil slick
morphology for different thickness classes, For all AVIRIS-detected oil slicks (N — 52,100 continuous features)
binned into four thickness classes (<50 pm but thicker than sheen, 50-200 pm, 200-1000 pm, and >1000 pm),

the median lengths, widths, and length/width ratios of these classes ranged between 22 and 38 m, 7-11m,

and 2.5-3.3, respectively. The AVIRIS data were further aggregated to 30-m (Landsat resolution) and 300-m

gfiy;::lrlds. (MERIS resolution) spatial bins to determine the fractional oil coverage in each bin, Overall, if 50% fractional
Remote sensing pixel coverage were Lo be required Lo detect oil with thickness greater than sheen for most il containing pixels,
AVIRIS a 30-m resolution sensor would be needed.

Landsat © 2015 Elsevier Ltd. All rights reserved.
MERIS

Morphology

1. Introduction SAR signal can be observed in oil containing image pixels under optimal

Qil spills in the ocean can pose a significant threat to the ecosystem
{NRC, 2003). One recent example is the Deepwater Horizon {DWH) oil
spill in the northern Gulf of Mexico (Fig. 1), a result of the explosion and
sinking of the DWH oil rig on 20 April 2010. The spill continued until the
oil well was capped on 15 July 2010, with an estimated 3,19 million bar-
rels of crude oil released into the ocean (Crone and Tolstoy, 2010;
McNutt et al., 2011; U.S. v. BP et al,, 2015) and a significant portion ac-
cumulated on the sea surface (De Gouw et al., 2011).

Accurate detection of surface oil distribution and estimation of oil
volume are valuable for oil spill response and for understanding the
spill's potential environmental impacts. Remote sensing has been used
effectively for some of these assessments (Fingas and Brown, 1997;
Brekke and Solberg, 2005; Leifer et al., 2012). Of all remote sensing
techniques, Synthetic Aperture Radar (SAR) is the most frequently
used (e.g., Garcia-Pineda et al., 2013), which offers synoptic data
under all sky conditions. Because oil can dampen short-gravity and
capillary waves on the ocean surface, a reduction in the backscattering

+ Corresponding author.
E-mail address: huc@usf.edu (C. Hu).

http://dx.doiorg/10.1016/j.marpolbul.2015.12.003
0025-326X/© 2015 Elsevier Ltd. All rights reserved.

wind conditions. Although recent research has shown the potential of
using SAR to discriminate thick emulsified oil from other oil
(Garcia-Pineda et al., 2013; MacDonald et al., 2015), SAR has been pri-
marily used to delineate surface oil footprint instead of estimating oil
thickness. The same concept of wave dampening can also be extended
to passive optical remote sensing when sun glint is present
(e.g., MacDonald et al., 1993; Adamo et al., 2009; Hu et al., 2003,
2009; De Carolis et al., 2014). When oil slicks are sufficiently thick,
they can also be observed in optical remote sensing imagery in the ab-
sence of sun glint (Bulgarelli and Djavidnia, 2012).

While determining the oil spill footprint can be achieved through
different remote sensing techniques {e.g., SAR, optical, thermal, and
others), estimating the surface oil volume (or thickness) is much more
difficult {Svejkovsky et al., 2015; Fingas and Brown, 2015). Some recent
advances showed that spectral and spatial contrast analyses could be
used to infer relative oil thickness from optical remote sensing imagery,
which could then be used for management actions during a spill
(Svejkovsky et al., 2012). Some case studies showed the possibility to
infer oil thickness from optical remote sensing imagery based on
laboratory-derived look up tables (e.g., Lu et al., 2013). Furthermore,
recent research demonstrated the use of hyperspectral C-H absorption
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Fig. 1. {a) AVIRIS flight lines overlaid on MODIS Red-Green-Blue (RGB) image showing the DWH oil spill on 17 May 2010. The MODIS image was collected around 16:40 UTC and the 5
AVIRIS light lines began on 19:07 UTC and were finished within 3 h. The gray scale of the AVIRIS lines represents oil volume derived from the approach of Clark et al. {2010). The red and
green arrows annotate locations where examples of AVIRIS data are extracted and shown in Figs. 2 and 3. Cumulative frequency distribution of AVIRIS-derived surface oil thickness (b) and

oil volume (c).

signatures in the near-infrared (NIR) and shortwave-infrared (SWIR) to
quantify the oil:water ratio of emulsions and ultimately the oil volume
(Clark et al., 2010). Given the availability of optical remote sensing
data from a variety of satellite and airborne platforms, it is anticipated
that the research community may make significant progress in estimat-
ing surface oil volume using optical remote sensing in the coming years.

Multiple factors can affect oil thickness/volume quantification from op-
tical remote sensing imagery, such as the oil's weathering state
(Svejkovsky et al., 2012), solar/view geometry, oil type {De Carolis et al.,
2014) and sea state (Otremba et al., 2013). Another important factor in es-
timating surface oil volume is a sensor’s spatial resolution. This critical pa-
rameter not only determines the detection limit of a remote sensor but
also influences the ability to estimate oil thickness or volume from spectral
and spatial contrast, as a large oil-containing pixel will contain oil of differ-
ent thicknesses and emulsions of different water content (Leifer et al.,
2012). Brown and Fingas (2001) noted that a spatial resolution of finer
than 10 m was required because the width of a typical oil slick (defined
as a continuous feature from the background water) was less than
10 m. Brekke and Solberg (2005) suggested that a spatial resolution
of 50-150 m was sufficient for SAR to detect oil. However, these are
based on the oil slick footprint instead of thickness, and there still

lacks statistical analysis documenting slick size under typical condi-
tions. In particular, there is no published report showing slick size
distributions for different oil thickness classes, although
such information can be very useful in interpreting oil footprint and
thickness for sensors with different resolutions, in helping to make
management decisions (e.g., physical removal or other mitigations for
thick oil as it is more toxic and harmful to the marine environment).

The optical sensors that have been frequently used to detect oil slicks
include the Moderate Resolution Imaging Spectroradiometer (MODIS)
{Huetal,, 2009; Hu et al., 2011), MEdium Resolution Imaging Spectrom-
eter {MERIS) {De Carolis et al., 2014), and Landsat Thematic Mapper
(TM) (Zhao et al., 2014), with spatial resolutions of 250 m, 300 m and
30 m, respectively. To understand spatial resolution limitations of
these sensors for detecting slicks and quantifying oil thickness, it is
useful to document oil slick size of various thicknesses. Furthermore,
knowledge of the oil slick morphology can also help differentiate oil
slicks from other look-alikes (e.g., Trichodesmium mats) in unknown
regions. Unfortunately, similar to SAR detections, despite numerous
remote sensing studies of oil spills, to our best knowledge statistics of
oil slick size for different thickness classes have never been reported
through optical remote sensing or other means.

92



278 S. Sun et al. / Marine Poliution Bulletin 103 (2016) 276-285

USGS oil Product

BE360"W BEISI0W

28°52'0°N

28°52'0"N

28°51'30"N
28°5130"N

WESI0N
28510N

B8 3607 W BEPISI0TW 2

The RGB true color image

After closing operation and noise removal
B8°36'0"W IS I0"W
Nt
N “

: Small patch noise removed é
g T+ &
. &
2 b =

a N ‘ﬁL n. =

.,"1&‘%

Somg breaks fused
Ly

£

Kilometers

weSI0N

AE60"W BEATIW

280510

i1
e

Fig. 2. Examples showing a) USGS-derived oil thickness product (red represents all oil thickness classes) from a sub-region of AVIRIS measurements on 17 May 2010, b) the corresponding
RGE true color image (K: 638.2 nm; G: 550.3 nm; B: 462.8 nm), and ¢) the same oil thickness product after noise removal {blue circle) and feature connection {green circle). The location of

the image is annotated in Fig. 1 with the red arrow.

The DWH oil spill presents an opportunity to address these ques-
tions as it occurred in a typical ocean environment {both nearshore
and offshore) and, more importantly, there are fine spatial resolution
(~7.6 m) hyperspectral data that were collected by the Airborne
Visible/Infrared Imaging Spectrometer {AVIRIS) at approximately the
same time as MODIS and Landsat data, Clark et al. {2010) had calculated
surface oil volume per pixel using the AVIRIS data, enabling partitioning
of oil slicks into different thickness classes and subsequent study of slick
morphology and size distributions.

Thus, the objective of this study is to use the high-resolution AVIRIS
data to document the morpholegy of oil slicks of various thicknesses,
and to analyze the capacity of the current optical sensors at representa-
tive spatial resolutions of 30 m and 300 m to detect and quantify oil
slicks.

2. Data and methods

Distributions of oil slicks of various thicknesses were derived from
oil volume estimates by the U.S. Geological Survey (USGS; Clark et al.,
2010) based on AVIRIS measurements on 17 May 2010 over the DWH
oil spill (Fig. 1a). AVIRIS collected hyperspectral data from 380 to
2500 nm in 224 spectral bands at a ground resolution of about ~7.6 m
per image pixel. The data were first converted to apparent reflectance
(R{N), dimensionless) using the ACORN atmospheric correction module
(AIG, 2001). The residual errors from the atmospheric correction, possi-
bly due to the long path length of sun light {flight was in late afternoon),
were minimized using continuous field-measured spectra from calibra-
tion sites located on beaches and airport tarmacs (Clark et al., 2010).
R(A) was then used to derive oil volume of thick water-in-oil emulsions
using the Tetracorder spectral shape matching algorithm described by
Clark et al. (2003, 2010). Based on laboratory reflectance measurements
of emulsions of variable water content, constructed by adding to or
evaporating water from a natural DWH emulsion, relative differences
in shortwave infrared (SWIR) C-H and water absorptions were used
to determine the oil:water ratio, fractional coverage of oil in each
AVIRIS pixel, and oil volume in each pixel (Clark et al., 2010), Five
AVIRIS flight lines were used in this study; they all covered the spill
area as outlined in a MODIS image collected on the same day (Fig. 1a).

Visual inspection of the AVIRIS-derived oil slicks revealed isolated
pixelization noise even in areas away from the spill {Fig. 2). This is
probably because of small cloud patches or other noise in the
hyperspectral data that can affect spectral identification of features

(Swayze et al., 2003). The noise was removed with a smoothing
algorithm that used a size operator where the size threshold was deter-
mined empirically: if an identified oil patch contained less than 3 x 4
pixels, it was regarded as noise. Furthermore, the pixel-wise processing
of AVIRIS data sometimes resulted in discontinuous slicks due to
random necise mimicking the spectral signature of emulsion, that other-
wise appear continuous to the Human eye, These discontinuous slicks
were connected through a 3 x 3 running kernel with the same weight
(1.0) for all 9 cells, where a closing operation (to connect the broken
slicks) was defined by first dilating the image features followed by
subsequent erosion of the same image using the same 3 x 3 kernel.
The closing operation was performed using the software ENVI (Environ-
ment for Visualizing Images, version 4.8). An example is shown in Fig. 2
(green circles).

The AVIRIS-derived oil volume maps from the USGS (Clark et al.,
2010) were converted to different thickness classes to study the slick
morphology for each class. For each pixel, the derived oil volume was di-
vided by the area of an image pixel (7.6 m x 7.6 m) after image
georectification, resulting in oil thickness (in jum).

As explained by Clark et al. (2010), light penetration in the SWIR
wavelengths is limited to a few millimeters within oil-water emulsions,
representing the maximum thickness that could be probed. Because of
time constraints, Tetracorder {Clark et al, 2003) was not used to map
the extent and thickness of oil sheens, which are usually only a few
micrometers thick. The AVIRIS-derived oil thickness was partitioned
to several classes in order to characterize the morphology and size
distribution of oil slicks within each class. In doing so, a modification
of the original Bonn Agreement (2012) {Table 1) in defining oil thick-
ness classes was used. This is because that the Bonn Agreement was

Table 1
Ol appearance and thickness definitions in the Bonn Agreement (2012) and thickness
classification in this study.

Bonn Agreement classes This study

Code  Descriplion/appearance Layer thickness  Class Layer thickness

{um) (um)
1 Sheen 0.04-03
2 Rainbow 03-50
3 Metallic 5.0-50 1 =50
4 Discontinuous true color 50-200 2 50-200
5 Continuous true color =200 3 200-1000
4 1000

93



S.Sun et al. / Marine Pollution Bulietin 103 (2016) 276-285 279

mainly focused on oil's visual appearance (Leifer et al., 2012; Lehr,
2009) from a small area (often 10s of centimeters) but the AVIRIS
pixel is much larger and therefore oil thickness within a pixel may not
be homogenous. The Bonn Agreement has 3 classes below 50 um. How-
ever, thickness < 25 um was not detected by Tetracorder in the USGS
estimates (Clark et al,, 2010). From the cumulative frequency distribu-
tion of thickness and volume shown in Fig. 1b and ¢, respectively,
AVIRIS oil pixels with thickness > 200 pm occupy about 5% of the total
slick area but their contribution to total oil volume exceeds 45%. Thus,
the first two classes of oil thickness were defined as <50 um (but exclud-
ing sheen) and 50-200 pm, similar to those in the Bonn Agreement.
However, the last class in the Bonn Agreement (>>200 um) was further
divided in to two classes in our study: 200-1000 um and >>1000 um
(Table 1). This is because that thick oil may be more harmful to the
marine environment, and thick oil can also be efficiently removed or

8841w

recovered by skimming, in situ burning, and aircraft dispersant
treatment. Effective in situ burning requires at least about 1000 pm oil
thickness to allow for combustion (Goodman, 2009; Fingas, 2011;
Svejkovsky et al., 2015; Fingas and Brown, 2015). As a result, the
AVIRIS-derived oil thicknesses are partitioned into the following 4
classes: <50, 50-200, 200-1000 and >1000 um (Table 1). Fig. 3 shows
an example of the classified thickness and the corresponding AVIRIS
Red-Green-Blue (RGB) image. The spectra of AVIRIS pixels of various
oil thicknesses (Fig. 3) illustrate their differing spectral shapes and
magnitudes.

In this paper, the term slick morphology refers to the slick length,
width, and length/width ratio. Because oil slicks may have irregular
shapes, it was difficult to determine the true length and width of a
slick, and thus the length and width parameters were only used as
proxies to determine the morphology. Several methods were tried,
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Fig. 3. Examples showing a) sub-region oil thickness products generated by USGS (Clark et al., 2010) based on AVIRIS measurements on 17 May 2010 (the oil thickness classes for this
study were £50, 50-200, 200-1000 and 1000 pm); and b) the corresponding AVIRISRGB true color image (R: 638.2 nmy; G: 550.3 nm; B: 462.8 nm). The location of this image is indicated
with the green arrow in Fig. 1. (¢) Typical spectra of AVIRIS pixels of various oil thickness classes and oil-free seawater, using the same color scheme for thickness classes as in (a).
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including a thinning method that shrank a slick to just one pixel wide, in
the hope that the slick length could be estimated as the number of pixels
in the thinning result and the width could be derived as the area of the
slick (number of pixels) divided by the length. However, after thinning,
many of the slick metrics were subsequently incorrect, leading to signif-
icantly overestimated length. Ultimately, in this study we digitized the
oil slicks to polygons, and approximated the dimensions of each slick
polygon by assuming that the slick area was a rectangle, with a length
corresponding to the diameter of a circle bounding the slick {Fig. 4a),
and a width represented by the ratio of slick area to slick length (Fig.
4b).

The procedure was applied to each of the four oil thickness classes
separately, and then applied to oil slicks when all classes were
combined. Statistics of length, width, and length/width ratio were
generated and tabulated.

As noted previously, AVIRIS data used in this study had a spatial
resolution of 7.6 m. Most remote sensing sensors have coarser spatial
resolution (e.g., 30 m for Landsat, 250 m for MODIS and 300 m for
MERIS). To understand the effect of variable resolution on a sensor's
capacity to capture oil slicks within a pixel, the AVIRIS data products
were binned into 4 x 4 pixel {(~30 m) resolution, 8 x 8 pixel (~60 m),
and 40 x 40 pixel (-300 m) resolution, with each resolution
representing the current Landsat sensors, future HysplRI sensor (Lee
et al, 2015), and current MERIS or MODIS sensor. For each spatial bin,
the percentage of oil coverage of the various oil thickness classes within
a bin was calculated. For example, if one AVIRIS pixel of the 4 x 4 pixel
bin contains oil in the 50-200 pm class, the percentage of oil coverage
(for that class) is 1/16 or 6.25%. Statistics of all bins were generated
and tabulated, with their frequency distributions plotted.

3. Results
3.1. Qil slick morphology

Table 2 lists the statistics of oil slick morphology (length, width,
length/width ratio) for each oil thickness class as well as for all classes
combined. The histogram distributions of these parameters are shown
inFigs. 5, 6,and 7. Typically, one large slick comprises numerous smaller
slicks of different thickness classes. Thus, the number of slicks for all
classes combined is much lower than the sum of the number of slicks
in each individual thickness class (Table 2).

The median length for each oil thickness class ranged between 22
and 38 m, while the median width ranged between 6.8 and 10.5 m.
When all oil classes were combined to outline larger slicks, the median
length and width were 92 and 21 m, respectively. The most frequent
length and width for each individual thickness is the smallest bin, but
almost none of the combined slicks are that small, reflecting the hetero-
geneous distribution of thicknesses within any one slick. In addition, for
each thickness class and all classes combined, there is large variability in
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Table 2

Statistics of oil slick morphology derived from five AVIRIS flight lines over the DWH oil
spill. The ol slicks are partitioned to individual thickness classes and considered all togeth-
er without partitioning to different classes {last row). Because each individual slick
typically comprises many smaller slicks of different thickness classes, the total number
of combined slicks is lower than that of the individual classes, and the length and width
parameters are much higher.

Thickness # of Morphology Mean Standard Min Median Max

class (um)  slicks deviation

<50 29,274 Length {m]) 581 851 108 38.0 5885.5
Width (m) 133 115 54 105 796.4
Length/width 3.8 20 19 33 55.5
ratio

50-200 16,828 Length (m) 644 1237 108 34.0 5815.0
Width (m) 129 115 54 93 458.0
Length/width 40 27 1.7 33 55.1
ratio

200-1000 4867 Length (m) 364 462 108 21.5 730.4
Width (m) 90 56 54 68 648
Length/width 34 21 20 25 273
ratio

=1000 1131 Length {m) 438 734 108 215 976.4
Width (m) 104 100 54 68 116.4
Length/width 35 21 20 26 249
ratio

All 7361 Length (m}) 160.8 298.7 380 915 7363.0
Width (m) 264 334 81 206 18944
Length/width 5.6 40 19 46 1145
ratio

their length and width parameters, as indicated by the high standard
deviations relative to the means. Such variability is clearly shown in
the histogram distributions in Figs. 5 and 6 for length and width, respec-
tively. This suggests that oil slick morphologies do not follow normal
distributions but instead are asymmetric, with more slicks at smaller
scales. Slick lengths generally ranged between 1 AVIRIS pixel (~7.6 m)
to ~24 pixels {~180 m), while slick widths ranged between 1 AVIRIS
pixel to ~4 pixels {~30 m). The number of slicks appears to decrease
exponentially with increasing length and width.

Although the procedure to estimate length and width is not perfect,
there is a clear disparity in length and width statistics. The median
length/width ratio ranged between 2.5 and 3.3, indicating that most
slicks had elongated shape. Maore than 90% of the slicks have length/
width ratios between 1.6 and 10, while only a small percentage have
the ratios of =15 (Fig. 7). The histogram distributions of length/width
ratios were asymmetric for all oil classes, revealing that few slicks in
this data set were significantly elongated. This suggests that oil slicks
tend to break after being elongated to a certain extent. The median
length/width ratio of the combined oil class is about 5, much higher
than the median ratio of 3 for the individual thickness classes. This
suggests that the smaller slicks within each thickness class are less
elongated than the overall outline of the slick that combines all

B8 330W 88°320W BE30W 88300W
25°430°N L2grazoN
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" . i
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86°320W 883 T0W 88°300W

Fig. 4. [llustration of the procedure to determine length and width of each oil slick. a) Each slick is encompassed by a circle; b) The diameter of the circle is used to represent the length,

while the ratio of slick area to length is used to approximate the width.
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Fig. 5. Statistics of oil slick length for different thickness classes. Alternating bin colors are for better visualization. Note: mean value + standard deviation and median value are annotated

in plot for cach thickness class. Same applies for the following figures.

thickness classes. Likewise, thin oil (<200 um) tends to be more elongat-
ed than thicker oil (=200 pm), with their median length/width ratios
being about 3.3 and 2.5, respectively.

3.2. Requirement on spatial resolution

The length and width statistics suggest that remote sensors with 30-
or 300-m spatial resolution can rarely capture oil slicks with 100% pixel
coverage. In other words, most of the 30- and 300-m pixels will have
only partial coverage of oil. Indeed, Fig. 6 shows that even for the
combined oil class, >75% of the oil slicks have widths <30 m. To simulate
the effect of coarser spatial resolution, AVIRIS pixels were binned into
4 x4 (30 m), 8 x 8 {60 m) and 40 x 40 (300 m) pixels maps, with
percentage oil coverage estimated from each spatial bin. Table 3
shows the coverage statistics while the distribution histograms are
shown in Figs. 8 and 9 for 30- and 300-m, respectively.

For the 30-m bin, the median percent oil coverage was 31% or less for
each individual thickness class (Table 3; Fig. 8). In fact, for the 200~
1000 um class, more than half of the pixel-bins have oil coverage
<19% within the pixel-bins. Even when all classes are combined, more
than half of the pixel-bins have oil coverage <50% within the pixel-
bins. In each of the thickness classes, less than 10% of the pixel-bins
were fully covered (i.e., 100%) with oil (Fig. 8). Complete oil coverage
increased to 20% of pixel-bins when all oil thickness classes were
combined. Thus, only a small portion of 30-m resolution pixel-bins
may contain full (100%) oil coverage.

The partial oil coverage (areal fraction) decreases significantly for
the 300-m pixel-bins. The median percent oil coverage for pixel-bins
in the thin oil classes (<200 um) was <3.5%, while for the thicker classes
(=200 um) the median percent oil coverage decreased to 0.6% (Table 3;
Fig. 9). Even when all classes are combined, the likelihood of finding
100% oil coverage within a 300-m pixel-bin was negligible (<0.1%).
This patchiness of oil slicks is clearly visible in Figs. 3 and 4, where
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g 3 3
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Fig. 6. Statistics of oil slick width for different thickness classes. Alternating bin colors are for better visualization. Note that although the step in the x-axis appears wider, it is the same

{10 m) as in Fig. 5.
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Fig. 7. Statistics for oil slick length/width ratio for different thickness classes. Alternating bin colors are for better visualization.

there are no 300 m by 300 m areas with uniform oil coverage. For the
intermediate bin (60-m), the statistical results are between the 30-m
and 300-m bins (Table 3). It is interesting to note that the median
coverage for the combined class is roughly inversely proportional to
the bin size, for example by decreasing from 50.0%, 28.1%, to 6.6% for
the 30-m, 60-m, and 300-m bins.

4. Discussion and conclusions

As with any other analyses of remote detection of oil slicks, the
validity of these results relies on the accuracy of AVIRIS measurements
and accuracy of the methodology for morphology assessment. As
explained in Clark et al. (2010), the Tetracorder command file did not
spectrally distinguish thin sheens but instead focused on the volumetri-
cally significant thick oil slicks (=25 wn) from fractional AVIRIS pixel

Table 3

Statistics of percentage oil coverage within 30-, 60-, and 300-m bins for each thickness
class. For a thickness class, if a pixel-bin (30, 60, or 300 m) contains 21 AVIRIS pixel, itis
counted for the number of pixel-bins listed in column three below. The frequencies of
the partial coverage for the 30-m and 300-m pixel-bins are shown in Figs. 8 and 9, respec-
tively. Note that Max {%) represents the maximum coverage forall pixel-bins correspond-
ing to the thickness class, and it does not indicate how many pixel-bins contain the
maximum coverage.

Pixel-bin  Thickness # of Mean oil  Standard Min Median Max
size (m) (pm) pixel-bins coverage deviaton (%) (%) (%)
(%) of (%)
pixel-bins
30(4x4) =50 142,155 364 26.6 63 313 100.0
50-200 92,662 389 29.1 63 313 100.0
200-1000 11,561 24.4 20.5 63 188 100.0
=1000 3669 35.6 31.3 63 250 100.0
All 172077 534 33.2 63 500 100.0
60 (8 x8) =50 59,064 220 19.8 16 156 100.0
50-200 41,508  21.8 214 16 141 100.0
200-1000 6395 111 12.2 16 63 100.0
=1000 1999 16.4 22.0 16 78 1000
All 64921 356 29.1 16 281 100.0
<50 59064 220 19.8 16 156 100.0
300 (40« <50 6796 79 109 0.1 35 1000
40) 50-200 5937 6.4 9.1 01 28 100.0
200-1000 1675 1.7 27 01 086 209
=1000 603 22 4.7 0.1 0.6 38.1
All 7050 136 17.3 01 686 100.0

coverage. For example, if 10% of an AVIRIS pixel was covered by oil
(this fractional number was determined by examining the spectral
magnitude contrast in the SWIR band between the pixel of interest
and the nearby oil-free pixels) and oil thickness of this fractional pixel
was 25 um, the equivalent thickness for this AVIRIS pixel was then
10% x 25 = 2.5 pm. Thus, all analyses here are based on oil slicks
=25 um in thickness. If oil sheens were included, the results for the
<50 pm class and the combined oil class would both need to be changed,
and it would be more likely that 30-m and 300-m pixel-bins would have
full oil coverage for the <50 um class and the combined oil class.
Furthermore, there may be also some uncertainties in the estimates of
the top thickness class and its associated calculations in the 30-m and
300-m bins. This is because that light in the NIR can only penetrate
the upper few millimeters of oil; thus the current estimate represents
a conservative lower bound for thick oil. Indeed, the difficulty in
measuring oil thickness in the field or estimate oil thickness remotely
has been well recognized by the community (Fingas, 2012), as “we
currently do not have tools, not even simple rules by which to gauge
thickness regimes of slicks for calibration of new instruments.” As
such, none of previous works on remote estimation of oil thickness
had concurrent quantitative validation in the field, and all those
laboratory-based remote sensing methods can only provide relative
thicknesses when applied in the field (Clark et al., 2010; Svejkovsky
etal., 2012; Lu et al,, 2013). Nevertheless, the AVIRIS-based estimates
represent our best knowledge to date on the DWH oil thickness
distributions.

AVIRIS spatial resolution could pose a limitation on the statistics. For
the data used in this study, no length or width parameter could be
smaller than 7.6 m {the minimum width of 5.9 m in the table was due
to an extreme case when the pixels, treated as small squares, were
aligned in their diagonal direction so the overall width of the slick
could be smaller than the width of the individual pixels). In reality, if a
finer spatial-resolution sensor {e.g., with 1 x 1 m pixels) were used,
the statistics of slick length and slick width might change. However,
given the fact that most slicks of any thickness are at least several pixels
long, finer resolution data would be more likely to decrease the slick
widths with little change in slick lengths, thus increasing the length/
width ratios. The conclusion that most slicks have elongated shapes
will therefore be reinforced.

Another limiting factor is the methodology used to determine the
length and width of each slick. The assumption that a slick can be
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Fig. 8. Statistics of percentage ol oil coverage within a 30-m resolution pixel-bin {4 = 4 AVIRIS pixels) for each thickness class (250, 50-200, 200-1000 and =1000 pun) and all-combined

thickness.

approximated using a rectangle is certainly a crude assumption, as oil
slicks generally have irregular shapes. However, visual inspection of
the slicks indicate that although there are many slicks with irregular
shapes, most of them tend to be elongated in one direction, possibly
due to oil convergence along wind-induced Langmuir cells {Lehr and
Simecek-Beatty, 2000). On the other hand, if a slick were curved, the
method used here would lead to an underestimate of length and over-
estimate of width. Thus, the length/width ratios derived here represent
the lower bound, and in reality they may be higher, further supporting
the conclusion that slicks are elongated.

Given the availability of various sensors to detect and monitor oil
spills, a critical question is what spatial resolution may be optimal.
Although the finer the resolution the smaller an oil slick that can be
detected, fine-spatial-resolution sensors typically have less spatial cov-
erage (i.e, narrower swaths). For example, the swath width of Landsat

(30 m resolution) is about 180 km, compared with 2330 km for
MODIS {250 m resolution). Ideally, images with 1-m (or finer) resolu-
tion and swaths > 500 km wide (to cover the entire DWH oil footprint)
would be required to fully understand the impact of spatial resolution
on the statistics of oil slick morphology of large oil spills, especially
when mixed oil-seawater pixels frequently occur. Such a requirement
on spatial resolution and spatial coverage is not currently available,
Even ifit were available, a single 500 km x 500 km image at 1 m resolu-
tion would have 250 billion pixels with values for multiple channels per
pixel, inhibiting the practicality of collecting, transmitting, storing, and
analyzing the data. Thus, AVIRIS data at ~7,6 m resolution were used
in this study as a compromise to address this question.

The study is focused on spatial resolutions while spectral and radio-
metric (i.e., signal-to-noise ratio or SNR) resolutions are not considered.
In reality, they both affect the detection of oil slicks of different classes.
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60 80 100

Percentage of oil coverage within a bin

bined thickness. For the last panel, even il it is difficult to visualize, there are a total of 5% cases with coverage =50%.
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Sensors with fine spatial resolutions tend to have coarse spectral resolu-
tions (e.g., 60-80 nm for Landsat). Such spectral resolutions would
make it impossible to apply the hyperspectral Tetracorder method to
estimate thickness, yet some band ratio combinations may still be appli-
cable for the same purpose (Svejkovsky et al., 2012). SNRs of AVIRIS
between 0.6 um and 1.7 pm are typically in a range of 60:1-100:1
(Gao, 1993), and most coarse resolution sensors (e.g., Landsat 7 and
Landsat 8) have their SNRs comparable to or higher than AVIRIS (Hu
et al, 2012; Pahlevan et al., 2014), leading to at least comparable perfor-
mance to AVIRIS in terms of SNRs. For a given sensor with finite spectral
resolution and SNR, the minimal fraction of oil within a pixel that can be
detected may be assessed in a future study using AVIRIS reflectance
spectra (rather than the morphological parameters here) and the
simulation methods detailed in Hu et al. {2015).

The results from the sensitivity analysis to determine the partial oil
coverage statistics using two commonly available spatial resolutions
(30 m for Landsat and 300 m for MERIS) are interesting. For the DWH
spill on 17 May 2010, only 17% of surface oil can be captured by 30-m
pixel-bins with full oil coverage within a pixel-bin. When the oil slicks
are partitioned to different thickness classes, the percentage of full oil
coverage within a bin decreases sharply to only a few percent. Most of
the 30-m pixel-bins have areal oil coverage of <50%. For 300-m bins,
the percentage of full oil coverage within a pixel-bin is negligible for
each thickness class and for the combined oil classes, and the mean
percentage of full oil coverage is only a few percent. However, these
results should not be interpreted as Landsat or MODIS (MERIS) are not
capable of detecting oil with their relatively coarse-resolution pixels,
but rather they are capable of finding oil with fractional pixel coverage.
This is particularly true when considering that AVIRIS oil maps excluded
thin oil due to technical difficulty. If thin oil were derived from AVIRIS
and then used in this analysis, the results for the <50 um class and the
combined oil class would be changed. Indeed, under sun glint
conditions, optical sensors such as MODIS can capture even thin oil
sheens (Adamo et al., 2009; Hu et al., 2009; Sun and Hu, submitted for
publication).

The analysis was based on AVIRIS data collected in the NE Gulf of
Mexico on 17 May 2010, where both surface currents and winds were
small. Surface currents derived from satellite altimetry data and a
GOM HYCOM model showed minimal water movements on this day
(~ <10 cm s~ ', Liu et al, 2013), while wind speed was generally
<3ms !according to NOAA NCEP reanalysis. Other conditions such
as sun glint strength (a function of wind and solar/viewing geometry)
may affect the interpretation of oil thickness. Although AVIRIS flight
time and flight direction were optimized to minimize sun glint (Clark
et al., 2010), sun glint “contamination” is still inevitable; but these
“contaminated” pixels were masked and not included in the analysis
(Clark et al., 2010).The results are also restricted to the local oceano-
graphic and weather conditions on 17 May 2010. Under different condi-
tions these statistics might change, which needs further investigation
once oil maps from AVIRIS observations on other days are available.

Nevertheless, several important conclusions can be drawn from this
analysis. First, most oil slicks are elongated, with a medium length/
width ratio ranging from 2.5 to 4.6 depending on the thickness class.
This information may be used to help differentiate oil from other look-
alike features. Second, spectral and spatial analyses or modeling using
coarse-spatial-resolution sensors such as MODIS or MERIS need to
consider mixed pixels for thick oil, as most pixels will have thick oil
coverage of only a few percent of a given pixel footprint even though
full-pixel coverage may be possible when thinner oil is considered.
Third, among all existing satellite sensors, Landsat may be an optimal
compromise between spatial resolution and swath width in order to
capture actual thick-oil coverage within a pixel and full oil spill foot-
print. Although the 180-km swath of Landsat is not able to capture the
full extent of the DWH spill (~300-400 km), most spills should be
much smaller than DWH in their spatial coverage. However, Landsat
sensors (including the most recent OLI on Landsat 8) have limited

spectral channels compared to the hyperspectral AVIRIS sensor, thus re-
ducing their capacity to differentiate various oil thicknesses spectrally.

Although the AVIRIS flight lines only captured about 30% of the core
oil spill area (Fig. 1a), these flight lines did capture both the edge and the
center of oil spill, with both thick and thin oil regions included. Thick oil
occupied a small areal fraction but contained a considerably larger
amount of oil volume (e.g., oil with thickness =200 um occupied only
5% of the total oiled area but contained >45% of the total oil volume;
Fig. 1b & ¢), which agrees generally with those determined from exper-
iments (Hollinger and Mennella, 1973) although the details are slightly
different {e.g., Hollinger and Mennella {1973) found 90% of the oil was
in 10% of the slick area with oil thickness > 1000 um), In this study, oil
thickness =200 nm was deemed as thick oil since as it falls in the
range that can be effectively recovered or removed, although the thick-
ness threshold may change with environmental conditions (e.g., age of
the slick, wind, oil type, sea state) {Fingas, 2012). Thus, these AVIRIS-
based findings on slick morphology and size distributions may be
regarded as valid for typical oceanographic and weather conditions for
the northern Gulf of Mexico in the spring. For the same reason, whether
these observations hold true for other major spills still needs to be test-
ed in order to further refine these generalized conclusions.
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The Ixtoc-1oil spill occurred in 1979 in shallow waters (50 m) of the Bay of Campeche, Mexico. Although it is
known that a large portion of the released oil from this second largest accidental marine oil spill in history
reached the surface, to date there has been no attempt to document the surface foolprint and trajectory of the
released oil. Our study attempts to fill this knowledge gap using remote sensing data collected by Landsat/MSS

and CZCS. Beth showed the same general patterns of oil trajectory to the northwest and north, nearly parallel

Keyword:
Ixtoc-I oil spill
Qil trajectory
Remote sensing
Landsat/MSS
CZCs

to the coastline of the western Gulf of Mexico (GoM) with possible oil landing on Mexican and Texas beaches.
Field observations at selected beaches and islands along the coast of the western and southern GoM during
and after the spill confirmed these satellite-based findings, which were also used to help in planning a recent
field campaign to collect sediment samples in the southern GoM.

© 2015 Elsevier Ltd, All rights reserved.

1. Introduction

On 3 June 1979, the Mexican state-owned oil company Pemex
(Petroleos Mexicanos) exploratory well, Ixtoc-I, blew out in the Bay of
Campeche, southern Gulf of Mexico (GoM), about 80 km northwest of
Ciudad del Carmen, Mexico. It was not until 23 March 1980, 290 days
after the blowout that the well was finally capped (Jernelov and Liden,
1981). According to Pemex estimates, a total of about 475,000
metric tons of oil spilled into the Gulf, making it the second largest
accidental release of oil into the marine environment following the
Deepwater Horizon (DWH) oil spill in 2010. Although there were no of-
ficial estimates on the fate of the Ixtoc oil, Jernelév and Liden {1981)
suggested that 50% evaporated into the atmosphere, 25% sank to the
bottom, 12% degraded biologically and (photo)chemically, and the re-
mainder landed on Mexico and Texas beaches or was mechanically re-
moved or burned at the well site. The Ixtoc oil spill's ecological
impacts to the environment were not extensively studied during and
immediately after the spill, but benthic habitats and the long-term
fate of oil deposition could serve as a window into the future for the on-
going assessment of the DWH oil spill environmental effects. Unlike the
DWH oil spill, which had a large oil plume at 1000-1200 m deep
(Camilli et al., 2010), the Ixtoc oil spill occurred on the continental
shelf at a water depth of 50 m, and the majority of the oil reached the
sea surface under high pressure, Thus the surface oil footprint and tra-
jectory may provide critical information on where oil may have

+ Corresponding author.
E-mail addresses: suns@mail.usLedu (8. Sun), huc@usLedu (C. Hu).

http://dx.doiorg/10.1016/j.marpolbul. 2015.10.036
0025-326X/© 2015 Elsevier Ltd. All rights reserved.

impacted the marine ecosystem and sedimentology. This information
is particularly important for a recently funded project by the GoM Re-
search Initiative {GoMRI), which will attempt to sample sediments on
the ocean floor in search of Ixtoc oil residues. Accurate knowledge of
the surface oil footprint and trajectory could help plan field excursions
to determine where these residues are located and thus where to sam-
ple. Unfortunately, after more than three decades since the Ixtoc oil spill,
such information is largely unavailable,

Hence, given the pressing need for knowledge of the surface oil foot-
print and oil trajectory from the Ixtoc oil spill in order to help plan field
campaigns to sample the sediments, the objectives of this paper are
two-fold: 1) to develop a practical approach to map surface oil slicks
from the Ixtoc oil spill from Landsat/MSS and CZCS measurements and
2) to derive surface oil footprint and transport trajectory from the
same measurements.

2. Data and methods
2.1. Satellite data sources and processing methods

Due to limited field data available during the Ixtoc spill, satellite re-
mote sensing is the only feasible means to achieve the objectives. In-
deed, satellite remote sensing has been used effectively detecting and
monitoring oil spills, including the most recent DWH spill ( Brelkke and
Solberg, 2005; Fingas and Brown, 1997; Klemas, 2010; Leifer et al.,
2012). Of all remote sensing techniques, Synthetic Aperture Radar
(SAR) offers medium- to high-resolution data under all weather condi-
tions during day and night, representing the most frequently used oil
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spill detection technique (Brekke and Solberg, 2005; Garcia-Pineda
et al., 2013). Optical remote sensing, although suffering from cloud
cover, can complement SAR observations for more synoptic and repeat-
ed measurements (Macdonald et al,, 1993 ). For example, Hu et al. (2003
& 2009) used the 250-m resolution imagery collected by the Moderate
Resolution Imaging Spectroradiometers (MODIS) to detect and quantify
oil slicks from oil spills and natural seeps under non-sunglint and glint
conditions. More recent studies also showed the possibility to estimate
slick thickness (or surface oil volume) based on the spectral shapes and
magnitudes of the oil slicks {Clark et al,, 2010; Svejkovsky et al,, 2012).

Unfortunately, during the Ixtoc spill in 1979-1980, satellite SAR data
were not available. Of the few satellite data collected during that period,
there are datasets from the Coastal Zone Color Scanner (CZCS, 1978-
1986 on Nimbus-7 satellite) and Landsat Multispectral Scanner (MSS)
[1972-1999 on Landsat 1-5 satellites] providing relatively short revisit
time, as well as relatively high spatial resolution. Therefore, these data
were used in the study to detect and quantify surface oil slicks due to
the Ixtoc spill.

CZCS has 4 ocean bands with 20 nm bandwidth centered at: 443,
520, 550, and 670 nm. Band 5 has a 100 nm bandwidth centered at
750 nm. CZCS full Local Area Coverage (LAC) has ~800 m nadir resolu-
tion with a swath width of 1556 km and a revisit time of 6 days,
Level-1A data were obtained from NASA/GSFC, resamipled to 500 mres-
olution, then processed using the NASA software package SeaDAS (ver-
sion 6.4) to correct for Rayleigh scattering, resulting in Rayleigh
corrected reflectance {Rrc) for every spectral band. Red-Green-Blue
(RGB) true color images were generated from the Rrc data at 670 nm
(R), 550 nm (G), and 443 nm (B).

Landsat/MSS had four spectral bands {500-600, 600-700, 700-800,
800-1100 nm) with 60-meter spatial resclution. Approximate scene
size is 170 km north-south by 185 km east-west and a revisit time is
18 days. Landsat/MSS Level-1 data were obtained from USGS and cali-
brated to top of atmosphere radiance. Landsat data were also processed
to generate the spectral Rrc, from which RGB false color images were
produced (R: 950 nm, G: 750 nm, B: 650 nm).

I'he CZCS and Landsat/MSS data obtained covered locations of the
western GoM (Fig. 1a) and time period from 3 June 1979 to December
1982, During this period, images from the start of the oil spill on 3
June 1979 to the capping of the oil well on 23 March 1980 (spill period)
were used to generate the oil trajectory. Images from Jan. 1981 to Dec.
1982 {natural oil slick reference period) were used to track natural
slicks in the western GoM.
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2.2, Qil slick interpretation

The presence of an oil slick can dampen surface capillary waves,
leading to changes in surface roughness. Such changes in images
under sunglint conditions can make the slicks appear brighter or darker
than the surrounding waters (Adamo et al,, 2009; Hu et al,, 2009;
Jackson and Alpers, 2010). Such appearance can even result from the
thinnest oil films from natural seeps (Hu et al., 2009). In the absence
of sunglint effect, oil can also be discriminated from oil-free clear
water and chlorophyll-dominated waters when considering their spec-
tral differences (Bulgarelli and Djavidnia, 2012). On the other hand, a
mixture of oil and water droplets, as well as air bubbles, marine organ-
isms, and dispersants can form oil emulsions, which often show a
brownish color in satellite RGB true color images. This is because of
the enhanced absorption in the blue and UV wavelengths due to the
asphaltine compounds and enhanced backscattering in the red-NIR
{Near InfraRed)-SWIR (ShortWave Infrared) wavelengths {Clark et al.,
2010). Such an effect can be observed even in images without sunglint.
Overall, the spatial contrast was used first to identify oil-like slicks in
CZCS and Landsat/MSS imagery.

However, oil is not the only material that can cause a spatial contrast.
Other materials or ocean features can also cause similar spatial contrast
in satellite imagery. These look-alike features in the GoM include
Sargassum (brown algae) and Trichodesmium (cyanobacteria/blue-
green algae) mats (Gower et al,, 2006; Hu et al, 2010; Hardy, 2014) as
well internal waves (Apel, 2004). To distinguish them from oil slicks,
spectral and spatial shapes of the identified slicks were examined. Spe-
cifically, the high pigment absorption in CZCS band 4 (660-680nm) and
low pigment absorption in CZCS band 2 (540-560 nm) makes these
algal mats appear greenish in the CZCS RGB imagery (R: 670 nm, G:
550 nm, B: 443 nm). For Landsat/MSS imagery, the high absorption of
water in the SWIR band (950 nm) and the floating algae’s reflectance
peak in NIR band (750 nm}, as well as the high pigment absorption
around the red band (650 nm) (Gower et al., 2006; Hu et al., 2010),
would also make a greenish color for floating algae in the Landsat/MSS
RGB false color imagery (R: 950 nm, G: 750 nm, B: 650 nm). [n contrast,
oil emulsions’ increasing reflectance toward NIR {Clark et al., 2010)
would make a brownish color in both CZCS and Landsat/MSS RGB imag-
ery. Some Sargassum mats may be brownish, and in such cases the
feature's morphology was used to differentiate Sargassum from emulsi-
fied oil. The former tended to be thin and elongated slicks, while the lat-
ter tended to be more diffuse. These characteristics differentiate the
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Fig. 1. Landsat/MSS and CZCS images were examined for {a) 3 June 1979-23 March 1980 and (b) January 1981-December 1982. (a) represents the Ixtoc oil spill period (the accident oc-
curred on 3 June 1979 and the well was capped on 23 March 1980). The ratio in each cell denotes (# of images with oil detected)/{# of images examined). A total of 197 Landsat MSS
images were examined, with 65 showing oil slicks. The dark blue box denotes the geographic boundary of CZCS images examined in this study, and a total of 267 CZCS images were ex-
amined, with 48 showing oil slicks. (h) represents a reference period without oil spills, where a total of 377 CZCS images and 228 Landsat/MSS images were examined. The empty cells

indicate no Landsat coverage during that period.
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algae mats from oil slicks. On the other hand, internal waves are charac-
terized by long, quasilinear stripes in satellite imagery (Apel, 2004), and
they tend to appear as alternative bright and dark stripes {Apel et al.,
1975; Jackson, 2007). In contrast, although oil slicks often show elongat-
ed shapes (Sun et al,, submitted for publication), they tend to have irreg-
ular shapes that would not form patterns of a striped packet, such as
internal waves. These characteristics were used to rule out internal
waves from the identified slicks.

2.3. Differentiation of natural slicks from Ixtoc oil spill

The GoM is known to have numerous natural seeps, with natural
slicks often caught in satellite imagery (MacDonald et al., 1993; Hu
et al., 2009). It is critical to separate these natural slicks from those
due to the Ixtoc spill in order to understand the spill's footprint and tra-
jectory. However, oil slicks from natural seeps and oil spills are similar in
both their spatial shapes and spectral shapes, and alternative ways must
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be used to differentiate them. In this study, they were separated using
the statistical method below.

The method compared the maximum area of slick appearance in a
particular location between two periods: the Ixtoc spill period (June
1979-March 1980) and non-spill period {January 1981-December
1982). During the latter period, 377 CZCS images and 228 Landsat/
MSS images were examined to determine natural oil slicks. For each
Landsat WRS-1 path row (squares in Fig. 1), the maximum area of all
oil slicks in a particular square in a single day from all images was re-
corded. This maximum area was compared to the total oil area of
every image in the same square during the former period. The ratio be-
tween the two was defined as a Maximum Area Ratio (MAR), which was
used to determine whether the slicks detected in a particular path row
during the Ixtoc spill period were from natural seeps or the spill. If MAR
is comparable or =1.0, it is assumed that the oil slicks found during the
spill period on that particular day were likely from natural seeps. If MAR
is «<1.0, the detected slicks were likely from the Ixtoc spill. For the two
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Fig. 2. Oil slicks captured in CZCS Red-Green-Blue true color composite images (R: 670 nm, G: 550 nm, B: 443 nm) during the I[xtoc spill. The green star shows the oil site location. a) Oil
slick first captured by CZCS two days after the oil blowout. Oil emulsions show brownish colors. b) Oil slicks captured by another CZCS image under sunglint, where both positive {red

arrow) and negative (black arrow) contrasts can be observed. ¢) Oil slicks found offshore north of the Yucatan Peninsula in late September 1979. The inset figure shows the approximate

location (purple area) of the slicks. d) Oil slicks near the oil site one week before the well was capped.

104



S. Sun et al. { Marine Pollution Bulletin 101 (2015) 632-641 635

squares nearest the oil well site, the proximity of each slick to the oil
spill site was examined to determine whether it was from the spill.
This is because oil was still released from that site after the well was
capped on March 23, 1980.

24. Estimating oil trajectory

After excluding oil look-alikes, all identified oil slicks together with
their time/location information were imported to the ESRI/ARCMap
software (version 10.1). Oil footprint polygon vectors were documented
in shapefile format, and all footprints during the spill period were
mapped together in ARCMap with the shoreline base layer of Global
Self-consistent, Hierarchical, High-resolution Geography Database
(GSHHG), obtained from NOAA/NCEL Some major (large area) oil foot-
prints away from the spill site were detected by either Landsat/MSS or
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CZCS, and these were selected to show oil transport trajectories during
the spill.

2.5. Validation using field observations

A number of shoreline locations along the western and southern
GoM were visited in 1979 and 1980 to observe oil and tar by Wes
Tunnell and his students. These trips included one major trip in October
1979 by two students (Quenton Dokken and Leo Trevino) to the
Veracruz shoreline, including Enmedio Island and Reef, one longer trip
in 1980, when Tunnell took an extended field investigation to many
southern Mexican beaches and rocky shorelines during July and August
1980. In addition, some observation were continued in later years at
Enmedio [sland and Reef during annual Coral Reef Ecology Class field
trips; others were made when Tunnell lived in the Yucatan for one
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year (1985-86), and still others were made in 2010 after the BP
Macondo Deepwater Horizon Spill when Tunnell took three separate
expeditions back to selected southern Gulf sites. Photographs are
available from all of these sites noted, except one {Montepio, Veracruz).
Google Earth was used to determine the approximate locations for coor-
dinates (latitude and longitude) of each site examined. These locations
were overlaid on the surface oil trajectory maps to conduct a qualitative
validation of the remote sensing interpretations. Given the lack of field
observations in the same place and same day of the remotely detected
slicks, this is perhaps the best method for an indirect validation of the
surface oil trajectory.

The first Ixtoc trajectory estimate or map was prepared by J.A. Galt of
NOAA (Figure 2.2 of Galt, 1981) just 10 h after notification of the spill.
Based on numerous field trips and field observations over the past 35
years, as well as publications immediately after the spill and more re-
cently, Tunnell (2010, 2011) prepared an Ixtoc oil trajectory map to-
gether with an oil footprint map from the DWH oil spill in the
northern GoM. The Tunnell Ixtoc-DWH map was developed in summer
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2010 at the Harte Research Institute for Gulf of Mexico Studies with the
main purpose of providing a visual tool to help the public to understand
the size and location of both spills and their respective locations in the
GoM. The Tunnell Ixtoc oil trajectory maps were prepared with the
knowledge that the oil slick primarily moved westward in June 1979
(Ross et al., 1980) and then northward in July {(IMP, 1980). In addition,
based on today’s physical oceanography (Zavala-Hidalgo et al., 2003;
DiMarco et al., 2005; Morey et al., 2005), the plume was speculated to
follow dominant surface current velocity and direction. These maps
{Galt and Tunnell) were used in this paper to cross check with the re-
mote sensing maps.

3. Results

Fig. 2 shows several CZCS images, where oil slicks show different
appearances. As the oil was saturated with gas, when blowing out
from a depth of 50 m with a pressure of 350 kg/cm?, the oil usually
rose quickly to the surface as a three-phase emulsion, with gas bubbles
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Fig. 4. Differentiation between oil slicks and other surface features. a) Floating algae show greenish colors on CZCS RGB images without sunglint. b) Spectral shapes in Rayleigh corrected
reflectance show difTerence between floating algae and oil. ¢) Internal waves show parallel and alternative light and dark patterns; d) natural oil slicks in the northwestern GoM.
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in oil and about 50% of water droplets (Jernelov and Liden, 1981). Thus
most of the oil slicks around the spill site were found to be emulsified
oil. Fig. 2a shows the brownish color of oil emulsions around the spill
site. Fig. 2b shows oil slicks in both positive (brighter) and negative
(darker) contrasts as compared with the surrounding oil-free water;
this is due to changes in sunglint intensity (Hu et al., 2009; Jackson
and Alpers, 2010). Fig. 2c shows several slicks north of the Yucatan
Peninsula far away from the spill site in late September 1979. Even
after 9 months of the blowout, one week before the oil well capped,
there were still extensive amounts of oil leaking out from the spill site
(Fig. 2d).

Fig. 3 shows several examples of Landsat/MSS images where oil
slicks were detected. Oil slicks were observed in the mid-GoM in 20
June 1979 (Fig. 3a), which were eventually classified as natural oil slicks.
Oil slicks in South Texas and Mexico were observed in August 1979
(Fig. 3b, c). Oil emulsions from Landsat/MSS were also found near the
spill site (Fig. 3d), which showed high reflectance in the NIR band com-
pared to surrounding oil free water.

Fig. 4 shows examples of differentiation between oil slicks and other
look-alikes. The floating algae spectrum in Fig. 4b shows a reflectance
peak in the green band because of high absorption in the red and blue
bands, making the feature appear greenish in the CZCS true color
image (Fig. 4a). In contrast, oil emulsion tends to have increased reflec-
tance toward red, making the slick feature appear red/brownish in the
CZCS true color image when sunglint is absent. Under sunglint condi-
tions, oil contrast (to the surrounding water) could be positive or nega-
tive for the entire spectrum (Fig. 4b).

Natural slicks in each Landsat WRS-1 path row were excluded using
slick area statistics (MAR). Fig. 5a shows a summary of natural and un-
natural oil slicks found in each square during the spill period, where the
number in each square indicates the MAR between non-spill period and
spill period. The brownish color without annotated numbers indicates
where oil slicks were found during the spill period only, and the green
color without annotated numbers indicates where oil slicks were
found during the non-spill period only. The brownish color squares
with and without annotated numbers show that oil from the Ixtoc
spill reached that location at least once during the spill period. It is
clear in Fig. 5a that natural oil slicks mainly appeared in offshore waters
to the north and northeast of the spill site, where these areas are known
to contain numerous natural oil seeps (Hu et al., 2009; MacDonald et al.,
1993).
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After excluding all oil look-alikes and natural oil slicks, a map with all
observed oil footprints from the Ixtoc oil spill was generated. Fig. 5b
shows the map where oil footprints were derived from Landsat/MSS
and CZCS between June 1979 and March 1980. Most of the large oil
slicks are confined and frequently occurred within 200 km north and
west of the spill site. Significant numbers of oil slicks were found
along the western coast of GoM, some even reached as far north as Cor-
pus Christi, Texas. Northern offshore Yucatan Peninsula areas were also
detected with slicks.

While Fig. 5b presents the overall oil footprint for the entire spill pe-
riod, itis difficult to visualize the temporal sequence. Such a sequence is
presented in Fig 6a and b for Landsat/MSS and CZCS, respectively, where
for clarity only the major slicks are plotted, each annotated with a date.
These slicks tend to transport further north-west from the spill site after
late July 1979. Large slicks were observed offshore of Tampico and Cabo
Rojo Mexican coast, and then appeared along the northern Mexican
coast and eventually were transported to the Texas coast. From mid-
September, oil slicks were frequently observed to the northeast direc-
tion of the spill site. Some of slicks after mid-September also reached
the south coast or southeast of the spill site, with fewer slicks found in
the northwest direction than in late July. There were still continuous
large slicks detected around the spill site from November 1979 to 23
Mar. 1980 when the oil well was finally capped. However, during the
5-month period most of the oil slicks were found within 200 km of
the spill site.

A number of field observations were selected to validate these re-
mote sensing observations. The field observations were located along
the western and southern coast of GoM (Fig. 5b), from either the litera-
ture (location nos. 1-3) or Wes Tunnell and his students’ field trips (lo-
cation nos. 4-14) during and after the oil spill. Ixtoc oil was first
observed to enter the US waters in south Texas on 6 August 1979
(Gundlach et al., 1981), and eventually extended about 250 km along
the South Texas coast until a tropical storm in mid-September “cleaned”
the beaches of about 90% of the oil (Gundlach etal., 1981). Fig. 7a shows
heavy oil coverage on Mustang Island on 24 August. The oil pollution on
beaches and islands along the South Texas coast was documented more
explicitly than on Mexican beaches and islands, where only occasional
records reported oil pollution. Several other selected photos of oil cover-
age in coastal areas are presented in Fig. 7. Indeed, each of the annotated
14 locations (triangles in Fig. 5b) was reported to be polluted by oil or
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and Landsat/MSS imagery after eliminating natural slicks. Also annotated are the locations (the numbered red triangles) where oil slicks, tar mats, or oil-contaminated sediments were
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prints detected on 21 August 1979 around locations 1 and 2, while the red polygons with thick green outlines were oil footprints detected in October 1979 around location 7.

107



638 S. Sun et al. { Marine Pollution Bulletin 101 (2015) 632-641
96° W 92°W 88°W 8 W 96° W 92°W 88° W 84°W
T T T T T T T T T T
o s ™ o
Matagorda Ray |asegorde Bay
e (a) N (b) N
e v .
"’"*?bz.,.m Landsat MSS A [ czCs A
z * A \ &9 z
=] =
v
4, |
(821979 ) 9271979
- *
s Tutey e "sn219% .
g = e~ CUBA 1 ; ; . ) GUBA - | Z
a \ » a4 a » s a
M B | 9281979 1111979
we § 622197 ¢
Peod j’ 912011979 <1 " MEXICO
T ® e ERICO”  Legend 90121979 > e e
= 791211978 g 20\ e 4 Compachs Legend
i ’ *  Oil Rij Verscrur 741979
z| 200 NIAITN ded 32 e . |z = 200 Clodud et Garmen * OilRig |~
& [ C—"IKilometers £ 2 [ [Ckilometers 1%
L - - -~ i L L I
96°W 92°W 88° W 840w 96° W 920 W S50 W 84° W

Fig. 6. Oil trajectories derived from a) Landsat/MSS and b) CZCS, where the green star annotates the site location. The green polygons with blue outlines (annotated as “9/20/1979” and “9/
21/1979") were confirmed in the same direction by observations [rom a helicopter (Farrington, 1983). ¢) Ixtoc oil pathway generated by Wes Tunnell. d) Sampling locations (red balloon)
of the first field campaign to collect sediment samples between 7/29/2015 and 08/11,/2015, conducted by the C-IMAGE II research consortium supported by the GoM Research Initiative.
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tar (in Table 1), confirming the oil trajectory pathway derived by both
Landsat/MSS and CZCS.

4. Discussions

Most oil slicks were found to the north and northwest of the spill site
(Fig. 5b), and the temporal sequence in Fig. 6 suggest a north and north-
west trajectory along the Mexican and Texas coast especially in early
August 1979. Such patterns were not only verified by the field observa-
tions along these beaches and islands but they also agreed with predic-
tions by physical models (Galt, 1981). According to the surface current
and wind conditions, the oil slicks were predicted to firstly drift west
to west-northwest (Galt, 1981). Once they arrived offshore along the
Mexican coast between Cabo Rojo and Tampico, they would transport
north with the northward Mexican coastal current. In addition, a coun-
terclockwise circulation off Tampico was seen to recirculate oil that was
near shore extending 50 km offshore toward the Mexican coastal rather
than allow it to continue farther north. Thus the main slick that entered
the US water might come from 50 km off shore of Tampico (Galt, 1981).
As shown in Fig. 6a, two large oil patches, with each being continuous in
its spatial extent, were found offshore Tampico on 1 August 1979 and
along Mexico coastal line between Tampico and Brownsville on 2 Au-
gust 1979, respectively. These two patches appeared to follow the
above pathway from the offshore of Tampico to reach the northeastern

coast of Mexico. According to these results, the surface oil could be
transported further north to the South Texas water by the northward
Mexican coastal current. [ndeed, Ixtoc oil was firstly reported to impact
Texas shoreline on 6 August 1979, with 27 km of shoreline contaminat-
ed by light tar balls. The satellite-based observations also showed gener-
al agreement with the Tunnell map (Fig. 6¢), where they both followed
the northwestern direction toward Texas waters by passing far outside
of Tampico, Mexico. The two maps, although derived independently
from cach other, both showed that oil reached as far north as Matagorda
Bay, north of Corpus Christi, Texas. While the Tunnell map was generat-
ed primarily based on physical oceanographic conditions, the new re-
mote sensing maps (Fig 6a & b herein) now provide remote-sensing
based evidence for the general oil trajectory directions.

Although direct validation of the satellite-based maps is impossible
due to lack of field observations at exactly the same time and same lo-
cation of the satellite observations, field sampling and observations
during and after the spill still provided indirect validation of the re-
mote sensing based interpretations. Extensive oil slicks were detected
along and offshore Texas water on 21 August 1979 in Landsat/MSS im-
agery while oil slicks were sighted on Texas coastal line between
Brownsville and Corpus Christi and very thick oil emulsions were
reported to be washed ashore on Mustang Island (location no. 1 in
Fig. 5b) on 24 August 1979 (Gundlach et al,, 1981). Oil tar balls were
found in water between mainland and Enmedio Island and Reef
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Fig. 7. Photos of oil/tar along the western and southern coasts of GoM. a) Heavy oil washed ashore Mustang Island on 24 August 1979 (location no. 1 in Fig. 5b) (Gundlach et al., 1981);
b) piles of oily sand observed on the Tuxpan beach in October 1979 {location no. 5 in Fig. 5b) | photo by Q.R. Dokken|; ¢) floating tar balls observed in water between Veracruz mainland and
Enmedio Island and Reef (about 5 miles offshore) in October 1979 (location no. 7 in Fig. 5b) [Photo by Q.R. Dokken]; d) A large tar mat observed in the southeastern corner of Isla Perez on

Alacran Reef in January 1986 {location no. 14 in Fig. 5b} [Photo by JW. Tunnell].

(about 5 miles offshore) on an October 1979 field trip (location no. 7
on Fig. 5b). The remote sensing imagery showed several surface oil dis-
tributions near this location around October (Fig. 5b highlighted red
polygons with green outlines). In addition to field observations at loca-
tions 1, 2 and 7, observations at locations 4, 5,8 9, 12, 13, and 14 (all
marked on Fig. 5b) all revealed oil presence throughout the Ixtoc oil
spill period. Locations 3, 6, 10, and 11 seem a little further away from
the oil coverage areas, but they cannot be reasonably ruled out of oil
coverage since these locations all enveloped by surrounding oil pres-
ence (Fig. 5b).

Oil slick appearance frequency and area of coverage were found
to increase in the east and northeast direction of the spill site after
September 1979. ERCO (1982) reported that the northward-flowing
western GoM current reversed direction during September 1979, and
major surface concentrations of oil were then found to the northeast,
east and southeast of the well (Farrington, 1983). As shown in Fig 6a
and b, large slicks were found more in the north, northeast, south and
southeast direction of the oil well site than in other directions since
September 1979. Helicopter overflight found that oil plumes were
in the northeast direction of the oil well from 15 September —20
September 1979 and shifted to southeast direction for 12 h on 21
September 1979 (Farrington, 1983). Landsat/MSS images (Fig. 6a anno-
tated “9/20/1979" and “9/21/1979" slicks) showed the same direction of
oil distributions as reported in the two days. North of the Yucatan Pen-
insula, large patches of oil were firstly detected in September 1979.
However, no apparent slicks were found entering water north off Tam-
pico after September 1979. Therefore, without a direct field validation at
the same time and same location of the oil slicks, these published re-
ports indirectly supported the remote sensing interpretations here.

However, due to the inherent limitations of the two satellite sensors,
the information from this analysis cannot be considered as complete.
CZCS revisit time is 6 days with nadir spatial resolution of 800 m,

while Landsat/MSS revisit time is about 18 days with spatial resolution
of 60 m. Even after combining both observations, there are still spatial
and temporal gaps due to both their infrequent coverage (Fig. 1) and
weather conditions ( clouds). For example, there was a tropical depres-
sion across the south Texas area on 13 September 1979 which removed
more than 90% of the oil on the Texas shoreline by wave activities
(Gundlach et al., 1981). Another tropical storm moved across the south-
western Gulf, which affected the plume area on 16&17 September 1979
(Atwood and Benjamin, 1980). During and immediately after the
storms, most of the areas in the western GoM were covered by clouds,
resulting in no remote sensing observations. Even under cloud free con-
ditions, storm-induced sediment resuspension made it difficult to inter-
pret oil signals in remote sensing imagery in nearshore waters. Thus, the
results presented here can only be interpreted as incomplete although
they perhaps represent the best information we can obtain in such a ret-
rospective way. Likewise, satellite remote sensing of oil spills is limited
to the very surface (top centimeters) unless oil droplets develop uni-
formly through the top meters, In the case of the Ixtoc spill, a subsurface
oil plume of suspended oil droplets was observed within 40 km of the
spill site, where its movement was influenced more by currents than
by winds, and the plume was possibly moving in the same direction as
with surface oil slicks (Boehm and Fiest, 1982). Although the subsurface
oil plume was estimated to represent only ~3% of total spilled oil, it
could not be observed from remote sensing, However, such an inherent
limit in remote sensing would not impact the observations of the surface
oil trajectory, even when infrequent satellite observations were used. In
this regard, the trajectory presented in Figs. 5 and 6 may be used to help
plan field surveys to sample the bottom sedimentin order to determine
the spill’s impact on the benthic habitats after 30 years. Indeed, at the
time of this writing, with the help of Figs. 5 and 6 to determine the sam-
pling locations such a field campaign has already been planned and con-
ducted (07/29/2015-08/11/2015, Fig. 6d) under the support of the Gulf
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Table 1
Field observations along the western and southern Gulf of Mexico coast.
Number Time Location Area Latitude Longitude Oil type Description
1 Aug. & Mustang Island Texas, US 27°39' 20" N 97°11" 11" W Oil slick, emulsions  Similar conditions applied to North Padre Island
Sep. 1979 and tar mats (no. 2)
2 Aug. & North Padre Island  Texas, US 27°27'53"N 97°17'51.5"W  Oil slick, emulsions By 15 August, coverage of North Padre Island was
Sep. 1979 and tar mats mostly light, by 26 August, most of North Padre
Island had moderate coverage, heaviest period of
oil impact occurred from 29 August through 1
September 1979. From 2 September until 13
September, only scattered sheen was observed
offshore, and no new impacts occurred. On 13
September, a tropical storm “cleaned” the beaches
of much of the oil {(Gundlach et al,, 1981).
3 Aug. & South Padre Island ~ Texas, US 26°11' 05" N 97°10" 34" W Oil slick, emulsions  Similar conditions applied to North Padre Island
Sep. 1979 and tar mats (no. 2)
4 March 1980 La Pesca beaches Tamaulipas, 23°47'07.14" N 97°44’ 08.53" W Grated oil/tar Observed oil/tar grated into wind-rows oriented
MX north south on backshore of beach
5 October 1979 Tuxpan beach Veracruz, MX ~ 20°58" 2387'N 97°18' 25.85"W Oily sand Observed piles of oily sand that had been raked or
scooped from the beach and piled on the backshore
near and in the dunes
6 October 1979  Punta Delgado Veracruz, MX 19°51" 36.09" N 96°27' 35.86 W Oil/tar Observed oil/tar in among rocks on rocky shoreline
rocky point and on rocky cobblestone beach.
7 October 1979 Enmedio Island Veracruz, MX ~ 19°16' 0507 N 95°56° 19.46" W Oil in water Observed lots of oil in water between mainland and
and Enmedio [sland and between mainland and reef,
Reef off Anton lots of oil all around island and much oil in shallow
Lizardo lagoon around island in seagrass beds
8 27 July 1980  La Gaviota Beach  Veracruz, MX  18°49'55.89"N 95°51'42.71"W Tar ball and oily Observed small tar balls on the upper beach and
sand piles of oily sand spaced out every 50-100 m along
the beach
9 28July 1980  Montepio, San Veracruz, MX  18°38'4428'N 95°05'45.31"W Solid tar mats Observed some very solid tar mats in intertidal zone.
Andres Tuxtlas
Mountains
10 30 July 1980  Sanchez Tabasco, MX 18°17'56.30" N 93°51°23.37"W Oily sand Observed layer of oily sand about 1 ft thick at a level
Magallanes about 6 ft or so above high tide.

11 2 August 1980 Remote highway
area south of
Champoton
Mangrove
coastline

12 2010

13 2010 Mangrove
coastline
Isla Perez, Alacran

Reel

14 January 1986 Yucatan, MX

Campeche, MX 19°14' 3929'N 90°49’ 56.26" W Heavy tar mats

Campeche, MX 20°40" 18.42" N 90°26'41.16"W Tar mats

Campeche, MX 20°24' 2458"N 90°29 3081 W  Tar mats

22°22' 4478 N 89°41°05.00"W  Tar mat

Large tar mats in supratidal zone above limestone
rocky shore and among rocks along rocky shore.

Found thin tar mats among the roots of the
mangroves in the mangrove forest/swamp that was
about 3/4 in. thick in both places

Similar conditions applied to no. 12

Observed a large tar mat on the southeastern
comner of Isla Perez on Alacran Reel

of Mexico Research Initiative in order to have a comparative study with
the DWH ({BP) oil spill in the northern GoM (Fig. 6¢).

5. Conclusions

For the first time, a comprehensive retrospective analysis of Landsat/
MSS and CZCS imagery was used to develop partial surface oil footprint
and trajectory maps from the Ixtoc oil spill in the southern GoM
between 1979 and 1980, Practical methods have been developed and
used to differentiate surface oil slicks from other look-alikes, and to dif-
ferentiate oil spill from natural oil slicks. Such derived oil footprint and
trajectory maps provide a synoptic view of locations, timing, and rela-
tive amount of surface oil in the GoM following the oil transport path-
way. Such observed oil trajectory and occurrence of major oil slicks
agree well with field observations and previous modeling results, yet
they provide independent information to assess the spill's impact on
the marine environment. Such derived maps have been used to guide
field measurements, thus providing another practical use, The availabil-
ity of CZCS and Landsat/MSS since the 1970s may make such ap-
proaches extendable to other spill cases.
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An oil platform in the Mississippi Canyon 20 (MC-20) site was damaged by Hurricane [van in September 2004. [n
this study, we use medium- to high-resolution (10-30m) optical remote sensing imagery to systematically assess
oil spills near this site for the period between 2004 and 2016. Image analysis detects no surface oil in 2004, but
~40% of the cloud-free images in 2005 show oil slicks, and this number increases to ~70% in 2006-2011,
and > 80% since 2012. For all cloud-free images from 2005 through 2016 (including those without oil slicks),
delineated oil slicks show an average oil coverage of 14.9 km?/image, with an estimated oil discharge rate of 48

to ~1700 barrels/day, and a cumulative oil-contaminated area of 1900 km? around the MC-20 site. Additional
analysis suggests that the detected oil slick distribution can be largely explained by surface currents, winds, and

density fronts.

1. Introduction

During Hurricane Ivan in September 2004, the oil platform and 25
of the 28 connected wells at the Taylor Energy's Mississippi Canyon 20
(MC-20) site, located in the northern Gulf of Mexico (GoM), were da-
maged and impacted. Subsequently, oil was found leaking, which was
reported as the Taylor Energy oil spill or MC-20 oil spill (IHerbst et al.,
2016; Warren et al., 2014). Although mitigation efforts have taken
place (including removal of the platform deck and subsea debris, de-
commissioning of the oil pipeline, and plugging 9 of the 25 impacted
wells), there has been a continuous oil discharge from the platform site.
Beginning in September 2014, over 7 months of near-daily aircraft
overflights reported oil sheen observations, with an oil slick generally
about 1.6 km wide and 9 km long, and an average oil coverage area of
20km? (BSEE, 2017). The United States Bureau of Safety and En-
vironmental Enforcement (BSEE) estimated that the oil discharge could
continue for 100 years or more if left uncontrolled (B¢ 2017). This
crude oil spill from the MC-20 site is also documented in the National
Response Center (NRC) reports (NRC, 2018), containing information
like spill locations, spill materials, spill size, etc., with involved material
documented as crude oil (NRC, 2018; NOAA, 2013). The NRC reports,
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however, depend largely on unverified reporting from responsible
parties (polluters) and third parties, and therefore its reported slick size
information was found to be significantly underestimated (Daneshgar
Asl et al., 2016). Moreover, those traditional airborne and shipborne
surveys are often too limited spatially and temporally to construct
statistics about the discharged oil, as they often result in data gaps.
Satellite remote sensing, which serves as a vital tool in response to oil
spills (Leifer et al., 2012), provides frequently synoptic observations of
the MC-20 oil locations over the entire spill period (since 2004) and
may fill these data gaps in objectively assessing the oil spill near the
MC-20 site.

The proximity of the MC-20 site to the Mississippi River Delta
suggests that the oil slick extensions and fate are under the direct effect
of the river plume dynamics, which play a significant role in the cir-
culation around the Delta and over the broader Northern Gulf circula-
tion (Walker et al., 2005; Schiller et al., 2011; Androulidakis and
Kourafalou, 2013; Androulidakis et al., 2015). The brackish plume may
either extend over the MC-20 site, forming a near-surface vertical
barrier layer, or determine the oil transport pathways along the river-
induced fronts. Based on satellite (remote sensing imagery) and field
(drifters, ship-borne measurements) observations, Androulidakis et al.
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(2018} showed that the locations of the river's multiple fronts (outer
and inner density fronts) are vital for the evolution and fate of the
material at the sea surface that originates from the MC-20 site. The
buoyancy-driven Mississippi plume waters generally reveal threc major
pathways where the Coriolis effect is important (Garvine and Monl,
1974; Kourafalou et al., 1996): an anticyclonic bulge arcund the Delta,
a “downstream” coastal current toward the northwestern Gulf shelves,
and an “upstream” current toward the northeastern shelves (Schiller
et al., 2011; Zhang et al., 2012; Androulidakis et al., 2015). Although
several other atmospheric (e.g. winds) and oceanic (e.g. local eddies,
Loop Current) conditions determined the oil spill fate during the
DecpWater Horizon (DWH) accident in 2010 (Walker et al., 2011; Le
Hénaff et al., 2012), the river plume contribution was vital to the
spreading of the hydrocarbons over the Gulf and especially around the
Mississippi River Delta region (Kourafalou and Androulidakis, 2013).
The use of remote sensing imagery benefits both the observation of oil
slick dynamics over short-term (a few hours to a few consecutive days)
and the long-term oil distribution frequency near the Mississippi River
Delta region, enabling the study of river plume impacts on oil slick
spreading in a region under strong influcnce of the Mississippi River
plume. Despite sporadic field and airborne surveys, no comprehensive
long-term picture currently exists regarding the oil spill near the MC-20
site. Therefore, there are two main goals in this study: first to geo-sta-
tistically analyze oil slicks using medium- to high-resolution (10-30 m)
satellite imagery around the MC-20 site from September 2004 to De-
cember 2016; and to study how atmospheric and ocean conditions af-
fect the oil slick distributions observed in remote sensing imagery in
this region under strong river plume influence.

2. Data and methods

The MC-20 site is located approximately 17 km offshore from the
Mississippi Delta in the GoM (Fig. 1). The location is in the frontal re-
gion of the Mississippi river plume, with associated wells at a water
depth of 145 m. This MC-20 site is ~60 km away from the DWII (Ma-
condo) blowout location (Fig. 1). The catastrophic explosion and
sinking of the DWII oil platform on 20 April 2010 caused the second
largest marine oil spill in history (McNutt et al., 2012; Murphy et al.,
2016). The Macondo well emitted 3.19 million barrels of crude oil into
the northern GoM (McNutt et al., 2012; U.S. v. BP et al., 2015} until the
wellhead was finally capped on 15 July 2010.
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In optical remote sensing imagery, the contrast between surface oil
and non-oil water comes from two sources. ‘The first is the sun glint
effect, which enhances the contrast of the otherwise non-observable oil
due to the wave-damping cffect (Adamo et al., 2009; Hu ct al., 2009;
Macdonald et al., 1993; Sun and Hu, 2016). The same mechanism af-
fects the Synthetic Aperture Radar (SAR) detection of oil at the ocean
surface (Brekle and Solberg, 2005). Depending on the viewing geo-
metry and wind, the oil-water contrast can be either positive or nega-
tive in the optical imagery (Hu et al., 2009; Jackson and Alpers, 2010;
Lu et al., 2016). The second is the difference between optical properties
of oil and water. Crude oil is characterized by high absorption in blue
wavelengths (Byficld, 1998) where the increased thickness of oil cor-
relates to decreased reflectance in blue waves (Lu et al.. 2013a; Wettle
et al., 2009) until oil is too thick for light penetration (Lu et al.. 2013b).
When oil is emulsified, the water-in-oil emulsion causes strong scat-
tering in the red, near infrared (NIR), and shortwave infrared (SWIR)
wavelengths (Bulgarelli and Djavidnia, 2012; Clark et al, 2010;
Svejkovsky et al., 2012). A combination of sun glint and optical prop-
erties of the oil-water contrast has been used to efficiently characterize
oil spills in a marine environment (Bulgarelli and Djavidnia, 2012;
Clark et al., 2010; Hu et al., 2009; Leifer et al., 2012; Lu et al., 2013b;
Sun et al., 2015).

In this study, for oil slick delineation we mainly used optical remote
sensing imagery from Landsat-5 Thematic Mapper (TM), Landsat-7
Enhanced Thematic Mapper Plus (ETM + ), Landsat-8 Operational Land
Imager (OLI), and Sentinel-2 MultiSpectral Instrument (MSI). Landsat
sensors have a nominal resolution of 30 m while MSI has a nominal
resolution of 10 m. Oil slicks from the DHW oil spill between April and
July 2010 have been shown to reach the MC-20 region (Hu et al., 2011;
MacDonald et al., 2015). To aveid confusion from the DWIT oil spill,
images collected in 2010 around the MC-20 site were not included in
this study. Landsat imagery has a revisit time of 16 days alone (Table 1),
and 8 days combined (TM with ETM + in 2004-2011, and ETM + with
OLI in 2013-2016). A total of 513 medium- to high-resolution images
(10-30m) were explored, with 294 cloud-free images found in this
region. A summary of the medium- to high-resolution optical imagery
used in this study is shown in Tables 1 and 2. The average cloud-free
images per year arc 26 (excluding year 2004 since the oil spill started in
September of that year), 15 of which were taken during favorable sun
glint season in the GoM (April-September, from Ilu et al,, 2009; Sun
and Hu, 2016). Thin oil sheens may not be efficiently detected under

Fig. 1. The MC-20 site (black droplet top: latitude 28.94,
longitude —88.97, which also applies to the following fig-
ures) is 17 km offshore of the Mississippi River Delta in the
Gulf of Mexico (GoM) at a water depth of 145 m. The 2010
DeepWater Horizon (DWH) oil spill in the Macondo site
(green droplet top: latitude 28.74, longitude —88.37) is
~60km southeast of the MC-20 site with a water depth of
~1500m. The background color in the GoM denotes the
water depth, and major bathymetry contours (in units of
meters) have been noted on the map.
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Table 1
Characteristics of optical satellite sensors used for the oil spill assessment in the
study.

Sensor Data available Spatial Spectral Revisit time
(year) resolution (m) bands (days)
VIS-SWIR
Landsat-5/TM 2004-2011 30 6 16
Landsat-7/ETM+  2004-2016 30 (Pan-15) 7 16
Landsat-8/0LI 2013-2016 30 (Pan-15) 9 16
Sentinel-2/MSI 2015-2016 10, 20, 60 13 10

weak glint conditions (Sun and Hu, 2016). Thick/emulsified oil may
still be detected because of their different optical properties with re-
spect to seawater (Wettle et al., 2009; Clark et al., 2010). These sam-
pling frequencies (15 and 26 per year for sun glint images and cloud-
free images) are comparable to and higher than the global average
frequency of chlorophyll at a typical 1-km pixel from the Moderate
Resolution Imaging Spectroradiometer (MODIS, every 20 days or 5%,
see Feng and Iu, 2016). Therefore, we believe that the sampling fre-
quency of oil slicks by those medium- to high-resolution imagery is
statistical meaningful for assessing the oil spills near the MC-20 site.

MODIS imagery, although providing more frequent coverage (i.e.,
daily images), has a spatial resolution of 250 to 1000 m, which is too
coarse to assess this moderate oil spill, for which the typical slick size
ranges from O (100 m) to a few tens of kilometers. A statistical analysis
during the DWH oil spill demonstrated that on average > 50% of 300-m
pixels contain thick oil of < 6.6% of a 300-m pixel (Sun et al., 2016).
For 1-km pixels, the sub-pixel percent cover is much lower than 1.0%.
Thus, assessing the oil spill near the MC-20 region using MODIS ima-
gery may fail to detect small slicks in oil presence/absence frequency
analysis and add uncertainties in statistical analysis of oil slick area.
However, occasionally large slicks (tens of kilometers in length and a
few kilometers wide) under sun glint conditions can still be detected in
MODIS imagery. Therefore, MODIS imagery was used in this study to
detect the presence of oil slicks during the initial leaking stage of the
spill when Landsat imagery failed to detect slicks in September—De-
cember 2004. Moreover, MODIS imagery was used in the analysis of
short-term oil slick dynamics to enable more observations of the oil
slicks in a few consecutive days. In addition, MODIS and Visible In-
frared Imaging Radiometer Suite (VIIRS, 375 to 750 m in spatial re-
solution) chlorophyll concentration maps were also used to identify the
river plume spreading in tandem with the detected oil slicks.

Finally, same day SAR imagery was used to cross-check with results
from optical imagery analysis. SAR/optical imagery groups within two
days were used with a numerical model and ocean color data to un-
derstand short-term dynamics of oil slicks near the MC-20 site.

TM, ETM +, OLI, and MSI Level-1 data were obtained from USGS/
EarthExplorer, and then processed to Rayleigh-corrected Reflectance
(Ry(M\), dimensionless) using the ACOLITE software (version
V20161207.0). Red-Green-Blue composites were generated for visual
inspection for all four sensors: OLI (R: 655, G: 561, B: 483 nm), ETM +
(R: 661, G: 561, B: 479 nm), TM (R: 660, G: 571, B: 486 nm) and MSI (R:
664, G: 560, B: 497 nm). Sun glint strength of the Landsat imagery was
evaluated using sun glint coefficient (Lgy, in units of sr '), estimated
with the Cox and Munk (1954) model, wind speed, and solar and sa-
tellite geometry. Wind speed was retrieved from the Reanalysis-2 wind
speed product of the National Centers for Environmental Prediction
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(NCEP). Solar and satellite geometry of Landsat was calculated using
the “Landsat Angles Creation Tools” from USGS (https://landsat.usgs.
gov/solar-illumination-and-sensor-viewing-angle-coefficient-file).

MODIS (on both Terra and Aqua) Level-0O data from September to
December 2004 and 7-9 May 2015 were obtained from NASA Goddard
Space Flight Center (GSFC) and processed to R, (%) using the SeaWiF§
Data Analysis System (SeaDAS, version 7.3), and then resampled to
250 m spatial resolution using a sharpening scheme and mapped to an
equidistant cylindrical projection. RGB composites were generated
using the R, bands(R: 645, G: 555, B: 459 nm). Chlorophyll-a con-
centration Level-2 data from MODIS Aqua and VIIRS in 5-10 May 2015
were obtained from NASA/GSFC, and mapped to an equidistant cy-
lindrical projection at 1 km spatial resolution.

SAR images used in this study were processed and analyzed as fol-
lows: First, a preliminarily inspection of the SAR imagery was used to
determine the overall ocean features. The texture of the image was
evaluated to determine the wind conditions (Garcia-Pineda et al.,
2008). When regions of very low wind speeds are present, ripple-free
water and biogenic films create irregular, radar-dark regions that are
difficult to distinguish from actual oil slicks. The SAR images used for
this study were acquired under optimal wind conditions and the oil
slick detected from the MC-20 site was clearly distinguishable. After
initial inspection, a Textural Classifier Neural Network Algorithm
(TCNNA) was applied to identify floating oil layers in a semi-supervised
operation (Garcia-Pineda et al., 2008). The TCNNA is conditioned on a
training set of SAR features of interest (i.e., floating oil) that previously
have been identified by an operator over the natural hydrocarbon seep
locations in the GoM (Garcia-Pineda et al., 2008, 2009). The final
output of the TCNNA algorithm is a polygon that delineates the area of
the slick. More details of the SAR processing can be found in Garcia-
Pineda et al. (2008, 2009, 2010).

As mentioned above, oil slicks show spatial contrast from nearby
water in optical remote sensing imagery because 1) oil has different
optical properties from water and 2) oil can change the surface
roughness, thus leading to redistribution of reflected light under sun
glint conditions. In this study, oil slicks were identified as follows: 1)
color stretched RGB images were visually inspected to detect spatial
anomalies; 2) R, spectra from the anomalies were then diagnosed to
rule out oil look-alikes (Hu et al., 2015). More details on the oil iden-
tification can be found in Sun et al. (2015). Then, for statistical analysis,
the identified oil slicks were all counted for presence/absence in order
to estimate oil appearance frequency. In this analysis, only slicks that
follow the following rules were delineated and used in the areal sta-
tistical analysis: 1) slicks that originated from the MC-20 site and not
blocked by clouds, which were treated as major slicks here; 2) smaller
slicks near the major slicks. For example, in most cases, the major oil
slicks originated from the MC-20 site and extended to one direction of
the site (Fig. 2). In Fig. 2d, although the slicks indicated by the arrows
can be inferred to be parts of major slicks originated from the MC-20
site, those slicks were only counted for the analysis of presence/absence
frequency statistics; they were not delineated because an incomplete
slick would not fit the purpose of areal statistical analysis. As a result,
major slicks under cloud-free conditions (Fig. 2a and b), partially
blocked by small clouds (Fig. 2c), and small slicks detached from major
slick (Fig. 2b), were delineated manually using AreMAP (version 10.3)
software. EIM + imagery suffers from scan line correction failure since
2003 (https://landsat.usgs.gov/landsat-7), causing line gaps (evenly

Table 2
Number of cloud-free (CF) images each year and the number of CF images in sun glint faverable period (April-September) in each year.
Year 2004 2005 2006 2007 2008 2009 2011 2012 2013 2014 2015 2016
# CF images 8 27 26 25 24 28 26 14 22 24 25 45
# CF images 2 12 15 17 12 16 14 10 14 16 14 26
APR-SEPT
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Fig. 2. Oil slicks captured by different sensors: a) OLI; b) ETM +; ¢) TM; d) MSL They all appear to have originated from the MC-20 site, with different orientations.
Delineated oil slick areas are annotated in (a)-(c). Oil slicks partially blocked by clouds, as shown in the example in (d), were not used for area estimates in this study.

distributed black lines in the left part of Fig. 2b) in all ETM+ scenes
since then. Fortunately, the MC-20 location is in the center of the image
(Fig. 2b), where the image is least affected by this scan line correction
off issue. When oil slicks extend long enough to reach these line gap
regions, delineated oil slick polygons on both sides of the missing data
line were manually re-connected if oil slicks were present on both sides,
as shown in Fig. 2b. The swaths of Landsat imagery and Sentinel-2 MSI
imagery are large enough to cover the slicks near the MC-20 site. Be-
cause only oil slicks originated from the MC-20 site were considered,
the impact of natural oil seeps was minimized in this study.
Simulated fields of surface currents were used to describe the ocean
circulation over the study region and compare it with the oil spreading
detected by the satellites. The simulation was based on the HYbrid
Coordinate Ocean Model (-IYCOM; (https://hycom.org/), implemented
at a 1/50° (~1.8 km) resolution and 32 vertical levels over the GoM
(GoM-HYCOM 1/50; Le Hénaff and Kourafalou, 2016). Based on a
combination of various vertical coordinates (hybrid model), the
HYCOM model is particularly suitable for regional domains with com-
plex topography of wide shelves, steep slopes, and deep oceanic areas
such as the GoM (Bleck, 2002; Chassignet et al., 2006; Kourafalou et al.,
2009; Halliwell et al., 2009). The GoM-HYCOM 1/50 simulation em-
ployed here was forced at the surface by the NAVy Global Environ-
mental Model (NAVGEM, 1/2° resolution at 3 hourly frequency), and
benefited from realistic river representation. The simulated fields used
in this study are part of a long-term simulation that assimilates
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observations (based on an Ensemble Optimal Interpolation scheme) and
provides publicly available daily forecast ocean fields of the GoM in a
weekly basis operated by the Coastal and Shelf Modeling Group (Uni-
versity of Miami/RSMAS; http://coastalmodeling.rsmas.miami.edu/).
GoM-HYCOM 1/50 uses daily river forcing for the 15 larger rivers in the
U.S. part of the domain, including around the Mississippi Delta, while
other rivers are represented with their monthly climatology. The river
discharge data were obtained through the U.S. Geological Survey
(https://www.usgs.gov/) and the Army Corps of Engineers. The high-
resolution (~1.8 km}) of the model in combination with the use of the
updated river parameterization by Schiller and Kourafalou (2010), is
adequate to efficiently resolve mesoscale and coastal processes around
the Mississippi Delta (Le Hénaff and Kourafalou, 2016), where the oil
source is located. The river plume dynamics and the formation of the
accompanying strong density fronts, dominant over the region around
the Mississippi, have been found relevant to the evolution of the shape
and orientation of the oil patches during both short-term (a few hours
after their formation) and long-term (pathways over a few days and
fate) periods (Kourafalou and Androulidakis, 2013; Androulidakis
et al., 2018).
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Fig. 3. a) Same day SAR (COSMO-SkyMed-4 collected on 9/9/2011, UTC 11:46, with spatial resolution of 30 m; Dark grey area indicates the River Plume and light
grey area the clear sea water; Part of the slick tale was missing in the SAR image because of the image footprint limit) and ETM + (9/9/2011, UTC 16:20, left part of
the image and the entire slick captured by ETM + was displayed in(c) with delineated oil slick). Four images of oil slicks captured by optical and SAR imagery in two
consccutive days: b) SAR acquired by RADARSAT-2 (spatial resolution: 6 m) on 5/8/2015 UTC 23:53, with colored slicks representing those delincated from images
in (d)-(0 (legend shown in the bottom right corner); d) OLI on 5/7/2015 UTC 16:25; ¢) MODIS/Aqua on 5/7,/2015 UTC 19:05; and [) MODIS/Terra on 5/8/2015
UTC 16:35. The arrows in (a) and (b) indicate simulated surface current fields, where the current velocity scale in (b) applics to both (a) and (b). The thick blue
arrows represent the mean wind direction, estimated between both images on panel a and hetween the last two images (16:35-23:53, 5/8/2015) in panel b. Wind
direction does not change much between 5/7/2015 and 5/8/2015, with a standard deviation of 12.6° over the two days.

3. Results
3.1. Short-term dynamics

Taking advantage of occasions when distinct remote sensing ob-
servations of the oil slicks are available a few hours apart or over a few
consecutive days, here we analyze the short-term dynamics of oil slicks,
together with the wind conditions and the simulated current fields over
the MC-20 region. Fig. 3a shows two images of the same slick, captured
~4.5h apart by SAR and ETM+ on September 9, 2011. The slick on
both images generally followed the modeled current directions. On
Fig. 3a, the darker area represents the river plume area, while the
lightest grey area is characterized by clear ocean waters; the simulated
currents inside the plume follow the direction of the downstream river
current (southwestward), while the currents over the open ocean were
northwestward. The oil pathway in both satellite images is aligned with
the river front, in agreement with obscrvational findings by
Androulidakis et al. (2018). The southern part of the slick (indicated by
the yellow arrow in Fig. 3a) was observed to move ~5km to the
southwest during this time period. The modeled average current field
(~0.1-0.3 m/s in a southwestward direction, Fig. 3a) alone cannot fully
explain the movement. The wind, which had almost the same direction
as the current, must have also contributed to the southwestward
movement of the slick. With wind and current in different directions,
the group of images during 7-8 May 2015 in Fig. 3b displayed the
dominance of current and wind on slick movement at different periods.
The oil slick was first captured by OLI to the southwest (7 May 2017
16:25; Fig. 3d). Over time it wandered north and south, as observed by
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MODIS Aqua (7 May 2017 19:05; Fig. 3¢), and Terra (8 May 2017
16:35; Fig. 3f), before heading northwest (8 May 2017 23:53; Fig. 3b
blue highlighted). The modeled currents were mostly westward in May
7, with current direction agreeing well with the westward slicks. Cur-
rent directions near the MC-20 site shows little change between May 7
and May 9, while the simulated currents field does indicate drastic
decrease of magnitude in the site region (0.89 m/s at 18:00 May 7 to
0.39 m/s at 0:00 May 9). Both wind speed and direction showed little
changes over the two days. However, the wind direction agreed well
with the northward slick observed at 23:53 on May 8 (Fig. 3b), in-
dicating apparent wind shift affecting the slick. Obviously, there is a
shift, from surface currents to winds, of the driver of the displacement
of the oil slicks between May 7 and May 9.

This shift of dominant forces is further revealed in sequential
chlorophyll-a concentration from VIIRS and MODIS between 7-10 May
2015 (Fig. 4), which indicates an onshore shift of the river plume. On
May 7 and 8, the river plume encompassed the MC-20 site (Fig. 4a and
b). On May 9, the MC-20 site was on the outer edge south of the major
plume region (Fig. 4c). This plume shift was further confirmed by the
chlorophyll-a image on May 10 (Fig. 4d). The northward shift of the
river front allowed the onshore propagation of the oil toward the Delta,
visible on May 9 (Fig. 4c), in contrast to the previous days, when the
front was over the oil source, leading the oil directly westward. How-
ever, even when shifted northward, the oil eventually reached a strong
river-induced front and was directed westward along the downstream
current in agreement with the observational study at the MC-20 site by
Androulidakis et al. (2018). The evolution of the river plume de-
termined the hydrocarbon pathways and can keep the oil away from the
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Fig. 4. Chlorophyll-a concentration in the Mississippi River Delta indicates river plume between 5/7/2015 and 5/10/2015. Oil slicks detected on 19:05 5/7/2015,
16:35 5/8/2015 and 23:53 5/8/2015 are added to (a), (b) and (c), respectively.

Delta, especially in cases where the outer river front is located north of
the MC-20 site (Androulidakis et al., 2018); similar interactions were
discussed for hydrocarbons released at the Macondo well during the
DWH incident (Keurafalou and Androulidakis, 2013). Downwelling-
favorable (i.e., southeasterly) winds may determine the location of the
river front and then push the surface oil toward the front, where it can
be trapped and then follow the prevailing upstream (northeastward) or
downstream (westward) river current, as demonstrated in Fig. 4c.

3.2. Statistical analysis from 2004 to 2016

Observations from E1M+ in September—December 2004 (Fig. 5a)
did not reveal any oil slicks, while < 50% of the cloud-free images in
2015 showed slicks. This percentage increased through 2007 (79%) and
fluctuated from 2008 to 2011 (ranging from 57% to 93%). Since 2012,
however, the percentage was relatively stable between 71 and 100%.
Similar results were found from TM, OLI and MSI observations in the
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same period: 0% in 2004, < 50% in 2005, 85% in 2006 and relatively
stable since 2012 (> 90%) (Fig. 5b). Differences between ETM + and
other sensors also exist: 53% of the cloud-free ETM + images in 2006
showed oil slicks while this percentage was as 89% for TM images in the
same year; in 2008, 2009, 2011, the ratio of oil-presence to cloud-free
images was 75%, 93% and 57% for ETM +, respectively, and was 67%,
64% and 83% for TM, respectively. Combining all sensors together, the
ratio of oil-presence images to cloud-free images was 0% in 2004,
~40% in 2005, ~70% in 2006-2011 and > 80% since 2012 (most of
the years showed > 90%, Table 3). Fig. 5¢ shows delineated slick areas
from individual images from all sensors. For oil-presence images, the
slick area ranged from 0.06 to 394 km?, with an average oil coverage
area of 19.0km?> and a median area of 7.6 km” after excluding those
extremely large oil slicks (> mean + 2= standard-deviation). For all
cloud-free images combined, the average oil coverage area was esti-
mated to be 14.9 kmz,fimage between 2005 and 2016 (with 2010 ex-
cluded). From the size of delineated oil slicks, no clear trend has been
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and b) TM, OLI, and MSL ¢) Oil slick area from individual images of all sensors; The average and median area of slicks presented in the graph are for oil-presence
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Table 3
Percentage ratio of oil presence images to all cloud-free images (including those without sun glint) combining observations from all four sensors.
Year 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
% [} 44 65 76 71 79 - 69 93 82 9% 100 91
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Fig. 6. Oil appearance frequency from all cloud-free images (including those without sun glint) in 2005-2016, which shows a cumulative area of 1888 km? near the
MC-20 site. The appearance frequency ranges from 0.5% lo 27% in this cumulative footprint map.

observed from 2005 to 2016. However, there is an obvious seasonal
cycle: most of the large slicks (> 19 km?) were detected between April
and September each year (Fig. 5¢).

From all delineated oil slicks from 2005 through 2016, the cumu-
lative oil footprint shown in Fig. 6 indicates that an area of ~1900 km?
over the regions surrounding the Mississippi Delta has been con-
taminated by oil originated near the MC-20 site. Statistical results
shows that 98% of the above polluted areas had oil pollution only oc-
casionally (< 5% of cloud-free observations) while the more frequently
oil polluted regions (> 20% of the cloud free observations) had an area
of 0.17 km” surrounding the MC-20 site. Although the average oil slick
size is 14.9 km?/image, because slicks are mostly narrow, clongated
lines around the MC-20 site, only 0.17 km? around the site was covered
by 0il > 20% of the time. Indeed, this oil appearance frequency map
(Fig. 6) is composed largely (> 50%) by oil slick size < 10km?® per
image (Fig. 7a), while occasionally (8.6%) by oil slick size > 90km?
per image (Fig. 7a). This slick size frequency explains the more frequent
coverage near the MC-20 site but lower frequent coverage away from
the site.

The region with high-frequency oil presence (vellow to red in Fig. 6)
displays a northeast-southwest pattern around the MC-20 site, which
agrees well with the circulation patterns of the Mississippi River plume:
an anticyclonic bulge around the Delta (where most oil has con-
centrated), with influence from the downstream westward current,
and/or the northeastward upstream current (Schiller et al., 2011; Zhang
et al., 2012; Androulidakis et al., 2015, 2018). The prevailing wind
corresponding to all oil-presence images in Fig. 6, however, is to the
west and northwest (Fig. 7b). This dominantly northeast-southwest oil
coverage pattern suggests that the most frequent slick spreading
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orientation is more likely dominated by the river plume induced cur-
rents (e.g. Fig. 3a, c—f) rather than directed by the winds. However,
slicks derived from sequential images between May 7 and 8 in Fig. 3b
indicate that wind can play a major role in the slick spreading near the
MC-20 site when river front is located north of the MC-20 and the
current is weak, Overall, the distribution of observed northcastward
and westward oil slicks agrees well with the downstream westward
current and northeastward upstream current of the Mississippi River
plume, and the southeast extensions of the oil slicks are likely to be
dominated by wind forces {Le [I1¢naff et al., 2012) or the offshore river
plume extensions into the GoM which often occur due to regional ocean
dynamics effects, such as the Loop Current and its frontal eddies (Liu
et al., 2013; Androulidakis et al., 2018).

3.3. Imagery cross check

Landsat sensors’ (TM with ETM +, ETM + with OLI) image sensing
time is offset in 8 days, thus there are no concurrent (i.e., same-day)
measurements of the same location from these Landsat sensors. MST,
however, may sometimes sense the same location with OLI/ETM + in
the same day. For example, Fig. 8a and b show oil slicks captured on the
same day by OLI and MSI, with a time difference of 15 min. The derived
shape, location, distribution and area of oil slicks (38.7 km? vs
39.1 km?) agree well between cach other. Fig. 8c and d show the same
day ETM+ and SAR imagery over the same location with a time dif-
ference of 7.4 h. The detected oil slicks by both sensors, although both
extending to the west, display large differences in location, slick shape
and distribution. The derived slick areas are 5.6 km? from SAR while
8.1 km? from ETM +. Table 4 summarizes all the same-day image pairs
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Fig. 7. (a) Area frequency of all delineated oil slicks per image, which include all slicks here contributing to the cumulative oil footprint map in 2005-2016 shown in
Fig. 6. (b) Statistics of wind speeds and directions near the MC-20 site at the time of the same delineated slicks. Here the angular axis refers to the direction to which
the wind is blowing, and the radial axis refers to the wind speed frequency of particular wind speed range. From the wind rose plot, dominant wind directions are to
the west and northwest, and wind speeds are mostly 2-8 m/s for the delineated slicks.

that captured oil slicks over the MC-20 locations with time difference of There are also slicks for which the area drastically changed after 4.6 h,
8h or less. The SAR/ETM + image pair on 9 Sept. 2011 have slick shape like the SAR/OLI image pair on 18 Jan. 2016. As described in Section

and orientation close to each other, though wider slick close to the MC- 3.1, the short term dynamics of oil slicks can be affected by both wind

20 site has been observed in the ETM+ image after 4.5h (Fig. 3a), and current conditions, and are strongly influenced by the Mississippi

which is reflected in the slick area change (8.6 km? in SAR vs 16.5km? River plume dynamics. Here we use an Unbiased Mean Relative Error

in ETM+) from the MC-20 site to the yellow arrow location in Fig. 3a. (UMRE) to estimate the relative error the delincated slick arca in
89°20'W 89°20'W 89°0'W

(a) OLI: 4/23/2016 16:26; Area: 38.7 km® (b) MSI: 4/23/2016 16
< Y. J =T 3 TSN ‘

!

89°0'W 89°10'W 89°0'W
Fig. 8. Examples of oil slick size estimation using same-day image pairs captured by (a) OLI with (b) MSI, and (c) ETM+ with (d) SAR from Radarsat-2.
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Table 4

Same-day image pairs between optical sensors and optical /SAR sensors over the
MC-20 area. SAR1 is from COSMO-SkyMed-4 with spatial resolution of 30 m,
SAR2 from Radarsat-2 with spatial resolution of 6 m, and SAR3 from Sentinel-
1A with spatial resolution of 10 m. Note that in the 9/9/2011 image pair, area
of the slick part from the MC-20 site to the yellow arrow location in Fig. 3a that
captured by both the SAR and ETM+ images was compared in the table.

Sensor 1 Date Time  Area Sensor 2 Date Time Area
(km®) (km*)

SAR1 9/9/ 11:46 8.6 ETM+ 9/9/ 16:20 165
2011 2011

SAR2 3/28/ 2349 5.6 ETM+ 3/28/ 16:25 8.1
2015 2015

MSI 12/25/ 16:41 3.7 ETM + 12/25/ 16:27 22
2015 2015

SAR3Z 1/18/ 11:49 1.2 OLI 1/18/ 16:26 6.9
2016 2016

MSI 4/23/ 16:41 391 OLI 4/23/ 16:26 387
2016 2016

MsI 9/30/ 16:46 4.9 OLl 9/30/ 16:26 6.0
2016 2016

Table 4, as either of the areas from the two datasets may contain un-
certainties:

i~ %

n
UMRE = L D ey
0.5x; + 0.5y

n

1)

where x;, y; are the areas of the delineated oil slicks from the two
images of the image pair, respectively. The calculated area UMRE is
52.3%, which represents the relative difference of oil slick area caused
by oil interpretation uncertainties (i.e., interpretation difference be-
tween different sensors) and slick short-term dynamics by the current/
wind (as shown in Section 3.1). Because the imaging time as well as
observation geometry vary largely among different sensors, these re-
sults from the same-day image pairs represent the best estimates of the
relative error in oil slick area.

i=1

4. Discussions
4.1. Uncertainties

The accuracy of slick size detection through optical imagery relies
on sun glint strength. The MSI/OLI pairs on 23 Apr. 2016 and 30 Sept.
2016 agree well in slick distribution and slick areas because all images
contain strong sun glint. On the other hand, the slick area detected by
ETM+ on 25 Dec. 2015 is significantly lower than the slick area de-
tected by MSI on the same day, partly because of the very low sun glint
strength of the two images (< 10 ®sr~') and partly because of the
lower signal-to-noise ratio of ETM+ compared to MSI. Those oil fea-
tures not captured by the ETM + image are thin oil, which displays little
contrast under very weak sun glint conditions. Therefore, only when
sun glint is strong cnough can the detection be regarded as accurate.
The sun glint strength (Lgy) of all cloud-free optical images was esti-
mated and partitioned into two groups for images with and without oil
detected. The median value of Lgy for the first group (1.6 x 10 *sr 1)
was found to be about two orders of magnitude higher than for the
second group (2.2 % 10 %sr ). The images of the first group were
mainly from April to September where sun glint strength is higher than
in October through March, when most images of the second group were
collected. Similarly, images collected between April and September
contributed to only 15% of the oil-absence images, but they contributed
to 70% of the oil-presence images. Such a seasonality can also be vi-
sualized clearly in the slick area plot in Fig. 5c, with average delineated
slick area per image to be 23.8 km? from April to September (from 107
oil presence images), but 8.4 km? from October to March (from 49 oil
presence images). Since there is no reason, to our knowledge, why the
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oil discharge should change seasonally, we can only assume this is most
likely due to the seasonality of sun glint strength. For this reason, the oil
presence and footprint estimates are likely biased low.

It is interesting to see that none of the 2004 images between
September and December showed oil slicks, possibly due to the same
reason as above: most images collected during this period did not show
significant sun glint. Indeed, a cloud-free MODIS/Terra image on 28
September 2004 did show oil slicks around the MC-20 site because
MODIS could provide much more frequent observations than those
medium- to high-resolution sensors. Nevertheless, the many available
medium- to high-resolution images from multiple sensors since 2005
should lead to statistically meaningful results even though there may
exist systematic biases due to seasonality in oil slick detection, which
suggests that the inter-annual changes and long-term trend should be
realistic.

4.2. 0il discharge volume

Airborne measurements and cruise surveys reported crude oil fea-
tured slicks near the MC-20 site, ranging from oil sheens to oil emul-
sions as thick as 1-2 mm (BSEE, 2017; Garcia-Pineda, 2016; Herbst
et al., 2016; Jones and Holt, 2018). In optical remote sensing imagery,
oil emulsions show elevated reflectance in the NIR-SWIR wavelengths
(Clark et al., 2010; Sun et al., 2018). The reflectance contrast (relative
to water) of the delineated oil slick at ~1600 nm (1609 nm for OLI and
1614 nm for MSI) was inspected, yet no oil emulsions were found in any
cloud-free images used in this study (Table 1). This does not suggest
that eil emulsions did not occur; an oil emulsion patch could be too
small to be captured by the relatively large pixels (30 x 30 m® for OLI
and 20 x 20 m? for MSI SWIR bands). On the other hand, even if the
size of the thick emulsion is much smaller than a pixel size, (i.e.,
30 x 30m? for OLI), the oil slick (including both thin oil and thick
emulsion) can still be larger than a pixel. A rule of thumb has been used
in the past, in which thick oil occupies only 10% of the oil slick area,
while 90% of the area is composed of thin oil sheens (NOAA, 2016). A
recent study from the DWH oil spill (Sun et al., 2016) showed that thick
oil (> 200 ym) occupied only 5% of the total area covered by thicker
than sheen oil slicks. Statistical analysis of the delineated slicks from
the present study shows that 92% of the slicks have an area > 1 km?
(Fig. 5¢), which corresponds to > 1100 Landsat pixels (30 x 30 m?).
Moreover, same-day image pair of OLI (30 m resolution) and MSI (10 m
resolution) images (time difference of 15 min, Fig. 8a and b) do not
show large differences in the delineated oil slick area. Based on the
analysis above, we are confident that the 30-m spatial resolution used
here is sufficient for oil slick detection in the MC-20 region.

The question then becomes whether the oil discharge volume can be
estimated from these observations. Here we attempted this challenge
using field measurements and empirical values published in the lit-
erature. Specifically: 1) Various oil thicknesses have been reported from
cruise surveys, ranging from rainbow sheens, to dark fresh oil, and thick
emulsions (IHerbst et al., 2016; Garcia-Pineda, 2016). Several oil
thickness-color codes have been developed to visually estimate oil
thicknesses based on oil's color appearance, including the Bonn
Agreement Oil Appearance Code (2017) and American Society of Test
Materials (ASTM F2534-17, 2017) code. The ASTM code is widely used
as a guide in oil spill responses, providing information criteria for es-
timating oil thicknesses using visual clues, but the ASTM guide is only
applicable to thin sheens up to about 3 pm (see ASTM F2534-17, 2017).
In this study, we used the oil thickness table from the Bonn Agreement
(2017) and NOAA (2016), which distinguishes thick and thin oil in
appearance and gives thickness ranges for both thick and thin oil. The
Bonn Agreement code has been widely used in recent studies (Leifer
et al., 2012; Jones and Holt, 2018; Svejkovsky et al., 2016) and in in-
dustrial oil spill responses (IPIECA-IOGP, 2015). NOAA (2016) has
adapted the Bonn Agreement (2017) code with slight differences in oil
“Sheens” category, now corresponding to oil thicknesses up to 5pum. In

121



S. Sun et al.

Table 5
Input parameters to Eq. (2) and the calculated daily oil discharge rate.
Area Sheens- Metallic- Residence- Vg Vg (US
(km?/  thickness thickness  time (m%/  barrels/
day) (um) (um) (hours) day)  day)
Lower Bound 7.1 0.04 5 6.4 7.7 48
Upper Bound  22.7 5 50 14.4 274.1 1724

this study, we adopt the thickness ranges from NOAA (2016) category
of “Sheens” for thin oil and “Metallic” for thick oil. “Sheens” is in the
range of 0.04-5um with grey/silver to rainbow-appearance while
thicker than sheens “Metallic” oil (reflect the color of the sky but with
some element of oil color) is in the range of 5-50 pm (NOAA, 2016). 2)
A ratio of thick to thin oil of 5:95 from a previous study on the DWH oil
spill (Sun et al., 2016) was adopted for thickness estimation in this
study; 3) From a hindcast model based on various wind and current
conditions over the natural hydrocarbon seeps around the Green
Canyon 600 lease block in the northern GoM, average slick surface
residence-time was estimated to be 6.4h while slicks of > 10km in
length had an average surface residence-time of 14.4 h (Daneshgar Asl
et al., 2017). The two residence times here were assumed to be ap-
plicable to oil slicks around the MC-20 site on the lower and upper
bounds of the average oil footprint size per day: 14.9 (1 *= 0.523)
km?, where the relative uncertainty term in the parenthesis came from
the same-day cross-check between image pairs. Then, assuming dy-
namic balance and continuous oil release, the daily oil discharge rate
(V4) was estimated as:

Vi = Area X (5% x Metallic — Thickness + 95% x Sheen—Thickness)

x 24 h/(Residence—Time — in—hours) (2)

The inputs to Eq. (2) are listed in Table 5. After converting to US
barrels, the calculated average Vy is in the range of 48-1724 barrels/
day. Given the factors impacting the oil detection accuracy (due to lack
of strong sun glint half of the year), this range is likely to be biased low.
The same can be said for the cumulative oil footprint and average oil
slick size. Therefore, the average daily oil discharge ranging from 48 to
~1700 US barrels per day represents a conservative estimate if all as-
sumptions used in the calculation are reasonable.

5. Conclusions

Using optical remote sensing imagery from Landsat TM, ETM +, OLI
and Sentinel-2A° MSI, oil slicks around the MC-20 well site in the
northern Gulf of Mexico were objectively assessed for the first time after
the hurricane-induced damage of the oil platform and wells in
September 2004. The results show that the percentage of cloud-free
images containing oil slicks around the MC-20 site has increased from
~40% in 2005, ~ 70% in 2006-2011, to > 80% since 2012, suggesting
an increase in oil discharge in recent years. From 2005 to 2016, about
14.9 km? of the area surrounding the MC-20 site is covered by oil on an
average day, with a cumulative oil footprint of ~1900km? and an es-
timated daily discharge volume ranging from 48 to ~1700 barrels.

Having observations in the same day (or a few consecutive days
from different sensors) improves the understanding of oil slick move-
ment over short temporal periods, especially in this region influenced
by a large river plume. For the most part, oil slick distribution agrees
well with circulation patterns that are largely controlled by the
Mississippi River plume, but can also be affected by direct wind forcing.
The locations of the river induced fronts with respect to the oil source
also contribute to both onshore propagation and longer-term pathways
of the hydrocarbons. Moreover, wind forces may dominate the oil
spreading process when the Mississippi River plume does not en-
compass the MC-20 site.
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Abstract satellite remote sensing is well known to play a critical role in monitoring marine accidents such
as oil spills, yet the recent SANCHI oil tanker collision event in January 2018 in the East China Sea indicates
that traditional techniques using synthetic aperture radar or daytime optical imagery could not provide
timely and adequate coverage. In this study, we show the unprecedented value of Visible Infrared Imaging
Radiometer Suite (VIIRS) Nightfire product and Day/Night Band data in tracking the oil tanker’s drifting pathway
and locations when all other means are not as effective for the same purpose. Such pathway and locations can
also be reproduced with a numerical model, with root-mean-square error of <15 km. While high-resolution
optical imagery after 4 days of the tanker’s sinking reveals much larger oil spill area (=350 km?) than previous
reports, the impact of the spilled condensate oil on the marine enviranment requires further research.

Plain Language Summary The Iranian oil tanker SANCHI collided with a grain freighter on 6
January 2018 in the East China Sea, causing major fires and oil spills. For event response, nighttime data
collected by the Visible Infrared Imaging Radiometer Suite {VIIRS) satellite instrument show unprecedented
value in monitoring the fires and tracking the >>350 km drifting pathway of the SANCHI tanker. A numerical
model to combine surface currents and wind can also simulate the tanker’s locations until it sank on 14
January. Satellite remote sensing during daytime shows smokes and spilled oil on the ocean surface, some of
which appears to be oil emulsion. A combination of all available remote sensing and modeling techniques
can provide effective means to monitor marine accidents and oil spills to assist event response.

1. Introduction

The Iranian oil tanker SANCHI (IMO: 9356608), carrying ~1 million U.S. barrels (136,000 metric tons) of conden-
sate oil heading to South Korea from Iran with 32 crews on board, collided with the Chinese grain freighter CF
Crystal (IMO: 9497050) in the East China Sea (ECS) at ~8 p.m. on 6 January 2018 [Beijing time = GMT + 8 hr;
hereafter time used in this paper is all Beijing time; Ministry of Transport of the People’s Republic of China
(MOT), 2018al. The accident caused SANCHI on fire and tilted, drifting ablaze for a week, until it exploded
and sunk at ~3 p.m. on 14 January 2018. Three bodies of the 32 crew members were found, with the other
29 missing members presumed dead. During the drift, SANCHI leaked oil since 7 January, according to online
reports (MOT, 2018a; State Oceanic Administration (SOA), People’s Republic of China 2018a, 2018b). Oil slicks
have been observed and reported around the tanker's sinking location since 14 January 2018 through air-
borne and shipborne surveys (SOA, 2018b).

Monitoring the tanker’s drifting pathway and potential spills from a moving target represents a critical need
for event response and mitigation. Unfortunately, for this specific event it has proven extremely difficult for
two reasons: (1) persistent cloud cover during and after the collision prevented any effective use of optical
remote sensing from satellites; (2) the use of synthetic aperture radar {SAR, immune to cloud cover) required
a response time, which can vary between hours and days because it includes time for event reporting, image
acquisition planning, and execution of image acquisition over the targeted area (IPIECA-IOGP, 2014). Airborne
surveys, on the other hand, were limited in space and time. As a result, traditional means through satellite
remote sensing and airborne surveys appeared inadequate for event response of this disaster.

Here we demonstrate the unprecedented value of nighttime data collected by the Visible Infrared Imaging
Radiometer Suite (VIIRS) in monitoring such an event. Additionally, a numerical model is calibrated using
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Table 1
Number of Days With Imagery or Data Product Coverage From Individual or Multiple Sensors Along the Tanker’s Drifting
Trajectory (7-14 January 2018) and Around the Tanker Sinking Site (15-18 January 2018)

Satellite sensor/products 7-14 January 15-18 January

w

Optical cloud-free coverage MODIS
oLcl
VIIRS
GOCI
ETM+
oLl
MSI
SAR coverage Sentinel-1
Radarsat-2
COSMO-SkyMed
TerraSAR-X
Fire/Night-light anomalies FIRMS
VIIRS Nightfire
VIIRS DNB

W NNOONO—=OON= = =
=200 =0 =00 W= =

Note. As multiple images/products per day are possible from some sensor(s) (e.g., MODIS Terra and MODIS Aqua, and
GOCI), the statistics is based on daily frequency (in Beijing time).

these data to track the tanker location, and high-resolution optical satellite imagery collected after 4 days of
the tanker sinking shows the area of oil slicks much larger than those reported, which also shows signs of oil
emulsions. The objective of this paper is to show the worth of combining all remote sensing imagery (day and
night) and numerical modeling in event response, therefore possibly serving as a template when responding
to other similar events.

2. Data and Methods
2.1. Satellite Data

Data from all civilian satellites, whenever available for public access, were downloaded from the correspond-
ing agencies. These include Terra/Aqua Moderate Resolution Imaging Spectroradiometer (MODIS), Suomi-
NPP VIIRS, Sentinel-3 Ocean and Land Color Instrument (OLCI), COMS Geostationary Ocean Color Imager
(GOCI), Landsat ETM+/OLI, Sentinel-2 MultiSpectral Instrument {MSI), and Sentinel-1 SAR. Commercial
Radarsat-2, COSMO-SkyMed and TerraSAR-X SAR data archives have also been checked. Detailed information
of imagery coverage is provided in Table 1.

After the collision accident, all optical imagery collected during the daytime showed persistent cloud cover
until 13 January when the images showed scattered clouds to allow for inspection of some of the pixels.
During this period, oil spill detection was impossible but smoke from the burning tanker could be detected
on 13 January (see below). Between 7 and 14 January, the above SAR data showed only 2 days of coverage
over the tanker's drifting trajectory, while more frequent coverage after the tanker’s sinking {on 14 January)
was available from COSMO-SkyMed. The Chinese Gaofen-3 (GF-3) satellite launched in 2016 carries a C-band
SAR sensor, which works in 12 imaging modes with spatial resolution ranging from 1 m to 500 m and swath
ranging from 10 to 650 km (https://chinaspacereport.com/spacecraft/gaofen/). GF-3 was reported to have
collected data over the SANCHI location since 8 January (CRESDA, 2018), yet the data were not open to
research communities or the public.

Because of the limitations above, the only possibly useful data during the initial phase of the accident were
VIIRS nighttime data. There are two types of nighttime data used in this study. The first is the VIIRS Nightfire
(v3.0) data product {(https://ngdc.noaa.gov/eog/viirs/download_viirs_fire.html), obtained from the National
Oceanic and Atmospheric Administration Earth Observation Group every day. A multispectral algorithm
was used to detect subpixel hot sources (Elvidge et al, 2013). Candidate hot pixels were first identified
by the nighttime M10 (1,601 nm) band. Six other spectral bands including the Day/Night Band (DNB), M7
(862 nm), M8 (1,238.5 nm), M11 {2,250 nm), M12 (3,694.5 nm), and M13 (4,066 nm) were used to confirm
the initial detection. A black-body emission curve fitting was then applied to the confirmed hot source
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using these bands, from which the hot source temperature and area were determined (Elvidge et al., 2015).
Similar fire products from both MODIS and VIIRS for both day and night were also explored from the Fire
Information for Resource Management System (FIRMS, https:/firms.modaps.eosdis.nasa.gov/map/). FIRMS
uses reflectance and/or brightness temperature thresholds to first classify cloud pixels on both day and
night imagery (Giglio et al.,, 2016; Schroeder et al., 2014) and then mask these pixels from fire detection
(Schroeder et al,, 2014). Because of the cloud masking before fire detection, FIRMS products showed
no valid coverage before 12 January due to persistent cloud cover (Table 1). In contrast, the VIIRS
Nightfire algorithm is applied to all pixels, with cloud cover conditions recorded in the final product
(Elvidge et al.,, 2013).

The second type of nighttime data was collected by the low-light imaging DNB {500-900 nm), designed
primarily to detect light sources such as city lights (Miller et al., 2013). In this study, VIRS DNB SDR
(Sensor Data Records) calibrated radiance data were obtained from National Oceanic and Atmospheric
Administration/Comprehensive Large Array-data Stewardship System (NOAA/CLASS).

Lastly, after persistent cloud cover for many days, MSI images with some cloud-free spots were available on
13 January (1 day before the tanker's sinking) and 18 January (4 days after the tanker's sinking). The Level-1C
data were processed using the ACOLITE software (https:/odnature.naturalsciences.be/remsem/software-
and-data/acolite) to produce spectral Rayleigh-corrected reflectance (R, dimensionless), with all the spectral
bands resampled to 10 m resolution. Red-Green-Blue (RGB) true color {R = 664 nm, G = 560 nm, B = 497 nm)
images were generated for smoke detection while false-color RGB images (R = 1614 nm, G = 835 nm, B =
664 nm) were generated to detect spilled oils. Normalized sun glint reflectance (L, sr') was estimated
using the Cox and Munk model and National Centers for Envirenmental Prediction (NCEP) wind data (Cox
& Munk, 1954; Lu et al., 2016; Wang & Bailey, 2001). Oil slicks were manually delineated in the ArcMap soft-
ware (version 10.3) using methods described in Sun et al. (2015)

2.2. Numerical Model to Track Tanker Locations

The tanker's drifting pathway was simulated using Global HYCOM daily surface currents and the NCEP
Reanalysis daily wind data (10 m above sea level). HYCOM surface currents data were obtained from the
Global Reanalysis (experiment 91.2). A Runge-Kutta fourth-order method was used te model the tanker
trajectories with a time step of 15 min. In modeling oil spill trajectory, a factor of 3% was often applied
to wind velocity (IPIECA-IOGP, 2015; Lehr & Simecek-Beatty, 2000). The large size of the tanker (overall
length of 274 m, beam width of 50 m, and full-load draught of 17 m) enables a larger cross section (than
surface oil) to the wind direction. Therefore, wind was expected to play a more important role than the
usual assumption of 3%. A sensitivity test by varying the factor from 1% to 7% was conducted to determine
the optimal wind factor that led to the least difference between modeled SANCHI locations and
observed locations.

3. Results
3.1. SANCHI Locations From VIIRS Night Time Data and Numerical Modeling

Before 13 January 2018, optical remote sensing data collected by all sensors during daytime were useless due
to persistent and complete cloud cover. In contrast, VIIRS nighttime data, specifically the Nightfire data pro-
duct and DNB data, showed locations of the tanker as well as the size of the hot spot footprint every night
starting 8 January (Figure 1). After the tanker's sinking on 14 January, VIIRS showed three separate fire sources
in the following night {last panel of Figure 1), indicating surface drifting of floating oil.

The tanker’s drifting trajectory could be reproduced by the numerical model (Figure 2). With a wind factor of
4.1%, the modeled tanker locations agreed well with those observed from the VIIRS nighttime data, with a
root-mean-square difference of 14.3 km. When other wind factors between 1% and 7% were applied, root-
mean-square difference was significantly higher (e.g., ~ 40 km at 3%).

3.2. The Value of Optical Remote Sensing Data During Daytime

On 13 January, after persistent and complete cloud cover since the collision, some optical remote sensing
imagery covering the area of interest showed smoke around the tanker location. The example in Figure 3
from the MSI image clearly reveals the smoke, which appears brownish in the RGB image. Wind is about
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Figure 1. (a) SANCHI oil tanker locations derived from VIIRS Nightfire product in the East China Sea, overlaid on the VIIRS Day/Night Band image captured at 2a.m. on
11 January 2018. The initial collision was at 8 p.m. on 6 January 2018 (Beijing time = GMT + 8), while the first VIIRS capture was at 1:16 am. on 8 January. The last
detection was at 12:45 a.m. on 15 January. SANCHI was reported to sink at 3 p.m. on 14 January (red circle), but fires on ocean surface did not stop until ~10 am.on 15
January (SOA, 2018b). The sinking location was reported to be ~280 km southeast of the initial collision location (MOT, 2018b). The VIIRS-based results agree well
with both reports. (b) VIIRS Day/Night Band radiance shows local hot spots from 8 to 15 January, with temperature (7, in Kelvins) and location of the hotspot as well as
the footprint area (A, in m2] annotated. Three active fires (yellow dots in the last panel) were detected in the vicinity of the sinking location (red circle in the last panel).
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Figure 2. Trajectory and locations of the SANCHI tanker movement determined from VIIRS Nightfire data product (except
for the last point at 3 p.m. on 14 January, which is the reported sinking location) and a numerical model. In the model,

a 4.1% factor was applied to wind, which resulted in a minimal root-mean-square difference between modeled and
observed locations (~14.3 km). A 3% wind factor would lead to RMS difference of ~40 km. Average wind speed and direction
for each day are plotted as green arrows, with wind speed (m/s) annotated to the left of the wind vector.

8.1 m/s blowing from the NNE to SSW. Correspondingly, the smoke is about 15 km SSW of the tanker's
location 9 hr ago, and 14 hr later the tanker’s location is to the SSW of the smoke. Other than the smoke,
the images could not be used to detect spilled oils due to cloud cover surrounding the smoke area.

Four days after the tanker's sinking, on 18 January, the first high-resolution optical image that could be used
to detect spilled oils was captured by MSI {Figure 4). One slick was detected 3 km north of the sinking loca-
tion, with a slick size of ~86 km? elongated in the west to east direction {Figure 4b, Slick 2). The slick shows
mostly negative contrast from water (i.e., darker than water) due to weak sun glint (Lgy = 1.5E-4 st ') (Sun &
Hu, 2016). Another larger slick was captured 30-40 km northeast of the sinking location, with a slick size of
~270 km? (Figure 4a, Slick 1). In the center of this slick, some oil stripes in the NNE-SSW direction show
signs of oil emulsions as they appear reddish (elevated 1,614 nm reflectance) in the false-color RGB image
(Figure 4a). The NNE-SSW stripes within both slicks in Figures 4a and 4b are apparently due to wind-driven
Langmuir circulation, with the direction of the stripes aligned with the NNE-SSW wind direction. These slick
size estimations, although biased low due to lack of MSI data coverage to the east of the slicks, are signifi-
cantly higher than those reported online (SOA, 2018c).

4. Discussion

Massive oil spills and possible application of dispersant could cause severe and long-term impacts on the
marine ecosystem and local economies (Joye, 2015; Michel et al, 2013; Peterson et al,, 2003), thus calling
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Figure 3. MSI RGB image (R = 664 nm, G = 560 nm, B = 497 nm) on 13 January 2018 {10:20 a.m.) shows smoke {outlined in red), where VIIRS-detected SANCHI loca-
tions on 13 January (1:22 a.m.) and 14 January (1:04 am.) are annotated. At the time of imaging, wind blew from northeast to southwest at a speed of 8.1 m/s.

for accurate and timely assessment during and after the spill. Unfortunately, due to persistent cloud cover
and lack of coverage, none of the traditional remote sensing techniques (SAR, daytime optical imagery)
proved to be fully effective for this particular event. Here nighttime imagery from VIIRS showed
unprecedented value in tracking the tanker's location and fire footprint, thus providing first-hand timely
knowledge every night to assist in event response. On the other hand, identifying the tanker's location
through locating fires is not trivial, as active fires from gas flares of offshore platforms could confuse the
findings. In this study, hot sources from gas flares in the East China Sea were ruled out using a global oil
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Figure 4. MS| false-color RGB image (R = 1614 nm, G = 835 nm, B = 664 nm) at 10:20 am. on 18 January 2018 shows two major slicks (locations annotated in inset
figure): (a) Slick 1 is 30-40 km northeast of the reported sinking site, with a slick size of ~270 kmZ. This number is an underestimate, as the area east of the oil slick
was not covered by the MSI image. The center of the slick shows signs of oil emulsion (enlarged area from the green rectangle) as they appear reddish in the
false-color RGB image. Spectral analysis (inset reflectance spectrum) of a randomly selected point (black arrow) shows elevated reflectance at 1,614 nm, a clear
indication of oil emulsion. (b) Slick 2 is 3 km north of the sinking site, with a slick size of ~86 km” (also underestimated due to lack of MSI coverage to the east). The
total area (270 + 86 km?) is significantly higher than any reported numbers (SOA, 2018¢) that ranged between ~160 km? from field observations and 20.7 km? from

satellite interpretation. The slicks appear darker than water due to the presence of weak sun glint (Lgy = 1.5E-4 st ).
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platform database (Liu et al,, 2016), making the detection of tanker location reliable. The ability of emissive
radiation to penetrate thin clouds makes it possible to detect hot sources even under thin cloud cover,
although the temperature of the hot source may contain large degree of uncertainties due to cloud absorp-
tion of the radiant emissions (Elvidge et al., 2013).

Oil released to the ocean from this accident was from two sources: the remaining condensate oil after com-
bustion and evaporation, and the remaining bunker fuel or heavy fuel cil. The latter strongly absorbs blue
light (Byfield, 1998), while the former is nearly transparent in the visible and near-infrared (NIR) wavelengths
(470-1,000 nm) at a thickness of <200 um (Wettle et al., 2009). Both will dampen the surface wave, thus
detectable in SAR imagery (Alpers et al., 2017; Brekke & Solberg, 2005; Garcia-Pineda et al., 2013), and optical
imagery (Adamo et al., 2009; Hu et al., 2009; Pisano et al., 2015; Sun & Hu, 2016) under optimal wind condi-
tions. Because condensate oil is believed to evaporate fast, it was expected that oil emulsions could not be
observed. However, a surprising result from this analysis is that oil emulsion patches appear to have formed
on the sea surface after the tanker’s sinking (Figure 4). Spectral analysis of selected pixels in the reddish
patches of the oil slicks showed significantly elevated reflectance at 1,614 nm (Figure 4a inset), an indication
of oil emulsion (Clark et al,, 2010; Svejkovsky et al., 2016). Because condensate oil evaporates fast, it is specu-
lated that the oil emulsion originated from the bunker oil released by the tanker after its sinking. Indeed,
HYCOM surface currents showed NNE direction after the tanker’s sinking, suggesting that the spilled oil could
originate from the tanker after its sinking.

By no means does this work de-emphasize the value of SAR and other remote sensing techniques in oil spill
response. Instead, the study here is to demonstrate how VIIRS nighttime data can provide critical location
information on marine accidents through its unprecedented capacity in identifying fire sources and obser-
ving low light at night. Indeed, although due to data restriction policy the commercial SAR data could not
be accessed, some quick-look images posted online did show oil slicks in the study region. Additionally,
post-sinking MSI imagery showed more spilled oils than those determined from airborne and shipborne sur-
veys, once again proving the value of optical remote sensing. On the other hand, the combination of surface
currents and wind data provided a relatively accurate estimate on the tanker's drifting pathway, indicating
that numerical modeling can also provide guidance on search and rescue, similar to the search of the Air
France 447 in the Equatorial Atlantic (Chen et al., 2012).

Altogether, the multisensor observations from day and night provide way more complete information
than any individual sensors alone. This is particularly important for event response during the initial
phase as opposed to postevent assessment. For example, without satellite remote sensing providing
approximate locations at the very beginning, it would be difficult to narrow down targeted regions to point
high-resolution satellite sensors. The case study here demonstrates the value of VIIRS nighttime data in
providing such critical information within 30 hr of the accident, therefore complementing other means for
event response.

At the time of this writing, postspill assessments are still ongoing, for example, to evaluate the potential
impact of the tragic event to the marine environment. Such assessments have proven to be difficult from
the Deepwater Horizon oil spill event in the northern Gulf of Mexico in 2010, mainly due to the lack of
“baseline” data before the event. Modern satellite remote sensing has provided continuous ocean measure-
ments since 1997 when Sea-viewing Wide Field-of-view Sensor began collecting data, where surface ocean
transparency and chlorophyll-a concentration data records may serve as baseline (mean conditions and nat-
ural variability) to evaluate the potential impact of the event on nearby ocean environment. Such an impact
assessment may be an immediate follow-on study for this tragic event.

5. Conclusion

Although VIIRS nighttime data have been widely used to map city lights and fires, this study demonstrates its
value in tracking a major collision and oil spill event. More importantly, during the initial days after the colli-
sion, VIIRS nighttime data were the only publically available satellite data proven to be effective in tracking
the tanker’s drifting pathway and daily locations, as all other satellite sensors suffer from lack of coverage
or cloud cover. This capacity, along with the numerical tool to track the oil tanker and other sensors to
map spilled oil, may serve as a template for similar events in the future,
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