University of South Florida

DIGITAL COMMONS Digital Commons @ University of

@ UNIVERSITY OF SOUTH FLORIDA South Florida
USF Tampa Graduate Theses and Dissertations USF Graduate Theses and Dissertations
10-31-2018

Remote Estimation of Surface Water pCOz2 in the Gulf of Mexico

Shuangling Chen
University of South Florida, shuangling1988@gmail.com

Follow this and additional works at: https://digitalcommons.usf.edu/etd

6‘ Part of the Other Earth Sciences Commons

Scholar Commons Citation
Chen, Shuangling, "Remote Estimation of Surface Water pCO2 in the Gulf of Mexico" (2018). USF Tampa

Graduate Theses and Dissertations.
https://digitalcommons.usf.edu/etd/8107

This Dissertation is brought to you for free and open access by the USF Graduate Theses and Dissertations at
Digital Commons @ University of South Florida. It has been accepted for inclusion in USF Tampa Graduate Theses
and Dissertations by an authorized administrator of Digital Commons @ University of South Florida. For more
information, please contact digitalcommons@usf.edu.


https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/etd
https://digitalcommons.usf.edu/grad_etd
https://digitalcommons.usf.edu/etd?utm_source=digitalcommons.usf.edu%2Fetd%2F8107&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/166?utm_source=digitalcommons.usf.edu%2Fetd%2F8107&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usf.edu

Remote Estimation of Surface Water pCO- in the Gulf of Mexico

by

Shuangling Chen

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
College of Marine Science
University of South Florida

Major Professor: Chuanmin Hu, Ph.D.
Robert H. Byrne, Ph.D.
Lisa L. Robbins, Ph.D.
Mark E. Luther, Ph.D.
David F. Naar, Ph.D.

Date of Approval:
September 24, 2018

Keywords: surface pCO., sea surface salinity, remote sensing, dominant controls

Copyright © 2018, Shuangling Chen



DEDICATION

This dissertation is dedicated to my parents Yufen and Wen. Thank you for your cheerful
encouragement and selfless love. Thanks also to my uncle Hequn and my siblings Yunxia and

Jianbei for their concerns and spiritual support.



ACKNOWLEDGEMENTS

This dissertation would not have been possible without the guidance of Dr. Chuanmin Hu.
Thank you for mentoring and supporting me throughout this work. I am very grateful for your
enthusiasm, persistence, and dedication to scientific research. Thank you also to my committee
members, Dr. Byrne, Dr. Robbins, Dr. Luther, and Dr. Naar for their help and support throughout

this dissertation work.

Many individuals and groups were instrumental towards completion of this dissertation. In
particular, | would like to thank my coauthors (especially Wei-Jun Cai, Rik Wanninkhof, and Bo
Yang), as well as friends and colleagues within the Optical Oceanography Lab (especially Jen
Cannizzaro, David English, Brian Barnes, Brock Murch, Menggiu Wang, and Shaojie Sun) and

the College of Marine Science.

This research was made possible, in part, by a grant from the U.S. Geological Survey
(USGS). Endowed fellowships from the College of Marine Science, University of South Florida
(Gulf Oceanographic Charitable Trust Fellowship, Tampa Bay Parrot Head Fellowship, and
George Lorton Fellowship) also provided immeasurable support for this research. Of particular
importance was access to the large datasets collected and shared by many groups over the past
decades. | wish to emphasis the great efforts and contributions of NOAA and several colleges and
institutes (Columbia University, Texas A and M University, University of Delaware, University
of South Florida, Florida Fish and Wildlife Conservation Commission) for their data (both ship-

based and buoy data time series), and to thank all the researchers who collected and contributed



data used in this research — their efforts are much appreciated. Also | want to thank NASA for

providing the MODIS satellite data, without which, this research would not have been possible.



TABLE OF CONTENTS

LIST OF TABLES ...ttt sttt et et e stesaesnearaeneeneenens iii
LIST OF FIGURES ..ottt sttt s et e et st neenearaeneeneeneas iv
F N = I Y O ST v
CHAPTER 1 : INTRODUCTION .....oiitiieieieieite ettt sn et sne e nneans 1
1. Surface ocean pCO2 and environmental CONIOIS .........ccccoieieiiiiniinieee e 1

1.1. ThermodynamiC effECES .........coiiiiiiiirr e 2

1.2. BiolOgiCal CIVITIES ......ccveieiiicciecie e 3

1.3, OCEAN MIXING .ttt bbbttt e bbb sne e 4

1.4, Air-Sea CO2 EXCRANGE ....ccvveieiieieie sttt sbe e nneas 5

2. Satellite estimation of surface 0Cean PCO2.........ccviriieiiiineii e 6

2.1. Satellite-derived environmental variables...........ccccovviiiiniiieieic s 6

2.2. Satellite mapping of surface pCOz: current Status ...........cccoovvvvveieninenciinennns 8

T (00 )Y T =T USSR 11

4. ODJECTIVES ...ttt bbbt bbbttt benne s 13

0. DIALA SOUICES .....euteeieeetee ettt ettt etttk et s bt e et e ke e e et e s b e et e e b e e e e e nbe e e b e e sne e e s e e nneeenee 14

TN I T Lo I P - OSSR PR STSRRSN 14

5.2, SALEHITE UALA......cueieieiierieieie e 15

6. Approach and diSSErtation StIUCTUIE..........ccoiiiiiiiieiee e 16

7. LITEIatUre CITEA ....oiveieeeiieie ettt st st nnenneas 17

CHAPTER 2 : ESTIMATING SURFACE PCO2 IN SINGLE-PROCESS DOMINATED
REGION FROM SATELLITES: THE WEST FLORIDA SHELF ..o, 33
1. RESEAICH OVEIVIBW ...t ettt e e e e e e e e e aaeens 33

CHAPTER 3 : ESTIMATING SURFACE PCO: IN SINGLE-PROCESS DOMINATED

REGION FROM SATELLITES: THE NORTHERN GOM ... 35

1. RESEAICH OVEIVIBW ...ttt e e e e e e eaeeens 35
CHAPTER 4: REMOTE ESTIMATION OF SEA SURFACE SALINITY IN THE GOM......... 37
L. RESBAICH OV IVIBW ..o 37

CHAPTER 5: A UNIFIED APPROACH TO ESTIMATE SURFACE OCEAN PCO2
FROM SATELLITE MEASUREMENTS ...ttt 39
L. REBSBAICH OVBIVIBW .. oo 39

CHAPTER 6: DOMINANT CONTROLS OF SURFACE OCEAN PCO2 IN COASTAL
OCEANS: ANALYSIS OF IN SITU TIME SERIES DATA .....ooiiiiiieee 50



1. RESEAICH OVEIVIEW ..., 50

CHAPTER 7: RESEARCH IMPACTS AND CONCLUSIONS .......ccccoviiiiirieieerese e 52
1. SUMMArY OF FINAINGS.....c.viiiei e e 52

2. Research IMPICALIONS .........coiiiiiiieiee e 55

2.1. Satellite mapping of SUrface PCO2......ccuviiriiieiiiei e 55

2.2. Further impliCatIONS .........ccoiiiiiiiecieee e 57

3L FULUIE WOTK ..ttt bbb nre s 58

3.1 RESBAICI ..ttt sttt reenne s 58

3.2. PrOAUCE AEIIVETY ...ttt re e 59

72 ©0] o [od 111 o] S J USSP PR UTPRURN 60

5. LITEIAtUIE CITEA ....ecveivieiieieie ettt bbbttt bbb nne s 61

APPENDIX A: REMOTE ESTIMATION OF SURFACE PCO2 ON THE WEST

FLORIDA SHELF ... 69
APPENDIX B: ESTIMATING SURFACE PCO2 IN THE NORTHERN GULF OF

MEXICO: WHICH REMOTE SENSING MODEL TO USE?.......cccooiiiiiiiiiiiiiciecc 86
APPENDIX C: ESTIMATING SEA SURFACE SALINITY IN THE NORTHERN

GULF OF MEXICO FROM SATELLITE OCEAN COLOR MEASUREMENTS............ 104
APPENDIX D: A MACHINE LEARNING APPROACH TO ESTIMATE SURFACE

OCEAN PCO2 FROM SATELLITE MEASUREMENTS........coooiii 123
APPENDIX E: DOMINANT CONTROLS OF SURFACE OCEAN PCO2 IN COASTAL

OCEANS: ANALYSIS OF IN SITU TIME SERIES DATA ....ooiiiieee e 197
APPENDIX F: AUTHOR CONTRIBUTIONS AND COPYRIGHT CLEARANCES............. 252
APPENDIX G: PUBLICATIONS (PUBLISHED AND SUBMITTED)......ccccceeiiiniiiniiniins 256



Table 1: List of

Table 2: List of
waters

LIST OF TABLES

published satellite pCO2 remote sensing algorithms for open ocean waters ........

published satellite pCO> remote sensing algorithms for coastal ocean



LIST OF FIGURES

Figure 1.1: Study region of the GUIT Of MEXICO ..o 12
Figure 5.1: Surface pCO- climatology in the GOM: monthly mean ...........cccccevevvieienc s 41
Figure 5.2: Surface pCO> climatology in the GOM: monthly mean minus two standard

ABVIALIONS ...t bbbttt bbb 42
Figure 5.3: Surface pCO> climatology in the GOM: monthly mean plus two standard

AEVIATIONS ...ttt 43
Figure 5.4: Surface pCO- climatology in the GOM: monthly minima...........cccccevvverienciesnnnnn. 44
Figure 5.5: Surface pCO- climatology in the GOM: monthly maxima ..........cccccevevereieiennnnnnn 45
Figure 5.6: Sensitivity of the pCO2 remote sensing algorithm to Chl and Kg ........ccoecevvivriennne. 46
Figure 5.7: Sensitivity of the pCO2 remote sensing algorithm to Chl and SSS..............c.ccoeeee. 47
Figure 5.8: Sensitivity of the pCO2 remote sensing algorithm to Chl and SST..............ccccevvnene. 47
Figure 5.9: Sensitivity of the pCO2 remote sensing algorithm to Kg and SSS...........ccoccevvvienene. 48
Figure 5.10: Sensitivity of the pCO- remote sensing algorithm to Kq and SST .........cccccceevrienee. 48
Figure 5.11: Sensitivity of the pCO- remote sensing algorithm to SSS and SST...........c..cceeee. 49



ABSTRACT

Surface ocean partial pressure of CO2 (pCO) is a critical parameter in the quantification
of air-sea CO> flux, which further plays an important role in quantifying the global carbon budget
and understanding ocean acidification. The demand for a clearer understanding of how, and how
fast, the ocean is changing due to atmospheric CO> absorption, requires accurate and synoptic

estimation of surface pCO..

Surface ocean pCO; is mainly controlled by four oceanic processes — thermodynamics,
ocean mixing, biological activities, and air-sea CO> exchange. Surface ocean pCO: is therefore
closely related to environmental variables that characterize each oceanic process. These variables
include sea surface temperature (SST), sea surface salinity (SSS), chlorophyll-a concentration
(Chl), diffuse attenuation of downwelling irradiance (Kq), and wind speed. Ocean color satellites
provide a means by which the relationship between these environmental variables and surface
pCO2 can be developed. Yet, remote estimation of surface pCO: in coastal oceans has been
difficult due to the dynamic and complex biogeochemical processes. To date, most of the published
satellite-based pCO2 models are developed for single-process dominated regions, therefore having
poor applicability in other oceanic regions. Particularly, there is no unified approach, let alone
unified model, to remotely estimate surface pCO2 in oceanic regions that are dominated by

different oceanic processes.

This work provides solutions to these challenging issues for the remote estimation of

surface pCOz in the Gulf of Mexico (GOM), with the following objectives: 1) Develop satellite-



based surface pCO, models and data products for single-process dominated subregions of the
GOM, and quantify the sensitivities of the pCO> algorithms to the input environmental variables;
2) Quantify the oceanic processes in controlling surface pCO: in the GOM, analyze the
relationships between environmental variables and surface pCO2, and understand the mechanisms
of seasonal and interannual variations of surface pCO: and its driving factors; 3) Develop an
improved SSS model and data products for most GOM waters, and quantify the sensitivities of the
SSS model to the input variables; 4) Develop a unified pCO2 model and data products for the GOM
waters, and quantify the sensitivities of the pCO> model to the input environmental variables and
their relationships; 5) Quantify the temperature and non-temperature effects on surface pCO: at
different latitudes, analyze the dominant controls and the corresponding the driving factors of
surface pCO». The data used in this dissertation include those from extensive cruise surveys, buoy
measurements, and long-term measurements by the Moderate Resolution Imaging

Spectroradiometer (MODIS).

Specifically, for single-process dominated regions, two separate algorithms are developed
and validated, respectively, from MODIS measurements. One is focused on the ocean current-
dominated West Florida Shelf (WFS) (Appendix A), and the other is on the river-dominated
northern GOM (Appendix B). The former utilizes a multi-variate nonlinear regression approach to
establish the relationship between surface pCOz and environmental variables of SST, Chl, and Kg.
The latter relies on a mechanistic semi-analytical approach (MeSAA), modified from an existing
algorithm published earlier. Both algorithms show satisfactory performance, yet the latter requires
SSS as the model input, which is difficult to obtain from ocean color satellite measurements.
Therefore, a multilayer perceptron neural network-based (MPNN) SSS model is developed and

validated, which generates SSS maps at 1-km resolution for the GOM using MODIS

Vi



measurements (Appendix C). Finally, with the availability of SSS from MODIS for the GOM, a
unified pCO- algorithm is developed and validated. The machine-learning algorithm is based on a
random forest regression ensemble (RFRE), which is able to estimate surface pCO. from MODIS
measurements with a Root Mean Square Error (RMSE) of < 10 patm and R? of 0.95 for pCO;
ranging between 145 and 550 patm (Appendix D). Using this approach, The RFRE algorithm is
shown to be applicable to the Gulf of Maine (a contrasting oceanic region to GOM) after local
model tuning. The results show significant improvement over other models, suggesting that the
RFRE approach may serve as a template for other oceanic regions once sufficient field-measured

pCO; data are available for local model tuning.

To further improve the accuracy of satellite-derived surface pCO> from coastal oceans and
to increase its capability in capturing the interannual variations of surface pCO: resulting from
anthropogenic forcing, the dominant controls of surface pCOz over seasonal and interannual time
scales need to be better understood. As such, in situ pCO> time series data along the coasts of the
United States of America at different latitudes are analyzed (Appendix E). On a seasonal time
scale, surface pCO. tends to be dominated by the temperature effect (pCO,_T) through SST and
wind speed (with some exceptions) in tropical and subtropical oceans, but appears to be dominated
by the non-temperature effect (pCO-_nonT) in subpolar regions. In contrast, in tropical and
subtropical waters on interannual time scales, surface pCO> is primarily moderated by the non-
temperature effect (through air-sea CO. exchange via atmospheric pCO.), but conversely
dominated by the temperature effect (i.e., SST increase) in subpolar regions. The effects of

biological activities (i.e., algal blooms) need to be further investigated in the future.

Overall, this dissertation has developed several algorithms to estimate SSS and surface

pCO2, among which the unified pCO> algorithm for multi-processes dominated regions appears to

vii



be able to serve as a template for many other regions after local model tuning. The derived surface
pCO:> data products for the GOM provide a fundamental basis to assess air-sea exchange of CO>

and understand the carbon chemistry under a changing climate.
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CHAPTER 1:

INTRODUCTION

1. Surface ocean pCO2 and environmental controls

When CO; from the atmosphere enters seawater, a chain of reactions can occur, which can
produce carbonic acid, bicarbonate, and carbonate (Kanwisher, 1960). The free aqueous CO> in
seawater is quantified as partial pressure of CO2 (pCOz2), which refers to the fugacity in most cases

(Pilson, 2012). The term fugacity expresses the tendency of CO; to escape from the seawater.

Knowledge of spatial and temporal distributions of pCO. in surface ocean waters is
essential to understanding of carbon cycling and ocean acidification (Borges, 2005; Bauer et al.,
2013). Since the industrialization era, ocean acidity has increased by 30% (~0.1 decrease in pH
units), corresponding to a 40% increase in atmospheric CO; (Sabine et al., 2004; Solomon et al.,
2007; Feely et al., 2009; Pachauri and Meyer, 2014). As a result, a degradation of ecological
environment and a decrease in marine biodiversity have been observed (Reynaud et al., 2003; Orr
et al., 2005; Kleypas et al., 2006; Kleypas and Yates, 2009). Knowledge of surface pCO; also
helps to quantify air-sea CO> flux (Borges et al., 2005; 2006; Cai et al., 2006). The benefits of
quantifying air-sea CO> flux are twofold: 1) it can help to better understand the ocean acidification
process; and 2) it can provide insight into carbon cycling. Synoptic and frequent surface pCO>

measurements are critical to quantifying the air-sea CO> flux and ocean acidity.

The variation of surface pCO- is complex, being closely related to the carbonate parameters:

pH, total dissolved inorganic carbon (DIC, umol kg™) and total alkalinity (TA, umol kg?) (Pilson,



2012). In a carbonate system, once sea surface temperature (SST, °C), sea surface salinity (SSS,
practical salinity unit) and pressure are known, any two parameters of TA, DIC, pCO2, and pH can
be used to calculate the other two and CO; speciation (i.e., [CO3?] and thus the carbonate mineral
saturation state) using the CO2 System Program (CO2SYS) (Pierrot and Wallace 2006). In
principle, surface water pCO: in the ocean is mainly controlled by four processes: physical mixing,
thermodynamic effects, biological activities, and air-sea CO2 exchange (Fennel et al., 2008; Ikawa
et al., 2013; Xue et al., 2016). These processes usually do not affect surface pCO> independently,

but in an interrelated fashion (Murata, 2006).

1.1. Thermodynamic effects

Ocean thermodynamic effect on surface pCO- is dependent on SST, which influences the
solubility of gaseous CO» (Weiss, 1974). The relationship between surface pCO, and SST can be
estimated with an exponential function (pC0,@r, = PCO@r: X €%0423X(T2=T1)) (Takahashi et al.,
2002; 2009) although the exact parameter can deviate slightly from 0.0423 in coastal waters (Bai
et al., 2015; Joesoef et al., 2015). The equation shows that an increase of SST increases surface
pCO., and vice versa. SST is primarily regulated by several physical processes such as solar energy
radiation, air-sea heat exchanges, and vertical oceanic mixing (Takahashi et al., 2002). Studies
show that SST is the dominant factor in controlling seasonal variations of surface pCO: in the

subtropical oligotrophic ocean waters (Takahashi et al., 2002; Fay and McKinley, 2017).



1.2. Biological activities

Biological activities in the ocean such as photosynthesis, respiration, and calcification have
direct effects on surface pCO2 because photosynthesis consumes CO., respiration produces CO»,

and calcification depletes both TA and DIC in a 2 to 1 ratio (Murata and Takizawa, 2002).

Photosynthesis by phytoplankton is mainly controlled by the concentrations of surface
nutrients (i.e., [NOs], [SO4?], [Fe*?]), SST, and light availability, which are all set by the physical
environment (Fay and McKinley, 2017). Under optimal conditions (i.e., sufficient nutrients and
sunlight at proper water temperatures, usually in spring and fall), phytoplankton blooms occur. In
most cases, phytoplankton blooms (e.g., cyanobacteria blooms) would bring a distinct decrease in
surface pCO2 due to the great consumption of COz in the production of organic carbons (Schneider
et al., 2006; Martz et al., 2009). However, there are some exceptions. For example, Shadwick et
al. (2011) found that spring blooms could introduce a sharp drop of surface pCO; by ~ 180 patm,
while the blooms in fall did not appear to change the surface pCO,. This lack of change has been
mainly attributed to the competing effect of decreasing SST, though the bloom can be clearly
detected from satellite images. Furthermore, for phytoplankton blooms that also produce calcium
carbonate (e.g., coccolithophorid, E. huxleyi), it was found that such phytoplankton blooms could
result in an increase in surface pCO> (Murata and Takizawa, 2002; Murata, 2006). In these type of
algal blooms, both DIC and TA would decrease during the bloom. It has been observed that if the
ratio of calcification to photosynthesis during the bloom is between 1:1 and 2:1, the production of
CO2 via calcification would balance and exceed the consumption of CO- through photosynthesis

(Murata and Takizawa, 2002; Murata, 2006).

In general, the overall effect of biological activities on surface pCO- is quite complex.

Currently, the most common proxies for this biological term include chlorophyll concentrations
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(Chl, mg m) and light attenuation coefficients (Salisbury et al., 2008; Zhu et al., 2009; Hales et
al., 2012; Signorini et al., 2013; Fay and McKinley, 2017). In addition, studies show that the
biologic effect on surface pCO- only dominates in high-latitude waters greater than 40° latitude in

both hemispheres (Takahashi et al., 2002; Fay and McKinley, 2017).

1.3. Ocean mixing

Different water masses have specific carbonate characteristics such as TA and DIC. The
horizontal and vertical mixing among these water masses can affect the surface pCO distribution
in a dynamic way. For example, the mixing between the ice meltwater (typically with a low DIC
value) with the surrounding seawater in the Arctic Ocean would reduce pCO> by 50-60 patm,
which compensates the increase of pCO; caused by the water warming in summer (Cai et al., 2010).
In river-dominated coastal oceans (e.g., the northern Gulf of Mexico and the East China Sea), the
riverine water mass (i.e., river plume) has distinct water properties (i.e., SST, SSS, TA, DIC, and
nutrients) relative to those of the seawater. The mixing between the fresh/brackish riverine waters
and seawater have great impact on the variation of surface pCOg, in terms of the conservative
mixing of the carbonate properties (i.e., TA and DIC), as well as the nutrient-enhanced
phytoplankton blooms (e.g., Lohrenz and Cai, 2006; Lohrenz et al., 2010; Bai et al., 2015). In
addition, the surface cooling-induced, or wind-induced, vertical mixing and ocean upwelling also
varies surface pCOz. This is because vertical mixing and upwelling transport DIC enriched (mostly
CO: enriched) waters to the surface where they generally release CO. into the atmosphere.
However, in the presence of nutrient-enriched surface waters, phytoplankton production would be
enhanced and uptake of atmospheric CO2 would occur (e.g., Hales et al., 2005; Ikawa et al., 2013;

Norman et al., 2013; Huang et al., 2015).



Oceanic water masses derived from melted ice and river sources typically have low SST
and SSS. Oceanic water masses brought to the surface via vertical mixing and upwelling usually
have lower temperature and salinity values. Therefore, SST and SSS are commonly used as proxies
to quantify the effect of ocean mixing on surface pCO: (e.g., Lohrenz and Cai, 2006; Lohrenz et
al., 2010; 2018; Hales et al., 2012; Signorini et al., 2013; Bai et al., 2015). In addition to SST and
SSS, wind speed and the mixed layer depth was also used in some studies (Jamet et al., 2007;

Chierici et al., 2009; Shadwick et al., 2010; Nakaoka et al., 2013).

1.4. Air-Sea CO:2 exchange

The difference between the surface ocean pCO: and atmospheric pCO. at the air-sea
interface represents the thermodynamic driving potential for the CO. to transfer across the air-sea
interface (Takahashi et al., 2002). The direction of the net CO; transfer is governed by the pCO>
differences between the ocean’s surface and its overlying atmosphere. On seasonal time scales, Lu
etal. (2012) found that air-sea CO2 exchange exceeded the role of SST and dominated the seasonal
variations of surface pCO- in the northern South China Sea. On short time scales (i.e., a few days
up to 3 weeks), extreme weather events such as hurricanes also have strong impact on surface
pCOy, via air-sea CO2 exchange. It’s known that the rate of air-sea CO> exchange depends on the
gas transfer velocity, which is a function of wind speed. During high-wind events (i.e., hurricanes,
and strong storms), the wind speed is usually greater than 10 m s™*. Bates et al. (1998) found that
hurricanes in the Sargasso Sea could greatly increase the outgassing of CO. from the ocean surface
to the atmosphere and decrease the surface pCO> further, despite the strong cooling effect during
the events (which would also decrease surface pCOz by ~60 patm). However, Turk et al. (2013)

shows that episodic high wind events would increase surface pCO- by 30-50 patm, regardless of



the pre-event conditions of the upper ocean water mass (either stratified, non-stratified,

oversaturated, or under-saturated).

In most cases (except extreme events), air-sea CO» exchange has little effect on the surface
pCO; during short-time scales, mainly due to buffering of the carbonate system (Murata et al.,
2002; Bai et al., 2015). However, during long-time scales, surface pCO2 has changed with time,
especially during the anthropogenic increase of atmospheric pCO> (Takahashi et al., 2002; 2009),
and atmospheric pCO- can be used as a proxy to quantify how air-sea CO2 exchange affects surface

pCO; (Lefevre and Taylor, 2002).

2. Satellite estimation of surface ocean pCOz2

Synoptic and frequent surface pCO> measurements are critical to quantifying the air-sea
CO: flux and ocean acidification. Due to data scarcities of surface pCO. from ship-based
measurements and their limitations in spatial and temporal coverages, large uncertainties exist in
the resultant air-sea CO; fluxes (e.g., Takahashi et al., 2002; 2009; Tseng et al., 2011; Vandemark
etal., 2011; Geilfus et al., 2012). Numerical models have been used to estimate surface pCO. (Xue
et al., 2014; Arruda et al., 2015), however the model results are strongly dependent on the
assumption of the initial conditions. In contrast, recent advances in satellite ocean color remote
sensing have shown its capacity in synoptic and frequent mapping of surface pCO; through

developing relationships between environmental variables and surface pCO..

2.1. Satellite-derived environmental variables

Although surface pCO: is mainly controlled by the four processes as described in Section

1, in practice, it is hard to accurately quantify each of them separately due to the interactions among
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them. Therefore, most of the satellite mapping models of surface pCO. are empirical (see Section
2.2 for details), and the most commonly used environmental variables include SST, SSS, Chl (e.qg.,
Lohrenz and Cai, 2006; Lohrenz et al., 2010; 2018; Hales et al., 2012; Signorini et al., 2013; Bai
et al., 2015). SST and SSS are proxies for the thermodynamic and ocean mixing effects, and Chl
is a proxy for biological activities. In addition to these variables, some studies also used a beam
attenuation coefficient, absorption of the Colored Dissolved Organic Matter (CDOM), Mixed
Layer Depth (MLD), and wind speed as auxiliary variables to quantify surface pCO> in some
oceanic regions (e.g., Jamet et al., 2007; Salisbury et al., 2008; Chierici et al., 2009; Shadwick et

al., 2010; Nakaoka et al., 2013; Parard et al., 2014).

Of the commonly used environmental variables, SST and ocean color data products (i.e.,
Chl, CDOM, diffuse attenuation coefficient of the downwelling irradiance (Kq, m™)) are available
from the ocean color satellites such as Moderate Resolution Imaging Spectroradiometer (MODIS).

However, currently there is no standard SSS data from these ocean color satellites.

The satellites designed to “measure” SSS, such as the ESA SMOS (the Soil Moisture and
Ocean Salinity) and NASA Aquarius/SAC-D, lack sufficient spatial (30-100 km) and temporal
resolution (> 3days revisit period), and they are not designed for dynamic coastal waters (Lagerloef
et al., 2008; Font et al., 2010). Since CDOM is a good tracer of SSS in coastal oceans (e.g., Hu et
al., 2003; Coble et al., 2004; Del Vecchio and Blough, 2004), several studies have demonstrated
the potentials of ocean color satellites in deriving SSS via empirical models (e.g., Bai et al., 2013;
Geiger et al., 2013; Qing et al., 2013; Vandermeulen et al., 2014; Zhao et al., 2017). However,
these models are region-dependent and may have poor applicability in other coastal waters,

considering the difference of optical complexities among coastal regions. Therefore, in order to



map the surface pCO. from satellites in different coastal ocean settings, SSS data products from

ocean color need to be developed first.

2.2. Satellite mapping of surface pCOz2: current status

At present, most of the published literature correlate surface pCO> to the environmental
variables (SST, SSS, Chl, etc.) via traditional empirical regression and machine learning
approaches (i.e., neural network) with variable performance in different oceanic regions (e.g.,
Stephens et al., 1995; Rangama et al., 2005; Wanninkhof et al., 2007; Zhu et al., 2009; Chierici et
al., 2009; Friedrich and Oschlies, 2009; Telszewski et al., 2009; Signorini et al., 2013; Nakaoka et
al., 2013; Parard et al., 2014). Specifically, for the open oceans, the satellite pCO2 models often
yield results with Root Mean Square Error (RMSE) between 10 and 20 patm (e.g., Table 1), while
for the coastal oceans, the model RMSE is > 20 patm in most cases (Table 2). Some studies also
proposed semi-analytical approaches to estimate surface pCO., but with larger error (RMSE > 30

patm) (Hales et al., 2012; Bai et al., 2015; Song et al., 2016).

Table 1: List of published satellite pCO2 remote sensing algorithms for open ocean waters. It
should include most, if not all, the published studies of surface pCO> from remote sensing in the

open oceans.

Reference Study area Model input Model Model uncertainty

Stephens et al. (1995) North Pacific SST, LON MPR RMSE=+17 patm (subtropical),
RMSE=+40patm (subpolar)

Sarma (2003) Arabian Sea SST, SSS, CHL MLR for DIC and TA | errors=+5-30 patm

Lefevre and Taylor Atlantic Gyre SST, LAT, LON, MLR R=0.95~0.99

(2002) atmospheric pCO,

Olsen et al. (2004) Caribbean Sea SST, LAT, LON MLR RMSE=9.5 patm,R?=0.8

Ono et al. (2004) North Pacific SST, CHL MPR RMSE=£14 patm (subtropical),
RMSE=+17 patm (subpolar)

Rangama et al. (2005) Southern ocean SST, CHL MLR STD=2.6~7.9 patm

Sarma et al. (2006) North Pacific SST, SSS, CHL MLR for DIC and TA | RMSE=17~23 patm




Table 1 (Continued)

Reference Study area Model input Model Model uncertainty
Jamet et al. (2007) North Atlantic SST, CHL, MLD MLR R=0.45~0.86, RMSE = 8.98~15.01
patm

Berryman et al. (2008) Central Pacific SST, SSS, CHL MLR R?=0.59, p <0.02

Chierici et al. (2009) Northern North SST, CHL, MLD MPR RMSE=10.8 patm, R>=0.72
Atlantic

Telszewski et al. (2009) | North Atlantic SST, CHL, MLD SOM RMSE=11.6 patm

Friedrich and Oschlies North Atlantic SST, CHL KFM RMSE=19 patm

(2009)

Chen et al. (2011) Southern Atlantic and | SST, CHL MLR R?=0.77, 0.85, STD=1.21, 21.0
Indian Ocean patm

Nakaoka et al. (2013) North Pacific SST, SSS, CHL, MLD | SOM RMSE=17.6~20.2 patm

Moussa et al. (2016) Tropical Atlantic SST, SSS, CHL FNN RMSE=8.7~9.6 patm

Xu et al. (2017) Southern Ocean SST, CHL MLR RMSE=13.6~21.3 patm

Note: MLR=Multiple Linear Regression; MPR=Multiple Polynomial Regression; SOM=Self Organising Map; KFM=Kohonen Feature Map;

FNN=Feedforward Neural Network; STD=Standard Deviation, R=Correlation Coefficient; SST=Sear Surface Temperature,

CHL~=Chlorophyll concentration; MLD=Mixed Layer Depth; LAT=Latitude; LON=Longitude; TA=Total Alkalinity; DIC=Dissolved

Inorganic Carbon.

Table 2: List of published satellite pCO2 remote sensing algorithms for coastal ocean waters. It
should include most, if not all, the published studies of surface pCO> from remote sensing in the

coastal oceans.

Reference Study area Model input Model Model uncertainty
Lefevre et al. Coast off Chile SST, SSS, CHL MLR STD=35 patm, R*=0.65
(2002)
Lohrenz and Cai Mississippi River SST, SSS, CHL PCA and MLR R?=0.743, RMSE=50.2
(2006) delta patm
Evans et al. (2008) Oregon and SST, CHL Not available Not available
Washington Shelf
Zhu et al. (2009) Northern South China | SST, CHL MPR R?=0.66~0.68,
Sea RMSE=4.6~25.1 patm
Shadwick et al. Scotian Shelf SST, CHL, wind speed MLR STD=13 patm,R?=0.81
(2010)
Borges et al. (2010) | Belgian coastal zone SST, CHL MPR Not available
Lohrenz et al. Mississippi River SST, SSS, CHL PCA and MLR R?=0.165~0.976, p<0.001
(2010) delta
Karagali et al. Peru and Namibia SST, CHL MPR R?=0.67~0.72
(2010)
Wipf et al. (2012) Santa Barbara SST, CHL, NOy MLR Not available
Channel
Joetal. (2012) Northern South China | SST, CHL, LAT, LON FFBP RMSE=6.9 patm, R’=0.98
Sea
Hales et al. (2012) North American West | SST, CHL Quasi-mechanistic | R=0.61~0.93,
Coast model RMSE=6.6~65 patm
Tao et al. (2012) Huanghai Sea and SST, CHL MPR RMSE=15.82~31.74 patm
Bohai Sea
Signorini et al. North American East SST, SSS, CHL, Jday MLR R?>=0.42~0.82,
(2013) Coast RMSE=22.4~36.9 patm
Marrec et al. (2014) | Western English SST,SSS,CHL,MLD,Jday,LAT,LON MLR RMSE=17.2,21.5 patm,
Channel R?=0.71,0.79
Parard et al. (2014) | Baltic Sea SST,CHL,CDOM,NPP,MLD,Jday MLR and SOM RMSE=35 patm, R?=0.93




Table 2 (Continued)

Reference Study area Model input Model Model uncertainty

Qin et al. (2014) Yellow Sea SST, CHL MPR RMSE=16.68~21.46 patm

Bai et al. (2015) East China Sea TA, DIC, CHL MeSAA Not available, but large
data scattering in
validation

Marrec et al. (2015) | European shelf SST, CHL, wind speed, PAR, MLD MLR RMSE=16, 17 patm

Padhy et al. (2015) Hooghly Estuary SST, CHL MPR RMSE=18 patm

Song et al. (2016) Bering Sea SST, CHL MeSAA STD=17.67~74.8 patm

Lohrenz et al. Mississippi River SST, CDOM, CHL Regression tree RMSE = 30.8 patm

(2018) delta

Joshi et al. (2018) Apalachicola Bay SST, CDOM, CHL MLR Uncertainty = +101 ppm
and £643 ppm

Note: MLR=Multiple Linear Regression; MPR=Multiple Polynomial Regression; SOM=Self Organising Map; KFM=Kohonen Feature Map;

FNN=Feedforward Neural Network; FFBP= Feed Forward Back Propagation; MeSAA=Mechanistic Semi-Analytical Algorithm;

PCA=Principal Component Analysis; STD=Standard Deviation; R=Correlation Coefficient; SST=Sear Surface Temperature, SSS=Sea Surface

Salinity; CHL=Chlorophyll concentration; MLD=Mixed Layer Depth; LAT=Latitude; LON=Longitude; TA=Total Alkalinity; DIC=Dissolved

Inorganic Carbon; CDOM=Colored Dissolved Organic Matter; NPP=Net Primary Production, PAR=Photosynthetically Active Radiation;

Jday=Julian day.

Regardless if an empirical or semi-analytical approach is used, the resulting published
satellite pCO2 model depends on the assumptions made for a specific oceanic region (e.g., river
dominated, ocean-current dominated, or upwelling dominated). To date, there is no unified pCO-
approach, let alone a unified pCO2> model with region-specific parameterization, available to
estimate surface pCO> from satellites for a large oceanic domain (e.g., the Gulf of Mexico) that
contains several different oceanic processes. The difficulty in obtaining a unified approach to
estimate surface pCO> from satellites with relatively lower uncertainties is due mostly to the

complexity and dynamics of the biogeochemical and physical processes in such regions.

In some of the published satellite-based pCO2 models, the monthly mean satellite products
or climatology for Chl are used as model inputs to compensate for the scarcities of concurrent and
co-located satellite measurements of Chl. These satellite measurements are paired with in situ
pCO:> to develop a model. As a result, significant uncertainties could exist in the nonlinear pCO>
models (Zhu et al., 2009; Jo et al., 2012; Hale et al., 2012; Signorini et al., 2013; Parard et al.,

2014). Likewise, the sensitivity of the established models to each input variable has rarely been
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studied (Lefévre et al., 2002; Olsen et al., 2004; Zhu et al., 2009; Lohrenz and Cai, 2006; Lohrenz
etal., 2010; Borges et al., 2010; Parard et al., 2014). As satellite-derived variables (i.e., SST, SSS,
and Chl) have inherent uncertainties (Hu et al., 2009; Cannizzaro et al., 2013), error propagation
in model-derived pCO- needs to be understood, especially for regions with potentially large
uncertainties in these satellite-derived variables. Therefore, in this study, the uncertainties in
satellite products used in the pCO2 model will be quantified to better understand their error

propagations.

3. Study area

As the largest semi-enclosed marginal sea of the western Atlantic, the Gulf of Mexico
(GOM) encompasses the West Florida Shelf (WFS), Louisiana Shelf, Texas Shelf, Mexican Shelf,
the Cuban Shelf, and the open Gulf, with a surface area of 1.6 million km?, as shown in Figure 1.1.
Each of these regions is dominated by different oceanic processes. The WFS is a broad carbonate-
based shelf with gentle slope. It is mainly controlled by the coastal currents with little freshwater
inputs. The offshore area of the WFS is also affected by the Loop current. The Louisiana Shelf is
the most dynamic region of the GOM, with larger amounts of freshwater discharges from the
Mississippi-Atchafalaya River system (MARS). Texas Shelf is very narrow and usually receives
lots of freshwater from the MARS during spring. Mexican Shelf is also broad which is
characterized by the coastal upwelling along the carbonate Campeche Bank. The Cuban shelf is
narrow and is mainly affected by the Loop Current in the Florida Strait. The open Gulf is the

mainly controlled by the Loop Current, and mesoscale eddies.

The GOM is a very productive marine ecosystem (estimated at 150-300 g C m™ yr?;

Heileman and Rabalais, 2008) and an important global reservoir of biodiversity and biomass of
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fish, sea birds, and marine mammals (Widdicombe and Spicer, 2008; Xue et al., 2013), thus, it is
important to quantify the role of the GOM in modulating CO> flux and ocean acidification through

estimating surface pCO..
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Figure 1.1: Study region of the Gulf of Mexico. The Gulf of Mexico encompasses the West Florida
Shelf (WFS), Louisiana Shelf (LA), Texas Shelf (TX), Mexican Shelf (MX), Cuban Shelf, and the

open Gulf.

In previous studies, contradictory results about the air-sea CO; flux in the GOM were
obtained. For instance, based on field measurements, Takahashi et al. (2009) estimated the GOM
to be a CO2 source (COz flux = 0.21 mol C/m?/year). On the other hand, Xue et al. (2014) estimated
the GOM to be a CO; sink (CO2 flux = -0.84 mol C/m?/year) using a 3-dimentional numerical
model. Benway and Coble (2014) also concluded that the GOM is a CO; sink but with a smaller

flux (CO2 flux = -0.19 mol C/m?/year). These discrepancies resulting from these studies show that
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new methods need to be developed to better quantify the air-sea CO- flux and understand carbon
cycling and ocean acidification in the GOM. Synoptic and frequent mapping of surface pCO: from

satellites should play an important role in developing new methods.

In the northern GOM near the MARS, Lohrenz and Cai (2006) and Lohrenz et al. (2010;
2018) developed empirical pCO2 models using satellite-derived SST, SSS and Chl. However, due
to the complexities and dynamics of the northern GOM waters, these models all showed relatively
large errors (i.e., RMSE > 30 patm). Such errors would introduce large uncertainties in the
quantification of air-sea CO> flux. Thus, model improvements are needed. In other GOM waters,

uncertainties are greater because there are no satellite pCO2 models or data products available.

4. Objectives

The overarching goals of this research are to advance satellite remote sensing technology
by developing surface pCO2 models and data products for most of the GOM waters, and to improve
our understanding of the mechanisms and dominant factors in controlling surface pCO,. Towards

these goals, the specific research objectives are:

1) Develop satellite-based surface pCO2 models and data products for single-process
dominated subregions of the GOM, and quantify the sensitivities of the pCO algorithms

to the input environmental variables.

2) Quantify the oceanic processes in controlling surface pCO- in the GOM, analyze the
relationships between environmental variables and surface pCO2, and understand the
mechanisms of seasonal and interannual variations of surface pCO and its driving

factors.
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3) Develop an improved SSS model and data products for most GOM waters, and quantify

the sensitivities of the SSS model to the input variables.

4) Develop a unified pCO2 model and data products for the GOM waters, and quantify the

sensitivities of the pCO2 model to the input environmental variables.

5) Quantify the temperature and non-temperature effects on surface pCO; at different
latitudes, analyze the dominant controls and the corresponding the driving factors of

surface pCOs..

5. Data sources

5.1. Field data

In the years between 2002 and 2017, over 220 cruise surveys have been conducted to
collect flow-through surface pCO> data during different seasons in the GOM as well as one buoy
time series data from the Coastal Mississippi Buoy. Most of these pCO> data were obtained from

the NOAA National Centers for Environmental Information (NCEI)

(https://www.nodc.noaa.gov/ocads/), and several cruise data were obtained from University of
Columbia, Texas A andM University, and University of Delaware. All these surface pCO. data
sources were compiled and quality controlled for the development of surface pCO2 remote sensing
algorithms in this research. Details of these data can be found in Appendixes of A, B, and D. It
should be clarified that data collected before July 2002 were not used mainly because there is no

MODIS data available for that period.

In addition to surface pCO», SSS was also measured and collected in all the field surveys

mentioned above. To develop the SSS remote sensing algorithm for the GOM, the SSS data
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collected from these field surveys was compiled and quality controlled. Other cruises that
measured SSS but not surface pCO> were also used. Specifically, ship-based cruise data collected
in the GOM by College of Marine Science University of South Florida, Florida Fish and Wildlife
Conservation Commission (FWC), and buoy-based time series data collected in the GOM from
NOAA National Data Buoy Center (NDBC) buoys were also compiled and quality controlled, and
merged with the SSS datasets from the pCO> data surveys. Details of these data can be found in

Appendix C.

To analyze the driving mechanisms of surface pCO. in different coastal ocean
environments, in situ surface pCO time series data collected from buoys located at different
latitudes along the coasts of U. S. and its territories were compiled and quality controlled. These

data were obtained from the NOAA NCEI. Details of these can be found in Appendix E.

5.2. Satellite data

NASA standard daily Level-2 data products (version R2014.0) for the period of Jul. 2002
— Dec. 2017 with a spatial resolution of ~1 km were downloaded from the NASA Goddard Space

Flight Center (GSFC) (https://oceancolor.gsfc.nasa.qgov/). These Level-2 data products were

derived from measurements by the Moderate Resolution Imaging Spectroradiometer (MODIS) on
the Aqua satellite, and they included Chl, SST, and spectral remote sensing reflectance (Rrs, sr?)
in 7 bands between 412 and 678 nm. The spectral Rrs data were used to calculate Kq using the
semi-analytical algorithm developed by Lee et al. (2005). The MODIS-derived environmental
variables including Chl, Kq, SST, and SSS were used as inputs for the development of pCO. remote
sensing algorithms. The spectral Rrs data and SST were used to develop the SSS remote sensing

algorithm.
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6. Approach and dissertation structure

This dissertation is arranged in chapters that detail the research conducted to fulfill these
objectives. Chapters 2 and 3 focus on the estimation of surface pCO, from MODIS in single-
process dominated regions of the GOM: the WFS and the northern GOM, respectively (Objective
1). For the WFS, a multi-variate nonlinear regression (MNR) model is developed to estimate
surface pCO, from MODIS, and in the northern GOM, a previously developed mechanistic semi-
analytical algorithm (MeSAA) is evaluated and locally-tuned, and compared with the performance
of regression-based models. For both regions, the sensitivity of the developed pCO. models to the
input environmental variables and their relationships are analyzed. The MeSAA model is
developed through quantifying different oceanic processes that affect surface pCO> variations
(Objective 2). The driving mechanisms of the seasonal and interannual variations of surface pCO>

on the WFS are analyzed (Objective 2).

The satellite mapping of surface pCO2 in the northern GOM waters requires the
development of SSS data products from ocean color remote sensing (Objective 3). This work is
completed using MODIS and SeaWiFS data, as described in Chapter 4. Briefly, a multilayer
perceptron neural network (MPNN) is developed to estimate SSS from satellite-derived SST and
remote sensing reflectance (Rrs(A), m™) in the visible bands. The sensitivity of the model to

realistic model input errors is analyzed and quantified.

Most of the published satellite-based pCO> models are developed for single-process
dominated oceanic regions, as described in Chapters 2 and 3. The availability of SSS data products
from remote sensing in the GOM (Chapter 4) makes it possible to test the feasibility of developing
a unified pCO2 model for the multi-process dominated GOM (Objective 4). Chapter 5 details the
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development of such a unified pCO, model for the GOM, which proves the possibility of using
the proposed approach for other oceanic regions (e.g., Gulf of Maine). The seasonal and
interannual variability of surface pCO. in the GOM, and the relationships between pCO> and
environmental variables, as well as the underlying driving mechanisms, are also analyzed in

Chapter 5 (Objective 2).

Chapter 6 details the decomposition of the effects of temperature and non-temperature on
surface pCO; variations, based on buoy time series data at different latitudes in both open oceans
and coastal oceans (Objective 5). The underlying driving mechanisms of the seasonal variations
of surface pCO> as well as their temperature and non-temperature components are analyzed, where

the relationships between surface pCO> and environmental variables are also quantified.

Finally, Chapter 7 summarizes the works and findings in the previous chapters, with
particular focus on the implications of the dissertation as a whole. Overall implications are
presented on both the successes and lessons learned from this work. Furthermore, Chapter 7 also
discusses future research directions to broaden the findings of this work and to study CO; flux,

carbon cycling, and ocean acidification using satellite data.
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CHAPTER 2:

ESTIMATING SURFACE PCO2 IN SINGLE-PROCESS DOMINATED REGION FROM

SATELLITES: THE WEST FLORIDA SHELF

Note to Reader

This chapter have been previously published in Continental Shelf Research, 2016, 128: 10-

25, and have been reproduced with permission from Elsevier Publishing.
1. Research overview
Appendix A — Remote estimation of surface pCOz on the West Florida Shelf (Chen et al., 2016)

As one of the broadest continental shelves of the U. S., the West Florida Shelf (WFS)
should play a big role in modulating CO: flux in the Gulf of Mexico (GOM). However,
despite significant efforts to collect surface pCO2 data through numerous ship surveys,
synoptic mapping of surface pCO> from satellites is available for the WFS. In this study, a
multi-variable empirical surface pCO, model was firstly developed for satellite mapping
of surface pCOz over the WFS, with a Root Mean Square Error (RMSE) of < 12 patm and
a R? of 0.88 for pCO; ranging from 300 to 550 patm (N = 1,516). This model was based
on concurrent MODIS estimates of surface chlorophyll concentrations, diffuse light
attenuation at 490 nm, and sea surface temperature. The first spatial and temporal estimate
of distributions of surface pCO, on the WFS were investigated and discussed in this study.

However, while the general approach of empirical regression may work for waters in other
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areas of the GOM, model coefficients will most likely need to be empirically determined

in a similar fashion.
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CHAPTER 3:
ESTIMATING SURFACE PCO:2 IN SINGLE-PROCESS DOMINATED REGION FROM

SATELLITES: THE NORTHERN GOM

Note to Reader

This chapter have been previously published in Continental Shelf Research, 2017, 151: 94-

110, and have been reproduced with permission from Elsevier Publishing.
1. Research overview

Appendix B — Estimating surface pCO; in the northern Gulf of Mexico: Which remote sensing

model to use? (Chen et al., 2017a)

Various approaches and models have been proposed to remotely estimate surface pCO: in
the ocean, with variable performance as they were designed for different environments.
Among these, a recently developed mechanistic semi-analytical approach (MeSAA) has
shown an advantage for its explicit inclusion of physical and biological forcing in the
model, yet its general applicability is unknown. Here, with extensive in situ measurements
of surface pCO., the MeSAA was tested in the northern GOM where river plumes dominate
the coastal water’s biogeochemical properties during summer. Specifically, the MeSAA-
predicted surface pCO. was estimated by combining the dominating effects of
thermodynamics, river-ocean mixing and biological activities on the surface pCO.. The
RMSE (root mean square error) was 22.94 patm (5.91 %) and R? was 0.25 for pCO;

ranging between 316 and 452 patm (N=676). A locally-tuned MeSAA and regression
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models showed a RMSE of 12.36 patm (3.14 %) and 10.66 patm (2.68%), and R? of 0.78
and 0.84, respectively. These results suggest that the locally-tuned MeSAA worked better
in the river-dominated northern GOM than the original MeSAA, with slightly worse
statistics but more meaningful physical and biogeochemical interpretations than the
empirical regression model. Because data from abnormal upwelling are not used to train
the models, the models are not applicable for waters with strong upwelling, yet the

empirical regression approach has the potential to be further tuned to adapt to such cases.
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CHAPTER 4:

REMOTE ESTIMATION OF SEA SURFACE SALINITY IN THE GOM

Note to Reader

This chapter have been previously published in Remote Sensing of Environment, 2017, 201.:

115-132, and have been reproduced with permission from Elsevier Publishing.

1. Research overview

SSSis an important input to pCO2 remote sensing models, but currently there is no satellite-
based SSS data product covering coastal waters with 1-km resolution. Therefore, an important step
in developing pCO2 models is developing a model to estimate SSS from ocean color measurements.

This work is presented in Appendix C below.

Appendix C — Estimating sea surface salinity in the northern Gulf of Mexico from satellite ocean

color measurements (Chen and Hu, 2017b)

Sea surface salinity (SSS) is an important parameter to characterize physical and
biogeochemical processes, and it is also an important parameter to quantify the surface
pCO; variation especially in the river-dominated regions, yet its remote estimation in
coastal waters has been difficult because satellite sensors designed to “measure” SSS lack
sufficient resolution, and higher-resolution ocean color measurements suffer from optical
and biogeochemical complexity when used to estimate SSS. In the northern Gulf of Mexico
(GOM), this challenge is addressed through modeling, validation, and extensive tests in

contrasting environments. Specifically, using extensive SSS datasets collected by many

37



groups spanning > 10 years and MODIS (Moderate Resolution Imaging Spectroradiometer)
and SeaWiFS (Sea-Viewing Wide Field-of-View Sensor) estimated remote sensing
reflectance (Rrs(}), m™) at 412, 443, 488 (490), 555, and 667 (670) nm and sea surface
temperature (SST), a multilayer perceptron neural network-based (MPNN) SSS model has
been developed and validated with a spatial resolution of ~1km. The model showed an
overall performance of root mean square error (RMSE) = 1.2, with coefficient of
determination (R?) = 0.86, mean bias (MB) = 0.0, and mean ratio (MR) = 1.0 for SSS
ranging between ~1 and ~37 (N=3640). The model was thoroughly evaluated under
different scenarios with reasonable performance. The sensitivity of the model to realistic
model input errors from satellite-derived SST and Rrs was also thoroughly examined, with
uncertainties in the model-derived SSS being always < 1 for SSS > 30. The extensive
validation, evaluation, and sensitivity test all indicated the robustness of the MPNN model
in estimating SSS in most, if not all, coastal waters and offshore plumes in the northern
GOM. Thus, the model provided a basis for generating near real-time 1-km resolution SSS
maps from satellite measurements. However, the model showed limitations when applied
to regions with known algal blooms or upwelling as they both led to low Rrs in the blue

bands that may be falsely recognized as caused by low SSS.
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CHAPTER 5:
A UNIFIED APPROACH TO ESTIMATE SURFACE OCEAN PCO2 FROM

SATELLITE MEASUREMENTS

1. Research overview

With all satellite-derived variables (SST, SSS, Chl, Kg) available as the model inputs, this
chapter details the effort in using these variables to develop a unified approach to estimated pCO:

in multi-process dominated regions. The steps and results are all presented in Appendix D below.

Appendix D — A machine learning approach to estimate surface ocean pCO. from satellite

measurements (Chen et al., submitted)

Surface ocean pCO: is a critical parameter in the quantification of air-sea CO> flux, which
further plays an important role in quantifying the global carbon budget and understanding
ocean acidification. Yet, to date there is no unified approach, let alone unified model, to
remotely estimate surface pCO> in oceanic regions that are dominated by different oceanic
processes. In the study area of the Gulf of Mexico (GOM), this challenge is addressed
through the evaluation of different approaches, including multi-linear regression (MLR),
multi-nonlinear regression (MNR), principle component regression (PCR), decision tree,
supporting vector machines (SVMs), multilayer perceptron neural network (MPNN), and
random forest based regression ensemble (RFRE). After modeling, validation, and
extensive tests under different scenarios, the RFRE model performed the best. The RFRE

model showed an overall performance of a root mean square error (RMSE) of 9.1 patm,
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with R? of 0.95, a unbiased percentage difference (UPD) of 0.07%, and a mean ratio
difference (MRD) of 0.12% for pCO> ranging between 145 and 550 patm. The model,
with its original parameterization, has been tested with independent datasets collected over
the entire GOM, with satisfactory performance in each case. The sensitivity of the RFRE-
based pCO2 model to input errors of each environmental variable was also thoroughly
examined. The extensive validation, evaluation, and sensitivity analysis indicate the
robustness of the RFRE model in estimating surface pCO> in most, if not all, GOM waters.
The RFRE model approach was applied to the Gulf of Maine (a contrasting oceanic region
to GOM), with local model training. The results showed significant improvement over
other models for that area, suggesting that the RFRE may serve as a robust approach for

other regions once sufficient field-measured pCO- data are available for model training.

While most results are presented in a submitted manuscript, further analysis of surface

pCO; climatology and the pCO2 model sensitivity to input variables (i.e., SST, SSS, Chl, and Kq)

is presented below.

Specifically, the monthly pCO> maps derived from MODIS between July 2002 and

December 2017 were averaged to derive the climatological pCO2. monthly mean. Meanwhile, the

standard deviations of the monthly surface pCO2, as well as the monthly maxima and minima of

surface pCO- over the study period were also quantified to express the variations of surface pCO-

in each month. Figs. 5.1-5.5 are the monthly mean, monthly mean with two standard deviation

added, monthly mean with two standard deviations subtracted, monthly maxima, and monthly

minima, of surface pCO: in the GOM, respectively. These monthly surface pCO. maps should

represent the typical variation range of surface pCO2 in each month, and thus can be used as
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references during the field surveys of surface pCO2 in the GOM in the future. It should be noted
that, there is some patchiness in the monthly mean pCO> maps; specifically where two standard
deviation are added (Fig. 5.2), where two standard deviations are subtracted (Fig. 5.3), and
monthly maxima (Fig. 5.4) and minima (Fig. 5.5). These extreme high (or low) pCO: values are
mainly caused by the large variations of the monthly surface pCO. from year to year in those

regions.
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Figure 5.1: Surface pCO. climatology in the GOM: monthly mean. They are based on MODIS-

derived surface pCO2 between July 2002 and December 2017.
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Figure 5.2: Surface pCO> climatology in the GOM: monthly mean minus two standard deviations.

They are based on MODIS-derived surface pCO2 between July 2002 and December 2017.
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Figure 5.3: Surface pCO> climatology in the GOM: monthly mean plus two standard deviations.

They are based on MODIS-derived surface pCO2 between July 2002 and December 2017.
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Figure 5.4: Surface pCO- climatology in the GOM: monthly minima. They are based on

MODIS-derived surface pCO2 between July 2002 and December 2017.
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Figure 5.5: Surface pCO- climatology in the GOM: monthly maxima. They are based on

MODIS-derived surface pCO2 between July 2002 and December 2017.

In the manuscript, the sensitivity of the pCO> remote sensing algorithm to the input
variables was quantified based on the training dataset used to develop the algorithm. This
sensitivity analysis was conducted by varying one of the input variables by a certain amount while
keeping the other variables unchanged (see Appendix D). Here | did a 3-dimensional (3D)
sensitivity analysis via data simulation. For example, to examine the model sensitivity to both SST

and SSS, a 2-dimensional (2D) arrays for both SST and SSS were generated by varying SST and
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SSS within a typical range of each input (i.e., SST within 0~35 °C, and SSS within 0~40); thus,
each value of SST corresponds to different SSS values in the SSS range, and each pair of SST and
SSS values was referred to as a grid cell. Futrther, each grid cell was assigned fixed Chl and Kg
values (e.g., Chl = 1.0 mg m=3, Kd = 0.1 m?). A data matrix was generated, and each grid cell of
the data matrix represented a data sample associated with SST, SSS, Chl, and Kq. Finally, the
developed pCO2 model was applied to this data matrix to calculate the surface pCO> value for each
grid cell. Following the above steps, Fig. 5.6-5.12 are the 3D plots of the sensitivity of the
developed pCO2 model to environmental variable pairs of Chl and Kg, Chl and SSS, Chl and SST,
Kg and SSS, Kqg and SST, SST and SSS, respectively. These 3D plots allow the visualization of
model-predicted pCO: varied against any other two of the four environmental variables (i.e., SST,
SSS, Chl, and Kg). Similar to the sensitivity analysis in Appendix D, the pCO- algorithm is more
sensitive to SST and SSS than to Chl and Kgq. Surface pCO- showed large increase with an increase
in SST and SSS, while the changes in surface pCO», in response to Chl and Kgy variations, were

gradual with smaller amplitudes.
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CHAPTER 6:
DOMINANT CONTROLS OF SURFACE OCEAN PCO2 IN COASTAL OCEANS:
ANALYSIS OF IN SITU TIME SERIES DATA

1. Research overview

Appendix E — Dominant controls of surface water pCO; in different coastal environments (Chen

and Hu, prepared)

Atmospheric pCO. has increased continuously since global industrialization. Satellite
measurements allow for synoptic estimation of surface ocean pCO2, which can be further
used to quantify air-sea CO, flux and to understand ocean acidification under
anthropogenic forcing. To improve the accuracy of satellite-derived surface pCOg, the
dominant controls of surface pCO. over seasonal and interannual time scales need to be
better understood. As such, a time series of in situ pCO. data, together with other
environmental variables from field or satellite measurements along the U. S coasts at
different latitudes, are analyzed. On seasonal time scales, surface pCO; tends to be
dominated by the temperature effect (pCO2_T) through SST and wind speed (with
exceptions in river-dominated, upwelling-dominated, or coral reef dominated regions) in
tropical and subtropical oceanic waters, but by the non-temperature effect (pCO2_nonT) in
subpolar regions. At high latitudes, despite the covariations between pCO2_nonT and
atmospheric pCO2 on seasonal scales, no statistically significant correlation is found
between the two or between pCO2_nonT and the environmental proxies of ocean mixing

and biological activities. On interannual time scales, corresponding to the significant
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increasing trends in atmospheric pCO: over the study period, surface pCO. also shows
significant increasing trends (again with exceptions in river-dominated, upwelling-
dominated, or coral reef dominated regions). In contrast to the dominant controls of the
seasonal variations, interannual variability of surface pCO. is mainly controlled by the non-
temperature effect (through air-sea CO2 exchange via atmospheric pCOy) in tropical and
subtropical waters but by temperature effect (warming effect of SST) in subpolar regions.
In river-dominated and upwelling-dominated coastal ocean systems where biological
activities are expected to be intensive, surprisingly, no significant correlation is found
between pCO2_nonT and biological proxies (i.e., Chlorophyll concentration (Chl), diffuse
attenuation coefficient of downwelling irradiance (Kg)). This may be mainly attributed to
the data scarcities and large uncertainties in the satellite-derived Chl and Kg, and more
importantly to the complexities of the dynamic physical and biogeochemical processes in
such coastal environments. Therefore, the effects of biological activities (e.g., algal blooms)

need to be further investigated.
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CHAPTER7:

RESEARCH IMPACTS AND CONCLUSIONS

1. Summary of findings

Due to the dynamic and complex physical and biogeochemical processes in coastal
oceans, large uncertainties (i.e., Root Mean Square Error (RMSE) > 20patm) exist in satellite-
derived surface pCO2 (e.g., Lohrenz et al., 2010; 2018; Hales et al., 2012; Signorini et al., 2013;
Bai et al., 2015). Most of the published satellite-based pCO2 models are region specific and thus
having poor applicability in other regions. In the Gulf of Mexico (GOM), no satellite-based pCO>
models or data products are available except for a few preliminary attempts in the northern GOM
waters around the Mississippi river delta (Lohrenz and Cai, 2006; Lohrenz et al., 2010; 2018),
yet these attempts all show relatively large uncertainties (i.e., RMSE > 30 patm). Here, an
empirical surface pCO> remote sensing algorithm, based on multi-variate nonlinear regression
(MNR), was developed for the West Florida Shelf (WFS) with RMSE of 10.98 patm and R? of
0.86 for pCO2 between 300 and 550 patm. (Chen et al., 2016). For the northern GOM waters, a
mechanistic semi-analytical approach (MeSAA) was attempted and the same MNR approach
used for the WFS was also locally tuned for this region (Chen et al., 2017a). The MNR shows
better performance with RMSE of 10.66 patm and R? of 0.84 than the best MeSAA results
(RMSE = 12.36 patm, and R? = 0.78) for pCO2 range of 315~450 patm. Clearly studies of both
the WFS and the northern GOM show greatly reduced errors when compared to the published
studies. It should be clarified that, while a multi-variate nonlinear regression model was

developed from this work, the MeSAA model was adapted from a previously published work
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(Bai et al., 2015) but tuned using local parameterization. While they both appear to be able to
estimate surface pCO> using satellite measurements, their advantages and disadvantages are
discussed in Chen et al. (2017a). Specifically, while the MeSAA model can address the individual
processes more explicitly, it also leads to higher uncertainties than the empirical model. On the
other hand, because the complex and often unknown processes may be implicitly included in the
model coefficients, empirical models often lead to lower uncertainties than MeSAA models, but
at the price of being unable to explain the processes explicitly. One limitation of both models is
their requirement of SSS as the model input (Chen et al., 2017a), where SSS at 1-km resolution

is not readily available from satellite measurements.

To overcome this difficulty, a multilayer perceptron neural network (MPNN) is
developed to estimate SSS from MODIS and SeaWiFS (Chen et al., 2017b). This SSS model is
mainly based on the optical properties of the colored dissolved organic matter (CDOM) and its
relationship with SSS (Vodacek et al., 1997; Hu et al., 2003; Coble et al., 2004; Del Vecchio and
Blough, 2004). However, the CDOM characteristics depend on individual rivers, and the CDOM-
SSS relationship also varies with space and time (Chen, 1999; Hu et al., 2003; Del Vecchio and
Blough, 2004; Bowers and Brett, 2008; Bai et al., 2013; Geiger et al., 2013). To overcome these
difficulties, the MPNN model developed in Chen et al. (2017b) bypasses the need of CDOM as
an intermediate step, but estimates SSS directly from satellite-derived SST and remote sensing
reflectance (Rrs(}), m™) in the visible bands. This model shows a RMSE of 1.2 PSU and R? of
0.86 for a wide range of SSS (i.e., 1~37) with uncertainties always < 1 PSU for SSS > 30, and
therefore is being able to generate SSS data products at 1-km resolution to be used in surface

pCO2 models.
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Most of the published satellite-based pCO2 models (e.g., Hales et al., 2012; Signorini et
al., 2013), as well as the models described in Chapters 2 and 3, are developed for single-process
dominated regions. These regional pCO2 models are developed using various approaches and
different combinations of environmental variables. With the available SSS data products from
ocean color remote sensing in the GOM (Chapter 4), the feasibility of developing a unified pCO>
model for multi-process dominated regions ( GOM, Gulf of Maine) is demonstrated (Chapter 5).
Such a pCO2 model leads to spatial and temporal (e.g., seasonal and interannual) distribution
patterns of surface pCO2 in the GOM that can be interpreted as being driven by different physical
and biological processes. This unified satellite pCO2 model has a RMSE of 9.1 patm and R? of

0.95 for pCO> between 145 and 550 patm.

Finally, to improve the accuracy of satellite mapping of surface pCO: in the complex
coastal waters, the mechanisms and dominant controls of the variations in surface pCO. on
seasonal and interannual time scales are further investigated using in situ time series data along
the coasts of U. S. and its territories (Chapter 6). It is found that, in tropical and subtropical
coastal waters, the seasonal variations of surface pCO; are mainly controlled by SST (with a few
exceptions in the river-dominated, upwelling-dominated, and coral-reef-dominated systems),
while in the subpolar or high latitude regions, the seasonal variations of surface pCO> are mainly
dominated by non-temperature effects. In contrast, on interannual time scale, with the increase
of the atmospheric pCO2, surface pCO- also shows increasing trends over most of the sites
selected for this study. In the tropical and subtropical coastal waters, the increasing trends in
surface pCO. are mainly attributed to non-temperature effect, while in the subpolar or high
latitude regions, they are mainly caused by the effect of SST. More biological data are required

to better understand the biological effects on surface pCO> variations.
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2. Research implications

2.1. Satellite mapping of surface pCO:2

In principle, surface ocean pCO: is mainly controlled by four oceanic processes:
thermodynamics, ocean mixing, air-sea CO exchange, and biological activities (Fennel et al.,
2008; lkawa et al., 2013; Xue et al., 2016). Therefore, any environmental variables related to
these processes can be used to remotely estimate surface pCOs.. In practice, SST, SSS, Chl and
Kq are determined to be the best variables to model surface pCO; in the GOM. The selection of
these variables (except Kq) concurs with many of the published studies (e.g., Lohrenz and Cai,
2006; Lohrenz et al., 2010; 2018; Hales et al., 2012; Signorini et al., 2013; Bai et al., 2015). In
this study, Kg is found to be an important biological proxy. More importantly, although the GOM
encompasses several sub-regions that are dominated by distinct and complex physical and
biogeochemical processes (Figure 1.1), SST, SSS, Chl and Ky are found to be the common
environmental variables in affecting surface pCO2 over the GOM. However, it is known that, in
addition to these variables, other variables (e.g., mixed layer depth and wind speed) can also
affect surface pCO- (e.g., Jamet et al., 2007; Salisbury et al., 2008; Chierici et al. 2009; Shadwick
et al., 2010; Nakaoka et al., 2013; Parard et al., 2014). Therefore, in order to apply the developed
pCO2 model on a global scale, further investigations need to be conducted to examine the
sufficiency of these four environmental variables (SST, SSS, Chl, and Kg) in estimating surface
pCOz>. The significantly improved model performance from this effort suggest that many of the

published pCO2 models may need to be revisited.

Due to the dynamic and complex characteristics of the coastal oceans and prior to this
work, the satellite estimated pCO. always showed relatively large uncertainties (e.g., RMSE >
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20 patm, or RMSE > 30 patm in river-dominated regions). Furthermore, due to the lack of
sufficient surface pCO> data, contradictory results about the air-sea CO> flux in the GOM have
also been reported (Takahashi et al., 2009; Xue et al., 2014; Benway and Coble, 2014). In this
dissertation, the considerable gaps of available synoptic pCO> data in the GOM are filled through
extensive algorithm development effort. Various approaches, such as multi-nonlinear regression,
principle component analysis and regression, neural network, supporting vector machines,
regression tree, and random forest, are all thoroughly tested and compared toward an improved
accuracy (e.g., RMSE < 10 patm) in the satellite-derived pCO.. With the synoptic surface pCO>
at relatively high spatial and temporal resolutions available from satellites, it is now
straightforward to calculate air-sea CO flux in future works. This will lead to an improved
understanding of the carbon budget and carbon cycling in the GOM. More importantly, the
unified pCO2 approach demonstrated here shows potentials for other regions (e.g., Gulf of Maine),

and thus may greatly facilitate carbon-flux studies in other region.

Finally, with rapidly increasing atmospheric pCO> resulting from anthropogenic forcing,
it is expected that surface pCO, would also show a similar or detectable increasing rate
(Takahashi et al., 2009; 2014). However, no such clear trends are observed in either the satellite-
derived pCO: for the GOM or in situ time series of pCO data in the northern GOM (e.qg., buoy
C3 in Chapter 6). In other words, based on the results presented in this study, currently it is
difficult to conclude whether there is a significantly increasing trend in the surface pCO: in the
GOM, despite the fact that the satellite-based surface pCO2 does show slight increases after 2012.
This is possibly due to 1) the buoy-based time series data may not be representative of the entire
GOM, especially for the open GOM waters, and 2) if the model inputs (SST, SSS, Chl, and Kg)

do not show apparent trend, the modeled pCO2 would not show any trend either. Therefore, in
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future studies of surface pCOo, in order to capture the response of surface pCO: to the increased

atmospheric pCOz on interannual time scale, the latter should be used as the model input as well.

2.2. Further implications

The SSS work presented in this dissertation has implications beyond its use in satellite
mapping of surface pCO.. Accurate estimation of SSS from ocean color remote sensing is critical
to characterizing many physical and biogeochemical processes in coastal ocean waters (Fennel
et al., 2011; Xue et al., 2013). It can not only be used to examine the mixing characteristics
between different water masses (e.g., riverine freshwater versus oceanic water) (Hu et al., 2004;
Horner-Devine et al., 2015; Yang et al., 2015), but it can also be used to trace the pathways of
the terrestrial runoffs into the ocean as well as to characterize the optical properties of the ocean
waters related to hypoxia and algal blooms (Rabalais et al., 1996; 2002; Weisberg et al., 2014;
2016; Le et al., 2016). The SSS algorithm developed here (Chen et al., 2017b) may also be
implemented within near-real time applications in monitoring water properties in the near future.
Likewise, the general approach of using neural network to implicitly address relationships
between spectral reflectance and SSS may be applied to other coastal regions to derive SSS from

ocean color measurements.

Similar to the neural network approach used on SSS estimation, the approaches proposed
in this dissertation to estimate surface pCO- may be extended to other regions as well. Although
the relative importance of the four processes (thermodynamics, physical ocean mixing, biological
activities, air-sea CO> exchange) that control the variations of surface pCO, may vary in different
oceanic ecosystems (e.g., upwelling-dominated, river-dominated, or current-dominated), for

example at different latitudes, the proposed machine learning approach used to generate the pCO-
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model for the multi-process dominated GOM waters shows great potential for estimating surface
pCO> from other oceanic waters (Chapter 5, Chen et al., submitted). At present, due to the lack
of synoptic and accurate mapping of surface pCO: in coastal margins, it is still difficult to
quantify the role of coastal oceans in cycling atmospheric CO> as either a source or a sink (e.g.,
Borges, 2005; Cai et al., 2006). As such, the proposed approach in this dissertation can be
implemented and tested on global continental margins as well as in global open-ocean waters to

improve our knowledge of global oceanic carbon cycling.

3. Future work

3.1. Research

In the past, controversial results have been reported on whether the GOM acts as a CO»
source or sink (Takahashi et al., 2009; Xue et al., 2014; Benway and Coble, 2014). Based on the
synoptic and long-term satellite-based pCO- data products provided in this work, an important
next step is to estimate the air-sea CO; flux in the GOM waters. Subsequently, the variations of
the air-sea CO> fluxes in the past years (e.g., at least > 15 years from MODIS) can be analyzed

towards a better understanding of the carbon cycling in the GOM.

With the increases of atmospheric pCO- resulting from anthropogenic forcing, how the
ocean responds to such increases is one of the top concerns in marine carbonate studies (e.g.,
Doney et al., 2009). Therefore, future works on pCOz remote sensing must improve the model
capacity in capturing interannual variations surface pCO: in response to changes in atmospheric
pCOs.. In particular, based on the in situ time series data, surface pCO. shows clear increasing
trends in most of the study sites along the U. S. However, based on the remotely sensed pCO>
from this work, surface pCO. trends in the GOM are less conclusive. Considering the dynamic
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and complex oceanic processes in the GOM, it could be possible that surface pCO- did not
increase much over this study period; it could also be possible that the interannual changes in
surface pCO> were not captured well by the environmental variables used in the developed pCO>
models. As such, further investigation and improvement of the developed pCO> models are

needed, possibly through the use of the atmospheric pCO- as one of the input variables.

Finally, to better quantify surface pCO. from satellite measurements, the biological
effects on surface pCO2 must be to be investigated in greater detail in the future. At present, Chl
and Kq are used as general proxies of the biological activities in modulating surface pCO..
However, due to the complex processes of the biological activities (e.g., photosynthesis,
respiration, and calcification), the signals in Chl and Kq may not co-vary with surface pCO on
the same time scales. For example, it was surprising to find that Chl and Kg are insignificant to
surface pCO2 changes (Chapter 5). Such results could be caused by data scarcities and large
uncertainties in the satellite-derived Chl and Kg, especially in coastal ocean waters. As such,
more work is still needed to study the effects of biological activities on surface pCOz. In
particular, how surface pCO: changes, together with other environmental variables (e.g.,
apparent oxygen utilization, nutrients, dissolved oxygen, and Chl), before, during, and after algal

blooms needs to be investigated.

3.2. Product delivery

Surface pCO:s: is a key parameter in assessing air-sea CO> flux and understanding ocean
acidification. While algorithms and data products are developed in this study, effective delivery
of these products to the end-users still requires more efforts, especially for a user groups of

different needs. For example, the North American Carbon Program (NACP) is a multi-agency,
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multidisciplinary scientific research program which focuses on carbon sources and sinks. The
surface pCO> data products can be provided to researchers in this program to study carbon cycles.
The NOAA Ocean Acidification Program (OAP) is dedicated to improving our understanding of
how (and how fast) the ocean chemistry is changing. The interannual variations of the surface
pCO: in different regions of the GOM (e.g., river-dominated northern GOM, WFS, and open
GOM waters), after accounting for the anthropogenic factor, can help to understand the response
of the GOM waters to anthropogenic forcing. Further, similar to the NOAA Pacific Marine
Environmental Laboratory (PMEL) moored pCO systems (Chapter 6), virtual buoy systems
(VBS) presenting surface pCO. time series at pre-selected locations of the GOM may be

developed (Hu et al., 2014) in coordination with the NOAA PMEL carbon program.

In addition to the major data products (surface pCO.) developed here, SSS estimated from
ocean color satellite measurements is also an important data product for many applications, from
water quality monitoring to ecosystem research. Currently, SSS data products have been
generated in retrospective mode, which can be shared with many research and environmental
groups. Once SSS data products are generated and updated in near real-time, these products may
be delivered to various user groups through the common web portal established at the University

of South Florida Optical Oceanography Lab (https://optics.marine.usf.edu).

4. Conclusions

Ocean color satellites provide synoptic and frequent measurements of the surface ocean to
study the changing ocean chemistry. Integrating satellite data with traditional ship- and buoy-based
measurements can provide further insights into understanding of variations of surface pCO- and

CO2 flux. Compared with previous efforts in mapping surface pCO- from satellite measurements,
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the most significant outcome of this research is its use of machine learning to establish models to
estimate SSS and surface pCO: resulting in greatly reduced uncertainties even for multi-process
dominated complex regions. The accurate surface pCO. data products enable a better
understanding of controlling mechanisms of their spatial, seasonal, and inter-annual variations.
The developed datasets of SSS and surface pCO> are expected to facilitate more studies of carbon
cycling between atmosphere and ocean, for example to better quantify the role of continental
margins as potential CO> sources or sinks, and to better quantify the ocean’s role in absorbing

atmosphere COsx.
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ABSTRACT

Kayonds.! Surfoce pCO, data from the West Florida Shell (WFS) bave been collected during 28 cruise surveys between
Sutfuce pLO; 2003 and 2012, The data were sealed up wsing remote sensing measurements of surface water properties in
Satcllite remote sensing, order to pmﬂdr a mare nuﬂ\ q‘nnpdc map of pCO, spatial distrshutions and describe their tempocal
MODES vaTintl d Ive tests of varous model forms through parsimony and Principal
g‘,“'“"‘” Companent Aulyr-u. which led 10 the develapment of u muli-variable mplmnl sarface pOO; model based an
& vongarrent MODES (Mod i of surface chlorupbyll u
WIS voncentrations (CHL, mg m™), dlﬂucﬂghtmnunut(%nm(&d Lﬁ: m™'), and sea sarface temperature
(88T, “C). Valldation using an iadependent datasct sberwesd a pOO; Root Mean Square Exror (RMSE) of <
12 st and 0 0.88 coeffickent of d (R7) for d and model-predicted g from 30
10 550 pati. The model was more sensitive to SST than to CHL and Kd_Lex, witha 1 “C charge l-ss'rludlm
10 a <16 patm change in the predicted pCO.. Application of the moded to the entire WFS MODIS thme socles
between 2002 and 2014 showed clear senscmality, with nnimu (=450 putm) In summes and minima
(~350 patm) In winter, The ality was pesitivel lated to SST (high I sammer and low In winter)
und megatiely corredated 1o CHL and Kd_Lee (h» |l winger and low in summer), Tater-snnasd veristions of
PR, were consistont with inter-annual varlations of SST, CHL, and Kd_Law. These results suggest that surface
water pO0; of the WES ean be d, wizh known inties, from remiote sensing, However, whide the
general approsch of empirical regression maxy work for widers from other areas of the Golf of Mexico, model
coefficients teed 1o be empirically determined in a similar fashion,
1. Introduction 2008; Goiifay ot al., 20025 Vandesmark of al, 201 13 Zisai et ol 2005),

However, direct field observations are often limited in spatial and

Atmaspheric 004 has increased by 40% since the industrialization

temparal coverage. While numerical models have also been used to

em (Sabine of al. 2000, Solomon et ul., 2007). Corvespondingly,
N

ﬂll’fw pCO; (e,g. Nue et ul, 2014; Arruda et al., 2015),

oceanic uptake of 00, has resulted in ooean acidification and d
surface water pH {by ~0.1 units) (Sun et ul, 2012; Pachanri and Mever,
2004), leading to ecological degradation and a decrease of marine
biodiversity (Widdicombe amml Spicer, 2008; O et al. 2005; Feely
ot nl, 2012). Due to large spatial and temporal variations in surface
water 00, partial pressure (pO0,), the magnitude and even the sign of

air/sea 0O, fluxes can be highly variable (Taliushi of ul., 2002, 2000,
2014; Sarmm, 20003; Boarges et ol 2005; Hofmann et al., 2011; Sarma
el al, 2012 Chen ot al, 2013, Wanninkbol ot al, J013). Accurate
knowledge of surface pOO, distributions i therefore essential to

quantify the ccean's role in carbon cycling,
A large number of studbes have used field measurements o estimate
alr-sen €O, fluxes for both the open ocean and coastal sites (eg.,

Tokabuashl et ul, 20002, 2004, 20014; Teeng ot al, 20115 Hung o al,
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mudel 1t d by | initial conditions and
cun also be l'u#llv modd—specxﬁc. In contrast, satellite remote sensing
ean provide frequent synoptic assessments of surface ocean properties,
and in view of recent advances in surface pCO; algorithm development
(eg, Ono vt nl, 2009; Sarma et al, 2006; Jamet et a2l 2007;
Telerewskd of ul. N¥9; Hules 2t al, 2012; Nnksoka et ul, 20034
Signocini et al., 201! ‘, Hai et al, 2015), there is potential for the use of
satellite 2 to aug direct field assessments of air/sea
CO, fuxes Nemnhelms. except for two stodies that focused on
nearshore waters off the Mississippi River delta (Lolvvns and Ca,
2006 Lohrens of ol 2010), such remote sensing approaches have
rarely been applied to major ocsan basing such as the Gulf of Mexico
(GOM), a semi-enclosed sea of environmental and economic impor-
tance,
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Nomenclature MODIS  Moderate Resolution Imaging Spectroradiometer
MR Mean Ratio
CDIAC  Carbon Dioxide Information Analysis Center PCA Principle Component Analysis
CHL, Chlorophyll-a Concentration PCR Principle Component Regression
GOM Gulf of Mexico RMSE  Root Mean Sguare Error
Kd_Lee Diffuse light attenuation coefficient at 490 nm §8S Sen Surface Salinity
e Loop Current SST Sea Surface Temperature
MB Mean Bias USGS  U.S. Geolagical Survey
MILR Multi-vaniate Linear Regression WFS West Florida Shelf
MNR Multi-variate Nonlinear Regression

With a surface area of 1.6 million km®, the GOM encompasses the
West Florida Shelf (WFS), Louisiana Shelf, Texas Sheif, Mexican Shelf,
and the opeo Gulf (Kobhiny 1 ul, 2000, Coble ot ul, 2010), As one of
the most productive areas for fisheries in the world, it is essential
habitat for numerous fish and wildlife species, and i likely to be
strongly impacted by ocean acidification {C a1, <1 ol 2011 Wanninkhaf
el 2005), Thus, it is important to quantify the role of the GOM in
modulating COy flux (Takahashi ef ul., 2009), Based on fickl measure-
ments, ikcabasdio ol ol G009 estimated the GOM as a CO; source with
a net fiux of aboat 0.21 mol C/m?/year. However, with additional field
ohservations, Robbins ¢f al, (2014) reported that the GOM is a CO,
sink with a net flux near ~0.19 mol C/m*/year, Using a 3-dimensional
numerical model, Xoe of ol (2019) estimated the GOM as a sink with a
flux of ~0,84 mol C/m*/year. Clearly, such discrepancies necessitate
additional studies to better quantify 00, flux, and synoptic mapping of
surface pCOy should play an important role. In particular, with
continuous surface pCO, collections in the GOM in recent years (see
below for data sourves), the application of satellite remote sensing can
stroagly contribute to a better understanding of surface pOO, distribu-
tions and COy flux.

Within the GOM, of particular importance s the WFS between 24—
31N and B0-85 "W (Fio 1) The WFS is 2 brood carbooate-based
shelf with a width of 220-275 km and a gentle slope, influenced by the
Loap Current (LC) system as well as upwelling, river discharge, blooms
of both harmful and non-harmful algee, summer and winter storms,
and groundwater nflux (FolllE ol al, 2000, Wesberg and He, 2000; 1o
et il 2008; Hu ot al, 20063 Walsh e al, 2006; Beaway and Cohly

Surfuce O, ypanmy

Fig. 1. (a) Spatial o the tield

1 pC0; along the sbip tramsocts (7401

2014). Although the GOM is typically characterized as being ollgo-
trophic, the WFS is one of the most productive continental shelves in
the United States, supporting numerous fisheries and diverse organ-
isms (Saul of al. 2013 Chaguris ot 0l 2015). As one of the broadest
continental shelves of United States (i and Welshorg, 2002), the WFS
may play a big role in modulating CO. flux in the GOM, and knowledge
of synoptic surface pQCO, distributions as well as their tempocal
changes can help to quantify air-sea CO. fluxes, biochemical and ocean
acidification processes. However, despite significant efforts to collect
surface pOO, data through numerous ship surveys, and one study (e
“al, 20014) to model pCO; variability on the Lovisiana Shelf and the
GOM as a whole, litthe information is available for the WFS,

The objectives of this study are thus two-fold: (a) development of a
remote sensing moded to scale up ship-based surface pCO, observa-
tions in order to take advantage of the more synoptic and frequent

ing observations for the WFS, and (b) application of the
maodel to kong-term remote sensing data to examine spatial-temporal
distributions of surface pOO, on the WFS. The present work is directed
toward beidging knowledge gaps by providing, for the first thne,
monthly pCO; distribution maps &t medium resolution (1-km) and
their temporal variations on the WFS.

2, Data and methods
2.1. A brief review of pOOs remate sensing

While the details of different methods to estimate surface pOO,

Swrface pd O (it
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23 (b) The same field data where nesr-concserent =6 B) high quality MODES data exist.
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from remote measurements can bo found in the literature (as listed in
Fubile 1), for completeness the methods are briefly described here,

In terms of model inputs, most published works correlated surface
pCOy o physical and biokogical parameters such as sea surface
temperature (SST), sea surface salinity (SSS), mixed layer depth
(MLD, m), and chlorophyll o concentration (CHL, mg m™) (e.g..
Stephens @ ol 1995; Rungumn ef al,, NK5; Wanninkhof et al, 2007;
Watanabe, 2007; Berrvman et ul,, 2008; Zhu et al., 2009; Friedrch and
Oschlies, 2000%; Hales et al, 2012; Tuo et al,, 20012; Signorim et al
20030 Qlns el al, 2014 Bai el al,, 2015; Panthy el al,

¥ Mlaus

2015, Marree vt al, 2
2 et sl 2016), These parameters all have the potential to
affect surface pOO,;, because: 1) SST and SSS can influence the
solubility of CO; and the dissociation constants of the carbonate
system (Webss, 1974; Lee et al, 1998; Millero ot al. 26); 2) CHL
can be 3 good tracer of the influence of blological processes on surface
pC0y, as CHL Increases (eg., In algal blooms) can cawse significant
decreases in surface pOOz (Sarma ef al. 2006; Jamet eof ul, 2007;
Froedeichapd Cehilios, 2000); and 3), MLD can be a good Indicator of
wind stress and convective mixing, and as a result, carbonate propee-
ties of subsurface waters brought to surface by strong mixing are
usually diffevent from those of the surface {fomat of ol 2007 Chionca
et sl 20000 Signorinl et al. 2013) In some studies, wind speed
(Shadwick ot al, 2010) and atmospheric pCOy (Lefovee anid Tuylor
2002) were used to model the effect of air-sea 0O, flux on surface
pCO, Parand et ol 12015) and Marrec of al (2014) estimated surface
pLOy seasonal variations as n function of Julian day, and net primary
production (Perard of ol 201 4) was used to describe biological effects.
Several other studies correlated surface pOO,; with latitude and long-
itude (Olscn o al., 2004; Jo et al, 2002 Marree ot al,, 2014), The work
of Sulishiury et b (2008) related surface pCO; to optical measurements
(beam attenuation at 660 nm, ¢-660, m "', pravided an indication of the
turbidity of the water column), and showed that high pCO. was
associnted with low c-660, 1t s reasanable and generally necessary to
correlate surface pCOy to the parameters mentioned above (passibly
excluding geo-locations) because it is difficult to directly describe pCO,
in more mechanistic terms (physical, biological and chemical relation-
ships).

In terms of methods and model uncertainties, both empirical
regression and neural network approaches have been used o relste
surface pCO; to SST, 888, CHL and MLD in the open ocean (Do ol ol

H04; Sarma et al., 2006; Jumet of al, X07; Telszewski et ul,, 2009;
Nakaoka et al, 20013; Marrec of al,, 2015; I'kx“l} et ok, 2015 Mousss
ol ul. 2016). Such parameterizations have provided pCO; with Root

Mean Square Errors (RMSE) Jess than 17 patm. In coastal marging, in
addition to the emplrical regression and neural network approaches, a
mechanistic semi-analytical method {3 v al, 2015) was also exam-
Ined by modeling the ocean processes that control surface pC;, Unlike
emplrical models, mechanistic methods explicitly explain the physical
and blogeochemical processes that control surface pOO; In the model.
Although the mechanistic method wss more meaningful than the
empirical regression and neural network approaches, it has generally
been effective only in reglons where river discharge was the dominant
influencing factor on pCO.y (L of ol 2015), The pCO: RMSE
uncertainties of these models for cogstal oceans can reach 88.6 patm
(Hales ot al, 2012), and the coefficient of determination {R*) can be as
low as 0,165 (Lobreny et ul, 2010), Therefore, while remote estimation
of surface pOO, for the open ocean is relatively mature due to less
variable environmental conditions (mainly controlled by mescscale
ocean areelation), due to the complex dvnamics of coastal Tegions
(e.g., including river discharge, ocean tides, coastal upwelling, ground-
water discharge and biological factors) (Richey of ol 2002 Bauer ot ol
2000, Cyromak of ol 2014), remate estimation of surface pCO; & still
challenging.

The monthly mean satellite products or dimatology used as inputs
in most published works can introduce significant uncertainties in
noalinear pOO, madels. Likewise, the sensitivity of established models
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to individual input variables has rarcly been studied. As satellite-
derived SST and CHL have inherent uncertainties {0.5-1.0 “C for SST
(Hla et al, 2009) and 12-24% for CHL in waters of > 5 m bottom depth
(Cannizzam et af,, 201 l)). error mhuﬂ m model-derived pOO,
needs to be und lly for I waters. The develop-
mem:inthepmcmmdymhuedmdnilym:lﬁudah.mdn
sensitivity analysis was conducted to und, d the principal £

that control pCO, and how errory in input parnmeters influence the
final pCO; estimates.

2.2, Field data

The twenty five cruises used to obtain the underway surface water
pOO; datar used in this study are described in 70000 2 These data,
obtained between Sep. 2003 and Sep. 2012, are found at the Carbon
Dioxide Information Analysis Center (CDIAC) (hitp://edisc.orlgov/)
and the U.S. Geological Survey (USGS). Seawater samples foe measure-
ments of pOOy, S§8 and SST were collected at 4 depth of 5 m using a
shipboard flow-through seawater system (31,137 observations of each
parameter), Full cruise tracks with color-coded surface pCO; values are
shown In Fip o, Surface pCO; data were measured with either a non-
dispersive, infrared analyzer LISCOR™ (Fevly ot sl 1995 Fereun vt al,
2009} or with 8 Multiparameter Inorganic Carbon Analyzer (MICA;
Wang ot ol 2007) The Li-COR™ data had an accuracy of 2 patm (or
better) with a measurement interval near 2 min, and the MICA data
had an acvuracy of 2.5 patm {or better) and a measurement interval
around 2min (Wang o ol 2007). The details of data collection,
processing, and quality contral can be found in Feclv or ol [1998),
Ploreot ot al, (2009) and Wang o1 ol (2007), Corresponding SSS and
SST data were obtained using a CTD (SBE-21 or SBE-38, Seabird Inc.,
USA, YSI 6600) integrated in the underway pOO, system.

All eruise data obtained from CDIAC/SOCAT has undergone quality
control analysis. These data were converted into uniform format with
an Interactive Data Language (TDL) program, and were visualized and
quality Ued {i.e., by viewing data quality flags and metadata files)
to discard apparent ervors (e.g, individual spikes due to instrument
malfunction or other factors). Surface pCO, that fluctuated greatly for
consecutive measurements while other variables (SST, S8S) remained
stable (e.g., part of the data collected over GUI00S_Leg?2 and WS1202)
were assumed to be prope to measurement errars and were therefore
discarded. Less than 0.1% of the available observations were di led
via this quality control pratecol. A tedal of 31,137 pCO, observations
were sedected for model development and validation {see Section 24).

2.8, MODIS satellite data

Standard NASA Level-2 data products (version R2014.0) between
July 2002 and December 2014 were downloaded from NASA Goddard
Space Flight Center (http://oovanenlon gt nsi oy /). ‘These Level-2
data products obtained by the Moderate Resolution Imaging
Spectroradiometer (MODIS) on the Aqua satellite included SST and
ocean color data such as CHL and spectral remote seasing reflectance
(Rrs, s¢°') in 7 spectral bands between 412 and 678 nm. The spectral
Rrs data were used to calculate the diffuse attenuation coefficient at
490 nm (Kd_Lee, m™') and the absorption coefficient of colored
dissolved organic matter at 440 nm {aga0, m") using the semi-
analytical algorithm developed by [ ot ol (2005, This algorithm
was selected because it is more accarate than empirical Kd algorithms
for the large Kd range (0.03-1,26 m ') that is typical of turhid constal
waters in the eastern GOM. Kd_Lee has an estimated uncertainty of
about 13% (Zhoo et ol 2007). Data quality flags - another Level-2
MODIS data product - were used to screen Jow-quality data, Statistics
between 2003 and 2014 showed that after di ting cloud cover, sun
glint, and other factors that affect data quality, for any given location in
the GOM there was, an average, a valid CHL (or Kd_ Lee) chservation
every 5-10 days and a valid SST observation every 3-5 days (Feop ond
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Table 2
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Underway pO0; measuroments wasd in this stody. All the cruise trucks Bed Rerv e shown in (s {8, The crises markod in italics were selectod for model dovelopaen togrther with
comourrent ( & 6 h) satolige mesvsrrmments, ax shown m (0 The The crutess marked in bold had 20 concurront satelite messaremmts, thes wero not used for this study,

Cruise [D Ship nume” Date rangs # of alwervations

Guneor NOAA ship Gorvdos Guovter SO/ (M- NN 0,07 Pt

GUOSO2 Leg2 NOAA whip Gardon Guntor 2008/05/ 13-2008,/05/14 344

DEESIHOL M/V Here Today 2008/8/11-2008/8/15 1594

GUOSDS_ g2 2 NOAA ahip Gorvfwe Ganter 20080 1 05 -2008/ 11792 628

GUBSOS Loy NOAA abip Gorviow Gunter 2008/ 1 /59200811 /19 1733

(LR MY Here Yooy SO/ 2/ 242000/ 3728 o7

GUONOTE_ g2 NOAA slsp Gartow Guner 2000/05,/01 - 20003113 mr

GUOSO2_ Lags NOAA ship Gordan Gunter 2000/08/13-2009/05/16 246

(WRSH0 MAV Hre Today A000/8/17-2009/8/21 1504

GUOSO4_ Leg! NOAA ship Gordan Guntor 2000/09/06-2009/09/08 H83

GUONM_ L2 NOAA abip Gonlie Ganter 209,09/ 1 7-MX03/09,28 2046

GUOWIS_Log2 NOAA abip Gorvfowe Ganter 200072 8072009/ 1 /08 E

GuUio01L2 NOAA ship Gordon Gunter 2010/04/30-2010/03/01 280

GUINGGS_Legl _DWH NOAA shép Gordow Ganter 201020/ 16-2000/10/25 40

GUITNS_LegZ NOAA adip Gordow Ganfer 2010/00/18-2010/09,28 3651

REOY0OS NOAA ship Ronald Brown 2000/8/20 11

REOYOST NOAA ship Ronald Brown 2009/09/15-2009/09/16 150

RBO3ZOS NOAA ship Ronald Brown 2003/09/03 - 200:3/09 /04 152

REO306 NOAA ship Ronald Brawn 2003/09/09-2003,/09/12 486

REOG06A NOAA ship Ronald Brown 2006/7/30 aT

REOTOS NOAA ship Roanald Berown 200707/ 15-2007/07/16 196

wsines RV Wealtert Senithy SOL1/A/21-2001/10/24 1290

WEi202 R/V Walton Smirh 20)2/02/28-2012/03,02 13

WSi209 R/V Waltos Seith 2012/6/29 344

ws214 R/V Wealewt Sith 201 2/09/08-2012/09/52 2054

Tuted from Wl crabses 31,137

Toted esed i medd development and validation 26,734

* The ortginal data and metadata for the crulses of NOAA ship Goedon Gunter; NOAA ship Rooadd H firosn and RyV Walktoa Smith can be foand at by v ol o povioal
sk e il Thess daga were aogeired with fendiog from the NOAA Climate Progrwm Office. The ongined data and metadata for the USGS crnmess of M/Y Here Today com be found

ot Tty ) S puto ases g/t

Hu, 20060

2.4, Algorithm development and validetion

Although the field included 1 key properties
(e.g., SST. SSS, and CHL) that can be used to model surface pCO;,
MODIS-derived data products for SST, CHL, a4, and Kd_Lee were
preferred for use in multi-variste regression against field-measured
pCOy. One advantage of this choice is that uncertainties in the MODIS-
derived data peoducts will be implicitly included in the regression
coefficients. When the same data products are wed with these
coeflicients for pCO; predictions, such uncertainties will be canceded
o a large extent.

To obtaln concurrent fiedd data and MODIS data, a time window of
2 6 h was used. In order 10 assure satellite data quallty an bmage pixel
was discarded if it was associated with any one of the following quality
control flags (Burnes wndd Hi, 2015): atmospheric correction failure,
land, sun glint, high radiance, large sensor viewing angle ( > &), stray
light, cloud/ice, high solar zenith angle, Jow water-leaving radiance
{low nLw_555), questionable navigation, CHL > 64 or <0.01 mg/m ",
suspicious atmospheric correction, dark pixel (scan line ervor) and
navigation faiture, Although SST is more tolerant than ocean color data
to non-optimal observing conditions as defined in the quality flags
(Feog amd Hu, 2016), for consistency these eriteria were applied to SST
as well. Because the pixel size of the MODIS data used in this work is
aboat 1 km, the pOO, field within the pixel was averaged to match the
satellite data.

After the strict quality control and field data binning, for the period
between Apr. 2008 and Sep. 2012 1516 conjugate observations of fiedd-
meuun'd pOO, and MODIS data products were available for algorithm

lopment and validation (i 1b). In this dataset, ficld-measured
pCO- ranged between 3057 and 552.4 pntm, field-measured  §SS
ranged between 31.75 and 36.56, satellite SST ranged between 15.1
and 31.4 °C, satellite CHL ranged between 0,076 and 3.624 mg/m™,

/. These deta weee acquised with fundog from USGS Cosetal smd Marine Geology Frogram,

satellite 2,44 Tanged between 0,009 and 0.185 m~', and satellite
Kd_Lee ranged between 0,030 and 0,590 m ', Most of the variables
in this dataset showed normal distributions with equal variance except
for a few outliers, This dataset was divided randomly into two groups,
with one group used for model development and coefficient tuning, and
the other for model validation.

To determine the appropriate fwms to n‘hte the dvpcndwl
variable (surface pO0,) and the indeg i two
were conducted. Following the principle of parsimony, a stepwise
multiple linear regression (MLR) was first conducted to examine which
independent variables (SST, 888, CHL, Kd_Lee, a4, Julday) should
be used to predict surface pCO;. Although Julday was not n real hio-

chemical variable (more of a “tuning” p ), it was selected and
normalized sinusoidally to emphasize the | cycle of surf
pCO; (Friedrich amt Oschlies, 2009; Lefevee of al, 2005; Signovin

etal, 2000). Because CHL, Kd_Lee and a4 tend 1o be Jog-normal in
their large-scale distributions (Compbell 1995), these three variables
were sealed logarithmically In the regression model. The results are
presented in Tuble O, All independent variables except CHL and
Kd_Lee could be selected with 95% confidence {(p<0.05) in the final
stepwise MILR model, with RMSE of 14.83 yatm and R* of 0.75.
However, the scatterplot between predicted pCO; and field-messured
PCO; (not shown here, but with statistics 1ssted in Tolle 2) Indicated
that the predicted pCO; tended 1o plateau ot high pCO.: for pCO; >
420 patm, the mean biss (MB) and mean ratio (MR) between model-
predicted and field-measured pCO, from the stepwise MLR were
-39.336 patm and 0916, respectively, suggesting that pCO; was
significantly underestimated for pCOy > 420 patm, thus the perfor-
manee of the MLR approach was not satisfactory and further improve-
ment was required,

Exclusion of CHL and Kd_Lee in the MLR model was consistent
with the parsimony step-wise test, even though they were used in other
studdies to model surface pCO; (see Section 1), To further examine the
reason and to investigate whether the independent variables are
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Table 3
Statwsion of the strpmi Tinenr rvgeression (ML), Wigh 95% comfidonce (pe0l 5], ol variaires exoept CHL andd Kd_ Lee werw sedectnd in the final MLR mode] (p values with
CH L or Kd_Lee added in llwmtd!hmmuhdmﬂahul Clearly, the sepwise MR sedenatimated surface pOO, for pCOO; > 420 gatm, Therefore, this model was not applied in this
wtudy.
Modd Variable ndded  Decision to the mew-  p ovaloe  RMSE (patm)  MB (patm) MR R*
nputs” sdded variahle
PCOS > PCO55420 patm pCO5 > PCO25420 patm
420 pato 420 patim
Enpetx] S8T In 0.000 1606 -45251 1120 09ns 1004 g
Ergeats2 Togl (i) In 0noo 1536 -37.025 0916 a2l 1004 0736
Erprat 388 In Q000 Lazn ~-30.262 0972 w916 1004 0.740
Inpeated coal Jubdiy ) In Qns2 145 ~39.536 0973 asi6 1004 0.748
ErrpatsS log,o{CHL) Ot 0634 1478 ~39.443 0978 0916 1004 0.748
Topuatsds Ty o3l K} Ot 0135 1475 -38822 a9l a7 1Lo0s 1749

* Inpats] = SSTY; inpras2«[SST, kgudtganlk I0putsde| SST, log o), 5SS Inpmsde] SST, logudngal, SSS, cosidodduy)); InpeesSe{ SST, logudigenl, SSS, costiolday).

bR CHLY: Lnputste{ SST. bogioagaal. SS8, costIuliday), logud%d_Lee))

orthogonal, correlations among the Independent variables (SST, SSS,
CHL, Kd_Lee, 8,440, Julday) and dependent variable (surface pCO2)
were examined and listed in 10bic 4, With 95% confidence (p=0.05),
most of the independent variables were Inter-correlated, suggesting
that a principal component analysis (PCA) may be needed to remove
the redundant information from these variables (see helow).
Correlation analysis also showed high correlation between 8440 and
CHL (or Kd_Lee), and higher correlation between surface pCO; and
Agasn than between surface pCOy and CHL (or Kd_Lee), Therefore,
ONCE 8490 was explicitly included in the MLR model, CHL and Kd_Lee
were implicitly inciuded,

Considering the non-satisfactory wlformuncc of the MLR and the
high correlations g the indep inbles, PCA was used to
determine the donumm. orthogomal modes that eonld be used o
construct the model. As shown in Table 5, the derived six principal
components (PCs) are orthogonal, and the first three PCs can explain
> 98% of the variance in the independent variables. Thus, a principal
component regression (PCR) model was developed to predict surface
OO, using the six PCs. The RMSE and R? of the PCR were 14,69 patm
and 0.75, respectively. Similar to the MLR results, the predicted pCO,
tended to plateau at kigh pOO, values: for pOO, > 420 patm, MB and
MR of the PCR were ~38.695 atm and 0.917, respectively, indicating
mode! deficiency of the PCR and a necessity for further effort to
improve the model.

The non-satisfactory performance of the MLR and PCR methods
indicated that linear regressions through either the independent
varlables or the orthogonal PCs could not explain the entire vardance
of the dependent variable, and that some voo-linear forms may be
required. Therefore, the following model development and tuning were
based on multi-variate nonlinear regressbon (MNR) between fiedd-
measured pCO, and the independent variables. After extensive trial
and error, it was found that the use of MODIS-derived SST, CHL, and
Kd_Lee provided optimal results (1able ©). Other parameters, such as
MODIS-derived a,¢40 (oftens inversely relsted 1o 888 in coastal waters
due to conservative mixing) and field-measured 5SS, did not improve
the efficiency of the modet because of the Himited model predicative

Table §
ConfFicionix b wach ¢ I (PC) wel the Endupessd Eahibes, a5
wel as [l g e af 1 iy cach BC.
Varisbles PCI PC2 PC3 PO PCE PO6
SST 0906 0066 Q024 DAGI DAI4 0004
Tog el CHIY 0087 0063 0002 02 0089 0702
logy o(Kd_Lee) 0023 -0UM0  ADOS D497 -0hd2 03583
oy el #gsan) 44 -00R1 0012 0495 OT6F 0400
858 Q06S 0972 -0298 0004 0429 0015
con(Jusday) -0013 1% 0980 0038 0016 Q011
Varsnce explained 9059 6469 215 053 002 a0l
=)

capability at high pCO; (Tuble 6). The functional relationship between
field-measured pCO; and the satellite data was modeled by & multi-
vartate nonlinear (quadratic polynomial) vegression, implemented in
the Interactive Data Language (IDL). The regression equation was
determined as:

D = ko + A+ b+ b 4 ke + s + dasns + bon
+ hptaxa + hotsts + Lax! + kxd + fad + 8o

1)
where xy=S8T, xg=log ,dxd_lﬂ). I_g:&)y ,O(CHIJ.
xe=o08{Zn(ulday-y)/365).

In the equation above, y was optimized by [teeation (ranging from 0
to 365) until the minimum RMSE was obtained.

During the model tuning phase, several different forms of Eq, (1)
were examined to determine the best form of the regression function.
These included use of field-measured 5SS or MODIS-derived ag4a0
Instead of satellite Kd_Lee, and use of original CHL or Kd_Lee instead
of logarithmic CHL or Kd_Lee The results from these alteenative
functional forms were slightly worse than those from Eqg, (1) (12000 6)
except for the combinations of S88 and CHL, &,040 and CHL, and a2
and SSS (last three rows in 1 hle ©). However, models with combina-
1i005 of g B0d CHIL, and 844 and SSS tended to plateau for high
pCO;  walues (>420 patm), with MB of -18303 pstm  and
~16.305 patm, and MR of 0.962 and 0.966, respectively, indicating

Table 4
Corrddtion confficients among mdepends hides and d | inblew wed i the sedocted modid i thin work, with 95% mnfidence. Coofficients with < %5% confidvnce are
marked in italios, and the cormepondmyg p valoes are Bated @ m the garentheses,
Variables sST 10%30 (CHL) Lok (KA_Lee) 10810 (Agaan) sS85 cos (Julday) OO,
£l 1 ~0.532 -4 0481 0282 ~008) X9
log ) olCHL) -0.5852 1 0950 ez -0.342 0073 (0052) -804
logyo(Kd_Lee) -0.47 4950 1 ansy -0.814 ~0.009 (0M12) -0.200
o8y ol gaso) 0,681 0827 0858 1 -0.475 iy DA%
] 0212 0542 -Qi14 ~NATS 1 01 (NP7 (RS2}
cos{Julday ) 0081 A7 (W2} =000 (0M12) 0077 0Iss I ~015%4
OO, 0539 0324 0266 (438 0007 (0552} ~0.15¢ 1
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Modsrd perfurmance for differsnt s

uf imgeat 3 wedng rogr
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Formula in Bq. |, Note that sithough the last two rows show the same It valnes ivs the fovt row with

v lower RMSE. bath send %o plateas for pOO, > 420 paten (e negatively bised MB smd MR valuesd, The third row froms bottom shoves sightly lower MB for 200, > 420 gatm than
the fiext ruw, But this row whias shows higher RMSE, Jovor B2, and platwaned perfurmsncy for p00, > 480 patin (MBe 23804 patm, MR=0.957). Beowese curatly S55 is difficult to
errve Bm satelizes for cetal watiey, the first row was selected s the final pCO; modol in this study.

Mode ®* RMSE ME (jeaten) MR Relutivaship between Rusge of modeled
aputs” (atan /%) 1005 und in witu €05 (atm)
PO > PCO25420 patm pO0 > POOLZA20 ot pCO4
A20 pato 420 patm
Engratsl 089 109820 -85 0561 D81 L2 Vel 599K 455 1 312.5-555.0
Engratsl’ 062 199850 -37922 1917 0916 1007 Vel 05K+ 14757 312.3-516.2
Inpatxd G AL 12260 0528 0973 L2 VoBTIK 48 1 $12.0-566.1
Etrats) o084 191034 11590 078 0974 Looa V=l 856X454.1 316.5-529.0
Lrgratsed 08¢ 13234 -9.087 0943 0979 Lood V=E87X4400 310.5-562.1
Inmbé 086 11S4E1 -6251 0765 0,967 1002 Vo0 911X 587 31564982
Injutss 089 997726 ~18308 0368 0962 1001 V=LES0X +44.7 311.9-477.8
EnputsT 0.89 9.852.6 ~16305 0303 1966 1001 Vel ERIX <404 311.2-488.2

* Inpetsi={ SST. log,dXd_Lee), dog; ol CHL), cos(Jubday) topatsde{ SSY, Kd_Lee, kg, (CHL), costlulday}Linputedal SST, dog)Kd_Lee), CHL. cos{Jubday)]; ingutsds( SST.
Kd_Lee, CHL, cosJulday)); Iaputsiie{ SST, SS8, kg ACHL), cosidadday)]; Inpetsbel SST, |l agamh, bogudCHLY, cosldubday)]; Inpuns™] SST, logad,aul, 5SS, cos{dukday)),

¥ Thiis model wis a steprwise MNH, as shows s Eqg, 1)

underestimation at high pCO, values. Although the model with
combination of 888 and CHL showed a slightly lowee MB for pCO, >
420 patm as compared to the model in Eq. (1), this model had a stightly
higher RMSE and lower R?, and its pOO, prediction was significantly
biased for pCO;> 480 patm  (MB=-23.804 patm, MR=0.957).
Furthermore, it is currently difficult 1o estimate 858 from satellite
measurements over coastal waters. Therefore, Eq. || ) was preferred as
the patential pCO. model for this study, For reference and to follow the
principle of model parsimony, again a stepwise MNR against all terms
in Eq. ()1 was conducted. The model formula did become concise as
chown in Eq. () (compared to the formula in Eq, (1)), Howeves, the
statistics in [uble . showed that the stepwise MNR bad a RMSE of
19.98 patm (5.0%) and a R? of 0.62, and its ability in estimating PO,
for pCO.>420 patm was also limited (MB=-37.922 jsatm, MR~
0.916). Therefore, this stepwise MNR did not show improvement over
the stepwise MLR ar PCR or MNR above, and was not selected in this
study to mode] surface pCO,.

pCO: = 201055 + 339.2493 ¢ + 05330 x—0. 1 78450003517
4 234068205 86 81514

whyre x, =8SST, xowlog (A Kd_Lev), xg=log jof CHL).
Toble 7 is & summary of the moded pesf with the
MLR, PCR, stepwise MNR, and MNR. Clearly, the MNR model with Eq.
( 'ahuwed ll'u: best performance in terms of RMSE, R®, MB, MR, the
dededd and ’;JCObmdlh:nnsenf
d pCO;. Thus, the final empirical pOO, model

(b4}

1y
deled versus
wits determined as:

PCO: = —124.0765 + TH.201x—753.9525, + T0422, + 352170
~7.084 5,1~ 34. 730, 10756550~ 08 24801, 10,0915, x,

+ 35250 = WT6270] + 2RS 98617 + 105.6610] 3)

where x,=85T, xp=log olKd_Lee), xa=log ;olCHL), xy=cos(2a
(Julday -255)/365).

The MNR moded in Eq. (1) was subsequently applied to the balf of
the dataset that was not used in the moded development. The model-
predicted pCO, was compared with the field-messured pCO., where
R?, RMSE, MR and MB were used to gange model performance. A
histogram of the difference between field-measured pCO; and model-
predicted pOO, was generated to examine the error distributions,

To examine which independent variable is mostly respounsible for
the predictive capacity of the pOO, model, the variance that is
explained by each variable was investigated by comparing the full
madel (Eq, (1), with all the four variables selected) to a reduced model
(i.e., after removal of a certain variable). Using the same regression
format (quadratic polynomial), a total of 4 reduced models were
devedoped with the exclusion of SST, CHL, Kd_Lee, and Julday,
respectively. In each case, variance in the surface pOO, explained by
the selected variables was caleulated and compared with that of the full
model, with the difference regarded as the vari plained by the
exclucled variable,

2.5, Spatial-temporal pOO; distributions devived from MODIS

The model in Eq. () was applied to the daily Level-2 MODIS data
for the period of July 2002-December 2014 to generate dally surface
PCO: maps. The daily maps were used to compose monthly mean pOO,
maps for each year, and these monthly mean maps were then used to
compose monthly pCO: climatodogy, All parameters, including monthly
pCO;, CHL, Kd_Lee, and SST, were averaged over the WFES to examine
Jong-term trends and inter-annunl changes,

Tahle ¥
Comp of model perk The step MNR and $INR are both based oo K. 111, with model coeffickents shows in Eqe, (0000 01 resp ty, Clenrly, the step MLR,
PCR, and stepwise MNR all show large sederestimations for pOO; > 420 paem. Therefore, the MNR model was selacted a5 the Saal pOO; moded o this stady (Fg, (1),
Modd po  K? RMSE ME tpatm ) MR Relationship between Range of modolod
{putm) deled pCO, amd in situ PCO; (patm)
PpO0 > POOLSA20 patis  pCO, > POO,<420 patn  pCO;
420 psten 420 patm
Stepwise 07 1488 3.5 073 0016 LA Yol MEX 057 124165
MLR
PR avs 1400 ~ 35695 0,058 o LRLC Yo, 751N+ 020 2344140
Stepwise 062 1998 -37on L7 0916 1A Yol s06X + 147,57 $12.5-510.2
MNR
MNR 0.89 1098 ~B.516 0.561 0,981 1.002 YrO890X438.1 312.5-058.0
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3. Results
3.1. Model performance

¥y Za shows the MNR moded for pCO, prediction. The RMSE
during moded training was 10,51 patn, with a coefficient of variation
(CV) of 2.8% and R* of 089, ¥l b shows the model validation
obtained with the data that were not used In the model training
Statistical results for the validation data are similar o those for the
model training, with an RMSE of 11.79 putm, CV of 3.1% and R* of
088, The validation showed that model-predicted pCO, was almost
non-hiased, as MR (which was 1.0006) was close to 1 and MB (which
was 0.033 natm) was close to Opatm, A histogram of residuals
(measured pCO; minus predicted pCO.) for the combined datasets
(both model training and validation data) is shown in ¥z ¢ The
histogram shows that 97.6% of the residuals were smaller than the
observed 32.45 patm pCO, standard deviation (+/-sigma).

The results shown in Toble 4 indicated that variables used in our
model (the foll moded) could explain 83.92% of the pCO, variance.
When 88T was excluded in the model, the remaining variables could

seen in both Vg 7 and |, corresponding to the | variation of
CHL, Kd_Lee and SST.

On a temporal scale the seasonal variation of pOO, was positively
corvelated with SST (in phase), and negatively correlated with CHL and
Kd_Lee. In summer, surface pO0, can reach 3 maximum around
450 patm. During this period, primary production s inkibited mainly
by a deficiency of nutrients caused by ocean steatification. Thus 0O,
removal through photosynthesis is reduced in the summer, and the
balunce between respiration and photasynthesis is strongly shifted
toward the former by Increasing SST, In winter, surface pOO, attains a
minkmum of around 350 patm. During this time, with the breakdown
of the thermocline and increase of MLD ( > <50 mg Lo and Welshors,
2007), phytoplankton blooms can occur as nutrients are brought to the
surface by upwelling. Combined with the decrease of SST, which would
by itself strongly decrease pOO. (see Section 1), surface pCO; would be
expected to significantly decrease. However, another factor needs to be
considered because deep water brought 10 the surface by wintertime
vertical mixing is rich in dissolved inorganic carbon as @ result of
decomposition of organics in deep waters and also submarine ground-
water discharge (Hu ot al, 2006, Cyranak ot al. 2014), Thus the

bined effect of enh, d vertical mixing and decreased SST is that

only explain 68.62% of the pCO., variance. When Julday was excluded
in the model, 74,45% pCO, variance could be explained. Similarly,
exclusion of CHL or Kd_Lee would reduce the explainesd varionce to
B2.06% and 79.63%, respectively. Clearly, SST was the most respon-
sible variable in our maodel (exclusion of SST would reduce the
explained variance by 20.3%), followed by Julday. This is consistent
with thase ed in previ dbes (Fricingh und Oschlaes, 2000;
Lelevie of al, 2005; Signorind ¢4 al . 2015). CHL and Kd_Lee wene the
least important variables in explaining the pOD, varance, consistent
with Iater sensitivity analysis (see Section 101). Note that although
Julday is nat a real biochemical variable, its use improved the model
performance more than the use of CHL or Kd_Lee.

3.2, Temporal and spatial variation of surfuce pCO;

“1y, 4 shows mean monthly pOO,, CHL, Kd_Lee and SST over the
entire WFS where pOO, is within the model range. Monthly climato-
logie maps of surface pCO; are presented in Fig. 1, with the moded
range outlined by red dashes, Distinct sezsonal pCO; patterns can be

Table 8

Statiticon of the full moaled smd neSeond modsds for s in Vhw st

pCO; reaches 2 minimum during winter but is not sevesely diminished.
Although the interannual patterns of pCO., SST, CHL and Kd_Lee are
generally similar throughout our study period, certain exceptions can
be noted, In September of 2005, due to an intense red tide hloom that
was triggered on the west-central Florida Shelf by two hurricanes
combined with other influencing parameters (Mo ot o). 2000), CHL
peaked at 227 mg/m-3 (Fio Sc). Concomitantly, surface pQO,
estimates decreased by 38 yatm relative to pCO, estimates in the
previous month, but did not reach a minimum. The highest value of
surface pCO; was attained in 2010 June (15 Ja) and was about
58 patm higher than the previous manth, Considering that there was
almaost no change in CHL and Kd_Lee, and Jullan day was only a small
adjusting factor, this i was likely d by the observed 3.4 °C
increase of SST. Combined with the sensitivity analysis demonstrating
that an increase of 1 7°C in 8ST by iself can Jead to an Incresse of about
15.7 patm in surface pOO;, the appearance of the pCOy maximum in
June wis ressonable, Comporing this Interannual varfability of spa-
tally averaged pCOy on the WES to madeled pOO; results for the whole

el ur€acm OOy, Thee first e svpewrsrts the full sodel (Fy. (1) usend i tiis sy, while othwr rows

refarvesct modubs with (s vivrinbiy excluibed, The bst colims shous the reducnd varisaey {conmweed 10 the full mosded) when & varishle wos eoduled,

Modd inputs Excluded varishle Varisnee explained (%) Vari pluined by the excluded variable (%)
SST, bog(Kd_Lee), oglCIL). Jubdey NaN a2 MaN

TeggfKel_Las), logf CHL), Juldsy 85T 6862 0.3

BST, o CHLY, Jubdry Kd_lew 63 920

BST, bog(Rd_Lee), Julday CHL 8206 686

SST, Jog(Kd_Lew), hog{CHL) Jaliday 7445 1447
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GOM (Xue of ul, 2014), & similar pattern of sessonal variations with
highs in summer and lows in winter was detected. However, the model
sensitivity analysis and uncertainty and accuracy assessment that is
described below (Section 41) indicates that the vesults obtained in the
present work exhibits improved accuracy and Jess uncertainty,

In terms of observations on spatial scales (17 3), although there
were distinet gradieats in CHL and Kd_Lee dimatologh maps (not
explicitly shown here), pOO; climatologie maps showed small gradients
from inshore to offshore during winter and early spring (November to
March) whea SST was low, Other intevesting features of ¥y 4 incloded
two regions with elevated pCO; relative to their surronndings (red solid
cirdles in 15 4), Among other possible influences, becanse there are
large springs in this region (10ecnnn o1 al, 1977} with low temperature
and high pCOy, this could be due 1o upwelling of submarine ground-
witer discharge, as pOO, is usually higher in fresh groundwater than
surroundings (Mocphersan, 2009, Cyroaak of ul, 2014), From early
spring to late fall (April to October), obvious pOOy gradients were
observed, changing from high to low in the offshore direction. High
pCQ; in near shore regions can be related to tidal mixing and river
runoff, carrying ol d DIC to | surface Althoegh DIC
in coastal areas can be diminished by photosynthesis, high nearshore
pCO, values are commonly observed. However, the extremely high
pCOy values { > 550 patm) in the nearshore regions of South Florida
miy not be reliable, as there was little pCO, data in this region and the
pCOy model developed here was only valid for pCO; ranging from 300
to 550 patm, On the other hand, such extremely high pCO; values
could be reslistic as pCO, had a positive response to SST changes and
SST in this region was higher than in offshare waters, In the offshore
region during our observation period, due to the combined effects of
thermocline development and decreases in SST, surface pOO,; was
lower than for inshore waters. Nevertheless, In temporal teems,
offshore surface pOO; values during the summer are higher than
offshore pOO, values In the winter and early speing. In the area around
the Florida Keys, pOO; values were high relative to other regions year
round. This can be atteibuted to the influence of the LC in the Florida
Strait (clearly shown In the SST climatology map) and potentially
submarine groundwater discharge in this very shallow region.

with the modeled multi-year pCO; maps in Xoe of ol
(20140, the vesults shown here exhibit distinctive spatial distribution
patterns across pearshore and offshoce waters.

4. Discussion

4.1, Model sensitivity to environmental forcing and model
uncerfainty

The distribution of surface ocean pOO, i mainly controlled by
ocean thermodynamics, physical processes, biodogical processes. and
air-sea exchange (Takahashi ot al 2002: Inaue ot al, 2000; Raogama
o all 2005 Bal ot al, 2015) Ocean thermodynamic effects are
dependent on SST, mdulereluimhlpbetweenmrfmpoogax\d
SST can be estimated using a simpl tial refati ip: (pCOse

=00y *exp{0.0423%(T,-T,)]) (TuA.:hn-In o ul, 'lllY.. 2X19),
Physical processes such & advection, upwelling and water mixing
affect pOO, mainly by transport and mixing of different water masses
with distinctive chemical and physical properties such as tofal alkali-
nity (TA), dissolved inorganic carbon (DIC), 85T and SSS. Biological
processes, including consumption of 0O, by photosynthesis, prodoe-
tion of CO; by respiration, and utilization of carbonate during
calcification also have important direct effects on the pCO, of scawater
(Revaud ot wl, 2009), Alr/ses CO; exchange can exert especially
strong controls on surface pOOy under strong wind conditions (o1
ot al, 1998; Botos and Mordivat, 2601) Turk ot al., 2013), Nevertheless,
in & fimited case study, only ane or two processes were observed to
dominate the pattern of sea surface pCO (Bt o ut, 2010),

In order to better understand bow surface pCO; responds to input
variables, a sensitivity analysis was conducted. For each analysis, one
input variable was varied while the others remained constant. Surface
pCO; predictions were compared to examine the magnitudes of change
with variations in SST, CHL and Kd_ Lee. Considering the uncertainties
observed during retrieval of satellite prodlucts, we varied CHL and
Kd_Lee by £20% and SST by + 1 °C. These are the upper bounds of
the MODIS data product uncertainties over the WFS, The model
response results are shown in Fise 5 ool £, and additional statistics
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Fig. 4. pOO; moathly dimatclogy dertved from satellne datn using the multl-variate regression moded for the pertod of July
247N 10 31 "N and 90 "W 10 80 W The West Floralo Skl & outlined by the red dashial e

of Mesicy hutwines

were poesstbly cotmed by upwelling

such as RMSE, MR, and MB are listed in

A visual interpeetation of | indicates that the moded is
more sensitive to Input changes in CHL when CHL is > 1.5 mgm™
For CHL greater than 1.5 mg m ™, & 20% increase in CHL ( a and
ta) produced pOO, predictions that were lower than the orlginal pCO;,
while for CHL Jess than 1.5 mg m™ the same 20% increase in CHL
caused a substanttally smaller change n the predicted pCO,. Foe the
entire data range tested in this an ), the RMSE, MR and
MB were 10.34 patm, 1.022, and 8.06 putm, indicating that a 20%
Incresse in CHL resufted in an 8.06 patm pCO; overestimate. For data
with CHL > 1.5 mgm™, the RMSE, MR and MB were 16.44 patm,
0.968, and - 12.44 patm. In contrast, for data with CHL st.5mgm™

vais ()

» December 2014, The mags showed the eastern Galf

e red solid cindus outline som high-spetial gradient featuns that

the RMSE, MR and MB were 10,07 patm, 1024, and 8.79 patm,
respectively. A similar disparity in model sensitivity was observed for
a8 2% decrease ln CHL when CHL >15mgm™ and CHL
<l Smgm™ ( b and ob). For the entire data range, RMSE,
MR, and MB were 9.36 patm, 0.986, and —4.98 patm. For data with
CHL > 1.5 mg m™, pO0, was overestimated, with RMSE, MR, and MB
belng 2400 patm, 1.053 and 20.11 patm. Consistent with the observa-
tions described above, for data with CHL <1.5mgm™ the model
showed much reduced sensitivity to a 200% decrease in CHL, with an
RMSE of 8,40 patm, an MR of 0,984, and an MB of -5.87 patm. Based
on the characteristics shown in | a, @, 'b and b, the pCO,
algorithm is especially sensitive to CHL at high concentrations. To
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some extent, this reflects the complex role of CHL in controlling surface —L.B3 patm. Likewdse, with a 20% decrease in Kd_Lee (195, 5d and
pCOy. 6d), pCO; was predicted to be lower than the original pCO; if Kd_ Lee
As Kd_Lee is not entively independent from CHL, It i3 also clearly values were greater than 0.2 m™' (RMSE=24.04 patm, MR=0.966,
seen that the pOO, algorithm is more sensitive to Kd_Lee as this MB=-13.83 patm) but higher if Kd_Lee valuoes were less than
variable becomes larger (> 0.2 m™"). For Kd_Lee values greater than 02 m™" (RMSE=20.81 patm, MR=1.050, MB=18.41 patm), When all
02m™", a 20% Increase In Kd_Lee (Vg 5e and oc) resulted in data were used In the calculation, RMSE, MR and MB were
substantial increases in predicted pCOy,, while for Kd_Lee values less 20,95 patm, 1.047, and 17.01 patm. The differences in model sensitiv-
than 0.2 m™", a 20% increase in Kd_Lee producad pCO values close to ity for Kd_lee >02m™" and Kd_Lee <0.2m™" are consistent with
the original pOOy prediction, When all data were usad in the analysis  those for CHL changes, as coastal waters typically have higher CHL and
the RMSE, MR and MB values for this experiment were 10.02 patm, Kd_Lee than offshore waters,
0.997, and —0.68 patm. For data with Kd_Lee >0.2 m™', they were The sensitivity of the pCO; model to SST varied over the modeled
2943 patm, 1,066, and 24.51 patm, while for data with Kd _Lee range of SST. For SST greater than 16 °C (Figs. Se and te), & 1°C
s02m ' the RMSE, MR and MB were 813 patm, 099, and increase in SST produced pOO, predictions higher than the original

20
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pCO,, while for SST less than 16 °C, the predicted pCO; was much
cloger to the original prediction. As would be expected from the above
analyses, a 1°C decrease in SST (Fioo 5 and of) for ST greater than
16 °C resulted in predicted pCO; values that were lower than the
original pOO, while for SST less than 16 “C pCO; predictions were
closer to the original pOO,. The RMSE values for these two experi-
ments {1°C increase and 1°C decrease in SST) were 16,03 and
11.98 patm, with MR values of 1.030 and 0,989 and MB values of
11.57 and -4.52 pntm.

In summary, pCO. variations created by a 1 °C change in SST, 20%
variations in CHL and 20% variations in Kd_Lee were all within or
close to the RMSE of the model although, notably, the model sensitivity

4

vanies with the madel input rnge. Only in the case of Kd_ Lee did 20%
varfations produce pCO, variations somewlat higher than the RMSE of
the model, However, considering the range of SST in this region
{(minimum around 15 *C, maximum around 35 °C), a 1 “C temperature
variation corresponds to a 6% variation In SST, whereby [t |s seen that
the model s far more sensitive 1o SST than o CHL and Kd_Lee.
Indeed, although coastal waters may occasionally bave SST <16 °C,
CHL >1.5mgm™, and Kd_Lee >0.2 m™", when the entire WES is
considered as a whole at monthly intervals, these conditions are rarely
met (1 1), suggesting that the model uncertainties are within those
specified in the model evaluation.

Because we chose to use satellite dota products directly as the
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Modl sensitivity to CHI. Kd_lee and SST. For wach case, the varinhle was et 0

artificinlly imcrease o decreass by 20% or | °C whille othus variabies were kept the s,

RIESE, MR (rmean ruth It mceld-rosSictind pO0; and febd-sussend 40} and

ME (mwean biss b pchel-predi 'p(n;llll“" I pO0y) were
Ieulsted by g the Fawd pOO, with the arigimal-predictnd p00;,

muuummnmdmmwhunlnpmwr-lﬁnulmmﬂ.u- >

15 mgm ™, Kd_Loe wiss 502 m™", oc 88T was > 16°C.

Cuses RMSE (uatm) MR ME (putm)
AN increses in CHL 1034 1002 06

AN deerwew in CHL 036 1966 ~4.98

AN incrwss in Kd_Leo 1an2 as? L]

A% decrvme in Kd_Lew 20095 147 1700

1 °C increase = ST 1603 1000 s

1 °C decreasw in SST 1198 0969 ~4.52

model input during model development, systematic errors (eg., bias)
other than random noise in the satellite data products are implicitly
accounted for in the model coefficlents, Thus, consklering the com-
bined effects of uncectaintles (n the satellite data products and the
sensitivity test results, the uncertainties of the pCO; model should be
between 105 and 20.0 patm for typécal data ranges. However, these
uncertainties represent RMSE values for each data point. When the
data are aversged over large scales in either space or time, the
uncertaintios in the mean products shoald be much smaller.

The empirical model developod for the WFS here shows improve-
ment over published works (1170 1) in terms of RMSE and R, but not
necessarily for other regions in the GOM (see below), Furthermore, the
model is applicable oll year round because data collected from different
months were used in tuning the model coefficients, Therefore, with
daily measurements from satellites, the model may be used study the
impacts of extremo events on surface pCO; distibations (e.g,, 2005
algal blooms and storms), although no such events were considered in
the model tuning or validation, In addition, airsea COy flux
(Foon=kKo(pCOs, ~pCOy,;,), where k is the gas transfer velocity of

Surtice pC0 (pavany

Sateilore pU | fwarm)

Swrfoce pO0O, (artru

Continentnf Shulf Research 128 (2016) 10-25

COy, and K, is the solubility coefficient of CO,) can be calculated with
auxiliary wind speed and atmospheric pCO. data, allowing broad-scale
assessments of the extent to which the WFS serves as a CO, source or
sink, Similarly pH {pH=log,o([H" }¢). whem [H}y is the total con-
centration of hydrogen fons) or carb ion

(€04 J¢) and carbonate saturation states ([Ca™ )y (€O Jy/ ﬁFll
cun be derived from mudeled pCO; and regional assessments of
salinity-normalized TA oo the WFS.

However, one shortcoming of the madel, as is the case for any other
empirical models, is that the model is good only for the data range
within which it was tuned. Specifically, all data used in the tuning had
PCO; values between 300 and 550 patm as the lower and upper bounds
of the models applicability. Field data showed that pCO, could
occastonally be > 600 psatm or even > 1000 patm in nearshore waters,
As these data had no concurrent satellite data, they were not used in
the model tuning, Nevertheless, in the derived maps most values are
indead within the range of applicability excepl for some very nearshore
waters (eg, In Florida Bay). Thus, the pOO; model should be
appropriste 1o most of the data over the WFS.

4.2, Model testing in other regions of GOM

With the auxiliary underway pCO; messurements in other regions
of GOM between April 2002 and May 2014 (obtained from ip /)
edlac avnl gov/oceans/Constal/ und  hitp:/ /www.anmlooss.gov/ood
v ), we also tested how the algorithm (Eq. (1)) performed in other
GOM waters, Based on the distributions of cruise data after matching
up with satellite products, the validation was examined mainly in three
regions (see 11, ) around the Mississippi delta, the northwestern
GOM, and LC affected regions (open GOM, northern Caribbean and thc
Florida Strait). For pegion around the Mississippi River delta (115
b und =a), predictions for the offshore region were better |hnn ﬂm
insh For the inshore region, predicted pCO; deviated substantially
from the in situ pCO2 This result was not unexpected since water

S e pO2, 4 gt

£

Stelline p ) (o)

-w -
Fig. 7. Spnhlﬂhu(bdhnlhﬂluuulnwmpndmdyco,-mkm(numwmdmluﬁb- wller matchup with sanellite preducts shomn
In top pemels and the g sotellite p below. This salidation Is divided tmo three parts accordmg to the becation: mhmmcom(-ﬁnedmkemwuh-dhx

Ihcmjnnullimddmw polnbnﬁktkumlmduhupu&uunlbl.umlcnﬂaddnmntmndc f), besesd oo different backgroeds. Valldation for LC afectal
nginn 3 dividbnd into two time rogioses with Jol-Dv: sduwed in gunel © gml o, and Jon-Jan thows in pased v and £ The time spas of ol the & site sussensents sboun bere is from

Apedl 2002 to May 2014
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Fig. 8. Alguothm performances In the region near the Missisdppl delta, northwestern GOM, and the LC affected region s specifed la 71 7. X ands s the ploel sumber, and ¥ axis is
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residence times are much shorter inshore, and dynamic salinity
variations caused by extensive large river discharge create large
varlations in surface pCO;. Compared with the sateltite-derived pCO,
map for Mississippi delta generated by Jolirens and Cal (2000) for
June 2003, the offshore patterns show general consistency but the
results obtained in the present work reveal temporal and spatial
variations in greater detail, For predictions in the northwestern GOM
(¥lge 7o, b and 5b), the modeled pCO; generally followed the in sty
pCO. variations, but with an RMSE of 44,1 gatm. For prediction in the
LC affected region, pCO; was well estimated (RMSE of 13.7 patm)
between July and December (e V¢, d and 5d), while between
January and June (Vg Te, fand “c), the estimation was poor with
an RMSR of 798 yatm. For the January to June period of high
une we  prop thut dominant nfluences oo pCO,
mllnenclng mechunisms may be different from the mechunisms that
are dominant between July and December. Accordingly, pCO,
vmamnsnmnmwelqumsenudbythepunmmuscdmm

model. To some extent, this hypothesis is d i by examining
the monthly distribation of the 1.C (haspe/ www 7320 nrdswe navy mil/
GLBhyrom1-12_mwd/novo/arc_list_glfmexspdenrMN btml).  The

extension of the LC shows different distribution patterns during
these two perinds. Because the controlling mechanisms for surface
PCOy can vary across geographic regions, region-specific algorithms
need Lo be developed, For the Mississippt delta, rver and ocean mixing
are likely to strongly affect surface pCO; distributions, and SSS is a
good tracer for mixing effects. Due to the complexity of this region,
much further research needs to be done, For the LC affected region,
parameters that reflect the characteristics of LC need to be found in
order to better estimate surfsce pCO,. For both the western and
southern GOM, sdditional in situ data are needed for algorithm
development.

5. Conclusion

With extensive field and satellite observations and after testing
several algorithm approaches, an empirical algorithm for predicting the
surface pCO; on the West Flarida Shelf was developed and validated.
The algarithm took Julian day and MODIS-gerived CHL. Kd_Lee, and
SST as inpats, mddtﬁamnwduhonmmmeﬁmmﬂmm@mulﬁ
variate ponlinear rent in situ pCO; measure-

=5 L

ments. The algorithm showed reasonably good performance and was
used to derive spatial distribation maps of surface pCO, distributions
an the WES as well as their seasonality and interannual changes.
Observed distributions and temporal changes can be well explained
hased on u sensitivity analysks for the input parameters. Application of
the algorithm to other GOM waters showed vardable performance,
indicating that different pOO., controlling mechanisms exist in differont
reglons,
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Nomenclature

AOML  Atlantic Oceanographic and M logical Lab v
CIMAC  Carbon Dioxide Information Analysis Center

COOM  Colored Dissolved Organic Matter

CHL Chlorophyll-a Concentration
CO25YS QO System Program

DiC Dissolved Inorganic Carbon
ECS East China Sea

GOM Gulf of Mexico

DL ive Data 1
LDEO  Lamont-Doberty Ennh Ohservawry
MARS  Mississippi-Atchafalaya River System

MB Mean Bias

Mechanistic Semi-Analytical Algorithm
MLD Mixed Layer Depth
MR Mean Ratio

MODIS  Moderate Resolution Imaging Spectroradiometer
NES National Bureau of Standards

R? Coefficient of Determination

RMSE  Root Mean Square Error

SOMs  Self-Organizing Maps

85§ Sea Surface Salinity
SST Sea Surface Tempernture
TA Total Alkalinity

1. Introduction

Coastal air-sea CO; flux plays an important role in the global carbon
budget (Borges et al., 2005; Cal et al,, 2000, Cai, 2011; Chen et ol,
2007), Due o the complexity of biogeochemical and physical processes
in coastal margins (Lefeyre of ol 2002; Fenned et al,, 2008; Dut et al,
2009; Zhat et al, 2009; Atkins et al., 2013; Hauer et al., 2013; lawa
et wl, 2013; Marotta et al, 2080; Norman et al, 2013), l”‘g un-
certaingies still exist in 1 ai 00, flux (Naues et al.,
2000 Chen et al, 2013), On the other hand, oceanic uptake of OO, has
resulted in ocean acidification or decreased surface water pH (by — 0.1
units) (Caldeirn and Wickett, 2003; Orr et al., 2000; Daney et al,, 2008
Sun et al, 2002; Pachourt and Meyver, 2014), leading to a decrease in
marine bicdiversity and decline in ecosy and envi
(Widdicombe and Spicer, 2008; Daney, 2010; MHckinson et b, 2012).
Surface pOO, is a critical term in understanding coastal ocean acid-
ification and airsea CO; flux calculation (Bover et ol 2015, Feely
ebul, 20000 Col et ul, 2011), thus it ls important to quantify surfsce
pCO; with high sccurscy.

In principle, surface water pCO; in coastal oceans is mainly con-
trolled by four peocesses: physical mixing, theemodynamic effect, bio-
logical activities, and air-sea 0, exchange (Fenavl ve ol 2008 Thaws
eral, 2000 Xue et al, 2076), Different water masses have specific
carbonate characteristics such as total alkalinity (TA, pmol kg”) and
dissotved Inorganic carbon (DIC, pmol kg™). The horizontal and vertical
mixing among these water masses can affect the surface pCO; dis-
tribution in a dynamic way. In a carbonate system, once sea surface
temperature (SST, “C), sea surface salinity (888, pructical salinity unit)
and pressure are known, any two parameters of TA, DIC, pCO,, and pH
can be used to calculate the others and CO, speciation (e.g,, [CO, '] and
thus carbonate mineral saturation state) using the CO; System Program
(CO2SYS) (Vierrot and Wallace, 2000), Ocean thermodynamic effect
Is dependent on SST, and the relationship between surface pCO;
and SST can be estimated with an  exponential Function
(PCOypry = POy, x N (Tikabiashi et al,, 2002, 20(9) al-
thaugh the exact parameter can deviate slightly from 0.0423 in coastal
waters (Hai et al.. 2015; Joesoel e sl, 2015). Biological activities such
as photosynthesis, i and calcification have direct effects on
surlacepoo, Ry ud et al., 200: 1) because photosynthesis consumes
COy, respiration produces COz, and caleification depletes both TA and
DIC In a 2 to 1 ratio, The air-sea 00, exchange can also Impact surface
PCO; values during extreme events (eg, hurricane, storms) (Dot
et al, 1998, Botes and Merfivar, 2007; Turk o1 al., 2013). However, it Is
difficule and challenging to quantify all these complicated processes
separately.

Closely linked to the abave processes, several environmental vari-
ables can affect surface water pOO,, such as SST, 5SS, mixed layer depth
(MLD, m), and chlorophyll-a concentration (CHL, mg m™~). With these
variables as model inputs, varlous approaches such as empirical

regmion (Lot ond Gul, 2006; Lohrenz ot al., 2014 Marrec et al,
2015, Chen ot al, 2016) and feedforward neural network (Jo ot al,
201 ) have been developed to moded surface pCO, in coastal oceans, In
addition, surface pCO; models have been developed for different
oceanic regions through the use of self-organizing maps (SOMs), either
pattern  recognition neural network based (Lofevie o ol 2005,
Priedrich and Oschiles, 20090, 2009 Telszewski et al,, 2009; Nakanka
et al, 2013) or linear regression based (Signorini et al, 2003 Parnrd
et al, 2015, 2016). Generally, these empirical approaches can predict
surface pCO; with relatively low uncertainties (< 40 patm) and can be
applied to different kinds of coastal margins (e.g., river.dominated,
upwelling-dominated, and current-dominated) when the model coeffi-
cients are tuned locally. However, as with any other empirical ap-
proaches, the disadvantage of these models is that each model is only
applicable to the modeled data range and environment, and the pre-
dicted result is bard to interpret physcnlly biologically, or chamicnlly
With the aim to ov inherited in
models, recently, & nonlinear semi- mechanimc model together with
SOMs has been developed and wsed in the upwelling dominated US
western margins (1ol o ul, 201 2) In this model, temperature is used
a8 a main parameter 1o measure vertical mixing which vardes in dif-
ferent upwelling subregions; changes in DIC and TA caused by mixing
and thermal foreing are modeled with changes In SST and CHL; and
then surface pCO; is caleulated from DIC and TA using CO2SYS. This
method overcomes the nontinearity of the marine carbonate system, but
errors (n the modeled DIC and TA could propagate through the caleu-
lation of surface pCOy. Also recently, & mechanistic semi-analytical al-
gorithm (MeSAA) was developed to model summertime surface pCO; In
a river-dominated coastal ocean, namely the East China Sea (ECS) (7
etul 2018), to sty pCO, variations in respanse to various controlling
mechanism during summertime. The main idea is 1o quantify the effects
af domi (hori 1 river-ocean mixing, thermodynamic
effect, and biologicnl activities) on surface pCO;, in summer when river
discharge plays a significant role in affecting ocean properties. [n the
work of Hai et al 12015), the effects of river-ocean mixing and ther-
modynamics were estimated by assuming conservative mixing between
river and ocean end members, and the biological effect was para-
meterized by an empirical relationship between SST-normalized surface
PCO; andd CHL developed in the adjacent open ocean. Song ot al. (2016)
apphedtheMﬁAAmalmdtodleBermgSumsummemme.whmnu
They modified the MeSAA by removing
the river-ocean mixing term and adding a reference term that has re-
latively stable temperature with minimal influence from mixing and
biologcal processes, Allbwgh both results showed refatively high un-
ies, such h may still provide a new way in quantifying
surface pC0, ramtions. especially for river-dominated regions. How-
ever, the applicability of this type of mechanistic approach to other
river-dominated regions is unknown.
Compared with the ECS which is affected by only one big river
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(Yangtze River), the northern Gulf of Mexico (GOM) (V1 1) receives
river inputs fram the Mississippi-Atchafalaya River System (MARS) as
well as \ ler rivers, g in a mare complicated en-
vironment, Massive input of organic and inorganic terrestrial carbon
and large amounts of nutrients enhance the biokogical activities in this
area, which may lead to very Jow surface pCO, levels and a corre.
sponding large uptake of atmospheric CO; (Cai 20070, Lohrens and Cai
2006, Cxi gnd Lobirenz, 2010, Huang et ul., 20155). In simmertime, the
nocthern GOM exhibits maximum  stratification  where thermo-
dynamics, strong biological activities and horizontal mixing along
salinity gradient are dominant factors in influencing surface pCO,
(Rabalais et nl, 2002 Marey et al., 2003; Huang et ol,, 2015a, 2015h),
The MARS plume is not d on the continental shelf in sum-
mertime (1 ol nl, 2003), instead, the plume can reach the sope areas
and to the Flotida Straits (Ortner of al. 1595, Hu e al, 2005)
Therefore, river-ocean mixing may play a major role in influencing
surface pCO, distributions in the northern GOM.

The primary objective of this paper is thus to test the applicability of
the MeSAA model to another river-dominated margin, the northern
GOM where river discharge plays an Important role In affecting the
ocean's biogeochemical properties, However, different from that of the
East China Sea, the northern GOM Is also a warmer, more closed
marginal sea with more complex river end member conditons,
Therefore, another objective Is to compare the MeSAA model results
with results from a locally taned MeSAA model and a conventional
empirical regression model, bath specifically tuned for the same region.
Although same work has been done in modeling surface pCO; in this
area (1obreaz and Cal, 2006; Lohronz et al, 2010), due to lack of long-
term in situ data, more work is required to develop improved models
for synoptic mapping of surface pCO; with high accuracy via satellite
remote sensing. In this study, the onginal MeSAA, the Jocally tuned
MeSAA, and the empirical regression appronches are applied using an
extensive dataset collected fram the northern GOM to 1] test the ap.
plicability of the MeSAA apgroach in the northern GOM, 2) understand
the effects of river<cenn mixing and biological processes on surface
pC0y, 3) develop a locally tuned MeSAA model for the northern GOM,
and 4) compare the performance of the MeSAA, locally tuned MeSAA,

Spatial distribution of surface pCO, 1w July-S

Spatial distnbunion of
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and a locally muned empirical regression model. The ultimate goal is to

make dations on model develop for this complex region,
where the findings may also be extended to other river dominated
margins,

The manuscript is structured as follows. The background and mo-
tivation of this work are introduced above. Section 2 presents the data
and data processing methods; Section 3 describes the methods used in
developing each model (original MeSAA, locally tuned MeSAA, and
empirical regression); Scction 4 presents the perfommcvnlmuun of
each model; Socton 5 discusses the model (1o uncertai
of the input variables) and strengths/weaknesses of each model; Fi-
nally, Section & summarizes the main findings with conclusions.

2. Data sources and data processing
2.1, Field dam

Several cruise surveys collected underway surfuce water pCO; duta
from the northern GOM waters and the GOM open waters, These are
described in Tobles | and 2, respectively. None of these data were used
in a recent effort to estimate surface pCO; on the West Florida Shelf
(WES) (Chien on ol 2016 Data from the northern GOM was collected
between 2003 and 2013 In July-September, and data from the GOM
open waters was collected between 2006 and 2013 In February-April
and December. These data were obtained from the Carbon Dioxide
Information  Analysis  Center  (CDEIAC)  (hiip. /il piov/)
(Wonmninkho! et al., 2013a, 2013, Sabine et al, 2014, Cal et ul,, 2070
20025, 20143), the NOAA's Atlantic Oceanographic and Mexrorologkd
Laboratory (AOML) (htip//www aomlnoaa,gov/ocd ‘ocdweb, oo
heml) (Wanniokhof et al, 2009, 2000, 20120, 2012b, 20
and the Lamont-Doberty Earth Observatory (LDEO) of (‘,ohmbw Uni-
versity  (heepe//www Idco.columbin.edu,/res/pl/ CO2/cnrhondioxide
pages/pCO2data himi) (Sutherland ot al., 2013), Por pCO, data col-
lected in the northern GOM, due to abnormal upwelling in July 2009
(Zhang et ol 2012 Huang ot al, 20153), pCO; data collected araund
the Mississippi River mouth and adjacent offshare region (red boxes in
Figs ‘b and |c) showed much lower pCO; values than those collected

SNrfoce pCO, (patmy

Al dsENDUton of Sariace

ol 2000
N

pO0,

2000240

-

Fig. 1. Spatial distrRutions of the Seld mcasared pO0; aloag the ship transects in the noethesn GOM (1000 e 11 (o) All cruise tracks; (b) and () me for July 2006, 2007 sad 20140, sod July

2004, regpectivoly. Note that around the Mixdssippl River dedts ned offsbien rogion (red beoces in b smd ¢, dun 0 sbocermal uprwelling i July 2000 (oo, o al
culiected In Juby 2009 in this aven were 2ot used (n this study; (d) Same field daca s shown In {0) where Bigh quality MOOIS £3 8 day CHL data

e

208, pOO; duta

the field dane.
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Table 1
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UVaslerwiy pO0; mesyssrements i the northern GOM during sussmer Cluly-Sopoember]) ot a dopth of 5 m, with = measurement interval of — 2 or 3 s For mach cruise survey, the number

of oberrvations was groatly ceduced when concurment MODES standand Level-3 8 dary 1L data was found. C fing crawe tracks are showm in 110 1, Kote thae pCO, daey
enliozted in July 2000 around the Musivsppi River delts und offsbore region (red booees in fee Thand (e waee not ved in this study, dee 30 abeamsd spwoeliieg in July 2000 (1o
Sk 2000 i el s, but ddata colinetrd catebde this rogion in July 2009 wene still ted. Al oote that data Tiewsl = this table were st wasd bn Chon ot ol 120000 i devedop  pO0,
model for the WIS,

Cruize 1D Ship nume Date range # of ebaervations # uf ohserrations with matching MODIS data

Comstnints Coeetal Missmipgd Beoy TN S2AIGR/297 200 a4 o

MS SO 0N Crovzal Missasippt Feoy 2001973020 ne o

MS SSW 0N Cooemal Missssippt Beoy FAN2013-57302000 045 1

GMON06 8V Bold D62006-9/11/2006 nar £

GANOON OV feld /1R 2000-8/24,2000 14841 7

Ghaosay RV Cape Matterns F0972000-7 /30,2009 el R

GLOBO4 1og2 RY Gordon Guseer 9721720009/ 22,2008 ) o

GUOSOS L2 RV Gordon Guater T 72007202000 8267 =

GLOAOS Ly /N Gordon Gumter B/ 72000-8/33,2000 A0S 1o

GUOR04 L) R/ Gordon Guntar 9 2008-9/10,2000 2670 =

GUCA0S 1ay2 B/V Gordon Guster O/15/2000-9,29,2000 1046 =S

LarCoevins 1000 MV Las Cuirvess 0716, 2000-5,20,/2000 637 =

LavCuevan 10-10 SV Lan Curress A2 /2000-8/18,2010 o 5t

LasCoevin 1110 MV Las Cuevas 9/1/2010-9/8,2010 814 42

LasCoevins 12-10 MV Las Curvss 09/21/20010-9/28/2010 £ 6

LasCoevinn 910 MV Las Cusvas TA3/2000-7 /18,2010 a 13

RE0306 R/V Beown 9/13,2000-5/19,2003 nun ]

RE200307 RV Brown 0/21/2000-5/30/2008 1232 48

BBLG06A RV Brows 77317 2006-8716,2006 a2 k3

REZ00506H RV Brown 8/22,2006-5/11/2006 1652 1

REZDDE0GT RV Bromn 9/14/2006-9/15/2006 ne 43

RE200705 RV Brown TA12007-7/17 /2000 852 16

HBON05 RV Brown B/21,2000-9/12,200% 2585 50

RE0O0ST RV Brown 914/2009-9/15.2009 362 1%

Vsl 67,009 am
Table 2

Usnderway pCO; messuromonts in the GOM open wators during spring (Feb-Apr) snd winter (Dec), which were swwd 10 model the bivlogscal effect om surface pOO,, These datn were
meavnd st o dopth of Sm, with 0 moourement fmterenl of ~ 2min, Dwts collectnd in summer wis noe used, due 10 the igetrupdee cimmcteristics of the GOM upen waters in
sammertima. For each cruise survey, the number of ohwervations was greatly redoced when concurrent MOOIS sanderd Level-3 § day OHIL composte data was fond. Corresponding

crutse tracks are shown in (e 23 & Ch, Noe that these data were not used in Clien o0 o0 (20007 10 develop n pCO0; moded for the WIS
Cruise 1D Shap name Dute range # of chservations # of chanrvations with matciing MODIS duts
GUOADZ 1rgd RV Goedon Goner 4720720084 /30,2008 4238 “
GUOST Jegt WY Goesdon Gunser 2673005 o o
GUOAT g2 AV Goedon Gurer AN 174 L]
GLOSOZ Jegt RV Gordon Gueser ASTANA T W09 304 e
GLOSO2 Jeg2 WA Goedon Gunter 4722720054 73072009 s Lo
Lastoevas 2-10 MY Lax Cyerem 2772N0-2/14/2010 1396 o4
LasCoevas 510 M/V Las Coree A192010-420.2010 s 40
layCuevin 14-10 MY L Canvie 12/18/2000-12/20/20L0 747 0
MISISHC RV Marcus G Langush W12003-320201% 4 =
MIX2SPC A Marcus G, Langash A/172015-4/3,2010 5o =
Tomd 15,215 558

in July of 2006, 2007 and 2010, as shown in iz b and |c. Because
this abnormal upwelling condition did not meet the conditions in the
original MeSAA approach (horfzontal river-ocean mixing, thermo-
dynamic effects, and biological activities dominate the variations of
surface pCO; in the summertime northern GOM) and abpormal up-
welling may change the direction of airsea CO, flax (Husng o ol
20153), these low pCOy, values were nat selected in this study. Data
from the GOM open waters were selected in order to model the biolo-
gical effect on surface pCO,. Note that due to the weak biological ac-
tivities in the GOM open waters during summertime (CHL < 0.15 mg/
m®); data in July-September were not selected in modeling the biolo-
gical effect. Seawater samples for measurements of pCOy, SSS and SST
in both the northern GOM and the GOM open waters were collected at a
depth of = 5 m using a shipboard flow-through seawater system. The
full cruise tracks in the northern GOM and GOM open waters with
color-coded in situ pCO, are shown in Figs. 1a and 2a, respectively.
Surface pCO; was measured with a combination of a gas equilibrator
and & non-dispersive, infrared analyzer Li-COR™ (model 6251 or 6262

ar 7000 or 840A or 820) (Feely et ol 1998 Plerroe e al,, 2000) with an
accuracy of 2 patm (or better) and a measurement interval of 2 or
3 min. The details of data collection, processing, and quality control can
be found In Feely et al. {1998) and Pierzut et al (2009) and Huang exal
(20155), In addition to pCOy, SSS and SST data were collected using a
CTD (SBE.16 or SBE-2] or SBE-38 or SBE.45, Seabird Inc., USA, YSI
6600) integrated in the underway pCO, system.
All cruise data obtained from CIHAC, AOML and LDEO have un-
gone quality | analysis. These data were converted into the
same format with an Interactive Data Language (IDL) program, and
were visualized and quality controlled (i.e., by examining data quality
flags and metadata files) to discard apparent errors (e.g., individual
spikes due to i malfunction or other f; )- A total of 67,669
PCO; observations were selected for the northern GOM to develop and
validate the MeSAA and empirical models, and a total of 15,215 ob-
servations were selected for the GOM open waters to madel the biolo-
gical effect on surface pOO, for the MeSAA.

The MeSAA has two explicit compoaents on modeling physical and
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mical effects, respectively. To model the physical effect, namely the
effect of harizontal river and ocean mixing on surface pCO,, through a
two-endmember mixing model, TA and DIC data of the river and ocean
endmembers were carefully selected. Specifically, river endmember
TAs of 2420 pmol/kg and DICy of 2450 pmol/kg at 8§, = 0.1, and
ocean endmember TAi e of 23993 umol/kg and  DIC,cp, of
2082.8 pmol/kg 8t SSSenm = 36.04 from Huung o1 al (20150) were
opplied in this study, DIC, was assumed to be 30 umol/kg higher than
TAg (Goo er al. 2002 Cal et al, 2013), and oceanic TA and DIC were
linearly normalized to salinity of 35 using Eqs. (1) sud (2) (marked as
TAgs and DICx, €.8., Yang ¢ al.. 2015) with the river endmember TA,
and DIC, at 588 = 0,1 as the Intercepts, respectively, To quantify the

3500
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= 2000
= 1750
1500
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ey i

variations of riverine TA of the Mississippi and Atchafalaya Rivers, TA
data of both rivers between May 2006 and Feb 2015, were obtained
fram the U. § Geological Survey (USGS) water quality database (hop
awls waterdata usgs.goy/ usa/nwis/qwdom). TA data for Archafalaya
River was the average of two stations (USGS Station 07381590 in Wax
Lake Outlet at Calumet, LA, 29°41'S2'N, 91°22'22'W, and Station
07381600 In Lower Atchafalaysa River ar Morgan City, LA,
29°4133.4N, 91°1242.6'W), and TA data for the Mississippl River was
from USGS Station 07374525 (n Mississippl River at Belle Chasse, LA,
(29°51'25'N, 89°58'90°W). As shown In Fig 4, between May 2006 and
Feb 2015, the TA ranges of Mississippl river and Archafalaya River were
1204,0-2940.0 pmol/kg and 1014.0-3170.0 pmol/kg, respectively, In

Fig. 3. Varations of TA of the Misstysippt ond Atchaéalaya rivers
between May 2006 and Feb 2015, Duta for Atchalalays Rives wis
the average of two stations (USGS Ssation 07381590 in Wax Lake
Ouwtler wt Calumet, LA (29°41°52°N, 91°2222°W), and Station
07381600 in Lower Awchafalays River ar Moegan City, LA
(2974103, 8 N, 91 1242.6°W). Data for Misseesippd Hiver wars from
the USGS Statkon 07374525 In Misissippl River at Belle Chansse,
LA (2975 120N, s 50w,

i River

1000, /06 01707 01/08 01/09 01710 01/11 01/12 01113 01/14 01/15
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summertime during this period, the TA range of Mississippé nver was
2040-2880 ymol/kg, and the TA range of Atchafalaya River was
14602960 pmol,/kg. According to the river flow rates of bath rivers in
summertime between May 2006 ardd Feb 2015, the Mississippi river
contributed around 82% to the total river discharge to the northern
GOM (data not shown here), thus the variation of river endmember TA,,
was 1935,6-2894.4 pmol/kg. The uncertainties of the parameteriza.
tions of TA,, and DIC, caused by the variations in riverine TA and DIC in
summertime were analyzed and quantified in Section 510

TAy = LT — T * (35-588;) + T4,

(588 — 858, n

DICy, = 9195!.——;%- % (35-555,) + DIC,

2.2. MODIS data

To quantify the effect of biological activities on surface pCO,,
standard NASA Level-3 CHL data (verslon R2014.0) between 2003 and
2013 were obtained from the NASA Goddard Space Flight Center
(hup coceanenlor gsfonasngov /), The use of satellite CHL was not
oaly because there was no field CHL data available, but more im-
portantly, the pCO, models were developed for satellite applications,
Therefore, if satellite-derived CHL was used to train the models (see
Sections 5.05.79) the emrors in satellite-derived CHL would be implicitly
included in the mode! coefficsents. The 8-day composite Level-3 CHL
danugkmmlnxlmmpmmwdﬁmmmmubythe
Imaging Sp i (MODIS) on the Aqua
satellite using community-accepted standard algorithms. Specifically,
the Gordon and Wang (1994} algorithm was used to remove the at-
mospheric effects, after which a combination of band-mtio algorithm
(O Heitly el 2000) and band-subtraction algorithm (110 et ol 2012)
was used to estimate CHL. Various data guality flags (e.g., straylight,
sun gling, etc.) were used to screen low-quality data when generating
the global composite data (ot vt ol 2003), In general, comparison
between sstellite-derived CHL and field measured CHL showed un.
certainties ranging from 5% to 33% (Gregy and Casey, 2004, Halley and
Werdall, 2006; Melin et al., 2007; Carnizzam ot al., 2013a)

Mok, Torti

3. Methods in model development

Concurrent and collocated MODIS and field data were used to de-
velop and test all three models: the original MeSAA with its para-
meterization as presented in B o1 ol (2015), a modified MeSAA with
locally-tuned parameterization, and an empirical regression model.
Here “concurrent”™ means that the time of the fiedd data collection is
within the MODIS 8-day period, and “collocated” means that the field
pCO; data within a 9-km MODIS pixel was avernged to match the sa-
tellite data,

After the strict quality control and field data binning, for the period
between 2003 and 2013, 676 conjugate observations of field-measured
pCO; and MODIS CHL data were avallable for the northern GOM
(Fig 1d), and 598 conjugate observations of field-measured pCO, and
MODIS CHL data for the period between 2006 and 2013 were avallable
for the GOM open waters {I'';. /b), In the matched dataset for the
northen GOM, fickd-measured pOO, mnged between 31613 and
451,70 patm, field-measured SST ranged between 27,95 and 31.51 °C,
ficdd-measured SSS ranged between 26.85 and 36.67, and satellite
CHL ranged between 0,043 and 1.609 mg/m”. In the matched dataset
for the GOM open waters, the range of field-measured surface pCO,,
field-measured  SST, fieldmeasured SSS, and  satellite-measured
CHL were 336.22-394.04 patm, 22.50-26,35°C, 35,06-36,57, and
0.058-0.560 mg/m”, respectively. These matched datasets were used to
develop and validate the following pCO; models.

For both the ariginal and Jocally tuned MeSAA models, pCO; was
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derived from the estimation of the from thermody
river-ocean mixing, and biclogical activities. Field-measured pCOg was
not used in the model development but used for madel evaliation only.
For the empirical regression model, the 2003-2013 pCO; dataset was
divided rundomly into two groups with one for model training and the
other for model validation.

3.1, A brief description of the MeSAA

The detalls of this satellite remote sensing pCO; model — MeSAA -
can be found in Bar et al (2015), but for completeness a brief de-
scription is provided here,

For the physical aspect of river-ocean mixing (POOuw sminieg), cON-
servative mixing of TA and DIC was assumed (O ot ol 2010 Wang
eral, 2000 Yong et al, 2015), and TA and DIC at certain salinity level
were estimated with a linear riverocean mixing model as shown in Eq.
{3) (Jiang ot al., 2008; Hai et al, 2015 Yang et al,, 2015). Each pair of
TA and DIC with ancillary SST, $SS and pressure was used to calculate a
PCO; value with Eq. (4) using the CO2SYS (Pierrot and Wallace, 2006).
Carbonic acid dissociation constants (K, and Kj) of Millero et ol
(2004, Dickson's KHSO,, pH scale of the National Bureau of Standards
(NBS), and [B}y value of Uppstrom (1974) were applied in the CO2SYS
PLO; calculation.

TAs = TAs 555 + T, Dic = 20— DG

A=
s s s

X 88§ + DIC,,

(3)

To avoid redundancy, the thermodynamic effect on surface pCO,
variation, through the use of SST, was also included.

PO iy = COSYS(TA, DIC, SST', 558} (4)

As shown in Iy Z¢, there is a clear trend showing the relationship
between SST and surface pCO,. To model the effect of biological e
tivities an surface pCO,, this thermadynamic effect needs to be remaved
first. To do so, pCO, data in the GOM open waters was restricted to
within = 1°C of the manthly averaged SST of each moath, and nor-
malized 1o the monthly averaged SST using Fq. (50 (Talahahi on 0l
2002, 2004).

FCO e = PEO g, X €35 TaemTak) (5)

where T is 58T in °C, and subscripts ‘nor’ and ‘obs' symbol the nor-
malized and observed valucs,

The variation of SST-normalized surface pCOs (POOugran) Was
supposed to be caused by the biological activities, which were related to
changes in CHL. Thus, pCOug . Was regressed against log;o(CHL) by
linear regression as shown in Eq. () and Flg 2d. CHL was scaled
Jogarithmically because CHL tends to be log-normal in large-scale dis-
tributions (Camphell, 19935).

POO 1y = =357  log, CHL + 32894 ()

The Integration of the changing rates in pCOy 1 Over changes in
CHL was regarded as the effect of blolagical activites on surface pCOy,
Therefare, 10 model the changing rates of surface pCO; corresponding
to CHL changes, partial derivatives (over CHL) on both sides of Eq. (6}
were calculated, and then the variation of surface pCO, caused by
hiological activities (APCO 1) Was obtained using Eq, (7 (CHl, was
empirically set to 0,01 mg/m”) by integrating the derived partial deri-
vatives over the ranges of CHL. However, the final modeled pO0, via
such integration alone showed large diffi from the field d
PCO, Therefore, different from Hal e ol (2015), two empirical coef-
ficients (n and b) were added in Eq. () to account for the different pCOy
response to biological activities between the northern GOM and GOM
open waters through empirical regression, thus the total biological
coefficient (B), which was the coefficient of log, o{CHL) in the biological
term ApCOy 00, was 96.04.
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APCOyg,,, = =IRST % (o, CHL = log, CHL) X @ + b o

where a = 249, b = 2.57, and CHLy = 0.01 mg/m™.

For model evaluation, the sum of elver-ocean mixing and blological
activities was used o represent the MeSAA-predicted surface pCO,, as
specified In Eq. (9, even though the biological component was based
on emplrical data firting (020 o0 0, 2015). The model-predicted pCO;
was compared with the fleld-measured pO0,, where coefficient of de-
termination (R”), root mean square error (RMSE), mean ratio (MR), and
mean blas (MB) were used to gauge model performance, A histogram of
the difference between field-measured pCO; and model-predicted pCo,
wis also generated to examine the error distributions.

PCO; = PCOgGu iy + AP Vg0 (8

2.2 Locally mned MeSAA

The original MeSAA used an empirical relationship trained in the
adjacent open ocean, where river-ocean mixing is minimum, to model
the effects of biological activities on surface pCO, in the ECS (o et ol
2015), The extrapolation from openocean to the river-dominated
nocthern GOM may be problematic. Therefore, in the locally tuned
MeSAA this open-ocean based 2 p foe the biologi
effect was replaced with a locally-trained empirical relationship be-
tween ApCO; 4, and SSS and CHL, while the modeling of the river-
ocean horizontal mixing (PCOpgqqmiving) Was kept the same as in the
original MeSAA. Specifically, the residuals between the feld measured
2C0; and pCOg Ly g expressed a5 ApCO,, was calculated first wsing
Eq. (V). Then, the relationships between ApCO; and environmental
parameters such as SST, 8§SS, and CHL were examined. Finally, ApCO,
wias regressed against SSS and logof{CHL) by an empirical linear re-
gression, and the calculated pCO; by Eg. (11 was regarded as the effect
of blological activities on surface pCO,, namely APCO 2y o,

ApCO; = PLOy i = PCOgpmciny

ApCOy,,, = 19.54 X S55 + 831 x log, CHL-T77.40

T il

)

a0

Similar 1o the original MeSAA, for model evaluation, the sum of
PO gatmecing 800 APCO2gn,. Was used to represent the surface pCO;
estimsated from the locally tuned MeSAA. RMSE, R, MB and MR were
caleulsted 1o gauge the model performance, A histogram of the differ-
ence between field-measured pCO, and modeled pCO; was generated o
examine the error distributions.

3.3, Empirical regression

Chen et al (2016) showed 8 multi-vartate statistical approach to
model surface pCO; on the WFS. The same approach was used to de-
velop the relatienship between surface pCO; and environmental vari-
ables (SST, SSS, CHL) as well as day of the year (Julday) for the
northern GOM. The dataset was divided randomly into two groups,
with one group used for model training and coefficient tuning, and the
other for model validation. The refationships berween surface pOO, and
environmental varinbles were examined,

After extensive trial and error tests using various functional forms
and maodel inputs, the regression equation was determined as:

PCO,; = koxy + kim + kaxy + Kyxs + kamm + ksnx + koxnx + kxx
+ Retpxs + kv + koty? + At 4 kpag® + kaxy® + Contant
(1)
where x, = SST, x; = 888, x3 = logy (CHL), x; = cos (2x(Julday —
¥1/365).

In this equation, Julday was sinusoidally normalized to reflect the
seasonal feature (Friedoich and Oschlies, 2009, Ledevre et al, 2008
Sigoorinl et al, 20134), and y was a tuning parameter ranging from 0 to
365 days, and was determined to be 330 by iteration until the minimum
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root mean square error (RMSE) between modeled and measured pCO,
was reached. The final empirical pOO, model was thus determined as

pCO, = — 202075y + 21240 + 42612y — 12259,
+ 15305 = 306X + 2860, — 12684,
+ 08500 + TATKx, + 277%° — 0.99%7

= 7231x%" + L96x + 281401 (12)

where x; = 8§T, x; = 88§, x5 = logo (CHL), x4 = cos (2n{Julday —
330)/365).

The model was subsequently applied to the other half of the dataset
that was not used in the model development. RMSE, R*, MB and MR
were caleulated o quantily the model pecformance in both model de-
velopment and model validation. A histogram of the difference between
fleld-measured pCO, and modeled pCO; was generated to examine the
error distributions.

Note that although the model form In Eq. (121 is the same as tn Chen
et ul (20165, the model coefficients are specifically tuned for this da-
twaset, thus different from those In Chen e ol (2016) for the WES,

4. Results

In this section, the performance of each of the three models (original
MeSAA, bocally tuned MeSAA, and empirical regression) bs examinesd
and compared, in terms of statistical measures and spatial distribution
patterns of modeled pCO,,

4.1, Original MeSAA

iz 4a shows the comparison between pOO g misig Calculated with
the river-ocean mixing model and field-measured surface pCO,, Clearly,
the values of pCOL g ieng Was higher than the ficld-measured surface
PCO; across the SSS range (26.85-36.67) used in this study, but such a
discrepancy was reduced at high §SS. This is because that the effect of
biological uptake of CO, is strong and has not been taken into account
yet, and at high SS5 the TA and DIC values were getting close to those of
the ocean endmember, thus OO, Gy e Valises were getting close to
the feldmeasured pCO; The varation of the biclogical term
(APCOy ,) along with SSSin Fig. b demonstrated that the biological
CO, removal at low SSS§ was more intense than at high SSS as
APCO; i could reach — 209 patm at low SSS. This is consistent with
the high pCOsgimiring values at bow salinity & shown in Fig 4a and
reported in the literature (Huang <t o, 2013, 20158),

The MeSAA-modeled pCO;y (sum of pPCOzgsmming 2nd APCOzg4u)
was compared with the field-measured pCO; in Fip de Generally the
maodeled pCO; followed the in situ pCO; varistions quite well at
§SS§ > 30 with RMSE of 22,03 jatm (5.59%), MB of ~ 1,32 patm and
MR of 0,998 {Toble 1), For S85 = 30, surface pCO; was strongly
overestimated with RMSE of 47,48 patm (13,72%), MB of 42.08 yatm
and MR of 1.121 (700 2), Stattsties for the whole SSS range used (n
this study showed a R* of 0.25, RMSE of 22,94 patm (5.91%), MB of ~
0.23 patm and MR of 1,001 (Tabic 1) The strong overestimation In
surface pCO, at SSS = 30 (~ 7% of the northern GOM has such low
salinity, the statistics was derived based on & salinity study that has not
been published) was sssumed to be caused either by the varations in
the river endmember TA, and DIC, which could have a larger influence
in the modeling of pCO, at low 888, ar by the non-sufficient
modeling of the biological removal of COy, Quantification of the effect
of the variations in TA; and DIC; in Section 5.1 demonstrated that the
overestimation in surface pCO; at S88 < 30 was mainly due to the
vanations in TAg and DIC, The histogram of the modeled pCO; re-
siduals in Fiy. Sc shows that 73.7% of the residuals were smaller than
the standard deviation of the observed pCO; ( + 26.43 patm),

Comparing with the results of previously published works (Lohsens
and Cai, 200¢0 Lohrenz et al, 2010), the results from the MeSAA
showed significant improvement, where for the same pCO; ranges
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RMSE reduced from 50.2 gatm in Lobrenz amd Cal C2000) 10 22,94 patm
in this smdy, Even though R* from the MeSAA was lower than in
Lobrers ef nl (2010), the results here are still encouraging as the study
reglon in [oboere o ol (20000 was much smaller and pCO, variation
was much larger than the study here.

The spatial distribation of the MeSAA-predicted pCO, is shown in
Fig Sa. Compared with the in situ pCO; distribution (Fig \d), the
MeSAA model appeared to be able to regenerate the spatial pCO, pat-
terns, especially for the inshore.offshare pCO, gradient. The relatively
low pOOy values (320-350 uatm) near the Mississippi River month and
in the east of the MARS as well as the relatively high pCO, values in the
west of the northern GOM were all predicted well. On the other hand,
the distribution of the pCO; residuals shown in Vi 5b revealed that in

the MeSAA smodeled pO0; risidualy in {c) and 5SS The genend linese

lhneuhapcom....a.vm,...,nymtmw‘enll&esmnpm,mmmudmbywmmmn;wbth
were lised in Labde

some locations (e.§., east of the northern GOM or to the east of %0'W)
surface pCO, was either overestimated or underestimated. Such a dis-
crepancy could be due to the rapid changes of the river plumes in re-
spanse to wind and coastal currents, which in tum influenced the
biological activities and therefore surface pCO.,. Clearly, the river-ocean
mixing model or the biological effect model did not capture such
changes very well, and in such a complex environment It is challenging
to model the surface pOO, with very high accuracy (e.g., RMSE <
10 pagm).

To further examine the possible causes of the relatively karge un-
certainties in the MeSAA-modeled surface pCO,, the relationships be.
tween the pCO; residuals and the environmental parameters (SST, SSS,
and CHL) were investigated. As shown in Fig. 4d, there was a general

Table 3
Performance statistics uf the MeSAA, Jocally mmed MeSAA, wnd the empincal regression models. The range of field meosnred OO, & 3161345170 govtm. ¥ refery to modeled pOO,
while X nefers 10 meanend pLO,
Methods [ RMSE  KMSE (%) ME (puatm) MR Melatianship between Range of modeled N (# of
(patm) modeled and mensured pCo; OO, (patm} data)
MeSAA Whaole 555 range 0z 22.94 5,91 - 0323 10m ¥ = 0579 + 267 82 322,68-450,92 076
LU 0 O 259 - L3z 00 ¥ = 0ARX + 10 A26.65-45053 659
555 = W - 742 4748 1972 208 iz ¥ = 055K + 18T JZL 664K 68 17
Locally wuned Whale 58§ range 078 12,30 314 o000 1,00 V=070 + 5 & 435.94-435,59 Lzdd
MeSAA 858 >0 0 1244 316 - 035 o0 ¥ = 0NN 4 S1eT 34105435049 0659
555 & 0 ns? LX) 5 A Lm? ¥ =0y + 408 I8 440590 17
Empirical Maoded devels Whele 553 084 10,35 62 - 000 Lo Y = 0MIN + 4253 4290144582 RXL
Regressdon range
§58 =30 05 1040 203 oor Lo V= 0XUX 4 2043 349.39-44382 m
S x30 - 044 .60 5 ~ 356 00w V= UHRX 4+ 385 329.01-361.22 ?
Model validation  Whole 388 0% 10n.os 273 -0 Lo Y= UNIAY + 7521 261144250 J28
range
858 > W) nx 10,90 N - 008 LD V=X + S1A5-44250 awm
S8 « 0 056 ERA 2 -~ 502 o8 Y = 0ASIX + 1N1% 326.11-964.00 1n
Bath model Whole 555 084 10,66 2,68 - 010 1000 Vo= 00w AN s 426.11-443.82 676
developmont sed mnge
validution 55> 30 05 1054 267 ool Looy Vo= DAY 4 et 03044382 65
585 « 30 048 nn 319 -~ 44 00 ¥ = 0458 + 1o A26.11-364.03 17
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linear refationship between the pCO; residuals and SSS. This Indicated
that, although SSS could modulate the biological term ApOO;ge,
(Fly 4b) and SS§ was also used In the parameterization of
PO gstmecing, the effect of SS5 In the MeSAA-modeled pCO; was sl
not sufficiently expressed. The relationship between pCOzgrne, and
CHL in Eq. (1) assumed that variations in the normatized pCO, were
domi d by the biological effects, However, in reality other possible
factors such as the dvnamic effects of mesascale eddies, Loop Current,
and vertical mixing of surface pCQ, could alsa play a role, as shown in
the data scattering in [ 2d. Furthermore, the effects of the hialogical
activities may wark differently in the northern GOM coastal waters
from the GOM open waters, thus direct application of the biological
relationship developed from the latter 1o the former may be question-
able, requiring modification of the MeSAA.

4.2, Locally wned MeSAA

Fig e shows the comparison between modeled ApCOa g, using
the locally tuned MeSAA and the residuals {ApCO,) In the field-mea-
sured pCO; after subtracting the horfzontal mixing term pCO2 ey
AL SSS < 35, the model performed reasonably well, but at 858 = 35 the
bological removal of surface CO; appeared to be too strong, The
comparisan between the modeled pCO, (from the locally tuned MeSAA)
and field-measured pCO; In Fig od also showed similar patterns for
data with 585 = 35 and SSS = 35,

Statistically (1uble 2), the locally tuned MeSAA showed better
performance than the original MeSAA in estimating surface pCO, e
gardless of the S5S range considered. At 855 < 30, the mean bias in the
estimated pCO, was 5.70 patm, possibly due to variations in the TA,
and DIC,, parameterizations, yet such a positive bins was much smaller
than that of the original MeSAA (MB = 42.08 yatm) due to different
ways in modeling the biological term ApCOyuy,,- Such a greatly re-
duced underestimation n surface pCO; at 88§ < 30 indicated that,
although the modeled result of Eq. (10) (based on Figs Ga and 6b) was

regarded as the biological term ApCO 2y 4w, It may also include some
PCO; residuals in the mixing term that was not fully accounted for in
the quantification of POz ggmamy OF In other weak but non-ignorable
processes (e.g., vertical mixing), all of which were Included Implicitly
in the empirical coefficlents of Eq. (101, The histogram of the pCO,
restduals {1 5f) shaws that 97.3% of the residuals were smalber than
the standard deviation of the observed pCO; ( + 26,43 patm), which
also indicated that the locally tuned MeSAA had improved performance
comparing to the original MeSAA.

Flgs od and Se show the spatial distributions of surface pCO, and
PCO; residunls derived from the Jocally tuned MeSAA model, Compared
with the field-measured pOO, d(stributinns, lbe spatial distributions
along the inshore-offshore gradi patterns, which also
showed more detailed features and hlshet accuracics lhnn from the
ariginal MeSAA model. In addition, the relatively low pCO, values near
the river mouth and in the east of the narthern GOM as well as the
relatively high pCO, values in the west of the northern GOM were all
revealed clearly. Compared with the pCO; residual distributions from
the original MeSAA, the residual distributions from the ocally tuned
MeSAA in Fig. Se showed lower uncertainties, suggesting improved
model performance.

4.3. Empirical regression

Figs “a=7c¢ show the relationships between surface pCO, and en-
vironmental variables (CHL, 888 and SST), and 1 g= 7d-"f show the
multi-variate regression moded (Eq. (1)) for the pCO, prediction. For
the model development (+1z 7d), RMSE was 10.35 patm (2.62%), with
a R* of 0,84, MB of — 0,00 patm and MR of 1.001, There was negligible
averestimation at 55§ > 30 (RMSE = 10.40 patm (2.63%), MB =
0.07 patm, and MR = 1.001) and slight underestimation at S8 < 30
(RMSE = 8.80 patm (2.51%), MB = — 3.58 patm, and MR = 0.990).
Vig. 7e shows the model validation with data not used in the model
training. Performance measures are similar to those for the model
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training, with an RMSE of 10.98 patm (2.73%), R of 0.83, MB of —
0.21 gatm and MR of 1.000. RMSE for the combined datasets (both
model development and model validation) was 10,66 patm (2.68%),
mmann.’nmsq MB of — 0.10 patm, mdMRofl 2000 (Tnble 3}, The

of residuals for the bined datasets (7. 5i) shows that
97.99% of the residunls were smaller than the standard deviation of the
observed pCO; ( = 26.43 patm).

Flue Sgoand Shshow the spatial distribution of empirically-modeled
surface pOO, and the pCO, residuals. Similar to those from the locally
tuned MeSAA, the spatial patterns along the inshore-offshore gradient
agreed with those determined from In siro measurements, and they also
showed more detailed features than those provided by the original
MeSAA,

In summary, the emplrical regression method showed slightly better
performance than the Jocally tuned MeSAA, and both models showed
Improvements aver the original MeSAA.

5. Discussion

In this section, the sensitivities of the mechanistic modeds (original
MeSAA and locally taned MeSAA) and the empirical model (empirical
regression) to the empirical coefficients and uncertainties in the modef
Inputs are analyzed, and strengths and weaknesses of each model as
well as the controls of surface pQO, in summertime northern GOM are
discussed.

5.1, Senshivity analyss of the MeSAA

5.1.1. Model senzittvity to empirical coefficients

The parameterization of the MeSAA included two types of empiri-
cally derived coefficients: the first included the TA and DIC values of
the river and ocean endmembers, which affected the hocizontal mixing
term pOO.sgiamising A0d the second included the biological coefficient of
biological activities to surface pCO,, which influenced the biological
term ApCO s

As described in Secuon 2., the variation of the river endmember
TA; was 1935.6-2894.4 umol/kg, about 20% lower or higher than the
TA, value (2420 pmol/kg) used in this study. Therefore, in order to

evaluate the model sensitivity to changes in TA, and DIC,, river end-
member TA; was varied by + 20% with the assumption that DIC, was
about 30 pumol/kg higher than TA,, while all other parameters re-
mained unchanged. In addition, TA and DIC values for the ocean end-
member were fixed because the Loop Current water was stable.

Visual inspection of Fig: #a and #b indicste that the MeSAA was
maore sensitive to changes in TA, and DIC, a1 lower SSS. For §SS = 30, 8
207% Increase In TA, (Fly. 5a) produced about 47,60 patm higher pCO,,
while for SS5 > 30 the same 20% increase in TA, and DIC, caused a
much smaller change (MB = B.15 patm) in the predicted pCO.. A si-
milar disparity in the model sensitivity was observed for & 207 de-
crease In TAq when data were partitioned to SS§ = 30 and 5SS > 30
(15 4b), The detalled statistics In Tuhle 4 also suggested that the
MeSAA was more seasitive to TAs and DIC, for low-SSS (88§ = 30)
waters than for high-SSS (SSS > 30) waters, Therefore, the over-
estimation In the MeSAA-modeled pCO; at $8§ < 30 In Section 4
could be attributed to the varlations In river endmember TA; and DIC,.
However, on the other hand, based on the statistics over the whole 58§
range used in this study, the uncertainties in the MeSAA-predicted pCO,
due to changes in TA, and DIC,, were within the RMSE uncertainties of
the MeSAA.

Similar to the sensitivity analysis of the MeSAA to TA; and DIC,, to
examine the effect of the variations in the biological coefficient (B =
96.04) on the MeSAA-modeled pOO,, B was varied by = 20%, As shown
in Figs Seand 8d and Table 4, a 20% increase (decrease) in B produced
about — 22.51 patm (22,51 patm) lower (higher) pOO,, with bigger
changes in modeled pCO; at lower 85§ (< 30). Either with a 20% in-
crease or decrease in B, in ench case, the RMSE at the whole SSS range,
S58 > 30, and §SS = 30 were 23,38 patm, 22.91 patm and 38.25 patm,
respectively. Compared with the statistics of the MeSAA model itself,
these results indicate that the MeSAA was sensitive to the biological
coellicient B, and the sensitivity J d with increasing SSS.

-

Lonid

5.1.2. Model ivity o envir
FleldSI‘.SSS,nndmdlxte%wmuudwﬂmmedntlwx
oflbemlnordermbenuundmumdbwﬂleMMmo&l
& to 48 AR itivity analysis was conducted.

For each test, cae input variable was varied while the others remained
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unchanged, Considering the typlcal uncertaintles of satellite-derived
SST and CHL, SST was varled by = 1°C, SSS by =1, and CHL
by + 35%. Note that although field-measured SSS was used in the
moded due to the lack of satellite-derived high-resolution SSS, in the
future such S8 could be derived from ocean color data with a possible
uncertainty of = 1, The model response results are shown in
Figs Se-4j, with statistics such as RMSE, MR, and MB listed in Table 1,

Variations in SST and 85§ would only affect the horizontal mixing
term pCOsapminig Of the MeSAA. As shown in Vigs He—dh, the seasi-
tivities of the MeSAA to SST and SSS changes are similar, A 1°C in-
crease produced higher pCO; (MB = 19.65 yatm, |1y Ye), and a 1°C
decrease produced lower pCOy (MB = — 19.01 patm, 11y 4. Like-
wise, a1 i c! } in SS§ produced lower (higher} pCO, (MB
= — 10.00 gatm or — 10.64 patm, Figs Yg and Sh), with slightly
higher pCO, decrease (increase) for SSS < 30 than for SSS > 30. These
results suggest that the MeSAA is more sensitive to SST changes than to
SSS changes.

Variations in CHL would only infloence the biological term
APCO g tar 0F the MeSAA_ T'1ys. Gi and Fj demoastrate that the MeSAA
had the same sensitivity to CHL changes at different SSS values, with
MB of — 12.52 yatm and 17.97 patm for 35% increase and decrease in

CHL, respectively,

In short, the sensitivity analysts showed that pCO; variations caused
by the assumed changes In both the model coefficients and Input en-
vironmental variables were all within or close to the RMSE un-
certalnties of the MeSAA model itself, although the model showed re-
latively higher sensitivity to the biological coefficient B and SST. Thus,
unless the uncertainties In these model Inputs are systematic biases
instead of random naise - which is unlikely according to the validation
result of satellite data produacts - these uncertainties would not have a
significant influence on the MeSAA-predicted pOO; when large regions
are considered as a whole.

5.2. Sensitivity analysis of the locally mned MeSAA

Based on the parameterizations of the locally twned MeSAA In
Sectlon 4.2, the sensitivities of the locally tuned MeSAA to TA, and
IHC, and SST were the same as the MeSAA, Therefore, only sensitivities
of the locally tuned MeSAA to 58S and CHL were analyzed.

Fige. Yn and b show the sensitivity of the locally tuned MeSAA to
SSS, with statistics shown in Juble &, Note that since S88 was included
in both the physical mixing term pQO, . and the bialogical term
ApCO 5040 In the locally tuned MeSAA, the variation in SSS would in.
fluence both terms. As o result, the locally tuned MeSAA showed the
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v anadysic of the MeSAA, locally mmond MeSAA, and the empirical negresson models Mmhn-.wdmamdbmu---mﬁnﬂy
Wwdmmdbylwmjnnmm-hﬂvmhtmnklnwmmwu‘!d RMSE, MR and MB wern ondealk

g the d pO0; with the

d by
arigially-peedictod pQO, Note that the siutistics of the semitivities of the kocally wned mw'&mdm'nh—urnm—dﬂlrmlw MMM-‘.TM::{QN-\}'

affert pLO g ymirine and both models kad the ssme calculation of pCOgyeiie

ot RMSE (patm)* RMSE (%) MB (uatmy’ MR
Whale SSS 1521 365 9.15 024
S8 > 30 1335 348 515 02
+20% in T. S§S <30 49.42 1254 4760 121
Whole SSS rarige 1489 356 897 0977
S55>30 15,11 342 802 970
-20% in TA, S8S <30 47.80 1213 2606 88
Whole SSS range 2538 .05 223 94
S55-30 2291 5 22 943
420% In B S$S <30 38.25 54 37.04 908
Whole SSS range 2338 5105 pix 057
S§5 > 30 23,91 93 7 05
20%in B SS5 <30 38.25 984 17,01 (]
Wholc SSSrange | 1968 | 1968 | 2186 | 497 | 497 | 5.5t 965 | 497 | 2092 | 1.050 | 497 | 1053
55> 30 961 | 1961 [ 2210 | 495 | 493 A 938 | 495 | 2120 | 1089 | 495 | 1.083 |
+1°Cin SST SSS <0 314 | 2314 | ®28 | 391 | 391 | 233 | 2244 | S91 | 684 | 1057 | 391 | Lot
Whole 585 05| 1908 | 1662 | 481 | 481 | 403 | 1901 | 481 | -153% | 0952 | a8l | 0.962
S§5 130 97 | 1897 | 1682 | 479 | 479 | 409 | -189& | 479 | 1575 | 0952 | 4.79 | 0.961
-1°Cin SST S§S=30 2240_| 2240 | 458 | 572 | 5.2 21 | 2172 | S72 | 130 | 0945 | 572 | 0.997 |
Whole SSS range | 1008 | 966 | 841 | 256 | 24 211 | 1000 | 955 04| 0975 | 1024 | 1.020
S§5> 30 995 | 972 | 838 | 252 | 24 09| 988 | 966 01| 0975 | 1024 | 1020
+1in 5§ S5 <30 372 | 549 | 995 | 375 | 134 | 289 | 1437 | S28 | 938 | 0964 | 1.015 | 1.027
WholeSSS range | 1073 | 901 | 1038 | 272 | 2.9 5 064 | K90 | 1003 | 1027 | 0978 | 0978
S§S =10 059 | 910 | 1030 | 268 | 227 | 23 032 | 902 | 1000 | 1037 | 0977 | 0973
-1inSS8 SSS <30 69 | 458 | 1195 | 400 | 128 | 34 520 | -a34 | 1137 | 1039 | 098K | 0.967
Whole SSS range S3 | 09 | 370 | 347 | 027 | 094 | 1252 | 109 | 095 | 0.958 | 1.003 | 1.002
S§5 30 53 | 109 | 367 | 316 | 027 | 0827 | -1252 | 109 07 |"0968 | 1.003 | 1.003
438%ImCHL | S§S<30 290 | 112 | 499 | 330 | 031 | 143 | 1253 | 109 | 395 | 0.968 | 1003 | 0.989
Whole SSS range 98 | 156 | 765 | 4.5 39 | 190 | 1797 | -1.55 | -567 | 1045 | 0.996 | 0.986 ;
585 >30 98 | 186 | 792 | 454 | 039 | 191 797 | 155 | -5X%5 | 1.045 | 099 | 0.986
-35% in CHL S§S <30 52 | 160 | 339 | 474 | 045 | 126 | 1797 | <155 | 1.6 | 1086 | 0996 | L0

* Columen with grey, bloe, and groen sbading see stutlsties of the MeSAA, lcally- tuned MeSAA and the emgirical i 4 dy.

opposite sensitivity effect to SSS, comparing to the original MeSAA.
Specifically, an increase (decrease) of 1.0 in SSS produced higher
(lower) pOOy (MB = 9.55 patm or — 8.90 patm), with slightly higher
pOO, increases (decreases) for SSS > 30 than for S§S =< 30.

As shown in iz Sc and 9d and Tohle 4, the locally tuned MeSAA
showed little sensitivity to changes in CHL. With a 35% increase (de-
crease) in CHL, pCO; was modeled to be 1.09 patm {— 1.55 patm)
higher (lower) than the originally-modeled pCO,.

Sensitivity analysis of the empirical regression

Similar 1o the sensitivity analysis of the MeSAA and the locally
tuned MeSAA, the performance of the emplrical model was alkso eval-
uared against changes In the Input parameters, with SST, §5S, and CHL
varled by 4 1°C, = 1, and + 35%, respectively. The results are pre-
sented In Fig. 10 and Table 4

Figs 108 and 10b indicate that the empirical model was more
sensitive to changes in SST at high S8S (> 30) than at Jow 858 (s 30).
A 1 °Cincrease resulted in MB of 21,29 patm for $58 > 30, but only led
to M8 of 6.84 gatm for $SS = 30. Similarly, a 1°C decrease in SST
resulted in MB of — 15.75 patm for $SS > 30 but oaly — 1.30 gatm for
S8 = 30, The sensitivity to 858 changes is the opposite, with slightly
higher sensitivity for the dota group with 8S8 < 30. A | increase in S5S
resulted in MB of 8,01 patm in the predicted pCO; for §55 > 30 but MB
of 9,38 patm for S8 < 30 (1. 10c), A 1 decrease in 858 resulted in MB
of — 10.00 patm Ffor SSS > 30 but MB of — 11.37 patm for §5S < 30
(Fig. 10d),

The empirical model is not to CHL changes over the
modeled data range. With either 35% increase or 35% decrease in CHL,
the predicted pOO, did not show moch difference from the original

5.3

predictions (Flye 1 0e and 10f), where the MB of these two experiments
were 0.95 patm and — 5.67 patm, respectively.

In summary, the predicted pCO; variations induced by a 1 change in
SSS and a 35% change in CHL were all within or close to the RMSE of
the empirical model. Only in the case of SST changes of 1 °C did the

deled pCO; variati d the RMSE of the model. [n general the
empirical model was more sensitive to SST and SSS than to CHL.
Considering the bined effects of uncertainties in the satellite data
products and the sensitivity test results, uncertainties in the empirically
modeled pOO; should be between 10.66 and 21,86 patm for typlical data
ranges. However, these uncertainties represent RMSE values for in-
dividual data points instead of systematic blases. When the data are
averaged over large scales in either space or time, the uncertainties in
the mean products should be much smaller,

5.4, Mechanistic or empirical approach

Statistically, the locally tuned MeSAA (R® = 078,
RMSE = 12,36 patm, MB = 0.00 patm, and MR = 1.001) and the em-
pirical regression model (R* = 0,84, AMSE = 10.66 patm, MB = —
0.10 patm, and MR = 1.000} showed similar but better performance
than the original MeSAA model (R? = 0.25, RMSE = 22.94 patm, MB
= — 0.23 patm, and MR = 1.001). This is also revealed in the scat-
terplots for these three models (4150 4c, od, and 7). Similarly, although
all these three models reproduced the spatial distribution patterns of
PCO; well, the locally tuned MeSAA and the empirical regression
models showcd maore detnlh and improved accuracy (1'ig ),

The h d thiut the MeSAA model was sensi-
tive to both the cmplriwl coefficients (river endmember TA,, and DIC,,
and biological coefficient B) and the three environmental variables
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(SST, SS§, CHL), and the locally tuned MeSAA was sensitive to the river
endmember TA and DIC,, and sensitive to SST and SSS bust not to CHLL
The MeSAA was more sensitive to the biological coefficient B while the
locally tuned MeSAA and the empirical regruawn moclels were more
sensitive to SST. All three modeds sh i Jations b

PQO; T
d pCO:. Note thae the statisties of each analysis were stown i each paned, as limed in e 4

d, and the nowly 1z %o each set of parameterizacion

in the nocthern GOM in recent studies (1iu 1 ul., 2003, Del Camilio and
Miller, 2008, lnhrﬂu et al., AHIJ Canmizzoru et al., 20135) indicated
that empirical 1g may not be sufficient to derive a

gnen\l rehtimuhip applltahle to the whole northern GOM. Moe ad-
d empirical techniques such as neural network or support vector

surface pCOy and SST, mmmmmmm
with S and CHL while the locally tuned MeSAA and the empirical

dels showed the opposite signs in the same correlations.
Huwever. all these uncertainties in the predicted surface pCO, are
within the model uncertainties except for the case of SST in the em-
pirical model,

Overall, while the empirical regression mocled resulted in slightly
better performance than the locally tuned MeSAA in predicting surface
POy, interpretation of the moded drivers is more straightforward with
the latter, as both physical and biological forcing in the latter are ex-
plicitly expressed. Indeed, both the original MeSAA and the Jocally-
tuned-MeSAA showed encouraging results in terms of model accuracy
and physical interpretation over the northern GOM, However, currently
oaly an empirical relatlonship was used to quantify the blological term
in both models, thus requiring further Improvement (n quantifying the
blological effect In & more meaningful way. In addition, when ex-
tending the MeSAA approach to other seasons (the current study was
oaly conducted for summertime) in the northern GOM or 10 other si-
milar systems, the locally-tuned-MeSAA may be more practical than the
original MeSAA because of local tuning in determining the biological
effect. However, a major limitation in both the ariginal MeSAA and the
locally tuned MeSAA that implemented in this study Is that one of the
model inputs, namely 85, is from the Reld measurements due to lack of
community-accepted algorithms to estimate $88 from high-resolution
(1-km) satellite measurements. This deficiency in remote sensing al-
gorithm makes it difficult to generate synoptic maps using satellite data
alone, Clearly, an immediate peed is to develop and validate a remote
mungSSalgumhmmankrmdeiu:uxﬁcepd),mpsungu:e
established models bere. The changing hip b SSS and
the sbsarption coefficient of colored dissolved organlc matter (CDOM)

machine may be tried instead (e.g., Chen and Hu, 2017), In the end,
because data from upwelling cases were excluded in all three models in
arder to satisfy the conditions in the original MeSAA approach (sum.
mertime East China Sea where river-ocean mixing dominates the pro-
cesses), the models are not expected o work in regions with strong
upwelling. Indeed, if all three models were to be applied to the up-
welling case shown in iy lc (July 2009 around the Mississippi River
delta), the predicted pCO; would show large deviations from the field-
measured pCOy, with RMSE of 103.60-166.3] patm. However, if data
fram this event were used together with all other data during training of
the empirical regression model, the result would show significant lm-
provement ln the predicted pCOy, with RMSE of 14.75 patm and R of
0,79 for the entire dataset, and RMSE of 63,17 patm for the upwelling
data (N = 13). Clearly, the applicability of the empirical regression
model strongly depends on the data used in the model tralning, and
more fiekd data collected under upwelling cases are required to further
wne the empirical regresston model for general application with high
confidence.

5.5, Controls of surface pCO, in the summertime novthern GOM

While the focus of the paper is on comparison of models in est-
mating surface pCO, in order to provide guidance on future model se.
lection when applying to sing data, undi nding of model
uncertainties requires knowledge of (hc various controtling mechan-
isms in affecting surface pCOy, As described in Secton |, surface pCOy
can be affected by ocean mixing (both horizontal and vertical), biclo-
gical activities, thermodynamics, and airsea exchange. [n summertime
northern GOM, horizantal river-ocean mixing, biological activities and
thermodynamics are the dominant factors in influencing surface pC0,,
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and all these three factors were included in the parameterization of the
original and locally tuned MeSAA. However, vertical mixing and air-sea
exchange are also likely to cause some varistions in surface pCO,,
especially during and after extreme events (e.g., hurricanes, storms).
Such processes were not considered in the parameterization of the
MeSAA. On the other hand, in the parameterization of the MeSAA,
conservative river-ocean mixing was nssumed first, and the blological
effect was then removed from the mixing term to derive the modeled
surface pCOy. These two processes may not occur on the same time
scale and/or spatial scale, causing large uncertainties in the modeded

surface pCO;,
6. Conclusion

Using extensive field and satellite data, several models to predict
surface pCO, using SST, §SS, and CHL were thoroughly tested over the
northern GOM, with the ultimate goal of understanding model perfor-
mance and sensitivity to uncertainties in the input variables. These
include a recently established mechanistic model (i.e., MeSAA) ori-
ginally developed for the East China Sea, a locally tuned MeSAA with
local tuning to determine the biological effect, and a statistical em.
pirical model. While the empirical moded led to sltghtly better perfnr
mance than the locally tuned MeSAA b the

I coony ginally

driving the model inties may be ace d for in the empirical
coelficients, the physical and biological effect on the surface pCO; can
only be uplldlly preted by the mechanistic model. Additionaily,
the empir ion approach could be further tuned for regions
with upwelling. The study also suggests future directions in model de-
velopment as well as in satellite-based SSS algorithms in order to derive
accurate surface pCO; maps for river<lominated coastal regions. For
example, Instead of using a biological term determined from open-
ocean waters a locally tuned biological term (ApCO;gu.) may be vesd
In the MeSAA t account for pCO; residuals (n the hortzontal mixing
and biological processes as well as other processes (e.g., vertical
mixing),
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APPENDIX C:
ESTIMATING SEA SURFACE SALINITY IN THE NORTHERN GULF OF MEXICO

FROM SATELLITE OCEAN COLOR MEASUREMENTS

Chen, S., and Hu, C. (2017b). Estimating sea surface salinity in the northern Gulf of Mexico

from satellite ocean color measurements. Remote Sensing of Environment, 201, 115-132.
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Sea surface salinity (S5S) is an imspartant parumeter to characterize physical and bsogeochemscal g yet
its remote estimation in cosstal waters bas been difficult b satellite Jesigmed to * " 5SS lack
sufficient resolution and coverage, and bigher-resalution otesn color messurements suffer from optical and
htneochumcnlmmpimtywbenmdm&iucsss hlbenntﬂm‘n(hlldMum(GOM). this challenge is
'3 and ive tests in Speuﬁully.uslnx
ive SSS & dected by many groups spanning > IOymnndMODIS(“ & R wing
Spectroradiometer) and SeaWiks (Sea-Viewing Wide Field-of-View Sensor) esti d remote ing red]
(Rrs) at 412, 443, 488 (450}, 555, and 667 (670) nm and ses surface temp (SST), o muhil peroeptron
neural metwork-based (MPNN) S5S model has been developed and validated with a spatial resolution of —1 km.
The MENN was selected over many other empirial approaches such 2s principle comporent analysis (PCA),
Iti-noali egression (MNR), decisian tree. random focest, and supparting vector machines (SVMs} afier
muulv:evdunmmfbe&ll’Nquu:lnedhynhnk,,‘ﬁ‘ hnigue with 1 herg
and 3 The moded sh nnu\mn rfo of root mean
qmmmuss]alzmmmmumxddzmm.mm’)-om.mmhmmn)-M.ndmun
mtio (MR) = 1.0 for $8§ ranging between —1 and —37 (¥ = 3640). Validation using an independent dataset
showed a RMSE of 1.1, MB of 0.0, and MR of 1.0 for $SS ranging between —27 and — 37 (N = 412L1‘hemndd
vdzhluwigmdpamaulnnwhubemlmzdmthemmplmhnfahynmﬂwﬂoﬂdn‘sllp
Budmglnn.nndlnﬂnofﬁnnmmmm‘fplmwlm factory g d in ench case,
with Muarius-derived 555 maps (110-km resolutian] showsed similar ag m
Mmmunﬂlmednbmt.bunhewlkm &y SSS maps led mare finer-scale feansres as
well as sabinicy gradients In coastal waters. The sensitivizy of the model 1o realistic model Inpat errors in sasellite-
derived SST and Rrs was 2k thoroughl ined, with ties In the model.derived S5 belng 2l
ways < 1 for 85 > 30. The bid luation, and y test all ind d the rob of
meM.'FNNmndelmvsmnminsSsstnmou.ﬂnudl.commlnumnd:ﬂdmpinmmmemm{imt
Thus, the model provided a basls for generating pear real-time 1-km vesolution 5SS mags from satellite mea-
sucements, However, the model showed Hmisatians when applied to reglans with koown algal hlooms or wp-
wellieg /s they both led 10 low Res in the blue bonds thas muy be falsely meoognimd as caused by low 5SS,

1. Introduction

Falacios et al, 200% Deviin et al,, 2015; Homer-Devine et al, ‘Nlo
Yang et al, 2015). Further, SSS is an imp in g the

1.1. Challenge in mapping sea surface salinity of coastal waters

Sea surface salinity (SSS) is an important parameter in under-
standing many physical and biogeachemical processes in coastal waters
(Fcnm:l ef al, 2011; Xue et al, 2012). SSS data is used in support of

ining the mixing b riverine freshwater and offshore
sceanic mnnd chunges in uther water properties (Hu 1 ul, 2004;

* Cotresposding author.
Ematl address” hocitied edu (C. Hul

bl s d dulorg /10 M /) rae 2001 08 004

pathway of the riw:tine-deltvued terrestrial aubmvv:e {e.g wgnnk anc
inorganic carbon, nutrients) into the ocean, as well as examining the
intensity of stratification and studying variations in water’s optical
propertics, hypoxia, and algal blooms in coastal margins (Rabalas
et al, 1996, 2002; Cannizzaro et al,, 2013; Weisherg et al, 2014;
O'Connor ¢t al., 2016; Le et al., 2016).

H beaining SSS st synoptic scales with fi coverage in

' . g
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coastal waters has proved difficult due 10 inndequate ship-based mea-
surements (that lack of appropriate resalutions) or failures in satellite
SSmunucmemalgnﬁdlms.Themmsuugmdhummhﬁul
on g and designed to “measure” §SS from
space, are the ESA SMOS (ﬂ!c Swil Moisture and Ocean Salinity) and
NASA Aquarius/SAC-D. Yet the coarse spatial resolution (30100 km)
and low revisit frequency (3 days ar mare), along with the issue of land
coatamination, limit their use in observing the dynamic variations in
SSS in coastal waters (Koblinsky et al., 200%; Lagerlosf ot al., 2008; Fant
el al, 2010; Keer &1 al, 2010).

Recent advances in ocean color remote sensing have shown poten-
tials in synoptic and frequent mapping of S8S (Wang et al., 2007. Ahn
et al, 2008; Palacios et al, 2009; Morghany and Hashim, 2011;

Uriguhart et al., 2012; Bad et al,, 2013; Geiger et al, 2013; Qing et al,,
2013; Vandermeuwlen ot al., 2014; Zboo m al, 2007), In these stidies,
555 was modeled from app properties (AOPs) such as
spectral f (Res, se- ), inherent oplical prop-

esties (10Ps) such as ahsmpdon coefficlent, or other satellite parameters
such a8 Sea Surface Temperature (SST, 'C) and chlorophyll-a con-
centrations (CHL, mg m ~ 7). Regardless of the method, the underlying
principle Is that colored dissolved organic matter (CDOM) is & good
tracer of $58 in coastal oceans (Vodaces et al, 1997, Hu et ul, 2003
Coblo ot al, 2004; Del Vecchio and Blough, 2004), and CDOM ab-
sorption coefficient (acnos, M ') can be, at keast In theory, estimated
from ocean color measurements and then used to estimate 555 as-
suming conservative mixing for both (e.g, Siddorn et al. 2001,
Johinson et al,, 2003; Chen and Gardner, 2004; Hong et al., 200% Guo
et al, 2007; Rowers and Hretr, 2008). Indeed, in river-dominated
coastal reglons, CDOM mainly comes from tervestrial inputs through
river discharges and non-point source land runoff (Chester 1990
ers-:m et al., 2007). This plays a kcy mole in determining the optical

{ ially Rrs) of | ocean H , due to the
disnnn CDOM clururxcriaks of each local river endrnernbcr and its
seasonality, the relationship between ey and SSS may vary in space
and time (Chen, 19599; Hu et al., 2003; Del Vecchio and Blough, 2004;
Bowers and Brest, 2008; Bai e al,, 2013; Gedger et al,, 2013), making it
impossible to apply a locally designed 5SS algorithm to other regions.
Adding to this difficulty are the uncertainties in the satellite retrieved
Res and acpom: these uncertainties can cause a well-established, ship-

Revve Sewming of Fuiroament 200 (2017) 115-152

GOM open waters {Xoe ez al . 2013), the hypoxia phenomenon induced
by intensified biological activities and vertical stratification (Weseman
etal, 1997 Robalais et al,, 2002), and the distribution and variation of
the carbonate praperties such as total alkalinity (TA) and surface partial
pressure of COy (pCOy) (Yang et al,, 2015; Chen et al., 2016).
Synoptic SSS estimation in the narthern GOM has been attempted in
several published studies. Using data from SMOS nnd Aquanus,
Fournier et ul. (2016) examined the 1 and i v
of S§S in the GOM. However, the study was limited by the coarse spatial
resolution (30-100 km) and lack of coverage in cosstal waters as a
result of sensor limitations. Based on total absorption coefficients at 486
and 551 nm derived from the SNPP-VIIRS (Suomi National Polar-or-
biting Parmership satetlite with the Visual Infrared Imaging Radiometer
Suite) measurements and 5SS measurements from several nearshore
stations, Vandesmeulen of al (2014) developed a simple SSS model
using linear regression between SSS and absorption difference. Due to
the dynamics and complexity of the northern GOM, only 65% of the
data tested with the model showed a 558 uncertainty of < 2; one pos-
sibility for this result is that the relationship between absorption dif-
ference and SSS may change In space and time. Indeed, although linear
relationships between 855 and acpom have been developed on a re-
glonal basis (Blough et al., 1993; Ahn ot al, 2008; Palacios et al., 2009,
Hal et ul, 20132), In the northern GOM the S55-8cy0a relationship ap-
pears to be different in several studbes (Hu et ol 2000, Del Castillo and
Milles, 2008; Lohrenz et al, 2010). Such discrepancies indicate thas
unlike 858, COOM may not follow conservative mixing, and both COOM
production from phytoplankton degradation (Nelsan et al,, 1998, 2010,
Twardowski and Donaghay, 2001; Stedmon and Markager, 2005) and
CDOM photochemical bleaching (Chen and Gardoer, 2004) may con-
tribute to the variations in the SSS-acp redationship (Ded Vecchio and
Wough, 2004), Consequently, to date there has been no reliable model
to estimate S5S from ocean color measurements in this region.
Extensive SSS data have been collected from the northern GOM by
numerous groups and agencies. Acknowledging the limitations of SMOS
and Aquarius, lack of relisble ocean calor-based SSS models, the un.
stable $SS.acp0y relationship in the northern GOM, and high une
certainties in satellite-derived acgony (Hu ot al, 2000; Le and Hiu, 2013;
Mannino et al. 2014), the goal of the p study is to add the
cmllenpe of mapping SS§ from ocean color measurements over the

based a.0 - SSS relationship to become unreliable. Such difficulti

lex northern GOM, with the following specific objectives:

can be clearly seen from Fig. S1 in the supplemental materials for the
northern Gulf of Mexico when satellite-derived acgoy was used Lo es-
timate SSS. Thus, in g I, mapping SSS in | waters from space
still represents a major challenge for the acean color research com-
miunity,

1.2. Seudy region and objectives

The study reglon Is the northern Guif of Mexico (GOM) thar recelves
discharge from numerous rivers. The Mississippl River provides the
largest river discharge Into northern GOM, Ranking as the world's 8th
largest river In freshwater discharge and sediment delivery, the
Mississippi River system dralns 41% of the land In the United States
(Milliman amel Meade, 1983) About 70% of the river'’s flow drains
through the Jower Mississippl River into the GOM, with the remaining
304 delivered to the Atchafalaya basin, and finally into the GOM (U &
Army Corps of Engineers, 2008) forming the Mississippl/Atchafalaya
River system (MARS). In addition to the MARS, there are some smalles
rivers along the coast of the northern GOM, such as Suwannee, Pen-
sacola, and Apalachicola Rivers; these also play significant roles in af-
fecting the coastal water properties (Mattraw und Elder, 1984 Averent
et al, 1994; Murrell et al, 2002). With large seasonal loadings of
freshwater, inorganic and organic matters, and nutrients, from the
MARS and other rivers, the northern GOM maintains an active eco-
system with dynamic physical and bi hemical pi Here, SSS
plays an important rdehmephymlmmgbemmemand

¥ ¥ Ls

1} Develop a relatively robust madel o estimate SSS at 1-km resolution
from ocean color measurements;

2) Quantify uncertainties in the estimated SSS through extensive eva-
luations under various oceanographic conditions {e.g., Mississippi-
Atchafalaya coastal region, Florida's Big Bead, and Mississippi River
plume) and through sensitivity studies;

3) Understand the Hmitations of this approach in order 10 determine its
applicabllity to time-serles data.

The paper Is structured as follows. Field and satellite data are pre-
sented first, and optical characteristics of the waters with different SSS
ranges are analyzed. Secondly, methods In developing SSS models are
briefly reviewed, Finally, In the Hesules and Discoussion sections, the
tralned $5S model is statistically valldated and evaluated under dif-
ferent conditions, with model sensitivities to the model inputs analyzed
and model limitations investigated,

2. Data and methods

2.1, Datasers
2.1.1, Field data

To assure 1gh spatial and temp cuvmg: under all passible
oceanographic conditions and we iled all
publically ilable SSS data call ‘ovulhepastﬁlymnmlh:
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Table 1

Revve Sewing of Fuiroment 200 (2017) 115-152

555 mesuremonts from difforent cesesech vessely and booy phitforss in the GOM, Theae S5 were collecind =t a depeh of = % m from sl sevaons. Onby & small poction of these
measiremments were Sounid 10 fave co-locried med comewrent [ = 6 h) satellito-dorived SST il s derta (last column). These $55 dets were usedd 1o develop the MPRN moded,

Comrespundizg crubw tracks are shows &= fiy L

Plackoem {Ship/Dusy) Duts Yeur covered lumge of S5 Range of SS5 with g %ol 4 of chwervamions with satching
s satelline dutn saselline datu

vV GYis TAMU 19972000 155-30.9 22.2-36.5 77N ne

Y hold CoAAC 20062007 0.2-362 228945 5,34 60

IV Cape Hattoens CRAC 2005-2010 00572 13.4-36.6 26704 218

/Y Beown CIRAC 2000, 2006-2007, 243367 0430 26,4908 7

2000-2010

M/ Lae Cowvas AOML 2006-211 L 26.6-%6.h 18,050 228

Asanymoes Waterrraft mo 20002011 1A0-34.0 320 0 i

AV Palkor TAMU 2002 453-30.9 5800 6547 133

Y Pelican Cac 2m3 0.7-364 28.7-20.0 ;,ras 2

IV Marous G Lasgseth LEDO 2003 342-36.7 63985 2014 L

LY Weathettirs 1t LUSF 2001-2m% 0.2-58.0 26.2-360 6,249 444

BV Walton Snith CIHAC 199-2015 A0-308 205350 71,686 194

G5 Explorer of the Sess CDeAc 2002-0K7 2015 238-36.6 A59-365 46,853 360

LV Gondos Gunier CIRAC 20082011 2004-2015  RA-S6R 28.5-36.6 102,057 Liw

Buoy 42013 Xoec 2000-2015 206-37.9 34435 57,063 &4
(277N, &2924°W)

Buoy 42,021 ADBC 20002012 2R7-36.6 427-549 29,286 £
(28311°N, 83.306'W)

Buoy 42022 NoBC 2013-2015 289.37.3 345-363 15,826 )
(27 504N, 83.741°'W)

Buoy 42,006 Nooc 2006 359-36.2 36.0-362 328 3
(28500°N, 84.517W)

Buoy cral Noec 20112015 0.1-3E9 174 77,212 1
(I0308'N, S51&0W)

Buoy Ik Appc 2009-2m4 fd-494 30.7-35.1 47,589 3
(4SRN, BO.R26'W)

Bugy mblal NoBC 20062015 0.1-27.6 L4248 38969 47
(30A437N, B2011'W)

Buoy mieD) NoBC 20062010 75372 338 30,353 1
(201N, BOT76'W)

Huoy ComiMS [30°N, CoeAC 2009, 2011, 20132014 140356 221-356 4467 3
M|oew)

Totsd - 1957215 00396 14350 798,766 3,640

ADML: Athantic hic & fogical Lab vi CIMAC: Carbon Dioxide Information Analyss Coater; FAC: Flonids Padt and Wikdlife Conservanion Commisgnm LEDO:

Lussont-Debeny Eawth Obseryisoey, NDEC NM Date Buoy Crmrer. TAMU. Tesas AQ M University; USF: Usivessity of South Plockda.

northern GOM. These include two data types: those collected from sy-
noptic cruise surveys, and those from fixed-location buoys. Tables | amd
2 present a general description of the data source, data volume, time
span, and data range for each datasel. These data cover all seasons. The
data In Table | were vsed to develop the $SS model, while the data in
Table 2 (independent from those (n Table 1) were used to evaluate the
55§ model. Collectively these data represent the most complete dataset
far the northerm GOM,

In Table 1 (model development), the SSS data (collected between
1997 and 2015) ronged between 0.0 and 39.8. Ship-based underway
58S data were obtained from the datshases of Carbon Dioxide In-
formation Analysis Center (CDIAC), NOAA Atlantle Oceanographic 8
Meteorological Laboratory {AOML), Texas A& M University (TAMU),
Lamont-Doherty Earth Observatory (l.l-‘DO), and Unlw:mlty of South
Florida (USF). The data were collected by ch groups
funded by different agencies. For example, between 1997 and 2000, SSS
was collected by the Northeastern GOM (NEGOM) program funded by
the Bureau of Ocean Energy Management (BOEM, formerly known as
Minerals Management Service) and archived at TAMU, B 21
and 2013, SSS was collected by the CIMAGE consortium funded by the
GOM Research Initintive, with data archived at USF.

Typically, ship-based SSS data were collected at a depth of =5m
usulg a CTD (SBE-21 or 95-38 oc SBE-45, Seabird Inc., USA, YSI 6600)

d in tl hipk i flow-th h v with a
mmmnemhnmalnm?mmmdmn:mnryufllos.SSSume
series from CDIAC and NOAA Naticaal Data Buoy Center (NDBC) were
collected at a depth of 3 m wing & CTD (SBE MicroCAT C-T Recorder,
or SBE 37-IM MicroCAT), with a measurement interval of ~3hor <1 h

"7

and an accuracy of 0.02 1t is difficult 10 p each & in degailed
graphical format, but the full cruise tracks with color-coded SSS values
are shown In Fig la, with over 11,000 SS8 measurements 0 each
month.

Similar to Table 1, Toble 2 lists the varlous data sources of field 5SS
measurements that were used for independent model evaluation under
differing conditions. Specifically, for a general evaluation of the de-
veloped SS§ model, 558 data collected at discrete stations were ob-
ained from the NOAA Natlonal Centers for Environmental Information
(NCED) and Florida Fish and Wildlife Conservation Commission's (FWC)
Fish and Wildlife Research Institute (FWRI), These S5S data were col-
lected In 2010 aod 2014, ranging between 3.8 and 37.5, To test the
madel performance in the Mississippi-Atchafalay | region, un-
derway S85 measurements from two crulses (GMO606 and GM1003)
were obtained from CIMAC; these SSS data were collected in June 2006
and March 2010 and ranged between 0,02 and 36.62, To examine the
mdelpafommd!eﬁwidn's&gnendrtpm 5SS data collected
at d ions were obtained from NOAA NCEI and FWC; these
data were collected in 2010, 2011 and 2014, ranging between 11.4 and
36.4. To evaluate the model performance in quantifying SSS in the
Mississippi river plumes, discrete 555 measurements fram USF, and
underway SSS from cruise WS15234 fram CDHAC, were compiled: these
SSS data were collected in Aug. and Sep. 2015, ranging between 29,1
and 36.4, To test the model performance in deriving 5SS time-series at
fixed locations, SSS time-series data from three buoys (“crtal”,
"42022", and “CoastMS™) were obtained from NDBC and CDIAC. 5SS
from buoy “crtal”™ were collected between 2011 and 2015, ranging
between 1.0 and 30.1; §SS from buoy “42022" were collected between
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Table 2

Resvode Sewing of Futroament 200 (20175 115-152

55 measuroments wad 1o evhiente the MPNN SSS model under different cnnditions. Theye $55 were collectind s depth of = S m from ol seasoes. The specific prrpose of each datreat =
annceated in bold dalic font, Oaly 3 =nal portson of thew memurements were found so have co-lected aod coacurront ( = 24 h) MODES S5T and By Sata (lant codamn. Coreesponding

ensise Iracke 38 ench case are dhown in G 110 Note that the time-series SS§ datn frum booys “crtal ™, “42002" s “CoanaMS” shosn (0 inbics below woro mol weed in model
dervmlopment.
Project cruse 1UC Duts Dute Datu type  Haoge of S5 Raunge of 558 with # of olmervations ¥ of obwervations with matctusy
e matching sasellie ain satudlite data
Purpose To condurt o generul vedidation of the MPNN mode!
Deepemer Horiznn NCEI Apr-Oct, 2010 Discrone 35307 1206 L =3
Supgart
SEAMAY L Oct, 2004 Discrete 291-361 3Haaat 158 ”
SEAMAP e Jun, 014 Diacrete 24.3-37.5 26.8-17.1 178 "
Total - - - AR-07S 268570 1008 412
Purpose To test the model performance in the MARS region
GMOG06 CAC Jun, 2006 Contipoous 0.7.36.2 22.6-36.1 5938 3789
amions COAC Mar, 2010 Continesus  0.0-366 30364 7.811 3345
Total - - - a-a6s A0-36.0 13744 7134
Purpase To tiat the waded performance in the Méaiippi River plumes
DERPEND LSF Aug. N5 Dbwcrote 20.1-364 315963 2 3
WS15234 COIAC Sep, 2015 Contimeous  30.4-360 32.4-356 1609 458
Total - - - 29.1-364 31.5-363 1,636 “1
Purpose To test the model performance in the Big Bend region
Deepwirter hoetenn NCE Aug-Sep, 210 Disyete -0 It 04 x
suppon
SEAMAP o Oct, 2014 [Dscreee 32.2-358 323358 7 19
SEAMAP o Jun, 3014 Dacrone X104 FAN-06 4 53 7
Asonymioe PWE May-Nov, 2010 Discree 15.1-529 .0-329 1% »
Asanymoss o Jan-Nov, 2011 Disoreee 2A0-148 H.6-348 185 100
Asommoms We Jun, 2014 Discrete 16207 2).2-201 0. 1"
Total - - - 115064 W0.5-364 Tz a0
Purpose To test the model performance o flved locations
Buoy 42,022 NDSC 0132015 Coatimnews 30.7-365 335365 493 150
{27.508'N,
83.741'W)
sy ormel Nopc 2011-2015 Contlsacws  ).0-30.2 27276 Lear &5
(30 308N,
8. 140°W)
My CranMs CINAC 2009, 2011, Cownmoows  15.7-35.6 15.9.35.6 567 146
(30N, 85.0°'W) 2013-2014
Toral - 10305 27365 7z 7

* DEEPEND: Deep-Pelagic Nekton Dynemics of the Gaif of Mesion; SEAMAP: Southens Ares Meonitorisg sod Asesssens Progesm.

* NG Nartiom| Cossers for Bnviroemental informasion,

field SS8

Fig. 1. Spatial of the field

d 555 In the GOM slong the enstse tracks (i) Crotse tracks from all dato deserbed (n Totde | (h) Crulse tracks from the sasse data dut with

co-docted sand concurmmt { = 6 &) satellite iy and SST. (V'oc interpretation of colors (n this figure, the reador i reforred to the web verson of this srticle )

2013 and 2015, ranging between 31.7 and 36.5; SSS from buoy
“CoastMS”™ were collected In 2009, 2011, and 2013-2014, ranging be-
lween 15,7 and 35,6, These buoy-measured SSS data represent In-

dent data to e the algorithm performance, as 99.9% of
l.hun were excluded in the model development. Furthermore, dally
means of these continuous §SS data were used for statistical analysis
(see Section 3 5 and Tanle 2). The spatial distributions of these SSS data
are shown in cach case in Section &

2.1.2. Satellite data
The satellite data wsed in this stidy were downloaded from the

NASA Goddard Space Flight Center (GSFC) (hurp//vosancolorgsfc.
nasagovs) Dally standard NASA Level-2 ocean color data products
(reprocessing version R2014.0) with spatial resolution of ~1 km were
derived from the Moderate Resolution Imaging Spectroradiometer
(MODIS) on the Agua satellite and Sea-Viewing Wide Fleld-of-View
Sensor (SeaWIFS) on the SeaStar satellite. MODIS data (ncluded SST
and Rrs in 5 spectral bands (412, 443, 488, 547, 667 nm) between Joly
2002 and December 2015, and SeaWIFS data included Rrs In 5 spectral
bands (412, 443, 490, 555, 670 nm) between November 1997 and July
2002, Both 85T and Rrs data were used as inputs of the 858 model, SST
was used to capture the possibl in b river
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and oceanic waters, particularly the upwelling water masses which are
rep d by lower temp ("aln ios ot al,, 2009), The 5 visible
spectral bands were selected mai idering the exg ial decay
of CDOM absarption from the bluc to the red. Rrs(667) from MODIS or
Rrs(670) from SeaWiFS has been used as a surrogate for sediment
concentration in the water cofumn (Stumpd and Pennock, 1989 Wynne
et al, 2005; Harnes o1 al, 2015), therefore the use of Rrs667 was to help
minimize the turbidity effects in SSS-CDOM retrievals through em-
pirical technigues. Note that although MODIS has a 531-nm band and
SeaWiFs has a 510-nm band, for cross-sensor consistency they were not
used in this study. For the same reason, 1o assure consistency between
MODIS Rrs{547) and SeaWiFS Rrs(555), MODIS Rr=(547) was con-
verted to Res(555) nm based on the standard SeaDAS7.0.2 processing
procedure using Eqs. (1) and (20 [n addition, to test the published re-
gression model, daily standard MODIS Level-1A data (version R2014.0)
in Sep. 2014 were downloaded from NASA GSFC and processed to Level
3 using SeaDAS7.0.2 1o derive the total absorption coefficients at 488,
547 and 555 nm.

Rrs{555) » 10%(a; x log, (Rrs{547)) = b,), Rrs(547) < sw
where sw = 0.001723, a; = 0.986, and b, = 0.081495,
Rrs{555) » a; % Rrs(547) = by, Rrs(547) = sw

where sw = 0.001723, a; = 1.03, and b, = 0.000216.

In addition to the satellite ocean color data products, standard
NASA Level-3 monthly 558 composites, derived from Aguartus mea-
surements, were lso downloaded from the NASA GSFC. These data
were used to compare with the correspanding 5SS composites estimated
from MODIS measurements with the SSS model developed in this stady.

mn

(2)

2.2 Method

2.2.1, Model selection, and principle and stnucture of MPNN

Our first artempt to estimate S§8 from satellite-derived Rrs was
through the SSS.CDOM relationship where CDOM was estimated from
satellite-derived] Rrs using the Quasi-Analytical Algorithm (Lee ot al,
"00 2). llomu the results were unsatisfactory, with virtually no re-

observed | field d SSS and satellite-derived
CDOM Im SSS between 27 and 37 (Supplemental Fig. S1). Therefore,
the approach of deriving SSS through explicit use of CDOM was aban-
daned, but ather empirical methods were tested.

In the published literature, statistical approaches such & multi-
variate linear regression (MLR) and artificial neural network (ANN)
were used to develop satellite-based SSS models (Woog et al | 2007,
Ahn et al, 2008; Palacios et al., 2009; Marghany et al., 2011; Urgiehart
et al, 201 Bal et al. 2013; Geiger et al, 201 Qing et al, 201
Vondermeulen eg al, 2014) In this study, the commonly used tradi-
tional empirical methods (i.e., MLR, multi-variate noalinear regression
[MNR), and principle component analysis (PCA) regresslon) and ma-
chine leaming based approaches (f.e., decislon tree, random forest, and
Support Vector Machine (SVM) regression) were all tested, bat all
yielded unsatisfactory resulis (see below), Among the tested npproaches
was artificial neural network (ANN), which showed better performance
than all other approaches. ANN was then selected for the SSS remote
sensing model in this study; one distinet advantage of ANN s thar it can
approximate the nonlinear relationship between observations and tar-
geted variable (SSS), without explicitly knowing their functional de-
pendence (Ihicin et al,, 1993),

In the past, ANN techniques have been widely used in retrieving
AOPs, 10Ps, and other parameters such as CHL and total suspended
matter (Varaka et ul, 2004, Chanban et ol 2005; Vilas et al, 2011;
loannog et al,, 2001, 2013; Jamet et al, 2012; Chen et al., 2014, 2015).
The type of ANN used in this study is n multilayer perceptron neural
network (MPNN) (Bishop, 1995; Groes et al., 1999), which is a feed-
forward neural petwork that consists of one input layer, one or more
hidden layers, and one output layer. As shown in Fig. 2, neurons of each

1y
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Tiput Bayer Hdden Layer Outgt Iayer

oRnd12)

aRe443) i
ORrsARE) | (=% |

o ' uSsS
0Re35F) S '
aRes(67) < '
2SST

¥ig, 2. Acchitecture of the MINN, consatmg of cow inpret layer, one bidden layer, and one
ourput layer. The cross-layer comaections ae marked with differem coboes, ndicating
different welghts and bissos, The numbers of oeurnns in the mpot and vutpat layess of the
MPRN are fixad s specifiad in the rectangulae boxes, and only the aumber of neurons in
B hiddon bayer wan varied 10 derive the best MPNN frame,

layer are forward connected to the neurons in the adjacent layer, but
without any connections to neurons in the preceding layers, tnputs are
distributed into the MPNN by the first layer. In the hidden and outpus
layers, each neuron is randomly initinlized with two parameters: weight
and blas, which are used to transform the Input signals by an activation
function. Once the number of hidden layers and the number of neurons
in each layer are determined, the structure of the MPNN is fixed, and
the relations between the inputs and outputs, which depend on the
weight and bias values associated with each connection, are also fixed,

The values of weights and biases are adjusted through i ion to
minimize the sum of the sg d errors b the modeled

and the real outputs (ie., thepﬂmmamtobcmneved)bynsn-
pervised leamning technigue.,

For the MPNN presented in this work, a back-propagation learning
technique with a Levenberg-Marquardt optimization and & Bayesian
regularization algorithm was implemented in Matlab (R2013a). To
transform the input signals in each layer, the classic hyperbolic tangent
sigmoid (a = tansig(n)) and linear activation functions (a = purelin
(n)) were applied to the hidden and output layers, respectively. The

back-propag learning tec is & backward iterative learning
algorithm; it starts at the output layer and ends at the input layer,
where the weight and bias of each neuron are updated based on the
errors between the current outputs and the actual output valoes (Hochi
Nielsen, 1989; Goh, 1995). The L berg-Marquardt op al-
gorithm, also known as the damped Jesst-squares method, |s a combl-
nation of steepest descent and Gauss-Newtoa methods. It regulates the
network with the probabilistic approach of the Bayes' rule in order to
minimize the combination of squared errors and welghts, and then
determines the correct combination to create a network that can gen-
eralize well (Mare, 1978), With Bayesian regularization (Kwok and
Yeung, 1996; Burden und Winkler, 2009), the network automasically
stops tralning when reaching a convergence - meaning the sum of
squared errors, sum of squared weights, and the effective number of
parameters become stable after several iterations. This regularization
method is more robust than early stopping techniques (another neural
network training technique} because the verification procedure pro-
vides an objective ¢riterion for ending the training to avoid over
training. The weakness of the ariy stopping method was also proved in
our study as the model showed poar perfi (unrealistic $8S re-
trievals) when applied to satellite images even through the model
performance was satisfactory during mode! training and tuning using
discrete data points. The regularization methoed is also insensitive to the
architecture of the netwark as long as the necessary minimal archis
tecture is provided (Livingstone, 2008). Once the MPNN stops training,
the structure of the MPNN will be determined, with the values of

b
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weights and biases finalized.

2.2.2. Data preprocessing of MPNN

Based on the data range of the field SS§S measurements in Table 1,
bath MODIS derived data products - SST and Rrs (412, 443, 488, 555,
667 nm) and SeaWiFS-derived data products - Res (412, 443, 490, 555,
670 nm) were used in the MPNN SSS model development.

To obtain high quality data, concurrent field-measured SSS and
satellite-measured SST and Rrs (Table 1) were selected using the fol-
lowing criteria. Considering the dinrnal tidal cycle in most regions of
the northern GOM, a time window of = 6 h between field and satellite
measurements was used, Various data quality flags (e.g., atmospheric
correction failure, stray light, sun gling, etc.) (Bames and Hu, 2015)
were applied 1o discard all low-guality satellite data, and valid data
within a 3 x 3 box centered at the Jocation of each field SSS mea-
surement were extracted and averaged (Halley nnd Werdell, 2006) If the
number of valld pixels was =5 and the variance of these valld plxels
wias <= 10, Such averaged data was used to represeat satellite ob-
servations aver the location. After applying these strict quality controls,
and fleld data binning to match satellite pixel resolution, 3640 con-
Jugate observations of fickd-measured 8SS and satellite data products
were determined valkl between 1997 and 2015, and avallable for the
MPNN SSS maodel development (Fig. 1b). Nate that for §SS d

Resvde Sewing of Frodronment 200 (2017) 115-152
madel,

2.2.3. Training of MPNN

Several studies showed that any continuous function can be re-
presented by a MPNN with one hidden layer (Hoenil et ol 1989, Alres
et al, 2001). Therefore, to train the SSS model using the normalized
dataset in Tahle 1, based on the peinciple that the number of weights
should not be greater than the number of training equations, & group of
MPNNs with one hidden layer (Fig 2) were twested by varying the
number of hidden neurons between 1 and 60, In each test, the weights
and biases were randomly initlalized 10 times o avoid the unfortunate
set of initial weights and bias (the case where the MNFP can be trained
well but cannot be generalized well when applied to o new dataset o n
satellite image). Once the oumber of hidden neurons was determioed,
the optimal network structure with finalized coefficients of weights and
bias was determined,

In the training phase of the MPNN, different formulas and different
combinations of the input variables were thovoughly tested. For ex-
ample, according to commonly used Rrs formats in CDOM and chior-
ophyll algarithms (Carder et al, 1999, Hu et al. 2012), Rrs in loga-
rithmic scale, Rrs band ratios {i.e., Rrs{412)/Rrs(555), Rrs(443)/Rrs
(555)), and relative band differences were all used as model inpats and

between 1997 and 2002, fiekd-measured 551 data was used as surro-
gates of satellite-measured SST due to the lack of SST measurements by
SeaWiFS. As demaonstrated in the sensitivity analyss in Section 3.6, the
MPNN 558 model is insensitive to SST. and this repl should

wned following the steps described above. According to Geiger er al,
(20174}, in the model tuning phase, geological latitude and longitude
data were also chosen as the inputs to train the model,

have little influence in the modeled $SS, In the conjugate dataset, field-
measured SSS ranged between 1.4 and 38,0, satellite-measured SST
ranged between 9.7 and 33.0 °C, and satellite-measured Rrs cavered a
wide dynamic range. Detailed statistics of each parumeter are described
in Vahle A

One advantage of using concurrent satellite SST and Rrs measure-
ments directly to train the MNPP is that uncertainties in these satellite.
derived data products will be implicitly inclided in the empirically-
derived weights and biases of the MPNN. When the same data products
are used for 85 predictions as those which were used in model de-
velopment, such uncertainties, to a farge extent, should be self-can-
celling.

Before the MPNN training, to avold conditioning problems and o
make the MPNN equally sensitive to all inputs and output (loacnou
et al.. 2011), both the MPNN inputs (SST and Res) and output (SSS) in
the conjugate datases were normalized by subtracting the mean and
dividing by the standard deviation (0) of each parameter using the
following equations (Lawrence, 1991 )%

nSST = [{SST ~ mean(SST))|/c(SST) (&3]
nRrs(i} = |Rrs{A} = mean(Res(R)) |/=(Rrs(L)) (L))
nSSS = [SSS — mean(58S)]/=(S58) 5

Therefore, the output of the MPNN needs to be denormalized with
the mean and standard deviation of SSS using the inversion of Eq. (5),
The pormalized conjugate dataset was randomly divided into two
parts, with 70/% (2548 points) used to traln the MPNN, and 30% (1092
points) to test the trained MPNN to confirm the predictive power of the

Table 3

224 A 'y assessment

The empirical nature of the MPNN makes It extremely Important to
understand the model applicability under varlous oceanographic con-
ditlons from different coastal and offshore reglons. 1n this study the
model accuracy was evaluated using Independent datasets that were
not used in model development, These datasets are described in
Tabie 2, representing different scenartos rnging from river plumes and
caastal runoff in different regioas of the northern GOM, To increase the
data volume, the time difference between satellite and ficld measure-
ments was relaxed to 24 h. [n addition, to evaluate model performance,
the moded-derived SSS was compared with those estimated from the
satellite microwave measurements as well as time-series data obtained
from marine buoys.

To compare the model-derived SS§ and field-measured SSS, and to
gauge the performance of the MPNN in the training and various eva.
luation phases, coefficient of determination (R”), rost mean square
error (RMSE), mean bias (MB) and mean ratio (MR) were used, and the
same statistics were also applied in the sensitivity analysis below.

2.2.5. Sensitiviry to ervors (n the inpur variables (SST and Rrs)

The inputs to the MPNN model, namely MODIS-derived SST and
Turs, are not ecror free. In order to understand the model sensitivity to
such (nput erroes, SST and Rrs errors were first simulated using un-
certainty values reported (n the literature, and then fed 1o the MPNN
model. 558 derfved from the same MPNN using error-free inputs and
error-added inputs were then compared o determine the model's sen-
sitivity to input errors.

For evaluntion of model sensitivity to SST errors, because MODIS
SST uncertainties in the GOM are around 0,5-1 °C (Hu et al , 2004), SST

Seatisties of the conjiggate dataset in 1abiec 1 afber matching with conaurmet wtellise SST and ey messuremernes with a e window of = & (N = 3640), This dataset was used to
develog the MENN S5 model, with 70% ssed to train the MPNK sl the rerainimg 500 nsed to test the trined model. Cornesponding cruise tracks of this desaset are shown o 11, 15

Varsald Fheld ) Setellite-seawmnd S5T ('C) Rl 2 for ) Brsdds (ar ") Rraks (s ') K388 (e ') W2 ()
Maximum wma 0 Qo Qo2sns 0057942 0044670 024240
Minimum 14 o7 DOz Q00068 0.001256 00643 (000K
Medisn n0 .4 0005554 QOONT20 DKESLES 0,001 B 0000202
Mrwe BN =0 QC06000 0nasm2 NEARK 0002942 0.L0055)
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errars of = 1 °C were added to the S5T data in the MPNN model, where
the correspanding Res values were kept the same.

For evaluation of model sensitivity to Rrs errors, MODIS Rrs ervars
were simulated using reported MOINS Rrs uncertainty values and
spectral dependence of MODIS RArs ervars (Hu et ol 2013). In other
words, MODIS Rrs errors are nat spectrally independent, but errors in
one band, to a large degree, are related to ervors in another band, with
additional random errors (Fig. 10 of Hu et ol 2013).

The spectrally-dependent and indepenclent Res errors were simu-
lated in the following way, following the same approach of 0f et ol
(2017}

1) Simulate 5000 Rrs667 errors following a Gawssian distribution with
# rero mean and » standard deviation of 5 x 107" s~ ¥ (Ho ot ol
2013), This is basically the error distribution determined from
MODIS measurements in ooean gyres;

2) Calculate the corresponding spectrally dependent Res errors at 412,
443, 488, and 555 nm using Egs. (6)-(10) (Hu et al, 2013)

3) Add 5000 spectrally-independent Rirs errors In each band; these
errors also follow & Gausslan distribatlon with zero mean and an
assumed standard deviatlon (A). The addition of these errors
those In Step 2 lead to partlally spectrally-dependent errors, re-
presenting realistic cases from ocean color measurements;

4) Select one Rrs spectrum from the training dataset described in
Table 1 (corresponding field-measured S8 =« $1), estimate S58
using the MPNN moded. Then, add the 5000 erroneous Res spectra 1o
the selected Rrs spectrum, one by coe, and calculate the corre-
sponding §SS using the same MPNN model (marked as 52 for each of
the 5000 input spectra). The $SS errors would be $2-S1 where §2 has
5000 values and 51 is a single value. The standard deviation of the
5000 $SS ervars represents the 5SS uncertainty due to input Rrs
errors;

5) Repeat step 4 for the whole dataset for different S1 values, leading
to §SS uncertainties for each S1 due to the same input Rrs errors;
and,

6) Bin the 51 values with an interval of 1 in §8S, $8S uncerminties
(from the MPNN model) for each bin are calculated as the mean and
standard deviation from all standard deviation values within each
bin.

RrsS47error w 3,830 x Rrs667error = 00041 {6
RexS5Serror = Rrs5d7error o
Rrs#88error = 26635 x Rrs355error - 00002 {8)
Rrsddderror = 0.7322 x Rrsd8Serror + 00001 ()]
Resd12erroc = 08154 x Ress6Terror + 00003 (10)

Note that Eq. (6) was from Hu et 2l 2013, Eq, (7) was one as-
sumption made in this study, and Eqs. (8-(10) were caleulated based
on Table 3 In Hu et ul, 2013, with R* of 0,994, 0,995, and 0,241, re-
spectively.

In total, four experiments (Experiments 1, 2, 3 and 4) were con-
ducted based on the steps above. In these experiments, the spectrally.
dependent Rrs errors were kept the same, but the spectrally.in.
dependent Rrs errors were varied to have their standard deviations {i.e.,
the A term in Step 3above) of 1.2 x 10 ' ' 23 x 10" &~ ' and
3.6 x 10" s |, respectively, in each case,

3. Results
3.1, Oprical characteristics of the training dataset

Fig. & shows the Rrs spectra of the dataser used for moded devel-
opment (Table 1), which covered a high dynamic range. The Rrs peaks

occurred in different bands for different SSS ranges. Specifically, for
§SS = 30 (Fig. Ja), Res peaks were found in all bands except 412 nm,

(2
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suggesting significant influence by phytoplankton pigments and/or
CDOM as they both strongly absorb light in the blue. For higher $8§
(Fig. 3b-d), most spectra showed higher Res in the blue than in other
wavelengths, indicating clearer waters than the lower.SSS watess.
There are same exceptions where the magnitudes of Rrs are high in the
green and red wavelengths, indicating waters rich in suspended sedi-
ments. From Fig. 3, it is clear that similar spectra shapes may carre-
spand to different SSS values. Such characteristic indicated the complex
relationships hetween SSS and Rrs spectra {or water types), suggesting
difficulties in retrieving 5SS via traditional inversion algorithms (either
empirical or semi-analytical). However, the subtle differences between
these spectra farmed the basis of using an MPNN approach to address
the technical challenge. Purthermore, the full dynamic range in both
magnitudes and spectra] shapes indicated the comprehensiveness of the
dataset, which &s important for the MPNN empirical model o work
under most, if not all, scenarios because there is no explicit functional
relationship between the spectral Rrs and SSS in the model.

3.2, MPNN model training and validation

3.2.1. MPNN model training

Following the procedure described In Section 2,25, different for-
mulas and different groups of the Input variables were tested. It was
found that when 5ST and spectral Rrs data were used as the model
inputs and the number of neurons in the hidden layer was set to 3, the
MPNN showed the best performance in terms of RMSE, R, M8, and MR
when fickd-measured 5SS was used to gauge the mode! performance,
Therefore, this mode! setting was regarded as the optimal structure of
the MPNN, As a reference, Tuble 4 shows the performance of all tested
empirical approaches, including MLR, MNR, PCA, decision tree,
random forest, and SVM regression, along with the MPNN. Clearly, the
MPNN showed the best performance, and therefore was selected in this
study.

As shown in Fig. 4 and Toble 5, 20% of the dataset used in the
training of the MPNN (¥Fig. 4a) showed a RMSE of 1.2 (6.9%) and R? of
0.86, with MB of — 0.0 and MR of 1.0, The remaining 30% of the da-
taset used in the testing of the trained MPNN (Plg 4b) showed a RMSE
of 1.2 {1.5%) and R? of 0.86, with MB of 0.1 and MR of 1.0. For the
entire dataset (Fly. 4¢), the testing showed a RMSE of 1.2 (1.0%) and R?
of 0.86, with MB of 0.0 and MR of 1.0. In addition, the model showed
better performance at SSS > 30 than with 55§ = 30 in both model
training and testing, with RMSE of 1.0 and 3.0, MB of —0.1 and 1.4,
and MR of 1.0 and 1.1 for S5§ > 30 and 858 < 30, respectively, in
madel training, and RMSE of 1.0 and 2.8, MB of — 0.0 and 1.3, and MR
of 1.0 and 1.1, respectively, in model testing. The histogram of the
residuals in SSS estimation in both moded training and testing (Fig. 4d)
showed that 78.3% of the residuals were within the RMSE based on the
whole dataset {which was 1.2) and 96% of the residuals were within
RMSE of 2, Indicating grear Improvement over the published work
(Vundermealen ot al, 2014). The near symmetrical distribution around
0.0 Indicated minimal mean blas in the modeled 58S, However, the
relatively large and pesitive MB with 855 < 30 indicate overestimation,
a5 the MPNN model 15 more sensitive to Rrs uncertainties in this salinity
range (see Soction 3.6),

3.2.2, MPNN model validation

To further validate the developed MPNN 58S mode), an independent
dataset as described in Table 2 and Fig Sa was used, Note that this
dataset was not used in either the MPNN maodel training or testing
above. The comparison between MODIS-estimated SSS and field-mea-
sured 8§55 in Vig 5bshowed a RMSE of 1.1 (3,4%), MB of 0.0 and MR of
1.0, again with better performance with 8§ > 30 (RMSE = 1.0,
MB = -0.1, and MR = 1,0) than with $58 < 30 (RMSE = 3,0,
MB = 2.8, and MR = 1.1). Again, similar to the results shown in the
maodel training, relatively large uncertainties occurred for $SS < 30,
which was mainly attributed to the relatively high sensitivity of the
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MPNN model to Res uncertainties in this salinity moge (see Scction
3.6). The spatial distribution and histogram of the residuals in
Fig 5S¢ & d showed that 78.4% of the residuals were within the RMSE of
the developed model and 92.5% were within RMSE of 2. Most of the
large residuals (> 2.0 or < — 2.0) were found in the Mississippi river
delta where 855 was < 30, and where the positive MB and MR values
Indicated overestimation,

3.5, Mode! evaluation for various cases

The scatter plots and statistics of model validation provided overall
statistical measures and uncertainties of the MPNN model, To further
evaluate the model performance in different regions under different
scennrios in the GOM (eg., Mississippi-Archafaloys coastal waters,
Mississippi River plume, Florida's Big Bend area, etc.), the model was
further evaluated with different dataset groups for each case (Tahie 2
Sevtion 2.1.1), Note that in each case, the field-measured SSS dataset
was independent from other cases, and nove of these datasets was used

Table 4
Model i

hods (ML MNR, a0d PCA) and s hine-besrning based | merthod roe, !
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Fig. 3. Speciral chanetristies of the datasel
described w Toble L and £ 1h foc different
S55 rurges. These Rrs spectrs (ssite: s '),
alomg with ST were used to develop the MPSN
5SS model The spoctia cover & wide dynanic
moge for different opescal conditions. (For in-
terpeetation of colors in this Nigure, the reader
s peforred to the web vermon of this wetick.)

<8S8<34

in the MPNN training, testing, or validation above.

3.3.1, Mississippi-Atchafalaya coastal waters

Underway SSS measurements from two cruises (GMOS06 and
GM1003) described in Table 2 were used to evaluate the MPNN model
performance in coastal waters off the Mississippi-Atchafalaya region.

The results for cruise GMO606 are shown in Tlg. 6. For the whole
dataset, the RMSE was 2.4, with MB of (.4 and MR of 1.0. At §8S = 30,
the variation of MODIS-estimated SSS along the cruise track agreed well
with the field-measured SSS with RMSE of 1.5, MB of — 0.3, and MR of
1.0. At SS5 = 30, the model showed higher uncertainties (RMSE = 4.0,
MB = 2.1, and MR = 1.1) especially in three locations (marked as A, B,
C in Tig. 6a-c). These locations are in close proximity of the coastline,
where the Mississippi-Atchafalaya river flows can change fast {e.g.,
hours) following tidal mixing. The spatial distribution of the MODIS-
estimated 855 along the crutse track |n Fiy, 6b showed agreement with
field-measured 855 (overtaid in Fig 6d), with low 5SS values nearshore
and higher SSS values offshore. Furthermore, a 6-day MODIS 5SS

Forest, SVM, and MPNN), It

M-nmtﬂlemmmmemlwﬂmm menmmkkn  wim dertved from model croimtng, med afver ' was from model ynbidation. Note B statistics in our study

was besedd un the calculaton of coefficlent of

R could be dertved If there were soong bios i the modeled 555 (1., Culre VM)

Model Kemed Function Model Inputs s w MR MK
MR - R Band ratios” 1817 a7ImT 0.0/00 10710
MNR - Rrs Band muthos and 55T 1515 ABLDTS 0.000 1/1.0
PCA Regresston - Rrsh) and SST 222 A55/0.55 0000 10410
Decision Tree Simple Troe Rrsth) and $51 1519 QTN 00 -0n/-00 10000
Medium Tree Rh) and S5T 1118 aB905 -00/-a0 10710
Comples Tree Resih) and 55T 0915 093078 0.0/~ 00 1010
Random Forest Boosted Trees Rrsh) and SST 1820 aTIMsL 1514 10700
Bezged Trees Rn(3) and ST 1074 QYLN 0000 1ovk0
SVM Linear R) and ST 24726 a49m.39 0.4/ 4 1050
Quadratic Rrsh) and $5T 18720 aTame’ oamA 10/1.0
Osbir Rnfx) and 5T 65173 - 270 - 262 -21/-18 10710
Pine Gausstam Rr(3) and $51 2323 o845 CERTRY 1000
Madium Gaussisn R and $5T 1716 a0 LA IES 1L/10
Coprse Gauysion Rsih) and S5T 21720 0n1/me2 044 10710
MPAN L 7 Marquandt op Rndh) and 5571 12,2 066186 ~amn L0
and @ layerian regulanasion

* B Buetdd ratios = [Res(667V/Ren(555), Tus 667/ R 388) Res(667]/Trs(443]].
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composite map (Fig. 6d) covering the cruise period also showed
agreement with field-measured S8 (11y. &¢) although the statistics are
stightty worse due to the larger tme difference (RMSE = 3.6,
MB = — 0.3, and MR = 1.0).

Results for the GM1003 cruise are shown in ¥z 7. Similar to those
found from the GMOS06 crulse, MODIS-estimated SSS mimicked the
variation patterns of ficld-measured S5, with RMSE of 3.4, MB of 0.0
and MR of 1,0 (Flg 7a), and the spatial distributions in MODIS-esti-
mated 5SS showed lower SS§ values in nearshore waters than in off.
shore waters (Fig. 7b), a result of river discharge and other terrestrinl
runoff. Also similar to GMO606, better model performance was found
for SSS = 30 (RMSE = 1.6, MB = — 0.3, and MR = 1.0) than for
S§S8S < 30 (RMSE = 4.7, MB = 0.3, al MR = 1.0). The agreement
between MODIS estimated SSS and field - measured SSS along the cruise
track can also be visualized in Fig 7d. Such an agreement appeared
even better when MODIS data along the cruise track was extracted from
8 12.day composite map covering the cruise period (Fig 7e)
(RMSE = 3.7, MB = 0.5, and MR = 1.1). Indeed, when the field
sured 5SS was color coded in the same way & with the MODIS

Table 5

composite $55 map (Fig. 7d), thelr agreement In spatial distribution
pattemns is clearly revealed, both showing lower SSS in nearshove wa-
ters than In offshore warers,

In short, in Mississippi-Atchafalaya coastal waters the MPNN 5SS
model could capture the §SS variations with a reasonable accuracy and
quantified uncertainties,

3.3.2. Mississippi River plume

To test the model performance In quantifying SSS of river plumes,
both discrete and continuous §SS measurements from two experiments
were used (Table 2),

‘The first experiment was (n the northern GOM where the Mississippl
River plume was found on 14 August 2015 from field measurements.
585 measurements collected between 9 and 21 August 2015 (DEEPEND
cruise in Table 2 with cruise track overlaid in Vig. 8b & d) were used to
examine the performance of the S8§ model, with results shown in
Hy, “a & ¢, Within a 24-h time window, MODIS-csti d SSS showed

with field ‘SSncmuthenvuphm(llh 4a),
vmﬁ AMSE of 0.2, MB of 0.2, and MR of 1.0. The corresponding MODIS

Perfoemance stutistics of the MPAN 855 meded dunmy model development (for Buth moded erainsy snd tsting) asd independent meded validstions under dliffereest womiron usng the

datn deseribed fn Voldes L and L

Statkstics HMSE MB MR B & of dama polnts
SSS <30 SS5 > 3 whoke SS5<5 30 S5 > 30 whole 55530 SS5 > 30 whode

Model development (= 6h) Model training 30 Lo 12 La US| an 11 L 10 0.86 1548
Molel isting . 28 Lo 12 L3 ~0.0 ol 11 Lo 10 0.86 092
Whole detaset 30 Lo 12 -l -0l 0.0 L1 Lo 10 0.86 3640

Independent moded xolidation { = 24 h)

Neathorn GOM (A proeml validsnon} a0 Lo 1 28 -0 0.0 1 L 10 or 42

MARS reghon GMCOO6 39 [ 24 21 -0.3 04 LR Lo 10 0.5 Rl
GMI003 a7 Lo a4 0.3 ~03 0.0 10 L 10 0,59 348

Iver phane DEEMND - 02 02 - 0z 0.2 - Lo 10 000 3
WS1s254 - Lo 10 - ~ 03 -3 - L 1.0 ~ 095 488

g Bend regon 7 (14 1% -0 0s 04 10 o 10 062 ms

Comganson with Aquartus - on on - 0y 0.3 - L 10 085 11

Comparisie with huey S8 al 13 27 2 | 07 1t 1 10 086 367
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SSS map on 14 August 2015 In Fig. sb clearly showed that the MODIS
$SS image pot only captured the river plume but also showed high
retrieval accuracy for both high-SSS and low-SSS waters. Unfortunately
due tw cloud cover only one Jow-SSS data point in the offshore plume
was valldated (last point In Fig 8a). To overcome this difficulty, a
MODIS 885 composite map for the cruise perfod (14 days) was gener-
ated to examine whether other Jow-858 features In the MODIS map
could be validated (Fig. 4d). The comparison along the cruise track
agaln showed agreement between MODIS retrievals and field mea-
surements, with a RMSE of 1,3, MB of 0.3 and MR of 1.0, Note that such
increased uncertainties (compared to Fiy. Sa) are apparently due to the
time difference of several days. Even though, the plume feature is well
captured by MODIS with moderately accurate SSS retrievals.

The second experiment was from South Florida coastal waters In-
cluding thase around the Florida Strait (Fig. 9) as the Mississippi River
plume can reach this region by traveling a distance of > 1000 km
(Orener et al,, 1995 Hu et al., 2005). The plume was captured in MODIS

gery b 1 and 4 September 2015 (dark f in Fig S%c&d)
and verified by fekd data collected during the WS15234 cruise survey.
Fig. 9ast d the ags b N ¢ ent MODIS SSS and field

SSS measurements (within = 24 h) along the cruise track (overlaid in
Figs. Yc-e), with RMSE of 1.0, MB of - 0.3, and MR of 1.0. Fig. 9b
showed the same comparison but MODIS composite data during the
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Fig. 5. Perfoemane of the MPNN 855 model from

0 betwern modelod usig an edep dataset in Tatie 2,
and meanzad 888 DNorte that this datiwt wisk nul weed i either model
Y daing o moded sesting as desceibed in 1y A (a)
.: Spanal digributions of the field measured 555; (b}
L satellite. d S55 med
Fbd-meassred $55; (c)-(d) spatial distributsons sed
SRR s i uf the S55 | P y
ME -~ 003
- | 00y

25 0 35
Flaldsvaswrnd S5%

3 & -1 0
INforencw Aenvoen modelod awd menssred 85§

crutse pertod {4 days) were used, with RMSE of 0.9, MB of ~ 0.2, and
MR of 1.0. In beth comparsons, MODIS captured the river plume with
relatively low SSS (around 33-34), with uncertainties of < 1.0,

Overall, the two experiments above demonsirated that the SS§
maodel does capture the river plumes well [n the GOM, even when the
plumes were advected to > 1000 km reaching the Florlda Strait, More
importantly, MODIS-retrleved 5SS in these plumes is relatively accurate
with uncertaingies < 1.0 for the salinity range of 30-37. Because 5SS in
offshore plumes is rarely < 30 due to mixing with ocean waters, the
555 maodel should therefore be regarded as being capable of g ifying
885 in offshare river pl with | uncertainti

3.3.3. Florida’s Big Bend region

Fig. 10a shows the field-measured SSS in the Big Bend region and in
the affshore NEGOM, where the data are described in Table 2. Com-
parisan between concurrent ( = 24 h) MODIS-derived SSS and field-
measured S5S is shawn in Fig. 10b, with a RMSE of 1.9, MB of 0,4 and
MR of 1.0. In terms of absolute uncertainties the SSS model showed
better performance with SSS > 30 (RMSE = 1.7, MB = 0.6, and
MR = 1.0) than with SSS < 30 (RMSE = 27, MB = - 0.7, aml
MR = 1.0). As shown in the enhanced RGB image oa 6 June 2014
(Fig. 10¢), a wide band of dark festure (near parallel to the coastling)
indicated coastal runoff from local rivers and non-point sources, To

Flg. 6, Preformpace of the MPRN 855 model In the
Missssippé-Atchadaloys comdul region, evabanal
with data collected from crumse GMOSO6 (Talike 23
(2) Comparison between flekd-measured S5 nnd
concurent { £ 24 h) MODIS desived SSS. ) spa.
tial dstributioss of e MODIS desived 355 slung
the crutse track In (a). White codoc (ndicates oo
MODIS dati; (¢) comparisce between feldmes.
sured S58 nad MODIS-derived 5SS extracind from
Chxe MODIS etmponite mup (i he crsise percd; (d)
MODIS $85 comgose map for the cruise peried
Clune 6-11, 2006), with Geld roessured SSS oves-
Taidd and color coded along the crubee tack (hlack).
Note that the eed doty on the X-axis in (0) and (<)
mdicane thant there are no conourmms NODS de-
rived S85.
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facilitore comparison, field-measured S5 between 6 and 13 June 2014
was color coded and annotated on this Image; the corresponding
comparison with MODIS s marked as solid circles in Fiy 10b. The
comparison showed a RMSE of 1.4, MB of 0.0, and MR of 1.0, The
MODIS $85 composite map for this perlod in Fig. 10d showed low 555
values in the plume region and higher SSS offshore, suggesting that the
§8S model worked well in Florida's Big Bend area in vevealing not anly
SSS spatial patterns, but also ahsolute SSS values.

3.4. Comparison with Aquarius SSS

Aquarius was designed 1o measure 5SS through microwave sensing,
with a known uncertainty of < 0.3 (Abe amd Fhuchl. 2014). To
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Fig. 7. Same as 7ip &, bt peformmce of
the MPNK 555 model wos evalusted with
dan  collected  from  crulse  GM100D
(Table 23 (a) Comparisn betwoen firld-
nessured SS8 and coscurrent (= 24 h)
MODIS. derived S55; {b) spatial distributions
of the MODES-derned S55 aloay the crulse
eack In (x). White coloe lodicates no MODIS
dati; () compartson Between Oeld mea.
wored S8 and MODIS dertved S55 extractod
from the MODIS coenpesito map for the
crubse peciod ond (d] MOIXS 555 composie
map foe the crsse peried (Manch 11-21,
2010), weth Seld-muayored S5S overlaid sl
mboe cuded along the criee track (black)
Note that the red dots oa the xaxs in (a)
e () indicate that there are no concuarent
MODES. derfved 585,

evaluate the performance of the §55 model developed in this study on a
monthly scale, MODIS-estimated 58S and Aquarius-estimated 58S from
August 2014 were compared, Fig. 1 1a &b showed the spatial distribu-
tons of MODIS-estimated S85 and Aquarius-estimated SSS. Both cap-
tured the offshore river plume, and thelr spatial patterns appeared to be
similar in offshore waters, The striking differences are in their spatial
resolutions and coverage. MODIS showed mare details in SSS spatial
variations because of its much finer resolution (1-km) than Aquarius
(1°). Also, due to the coarse resolution, Aquarius smply has no cov-
erage in nearshore waters. In contrast, MODIS showed Jarge near-shore
$5§ gradients, especially d the Mississippi Dedta and Florida's Big
Hend. Fiy. 1ic&d further g ified the ison b MODIS

and Agquarius SSS along two artificial transects (transects 1 and 2 shown

¥ig. 8 Performance of the MPNN S55 model
- fying 555 i the Misdssippi Kiver
(MR phume in the norchem GOM, evakited
with dama ccllecied fram the [EEFDEND
erulse [Tulike 2). (o) Comparisos between
field-messured S58 and concurrent ( = 24 h)
MOOUS denved S85; (h) MODIS derrvid S58
map on 14 Augest 2015, with the TEIPEND
cruise track overlald and comesponding en-
Earced NGH (SIGR) imsge shown in the
set Mgure. Clearly, the river plume shown
= the ERCE image (dark fostun) & aso-
clated with Jow SS5; (¢) comparison besween
field- messurod SSS and MODIS dedved 555
exteacted from the MODIS coanposite map for
the cruise period; (d) MODIS S8 comgpasne
wmap he the crube period (Augest 9.21,
2015), with cruise tneck overkid
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Ja 38 Fig. 9. Perfunnaice ol the MPNN 558
36 |f1 g a6 1# b model @ guantifyisg 5SS in river plomes
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24 ey seBe Y 24 =19 satedite 585 mesred 55 and MODES. derlvod SSS ex-
22| 22 wacted from rhe MODIS composite mag
- ‘Wmml

! A g | 20l «— Detefomdd) for the crume peviod: (¢3<4d) MODIS ERGE
ol (Lo RL S aay 19/04 09/01 (LU A o903 m/o smages showing the MR plume {daek fea-

in Fiy. | 1a&b). Clearly, while the 55§ magnitudes are similar between
the two measurements, MODIS provided more detailed SSS variations
along the two offshore transects. When MODIS estimated SSS along
these two tr were aged over the corresponding Aquarius
pixels, the results in Fig. | le shows agreement between MOIHNS and
Aquarius, with RMSE of 0.8, MB of 0.3 and MR of 1.0.

3.5. Comparisun with Buoy measured SS§

The above evaluations are focused on spatial changes in SSS. To test
the model performance in deriving SSS time-series at fixed locations in
both nearshore and offshore waters, SSS data collected by several
marite buoys {Section 2.1 1, Tuble 2) were used. The three buoy sta-
tions were selected according to their data availability.

During model development, < 0.1% of these buoy data were found
1o have concurrent (= 6 h) satellite data due to cloud cover, sun glint,
and other factors which prevented valld MODIS retrievals, For valida-
tion purpose, these 0.1% of dama were excluded, but daily means of the

FieM-measured 5585

qo

s

Coesparsios Betuven mideled
and messured 88§

uew) in the Fhoids Stait, with the
WSIAZIE cruise ek (color coded by
feld measured 555) overlald, (¢) MODIS

585 composiee map for e cruise peried
(Septernber 14, 2015), with cruise tracks
overiid

buoy data were used to compare with MODIS derived SS§ within = 1
day. Considering the daily standard deviation of < 1.0 from —97% of
the buoy data, there should be little bias in the derived SSS daily means.

Fig. 12 shows the Jocations of two nearshore buoys and one offshore
buoy, and comparison between MODES-derived SSS and buoy-measured
SSS from 2009 to 2015. Clearly, even for nearshore waters where 5SS
may approach zero, MODIS derived SSS showed hle agr
with buoy-measured SSS. For the entire range, RMSE in MODIS SSS is
2.7 with a mean ratio of 1.0 (N = 367). However, the errors are not
evenly distributed, and tend to show higher uncertainties in the inter.
mediate SSS range (between 12 and 25) than in other SSS ranges. This
may be explained by the model sensitivity to input Rrs errors (see
section below).

A striking finding is the scarce data from MODIS over the two
nearshore Jocations. Even though the odds of cloud-free conditions are
about 30% for the GOM (Hu of al. 2009), valid MODIS dota are
far < 30% due to sun glint and stray light. This points to the need for
correcting these artifacts to recover the low-guality data to make them

Fig. 10, Porformeoce of the MINN 385 model in Florida's Beg lend
| region, evalumed with dato collected from several crulse sunveys
(Talie 2), {a) Dieril of the fivid 1S5S in the Hig Beed
region from dasa colletted during 6 crefse surveys between 2010 aed
2004 (N = 702); (B) Comparison between firkd-memured 355 sl
concserent (= 24 hy MODISderived S5 wsing data shown In (o)
(N = 205 matchsng pain). The fillsd cindes repriscat those shown in
ek (c} ERGH image oo 6 June 2014, annotated with color coded
fiedd d 555 valees b 6 and 13 Juse 2014, These dusa
e Soun as Gled creles i (D) e Moy i teer s consurent
MODES-derived 855 (d) MODIS S5 compeontte map Semwees 6 oo
13 Jure 2004,
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usable for the 58§ model.

3.6. Model sersitivity to input SST and Rrs errors

Fig 17 shows the model sensitivity to input SST erroes. Statistically,
with + 1 °C errors added, the MPNN model showed slight SS§ under-
estimation, with RMSE of 0.3, MB of — 0.2, and MB of 1.0. With —-1°C
ervors added, the MPNN model st d slight over ion in SSS,
with RMSE of 0.3, MB of 0.2 and MR of 1.0. These results suggest that
the MNPP SSS mocled responded to SST errors in a pegative way, bat in
botls cases the model was insensitive to SST errors.

Flg. 14 shows the simulated Rrs ervors in each experiment. The red
lines represent those spectrally-dependent errors (Eqs. (6), (1-10)).
From Experiment 1 to Experiment 4, with Increased spectrally-in-
dependent errors, the points become more scattered uround the red
lines, representing realistic scenarios,

Fig 15 shows the SSS uncertainties from the MPNN model at each
S8S interval (from 1 to 37), corresponding to the Input Rrs erroes in
each experiment. It is Interesting to see that the MPNN SS5 model was
less sensitive to the same input Rrs errors at $S5 < 10 and 88§ > 23
than at 10 = 88§ = 23, The increased uncertalnties with decreasing
5SS far SS§ > 23 are easy to understand because a decrease in §8S is
often accompanied by an Increase in CDOM and a decrease in Rrs412
and Rrs443 {e.g, Flg 3), leading to Increased relative Rrs412 and
Rrs443 emrors. However, the Jow 8SS uncertainties at 58S < 10 are
counterintuitive as the same argument no longer holds true. To In-
vestigate the reason, the Rrs spectra for $SS < 10 and 10 = §58 = 23
were compared. Although the values of Rrs412 and Rrsd443 at SSS <

10 were lower than those at 10 = §8§ < 23, the Rrs spectral shapes at
S8S < 10 were much closer to the spectral shapes of the simulated Rrs
errary, thus keading to Jower SSS uncertainties at §5§ < 10

In general, §§S uncertaintics increased with increasing Rrs errors,
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especially for S8 > 23 (Fig 15), Because the simulated Rrs errors in
Fig. 14 were all larger than those estimated from MODIS measurements
(Hu e al, 2013) except for Experiment 1, the S8 uncertainties in
Fig. 15 should be regarded as the higher bound of the model sensitivity
to input Rrs errors. In Experiment 2 where the spectrally-independent
Rrs  errors were  simulated with a  standard  deviation of
1.2 %10 ®sr ', the resulting 5SS uncertainties were < 1,0 at
SS§ > 30, As 8SS of most coast waters in the GOM is > 30, such Rrs
error induced SSS uncertainties should have limited effect on the
madeled 5SS in most regions. Purthermore, because MODIS and Sca-
WiFS Rss spectra instead of fiekl-measured Rrs spectrn were used in the
model devel the uncertainties in MODIS and SeaWiFS Res were

already taken care of implicitly by the MPNN.

4. Discussion
4.1. Which approach to use?

Regardless of the vartous approaches published in the literature,
because SSS does not have an apparent optical signature In the visible
domaln, estimating SS5 from ocean color measurements s all based on
the principle of CDOM-SSS relationship, either explicitly or implicitly,
For the former, Hu et al. (2013} clearly showed that CDOM-SSS re-
lationship in the porthern GOM varied across different coastal regions,
and the test of the CDOM-based approach did not yield any reliable
retrievals for the §5S range of 27-37 (see Supplemental Fig. S$1). Then,
why did the MPNN empirical approach could lead to relatively accuraze
SSS retrievals without the need of re-tuning of the model across the
vanous sub-regions?

Indeed, although semianalytical models together with the use of
explicit CDOM-SSS relationship have the advantage of better under-
standing of the various model terms in their physical meanings, in
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practice they often suffer from uncertainties in the model inpms and

MPNN model, suggesting the gma'-l feasibility of using empérical
models to address 1 H , for the same reason

ical

f aoan (i.e., variable CDOMsalinity B
subregions) not accounted for in the lels. In , empirical
models may deal with all these uncertainties and und fz

through model tuning of the model forms and empirical coefficients.
For example, the impact of turbidity on SSS retrievals is implicitly ac-
counted for through the wse of Res(667), and the variable CDOM-sali-
nity relationships may be reflected in the Res spectral shapes that are
also implicitly accounted for through the use of the Rrs in all bands.
This has been demonstrated by all empirical models tested in the Initial
data diagnosis (Table 1), They all showed better performance than the
model based on explicit CDOM-salinity relationship. Some of these
models (e.g, Random Forest - bagged tree; Decislon Tree — complex
tree) actually showed only slightly worse performance than the selected

why empi del ;nay work, without exphal understanding - of
why they wark, their application must be restricted caly to the en
vironments in which they were trained, and this is exactly why the

madel was evaluated extensively in different environments.

4.2, Modei applicability and limications

‘The extensive evaluation results suggest that for the salinity range of
~1 to ~37, the empirical MPNN can estimate S5S with an overall
uncertainty of ~ 1.2, While the uncertainty is higher for intermediate
S8 vange (10-25) than for other ranges, the relatively small un-
certalnty for $SS = 30 is particularly useful for monitoring and

Flg. 18 Sessitivity of the MPNY 8§ moddl 1o
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quantifying offshore river plumes and noa-point freshwater runoff as
SSS in the offshore plumes rarely dropped to < 30 (1w et al, 2001
2005). Such ability is particularly useful for studying biogeochemical
processes and validating numerical circulation models. For regions with
SSS = 30, the uncertainty of SSS estimated by the MPNN model was
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—3.0. These regions are mostly inshore aress where riverine freshwater
mixes with oceanic waters with a high dynamic S8S range. An un.
certainty of 3.0 for such highly dynamic low-salinity waters may be
acceptable, especially when farge salinity anomaly is expected after
flooding events. Such ability may help decision-making in aquaculture
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management (Le., ayster farming)l Indeed, although empirical in
nature, the MPNN model appears to be applicable 1o most, if not all,
coastal waters in northern GOM. This may seem surprising because the
CDOM - SS§ relationship does vary with region and seasan (Hu et al.
2003) and therefore, even if error-free CDOM can be derived from
MODIS, regional and seasanal CDOM - §SS relationships should still be
required for different regions and seasons if a CDOM-explicit model
were to be used. One explanation of the robust MPNN performance is
that because CDOM is not used explicitly in the MPNN, rather spectral
Rrs data with their corresponding SSS were used to train the MPNN, the
variable CDOM - SS§S relationship was implicitly included in the neu-
rons and empirical coefficients. This is clearly shown in the model
evaluation results for the Big Bend region. The region has different
CDOM - SSS relationship than from the Mississippi River plume (11
el 2003), yet the same MPNN maodel worked reasonably well in this
region (Fig. 10). One additional advantage of using the MPNN model is
that there is no need o sssume CDOM is & conservative p

Resvode Sewing of Futroament 200 (20175 115-152

cloud cover but also sun glint, clowd-adjacent stray light, and other
factors such as large solar or view angles (Feng and Hu, 2010), Clearly,
future effort should also be dedicated to * " these low-quality
data in order to increase data quantity without sacrificing too much
data quality,

Finally, t all ical ANN models woark like a “black box™
and rucudlmoﬂmrwnnthcmodcl developers have no way to test
them for other regions or other datasets, in this study the MPNN pro-
gram has been packaged as one ble file for others to test, where
a detailed description is also provided in the supplemental materials, It
should be straightforward o run the model under a MATLAB en-
vironment. Furth Ithough the pr MPNN model was de-
veloped for MODIS data, it can also be applied to other sstellite data
with careful sttention to the slight difference between their band set-
tngs.

5. Conclusi

(Chen and Gandoer, 2004), and the complex CDOM-SSS redationship for
turbid coastal waters of the northern GOM was addressed Implicitly by
the MPNN model through the use of the spectral Rrs data, Overall, the
evaluation results using ship surveys for nearshore and offshore waters
as well as baoy time-serfes data for nearshore stations suggest the ro-
bustness of the model in estimating SSS In coastal waters of the
northem GOM,

However, because of its empirical nature, the MPNN model Is anly
applicable to waters that are encompassed by the training datasets,
Although we believe that nearly all feld-collected 5SS data from major
cruise survevs in the past 18 years have been used in moded training and
validation, there is no guarantee that these data covered all possible
oceanographic conditions. One such exceptional condition is upwelling,
which may bring CDOM-rich high-salinity water to the ;urfuct. und/ot

Accurate estimation of 5SS |n cosstal waters and river plumes of the
northern GOM from optical remote sensing has been a chatlenging task
due 1o non-conservative mixing of CDOM and SSS, variable CDOM-SSS
relationship in different regions, and due to high uncertalntics in the
satellite-derived Rys and CDOM In turbid and dynamic coastal waters
(e.g., Mississippl River delta). fn this study, with satellite-estimated Rrs
(at 412, 443, 488, 555, and 667 nm) and SST as Inputs, a neural net-
work based model (MPNN) has been developed and thoroughly eval-
uated for coastal waters of the porthern GOM and for the offshore
Mississippl River plume. The model showed reasonably good perfor-
mance in the Mississippl-Atchafalaya Coastal region and Florida's Big
Bend region, and was capable of detecting and quantifying the offshore
Mississippi River plume. However, the operational use of this model in

bring nutrients to surface waters which phytopl
blooms. Both will result in false underestimation of SSS. However,
strong coastal upwelling is rare in the northermn GOM (Muller-Karger,
2000), and coastal spwelling on the WFS (Welsberg et al, 2016) only
caused slight underestimation in S5§ (35.5 in the upwelling zone versus
36.4 in surrounding s, with und tion within the model
uncertainty). These coastal upwelling events can be identified through
the use of SST anomaly imagery. Likewise, offshore upwelling due to
deep-water intrusion and/or wind mixing can also be easily recognized
and ruled out by examining SST anomalies (1lu ex 2l 2011). Therefore,
these cases are unlikely to cause major problems in model spplications.
However, to create the best outcomes for the MPNN model, the SST
anomaly and bloom data should be used as a selection criterion to mask
the MODIS imagery prior to their inclusion in the model. In the future, &
scheme to combine the MPNN moded results and upwelling index
(through either numeﬂcal models or SST anomalies) may be im-

I d for operational use of the model In generating datly SSS
Imagtry from MODIS in near real-time. Such applications may enhance
the capacity of the existing Virtual Beoy System (VBS, Hu et al, 2014)
In monitoring coastal warter quality,

The MPNN model bas been thoroughly tested for the northem GOM.
One question & whether it can be applied to other coastal reglons.
While each region may have its unique Rrs — SSS relationship, we be-
lieve that the general approach may be applicable as long as sufficient
local data have been collected to retrain the model, Indeed, even
without such a local tuning, the application of the MPNN model (with
its default coefficients) to the East China Sea showed reasonable spatial
patterns of low-S8§ nearshare waters and higher-SSS offshore waters
(see figures In Supplemental materials), which are consistent to those
reported in Hai et al, (2013).

Although the MPNN model has been shown applicable to the
northern GOM waters with known uncertainties, when applying it to
satedlite data to derive SSS maps and time series, the limitation is not in
the mode] itself but in scarce MODIS data for nearshore waters, This is
clearly shown in g 12d, The scarce MODIS data is due to not anly

] ing daily MODIS SSS maps still requires efforts to rule out some
rare cases of coastal upwelling,

Notations

AOML  Atlantic O graphic &M 3ogical TLab ¥
AOPs App Optical Prop

ANN Artificial Neural Netwoek

BOEM  Buresu of Ocean Energy Management
CDIAC  Carbon Dioxide Information Analysis Center
CDOM  Colored Dissolved Organic Matter

CHL Chiorophyll-s Concentration

DEEPEND Deep-Pelagic Nekton Dynamics of the Galf of Mexico

FWC Flotida Fish and Wildlife Conservation Commission
FWRI Fish and Wildlife Research Institute

GOM Gulf of Mexico

GSFC  Goddard Space Flight Center

1095 Inherent Optical Properties

LEDO  Lamons-Doherty Earth Observatory

MARS  Mississippl/Atchafalaya River System

MB Mean Blas

MLR Multl-variate Linear Regression

MNR Multi-variate Nonlinear Regression

MODIS  Moderate Resolution Imaging Spectroradiometer
MPNN  Multilayer Perceptron Neural Network

MR Mean Ratio

NCEI National Centers for Environmental Information
NDEC  National Data Buay Center

NEGOM  Narth Gulf of M

PCA Principle Component Analysis

pCO; Partial Pressure of CO,

n* Determination coefficient

RMSE  Root Mean Square Error

Rrs R Sensing Reflectance

SEAMAP Southeast Area Monitoring and A P
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SeaWiFS Sea-Viewing Wide Field-of-View Sensor

SMOS  Soil Moisture and Ocean Salinity

SNPP  Swomi National Polar.orbiting Partnership
SST Sea Surface Temperature

558 Sea Surface Salinity

TA Tatal Alkalinity

TAMU  Texas A & M University

USF Univessity of South Flarida

VIIRS  Visual Infrared Imaging Radiometes Suite
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APPENDIX D:
A MACHINE LEARNING APPROACH TO ESTIMATE SURFACE OCEAN PCO2

FROM SATELLITE MEASUREMENTS

Chen, S., Hu, C., Wanninkhof, R., Cai, W. J., and Barbero, L. A machine learning approach to

estimate surface ocean pCO. from satellite measurements (submitted).
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A machine learning approach to estimate surface ocean pCO: from satellite measurements

Shuangling Chen', Chuanmin Hu'", Brian B. Bames', Rik Wanninkhof*, Wei-Jun Cai’, Leticia

Barbero®

' College of Marine Science, University of South Florida, 140 Tth Avenue, South, St. Petersburg,

Florida, USA 33701
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3 College of Earth, Ocean, & Environment, University of Delaware,
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Abstract

Surface partial pressure of CO; (pCO:) is a critical parameter in the quantification of air-sea CO
flux, which further plays an important role in quantifying the global carbon budget and
understanding ocean acidification. Yet, the remote estimation of pCO: in coastal waters (under
influences of multiple processes) has been difficult due w complex relationships between
environmental variables and surface pCOa. To date there is no unified model to remotely estimate
surface pCO: in oceanic regions that are dominate by different oceanic processes. In our study
area, the Gulf of Mexico (GOM), this challenge is addressed through the evaluation of different
approaches, including multi-linear regression (MLR), multi-nonlinear regression (MNR),
principle component regression (PCR). decision tree, supporting vector machines (SVMs),

multilayer perceptron neural network (MPNN), and random forest based regression ensemble

* Corresponding author. Email: huc(@usf.edu
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(RFRE). After modeling, validation, and extensive tests under different scenanios, the RFRE model
proved to be the best approach, The RFRE model was trained using data comprised of extensive
pCO: datasets (collected over 16 years by many groups) and MODIS (Moderate Resolution
Imaging Spectroradiometer) estimated sea surface temperature (SST), sea surface salinity (SSS),
surface chlorophyll concentration (Chl), and diffuse attenuation of downwelling irradiance (Kd).
This RFRE-based pCO2 model allows for the estimation of surface pCO: from satellites with a
spatial resolution of ~1 km. It showed an overall performance of a root mean square error (RMSE)
of 9.1 patm, with a coefficient of determination (R?) of 0,95, a mean bias (MB) of -0.03 patm, a
mean ratio (MR} of 1,00, a unbiased percentage difference (UPD) of 0.07%, and a mean ratio

difference (MRD) of 0.12% for pCO- ranging between 145 and 550 patm. The model, with its

original parameterization, has been tested with independent datasets collected over the entire GOM,

with satisfactory performance in each case. The sensitivity of the RFRE-based pCO: model to
nput errors of each environmental vartable was also thoroughly examined. The results showed
that all induced uncertainties were close to, or within, the uncertainty of the model itself with
shightly higher sensitivity to SST and SSS than to Chl and Kd. The extensive validation, evaluation,
and sensitivity analysis indicate the robustness of the RFRE model in estimating surface pCO: in
most, if not all, GOM waters. The RFRE model approach was applied to the Gulf of Maine (a
contrasting oceanic region to GOM), with local model training. The results showed significant
improvement over other models suggesting that the RFRE may serve as a robust approach for other

regions once sufficient field-measured pCO: data are available for model training.
Keywords: surface pCOa, SST, SSS, Chlorophyll, Kd, satellite remote sensing, Gulf of Mexico

1. Introduction
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Since the industrial revolution, the continuous consumption of fossil fuels has increased
atmospheric CO; by ~40% (Sabine et al., 2004; Solomon ¢t al., 2007). Correspondingly, the
oceanic uptake of CO:z has resulted in a ~30% increase in ocean acidity and ~0.1 (pH units)
decrease of pH (Orr et al., 2005: Doney et al.. 2009; Sun et al., 2012; Pachauri and Meyer 2014).
These changes in the ocean have led to a decrease in marine biota and a degradation of marine
ecosystems (Widdicombe and Spicer 2008; Doney, 2010; Dickinson et al., 2012). Therefore,
understanding oceanic uptake of anthropogenic CO: and its changing rate are pressing concerns
of the research community. However, due to the dynamics of the partial pressure of surface water
CO: (pCO2), large uncertainties still exist in the quantification of regional air-sea CO; flux
(Takahashi etal., 2002, 2009, 2014; Sarma, 2003; Borges ct al,, 2005; Hofmann et al,, 201 |; Sarma
ct al., 2012; Chen et al., 2013; Wanninkhof et al., 2013a). Therefore, accurate and synoptic
knowledge of surface oceanic pCO: is critical to studying the ocean’s role in global carbon cycling

within a changing world.

Satellite remote sensing, with its advantages of spatial and temporal resolution and coverage, has
become an important tool for synoptic estimation of oceanic surface pCO:, In principle, surface
pCO: is mainly controlled by four interrelated processes — a thermodynamic process, biological
activities, physical mixing, and the air-sea CO; exchange (Fennel et al,, 2008; Tkawa et al., 2013;
Xue ¢t al. 2016). These four processes are closely related to satellite-derived environmental
variables such as sea surface temperature (SST, “C), sea surface salinity (SSS. dimensionless),
surface chlorophyll-a concentration (Chl, mg m™), diffuse attenuation of downwelling irradiance
(Kd, m™). as well as other vanables such as wind speed (m s°') and mixed layer depth (MLD, m)
(i.e., Bai et al., 2015; Marrec et al., 2015; Moussa et al., 2016; Chen et al., 2016 & 2017; Lohrenz

et al., 2018, etc.). Specifically, the thermodynamic quantities, solubility of CO: and the
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dissociation constants of the carbonate system are mainly controlied by SST and SSS (Weiss, 1974,
Millero et al., 2006). SST and SSS can also be good tracers of water masses (1.¢., freshwater inputs,
upwelled waters) that have distinct carbonate characteristics such as total alkalinity (TA) and
dissolved inorganic carbon (DIC) (Lee et al., 2006; Yang et al., 2015). Because of the consumption
and production of CO: in the biological processes of photosynthesis and respiration, and the
depletion of TA and DIC in a 2 to 1 ratio in biological calcification (i.e., Reynaud et al., 2003
Salisbury et al., 2008; Fay & McKinley, 2017), the biological effects on surface pCO: can be
implicitly interpreted from optical parameters such as Chl and Kd, Ocean mixing (both horizontal
and vertical) is closely related to MLD as well as SST and SSS; and, the influence of air-sea CO;
exchange on surface pCO: can be deduced from wind speed (Bates et al., 1998; Bates and Merlivat,
2001; Turk et al., 2013). However, in a specific oceanic system, only one or two processes {(and
thus their corresponding environmental variables), may dominantly control the changes of surface

pCO: (Bai et al., 2015).

Using the environmental variables mentioned above, several satellite-based surface pCO; models
have been proposed and developed in the published literature for different oceanic regions (both
open and coastal ocean waters). Of these, remote estimation of surface pCO: in the open ocean is
relative mature due to less variability in the open ocean’s environmental conditions than those in
coastal oceans. Both traditional empirical regressions (i.c., multi-lincar regression (MLR), multi-
nonlinear regression (MNR)) (c.g., Stephens et al., 1995: Sarma, 2003; Ono et al., 2004 Olsen et
al., 2004; Rangama et al., 2005; Sarma et al.,, 2006: Jamet et al.. 2007; Chen et al., 2011) and
machine-learning based regressions (1.e.. multilayer perceptron neural network (MPNN), self-
organizing maps (SOMs)) (e.g., Telszewski et al., 2009; Friedrich and Oschlies, 2009: Nakaoka et

al., 2013; Moussa et al., 2016: Landshiitzer et al. 2014) have been used to model surface pCO: for
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open-ocean waters, with a root mean square error (RMSE) of < 17 patm in most cases, For coastal
oceans, due to their complexity and dynamics in the biogeochemical and physical processes,
satellite mapping of surface pCO: is still a challenging task. Specifically, in addition to MLR,
MNR, and SOMs (e.g., Lefévre et al_, 2002; Chierici et al., 2009; Zhu et al., 2009; Shadwick et al.,
2010; Borges etal.. 2010; Jo et al., 2012: Tao et al., 2012; Signorini et al., 2013; Marrec et al.,
2014, Parard et al., 2014; Marrec et al., 2015; Chen et al., 2016), other empirical approaches such
as prnciple component regression (PCR) (Lohrenz & Cai, 2006; Lohrenz et al,, 2010) and
regression tree (Lohrenz et al., 2018), and semi-analytical approaches (Hale et al,, 2012; Bai et al,,
2015; Chen et al., 2017) have been proposed for different coastal regions dominated by a single
oceanic process (river-dominated, upwelling-dominated, or ocean current-dominated), For these
complex regions, RMSE in the satellite-derived pCO; from these approaches is generally much

higher than for open-ocean waters, and it can reach 88.6 patm.

Despite these extensive efforts in establishing the various approaches or models, several problems
still exist in the current satellite mapping of surface pCOa. First, most approaches mentioned above
are investigated in only one oceanic region, often dominated by a single major oceanic process.
Although Signorini et al. (2013) proposed & MLR approach for the entire U, S. East Coast, in
which the East Coast was actually divided into different sub-regions through SOMs and the MLR
pCO:> model was parameterized for each sub-region with RMSE of 22.4 ~ 36.9 patm. Similarly,
Hales et al. (2012) developed a semi-analytical approach for the entire U, S. West Coast, but the
West Coast was divided into different sub-regions through SOMs, each with a unique pCO2 model
parameterization for each sub-region. The resulted RMSE varied between 6.6 and 65.0 patm.
Because such models are developed and parameterized for specific regions, any proposed models

to estimate pCO: for a certain ocean region may have poor applicability in other regions even afier
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local parameterization, In other words, at present there is no unified approach, let alone unified
model to remotely estimate surface pCO; for large ocean regions dependent on differing oceanic
processes such as Gulf of Mexico (GOM). The semi-analytical approach proposed by Bai et al.
(2015) showed potential to work for any oceanic waters, yet in practice it is difficult or even
impossible to separate and quantify the effects of each oceanic process (i.e.. horizontal mixing,
vertical mixing, biological activities, air-sea COz exchange) on surface pCOx with high accuracy
(i.e.. RMSE < 10 patm). Further, in Bai's study, the semi-analytical approach was implemented
for the East China Sea, but tested solely with summertime data. Chen et al. (2017) adopted Bai’s
approach to the northern GOM with localized parameterization, and similarly, using summertime
data, Chen et al. (2017) found that the semi-analytical approach was not as good as an empirical
approach in terms of model uncertaintics and the model’s capability in estimating pCO: under

different oceanic conditions (i.e., coastal upwelling).

Therefore, the objective of this work was to develop an empirical approach with general
applicability to estimate surface pCO: from satellites for large oceanic regions encompassing
multiple processes, with improved model performance over those published in the literature. The
ultimate goal is to extend this approach 1o all regional oceans around the globe. Below we present
such a machine-learning based approach, namely a random forest based regression ensemble
(RFRE), The RFRE approach was sclected over many other approaches after extensive testing (sce
Section 2.3.1 for details about performance of each tested approach). Using this approach. a pCO:
maodel! with low uncertainties was developed for the entire GOM, a semi-enclosed subtropical sea
that encompasses many different oceanic processes {see Section 2.1 for details about the selection
of this study region). To show the general applicability of this approach, the RFRE was also tested

over high-latitude waters in the Gulf of Maine (G. Maine), which showed improved performance
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over other published approaches and therefore great potential for general applications in other

oceanic regions.

This paper is arranged as follows. First, the study region is briefly introduced to justify the selection,
followed by description of the satellite and field data used. Then, methods in data preprocessing,
madel development, accuracy assessment, model sensitivities to the errors of satellite variables are
described, Results of the monthly pCO: climatologic maps and time series of surface pCO: are
presented, Finally, the environmental variables used to model surface pCO: and to trace its
interannual variabilities, the general application of the approach to other oceanic regions, as well

as its advantages and limitations, are discussed.
2. Data and methods
2.1. Study region

The region of GOM, bounded by 18 ~ 317 N and -98 ~ -79° W, was selected 10 test the RFRE
approach for three reasons. First, neither regional satellite-based pCO2 models, nor a unified pCO:
approach or model, is available for the entire GOM. Most of the sub-regional studies (Lohrenz &
Cai, 2006; Lohrenz et al., 2010; Chen atal., 2016 & 2017; Lohrenz ct al.. 2018) are focused on the
West Florida Shelf (WFS) and the northern GOM waters, where large uncertainties exist in the
satellite-derived pCO: (i.e., variable RMSE of 12.0 ~ 50.2 patm). Second. due to lack of synoptic
and frequent mapping of surface pCO: over the entire GOM, it 1s still unclear whether the GOM
serves as a CO:z source or sink, as shown by the discrepancies in the published studies (Takahashi
et al,, 2009; Coble et al,, 2010; Robbins et al., 2014; Xue et al,, 2014), Third, as a semi-enclosed
subtropical ocean, the GOM covers multiple regions with different dominating processes (1.¢..

freshwater inputs from Mississippi and Atchafalaya River System (MARS), Loop Current, oceanic
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currents, mesoscale ocean circulation, occasional coastal upwelling) which control surface pCO..
Therefore, if a RFRE-based unified pCO: model can be developed in this challenging environment,
it may suggest that the application of the RFRE approach to other oceanic regions may deliver

good results.
2.2. Data source
2.2.1. Field data

Over the past 16 years, there have been more than 220 cruise surveys that collected underway
pCO: data from the GOM waters during different seasons. We compiled all the publicly available
flow-through pCO: data measured in the GOM, as well as pCO: data collected from a fixed-
location buoy in the Mississippi River delta. The data used for model development and
independent validation are presented in Tables | and 2. respectively. with a general description of
the data source, data volume, time span and data range for each dataset. Collectively these data

represent the most complete pCO; dataset for the GOM.

Table 1. Underway and buoy pCO; measurements from different platforms in the GOM. These
surface pCO; data were collected at a depth of < Sm over all seasons. Only a small portion of these
measurements were found to have co-located and contemporaneous (+ 6h) satellite derived Chl,
Kd, SSS and SST data (last column). These surface pCO: data encompass typical variation range
in surface pCO: in most of the GOM waters, and these data were used to develop an optimal
satellite pCO2 model for the GOM through thorough tests of different empirical approaches. The

corresponding spatial distributions of the surface pCO: data are shown in Fig. 1.

, y S Year pCO: range PCO2 range 2ol #of

Platfarm (Vessel/Buoy) Data Source cavered (putm) (ustm)’ duts data’
Buoy CoastMS (20°N, E8.6°W) | NCEUNODC | 2009-2014 T210-464,50 251 20-468.73 5132 47
RV Cape Hatteras NCEUNODC | 2009.2010 102.73-1708.85 145.32-437.27 26,794 748

131



S Explorer of the Sess NCEUNODC | 2002-2015 3327643264 IIRE8-41096 | 46833 | 5066
R/V Pelican NCEVNODC 2013 223.05-1836.03 IR 19-2RT.R4 | 47275 9
RV Gordon Gunter AOML 2008-2016 68.66-148422 19529.538.39 | 202,718 | 7,679
M/V Las Coevas AOML 2009-2012 199.08-528 60 2718748689 | 30859 | 1,238
RV Marcus G. Langseth NCEUNODC 2013 304.55-536.31 350.93-370.05 2014 08
RV Pelican uD 2004-2006 181.29-1608.42 364 .40-439.07 9.998 27
RV Brown NCEUNODC | 20032012 192.74-502 54 206.01-443.71 35622 K28
RV Falkor TAMU 2012 170,00-452 20 371.1-419.2 6938 07
RV Bold NCEUNODC | 2006-2007 8404208360 198.90.448.55 | 36/M5 295
F. G. Walton Smith NCEUNODC | 2011-2015 85.83-2773.92 2B0.13-852.42 | 100007 | 1309
Tatal 2002-2016 T7210-277392 145.32-552.42 | 350,235 | 17,351
Dals statistics afler hing with g (46 satellite data.

In Table 1 (data used for model development). the pCO: data (collected between 2002 and 2016)
ranged between 72.10 and 2773.92 patm. These in situ pCO: field data were obtained from the
databases of NOAA National Centers for Environmental Information (NCEI) (formerly the
National Oceanographic Data Center (NODC) (https:/www . nodde noaa. gov/ocads’) (Sutton et al,,
2012; Wang & Huang, 2014(a-¢); Millero et al,, 2016(a-d); Salisbury et al,, 2016; Takahashi et al,,
2016a; Wanninkhof et al.,, 201 1(a-f), 2013(b-g), & 2016d), NOAA Atlantic Oceanographic and

Mecteorological  Laboratory  (AOML)  (http://www aoml.noaa.gov/ocd/ocdweb/oce. html)

(Wanninkhof et al., 2014(a-b), 2016(a-c, e-g)). University of Delaware (UD), and Texas A&M
University (TAMU). The corresponding spatial distribution of these pCO: data is shown in Fig.

1a, with over 350,000 pCO: measurements in total,
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Fig. 1. Spatial distributions of the surface pCO; measurements in the GOM along the cruise tracks.
(a) Cruise tracks from all data described in Table 1 (N=550.235): (b) Cruise tracks from the same
data but with co-located and contemporaneous (+ 6h) satellite Chl, Kd, SSS and SST (N=17.551)
data. Five sub-regions, each about 220 km by 110 km, are selected to examine the interannual
monthly time series of surface pCO:. Box 1 is near the Mississippi River delta, Box 2 is on the
West Florida Shelf, Box 3 is near the Loop Current, Box 4 is in the western GOM open waters,

and Box § presents the “dead zone™ along the Louisiana coast,

Typically, the ship-based surface pCO- data were collected at a depth of 5 m using a combination
of a gas equilibrator and a non-dispersive, infrared analyzer Li-COR™ (model 6251, or 6262, or
7000 or 840A) integrated in the shipboard flow-through seawater system, with a measurement
mnterval of 2 or 3 min and an accuracy of 2 patm (or better). The buoy-based pCO: data were
collected at a depth of < 1 m using a Li-COR™ model 820 with a sampling frequency of every 3h
and an accuracy of 2 patm, The details of data collection, processing, and quality control can be

found in Feely et al. (1998), Sabine (2005), Pierrot et al, (2009), and Huang et al. (2015).

Table 2. Underway pCO: measurements used for independent validation of the developed pCO:

model. These surface pCO> measurements were collected from different cruises (N=10) by the

10
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research vessel of RV Gordon Gunter, None of these datasets was used in the pCO;z model training
and they were not included in Table 1. See section 3.2 and supplemental file for the spatial

distribution of cach cruisc dataset.

Craise 1D Soares Pate N | M || i
GUO%02_leg! AOML Ape. 2009 35433-412.10 | 358.33-30368 | 4027 | 976
GUO2_leg? AOML | Apr. and May 2009 | 339.38-291.76 | 37357-38830 | 7234 | 771
GU1606_Legl AOML Sep. 2016 15742 -48447 | 247.10-44821 | 5626 | 1,051
GUIG0Y Leg2 AOML Nov. 216 33039 . 41209 330.39 . 390,02 5,000 723

GUITOI Transit_Leg | AOML May, 2017 326.46-399.13 | 32646- 30670 | 1231 | 420
GUI703_Leg! AOML Jul, 2017 25330-44321 | 37299-44321 | 788 | 1187
GUIT03 Leg2 AomL | PRS0 1993 asanr | 25346-37s8 | 7am | 725
GUIT04_Leg? AOML Sep. 2017 2W331-51031 | 3110242880 | 6,308 | 1,548

GUIT0S_ Transic_Leg AOML (1. 2017 AR3S0 - 40843 38426 - 405,31 1,323 253

GUI706_Transit_Leg | AOML Nov. 2017 327.26-403.66 | 327.26-38401 | 1352 | 630

Datn statistics after maiching with " (223h) satellite datn

Similar to Table 1, Table 2 lists data from ten flow-through pCO: cruise surveys that were used
for independent model evaluation under different conditions, These cruises were conducted on the
NOAA research vessel — RV Gordon Gunter, and the pCO: data were obtained from the NOAA
AOML databases (Wanninkhof et al., 2014b & 2016f; Sullivan et al,, 2017). Specifically, pCO;
data collected in Apr, and May 2009 (GU0902 legl and GU0902 leg2) were from the southem
and western GOM waters, ranging between 354.33 and 412,10 patm; data collected in Sep. and
Nov. 2016 (GU1606_Legl and GU1609 Leg2) and Sep. 2017 (GU1704_Leg2) were from the
northern and western GOM waters, ranging between 157.42 and 511.31 patm: data collected in
Jul.and Aug. 2017 (GU1703_Leg2) focused on the northern GOM waters, ranging between 129.73
and 453,17 patm; and, data collected in May, Jul,, Oct,, and Nov. 2017 (GU1701_Transit_Leg,
GUI703_Legl, GUI705_Transit_Leg, and GUI706_Transit_Leg) focused on the northern and
castern GOM, with a pCO; range of 253,30 — 443.21 patm. Note that all these cruise data in Table

2 represent independent datasets for evaluating the pCO> model performance as 99% of them were
11
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excluded in the model development. The spatial distributions of these pCO; datasets are shown in

Scction 3.2 and in the supplemental materials.
2.2.2. Satellite data

NASA standard daily Level-2 data products (version R2014.0) covering the GOM for the period
of Jul. 2002 — Dec. 2017 with a spatial resolution of ~1 km were downloaded from the NASA
Goddard Space Flight Center (GSFC) (https;//oceancolor,gsfe nase. gov/). These Level-2 data
products were derived from measurements by the Moderate Resolution  Imaging
Spectroradiometer (MODIS) on the Aqua satellite, and they included Chl, SST, and spectral
remote sensing reflectance (Rrs, sr™') in 7 bands between 412 and 678 nm. The spectral Rrs data
were used to calculate the diffuse attenuation coefficient at 488 nm (Kd, m™') using the semi-
analytical algorithm developed by Lee et al. (2005), and to calculate SSS using an empirical
approach recently developed by Chen & Hu (2017). The Kd product is often called Kd_Lee but
for brevity it is simply called Kd in this study, The MODIS-derived environmental variables
including Chl, Kd, SST, and SSS were used as inputs of the surface pCO; model. Specifically,
SST was used to capture the thermodynamic effects, SSS was used to monitor the freshwater
characteristics of multiple river inputs, and Chl and Kd were used to quantify (implicitly) the

effects of biological activities on surface pCOx.
2.3. Methods
2.3.1. Data preprocessing

Time and location data from the in sitw pCO> measurements were used to identify the co-located
and contemporancous MODIS-derived data products (Chl, Kd. SST. and SSS) between July 2002

and December 2017. These data were used in the RFRE pCO: model development.

12

135



To obtain high-quality data, co-located and contemporancous field-measured pCO; and MODIS-
derived Chl, Kd, SST and SSS were selected using the following criteria. Considering the tidal
cycle characteristics (i.e., diumnal) in most regions of the GOM., a time window of = 6h between
field and MODIS measurements was used. Low-quality satellite data under various non-optimal
conditions (e.g., atmospheric correction failure, cloud, stray light, sun glint, etc.) were excluded
using the NASA standard quality control criteria (Patt et al., 2003; Barnes and Hu, 2015). Valid
satellite data within a 3%3 km box centered on the location of each in situ field pCO2 measurement
were extracted and averaged (Bailey and Werdell, 2006), Only if the number of valid pixels in the
3%3 km box was = 5 and its variance was < 10% the extracted data were used together with the
field measurement in the model development. After applying these quality control screenings,
17,551 conjugate observations of field-measured pCO: and satellite data products between 2002
and 2016 were determined to be valid and available for the RFRE pCO: model development (Fig.
1b). In this conjugated dataset, both the responsive variable (surface pCO:) and predictive
variables (SST, SSS, Chl, and Kd) show a typical variation of each, although some extremely low
and high field pCO2 measurements in the nearshore waters (Fig. la) were excluded due to lack of
valid contemporaneous satellite observations. Specifically, in the model development, field-
measured pCO; ranged between 145,32 and 552.42 patm, MODIS Chl ranged between 0.03 and
53.96 mg m~, MODIS Kd ranged between 0.019 and 1.373 m™', MODIS SST ranged between

13.48 and 33.28 "C. and MODIS S8S ranged between 10.90 and 38.34.

The selection of the predictive variables (i.e.. SST, SSS, Chl and Kd) was based on our previous
studies in the northern GOM and eastern GOM (Chen et al., 2016 & 2017). In Chen et al. (2016),
various experiments were conducted to examine the relationship between surface pCO: and

different environmental vanables (i.e., SST, SSS, Chl, Kd, colored dissolved organic matter
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(CDOM)) in different forms (1.¢., linear scale or logs scale), From these experiments, logiof Chl),
logiol Kd), and SST were proven to be the most effective variables in estimating surface pCO: in
WEFS waters. The study in Chen et al, (2017) found that in addition to SST, logio{Chl), and logip
(Kd), SSS was also a critical parameter in estimating surface pCO: in the northern GOM. This is
because of the large freshwater inputs with distinct carbonate characteristics from the MARS. In
addition, in both studies (and in many other studies), Julian day (Jday. or day of year) normalized
sinusoidally was used as a “tuning” parameter 10 emphasize the seasonal cycle of surface pCO;
(Friedrich and Oschlies, 2009; Lefévre et al., 2005; Signorini et al,, 2013; Chen et al,, 2016 &
2017). Therefore, to estimate the surface pCO: for the entire GOM, all the four environmental

variables (SST, SSS. Chl, and Kd) as well as Jday should be included in the RFRE pCO:; model,

One advantage of using contemporancous satellite-derived data (SST, SSS, Chl, Kd, and Jday)
instead of in situ data to train the RFRE pCO:2 model, is that uncertainties in the satellite-derived
data will be implicitly included in the empirically-derived weights of the RFRE (i.e., model
coefficients). Then, when the same data products are used for surface pCO:2 predictions, such

uncertainties in the satellite-derived data, to a large extent, should be cancelled.
2.3.2. Model selection, and principle and training of RFRE

In the published literature, both empirical and semi-analytical approaches were used to develop
satellite-based surface pCO: models (see Section 1). The study in Chen et al. (2017) showed that
although semi-analytical approaches had the advantages of explaining oceanic processes explicitly,
their performance for northern GOM were not as good as those of empirical approaches, Therefore,
in this study, the commonly used traditional empirical approaches (i.¢., MLR, MNR, and PCR)
and machine-leaming based empirical approaches (i.e., MPNN, regression trée, regression
ensembles, and SVMs) were all tested using the same training datasct (Table | & Fig. Ib) and the
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same input variables. Among these trialed approaches, RFRE showed the best performance over
all others (Eq. 1), and thus, RFRE was selected to develop the satellite-based pCO; model in this
study (sec Section 3.1 for detailed model comparison results). One distinct advantage of the
machine-learning based RFRE approach is that it can approximate the nonlinear relationship
between predictive variables and targeted variable (i.e.. surface pC02) without explicitly knowing

their functional dependence,
pCO; = fiinput variables)=fzrrefSST, SSS, log,wiChi), logio(Kd), cos(Jday/365)) (1)

RFRE is one type of ensemble learning which combines many weighted regression trees to
implement the random forest algorithm ( Breiman, 2001) in Matlab (R2017z). Individual regression
trees tend to overfit. and the RFRE takes the advantage of each regression tree via bootstrap
aggregation (or bagging) to reduce model overfitting and to improve model generalization
(Breiman, 1996; James et al,, 2013). In model training, regression trees in the ensemble grow
independently on a drawn bootstrap replica of the training dataset. In other words, each regression
tree can select a random subsel of predictors to use at ¢ach decision split and can involve many
splits in the random forest algorithm. This way, correlations among the developed regression trees
are greatly reduced, resulting in improved independency among the regression trees. In addition,
this subsampling allows an out-of-bag estimate of the predictive performance by evaluating the
predictions on those observations which were not used in the bootstrap sample. In this study. the
regression ensemble function “fitrensemble™ in Matlab (R2017a) was used to develop the
relationship between surface pCO: and environmental variables, There are two important
parameters to define this RFRE model structure: the minimum leaf size and number of learning
cyeles (1.¢., the number of regression trees). Leaf size refers to the number of data samples used in

cach node of a regression tree, and the minimum leaf size, thus determines the splits and depth of
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a regression tree, The number of regression learning cycles determines the number of regression
trees to be included in the RFRE. By trial and error, the minimum leaf size and the number of
leaming cycles of the RFRE were optimized to 8 and 30, respectively. With these settings, the
prediction accuracy of the RFRE model became stable, and the RFRE model were developed to

predict surface pCO>.
2.3.3. Accuracy assessment

Two types of model evaluation were used to quantify the performance of the RFRE model in

estimating surface pCOz in the GOM.

First, in the model development phase. the modeled pCO: were compared with the in situ field
pCO:z in both model training and cross-validation. A 10-fold cross validation was used during this
phase, where the training dataset was randomly partitioned into 10 equal-size subsamples. Of these
10 subsamples, 9 subsamples were used o train the model, and the remaining subsample was
retained to test the madel. The cross-validation process was repeated 10 times, with each of the 10
subsamples used exactly once as the validation dataset. The advantage of such a validation method
is that all observations are used in both model training and model validation to include all the
scenarios in the training dataset, and each observation is used for validation only once. Standard
statistical measures. including root mean square error (RMSE, both absolute and relative),
coefficient of determination (R”), mean bias (MB), mean ratio (MR), unbiased percent difference
(UPD), and mean relative difference (MRD) (Barnes & Hu, 2015), were used to quantify the

accuracy of the RFRE-estimated pCOa.

Second, for the developed RFRE pCO; model, extensive independent validation was conducted

using the ten cruise datasets listed in Table 2, In each cruise-based independent validation,
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satellite-derived surface pCO; along the cruise track from contemporancous (= 24h) daily pCO;
maps and from the pCO; composites of the cruise period were compared with the field-measured
pCO;, respectively. The 24h criteria was set based on the assumption that surface pCO: would not
show significant variation (i.e., < 5 patm) within 24h. In each comparison, statistics of RMSE, R”,
MB, MR, UPD, and MRD were calculated. Also, the field-measured surface pCO: data along the
cruise track were color-coded (in the same way as the satellite pCO2 map) and overlaid onto the
pCO: composite to visually examine the consistency between the field-measured pCO: and the

satellite-derived pCO».
2.3.4. Model sensitivity to errors in the input variables

The satellite input variables to the RFRE pCO: model (SST, SSS, Chl, and Kd) have inherent
uncertainties. In order to understand the sensitivity of the RFRE model to such input errors, the
uncertainties of each MODIS-derived variable were fed into the RFRE model. Surface pCO:
derived from the same RFRE using error-free inputs and error-added inputs were then compared

to determine the model’s sensitivity to input errors of each variable,

Errors in cach of the satellite-derived environmental variables were quantified based on the
published literature. Specifically, satellite SST has an uncertainty of < | “C (Hu et al., 2009), SSS
has an uncertainty of = 1 for 88§ > 30 (Chen & Hu. 2017), Chl shows an uncertainty of 5%-30%
(Gregg and Casey, 2004; Bailey and Werdell, 2006; Melin etal., 2007) and 12-24% in waters of >
5m bottom depth (Cannizzaro et al., 2013), and Kd has an uncertainty of ~13% (Zhao et al., 2013).
To be consistent with the published studies (i.e., Chen et al., 2016; Lohrenz et al,, 2018), errors of
+1°C, % 1, +20%, + 20% were added in the MODIS-derived SST, SSS, Chl, and Kd, respectively,

to understand the error propagation to the satellite-derived pCO:.
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3. Results
3.1. Model performance

Using the same training dataset (Table | and Fig. 1b), all the empirical approaches described in
Section 2.3.2, including MLR, MNR, PCR, regression tree, regression ensembles, SVMs, and
MPNN were traled with the same model inputs of SST, SSS, Chl, and Kd (Eq. 1) {see Section
2.3.1 for the selection of these variables), Table 3 shows the model results of each approach.
Clearly the RFRE showed the best performance. However, the three regression trees (simple tree,
medium tree, and complex tree) and the MPNN (red in Table 3) also tended to be good models
with only slightly worse performance (i.e., RMSE < 20 patm), thus these models together with the
RFRE were selected as potentially good models. To confirm whether the RFRE model is indeed
the best one, based on the cruise dataset of GU1703_Leg2, independent validation was done for
each of the potentially good models selected in Table 3. The cruise GU1703_Leg2 was used mainly
because the pCO: data were collected around the Mississippi River deha, which was the most
dynamic region in the GOM. Table 4 shows the comparison of these potentially good models. The
RFRE did show the best performance over others. Validation using several other cruise datasets in
Table 2 also showed that the RFRE had better performance than others, and the RFRE was

therefore selected in this study.

Table 3. Model comparison of different empirical approaches including traditional empirical
approaches (MLR. MNR, and PCR) and machine-learning based empirical approaches (regression
treg, regression ensemble, SVMs, and MPNN). The non-shaded statistics were derived from model
training, and the shaded statistics were derived from model validation. Models with an RMSE <
20 patm are shown in red and these models were further compared through an independent
validation (sce text). The random forest based regression ensemble (RFRE) model is highlighted
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i bold to contrast it as the best-performance maodel. All these models were developed using the

same dataset (see Table 1) and the same input variables, Each of them was optimized in the tests,

with the best results shown here. For models trained with regression tree, ensemble of regression

trees, SVMs, a 10-fold cross validation was implemented.
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Table 4. Model results comparison with RMSE < 20 patm in Table 3 (red font) based on

independent validation using the underway pCO: data collected on cruise “GU1703 Leg2” (sce

Table 2). This cruise data was used primary because it was collected around the Mississippi River

delta, the most dynamic region in the GOM. The random forest based regression ensemble (RFRE)

model is highlighted in red to contrast it as the best model performance. The RFRE model also

showed better performance than others when evaluated using other datasets listed in Table 2, Note
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that the difference in the number of data matchups (N) of each approach is due to the requirement

of the spatial homogeneity in the matchup selection eriteria (see Section 2.3.1),

RMSE

Urp

MRD
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Fig. 2 shows the performance of the RFRE model in both model training and cross-validation,

color coded by data density (the number of data points in each pCO: interval of 2 patm). Clearly,

most of the data pairs of field pCO:z and modeled pCO: follow closely along the 1:1 line without

apparent outliers (see the red and green color). Statistically, during the model training, the RFRE-

maodeled pCO: showed good agreement with the field-measured pCO:2 with a RMSE of 6.68 patm

(2.04%), R? 0f 0.97, MB of -0.03 patm, MR of 1.00, UPD of 0.06%, and MRD of 0.08%. Similar

statistics were also found in the 10-fold cross validation (RMSE = 9.09 patm (2.79%), R? = 0.95,

MB = -0.03 patm, MR = 1.00, UPD = 0.07%, MRD = 0.12%),
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Fig. 2. RFRE model performance in estimating surface pCO; in the GOM in both (a) model
training, and (b) model validation, using the conjugate dataset described in Table | and Fig. 1b.
The data pairs are color coded by data density, which represents the number of data points at cach

pCO; interval of 2 patm.
3.2. Independent validation under different scenarios

To conduct independent model validation, in addition to the cross-validation in the model
development, the developed RFRE pCOz model was further examined to quantify its predictability
in estimating surface pCO; from satellites under different scenarios in the GOM, using 10 cruise
datasets collected over the GOM in different months (Table 2). For each cruise, the field-measured
surface pCO: dataset was independent from other cruises, and none of these 10 cruise datasets

were used in the model training above.

Fig. 3 shows the results based on the underway pCO: data collected from cruise GU1703_Leg2
between July 22 and August 05, 2017. This cruise mainly covered the Mississippi Delta and its
offshore area (Fig.3a). The field-measured pCO; showed dynamic variation with very low pCO;
values around the Mississippi river mouth and in the river plume, and relatively high pCO: in the
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offshore  waters. Fig. 3b shows the comparison between field-measured pCO: and
contemporancous satellite-derived pCO;. Clearly, the spatial and temporal variations of the field-
measured pCOz along the cruise track were well captured in the contemporancous satellite-derived
pCO;z, with a RMSE of 18.88 patm (5.53%), MB of -1.22 patm, MR of 1.00, UPD of -0.16%. and
MRD of -0.01%. Furthermore, a 15-day MODIS pCO: composite map (Fig. 3a) covering the cruise
period also showed agreement with the field-measured pCO: with low pCO: values nearshore and
high pCO; values offshore, although the statistics is a bit worse due to the larger time difference
(RMSE = 37.65 patm (16,13%), MB=-1.22 patm, MR = 101, UPD = 0.31%, and MRD = 1.31%,

N=5,331).
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Fig. 3. RFRE surface pCOz model performance in the Mississippi River delta and offshore regions,
evaluated with underway pCO: data collected from cruise GU1703 Leg2 (Table 2). The underway
data was not used in the model training. (a) MODIS surface pCO; composite map for the cruise
period (Jul. 22-Aug. 05, 2017), with field-measured pCO: along the cruise track overlaid and color
coded in the same way as the MODIS image: (b) Comparison between field-measured pCO: and
contemporaneous (+ 24h) MODIS-derived pCO:; (¢) Comparison between field-measured pCO:x

and MODIS-derived pCO: extracted from the MODIS composite map for the cruise period (a).
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The red dots with values of 0 on the X-axis in (b) and (¢) indicate that ther¢ are no
contemporancous MODIS-derived pCO: due to various non-optimal satellite observing conditions,

and ‘P1" and *P2" in cach panel represent the start and end of the cruise, respectively.

Fig. 4 is the validation result based on one cruise dataset (GUI606_Legl) collected in the
northwestern GOM as well as the Mississippi delta between September 03 and 15, 2016. Although
there were no strong river discharges during this cruise period, low field-measured pCO: values
were found in the nearshore region along the Louisiana and Texas coast with distinet increases
towards offshore waters (Fig. 4a). Similar to those found from cruise GU1703 Leg2 in Fig. 3,
MODIS-estimated surface pCO: mimicked the variation patterns of the field-measured pCO: (Fig.
4b), with RMSE of 26.10 patm (7.57%), MB of -6.44 patm, MR of 0.99, UPD of -1.36% and
MRD of -1.10%. This agreement was also evident in the companson between field-measured pCO:
and satellite-derived pCO: extracted from a 13-day composite map covering the cruise period (Fig.

4a & 4c), with lower pCO» in nearshore waters than in offshore waters.
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Fig. 4. Same as Fig. 3. but the RFRE surface pCO: model performance was evaluated along the

Louisiana and Texas coast with underway pCO; data collected from cruise GU1606_Leg! (Table
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2). The underway data was not used in the model training, (a) MODIS surface pCO; composite
map for the cruise period (Sep, 0315, 2016), with field-measured pCO; overlaid and color coded
along the cruise track; (b) Comparison between field-measured pCO; and contemporaneous (+
24h) MODIS-derived pCO2: (¢) Comparison between field-measured pCO; and MODIS-derived
pCO; extracted from the MODIS composite map for the cruise period (a). The red dots with values
of 0 on the X-axis in (b) and (¢} indicate that there are no contemporaneous MODIS-derived pCO2
due to various non-optimal satellite observing conditions, and ‘P1° and ‘P27 in each panel represent

the start and end of the cruise, respectively,

In addition to cruise GU1606 Legl, two other cruises (GU1704 Leg2 and GU1609 Leg2, see

supplemental file) also covered a similar region (i.c., northwestern GOM and the Mississippi delta).

In Fig. S1a, surface pCO: was measured on cruise GU1704 Leg2 in late September (17-31) 2017,
with cruise track almost exactly the same as cruise GU1606 Legl (Fig. 4). Similar to cruise
GU1606_Legl, the spatial variation in surface pCO: showed the same pattern with low pCO:
values inshore and high values offshore, but with less spatial contrast in surface pCO: possibly
due to reduced river discharge and land runoft. Again, agreement with similar statistics were found
between the field-measured pCO; and the satellite-derived pCO, extracted cither from the
contemporaneous (= 24h) pCO; maps or from the 14-day pCO: composite covering the cruise
period. Different from cruise GU1606 Legl and GU1704 Leg2, results in Fig. S2 were based on
a winter cruise (GU1609 Leg2) between November 03 and 14, 2016, which collected surface
pCO; from the Mississippi delta and offshore waters in the northwestern GOM. The surface pCOa
in winter showed lower values than in summer, with much reduced spatial variation along the
cruise track. The comparison along the cruise track also showed agreement between MODIS

retrievals and field measurements with similar statistics,
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Fig. 5 is the results based on flow-through pCO; data collected from cruise GU1703_Legl in the
castern GOM waters between July 02 and 17, 2017, Field-measured pCO; from this cruise showed
large difference between the southern and northem GOM waters (Fig. 5a). In the southern waters,
surface pCO> was around 420 patm with little spatial variation, while in the northern part, under
the influence of the Mississippi River discharge, low surface pCOz with dynamic variation (250-
380 patm) was found. Additionally, this cruise also captured the low pCO: (=380 patm)
characteristics of the Mississippi river plume relative to the surrounding waters. Statistically, the
contemporaneous (+24h) satellite-derived pCO: agreed with the field-measured pCO: with RMSE
of 21,90 patm (5.40%), MB of -12.96 patm, MR of 0.97, UPD of -3.31%, and MRD of -3.15%
(Fig. 5b). Similar model performance was also found in the comparison between field-measured
pCO; and satellite-derived pCO> from the 16-day pCO: composite map of the cruise period
(RMSE = 20.62 patm (5.13%), MB = -12.66 patm, MR = 0.97. UPD = -3.06%, and MRD = -
2.92%, Fig. 5c¢). Specifically, the low pCO: values and their dynamic variation in the northem
coastal waters of the GOM and the low pCO: features in the river plume (which were not captured
(or not captured completely) in Fig, 5b due 1o the lack of contemporaneous (+24h) satellite
measurements, were well revealed in Fig, 5a & Sc, Satellite-derived surface pCO: in both Figs. Sb
& 5¢ showed underestimation as compared to the field-measured pCO:, and this could be caused
by the time difference between field and satellite measurements. As mentioned in Section 2.3.3,
the 24h time window was selected by assuming insignificant surface pCO: variations within the
time window. However, in reality, waters in the river-dominated coastal region and along the edge
of the nver plume could vary in finer timescale (i.e., < 24h), in which case the satellite-derived

pCO: did not correspond to the same water masses as measured in the field.
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Fig. 5. RFRE surface pCO2 model performance in the eastern GOM, evaluated with underway
pCO: data collected from cruise GUI703_Legl (Table 2), The underway data was not used in the
maxlel training. (2) MODIS surface pCO: composite map for the cruise period (Jul. 02-17, 2017),
with field-measured pCO; overlaid and color coded along the cruise track; (b) Comparison
between ficld-measured pCO: and contemporancous (£ 24h) MODIS-derived pCO2; (c)
Comparison between field-measured pCO: and MODIS-derived pCO; extracted from the MODIS
composite map for the cruise period (a). The red dots with values of 0 on the X-axis in (b) and (c¢)
indicate that there are no contemporaneous MODIS-derived pCO: due to various non-optimal
satellite observing conditions, and ‘P17 and ‘P2’ in each panel represent the start and end of the

cruise, respectively.

In addition to cruise GUIT03 Legl, threc other cruises (GUI701 Transit Leg,
GUI1705 Transit_Leg. and GU1706 Transit_Leg) in Table 2 also collected flow-through pCO;
from the eastern GOM. These data were collected in different months which represented different
seasonal characteristics of surface pCO2 in the GOM. The results, based on each of these three
cruise datasets, are shown in Figs, S3-S5, respectively. In Fig. 83, cruise GUI701_Transit_Leg

was conducted between May 05 and 08, 2017, In contrast to cruise GU1703_Legl data in Fig, 5,
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there was no obvious Mississippi River plume during this cruise. Surface pCO; showed lower but
similar spatial variation from the southern to northern GOM waters, and such spatial variations
were well captured in both the contemporancous satellite-derived pCO; (RMSE = 10.78 patm
(3.04%), MB = 4.97 patm, MR = 1.01, UPD = 1.39%, and MRD = 1.43%) and the satellite pCOz
composite map covering the cruise period along the cruise track (RMSE = 10.20 patm (2.81%),
MB =291 patm, MR = 1.01, UPD = 0.81%, and MRD = 0.85%). The cruise surveys used in Figs.
S4 & S5 followed almost the same cruise tracks as shown in Fig. S3; one collected pCOz in October
2017 (Fig. S4) and the other in November 2017 (Fig. S5). Again, there was no significant
Mississippi River plume and little spatial variation in the field-measured pCO; during these two
cruise periods. In both cases, the satellite-derived pCO:z (both contemporancous, (+ 24h) satellite
pCO;, and pCO; from satellite composite of the cruise period) showed high consistency with the

field-measured pCO7, with similar statistics as shown in Fig. S3.

Results in Fig. 6 are based on flow-through pCO: data collected from cruise GU0O902_leg2
between April 21 and May 06, 2009. This cruise covered the western GOM, mainly the
southwestern and the northern offshore waters, From the spatial distribution of surface pCO: along
the cruise track (Fig. 6a) and its time series distribution (black dots in Figs, 6b & 6¢), surface pCO;
did not show much spatial variation (360-400 patm). For the contemporancous (= 24h) satellite-
derived pCOz, it showed almost perfect agreement with the ficld-measured pCO; with a RMSE of
4.39 patm (1.14%), MB of -0.80 patm and MR of 1.00, UPD of -0.21% and MRD of -0.21%.
Similar statistics were also derived for pCO: extracted from satellite pCO2 composite map

covering the cruise period.
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Fig. 6. RFRE pCO: model performance in quantifying surface pCO: in the southern GOM,
evaluated with undenway pCO: data collected from cruise GU0902_leg2 (Table 2). The underway
data was not used for model training. (a) MODIS surface pCO: composite map for the cruise period
(Apr. 21-May 06, 2009), with field-measured pCO2 overlaid and color coded along the cruise
track; (b) Comparison between field-measured pCO: and contemporaneous (= 24h) MODIS-
derived pCO2; (¢) Comparison between field-measured pCO; and MODIS-derived pCO; extracted
from the MODIS composite map for the cruise period (2). The red dots with values of 0 on the X-
axis in (b) and (c) indicate that there are no contemporancous MODIS-derived pCO: due to various
non-optimal satellite observing conditions, and ‘P1" and ‘P2" in cach pancl represent the start and

end of the cruise, respectively.

Similar to GUO902_leg2 in Fig. 6, cruise GU0902_legl covered the other part of the western GOM
between Apr. 7 and 16, 2009, with surface pCO: between ~350 patm and ~410 patm, The
validation results from cruise GUO902 legl are shown in Fig, S6. The spatial and temporal
variations in surface pCO; were well captured in both the contemporancous satellite-derived pCOs

(RMSE = 8.89 patm (2.31%), MB = -4.42 patm, MR = 0.99, UPD =-1.17%, and MRD = -1.15%)
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and the satellite-derived pCO2 composite covering the cruise period (RMSE = 13,31 patm (3,39%),

MB = -6.63 patm, MR = 0,98, UPD = -1.74%, and MRD = -1.68%),
3.3. Model sensitivity

Fig. 7 shows the sensitivity of the RFRE pCO; model to the input errors of each satellite variable
(SST, SSS, Chl, and Kd). A visual interpretation of Fig, 7 indicates that the model is more sensitive
to input errors in SST and SSS than in Chl and Kd, and the errors introduced in cach case were

close to or within the uncertainties of the model itself,
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Fig. 7. RFRE pCO2 model sensitivity to changes in the input SST, S$SS, Chl, and Kd, based on the
dataset used to develop the pCO2 model in Table | and Fig, 1b. The data pairs are color coded by
data density, which represents the number of data points at cach pCO: interval of 2 patm. Results
show that the pCO; model 1s tolerant to at least = | "C noise in the input SST, + | noise in the input
S8S, = 20% noise in the input Chl, and + 20% noise in the input Kd, and the pCO: model is more

tolerant to noise in Chl and Kd than in SST and SSS.

Statistically, with +1 "C errors added (Fig. 7a), the RFRE model showed slight overestimation,
with RMSE of 10.80 patm (3.46%), R* of 0.91, MB of 2.17 patm, MR of 1.01, UPD of 1.22% and
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MRD of 1.27%. With -1 "C errors added (Fig, 7a), the RFRE model showed slight underestimation
in surface pCO;3, with RMSE of 10.13 patm (2.68%), R* of 0.92, MB of 0.99, UPD of 0.81%, and
MRD of 0.77%. These results suggest that the RFRE pCO; model responded to SST errors in a
positive way {an increase in SST would lead to an increase in surface pCOz, and vice versa), but
in both cases the model was insensitive to SST errors considering the model uncertainties

described in Section 3.1.

The sensitivity of the RFRE model to SSS was similar to SST, and in both cases of +1 and -1 errors
added into SSS, the response of the RFRE did not show great difference comparing to the
originally-modeled surface pCO:. Specifically, with +1 errors added in SSS, the RFRE model
showed slight overestimation in surface pCO:; (RMSE = 12,57 patm (3.93%), R* = (.88, MB =
2.40 patm, MR = 1.01, UPD = 0.77%, MRD = (.84%). With -1 errors added into SSS, the RFRE
mode! still showed little overestimation (RMSE = 12.06 patm (3.19%). R* = 0.89, MB = 0.18
patm, MR = 1.00, UPD = 0.07%, MRD = 0.12%). However, clearly for pCOz > 450 patm, the

newly-predicted pCO: was obviously underestimated.

Unlike SST and SSS, the RFRE pCO; model showed little sensitivity to Chl, and the uncertaintics
introduced in the estimated pCO: by adding = 20% crrors in Chl was < 7 patm (Figs, 7e & 7f).
Specifically, with 20% errors added, the newly-predicted pCO; was slightly underestimated
(RMSE = 5.28 patm (1.46%), R*=0.98, MB = -0.13 patm, MR = 1.00. UPD = -0.02%, and MRD
=-0.01 %). With -20% errors added, the newly-predicted pCO: was slightly overestimated (RMSE

=6.07 pam (1,75%), R? = 0,97, MB = (.51 patm, MR = 1.00, UPD = 0.21%, and MRD = (,23%).

Similar to Chl, the RFRE model also showed little sensitivity to Kd. In both cases of +20% and -
20% errors added in Kd, the newly-predicted pCO:> did not show much difference from the
originally-predicted pCO,. With +20% errors added in Kd. the model showed a RMSE of 6.27
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patm (1.95%), R? of 0.97, MB of 0.75 patm, MR of 1.00, UPD of 0.26%, and MRD of 0.28%.
With -20% errors added in Kd, the model showed similar statistics (RMSE = 7,70 patm (2.07%),

R* = 0.96, MB = 0.15 patm, MR = 1.00, UPD = 0.12%, and MRD = 0.14%).

Overall, the RFRE pCO: model did not show high sensitivity to the errors in each input satellite
variable including SST, SSS, Chl, and Kd. With errors added in each variable, the uncertainties
induced in the new-predicted pCO; were all close to or within the uncertainties of the model itself.
Since satellite data of each variable were used directly in the model development, such
uncertaintics were implicitly included in the developed model, and these uncertainties would be
cancelled to a large extent when applying the RFRE model to the same satellite data products. The

insensitivities of the RFRE pCO: model to Chi and Kd are further discussed in Section 4.1,
3.4. Seasonal and interannual variations of surface pCO2

Fig. 8 shows the monthly climatological maps of surface pCO: of the GOM based on the MODIS
data between July 2002 and December 2017, Fig. 9 shows the area-averaged monthly time series
of surface pCO: in the GOM, Fig, 10 shows the interannual variations of surface pCO; monthly
anomalies (i.¢., monthly mean minus monthly climatology) in the study period. Generally, on
scasonal timescale, distinct seasonal pCO: patterns can be seen in both Fig. & and Fig. 9, with high
pCO:z in summer and lower pCO: in winter; on decadal timescale, there is small interannual
variability (e.g., within 10 patm) in surface pCO: over the GOM except in the northem coastal

waters (e.g., Box 1, Box 5, where anomalies are within 30 patm).
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Fig. 8. Monthly climatology of surface pCO: in the GOM, derived from MODIS using the RFRE
pCO: model for the period between July 2002 and December 2017. These maps are valid only for

the GOM waters as described in Fig. 1.

In terms of spatial distribution, surface pCO; (Fig. 8) was characterized by relatively low pCO;
values (300-350 patm) along the northern GOM coasts (especially the Louisiana coast)
accompanied with low SSS in most months, This result is quite different from the results shown
in Xue et al. (2013), which found relatively high pCO: values (= 500 patm) in the Louisiana coastal

waters. The difference between the findings of this study and those of Xue et al. (2013) is possibly
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due to their overestimation in surface pCO; on the Louisiana shelf, In Lohreénz et al, (2018), similar
low surface pCO; was also found in this area, but with relatively higher model uncertaintics
(RMSE = 30 patm). Indeed, from the spatial distribution of field-measured pCO: data of the GOM
shown in Fig. Ia, low surface pCO; values (< 350 patm) were found along the Louisiana coast all
the year round. There were some extremely high pCO2 (> 1000 patm) values collected in the very
nearshore regions, but these high pCO: values were located in the estuaries, Due to the sharp
changes in water properties (i.e., SST, SSS, TA, and DIC), there was a sharp decrease in surface
pCO: from estuaries 1o the adjacent coastal waters. Additionally, fewer low pCO2 waters were
found between September and November due to the low river discharge (~5,000-10,000 m?/sec)
during this period. On the WES, surface pCO: showed little spatial variation in cach month, with
low surface pCO; (~350 patm) in winter and high pCO; (~400 patm) in summer. This result agreed
well with the results shown in Chen et al. (2016). except that relatively high pCO; (500-550 patm)
was estimated along the nearshore waters of Florida between May and August in Chen et al. (2016)
but not here. In fact, water properties on the WFS are mainly controlled by oceanic currents and
winds (e.g., wind-driven coastal currents, Loop Current) with winter conditions favoring upwelling
(Liu & Weisberg, 2005 & 2012), The spatial distribution of field-measured pCO; on the WFS in

Fig. la also showed little spatial gradient from inshore to offshore waters. Due to the high

temperature of the Loop Current, relatively high pCO; was found in these waters during wintertime,

In winter and carly spring, the southern GOM showed relatively higher pCO: values than the
northem GOM, mainly due to its lower latitude (thus relatively higher SST). Between May and
October, the GOM waters become near isothermal with little spatial gradient in SST, and the
surface pCO1 in the GOM-wide regions (except the northern coastal regions) showed almost

homogeneous distribution with slight spatial variation in each month.
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Time series of monthly surface pCO, between 2002 and 2017
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Fig. 9. Monthly surface pCO: time series in the whole GOM and in the five sub-regions annotated
in Fig. la. Errorbars in each time series plot represent the standard deviations of the monthly mean
of surface pCO; in each region. Box 1 is near the Mississippi River delta, Box 2 is on the West
Florida Shelf, Box 3 is near the Loop Current, Box 4 is in the western GOM open waters, and Box

5 presents the “dead zone™ along the Louisiana coast.

In terms of seasonal variations, monthly time series of surface pCO: based on pCO: maps between
July 2002 and December 2017 of the entire GOM (black line in Fig. 9) showed high pCO: values
(~405 patm) in summer and low pCO; (~355 patm) in winter with a standard deviation of ~ £ 17
patm on average, Xue et al, (2013) also found comparable seasonal variation in the Gulf-wide
averaged pCO;, but with a relatively higher standard deviation (= 50 patm), Similarly, in Fig 9,
pCO: in the selected sub-regions of Box 2, Box 3, and Box 4, representing the WFS, Loop Current
and southwestern GOM, respectively, also showed similar temporal variation patterns although
with some differences in magnitude. For example, pCO: in the sub-region of Loop Current waters

(Box 3), was relatively higher than pCO: in the sub-regions of WFS and southwestern GOM in
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winter. Such difference is mainly caused by the warmer characteristics (thus higher SST) of the
Loop Current. The scasonal variation of the pCO; time series in the northern GOM was quite
different from that of the regions mentioned above. In the Mississippi River delta represented by
Box 1. pCO: showed lower values (-290-380 patm, + 23 patm) than most GOM waters (Fig. 8)
in all seasons. In addition to the general vanation patterns of high to low from summer to winter,
finer time scale variations were found in summertime, with a pCO: decrease in July or August in
most of the years. This decrease in surface pCO: was mainly attributed to the phytoplankton
blooms, induced by the nutrient-rich freshwater inputs through the MARS river discharge in the
spring (Apnil to June). The depletion of nutrients restricted the continuous biological uptake of
surface water CO; and kept the surface pCO: from decreasing further (Huang et al,, 2012 & 2015;
Guo et al., 2012). The resulted richness in oxygen and organic matter promoted the growth of
bacteria, which decomposed the organic matters (either from terrestrial river runoff or generated
from biological activities) in the water column and released CO: back to seawater (Gardner et al.,
1994; Cai et al., 2011; Cai, 2011). Therefore, surface pCO: tended to increase in late summer and
fall, and then decreased as the water became colder. Similar to the case shown in the Mississippi
delta, the representative sub-region of the Louisiana coast (Box 5) showed a similar variation
pattern in surface pCO; but with larger seasonal magnitude (~280-420 patm, £ 17 patm). The
region is the famous “dead zone™ in the GOM (Keul et al, 2010), In summertime, the
cutrophication and excessive utilization of oxygen cause hypoxia in this area (Rabalais et al., 2002;
Laurent et al., 2017), thus more CO: is released back to the seawater and. therefore, surface pCO2
tends to be higher as compared to the Mississippi delta. The finer time scale variation in surface
pCO: on the Louisiana Shelf {demonstrated by the two sub-regions around the Mississippi river

delta (Box 1) and the Hypoxia zone off the Louisiana coast (Box 5)), was also found by Lohrenz
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et al, (2018) but with higher standard deviation and variation, but was not found by Xue et al.

(2013).
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Fig. 10. Interannual variability of the modeled pCO: in the entire GOM (a) and the five sub-regions
(b-f) over the study period of 2002-2017. Monthly pCO: anomalies on the Y-axis in each panel
were derived by subtracting the monthly climatology from the monthly mean. In panels b & f. a
secondary Y-axis of SSS was added to show the corresponding interannual SSS anomalies in the

sub-regions of Mississippi delta (Box 1) and “dead zone” (Box 5). Box | is near the Mississippi
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River delta, Box 2 is on the West Florida Shelf, Box 3 is near the Loop Current, Box 4 is in the

western GOM open waters, and Box 5 presents the “dead zone™ along the Louisiana coast.

In terms of interannual variation, overall, there is indistinguishable decadal trend in the monthly
pCO: anomalies (Fig. 10). Over the river-dominated coastal region in the northern GOM, surface
pCO: showed relatively larger interannual variability than in other GOM waters. Over the entire
GOM (Fig, 10a), the interannual monthly pCO: anomalies showed little variation of within £ §
patm, with negative (positive) values in most months before (after) the year of 2012, In the
Mississippi delta (Box 1) and “dead zone™ area (Box 5), due to the complexity and dynamics of
the biogeochemical processes in these regions, pCO: showed larger anomalies between -30 and 30
patm. For these two regions, it is found that the anomalies in SSS showed similar variation to
surface pCO; vanation, indicating that SSS may control the interannual variations of surface pCOa
in these regions. Different from the northern coastal waters, pCO: in other GOM waters (WES,
Loop Current, Southwestern GOM waters) represented by Boxes 2 ~ 4 (Figs. [0c-10e) showed
similar but slightly larger anomalies (within + 10 patm) comparing to that of the entire GOM (Fig.
10a), Similar to the interannual variations of pCO: over the entire GOM in Fig. 10a, in these
regions, the anomalies in surface pCO; tended to be positive (close and above zero) over the vears
since 2012, while the increasing trend is still indistinguishable considering the overall variations
of the pCO; anomalies in the study period. Generally, surface pCO; in the GOM tended to increase
but the increasing trend is not well captured in our data. In addition, the decadal variation here
could be part of the long-term trend (=30 years), or part of the decadal timescale fluctuation
(Thomas et al., 2008; Gruber, 2009: Mckinley et al., 2011: Fay & Mckinley, 2013). Yet it is
impossible to differentiate these two scenarios using our data. In the study of Landschiltzer et al.

(2013}, both positive and negative trends were found in surface pCO: of the GOM over the period

37

160



of 1998-2007, leading to no apparent overall trend over the entire GOM. We also examined the
interannual variations of the four satellite-derived environmental variables (SST, SSS, Chl, and
Kd). and found no decadal trend. Because these variables were used to model surface pCOz. it is

no surprise to see indistinguishable decadal trend in the modeled surface pCO: over the GOM.
4. Discussion
4.1. Which environmental variables to use in the RFRE

In this study, we used four environmental variables, including SST, SSS, Chl, and Kd, to model
surface pCOz in the GOM., These variables were selected based on our previous studies and other
studies 1n the published literature. In Chen et al. (2016 &2017), all these variables were proven to
be important and efficient in modeling surface pCO: in the GOM, although other empirical
approaches other than the RFRE were used. Indeed, SST and SSS are commonly used to capture
the effects of thermodynamics and ocean mixing, and Chl and Kd are used to implicitly quantify
the biological effect on surface pCO:. Because there is no known function between each predictive
variable and surface pCOz, a machming-leamning based RFRE approach was used to model the
unknown complex relationships between these predictive variables and surface pCO,. The RFRE
appreach was selected after extensive comparison with other empirical approaches. The RFRE-
based pCO: model, after modeling training using extensive datasets. showed excellent
performance in estimating surface pCOx with little uncertainties (RMSE < 10 patm) for a large

dynamic range.

In section 3.3, a model sensitivity analysis showed that the response of the RFRE model to the
added errors in cach model input variable was close to or within the model uncertainties, with

relatively higher sensitivity to SST and SSS than to Chl and Kd. These results suggest that the
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maodel 1s insensitive to small errors (+-20%) in the satellite data products. Such insensitivity may
rais¢ the question of whether true changes in surface pCO;: can be captured by the model. For
example, while an increasing rate of 1.5 patm per year has been reported in atmospheric pCO;
(Landschiitzer et al., 2013), the model did not show any long-term trend in surface pCO1. Then
two fundamental questions arise: 1) because the model showed little sensitivity to small errors in
Chl and Kd, why are they still used in the RFRE model? 2) Can the mode! capture the long-term

trend of surface pCO: in response 1o increased atmospheric pC0O.?

Indeed, although the RFRE model is insensitive to small errors in the input Chl and Kd, it does not
mean that Chl and Kd are not important in modeling surface pCO: for two reasons. One. both Chl
and Kd were scaled logarithmically before being used in the model in order to account for their
log-normality in their large-scale distributions (Campbell, 1995). Then. their dynamic ranges were
“dampened™ after log transformation, and same occurred with the input errors. For example a 20%
error is transformed to an error of 0.08 (=log(1.2)). In comparison, the variations of Chl and Kd in
logio scale {(and their errors) were much smaller than those in SST (13.48~33.28 'C, with | °C
error) and SSS (10.90-38.34, with 1.0 error). This explains why the RFRE model was more
sensitive 1o SST and SSS changes than to Chl and Kd changes, On the other hand, both Chl and
Kd carry information (implicitly) of biological activities, thus cannot be ignored in the model. In
fact, Chl and Kd showed strong negative correlations (Figs. 11a & |1b) to surface pCO;z in the
northern GOM. In coastal waters, surface pCO; showed strong correlation with Chl, Kd, and SSS
(Fig. 10a. 10b, & 10d). indicating that the biological activities and freshwater inputs are the
dominant factors in controlling surface pCO: in these waters. On the other hand. in the GOM

oligotrophic waters and coastal areas with little freshwater inputs, SST appeared to be the dominant
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factor in controlling surface pCO: (Fig. 10c). Therefore, it is necessary to include all four

environmental vanables in the RFRE pCO; model.

-0.75 050 -025 000 025 050 075

Fig. 11, Maps of correlation coefficients at 1-km resolution between Chl (a), Kd (b), SST (¢). SSS
(d), and surface pCOz, respectively. These correlations were derived from the interannual monthly

anomalies.

Then, because atmospheric pCOa was not used in the model explicitly, if changes in atmospheric
pCO:2 cannot be captured implicitly in one or more of the four variables (SST, SSS, Chl, and Kd),
it would be impossible for the RFRE pCO: model to capture the changes in the atmospheric pCO:

(~ 1.5 patm per year, Landschtitzer et al, 2013), mainly caused by the human activities (¢.g., fossil
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fuel burning). It is therefore desirable to include atmospheric pCO; n future modeling efforts in
order to better detecting decadal trends in surface pCO; under anthropogenic foreing, Nevertheless,
the work here introduces an empirical pCO; approach that is applicable to a large oceanic region
(e.g., GOM) with different dominant oceanic processes, making it possible to better understand
the spatial and seasonal variations in surface pCO: of the entire GOM, as compared to ship-based

measurements.
4.2, Implication for general applications over other regions

The results shown in Section 3 demonstrate that the RFRE-based pCO: model developed for the
entire GOM can be well applied to different regions of the GOM. This is true in both river-
dominated and current-dominated regions, both with low uncertainties (RMSE < 10 patm). One
question is whether this RFRE approach (not the model itself) can be applied to other oceanic
regions. To examine its general applicability to other oceanic waters, we tested this RFRE
approach on the G. Maine which was selected for two main reasons: First, the G. Maine shows
great contrast to GOM with relatively small riverine discharge (i.c., <1000 m¥/sec from the largest
river — Saint John River) but strong semi-diurnal tidal mixing, as well as wide-open interactions
with the North Atlantic waters (i.¢., Gulf Stream, Labrador Current), Sccond, it is located at a
relatively high latitude (41.7-46 "N, 71-~64 "W), and rapid warming is found with an increasing
rate of 0.23 “C per year in SST since 2004 (Pershing et al., 2015). In addition to the resulting
ecological impact (1.e., decrease in fisheries), this warming would have direct impact on air-sea
CO: flux and long-term carbon cycling, However, the published study of satellite mapping of
surface pCO: over this region shows very large uncertainties (i.e. RMSE ~ 35 patm) (Signorini et
al,, 2013). Therefore, it would be significant if the RFRE approach could work in the G, Maine

with a much lower uncertainty.
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Surface pCO; data collected in the G, Maine between 2002 and 2016 (Fig, 12a) were compiled
from the global surface pCO; database (LDEO) (version 2015, Takahashi et al,, 2016b) and
matched with the MODIS data products (including SST, Chl. and Kd) using the criteria described
in Section 2.2.1. Here a time window of + 3h was used to account for the semi-diurnal tidal
characteristics in the G. Maine. The conjugate pCO: dataset (Fig. 12b) showed dynamic variation
range in each variable (field-measured pCOa: 202~558 patm; satellite SST: 1.6-25 'C; field-
measured SSS: 25~34 (note there is no satellite SSS available for the G, Maine at | km resolution);

satellite Chl: 0.26~19.9 mg m™; and satellite Kd: 0.05-0.68 m™).
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Fig. 12. Spatial distributions of the surface pCO: measurements in the Gulf of Maine along the
cruise tracks, (a) Cruise tracks from all data between 2002 and 2016 in all seasons (N=482,584);

(b) Cruise tracks from the same data but with co-located and contemporaneous (+ 3h) satellite Chi,

Kd and SST (N=4,559).

Before locally tuning a RFRE pCO:; model for the G. Maine, we first tested the locally
parameterized MLR model proposed by Signorini et al. (2013) for the G. Maine. Similar to its

original results, the model was found to yield a RMSE of ~42 patm. Then we tested the RFRE
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model (Fig. 2), which was parameterized for the GOM, to the G, Maine. Poor model performance
was obtained (RMSE = 89.6 patm), suggesting that the effects of the input variables to surface
pCO: may work differently in the G. Maine than from the GOM. Because the RFRE-based pCO;
maodel is empirical and is locally-trained. it can only be applied to similar environments. Whereas
the GOM-trained RFRE model uses satellite SSS as an input to account for the effect of freshwater
mixing, in the G. Maine, because there is no relevant satellite SSS available at I km spatial
resolution, 1t is not practical to include SSS as a predictor. Furthermore, considering the relatively
small river discharge in this area and the poor correlation (R~0.07) between SSS and surface pCO;,
SSS may not necessarily be an effective predictor in surface pCO; in the G, Maine. Therefore, in
the G. Maine, the only satellite variables used as predictive variables to model surface pCO: were
SST. Chl. and Kd as well as Julian day. Similar to the GOM, using the same training dataset (Fig.
10b) and same input variables (SST, Chl, Kd. and Julian day), all the empirical approaches
described in Section 2.3.2 were also tested in the G. Maine. The RFRE approach proved to have

the best model performance in the G. Maine as well.
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Fig. 13. RFRE model performance in estimating surface pCO: in the Gulf of Maine in both model

training (a) and model validation (b) using the conjugate dataset described in Fig. 10b.
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Fig. 13 shows the performance of the locally tuned RFRE in the G, Maine. In the model training,
satellite-derived pCO: showed good agreement with the field-measured pCO; with a RMSE of
8.93 patm (2.54%), R* of 0.97, MB of 0.11 patm, MR of 1.00, UPD of 0.13%, and MRD of 0.16%.
In the 10-fold cross validation, similar statistics were also derived (see Fig. 13b). We further
validated this locally parameterized RFRE model in the (. Maine using several independent
datasets, and similar results were found as in the validation shown in Section 3.2. These results
demonstrated the feasibility of the RFRE approach in the (i. Maine once local parameterization
was achieved. As an example, Fig, 14 shows the monthly pCO: maps in the GG, Maine in 2013,
Comparing to the GOM, distinct and opposite seasonality with high pCO: in winter and lower
pCO; in summer is shown for the G. Maine, indicating different driving mechanisms of surface
pCO: in these two contrasting oceanic regions. In the G. Maine, strong vertical mixing during
wintertime brings large amounts of DIC to the surface. Although large amounts of nutrients are
also brought to the surface, due to low SST and poor light availability, there is no strong biological
uptake of CO:. In the summertime, more light is available, with warming of surface waters,
biological activities (i.e., algal blooms) become active and the corresponding uptake of CO:2 begins

to draw the surface pCO:2 down,
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Fig. 14. Monthly surface pCO: of 2013 in the Gulf of Maine (latitude: 41.7-46.0° N, longitude: -
71.0 ~-64" W), derived from MODIS using the RFRE pCO» model, Large data gaps in the pCO;
map of Dec¢, 2013 were mainly caused by various non-optimal satellite observing conditions (i.¢.,

cloud, stray light).

In shor, although the RFRE-based model (with model parameterization developed for the GOM)
could not be directly applied to the Gi. Maine, the RFRE approach can still be applied to the G.
Maine with localized parametrization. The resulting model performance appears to exhibit
significant improvement over those published in the literature. This result strongly suggests the

potential of the RFRE approach in regional applications around the globe.
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4.3. Advantages and limitations of the RFRE

The extensive evaluation results in Section 3.2 suggest that for surface pCO: of 145~350 patm in
the GOM, the empirical RFRE model can estimate surface pCO: with an overall uncertainty of <
10 patm, Comparing to other empirical approaches (either traditional or machine-learning based)
tested in this study, the RFRE approach shows great advantages in estimating surface pCO: in
different environments of the GOM. Specifically, the northern GOM waters, with large amounts
of freshwater inputs from the MARS, have distinet and different carbonate properties than other
GOM waters, Most of the empirical approaches showed poor performance when applied to the
entire GOM, possibly due to their poor local parameterization in dealing with disparate water
masses. [n contrast, the RFRE approach presented in this study appears to work well in all these
different-processes-dominated regions of the GOM. Conseguently, 8 GOM-wide RFRE pCO:
maodel is generalized, with the variable relationships between predictors and response variables
implicitly included in the empirical coefficients (i.e., weights of each regression tree). In addition,
the weak response of the RFRE pCO: model to errors in each of the satellite vaniables (i.e., RMSE
< 12 patm, see sensitivity analysis in Section 3.3) shows the model’s twlerance to input errors in
the satellite variables, Furthermore, a test of the RFRE approach i the G, Maine (after local
parameterization) also shows better performance and significant improvement over other empirical
approaches, including the approaches tested in this study and those in the published literature. In
contrast, the GOM-parameterized RFRE model performs poorly in the G. Maine without local
parameterization; this indicates the intrinsic empirical nature of the RFRE approach. Overall, the
RFRE approach shows great advantages over other empirical approaches in satellite mapping of
surface pCO: in the two contrasting ocean regions of the GOM and the (. Maine. The flexibility

of the RFRE model in dealing with these two different oceanic processes indicates its likely
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potential to serve as a robust approach in estimating surface pCO; from satellites for other ocean

regions,

Although the RFRE-based pC0O2 model has shown to be applicable to most GOM waters with
relatively low uncertainties, due to its empirical nature, it is unknown whether it works for waters
with surface pCO: outside the 145~550 patm range. This limitation is caused by the scarcity of
valid MODIS data outside this range, although this range should represent the surface pCO; levels
of most GOM waters (Fig. 1a), Furthermore, even within this range, for empirical approaches the
maodel’s satisfactory performance does not necessarily indicate that the model is applicable in all
types of waters driven by different processes. However, because of the extensive dataset used to
train the model and another extensive dataset used to validate the model, the typical concern of
lack of data with empirical approaches may be eliminated. Indeed, the data used in training the
mode! consisted of > 220 cruise surveys in the past 16 years covering all seasons and water types
in the GOM, thus representing the most complete pCO> dataset for the GOM. Likewise, the
validation results from another similar comprehensive dataset, under different scenarios in the
GOM, suggest that the RFRE made! should be able to estimate surface pCO: for most, if not all,
GOM waters. Similar conclusions may be drawn for the G. Maine, where most of the pCO;
collected between 2002 and 2016 were used to train and validate the RFRE model. Because only
a small amount of data were available in winter, the model performance for the G. Maine requires
further evaluation more wintertime field data become available. Likewise, pCO: in the GOM can
certainly be > 550 patm or < 145 patm (Fig. 1a) along the northern coasts and in the Florida Bay,
yet these data were not included in the model training due to the unavailability of contemporaneous
satellite data after quality control and application of the matchup criteria (see Section 2.2.1).

However, these extreme pCO: values only appeared in some of the very nearshore waters, and in

47

170



practice these waters should be masked to avoid misinterpretation of the model results, In fact,
most of these waters have no satellite data retrievals due to various reasons (e.g., atmospheric

correction failure, straylight, land contamination., etc.), thus having little effect on the model results.

In addition to the model applicability range, due 1o its empirical nature and its machine-learning
based technique, the RFRE approach works like a “black box™ without explicit understanding of
the driving mechanisms between the input and output variables. Unlike the semi-analytical
approaches (1.¢., Bai et al,, 2015; Chen et al., 2017) which separate and explicitly quantify the
contributions of different processes to the overall surface pCO: (i.¢., river-ocean mixing, biological
activities, etc.), the RFRE approach quantifies all of them together. As a result, it is difficult to
explain clearly how cach process affects the variation of surface pCO:. On the other hand, because
different oceanic processes may not be independent from each other and they may collectively
drive the surface pCOs, it may be advantageous to treat all input variables as a whole in order to
achieve a better model accuracy. Indeed, the comparison between empirical and semi-analytical
approaches in Chen et al, (2017) did show that the empirical approach could produce better

estimates of surface pCO: than the semi-analytical approach under different conditions,

Finally and most importantly, the satisfactory performance of the RFRE approach in the two
contrasting regions, the GOM and the G. Maine, indicates that the RFRE approach could serve as
a robust empirical approach for other ocean regions once local parameterization is obtained. Indeed,
a preliminary test indicated that if the training datasets of the GOM and the . Maine were merged
together, an RFRE model with the same parameterization for both regions could yield similar
maddel performance statistics as those from the two separate models (Figs. 2 &11). This additional
test strongly suggests that the RFRE approach offers great potential for estimating surface pCO;

in different ocean regions.
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5. Conclusion

Accurate estimation of surface ocean pCO; from satellite remote sensing has been a challenging
task due to the different regional processes that dominate pCOz. Such processes are difficult to
maodel with mechanistic approaches, and also difficult to model with traditional empirical
approaches because the predictor-response relationship can vary substantially across adjacent sub-
regions and because high uncertainties may exist in the satellite-derived intermediate data products
(SSS, Chl and Kd) in turbid and dynamic coastal waters. In this study, with satellite-derived SST,
SSS, Chl, and Kd as inputs, a random forest based regression ensemble (RFRE) approach has been
developed and thoroughly evaluated for a large, semi-enclosed sea - the Gulf of Mexico. The
RFRE-based model showed good performance with an overall uncertainty of < 10 patm and higher
uncertainty in the northern GOM than in the southern GOM due to the complexity and dynamics
of the Mississippi-Atchafalaya River system. This is the first time that a unified empirical pCOz
model has been demonstrated to show consistent performance across many different water types
in the entire GOM. The RFRE approach used to test the G. of Maine indicates great potential for
the RFRE to be a robust approach for regional pCO: modeling in regional studies as long as
sufficient in sifue field data are available for model training. Finally, future research needs 1o be
focused on improving the capability of the satellite-based RFRE pCO: model in tracing decadal

and long-term scale variations in surface pCO:2 under anthropogenic forcing.
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Notations

AOML Atlantic Oceanographic and Meteorological Laboratory

CDOM Colored dissolved organic matter

Chl Surface water chlorophyll-a concentration, in mg m™

DIC Dissolved inorganic carbon, in pmol kg'!

Kd Diffuse attenuation coefficient of downwelling imadiance, inm™

G. Maine Gulf of Maine

GOM Gulf of Mexico

GSFC Goddard Space Flight Center

Jday Julian day

LDEO Global surface pCO; database collated by T. Takahashi of the Lamont-Doherty

Earth Observatory of Columbia University

MARS Mississippi and Atchafalaya River system
MB Mean bias

MLD Mixed layer depth

MLR Multi-linear regression
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MNR Multi-nonlinear regression

MODIS/Aqua Moderate Resolution Imaging Spectroradiometer on Agua satellite

MPNN Multilayer Perceptron Neural Network

MR Mean ratio

MRD Mean relative difference

NCEI National Centers for Environmental Information
NODC National Oceanographic Data Center

pCO; Partial pressure of surface water COs, in patm
PCR Principle component regression

R’ Coefficient of determination

RFRE Random Forest based Regression Ensemble, a machine learning technique
RMSE Rool mean square error

SOMs Self-organizing maps

SSS Sea surface salinity

SST Sea surface temperature, in 'C

SVMs Supporting vector machines

TA Total alkalinity, unit: pmol kg’

TAMU Texas A&M University
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uD University of Delaware

urPD Unbiased percent difference
WFS West Florida Shelf
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Dominant controls of surface water pCO; in different coastal environments
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Abstract

Atmospheric pCO: has been increasing significantly since global industrialization. Satellite
observing systems and new algorithms allow for synoptic estimation of surface pCO,, which has
great advantages in quantifying the air-sea CO:; flux and understanding ocean acidification.
However, most published satellite pCO: remote sensing algorithms are quite limited in capturing
the interannual variabilities in surface pCO: especially in the coastal ocean environments. To
improve the capabilities of satellite remote sensing in monitoring surface pCO: in such
environments, the driving mechanisms of surface pCOx over seasonal and interannual time scales
need 10 be well understood. As such, a time series of in sitw pCO:2 data, and other environmental
variables from field or satellite measurements along the coasts of the United States of America and
its termitories at different latitudes were analyzed by separating the cffects of temperature and non-
temperature on surface pCO2. On seasonal time scales, surface pCO: tended to be dominated by
the temperature effect (pCO: T) through sea surface temperature (SST) and wind speed (with
exceptions in special environments such as river-dominated) in tropical and subtropical oceanic
waters, and tended to be driven by the non-temperature effect (pCO2_nonT) in temperate zone, On
interannual time scales, both atmospheric pCO; and surface pCO: showed significant increasing

trends over short time scales (i.¢., < 10 years), In contrast to the seasonal driving mechanisms in

* Corresponding author: huc(@usf.edu
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surface pCO;, the interannual variabilities of surface pCO; was mainly controlled the non-
temperature effect (through air-sea CO; exchange via atmospheric pCO;z) in tropical and
subtropical waters but by the temperature effect (warming effect of SST) in temperate regions, It
was the first time that the driving mechanisms of surface pCO: in various coastal ocean
environments over both seasonal and interannual time scales were thoroughly examined. This

study suggests that, to better capture the seasonal and interannual signals in surface pCO; from

satellites, atmospheric pCO2 needs 1o be considered in the surface pCO:2 remote sensing algorithms.

The non-temperature effect on surface pCO: especially the biological effects (e.g., algal blooms)

need to be further investigated in the future.

Keywords: surface pCO3, sea surface temperature, Chlorophyll, driving mechanisms, remote

sensing
1. Introduction

Since global industrialization, fossil fuel burning and land use change (e.g., deforestation) have
projected large amounts of carbon into the atmosphere. Based on the most recent report, in the past
decade (2007-2016), there were ~10.7 £1.2 Gg C yr’' anthropogenic carbon released into the
atmosphere, with 4.7+ 0.1 Gg C yr' remaining in the atmosphere, 2.4 + 0.5 Gg C yr' absorbed
by the ocean, and the rest being taken up by the terrestrial biosphere (Le Quéré et al., 2018). Asa
result, global warming, carbon cycling. and ocean acidification are rapidly becoming pressing
concerns for the environmental research community. To better understand the carbon cycling and
ocean acidification processes in the rapidly changing world, surface partial pressure of CO2 (pCO2)
is one of the key parameters to measure and study, Studies show that surface pCO; has been
increasing with an average rate of ~1.5-1.9 patm yr'' and variable rates between 1.2 = 0.5 and 2.1

+ 0.5 patm yr’' in different occan basins (Takahashi et al., 2009; 2014). However, these rates arc

2
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for the open ocean waters, which s mainly controlled by the large-scale ocean circulations. Yet,
little is known about the interannual variabilities of surface pCO: in coastal oceans, due to the
scarcities of field data measurements and the dynamic and complex biogeochemical and physical

processes in coastal regions.

Although the coastal ocean only represents ~7% of the global oceanic area, it accounts for ~50%
of the world’s net primary production (Muller-Karger et al., 2005). However, due to the inadequate
knowledge of CO; uptake or release from various ecosystems (i.c., estuaries, salt marshes, coral
reefs, and upwelling shelves) in the coastal margins, coastal oceans are still the most controversial
regions in balancing the global budget of CO: (Chen et al., 2003). For example, Borges (2005)
found the coastal oceans behave as a CO: sink at high, subtropical, and tropical latitudes, and a
CO; source at temperate latitudes, while Cai et al. (2006) suggested that the continental shelves
serve as a CO; sink at middle and high latitudes. and a source of CO: at low latitudes. Most of the
uncertainties in the quantification of air-sea CO: fluxes in the coastal oceans come from the large
variations of surface pCO: and its lack of spatial and temporal coverages from f[ield data

measurements,

In contrast to field data measurements, several recent studies proved the capabilitics and
advantages of using ocean color satellite remote sensing in monitoring surface pCO: in coastal
oceans (e.g.. Lohrenz and Cai, 2006; Lohrenz et al., 2010 and 2018; Hales et al., 2012; Signorini
etal., 2013; Bai et al., 2015). However, two major problems exist in these published pCO:2 remote
sensing algorithms. First, large uncertainties exist in most of these satellite-derived surface pCO:
(1.¢.. Root Mean Square Error (RMSE) = 20 patm). These large uncertainties are mainly caused
by the insufficiency of the defined regression formula in modeling the complex and unknown

relationships between surface pCO: and related environmental variables. Using multi-variate
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second order polynomial regression fit, Chen et al, (2016 and 2017) improved the accuracy in the
satellite-derived surface pCO; with reduced RMSE of < 12 patm, but the algorithms were only
locally tuned for the West Florida Shelf and northern Gulf of Mexico (GOM), respectively. Second,
most of the published pCO: remote sensing algorithms were applied for the seasonal variations in
surface pCOz, while few of them were attempted to monitor the interannual changes in surface
pCO:. Recently, Chen et al. (under review) did such analysis for the entire GOM using an unified
pCO: remote sensing algorithm and found that surface pCO: anomalies in the GOM tended to be
positive (by ~ 5 patm) after 2012, This increase in surface pCO:3 is quite smaller comparing to the
increasing rate in atmospheric pCO2. To further verify this result and to increase the capabilities
of satellite remote sensing in monitoring surface pCO;z under anthropogenic forcing, the driving
mechanisms in surface pCO:z over interannual time scales need to be investigated and well

understood.

In the open ocean waters, the dominant controls of surface pCO: were attempted in several studies
on seasonal time scales (Takahashi et al., 2002: Bennington et al., 2009; Fay and McKinley, 2013
and 2017). Specifically, Takahashi et al. (2002) proposed a computational method to decompose
the seasonal variation of surface pCO: into two parts: one is caused by the temperature effect
(pCO;_T), and the other is caused by the non-temperature effect (pCO2_nonT). The temperature
cffect on surface pCO; is computed by perturbing the mean annual surface pCO; with the

difference between the mean and the observed sea surface temperature (SST, "C) using Eq. 1,

dinpCo,

- a0 =1yt .
i = 0.0423° €™") in Takahashi et al. (1993).

based on the isochemical seawater experiments {
That's, a parcel of seawater with an annual mean pCO: value was subjected to seasonal
temperature changes under isochemical conditions, to determine if changes in the seasonal SST

(alone) would change the surface pCOs. Eq. 2 is the quantification of the non-temperature effect
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on surface pCO;z (pCO2_nonT), in which the temperature effect is removed from the observed
surface pCO; by normalizing the observed pCO; to a constant annual mean SST. Changes in pCO;
from this component primarily come from change in total dissolved inorganic carbon (DIC,
pmol/kg) and total alkalinity (TA, pmol’kg). and it includes the net consumption of CO: by
phytoplankton, net TA change due to calcification and nitrate utilization, air-sea exchange of CO;,
and variation of DIC and TA by vertical mixing of subsurface waters or horizontal mixing of
different water masses. In the open ocean, the non-temperature effect mainly refers to the net
biological effect. Using this method, Takahashi et al, (2002) found that, the seasonal amplitude of
surface pCO; in high latitudes (= 40° poleward) and equatorial zones was dominated by the biology
cffect (which refers to the non-temperature cffect, more exactly), and dominated by the
temperature effect in the subtropical regions. Similar findings were also shown in Fay & McKinley

(2017).

In contrast to the open ocean, because of the dynamic and complex biogeochemical and physical
processes in coastal oceans, the driving mechanisms of surface pCO: over seasonal time scales
could be different from the open oceans even at similar latitudes. However, such knowledge is
quite Himited in current studies. This study will Al in this research gap towards a better
understanding of the driving mechanisms in the scasonal and interannual variations of surface

pCO;, meanwhile it will also facilitate the future development of surface pCO: remote sensing

algorithms.
pCO:_T e pCO.‘fwmuul Avean) Xexp[ﬂ. 0423(587':&"-587'&\'0)] (1 )
pCO:_nonT = pCQe Xexp{0.0423(5STowwean-SSTuss)| (2)
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Great efforts have been made to observe surface pCO; in the coastal ocean via the global time
series observation system (NOAA Pacific Marine Environmental Laboratory (PMEL) moored
pCO: systems) in the past decade to document the temporal changes in oceanic carbon, although
the observing network is still in its infancy. To address the questions described above and to
improve the quantification of surface pCO: from ocean color remote sensing, the objectives of this
study include: 1) Investigate the seasonal and interannual variations of surface pCO: in the coastal
ocean environments in tropical and subtropical and temperate zones; 2) Quantify the effects of
temperature and non-temperature components (pCO2 T and pCO2_nonT) on surface pCO; and
analyze the dominant controls of surface pCO; at different latitudes over seasonal and interannual
time scales; and 3) Examine the comrelations between environmental vaniables and surface pCOs

components.

2. Data and methods

2.1. Data

2.1.1. In situ data time series

Table 1 provides a summary of the time series observations from buoy systems compiled for this
study. The corresponding geolocations of these buoys are shown in Fig. 1. These time series data
were collected by the NOAA PMEL carbon program

(https:/www. pmel.noas. gov/co2/story/Buoys tand +Autonomous+Systems), and obtained from

the NOAA National Centers for Environmental information (NCETI)
(https://www, node noas gov/ocads/oceans Moorings/) (Sabine et al., 2010; Cross et al., 2014(a-c);
Sutton etal.,, 2010, 2011, 2013(a-d), 2014(a-b), and 2015). Basically, to assure sufficient temporal

coverage, only those buoys that have at least two years' data collection were selected. As a result,
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ten buoys (C1-C10, where “C” represents Coastal Oceun) data collected along the coasts of the
United States of America and its territories were finally processed. These buoys covered various
coastal ocean ccosystems different latitudes. Generally, buoys C1-C5 are located in the tropical
and subtropical zones, and buoys C6-C10 are located in the temperate zone. Specifically, buoy
C1 and C2 were in coral reef environments, with buoy C1 deployed on the southwestem coast of
Puerto Rico and C2 positioned in the Cheeca Rocks, an inshore patch reef within the Florida Keys
National Marine Sanctuary; buoy C3 was located in the nearshore region of the Louisiana Shelf,
which was greatly affected by the Mississippi River discharge (river discharge rate of ~17,000 m’
s} and river plume with a sea surface salinity (SSS) range of 14.00-35,64, and buoy C6 was
deployed in the southwestern coast of the Gulf of Maine at a higher latitude than buoy C3, and it
was also affected by river discharge but at a greatly reduced magnitude (river discharge rate of
~0.27 m* 5} with a SSS range of 22.56-33.38 and by strong tidal currents (~2 m s'): buoy C4
was located in the Gray's Reef National Marine Sanctuary in the subtropical coastal ocean waters
at a slightly higher latitude of 31.399 °N than buoy C3, and it represents a general coastal ocean
environments {e.g., without coral reef and river discharges); Buoys of C5 and C7 were placed in
the coastal upwelling zones at different latitudes; and buoys of C8-C10 were located in the Guif
of Alaska ecosystem, which is seasonally affected by the ice-melt freshwater inputs. In addition,
three open ocean buoys (01-03, where “0" represents Open Ocean) located in the oligotrophic
waters of Atlantic and Pacific were also selected because of their sufficient temporal coverage.
Buoys O1 and O2 are in the tropical and subtropical zones, and O3 is in the temperate zone. These
three open ocean buoys were mainly used as references for the analysis of the buoy time series

data (i.e., buoys C1-C10) in the coastal ocean.
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For each of the buoys, both atmospheric and surface pCO> were measured with a non-dispersive,
infrared analyzer Li-COR™ (model LI-820) (Sabine, 2005; Sutton et al., 2014¢). The Li-COR™
data had an accuracy of 2 patm (or better) and a sampling frequency of every 3 h. Surface pCO:
data were collected at a water depth of < | m, and atmospheric pCO: data were collected at 1.2 m
above the sea surface. The details of data collection, processing. and guality control can be found
in Sabine (2005) and Sutton et al. (2014c¢). In addition, SST and sea surface salinity (SSS) data
were obtained using a CTD (SBE37, MicroCAT C-T Recorder) integrated in the autonomous CO:

mooring system,
2.2. Satellite data

For each buoy listed in Table 1, a spatial area of 110km (N to S) by 110 km (W to E) covering the
buoy location was defined. Correspondingly. standard daily Level-2 ocean color data products at
spatial resolution of 1-km (Version R2018.0) from Moderate Resolution Imaging
Spectroradiometer (MODIS) Aqua covering the defined area for the time domain of the buoy data
(Table 1)  were downloaded  from NASA  Goddard  Space  Flight  Center

(htp:/oceancolor, gsic nasa gov/), These Level-2 data products included ocean color data such as

Chlorophyll-a concentration (Chl, mg m™) and spectral remote sensing reflectance (Rrs, sr') at
visible bands between 412 and 678 nm. The spectral Rrs data were used to calculate the diffuse
attenuation coefficient of downwelling irradiance at 488 nm (Kg, m™) using the semi-analytical

algorithm developed by Lee et al. (2005).

In addition to ocean color data products, global daily wind data products at 10m above the sea
surface between 2005 and 2017 were obtained from the NOAA National Centers for
Environmental Prediction (NCEP) reanalysis dataset. This reanalysis dataset 15 a joint product

from the NCEP and the National Center for Atmospheric Research (NCAR) with a spatial
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resolution of 2.5 degree. These wind data products are wind vectors (in w (W to E) and v (S to N)
directions), and daily wind speed were calculated from the u and v vectors and then interpolated

to the same spatial resolution (i.c., 1-km) as the ocean color data.
2.2. Methods
2.2.1. Data preprocessing

Time and location data from the /n sifu pCO; measurements were used to identify the co-located
and contemporaneous Chl, K, and wind speed data for each of the buoys listed in Table 1. These
data, together with the in situ time series of SST, SSS, and atmospheric pCOz, were used as

ancillary data for the investigation of the seasonal and interannual variation of surface pCO.

To obtain high-quality data, contemporaneous field-measured pCO: and MODIS-derived Chl and
Ka for each buoy were selected using the following criteria. A time window of + 6h between field
and MODIS measurements was used, Low-quality MODIS data under various non-optimal
observing conditions (e.g., atmospheric correction failure, cloud, stray light, sun glint, ete.) were
excluded using the NASA standard quality control criteria (Patt et al., 2003; Bames and Hu, 2015).
Valid satellite data within a 3x3 km box centered on the location of each buoy were extracted and
averaged (Bailey and Werdell, 2006). To assure the satellite data quality, only if the number of

valid pixels in the 3x3 km box was = 5 and its variance was < 10%, the extracted data were used.

Similar to the extraction of Chl and Ky, the wind speed data were also matched for each buoy.
Since there was no detailed hour and minute stamps of the daily wind speed data products, valid
wind speed data within a 3x3 km box centered on the location of each buoy were extracted and

averaged for any daily wind speed data. as long as there was in situ pCO: measurements on that
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day. Again, to assure the matchup data quality, the extracted data were used only if the number of

valid pixels in the 3%3 km box was = § and its variance was = 10%.
2.2.2. Decomposition of surface pCOz

Basically, Egs. 1 and 2 were used to decompose the temperature effect (pCO2_T) and non-
temperature effect (pCO:_nonT) on surface pCO:. The pCO: T component is derived by
disturbing the annual mean of surface pCO: with seasonal SST relative to the annual mean SST.
The pCO; _nonT component is calculated by normalizing the observed pCO: to a constant annual

mean SST, in which the temperature effect was removed from the observed pCO:.

Therefore, to apply these two equations (Eqs. 1 and 2). two terms are needed: the annual mean of

surface pCO; and SST. To calculate these two terms for each of the buoys listed in Table 1, all the

available in siru data in the time domain (from multiple years) of each buoy were used. Specifically,

for each buoy, first, the monthly means of surface pCO: and SST in each year were calculated
from the i situ daily measurements; second, the derived monthly means of each year were used
to caleulate the monthly climatology (i.¢., the average of the multi-year monthly means) of surface
pCO:and SST; and finally, based on the monthly climatology of surface pCO> and SST, the annual
mean surface pCO: and SST were derived. Here, it should be clarified that, the monthly
climatology of surface pCO: and SST does not mean the real monthly climatology (i.e., over = 30

years), in fact, they are the multi-year average of the monthly means in each year.

With the derived annual mean of surface pCO2 and SST for each buoy, Eqs. 1 and 2 were applied
to the in situ data 10 derive the two components of surface pCOy: pCO; T and pCO2_nonT,

Following the steps described above, the monthly mean of these pCO; components in each year,
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and their monthly climatology (i.¢., multi-year based monthly averages) were also derived for

subscquent data analyses.

2.2.3. Statistical analyses

To quantify the seasonal magnitudes of surface pCO:z and its pCO: components, their seasonal
maximum and minimum were derived first, Then the seasonal magnitude of surface pCO:» was
computed using Eq. 3, and this seasonal magnitude represents the net seasonal variation of in situ
surface pCO;. The seasonal magnitudes of the pCO2 T and pCO: nonT components were also

computed similarly using Eqs. 4 and 5, respectively.

ApCO:> = max(pCO2} — min(pCO:3) (3)
ApCO: 1= max(pCO: y) — min(pCO: 1) (4)
ApCO; wnr = max(pCOz wunt) — min{pCO; qonr) (5)

The relative importance (R/) of the temperature and non-temperature effects was quantified by
normalizing the difference of seasonal magnitudes between pCO: T and pCO;_nonT with the

seasonal magnitude of surface pCO: based on Eq. 6.
RI = (ApC Oz 7~ ApCO: nonr)iApCO:> (6)

RI is an indictor to tell briefly about which effect dominates the scasonal variations of surface
pCO:. Generally, if R/ is positive, it means the effect of temperature changes on surface pCOax
exceeds the effect of the non-temperature (i.e., changes in TA and DIC), suggesting that the
temperature effect is a dominant driver of seasonal surface pCO:, and vice versa. Besides, if R/ is
more close to 1 (1) at one station comparing to other stations, it means the temperature (non-

temperature) eflect plays a more important role in modulating the seasonal changes of surface
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pCO: at that station. In contrast, if Rf is close to 0, it would suggest that these two compete
processes (temperature and non-temperature effects) plays comparable but opposite roles in

varying seasonal surface pCO3, thus they cancel with each other to a large extent.

To further understand the seasonal variations of surface pCO:z and its driving environmental factors,

the correlations between surface pCO: (as well as pCO:_T and pCO2_nonT) and the environmental
variables (i.e., SST, SSS, Chl, Ky, and wind speed) were investigated, The correlations were
quantified by Pearson correlation coefficient (R) based on the time series data of the monthly
anomalies, which were derived by removing the climatological seasonality from the interannual
monthly mean. Only if the p value was < (.05, the correlation R was considered as a significant

correlation,

In addition to the analysis of dominant drivers (1.e., temperature or non-temperature effect) and the
corresponding dominant environmental variables in the seasonal variations of surface pCO: in
different coastal ocean systems, to further understand the driving mechanisms in surface pCO; on
interannual time scales, the interannual trends (if there 1s any) over short term time scales (i.c., <10
years) in surface pCO;, as well as atmospheric pCO; and environmental variables (1.¢., SST, SS§,
Chl, K¢, and wind speed) in these coastal ocean environments were also examined at a confidence

level of = 95%, based on the their time series data of interannual monthly anomalies.
3. Results
3.1. Seasonal variations of surface pCO: and its components

Following the steps described in Section 2.2, the seasonal variations of surface pCO: and its
components (pCOz T and pCO:_nonT) for each buoy (Table 1) were derived (Figs. 2 and 3), and

their seasonal amplitudes were quantified (Table 2). Generally. it was found that, the temperature
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effect and non-temperature effect are in opposite phases with 6 months difference. Surface pCO;
was dominated by the temperature effect in the tropical and subtropical zones, and was dominated
by the non-temperature effect in the temperate zone. There are a few exceptions in some special
ocean environments (e.g., coral reefs, river-dominated. upwelling-dominated), where surface
pCO:2 showed irregular seasonality and both temperature and non-temperature effects play

comparable roles in modulating seasonal changes of surface pCO.
3.1.1. Tropical and subtropical zones

Fig. 2 shows the seasonal variations of surface pCO; and its components (pCO;_T and pCO:_nonT)
of the buoys located in tropical and subtropical zones. From tropical to subtropical regions, surface
pCO: showed stronger seasonal signals with high values in summer and low in winter. The
seasonality of surface pCO: showed variable patterns in coastal oceans because of the particular

biogeochemical and physical processes at each station,

In open ocean waters (Fig. 2 and Table 2), surface pCOz in the tropical zone (represented by buoy
01 at 22.670 'N) showed very small seasonal variation with an amplitude of 22,22 patm,
corresponding to small changes in seasonal SST (23.7 - 26.5 "C). Similarly. both the temperature
and non-temperature components also showed very small seasonal changes with an amplitude of
44.48 patm and 23.29 patm, respectively. The seasonal variations of surface pCOz mainly follows
with the temperature effect (pCO2_T) with a relative importance factor R/ of 0.95. suggesting the
dominant controls of temperature effect on seasonal surface pCOz. In the subtropical zone
(represented by buoy 02 at 31.780 'N), surface pCO: also showed similar but stronger seasonality
(seasonal amplitude = 90.68 patm) comparing to buoy O1, with a R/ factor of 0.78. That’s, the
seasonal warming effect also dominates the seasonal variations of surface pCO3 in the subtropical

open ocean waters. At both stations, the non-temperature cffect (pCOz_nonT) is about 6 months
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out of phase relative to temperature effect (pCOz_T). Although this competing non-temperature
effect is not & dominant control of the seasonal pCO;, ¢learly it does play a role in modulating the
overall seasonal changes in surface pCO: with a reduced seasonal amplitude than without this
effect. These results are consistent with the findings in previous studies (Takahashi et al., 2002:

Ullman et al., 2009; Fay and McKinley, 2017).

Comparing 10 open ocean waters, surface pCOz in coastal oceans varied quite differently even at
similar latitudes or in the same kind of coastal ecosystems (Fig. 2 and Table 2). But generally,
similar to those found in the open ocean waters, pCOz T and pCO:_nonT are ~6 months out of
phase. and surface pCO: is also primarily dominated by pCO: T in coastal regions except for
special coastal environments (e.g., coral reefs, river-dominated, upwelling-dominated). For
example, station C4 is located in a common coastal environment (i.e., with little river inputs,
without upwelling, no coral reefs). As a result, surface pCO: at station C4 followed closely with
pCO: T in phase with high pCO:z in winter and low in summer, indicating that surface pCO: is
mainly controlled by SST over seasonal time scales. In fact, the overall seasonal variations of
surface pCO: and its components at buoy C4 is quite similar to those of buoy O2 in the subtropical
open ocean waters with the same relative importance factor R/ of 0.78. The major difference
between the two is that, surface pCO; at buoy C4 had a larger seasonal amplitude (154.37 patm at

C4 vs. 90.68 patm at O2) because of the active oceanic process in coastal oceans.

In the coral reef coastal environments (represented by buoy C1 and C2), surface pCO:z could show
quite different seasonal variations from that in tropical and subtropical oceanic waters. It is found
that, surface pCO; was mainly dominated by pCO:_T at site C1 (in tropical zone), while it was
mainly dominated by pCO:_nonT at site C2 (in subtropical zone). Specifically, at site C1, surface

pCO: had a seasonal amplitude of 60.26 patm, and a relative importance factor Rf of 0.63. The
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overall seasonal changes of surface pCO; was closely in phase with the pCO:_T, suggesting the
dominant controls of the temperature cffect in affecting scasonal surface pCO;. This result is
consistent with the published studies for the same coral reef environment (Gray et al., 2012). In
contrast, at site C2, the seasonal variation of surface pCO: follows the change of pCO: nonT
closely, with a larger seasonal amplitude of 227,94 patm than that at buoy C1 and a negative
relative importance factor R of -0.53. That's, instead of being dominated by pCO:_T, the seasonal

variation of surface pCO: at site C2 is mainly controlled by the non-temperature effect.

In the river-dominated coastal environment (represented by buoy C3), Surface pCO: showed
irregular and complex seasonal variations as expected. From January to September, surface pCO:
tended to be dominated by pCO: nonT, and October and December, it tended to be mainly affected
by pCO: T. The two competing cffects of pCO: T and pCO: nonT resulted in a seasonal
amplitude of surface pCO: of 114.88 patm in this coastal environment. The relative importance
factor RI was -0.05, suggesting that the temperature and non-temperature effects played

comparable roles in affecting the overall seasonality of surface pCO».

In the coastal upwelling ecosystem (represented by buoy C5), Surface pCO; varies from high to
low from spring to fall, and this varation was coupled in phase with the pCO2 nonT with the
relative importance factor R/ of -0.90, suggesting the non-temperature effect was the major control

of the seasonal surface pCO..
3.1.2. Temperate zone

Fig. 3 is the seasonal variations of surface pCO: and its components (pCO:_T and pCO:_nonT) of
the buoys in temperate zones. Similar to the findings in tropical and subtropical zones, the

temperature effect and non-temperature were also ~6 months out of phase with cach other,
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suggesting their competing roles in varying seasonal surface pCOz. However, in contrast to the
results in tropical and subtropical zones, the seasonality of surface pCO; was found to be
dominated by the non-temperature effect in the temperate zone with a few exceptions in special

ocean environments where surface pCO: showed irregular seasonal patterns.

In the open ocean waters (represented by buoy O3, Fig. 3 and Table 2), surface pCO: did not show
clear seasonality from winter to summer (¢.g., no obvious sinusoidal variation patterns), As to its
pCO; components, both pCOz T and pCO: _nonT showed strong and comparable scasonal
amplitudes {(seasonal amplitude of pCO: T = 127.2] patm, and seasonal amplitude of pCO:_nonT
= 125.71 patm) but in the opposite phase. Most likely, the two competing effects partially cancel
with each other to a large extent on seasonal scales, thus leading to little seasonal changes in
surface pCO;. In this oceanic environment, both the temperature and non-temperature effects play
important roles in affecting surface pCOa. with a relative importance factor R/ of 0.07. Based on
the pCO: data collected from the Weather Station “P™ (50° N, 145" W, which is ~23 km from buoy
03) in 1972-1975 by Wong and Chan (1991), Takahashi et al. (2002) also found similar seasonal
variation patterns in surface pCO: and its components, but with some difference in the seasonal
amplitude of surface pCO; (i.¢., surface pCO; amplitude = 20 patm in this study, and surface pCO;
amplitude = 50 patm in Takahashi et al. (2002)). Since the statistics in Takahashi et al. (2002) was
based on data collected in 1972-1975, and the present study is based on data collected in 2007-
2015, the ocean environment could have changed within > 30 years with the increase of

anthropogenic atmospheric pCO:.

In the coastal ocean waters (Fig, 3 and Table 2), surface pCO: showed low values in spring und
summer and high values in winter time at most stations, with some difference in the seasonal

patterns from station to station. Specifically, in the river-dominated region at buoy C6, although
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surface pCO; reached & minimum in spring and a maximum in winter, similar to the surface pCO;
at buoy C3 (around the Mississippi delta), it showed some finer irregular seasonal patterns (¢.g.. &
sub-maximum in August). In details, surface pCO;z was in phase with pCO;_T between April and
August, while it was in couple with the variation of pCO: nonT in other months. These two
competing effects of pCO,_T and pCO2_nonT resulted in a seasonal amplitude of surface pCO;
138.22 patm and a relative importance factor Rf of (.29, suggesting that the temperature effect
plays a relatively more dominant role in controlling the seasonal variation of surface pCO: than at
station C3 (where R7 = -0.05). This is reasonable because the river discharge at this station was

way-less than that at station C3 (i.¢., 17,000 m* s vs. 027 m’ ™).

In the coastal upwelling ccosystem, similar to the pCO: in the subtropical upwelling system at site
C5, surface pCO:; at site C7 also followed closely with the pCO: nonT in phase, with a relative
important factor R/ of -0.76, suggesting the non-temperature effect is the major control of the
seasonal surface pCO:2. However, the seasonal vanation patterns of surface pC0O:z is quite different
from that at C5. Here at C7, surface pCOx reached a minimum in summer and maximum in winter.
The different seasonal variation patterns of surface pCO: in these two upwelling systems were
mainly attributed to the difference of the balance between the biological uptake of CO; and

upwelling enrichment of CO2, and was discussed n Section 4.1,

In the coastal regions with seasonal ice melting, represented by buoy C8-C10 in the Gulf of Alaska
ecosystems, it was found that surface pCO» showed strong seasonal amplitude of 309.81 patm,
279.42 patm, and 168.28 patm, at station C8, C9, and C10, respectively. The seasonal pCO: varies
in couple with pCO:_nonT closely in phase, which suggests the dominant control of the non-
temperature effect over the temperature effect in surface pCO; over seasonal time scales in these

coastal environments, This result is quite different from the findings in the temperate open ocean
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waters (represented by buoy 03), where the two competing effects both dominated the scasonal
variations of surface pCO;, leading to little seasonality in surface pCO;. With the increase of
latitude from buoy C8 to buoy C10, the relative importance of the non-temperature effect seems
to increase with the relative important factor R/ of -0.77, -0.80, and -0.84, for buoy C8, C9, and

C10, respectively.
3.2, Interannual variations of surface pCO:z

In addition to the seasonal vanabilities, we also examined the interannual variabilitics of surface
pCO: as well as atmospheric pCO: for each buoy in Table 1, with results shown in Figs. 4 and 5,
and Table 3. The interannual variabilities of the surface pCO: components (pCO: T and pCO;
_non'T) were also quantified to help find the dominant controls of the interannual changes in
surface pCO2. Due to the data limitation, the interannual trends analyzed here mainly refers to the
short-term (3-10 years) trend, which may differ from the long-term (i.e., > 30 years) trend signals.
In general, both atmospheric pCO: and surface pCO: and its components showed interannual
variation trends in most sites (with exceptions in some special environments) selected in this study.
It was found that, the interannual variabilities in surface pCO; was mainly dominated by the non-
temperature effect in tropical and subtropical zones, and was mainly controlled by the temperature

effect in the temperate zone.
3.2.1. Tropical and subtropical zones

Fig. 4 is the interannual variations of surface pCO: and atmospheric pCO: of the buoys located in
tropical and subtropical zones, Generally, atmospheric pCO: showed significant increasing rates
(i.¢., 1.20~3.60 patm yr’' at p < 0.05) in all buoy stations. However, the corresponding surface

pCO; showed variable interannual signals in different ocean environments,
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In the open ocean waters from tropical (represented by buoy O1) to subtropical zone (represented
by buoy O2) (Fig. 4 and Table 3), atmospheric pCO: showed clear interannual increase with a rate
of 1.20 patm yr' and 1.94 patm yr' (at p < 0.05) over a short-term time scale of 2007-2015 and
2005-2007 at buoy O1 and O2, respectively. Correspondingly, surface pCO: also showed
significant interannual increase with a rate of 2.77 patm yr' and 5.76 patm yr' (at p < 0.05). It is
found that, the increase in surface pCO: was mainly resulted from the increase of the pCO2_nonT
(1.e., the interannual trend of pCO:_nonT is greater than that of pCO:_T, see Table 3). However,
we did not find any strong and significant interannual trend in SST, SSS, and wind speed. While
considering the significance of the stable increase of the interannual atmospheric pCO:, we believe
that the dominant control of the non-temperature effect in the interannual trend of surface pCO; is
most likely attributed to continuous sink of CO: from air to the surface ocean waters over
interannual time scales under anthropogenic forcing. On the other hand, although the increase rate
of surface pCO; in subtropical zone is statistically over doubled than that in tropical zone, the
interannual trend of surface pCO; in subtropical zone was only based on 3 years” data (i.e., 2005-
2007). More data over longer time series are needed to verify this finding (see discussion in

Section 4.2).

In the coastal occan waters at different latitudes (buoy C1-C5 in Fig. 4 and Table 3), atmospheric
pCO; all showed clear interannual trend at an increasing rate of 1,69-3,60 patm yr”' (at p < 0.05)
over a short-term scale (3-10 years). However, the interannual surface pCO; varied from region to
region. Nevertheless, In the coastal environment without coral reefs and river discharges
(represented by site C4). surface pCO:2 did show significant interannual trend at an increasing rate
of 2.97 patm yr' (at p < 0.05), and most of this interannual variability came from the pCOx_nonT

component {i.e,, the interannual trend of pCO>_nonT = 3.44 patm yr', and the interannual trend
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of pCO;_ T = -0.97 patm yr', see Table 3), suggesting that the non-temperature effect is the
dominant control of surface pCO; over interannual time scale. Interestingly, the surface pCO;
actually showed two interannual signals with a clear increase before 2012 (i.e., 2006-2012) and a
clear decrease after 2012 (2012-2015). Yet more data are needed to further verify this phenomenon

(See discussion in Section 4.2).

In the coral reef environments (represented by buoy CI in tropical zone and C2 in subtropical
zone), surface pCO;z and its components did not show any significant trend over years of 2009-
2015 in the tropical zone, While in the subtropical zone, surface pCO: showed a significant
increasing trend of 11.44 patm yr' (at p < 0.05) over the period of 2010-2015. This interannual
variabilities were found to be mainly dominated by the non-temperature effect pCOz nonT (see

Table 3).

In the river-dominated coastal environment (represented by buoy C3), no significant trend were
found in surface pCO: as well as its temperature and non-temperature components (i.e., pCO:_ T
and pCO;_nonT), In facy, there is only a few months” data available over the period of 2009-2014.
Therefore, the results derived here may not be representative for the real situation, and more data

are needed for further examination (see discussion in Section 4.2),

In the coastal upwelling environment (represented by buoy C5), surface pCO:> showed large
interannual variability mostly within + 50 patm but without clear interannual trend over the period
of 2010-2015. However, significant and comparable interannual trends were found in both
pCO2 T (rate = 8,17 patm yr'') and pCO:_nonT (rate = -8.13 patm yr™') in opposite directions,
Thus it seems these two competing effects canceled with each other to a large extent over
interannual time scales, resulting in little interannual variabilities in surface pCO:, It s noticed that

surface pCO; scems to show an increase in the period of 201-2012 and a decrease over the years
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of 2012-2013, but the data was very noisy and more data over longer time series are required to

further analysis {see discussion in Section 4.2),
3.2.2. Temperate zone

Fig. 5 is the interannual variations of surface pCO; and atmospheric pCO: of the buoys located in
temperate zone. Again, atmospheric pCO: were found to be increasing with significant increasing
rates (i.¢., 1,20~3.60 patm yr’ at p < 0.05) in all buoy stations, and the corresponding surface

pCO; also showed significant increase except a few special ocean environments,

In the open ocean waters (represented by buoy O3, Fig. 5 and Table 3), surface pCO: showed
slight but insignificant increasing trend (0.57 patm yr'). However, the two competing components
of pCO2 _Tand pCO:2 _nonT did show significant but opposite trends with a rate of 5.38 patm yr-
"and -4.60 patm yr', respectively. Thus it seems that these two competing components canceled
with each other 10 a large extent, leading to Tittle interannual trend in surface pCOa, and statistically

the slight interannual increase was mainly attributed to the temperature effect,

In the river-dominated coastal environment (represented by buoy C6, Fig, § and Table 3), similar
to the results found in subtropical zone (i.e., C3). there was no significant trends shown in surface
pCO; as well as its temperature and non-temperature components (CO: T and pCO2 _nonT).
However, different from buoy C3, here the statistics were based on data collected from each month
over 9 years (i.e., 2006-2014), so there should not be large uncertainties in the derived surface
pCO:2 anomalies. Considering the dynamics of river discharges to such coastal ocean environment,
it seems that, the interannual variabilities of surface pCO3 in this coastal environment was mainly
driven by the river discharges, despite of the anthropogenic forcing of the pCO: increase in the

atmosphere.
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In the coastal upwelling environment (represented by buoy C7, Fig, 5 and Table 3), in contrast to
the phenomenon at buoy C5, surface pCO; here showed a significant decrease with a rate of -5.69
patm yr' over the years of 2006-2015, despite of the interannual increase in atmospheric pCO,.
Meanwhile, both pCO: T and pCO:_nonT showed significant trends with an increase rate of 2.32
patm yr' and a decrease rate of -7.98 patm yr', respectively, suggesting that the non-temperature

effect is the dominant control of surface pCO: on interannual time scales.

In the coastal regions with scasonal ice melting (represented by buoy C8-C 10, Fig. S and Table 3),
surface pCO; all showed significant increasing trends at variable rates of 24.97 patm yr', 10.68
patm yr', and 5.37 patm yr'', at sites C8, C9. and C10, respectively. At site C8, the statistics was
based on data in 2013-2016, it is found that, both pCO: T and pCO: nonT showed positive
interannual increase with a rate of 6.54 patm yr', and 15.56 patm yr', respectively, but the
increase of pCO2 _nonT was insignificant (i.e.. p > 0.05). Therefore, the extremely high increasing
rend in surface pCO: at site C8 is skeptical. Considering the significance of the interannual
increase of pCO2 T. we believe the increase in surface pCOx was mainly controlled by the
temperature effect (see discussion in Section 4.2). Similarly, it was found that the significant
interannual increases of surface pCO; at sites C9 and C 10 were mainly attributed to the significant
merease in pCOx T, suggesting the dominant control of the temperature effect in the interannual

surface pCO; in these coastal ocean environments (see discussion in Section 4.2),

4. Discussion

4.1, Driving mechanisms in seasonal surface pCO2

As shown in Section 3.1, over seasonal time scales, surface pCO; was found to be mainly driven

by the temperature effect in tropical and subtropical zones and was mainly controlled by the non-
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temperature effect in the temperate zone with exceptions in a few special environments (¢.2., coral
reefs, niver-dominated, upwelling-dominated), It was easy to understand the temperature effect
was mainly related to SST and environmental variables that are closely related to SST such as
wind speed. While for the non-temperature effect, it is not clear that which environmental variable

is important in modulating this effect.

In fact, the non-temperature effect is the overall effect of biological activities (e.g,, net CO:
utilization, net TA change due to carbonate production and nitrate utilization), ocean mixing
between different water masses that are characterized by different carbonate properties (i.c.,
changes in DIC and TA), and air-sea CO: fluxes. Yet it is very difficult to separate and quantify
cach of these non-temperature effect because of the interactions among them, Therefore, to help
better understand the dominant environmental variables in affecting the non-temperature effect on
surface pCO: over seasonal time scales and to improve the accuracy of satellite remote sensing of
surface pCO;, various environmental variables were used as proxies of different biogeochemical
and physical processes in affecting surface pCO.. Specifically, optical parameters such as Chl and
Ky are used as proxies of the biological productivities, atmospheric pCO:2 and wind speed are used
to approximate the effect of the air-sea CO; exchange, SST, SSS, and wind speed are used as to
indicate the effect of ocean mixing. The correlations between these environmental variables and
surface pCO: as well as its components (pCO:_T and pCO; _nonT) were analyzed in details (Table

4).

In the tropical and subtropical ocean waters, surface pCO: was mainly dominated by the
temperature component pCO2 T (i.e., buoy 01-02, C1, and C4, see Section 3.1.1), and strong
correlations (i.e., R = 0.9) between pCO: T and SST were found with consistence (Table 4),

Correspondingly, wind speed also showed significant negative correlations with pCO: T in these
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ocesn environments, suggesting wind-driven ocean mixing plays a role in modulating pCO:_T and
thus surface peo2. It should be clarified that, the dominant control of temperature effect does mean
the unimportance of the non-temperature effect. In fact, both effects are important in modulating
the overall seasonal variation of surface pCO.. In these ocean environments, significant
correlations were found between pCO2_nonT and atmospheric pCO», suggesting the contribution

of the air-sea CO: fluxes to the seasonal variations of pCO2_nonT, and thus surface pCOx.

In the temperate ocean waters, surface pCO> was mainly driven by the non-temperature effect
pCO:2 nonT (i.c., buoy C7-C10, see Scction 3.1.2). However, the non-temperature effect refers to
different oceanic processes in different ocean environments. For example, the non-temperature
cffect mainly refers to upwelling at station C7, while it mainly refers to the seasonal ice-melting
and mixing between the freshwater and oceanic waters at stations C8-C10. Specifically, for the
buoys (i.e.. C8-C10) located in the Gulf of Alaska which is affected by seasonal ice-melting, SSS
can be < 20 (see Table 1). However, we did not find any significant correlations between
pCO2_nonT and SSS except at station C9 (R = -0.43). Because of the cold water characteristic of
the ice-melting freshwater, we did find significant negative correfations found between
pCO; nonT and SST. In the open ocean waters (represented by buoy 03), both pCO: T and

pCOz nonT play comparable but competing roles in modulating seasonal surface pCO; (see

Section 3.1.2), For this ocean environment, pCO2 nonT showed strong correlations with SST, SSS,

and wind speed, with R of -0.88, 0.66, and 0.31, respectively, suggesting the cffect of ocean mixing
on the non-temperature effect of surface pCOx. In addition, pCO:_non'T also showed significant
correlations with atmospheric pCOz, thus the air-sea CO: fluxes also contributed to the seasonal
variations of pCO,_nonT and thus surface pCO2. On the other hand, SST, SSS and wind speed

also showed strong correlations with pCO: T but in the opposite directions as with pCOz_nonT,
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with R of 0.99, -0,67, and -0.28, indicating the ¢ffect of ocean mixing as well as thermodynamics

on the temperature effect of surface pCO;.

However, as shown in Section 3.1.1, there are a few special coastal ocean environments are found
to have irregular seasonal signals in surface pCOa, In the coral reef environment at buoy C2, the
non-temperature effect (pCO2_nonT) dominated the seasonal surface pCO; (RS = -0.53). As a
result, pCO:2_nonT showed a significant negative correlation (R = -0,31) with SSS and significant
positive correlation (R = 0.16) with wind speed (Table 4), suggesting that the effect of ocean
mixing on the carbonate properties (e.g., TA and DIC). Meanwhile, atmospheric pCO: also
showed a significant positive correfation (R = 0.37) with pCO:z non'T, indicating the contribution
of air-sea CO: fluxes to the non-temperature pCO; component (pCO:_nonT). In fact, this effect is
also visible in Fig. 2 for station C2, where the seasonal pCO: nonT co-varies with the seasonal

atmospheric pCO: to some extent.

In the river-dominated regions in both subtropical zone (C3) and temperate zone (C6), surface
pCO; was found to be dominant by the temperature effect in summertime and by the non-
temperature effect in other seasons. However, there is some difference between the two, as C3 is
affected by large river discharges (i.e., 17,000 m* s°') while C6 is affected by small river discharge
(ie..~0.27 m’s™") but strong tidal mixing (i.e, ~ 2 m s™'). Both freshwater inputs and strong ocean
mixing would affect the non-temperature pCO: component (pCO2_nonT), as these two processes
would bring DIC and nutrient enriched waters to the ocean surface. Indeed, as a good indicator of
these processes, SSS showed significant positive correlations (R = 0.42 at C3, and R = 0.23 at C6)
with pCO:_nonT at both stations. Meanwhile, significant correlations were also found between
the biological proxies (i.c., Chl and Kg) and pCO: nonT at site C6 (Table 4), suggesting the

biological uptake of CO: also has an effect on the non-temperature pCO: component, However,
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negative but insignificant correlations were found between biological proxies and pCOz nonT at
site C3, Considering the data quantity (N = 19) used in the correlation statistics, more data are
needed for further verification. On the other hand, the mixing between freshwater and open ocean
waters and the tidal mixing typically would bring colder waters to the ocean surface, and this
would also affect the surface ocean temperature. As a result, strong negative correlations (R = -

0.92 at C3, and R = -0.61 at C6) were found between pCO:_nonT and SST at both river-dominated

regions.

In the upwelling-dominated regions in both subtropical zone (i.e., C5) and temperate zone (i.e.,
C7), surface pCO; was found to be dominant by the non-temperature effect (see Section 3.1).
However, the seasonal patterns are quite different between the two regions, as surface pCOs varied
from high to low from spring to fall at C5. but from high to low from winter to summer at C7 (sce
Figs. 2 and 3). Upwelling along the U.S. western coast in spring and summer brings lots of COa
and nutrient enriched waters to the surface of these oceanic systems (e.g., Renault et al., 2016),
which would enhance the growth of phytoplankton. I€'s found that the intensities of the biological
uptake of nutrient and COa is much stronger at station C7 (i.e, peak Chl > 5 mg m™) than at station
C5 (i.¢., peak Chl < 2.5 mg m™) especially in spring. Thus, the competing processes of addition of
CO; through upwelling and the biological drawdown of CO;: via phytoplankton uptake finally
leads to a net pCO: increase in spring at station C5. However, we did not find any significant
correlations between the biological proxies (i.e., Chl and Ky) and pCO: nonT. Considering the
large uncertainties (~30%]) in the satellite derived Chl and K. the signal to noise ratio could be
very low after removing the seasonality in these parameters. making it difficult to detect the

correlations between these parameters with pCO2_nonT, On the other hand, the upwelling waters
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are typically characterized as cold water, correspondingly, strong negative correlations were found

between pCO: nonT and SST (R =-0.70 at C5 and R = -0.57 at C7, at p < 0.05).
4.2, Driving mechanisms in interannual surface pCO2

To further examine the dominant controls of surface pCO:2 over interannual time scales, the
interannual variations of the environmental variables (e.g., SST, SSS, and wind speed, atmospheric
pCO;) for cach buoy in Table 1 were also processed and analyzed (Table 3), Specifically, SST is
used as a proxy of the temperature effect (pCOz T), and SSS, wind speed, and atmospheric pCOa
were used as proxies of the non-temperature effect (pCOz_nonT). It should be clarified that Chi
and Ks were not used in this analysis mainly because of the data scarcities and large uncertainties

of these data in the study period of each buoy.

In the wopical and subtropical zones, the interannual surface pCO:2 was found o be mainly
dominated by the non-temperature e¢ffect with exceptions in special ocean environments (e.g.,
river-dominated, upwelling-dominated) (see Section 3.2), However, the interannual anomalies of
SSS and Wind speed did not show clear signals in most stations, suggesting that there was little
change in the physical ocean environments (e.g., ocean mixing). In contrast, the atmospheric pCO:
all showed clear interannual increase for all the buoys located in the tropical and subtropical zones.
Therefore, it is most likely that, the dominant control of non-temperature effect on the interannual
increase of surface pCO: was mainly caused by the interannual changes in the air-sea COx flux.
The air-sea CO: flux mainly depends on the CO: gas solubility which is related to SST, the gas
transfer velocity which is related to wind speed, and the relative difference between the
atmospheric pCOa and surface pCO; (e.g., Borges et al., 2005; Takahashi et al,, 2009 Wanninkhof
et al,, 2013). Since there is little changes in both SST and wind speed (buoys 01-02 and C1-C5,

sce Table 3), it is most likely that the interannual increase in surface pCO: was mainly driven by
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the atmospheric pCO:. Yet, it still could be possible that Chl and Ky may have some interannual
signals that dominates the non-temperature effect on surface pCO;. However, a recent study by
Chen et al. (prepared) did not find any interannual trend in both Chl and Ky in the different regions
of the Gulf of Mexico. Further studies need to be conducted for a clear interpretation of this non-

temperature effect.

In the temperate zone, surface pCO: was found to be mainly controlied by the temperature effect
over interannual time scales with some exceptions in special ocean environments (¢.g., nver-
dominated, upwelling-dominated) (see Section 3.2). Interestingly. although SST did not show clear
interannual patterns in tropical and subtropical zones, it did show significant interannual trends
with variable increasing rates between 0.17 and 0.65 "C yr' in the temperate zone, This finding
confirmed the dominant warming effects on surface pCO; over short-term interannual time scales
in the temperate zone, despite of the leading control of the non-temperature effect on the seasonal

changes of surface pCOz in this region.

In the river-dominated regions (represented by buoy C3 and C6), surface pCO: did not show clear
and significant interannual trends as presented in Figs, 4 and 5. At station C3, SSS showed a
significant decrease with a rate of -0.46 yr' over the period of 2009-2014, while at station C6, SSS
showed a significant but slight increase with a rate of 0.09 yr' over the period of 2006-2014.
Therefore, it seems the insignificant increase (decrease) trend in surface pCO: at station C3 (C6)
was mainly caused by interannual decrease (increase) in SSS. Still, further investigation is needed

with more in situ time series data available.

In the upwelling-dominated regions (represented by buoy CS and C7), surface pCO; showed
decrease over interannual time scales at both C5 (<0.28 patm yr', at p = 0.05) and C7 (-5.69 28

patm yr', at p< 0.05). At both stations, SST and SSS showed significant interannual trends, while
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no significant interannual signal was found in the wind speed. Tt is suspected that, the strong
biological uptake of CO; with the sufficient supply of nutrients from upwelling may exceed the
enrichment of CO; from subsurface over interannual time scales, and the difference between the
two is getting stronger over years. Still, more ancillary data over long time series are required to

further investigation.
4.3, Implication and future improvements

Based on the buoy data time series located in various oceanic ccosystems, the seasonal and
interannual variations of surface pCO; were investigated in this study. We found that, over seasonal
time scales, surface pCO;: was mostly driven by the temperature effect in tropical and subtropical
zones and was mainly dominated by the non-temperature effect in temperate zones: and over
interannual time scales, surface pCO2 was mainly controlled by the non-temperature effect in the
tropical and subtropical zones and was mainly driven by the temperature effect in the temperate
zone. Specifically, for the non-temperature effect either over seasonal or interannual time scales,
the effects of ocean mixing and air-sea CO; fluxes are expressed well by the environmental proxies
(e.z., SST, SSS, and wind speed). It is found that, atmospheric pCO; is an important parameter in
driving both seasonal and interannual surface pCO: at most buoy stations in this study. However,
this factor was not included in most of the published surface pCO; satellite remote sensing
algorithms. Thus it should be why these developed pCO: remote sensing algorithms are most

limited in capturing the interannual variabilities in surface pCOz.

Although the general seasonal and interannual variations patterns in surface pCO; and its dominant
controls of the temperature or non-temperature effects as well as the dominant environmental
variables were found, future improvements are still needed to increase the accuracy of satellite
mapping of surface pCOx.
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Specifically, in the coastal oceans, the biological activities are known to be active and it is thought
to be an important process in modulating surface pCO: (Norman et al,, 2013; Tkawa ¢t al,, 2013;
Huang et al.. 2015). However, due to the data insufficiencies of both the field and concurrent
satellite measurements, no significant correlations were found between surface pCO; and the
satellite-based optical parameters (i.e., Chl, Kq) for most coastal ocean buoys. It is possible that
the biological proxies may vary on different time scales from that of the surface pCO.. This is not
an unreasonable possibility, considering the complexities of the biological processes (i.e.,
photosynthesis, respiration, and calcification) in modulating surface pCO:z, In the future, instead
of using limited satellite-based Chl and Ky data, in sitw time series of the biological proxies (i.e.,
dissolved oxygen, apparent oxygen utilization, nutrients, Chl fluorescence, and Ky) should be
measured together with surface pCO: for a better understanding of the biological role in changing
surface pCO:. More importantly, the algal bloom effect on surface pCO: needs to be thoroughly

investigated by examining the pCO> variations before, during, and after an algal bloom.

In terms of interannual variations of surface pCO3, the current analyses were based on 3-10 years
of time series data, therefore, the derived short-term interannual variabilities may not be
representative of a long-term (i.e., = 30 years) trend. Besides, the analyses were based on data
collected over different time periods. From Figs. 4 and 5, it seems the interannual variation rate of
surface pCO; changes over different study periods. For example, at station C4, the surface pCO:
seems to be increasing between 2006 and 2012 but seems to be decreasing between 2012 and 2015.
Therefore, to better quantify the interannual variabilities in surface pCO;, more time series data
are needed. Furthermore, it is found that non-temperature effect (pCO2_nonT) dominates the
interannual changes of surface pCO: in most cases, with a much higher rate than the increase of

atmospheric pCO:. To further differentiate the effects of air-sea CO: change, biological effects,
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and vertical mixing, and quantify the role of each process in the interannual variations of surface
pCO:, long term field-measured biological data (i.¢., oxygen, nutrients, Chl, and Kq) and physical

data (i.c., mixed layer depth, and wind speed) are needed.

Last, but not least, for similar types of coastal environments (i.e., coral reef, river-dominated, and
upwelling) the dominant control of surface pCO; varies, due to the different environmental
characteristics (e.g., the strength of river discharges and tidal mixing) in each system at different
latitudes. To further interpret the difference in surface pCO; in the same type of coastal
environment, more ancillary data are also needed to better characterize the carbonate process in

cach coastal ecosystem.
5. Conclusion

Using both in situ time series data and satellite data at different latitudes along the coasts of the U.
S. and its territories, the dominant controls and driving mechanisms of surface pCO; on seasonal
and short-term interannual time scales were quantified and analyzed., The temperature (non-
temperature) effect was found to be dominant in modulating the seasonal pCO; variations in the
tropical and subtropical zones (temperate zone) and the interannual pCO: variations in the
temperate zone (tropical and subtropical zones), with exceptions in a few special coastal ocean
environments (e.g.. coral reefs, river-dominated, upwelling-dominated). The study also suggests
future directions in the development of surface pCO: satellite remote sensing algorithms. For
example, atmospheric pCO2 should be used n the surface pCO2 remote sensing algonthms to
better capture the interannual variabilities in surface pCO2z  Meanwhile, to further examine the
driving mechanisms of surface pCOa2 on different time scales, more data (e.g., Chl) collected over

longer time series are required for future investigation,
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Table 1. Summary of i sifu time series data compiled for this study (from low latitude to high
latitudes in sequence). Buoys of O1-02 and C1-CS are located in the tropical and subtropical zones
(1.e.. latitude within 0~35°N, shaded in blue), and buoys of O3 and C6-C10 are located in the
temperate zone (i.e., latitude within 35-66.5°N, shaded in green). Note that “O" represents Open

Ocean, and "C” represents Coastal Ocean. See Fig. 1 for the location of each buoy.

Geolosatl Period SST 55§ Atmospheric pCO; | Surface pCO; | Number of data
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Table 2. Seasonal amplitudes of atmospheric pCO;, surface pCO; and its components (pCOz T
and pCO; nonT), and the relative importance (Eq. 6) of the temperature and non-temperature
cffects in affecting surface pCO: at cach buoy location (Table 1, from low latitude to high latitudes
in sequence). Note that statistics of the buoys located in the tropical and subtropical zones and

temperate zone are shaded in blue and green, respectively.
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Table 3. Interannual variabilities (i.¢., interannual trend) of the atmospheric pCO;, surface pCO;
and its components (pCO:z T and pCO2 nonT), and the corresponding environmental variables
based on the buoy time series data in Table | and Fig. 1 (from low latitude to high latitudes in
sequence). Statistics of the buoys located in the tropical and subtropical zones and temperate zone
are shaded in blue and green, respectively. Note that values in brackets are the corresponding R*

of each statistic of the interannual trend, and statistics are highlighted in blue if the corresponding

p value is < 0,05,
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Table 4, Correlations (Pearson correlation coefficient — R) between surface pCO: as well as its

components (pCO: T and pCO:; nonT) and different environmental variables (i.e., SST, SSS,

atmospheric pCO;, Chl and Ky in log)s scale, and wind speed) for all the buoys listed in Table |

from low latitude to high latitude in sequence. Statistics of the buoys located in the tropical and

subtropical zones and temperate zone are shaded in blue and green, respectively. Note that the

value of R is highlighted in blue if the corresponding p value is < 0.05.
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Locations

Fig. 1. Spatial distributions of the buoys listed in Table 1. Buoys of 01-02 and C1-C5 are located
in the tropical and subtropical zones (i.e., latitude within 0~35 “N), and buoys of O3 and C6-C10
are located in the temperate zone (i.e., latitude within 35-66.5 "N). Note that O represents Open
Ocean, and “C” represents Coastal Ocean, See Table | for detailed description of the data collected

from each buoy.
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Fig. 2. Seasonal variations of atmospheric pCO3, surface pCOz and its components (pCOz T and
pCO; nonT) of the buoys located in the tropical and subtropical zones (see Table | and Fig. 1)

from low latitude to high latitude in sequence. See Table 2 for detailed statistics.
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Fig. 4. Interannual variabilities of atmospheric pCO: and surface pCO; of the buoys located in the
tropical and subtropical zones (see Table | and Fig. 1) from low latitude to high latitude in
sequence, The overlaid dashed red line is the interannual variation trend. See Table 3 for detailed

statistics.
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Fig. 5. Same as Fig, 4, here are the interannual variabilities of the atmospheric pCO; and surface
pCO; of the buoys located in the temperate zone (sec Table | and Fig. 1) from fow latitude to high
latitude in sequence. The overlaid dashed red line is the interannual variation trend. See Table 3

for detailed statistics.
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