
University of South Florida University of South Florida 

Digital Commons @ University of Digital Commons @ University of 

South Florida South Florida 

USF Tampa Graduate Theses and Dissertations USF Graduate Theses and Dissertations 

10-31-2018 

Remote Estimation of Surface Water Remote Estimation of Surface Water pCOCO22  in the Gulf of Mexico in the Gulf of Mexico 

Shuangling Chen 
University of South Florida, shuangling1988@gmail.com 

Follow this and additional works at: https://digitalcommons.usf.edu/etd 

 Part of the Other Earth Sciences Commons 

Scholar Commons Citation Scholar Commons Citation 
Chen, Shuangling, "Remote Estimation of Surface Water pCO2 in the Gulf of Mexico" (2018). USF Tampa 

Graduate Theses and Dissertations. 
https://digitalcommons.usf.edu/etd/8107 

This Dissertation is brought to you for free and open access by the USF Graduate Theses and Dissertations at 
Digital Commons @ University of South Florida. It has been accepted for inclusion in USF Tampa Graduate Theses 
and Dissertations by an authorized administrator of Digital Commons @ University of South Florida. For more 
information, please contact digitalcommons@usf.edu. 

https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/etd
https://digitalcommons.usf.edu/grad_etd
https://digitalcommons.usf.edu/etd?utm_source=digitalcommons.usf.edu%2Fetd%2F8107&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/166?utm_source=digitalcommons.usf.edu%2Fetd%2F8107&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usf.edu


 
 

 

 

 

 

Remote Estimation of Surface Water pCO2 in the Gulf of Mexico 

 

 

 

by 

 

 

 

Shuangling Chen 

 

 

 

 

A dissertation submitted in partial fulfillment  

of the requirements for the degree of  

Doctor of Philosophy  

College of Marine Science 

University of South Florida 

 

 

 

Major Professor: Chuanmin Hu, Ph.D. 

Robert H. Byrne, Ph.D. 

Lisa L. Robbins, Ph.D. 

Mark E. Luther, Ph.D. 

David F. Naar, Ph.D. 

 

 

Date of Approval: 

September 24, 2018 

 

 

 

Keywords: surface pCO2, sea surface salinity, remote sensing, dominant controls  

 

Copyright © 2018, Shuangling Chen 

  



 
 

 

 

DEDICATION 

This dissertation is dedicated to my parents Yufen and Wen. Thank you for your cheerful 

encouragement and selfless love. Thanks also to my uncle Hequn and my siblings Yunxia and 

Jianbei for their concerns and spiritual support.  

  



 
 

 

 

ACKNOWLEDGEMENTS 

This dissertation would not have been possible without the guidance of Dr. Chuanmin Hu. 

Thank you for mentoring and supporting me throughout this work. I am very grateful for your 

enthusiasm, persistence, and dedication to scientific research. Thank you also to my committee 

members, Dr. Byrne, Dr. Robbins, Dr. Luther, and Dr. Naar for their help and support throughout 

this dissertation work. 

Many individuals and groups were instrumental towards completion of this dissertation. In 

particular, I would like to thank my coauthors (especially Wei-Jun Cai, Rik Wanninkhof, and Bo 

Yang), as well as friends and colleagues within the Optical Oceanography Lab (especially Jen 

Cannizzaro, David English, Brian Barnes, Brock Murch, Mengqiu Wang, and Shaojie Sun) and 

the College of Marine Science.  

This research was made possible, in part, by a grant from the U.S. Geological Survey 

(USGS). Endowed fellowships from the College of Marine Science, University of South Florida 

(Gulf Oceanographic Charitable Trust Fellowship, Tampa Bay Parrot Head Fellowship, and 

George Lorton Fellowship) also provided immeasurable support for this research. Of particular 

importance was access to the large datasets collected and shared by many groups over the past 

decades. I wish to emphasis the great efforts and contributions of NOAA and several colleges and 

institutes (Columbia University, Texas A and M University, University of Delaware, University 

of South Florida, Florida Fish and Wildlife Conservation Commission) for their data (both ship-

based and buoy data time series), and to thank all the researchers who collected and contributed 



 
 

data used in this research – their efforts are much appreciated. Also I want to thank NASA for 

providing the MODIS satellite data, without which, this research would not have been possible. 

  



 

i 

 

 

 

TABLE OF CONTENTS 

LIST OF TABLES ......................................................................................................................... iii 

 

LIST OF FIGURES ....................................................................................................................... iv 

 

ABSTRACT .................................................................................................................................... v 

 

CHAPTER 1 : INTRODUCTION .................................................................................................. 1 

1. Surface ocean pCO2 and environmental controls ........................................................... 1 

1.1. Thermodynamic effects ................................................................................... 2 

1.2. Biological activities ......................................................................................... 3 

1.3. Ocean mixing ................................................................................................... 4 

1.4. Air-Sea CO2 exchange ..................................................................................... 5 

2. Satellite estimation of surface ocean pCO2 ..................................................................... 6 

2.1. Satellite-derived environmental variables ........................................................ 6 

2.2. Satellite mapping of surface pCO2: current status ........................................... 8 

3. Study area...................................................................................................................... 11 

4. Objectives ..................................................................................................................... 13 

5. Data sources .................................................................................................................. 14 

5.1. Field data ........................................................................................................ 14 

5.2. Satellite data ................................................................................................... 15 

6. Approach and dissertation structure.............................................................................. 16 

7. Literature cited .............................................................................................................. 17 

 

CHAPTER 2 : ESTIMATING SURFACE PCO2 IN SINGLE-PROCESS DOMINATED 

REGION FROM SATELLITES: THE WEST FLORIDA SHELF ....................................... 33 

1. Research overview ........................................................................................................ 33 

 

CHAPTER 3 : ESTIMATING SURFACE PCO2 IN SINGLE-PROCESS DOMINATED 

REGION FROM SATELLITES: THE NORTHERN GOM .................................................. 35 

1. Research overview ........................................................................................................ 35 

 

CHAPTER 4: REMOTE ESTIMATION OF SEA SURFACE SALINITY IN THE GOM ........ 37 

1. Research overview ........................................................................................................ 37 

 

CHAPTER 5: A UNIFIED APPROACH TO ESTIMATE SURFACE OCEAN PCO2 

FROM SATELLITE MEASUREMENTS ............................................................................. 39 

1. Research overview ........................................................................................................ 39 

 

CHAPTER 6: DOMINANT CONTROLS OF SURFACE OCEAN PCO2 IN COASTAL 

OCEANS: ANALYSIS OF IN SITU TIME SERIES DATA ................................................ 50 



 

ii 
 

1. Research overview ........................................................................................................ 50 

 

CHAPTER 7: RESEARCH IMPACTS AND CONCLUSIONS ................................................. 52 

1. Summary of findings..................................................................................................... 52 

2. Research implications ................................................................................................... 55 

2.1. Satellite mapping of surface pCO2 ................................................................. 55 

2.2. Further implications ....................................................................................... 57 

3. Future work ................................................................................................................... 58 

3.1. Research ......................................................................................................... 58 

3.2. Product delivery ............................................................................................. 59 

4. Conclusions ................................................................................................................... 60 

5. Literature cited .............................................................................................................. 61 

 

APPENDIX A: REMOTE ESTIMATION OF SURFACE PCO2 ON THE WEST 

FLORIDA SHELF .................................................................................................................. 69 

 

APPENDIX B: ESTIMATING SURFACE PCO2 IN THE NORTHERN GULF OF 

MEXICO: WHICH REMOTE SENSING MODEL TO USE? .............................................. 86 

 

APPENDIX C: ESTIMATING SEA SURFACE SALINITY IN THE NORTHERN 

GULF OF MEXICO FROM SATELLITE OCEAN COLOR MEASUREMENTS ............ 104 

 

APPENDIX D: A MACHINE LEARNING APPROACH TO ESTIMATE SURFACE 

OCEAN PCO2 FROM SATELLITE MEASUREMENTS................................................... 123 

 

APPENDIX E: DOMINANT CONTROLS OF SURFACE OCEAN PCO2 IN COASTAL 

OCEANS: ANALYSIS OF IN SITU TIME SERIES DATA .............................................. 197 

 

APPENDIX F: AUTHOR CONTRIBUTIONS AND COPYRIGHT CLEARANCES ............. 252 

 

APPENDIX G: PUBLICATIONS (PUBLISHED AND SUBMITTED) ................................... 256 

  



 

iii 
 

 

 

LIST OF TABLES 

Table 1: List of published satellite pCO2 remote sensing algorithms for open ocean waters ........ 8 
 

Table 2: List of published satellite pCO2 remote sensing algorithms for coastal ocean 

waters ................................................................................................................................ 9 

 

 

 

 

 

  



 

iv 
 

 

 

LIST OF FIGURES 

Figure 1.1: Study region of the Gulf of Mexico ........................................................................... 12 
 

Figure 5.1: Surface pCO2 climatology in the GOM: monthly mean ............................................ 41 
 

Figure 5.2: Surface pCO2 climatology in the GOM: monthly mean minus two standard 

deviations ................................................................................................................... 42 
 

Figure 5.3: Surface pCO2 climatology in the GOM: monthly mean plus two standard 

deviations ................................................................................................................... 43 

 

Figure 5.4: Surface pCO2 climatology in the GOM: monthly minima ......................................... 44 

 

Figure 5.5: Surface pCO2 climatology in the GOM: monthly maxima ........................................ 45 
 

Figure 5.6: Sensitivity of the pCO2 remote sensing algorithm to Chl and Kd .............................. 46 
 

Figure 5.7: Sensitivity of the pCO2 remote sensing algorithm to Chl and SSS ............................ 47 
 

Figure 5.8: Sensitivity of the pCO2 remote sensing algorithm to Chl and SST............................ 47 
 

Figure 5.9: Sensitivity of the pCO2 remote sensing algorithm to Kd and SSS ............................. 48 
 

Figure 5.10: Sensitivity of the pCO2 remote sensing algorithm to Kd and SST ........................... 48 

 

Figure 5.11: Sensitivity of the pCO2 remote sensing algorithm to SSS and SST ......................... 49 
 

  



 

v 
 

 

 

ABSTRACT 

 

Surface ocean partial pressure of CO2 (pCO2) is a critical parameter in the quantification 

of air-sea CO2 flux, which further plays an important role in quantifying the global carbon budget 

and understanding ocean acidification. The demand for a clearer understanding of how, and how 

fast, the ocean is changing due to atmospheric CO2 absorption, requires accurate and synoptic 

estimation of surface pCO2. 

Surface ocean pCO2 is mainly controlled by four oceanic processes – thermodynamics, 

ocean mixing, biological activities, and air-sea CO2 exchange. Surface ocean pCO2 is therefore 

closely related to environmental variables that characterize each oceanic process. These variables 

include sea surface temperature (SST), sea surface salinity (SSS), chlorophyll-a concentration 

(Chl), diffuse attenuation of downwelling irradiance (Kd), and wind speed. Ocean color satellites 

provide a means by which the relationship between these environmental variables and surface 

pCO2 can be developed. Yet, remote estimation of surface pCO2 in coastal oceans has been 

difficult due to the dynamic and complex biogeochemical processes. To date, most of the published 

satellite-based pCO2 models are developed for single-process dominated regions, therefore having 

poor applicability in other oceanic regions. Particularly, there is no unified approach, let alone 

unified model, to remotely estimate surface pCO2 in oceanic regions that are dominated by 

different oceanic processes.  

This work provides solutions to these challenging issues for the remote estimation of 

surface pCO2 in the Gulf of Mexico (GOM), with the following objectives: 1) Develop satellite-
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based surface pCO2 models and data products for single-process dominated subregions of the 

GOM, and quantify the sensitivities of the pCO2 algorithms to the input environmental variables; 

2) Quantify the oceanic processes in controlling surface pCO2 in the GOM, analyze the 

relationships between environmental variables and surface pCO2, and understand the mechanisms 

of seasonal and interannual variations of surface pCO2 and its driving factors; 3) Develop an 

improved SSS model and data products for most GOM waters, and quantify the sensitivities of the 

SSS model to the input variables; 4) Develop a unified pCO2 model and data products for the GOM 

waters, and quantify the sensitivities of the pCO2 model to the input environmental variables and 

their relationships; 5) Quantify the temperature and non-temperature effects on surface pCO2 at 

different latitudes, analyze the dominant controls and the corresponding the driving factors of 

surface pCO2. The data used in this dissertation include those from extensive cruise surveys, buoy 

measurements, and long-term measurements by the Moderate Resolution Imaging 

Spectroradiometer (MODIS). 

Specifically, for single-process dominated regions, two separate algorithms are developed 

and validated, respectively, from MODIS measurements. One is focused on the ocean current-

dominated West Florida Shelf (WFS) (Appendix A), and the other is on the river-dominated 

northern GOM (Appendix B). The former utilizes a multi-variate nonlinear regression approach to 

establish the relationship between surface pCO2 and environmental variables of SST, Chl, and Kd. 

The latter relies on a mechanistic semi-analytical approach (MeSAA), modified from an existing 

algorithm published earlier. Both algorithms show satisfactory performance, yet the latter requires 

SSS as the model input, which is difficult to obtain from ocean color satellite measurements. 

Therefore, a multilayer perceptron neural network-based (MPNN) SSS model is developed and 

validated, which generates SSS maps at 1-km resolution for the GOM using MODIS 
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measurements (Appendix C). Finally, with the availability of SSS from MODIS for the GOM, a 

unified pCO2 algorithm is developed and validated. The machine-learning algorithm is based on a 

random forest regression ensemble (RFRE), which is able to estimate surface pCO2 from MODIS 

measurements with a Root Mean Square Error (RMSE) of < 10 µatm and R2 of 0.95 for pCO2 

ranging between 145 and 550 µatm (Appendix D). Using this approach, The RFRE algorithm is 

shown to be applicable to the Gulf of Maine (a contrasting oceanic region to GOM) after local 

model tuning. The results show significant improvement over other models, suggesting that the 

RFRE approach may serve as a template for other oceanic regions once sufficient field-measured 

pCO2 data are available for local model tuning. 

To further improve the accuracy of satellite-derived surface pCO2 from coastal oceans and 

to increase its capability in capturing the interannual variations of surface pCO2 resulting from 

anthropogenic forcing, the dominant controls of surface pCO2 over seasonal and interannual time 

scales need to be better understood. As such, in situ pCO2 time series data along the coasts of the 

United States of America at different latitudes are analyzed (Appendix E). On a seasonal time 

scale, surface pCO2 tends to be dominated by the temperature effect (pCO2_T) through SST and 

wind speed (with some exceptions) in tropical and subtropical oceans, but appears to be dominated 

by the non-temperature effect (pCO2_nonT) in subpolar regions. In contrast, in tropical and 

subtropical waters on interannual time scales, surface pCO2 is primarily moderated by the non-

temperature effect (through air-sea CO2 exchange via atmospheric pCO2), but conversely 

dominated by the temperature effect (i.e., SST increase) in subpolar regions. The effects of 

biological activities (i.e., algal blooms) need to be further investigated in the future. 

Overall, this dissertation has developed several algorithms to estimate SSS and surface 

pCO2, among which the unified pCO2 algorithm for multi-processes dominated regions appears to 
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be able to serve as a template for many other regions after local model tuning. The derived surface 

pCO2 data products for the GOM provide a fundamental basis to assess air-sea exchange of CO2 

and understand the carbon chemistry under a changing climate.  
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CHAPTER 1: 

INTRODUCTION 

1. Surface ocean pCO2 and environmental controls 

When CO2 from the atmosphere enters seawater, a chain of reactions can occur, which can 

produce carbonic acid, bicarbonate, and carbonate (Kanwisher, 1960). The free aqueous CO2 in 

seawater is quantified as partial pressure of CO2 (pCO2), which refers to the fugacity in most cases 

(Pilson, 2012). The term fugacity expresses the tendency of CO2 to escape from the seawater.  

Knowledge of spatial and temporal distributions of pCO2 in surface ocean waters is 

essential to understanding of carbon cycling and ocean acidification (Borges, 2005; Bauer et al., 

2013). Since the industrialization era, ocean acidity has increased by 30% (~0.1 decrease in pH 

units), corresponding to a 40% increase in atmospheric CO2 (Sabine et al., 2004; Solomon et al., 

2007; Feely et al., 2009; Pachauri and Meyer, 2014). As a result, a degradation of ecological 

environment and a decrease in marine biodiversity have been observed (Reynaud et al., 2003; Orr 

et al., 2005; Kleypas et al., 2006; Kleypas and Yates, 2009). Knowledge of surface pCO2 also 

helps to quantify air-sea CO2 flux (Borges et al., 2005; 2006; Cai et al., 2006). The benefits of 

quantifying air-sea CO2 flux are twofold: 1) it can help to better understand the ocean acidification 

process; and 2) it can provide insight into carbon cycling. Synoptic and frequent surface pCO2 

measurements are critical to quantifying the air-sea CO2 flux and ocean acidity. 

The variation of surface pCO2 is complex, being closely related to the carbonate parameters: 

pH, total dissolved inorganic carbon (DIC, µmol kg-1) and total alkalinity (TA, µmol kg-1) (Pilson, 
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2012). In a carbonate system, once sea surface temperature (SST, ˚C), sea surface salinity (SSS, 

practical salinity unit) and pressure are known, any two parameters of TA, DIC, pCO2, and pH can 

be used to calculate the other two and CO2 speciation (i.e., [CO3
-2] and thus the carbonate mineral 

saturation state) using the CO2 System Program (CO2SYS) (Pierrot and Wallace 2006). In 

principle, surface water pCO2 in the ocean is mainly controlled by four processes: physical mixing, 

thermodynamic effects, biological activities, and air-sea CO2 exchange (Fennel et al., 2008; Ikawa 

et al., 2013; Xue et al., 2016). These processes usually do not affect surface pCO2 independently, 

but in an interrelated fashion (Murata, 2006).  

 

1.1. Thermodynamic effects 

Ocean thermodynamic effect on surface pCO2 is dependent on SST, which influences the 

solubility of gaseous CO2 (Weiss, 1974). The relationship between surface pCO2 and SST can be 

estimated with an exponential function (𝑝𝐶𝑂2@𝑇2 = 𝑝𝐶𝑂2@𝑇1 × 𝑒0.0423×(𝑇2−𝑇1)) (Takahashi et al., 

2002; 2009) although the exact parameter can deviate slightly from 0.0423 in coastal waters (Bai 

et al., 2015; Joesoef et al., 2015). The equation shows that an increase of SST increases surface 

pCO2, and vice versa. SST is primarily regulated by several physical processes such as solar energy 

radiation, air-sea heat exchanges, and vertical oceanic mixing (Takahashi et al., 2002). Studies 

show that SST is the dominant factor in controlling seasonal variations of surface pCO2 in the 

subtropical oligotrophic ocean waters (Takahashi et al., 2002; Fay and McKinley, 2017). 
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1.2. Biological activities 

Biological activities in the ocean such as photosynthesis, respiration, and calcification have 

direct effects on surface pCO2 because photosynthesis consumes CO2, respiration produces CO2, 

and calcification depletes both TA and DIC in a 2 to 1 ratio (Murata and Takizawa, 2002).  

Photosynthesis by phytoplankton is mainly controlled by the concentrations of surface 

nutrients (i.e., [NO3
-], [SO4

-2], [Fe+2]), SST, and light availability, which are all set by the physical 

environment (Fay and McKinley, 2017). Under optimal conditions (i.e., sufficient nutrients and 

sunlight at proper water temperatures, usually in spring and fall), phytoplankton blooms occur. In 

most cases, phytoplankton blooms (e.g., cyanobacteria blooms) would bring a distinct decrease in 

surface pCO2 due to the great consumption of CO2 in the production of organic carbons (Schneider 

et al., 2006; Martz et al., 2009). However, there are some exceptions. For example, Shadwick et 

al. (2011) found that spring blooms could introduce a sharp drop of surface pCO2 by ~ 180 µatm, 

while the blooms in fall did not appear to change the surface pCO2.   This lack of change has been 

mainly attributed to the competing effect of decreasing SST, though the bloom can be clearly 

detected from satellite images. Furthermore, for phytoplankton blooms that also produce calcium 

carbonate (e.g., coccolithophorid, E. huxleyi), it was found that such phytoplankton blooms could 

result in an increase in surface pCO2 (Murata and Takizawa, 2002; Murata, 2006). In these type of 

algal blooms, both DIC and TA would decrease during the bloom. It has been observed that if the 

ratio of calcification to photosynthesis during the bloom is between 1:1 and 2:1, the production of 

CO2 via calcification would balance and exceed the consumption of CO2 through photosynthesis 

(Murata and Takizawa, 2002; Murata, 2006).  

In general, the overall effect of biological activities on surface pCO2 is quite complex. 

Currently, the most common proxies for this biological term include chlorophyll concentrations 
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(Chl, mg m-3) and light attenuation coefficients (Salisbury et al., 2008; Zhu et al., 2009; Hales et 

al., 2012; Signorini et al., 2013; Fay and McKinley, 2017). In addition, studies show that the 

biologic effect on surface pCO2 only dominates in high-latitude waters greater than 40˚ latitude in 

both hemispheres (Takahashi et al., 2002; Fay and McKinley, 2017).  

 

1.3. Ocean mixing 

Different water masses have specific carbonate characteristics such as TA and DIC. The 

horizontal and vertical mixing among these water masses can affect the surface pCO2 distribution 

in a dynamic way. For example, the mixing between the ice meltwater (typically with a low DIC 

value) with the surrounding seawater in the Arctic Ocean would reduce pCO2 by 50-60 µatm, 

which compensates the increase of pCO2 caused by the water warming in summer (Cai et al., 2010). 

In river-dominated coastal oceans (e.g., the northern Gulf of Mexico and the East China Sea), the 

riverine water mass (i.e., river plume) has distinct water properties (i.e., SST, SSS, TA, DIC, and 

nutrients) relative to those of the seawater. The mixing between the fresh/brackish riverine waters 

and seawater have great impact on the variation of surface pCO2, in terms of the conservative 

mixing of the carbonate properties (i.e., TA and DIC), as well as the nutrient-enhanced 

phytoplankton blooms (e.g., Lohrenz and Cai, 2006; Lohrenz et al., 2010; Bai et al., 2015). In 

addition, the surface cooling-induced, or wind-induced, vertical mixing and ocean upwelling also 

varies surface pCO2. This is because vertical mixing and upwelling transport DIC enriched (mostly 

CO2 enriched) waters to the surface where they generally release CO2 into the atmosphere.   

However, in the presence of nutrient-enriched surface waters, phytoplankton production would be 

enhanced and uptake of atmospheric CO2 would occur (e.g., Hales et al., 2005; Ikawa et al., 2013; 

Norman et al., 2013; Huang et al., 2015).  
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Oceanic water masses derived from melted ice and river sources typically have low SST 

and SSS.  Oceanic water masses brought to the surface via vertical mixing and upwelling usually 

have lower temperature and salinity values. Therefore, SST and SSS are commonly used as proxies 

to quantify the effect of ocean mixing on surface pCO2 (e.g., Lohrenz and Cai, 2006; Lohrenz et 

al., 2010; 2018; Hales et al., 2012; Signorini et al., 2013; Bai et al., 2015). In addition to SST and 

SSS, wind speed and the mixed layer depth was also used in some studies (Jamet et al., 2007; 

Chierici et al., 2009; Shadwick et al., 2010; Nakaoka et al., 2013).  

 

1.4. Air-Sea CO2 exchange 

The difference between the surface ocean pCO2 and atmospheric pCO2 at the air-sea 

interface represents the thermodynamic driving potential for the CO2 to transfer across the air-sea 

interface (Takahashi et al., 2002). The direction of the net CO2 transfer is governed by the pCO2 

differences between the ocean’s surface and its overlying atmosphere. On seasonal time scales, Lu 

et al. (2012) found that air-sea CO2 exchange exceeded the role of SST and dominated the seasonal 

variations of surface pCO2 in the northern South China Sea. On short time scales (i.e., a few days 

up to 3 weeks), extreme weather events such as hurricanes also have strong impact on surface 

pCO2, via air-sea CO2 exchange. It’s known that the rate of air-sea CO2 exchange depends on the 

gas transfer velocity, which is a function of wind speed. During high-wind events (i.e., hurricanes, 

and strong storms), the wind speed is usually greater than 10 m s-1. Bates et al. (1998) found that 

hurricanes in the Sargasso Sea could greatly increase the outgassing of CO2 from the ocean surface 

to the atmosphere and decrease the surface pCO2 further, despite the strong cooling effect during 

the events (which would also decrease surface pCO2 by ~60 µatm). However, Turk et al. (2013) 

shows that episodic high wind events would increase surface pCO2 by 30-50 µatm, regardless of 
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the pre-event conditions of the upper ocean water mass (either stratified, non-stratified, 

oversaturated, or under-saturated).  

In most cases (except extreme events), air-sea CO2 exchange has little effect on the surface 

pCO2 during short-time scales, mainly due to buffering of the carbonate system (Murata et al., 

2002; Bai et al., 2015). However, during long-time scales, surface pCO2 has changed with time, 

especially during the anthropogenic increase of atmospheric pCO2 (Takahashi et al., 2002; 2009), 

and atmospheric pCO2 can be used as a proxy to quantify how air-sea CO2 exchange affects surface 

pCO2 (Lefèvre and Taylor, 2002).  

 

2. Satellite estimation of surface ocean pCO2 

Synoptic and frequent surface pCO2 measurements are critical to quantifying the air-sea 

CO2 flux and ocean acidification. Due to data scarcities of surface pCO2 from ship-based 

measurements and their limitations in spatial and temporal coverages, large uncertainties exist in 

the resultant air-sea CO2 fluxes (e.g., Takahashi et al., 2002; 2009; Tseng et al., 2011; Vandemark 

et al., 2011; Geilfus et al., 2012). Numerical models have been used to estimate surface pCO2 (Xue 

et al., 2014; Arruda et al., 2015), however the model results are strongly dependent on the 

assumption of the initial conditions. In contrast, recent advances in satellite ocean color remote 

sensing have shown its capacity in synoptic and frequent mapping of surface pCO2 through 

developing relationships between environmental variables and surface pCO2.  

 

2.1. Satellite-derived environmental variables 

Although surface pCO2 is mainly controlled by the four processes as described in Section 

1, in practice, it is hard to accurately quantify each of them separately due to the interactions among 
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them. Therefore, most of the satellite mapping models of surface pCO2 are empirical (see Section 

2.2 for details), and the most commonly used environmental variables include SST, SSS, Chl (e.g., 

Lohrenz and Cai, 2006; Lohrenz et al., 2010; 2018; Hales et al., 2012; Signorini et al., 2013; Bai 

et al., 2015). SST and SSS are proxies for the thermodynamic and ocean mixing effects, and Chl 

is a proxy for biological activities. In addition to these variables, some studies also used a beam 

attenuation coefficient, absorption of the Colored Dissolved Organic Matter (CDOM), Mixed 

Layer Depth (MLD), and wind speed as auxiliary variables to quantify surface pCO2 in some 

oceanic regions (e.g., Jamet et al., 2007; Salisbury et al., 2008; Chierici et al., 2009; Shadwick et 

al., 2010; Nakaoka et al., 2013; Parard et al., 2014).  

Of the commonly used environmental variables, SST and ocean color data products (i.e., 

Chl, CDOM, diffuse attenuation coefficient of the downwelling irradiance (Kd, m
-1)) are available 

from the ocean color satellites such as Moderate Resolution Imaging Spectroradiometer (MODIS). 

However, currently there is no standard SSS data from these ocean color satellites.  

The satellites designed to “measure” SSS, such as the ESA SMOS (the Soil Moisture and 

Ocean Salinity) and NASA Aquarius/SAC-D, lack sufficient spatial (30-100 km) and temporal 

resolution (≥ 3days revisit period), and they are not designed for dynamic coastal waters (Lagerloef 

et al., 2008; Font et al., 2010). Since CDOM is a good tracer of SSS in coastal oceans (e.g., Hu et 

al., 2003; Coble et al., 2004; Del Vecchio and Blough, 2004), several studies have demonstrated 

the potentials of ocean color satellites in deriving SSS via empirical models (e.g., Bai et al., 2013; 

Geiger et al., 2013; Qing et al., 2013; Vandermeulen et al., 2014; Zhao et al., 2017). However, 

these models are region-dependent and may have poor applicability in other coastal waters, 

considering the difference of optical complexities among coastal regions. Therefore, in order to 
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map the surface pCO2 from satellites in different coastal ocean settings, SSS data products from 

ocean color need to be developed first. 

 

2.2. Satellite mapping of surface pCO2: current status 

At present, most of the published literature correlate surface pCO2 to the environmental 

variables (SST, SSS, Chl, etc.) via  traditional empirical regression and machine learning 

approaches (i.e., neural network) with variable performance in different oceanic regions (e.g., 

Stephens et al., 1995; Rangama et al., 2005; Wanninkhof et al., 2007; Zhu et al., 2009; Chierici et 

al., 2009; Friedrich and Oschlies, 2009; Telszewski et al., 2009; Signorini et al., 2013; Nakaoka et 

al., 2013; Parard et al., 2014). Specifically, for the open oceans, the satellite pCO2 models often 

yield results with Root Mean Square Error (RMSE) between 10 and 20 µatm (e.g., Table 1), while 

for the coastal oceans, the model RMSE is > 20 µatm in most cases (Table 2). Some studies also 

proposed semi-analytical approaches to estimate surface pCO2, but with larger error (RMSE > 30 

µatm) (Hales et al., 2012; Bai et al., 2015; Song et al., 2016).  

 

Table 1: List of published satellite pCO2 remote sensing algorithms for open ocean waters. It 

should include most, if not all, the published studies of surface pCO2 from remote sensing in the 

open oceans.  

Reference Study area Model input Model Model uncertainty 

Stephens et al. (1995) North Pacific SST, LON MPR RMSE=±17 µatm (subtropical), 

RMSE=±40µatm (subpolar) 

Sarma (2003) Arabian Sea SST, SSS, CHL MLR for DIC and TA errors=±5-30 µatm 

Lefevre and Taylor 

(2002) 

Atlantic Gyre SST,  LAT, LON, 

atmospheric pCO2 

MLR R=0.95~0.99 

Olsen et al. (2004) Caribbean Sea SST, LAT, LON MLR RMSE=9.5 µatm,R2=0.8 

Ono et al. (2004) North Pacific SST, CHL MPR RMSE=±14 µatm (subtropical), 

RMSE=±17 µatm (subpolar) 

Rangama et al. (2005) Southern ocean SST, CHL MLR STD=2.6~7.9 µatm 

Sarma et al. (2006) North Pacific SST, SSS, CHL MLR for DIC and TA RMSE=17~23 µatm 
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Table 1 (Continued) 

Reference Study area Model input Model Model uncertainty 

Jamet et al. (2007) North Atlantic SST, CHL, MLD MLR R=0.45~0.86, RMSE = 8.98~15.01 

µatm 

Berryman et al. (2008) Central Pacific SST, SSS, CHL MLR R2=0.59,  p < 0.02 

Chierici et al. (2009) Northern North 

Atlantic 

SST, CHL, MLD MPR RMSE=10.8 µatm, R2 =0.72 

Telszewski et al. (2009) North Atlantic SST, CHL, MLD SOM RMSE=11.6 µatm 

Friedrich and Oschlies 
(2009) 

North Atlantic SST, CHL KFM RMSE=19 µatm 

Chen et al. (2011) Southern Atlantic and 

Indian Ocean 

SST, CHL MLR R2=0.77, 0.85, STD=1.21, 21.0 

µatm 

Nakaoka et al. (2013) North Pacific SST, SSS, CHL, MLD SOM RMSE=17.6~20.2 µatm 

Moussa et al. (2016) Tropical Atlantic SST, SSS, CHL FNN RMSE=8.7~9.6 µatm 

Xu et al. (2017) Southern Ocean SST, CHL MLR RMSE=13.6~21.3 µatm 

Note: MLR=Multiple Linear Regression; MPR=Multiple Polynomial Regression; SOM=Self Organising Map; KFM=Kohonen Feature Map; 

FNN=Feedforward Neural Network; STD=Standard Deviation; R=Correlation Coefficient; SST=Sear Surface Temperature, 
CHL=Chlorophyll concentration; MLD=Mixed Layer Depth; LAT=Latitude; LON=Longitude; TA=Total Alkalinity; DIC=Dissolved 

Inorganic Carbon. 

 

Table 2: List of published satellite pCO2 remote sensing algorithms for coastal ocean waters. It 

should include most, if not all, the published studies of surface pCO2 from remote sensing in the 

coastal oceans.  

Reference Study area Model input Model Model uncertainty 

Lefevre et al. 

(2002) 

Coast  off Chile SST, SSS, CHL MLR STD=35 µatm, R2=0.65 

Lohrenz and Cai 
(2006) 

Mississippi River 
delta 

SST, SSS, CHL PCA and MLR R2 =0.743, RMSE=50.2 
µatm 

Evans et al. (2008) Oregon and 

Washington Shelf 

SST, CHL Not available Not available 

Zhu et al. (2009) Northern South China 
Sea 

SST, CHL MPR R2=0.66~0.68, 
RMSE=4.6~25.1 µatm 

Shadwick et al. 

(2010) 

Scotian Shelf SST, CHL, wind speed MLR STD=13 µatm,R2=0.81 

Borges et al. (2010) Belgian coastal zone SST, CHL MPR Not available 

Lohrenz et al. 
(2010) 

Mississippi River 
delta 

SST, SSS, CHL PCA and MLR R2=0.165~0.976, p<0.001 

Karagali et al. 

(2010) 

Peru and Namibia SST, CHL MPR R2=0.67~0.72 

Wipf et al. (2012) Santa Barbara 
Channel 

SST, CHL, NO3
- MLR Not available 

Jo et al. (2012) Northern South China 
Sea 

SST, CHL, LAT, LON FFBP RMSE=6.9 µatm, R2=0.98 

Hales et al. (2012) North American West 

Coast 

SST, CHL Quasi-mechanistic 

model 

R=0.61~0.93, 

RMSE=6.6~65 µatm 

Tao et al. (2012) Huanghai Sea and 

Bohai Sea 

SST, CHL MPR RMSE=15.82~31.74 µatm 

Signorini et al. 

(2013) 

North American East 

Coast 

SST, SSS, CHL, Jday MLR R2=0.42~0.82, 

RMSE=22.4~36.9 µatm 

Marrec et al. (2014) Western English 
Channel 

SST,SSS,CHL,MLD,Jday,LAT,LON MLR RMSE=17.2, 21.5 µatm, 
R2=0.71,0.79 

Parard et al. (2014) Baltic Sea SST,CHL,CDOM,NPP,MLD,Jday MLR and SOM RMSE=35 µatm, R2=0.93 
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Table 2 (Continued) 

Reference Study area Model input Model Model uncertainty 

Qin et al. (2014) Yellow Sea SST, CHL MPR RMSE=16.68~21.46 µatm 

Bai et al. (2015) East China Sea TA, DIC, CHL MeSAA Not available, but large 

data scattering in 

validation 

Marrec et al. (2015) European shelf SST, CHL, wind speed, PAR, MLD MLR RMSE=16, 17 µatm 

Padhy et al. (2015) Hooghly Estuary SST, CHL MPR RMSE=18 µatm 

Song et al. (2016) Bering Sea SST, CHL MeSAA STD=17.67~74.8 µatm 

Lohrenz et al. 

(2018) 

Mississippi River 

delta 

SST, CDOM, CHL Regression tree RMSE = 30.8 µatm 

Joshi et al. (2018) Apalachicola Bay SST, CDOM, CHL MLR Uncertainty = ±101 ppm 
and ±643 ppm 

Note: MLR=Multiple Linear Regression; MPR=Multiple Polynomial Regression; SOM=Self Organising Map; KFM=Kohonen Feature Map; 

FNN=Feedforward Neural Network; FFBP= Feed Forward Back Propagation; MeSAA=Mechanistic Semi-Analytical Algorithm; 
PCA=Principal Component Analysis; STD=Standard Deviation; R=Correlation Coefficient; SST=Sear Surface Temperature, SSS=Sea Surface 

Salinity; CHL=Chlorophyll concentration; MLD=Mixed Layer Depth; LAT=Latitude; LON=Longitude; TA=Total Alkalinity; DIC=Dissolved 

Inorganic Carbon; CDOM=Colored Dissolved Organic Matter; NPP=Net Primary Production; PAR=Photosynthetically Active Radiation; 
Jday=Julian day. 

 

Regardless if an empirical or semi-analytical approach is used, the resulting published 

satellite pCO2 model depends on the assumptions made for a specific oceanic region (e.g., river 

dominated, ocean-current dominated, or upwelling dominated). To date, there is no unified pCO2 

approach, let alone a unified pCO2 model with region-specific parameterization, available to 

estimate surface pCO2 from satellites for a large oceanic domain (e.g., the Gulf of Mexico) that 

contains several different oceanic processes. The difficulty in obtaining a unified approach to 

estimate surface pCO2 from satellites with relatively lower uncertainties is due mostly to the 

complexity and dynamics of the biogeochemical and physical processes in such regions. 

In some of the published satellite-based pCO2 models, the monthly mean satellite products 

or climatology for Chl are used as model inputs to compensate for the scarcities of concurrent and 

co-located satellite measurements of Chl. These satellite measurements are paired with in situ 

pCO2 to develop a model. As a result, significant uncertainties could exist in the nonlinear pCO2 

models (Zhu et al., 2009; Jo et al., 2012; Hale et al., 2012; Signorini et al., 2013; Parard et al., 

2014). Likewise, the sensitivity of the established models to each input variable has rarely been 
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studied (Lefèvre et al., 2002; Olsen et al., 2004; Zhu et al., 2009; Lohrenz and Cai, 2006; Lohrenz 

et al., 2010; Borges et al., 2010; Parard et al., 2014). As satellite-derived variables (i.e., SST, SSS, 

and Chl) have inherent uncertainties (Hu et al., 2009; Cannizzaro et al., 2013), error propagation 

in model-derived pCO2 needs to be understood, especially for regions with potentially large 

uncertainties in these satellite-derived variables. Therefore, in this study, the uncertainties in 

satellite products used in the pCO2 model will be quantified to better understand their error 

propagations.   

 

3. Study area  

As the largest semi-enclosed marginal sea of the western Atlantic, the Gulf of Mexico 

(GOM) encompasses the West Florida Shelf (WFS), Louisiana Shelf, Texas Shelf, Mexican Shelf, 

the Cuban Shelf, and the open Gulf, with a surface area of 1.6 million km2, as shown in Figure 1.1. 

Each of these regions is dominated by different oceanic processes. The WFS is a broad carbonate-

based shelf with gentle slope. It is mainly controlled by the coastal currents with little freshwater 

inputs. The offshore area of the WFS is also affected by the Loop current. The Louisiana Shelf is 

the most dynamic region of the GOM, with larger amounts of freshwater discharges from the 

Mississippi-Atchafalaya River system (MARS). Texas Shelf is very narrow and usually receives 

lots of freshwater from the MARS during spring. Mexican Shelf is also broad which is 

characterized by the coastal upwelling along the carbonate Campeche Bank.  The Cuban shelf is 

narrow and is mainly affected by the Loop Current in the Florida Strait. The open Gulf is the 

mainly controlled by the Loop Current, and mesoscale eddies. 

The GOM is a very productive marine ecosystem (estimated at 150-300 g C m-2 yr-1; 

Heileman and Rabalais, 2008) and an important global reservoir of biodiversity and biomass of 
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fish, sea birds, and marine mammals (Widdicombe and Spicer, 2008; Xue et al., 2013), thus, it is 

important to quantify the role of the GOM in modulating CO2 flux and ocean acidification through 

estimating surface pCO2.  

 

Figure 1.1: Study region of the Gulf of Mexico. The Gulf of Mexico encompasses the West Florida 

Shelf (WFS), Louisiana Shelf (LA), Texas Shelf (TX), Mexican Shelf (MX), Cuban Shelf, and the 

open Gulf. 

In previous studies, contradictory results about the air-sea CO2 flux in the GOM were 

obtained. For instance, based on field measurements, Takahashi et al. (2009) estimated the GOM 

to be a CO2 source (CO2 flux = 0.21 mol C/m2/year). On the other hand, Xue et al. (2014) estimated 

the GOM to be a CO2 sink (CO2 flux = -0.84 mol C/m2/year) using a 3-dimentional numerical 

model. Benway and Coble (2014) also concluded that the GOM is a CO2 sink but with a smaller 

flux (CO2 flux = -0.19 mol C/m2/year). These discrepancies resulting from these studies show that 
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new methods need to be developed to better quantify the air-sea CO2 flux and understand carbon 

cycling and ocean acidification in the GOM. Synoptic and frequent mapping of surface pCO2 from 

satellites should play an important role in developing new methods. 

 In the northern GOM near the MARS, Lohrenz and Cai (2006) and Lohrenz et al. (2010; 

2018) developed empirical pCO2 models using satellite-derived SST, SSS and Chl.  However, due 

to the complexities and dynamics of the northern GOM waters, these models all showed relatively 

large errors (i.e., RMSE > 30 µatm). Such errors would introduce large uncertainties in the 

quantification of air-sea CO2 flux. Thus, model improvements are needed. In other GOM waters, 

uncertainties are greater because there are no satellite pCO2 models or data products available.  

 

4. Objectives 

The overarching goals of this research are to advance satellite remote sensing technology 

by developing surface pCO2 models and data products for most of the GOM waters, and to improve 

our understanding of the mechanisms and dominant factors in controlling surface pCO2. Towards 

these goals, the specific research objectives are: 

1) Develop satellite-based surface pCO2 models and data products for single-process 

dominated subregions of the GOM, and quantify the sensitivities of the pCO2 algorithms 

to the input environmental variables. 

2) Quantify the oceanic processes in controlling surface pCO2 in the GOM, analyze the 

relationships between environmental variables and surface pCO2, and understand the 

mechanisms of seasonal and interannual variations of surface pCO2 and its driving 

factors. 
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3) Develop an improved SSS model and data products for most GOM waters, and quantify 

the sensitivities of the SSS model to the input variables. 

4) Develop a unified pCO2 model and data products for the GOM waters, and quantify the 

sensitivities of the pCO2 model to the input environmental variables. 

5) Quantify the temperature and non-temperature effects on surface pCO2 at different 

latitudes, analyze the dominant controls and the corresponding the driving factors of 

surface pCO2. 

 

5. Data sources 

5.1. Field data 

In the years between 2002 and 2017, over 220 cruise surveys have been conducted to 

collect flow-through surface pCO2 data during different seasons in the GOM as well as one buoy 

time series data from the Coastal Mississippi Buoy. Most of these pCO2 data were obtained from 

the NOAA National Centers for Environmental Information (NCEI) 

(https://www.nodc.noaa.gov/ocads/), and several cruise data were obtained from University of 

Columbia, Texas A andM University, and University of Delaware. All these surface pCO2 data 

sources were compiled and quality controlled for the development of surface pCO2 remote sensing 

algorithms in this research. Details of these data can be found in Appendixes of A, B, and D. It 

should be clarified that data collected before July 2002 were not used mainly because there is no 

MODIS data available for that period. 

In addition to surface pCO2, SSS was also measured and collected in all the field surveys 

mentioned above. To develop the SSS remote sensing algorithm for the GOM, the SSS data 

https://www.nodc.noaa.gov/ocads/
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collected from these field surveys was compiled and quality controlled. Other cruises that 

measured SSS but not surface pCO2 were also used. Specifically, ship-based cruise data collected 

in the GOM by College of Marine Science University of South Florida, Florida Fish and Wildlife 

Conservation Commission (FWC), and buoy-based time series data collected in the GOM from 

NOAA National Data Buoy Center (NDBC) buoys were also compiled and quality controlled, and 

merged with the SSS datasets from the pCO2 data surveys. Details of these data can be found in 

Appendix C.  

To analyze the driving mechanisms of surface pCO2 in different coastal ocean 

environments, in situ surface pCO2 time series data collected from buoys located at different 

latitudes along the coasts of U. S. and its territories were compiled and quality controlled. These 

data were obtained from the NOAA NCEI. Details of these can be found in Appendix E. 

 

5.2. Satellite data 

NASA standard daily Level-2 data products (version R2014.0) for the period of Jul. 2002 

– Dec. 2017 with a spatial resolution of ~1 km were downloaded from the NASA Goddard Space 

Flight Center (GSFC) (https://oceancolor.gsfc.nasa.gov/). These Level-2 data products were 

derived from measurements by the Moderate Resolution Imaging Spectroradiometer (MODIS) on 

the Aqua satellite, and they included Chl, SST, and spectral remote sensing reflectance (Rrs, sr-1) 

in 7 bands between 412 and 678 nm. The spectral Rrs data were used to calculate Kd using the 

semi-analytical algorithm developed by Lee et al. (2005). The MODIS-derived environmental 

variables including Chl, Kd, SST, and SSS were used as inputs for the development of pCO2 remote 

sensing algorithms. The spectral Rrs data and SST were used to develop the SSS remote sensing 

algorithm. 

https://oceancolor.gsfc.nasa.gov/
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6. Approach and dissertation structure 

This dissertation is arranged in chapters that detail the research conducted to fulfill these 

objectives. Chapters 2 and 3 focus on the estimation of surface pCO2 from MODIS in single-

process dominated regions of the GOM: the WFS and the northern GOM, respectively (Objective 

1). For the WFS, a multi-variate nonlinear regression (MNR) model is developed to estimate 

surface pCO2 from MODIS, and in the northern GOM, a previously developed mechanistic semi-

analytical algorithm (MeSAA) is evaluated and locally-tuned, and compared with the performance 

of regression-based models. For both regions, the sensitivity of the developed pCO2 models to the 

input environmental variables and their relationships are analyzed. The MeSAA model is 

developed through quantifying different oceanic processes that affect surface pCO2 variations 

(Objective 2). The driving mechanisms of the seasonal and interannual variations of surface pCO2 

on the WFS are analyzed (Objective 2). 

The satellite mapping of surface pCO2 in the northern GOM waters requires the 

development of SSS data products from ocean color remote sensing (Objective 3). This work is 

completed using MODIS and SeaWiFS data, as described in Chapter 4. Briefly, a multilayer 

perceptron neural network (MPNN) is developed to estimate SSS from satellite-derived SST and 

remote sensing reflectance (Rrs(λ), m-1) in the visible bands. The sensitivity of the model to 

realistic model input errors is analyzed and quantified. 

Most of the published satellite-based pCO2 models are developed for single-process 

dominated oceanic regions, as described in Chapters 2 and 3. The availability of SSS data products 

from remote sensing in the GOM (Chapter 4) makes it possible to test the feasibility of developing 

a unified pCO2 model for the multi-process dominated GOM (Objective 4). Chapter 5 details the 
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development of such a unified pCO2 model for the GOM, which proves the possibility of using 

the proposed approach for other oceanic regions (e.g., Gulf of Maine). The seasonal and 

interannual variability of surface pCO2 in the GOM, and the relationships between pCO2 and 

environmental variables, as well as the underlying driving mechanisms, are also analyzed in 

Chapter 5 (Objective 2). 

Chapter 6 details the decomposition of the effects of temperature and non-temperature on 

surface pCO2 variations, based on buoy time series data at different latitudes in both open oceans 

and coastal oceans (Objective 5). The underlying driving mechanisms of the seasonal variations 

of surface pCO2 as well as their temperature and non-temperature components are analyzed, where 

the relationships between surface pCO2 and environmental variables are also quantified. 

Finally, Chapter 7 summarizes the works and findings in the previous chapters, with 

particular focus on the implications of the dissertation as a whole. Overall implications are 

presented on both the successes and lessons learned from this work. Furthermore, Chapter 7 also 

discusses future research directions to broaden the findings of this work and to study CO2 flux, 

carbon cycling, and ocean acidification using satellite data. 
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CHAPTER 2: 

ESTIMATING SURFACE PCO2 IN SINGLE-PROCESS DOMINATED REGION FROM 

SATELLITES: THE WEST FLORIDA SHELF 

Note to Reader 

 This chapter have been previously published in Continental Shelf Research, 2016, 128: 10-

25, and have been reproduced with permission from Elsevier Publishing. 

1. Research overview 

Appendix A – Remote estimation of surface pCO2 on the West Florida Shelf (Chen et al., 2016) 

As one of the broadest continental shelves of the U. S., the West Florida Shelf (WFS) 

should play a big role in modulating CO2 flux in the Gulf of Mexico (GOM). However, 

despite significant efforts to collect surface pCO2 data through numerous ship surveys, 

synoptic mapping of surface pCO2 from satellites is available for the WFS. In this study, a 

multi-variable empirical surface pCO2 model was firstly developed for satellite mapping 

of surface pCO2 over the WFS, with a Root Mean Square Error (RMSE) of < 12 µatm and 

a R2 of 0.88 for pCO2 ranging from 300 to 550 µatm (N = 1,516). This model was based 

on concurrent MODIS estimates of surface chlorophyll concentrations, diffuse light 

attenuation at 490 nm, and sea surface temperature. The first spatial and temporal estimate 

of distributions of surface pCO2 on the WFS were investigated and discussed in this study. 

However, while the general approach of empirical regression may work for waters in other 
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areas of the GOM, model coefficients will most likely need to be empirically determined 

in a similar fashion. 
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CHAPTER 3: 

ESTIMATING SURFACE PCO2 IN SINGLE-PROCESS DOMINATED REGION FROM 

SATELLITES: THE NORTHERN GOM 

Note to Reader 

 This chapter have been previously published in Continental Shelf Research, 2017, 151: 94-

110, and have been reproduced with permission from Elsevier Publishing. 

1. Research overview 

Appendix B – Estimating surface pCO2 in the northern Gulf of Mexico: Which remote sensing 

model to use? (Chen et al., 2017a) 

Various approaches and models have been proposed to remotely estimate surface pCO2 in 

the ocean, with variable performance as they were designed for different environments. 

Among these, a recently developed mechanistic semi-analytical approach (MeSAA) has 

shown an advantage for its explicit inclusion of physical and biological forcing in the 

model, yet its general applicability is unknown. Here, with extensive in situ measurements 

of surface pCO2, the MeSAA was tested in the northern GOM where river plumes dominate 

the coastal water’s biogeochemical properties during summer. Specifically, the MeSAA-

predicted surface pCO2 was estimated by combining the dominating effects of 

thermodynamics, river-ocean mixing and biological activities on the surface pCO2. The 

RMSE (root mean square error) was 22.94 µatm (5.91 %) and R2 was 0.25 for pCO2 

ranging between 316 and 452 µatm (N=676). A locally-tuned MeSAA and regression 
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models showed a RMSE of 12.36 µatm (3.14 %) and 10.66 µatm (2.68%), and R2 of 0.78 

and 0.84, respectively. These results suggest that the locally-tuned MeSAA worked better 

in the river-dominated northern GOM than the original MeSAA, with slightly worse 

statistics but more meaningful physical and biogeochemical interpretations than the 

empirical regression model. Because data from abnormal upwelling are not used to train 

the models, the models are not applicable for waters with strong upwelling, yet the 

empirical regression approach has the potential to be further tuned to adapt to such cases.  
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CHAPTER 4: 

REMOTE ESTIMATION OF SEA SURFACE SALINITY IN THE GOM 

Note to Reader 

 This chapter have been previously published in Remote Sensing of Environment, 2017, 201: 

115-132, and have been reproduced with permission from Elsevier Publishing. 

1. Research overview 

SSS is an important input to pCO2 remote sensing models, but currently there is no satellite-

based SSS data product covering coastal waters with 1-km resolution. Therefore, an important step 

in developing pCO2 models is developing a model to estimate SSS from ocean color measurements. 

This work is presented in Appendix C below.  

Appendix C – Estimating sea surface salinity in the northern Gulf of Mexico from satellite ocean 

color measurements (Chen and Hu, 2017b) 

Sea surface salinity (SSS) is an important parameter to characterize physical and 

biogeochemical processes, and it is also an important parameter to quantify the surface 

pCO2 variation especially in the river-dominated regions, yet its remote estimation in 

coastal waters has been difficult because satellite sensors designed to “measure” SSS lack 

sufficient resolution, and higher-resolution ocean color measurements suffer from optical 

and biogeochemical complexity when used to estimate SSS. In the northern Gulf of Mexico 

(GOM), this challenge is addressed through modeling, validation, and extensive tests in 

contrasting environments. Specifically, using extensive SSS datasets collected by many 
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groups spanning > 10 years and MODIS (Moderate Resolution Imaging Spectroradiometer) 

and SeaWiFS (Sea-Viewing Wide Field-of-View Sensor) estimated remote sensing 

reflectance (Rrs(λ), m-1) at 412, 443, 488 (490), 555, and 667 (670) nm and sea surface 

temperature (SST), a multilayer perceptron neural network-based (MPNN) SSS model has 

been developed and validated with a spatial resolution of ~1km. The model showed an 

overall performance of root mean square error (RMSE) = 1.2, with coefficient of 

determination (R2) = 0.86, mean bias (MB) = 0.0, and mean ratio (MR) = 1.0 for SSS 

ranging between ~1 and ~37 (N=3640). The model was thoroughly evaluated under 

different scenarios with reasonable performance. The sensitivity of the model to realistic 

model input errors from satellite-derived SST and Rrs was also thoroughly examined, with 

uncertainties in the model-derived SSS being always < 1 for SSS > 30. The extensive 

validation, evaluation, and sensitivity test all indicated the robustness of the MPNN model 

in estimating SSS in most, if not all, coastal waters and offshore plumes in the northern 

GOM. Thus, the model provided a basis for generating near real-time 1-km resolution SSS 

maps from satellite measurements. However, the model showed limitations when applied 

to regions with known algal blooms or upwelling as they both led to low Rrs in the blue 

bands that may be falsely recognized as caused by low SSS. 
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CHAPTER 5:  

A UNIFIED APPROACH TO ESTIMATE SURFACE OCEAN PCO2 FROM 

SATELLITE MEASUREMENTS 

1. Research overview 

With all satellite-derived variables (SST, SSS, Chl, Kd) available as the model inputs, this 

chapter details the effort in using these variables to develop a unified approach to estimated pCO2 

in multi-process dominated regions. The steps and results are all presented in Appendix D below.  

Appendix D – A machine learning approach to estimate surface ocean pCO2 from satellite 

measurements (Chen et al., submitted) 

Surface ocean pCO2 is a critical parameter in the quantification of air-sea CO2 flux, which 

further plays an important role in quantifying the global carbon budget and understanding 

ocean acidification. Yet, to date there is no unified approach, let alone unified model, to 

remotely estimate surface pCO2 in oceanic regions that are dominated by different oceanic 

processes. In the study area of the Gulf of Mexico (GOM), this challenge is addressed 

through the evaluation of different approaches, including multi-linear regression (MLR), 

multi-nonlinear regression (MNR), principle component regression (PCR), decision tree, 

supporting vector machines (SVMs), multilayer perceptron neural network (MPNN), and 

random forest based regression ensemble (RFRE). After modeling, validation, and 

extensive tests under different scenarios, the RFRE model performed the best. The RFRE 

model showed an overall performance of a root mean square error (RMSE) of 9.1 µatm, 
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with R2 of 0.95, a unbiased percentage difference (UPD) of 0.07%, and a mean ratio 

difference (MRD) of 0.12% for pCO2 ranging between 145 and 550 µatm.  The model, 

with its original parameterization, has been tested with independent datasets collected over 

the entire GOM, with satisfactory performance in each case. The sensitivity of the RFRE-

based pCO2 model to input errors of each environmental variable was also thoroughly 

examined. The extensive validation, evaluation, and sensitivity analysis indicate the 

robustness of the RFRE model in estimating surface pCO2 in most, if not all, GOM waters. 

The RFRE model approach was applied to the Gulf of Maine (a contrasting oceanic region 

to GOM), with local model training. The results showed significant improvement over 

other models for that area, suggesting that the RFRE may serve as a robust approach for 

other regions once sufficient field-measured pCO2 data are available for model training. 

 

While most results are presented in a submitted manuscript, further analysis of surface 

pCO2 climatology and the pCO2 model sensitivity to input variables (i.e., SST, SSS, Chl, and Kd) 

is presented below.  

Specifically, the monthly pCO2 maps derived from MODIS between July 2002 and 

December 2017 were averaged to derive the climatological pCO2 monthly mean. Meanwhile, the 

standard deviations of the monthly surface pCO2, as well as the monthly maxima and minima of 

surface pCO2 over the study period were also quantified to express the variations of surface pCO2 

in each month. Figs. 5.1-5.5 are the monthly mean, monthly mean with two standard deviation 

added, monthly mean with two standard deviations subtracted, monthly maxima, and monthly 

minima, of surface pCO2 in the GOM, respectively. These monthly surface pCO2 maps should 

represent the typical variation range of surface pCO2 in each month, and thus can be used as 
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references during the field surveys of surface pCO2 in the GOM in the future. It should be noted 

that, there is some patchiness in the monthly mean pCO2 maps; specifically where two standard 

deviation are added (Fig. 5.2), where two standard deviations are subtracted (Fig. 5.3), and 

monthly maxima (Fig. 5.4) and minima (Fig. 5.5). These extreme high (or low) pCO2 values are 

mainly caused by the large variations of the monthly surface pCO2 from year to year in those 

regions.  

 

Figure 5.1: Surface pCO2 climatology in the GOM: monthly mean. They are based on MODIS-

derived surface pCO2 between July 2002 and December 2017. 
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Figure 5.2: Surface pCO2 climatology in the GOM: monthly mean minus two standard deviations. 

They are based on MODIS-derived surface pCO2 between July 2002 and December 2017. 
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Figure 5.3: Surface pCO2 climatology in the GOM: monthly mean plus two standard deviations. 

They are based on MODIS-derived surface pCO2 between July 2002 and December 2017. 
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Figure 5.4: Surface pCO2 climatology in the GOM: monthly minima. They are based on 

MODIS-derived surface pCO2 between July 2002 and December 2017. 
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Figure 5.5: Surface pCO2 climatology in the GOM: monthly maxima. They are based on 

MODIS-derived surface pCO2 between July 2002 and December 2017. 

 

In the manuscript, the sensitivity of the pCO2 remote sensing algorithm to the input 

variables was quantified based on the training dataset used to develop the algorithm. This 

sensitivity analysis was conducted by varying one of the input variables by a certain amount while 

keeping the other variables unchanged (see Appendix D). Here I did a 3-dimensional (3D) 

sensitivity analysis via data simulation. For example, to examine the model sensitivity to both SST 

and SSS, a 2-dimensional (2D) arrays for both SST and SSS were generated by varying SST and 
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SSS within a typical range of each input (i.e., SST within 0~35 ˚C, and SSS within 0~40); thus, 

each value of SST corresponds to different SSS values in the SSS range, and each pair of SST and 

SSS values was referred to as a grid cell. Futrther, each grid cell was assigned fixed Chl and Kd 

values (e.g., Chl = 1.0 mg m-3, Kd = 0.1 m-1).  A data matrix was generated, and each grid cell of 

the data matrix represented a data sample associated with SST, SSS, Chl, and Kd. Finally, the 

developed pCO2 model was applied to this data matrix to calculate the surface pCO2 value for each 

grid cell. Following the above steps, Fig. 5.6-5.12 are the 3D plots of the sensitivity of the 

developed pCO2 model to environmental variable pairs of Chl and Kd, Chl and SSS, Chl and SST, 

Kd and SSS, Kd and SST, SST and SSS, respectively. These 3D plots allow the visualization of 

model-predicted pCO2 varied against any other two of the four environmental variables (i.e., SST, 

SSS, Chl, and Kd). Similar to the sensitivity analysis in Appendix D, the pCO2 algorithm is more 

sensitive to SST and SSS than to Chl and Kd. Surface pCO2 showed large increase with an increase 

in SST and SSS, while the changes in surface pCO2, in response to Chl and Kd variations, were 

gradual with smaller amplitudes. 

 

Figure 5.6: Sensitivity of the pCO2 remote sensing algorithm to Chl and Kd. SST and SSS are 

fixed with a certain value. 
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Figure 5.7: Sensitivity of the pCO2 remote sensing algorithm to Chl and SSS. Kd and SST are 

fixed with a certain value. 

 

Figure 5.8: Sensitivity of the pCO2 remote sensing algorithm to Chl and SST. Kd and SSS are 

fixed with a certain value. 
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Figure 5.9: Sensitivity of the pCO2 remote sensing algorithm to Kd and SSS. Chl and SST are 

fixed with a certain value. 

 

Figure 5.10: Sensitivity of the pCO2 remote sensing algorithm to Kd and SST. Chl and SSS are 

fixed with a certain value. 
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Figure 5.11: Sensitivity of the pCO2 remote sensing algorithm to SSS and SST. Chl and Kd are 

fixed with a certain value. 
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CHAPTER 6: 

 DOMINANT CONTROLS OF SURFACE OCEAN PCO2 IN COASTAL OCEANS: 

ANALYSIS OF IN SITU TIME SERIES DATA 

1. Research overview 

Appendix E – Dominant controls of surface water pCO2 in different coastal environments (Chen 

and Hu, prepared) 

Atmospheric pCO2 has increased continuously since global industrialization. Satellite 

measurements allow for synoptic estimation of surface ocean pCO2, which can be further 

used to quantify air-sea CO2 flux and to understand ocean acidification under 

anthropogenic forcing. To improve the accuracy of satellite-derived surface pCO2, the 

dominant controls of surface pCO2 over seasonal and interannual time scales need to be 

better understood. As such, a time series of in situ pCO2 data, together with other 

environmental variables from field or satellite measurements along the U. S coasts at 

different latitudes, are analyzed. On seasonal time scales, surface pCO2 tends to be 

dominated by the temperature effect (pCO2_T) through SST and wind speed (with 

exceptions in river-dominated, upwelling-dominated, or coral reef dominated regions) in 

tropical and subtropical oceanic waters, but by the non-temperature effect (pCO2_nonT) in 

subpolar regions. At high latitudes, despite the covariations between pCO2_nonT and 

atmospheric pCO2 on seasonal scales, no statistically significant correlation is found 

between the two or between pCO2_nonT and the environmental proxies of ocean mixing 

and biological activities. On interannual time scales, corresponding to the significant 
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increasing trends in atmospheric pCO2 over the study period, surface pCO2 also shows 

significant increasing trends (again with exceptions in river-dominated, upwelling-

dominated, or coral reef dominated regions). In contrast to the dominant controls of the 

seasonal variations, interannual variability of surface pCO2 is mainly controlled by the non-

temperature effect (through air-sea CO2 exchange via atmospheric pCO2) in tropical and 

subtropical waters but by temperature effect (warming effect of SST) in subpolar regions. 

In river-dominated and upwelling-dominated coastal ocean systems where biological 

activities are expected to be intensive, surprisingly, no significant correlation is found 

between pCO2_nonT and biological proxies (i.e., Chlorophyll concentration (Chl), diffuse 

attenuation coefficient of downwelling irradiance (Kd)). This may be mainly attributed to 

the data scarcities and large uncertainties in the satellite-derived Chl and Kd, and more 

importantly to the complexities of the dynamic physical and biogeochemical processes in 

such coastal environments. Therefore, the effects of biological activities (e.g., algal blooms) 

need to be further investigated.  
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CHAPTER 7:  

RESEARCH IMPACTS AND CONCLUSIONS 

1. Summary of findings  

Due to the dynamic and complex physical and biogeochemical processes in coastal 

oceans, large uncertainties (i.e., Root Mean Square Error (RMSE) ≥ 20µatm) exist in satellite-

derived surface pCO2 (e.g., Lohrenz et al., 2010; 2018; Hales et al., 2012; Signorini et al., 2013; 

Bai et al., 2015). Most of the published satellite-based pCO2 models are region specific and thus 

having poor applicability in other regions. In the Gulf of Mexico (GOM), no satellite-based pCO2 

models or data products are available except for a few preliminary attempts in the northern GOM 

waters around the Mississippi river delta (Lohrenz and Cai,  2006; Lohrenz et al., 2010; 2018), 

yet these attempts all show relatively large uncertainties (i.e., RMSE > 30 µatm). Here, an 

empirical surface pCO2 remote sensing algorithm, based on multi-variate nonlinear regression 

(MNR), was developed for the West Florida Shelf (WFS) with RMSE of 10.98 µatm and R2 of 

0.86 for pCO2 between 300 and 550 µatm. (Chen et al., 2016). For the northern GOM waters, a 

mechanistic semi-analytical approach (MeSAA) was attempted and the same MNR approach 

used for the WFS was also locally tuned for this region (Chen et al., 2017a). The MNR shows 

better performance with RMSE of 10.66 µatm and R2 of 0.84 than the best MeSAA results 

(RMSE = 12.36 µatm, and R2 = 0.78) for pCO2 range of 315~450 µatm. Clearly studies of both 

the WFS and the northern GOM show greatly reduced errors when compared to the published 

studies. It should be clarified that, while a multi-variate nonlinear regression model was 

developed from this work, the MeSAA model was adapted from a previously published work 
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(Bai et al., 2015) but tuned using local parameterization. While they both appear to be able to 

estimate surface pCO2 using satellite measurements, their advantages and disadvantages are 

discussed in Chen et al. (2017a). Specifically, while the MeSAA model can address the individual 

processes more explicitly, it also leads to higher uncertainties than the empirical model. On the 

other hand, because the complex and often unknown processes may be implicitly included in the 

model coefficients, empirical models often lead to lower uncertainties than MeSAA models, but 

at the price of being unable to explain the processes explicitly. One limitation of both models is 

their requirement of SSS as the model input (Chen et al., 2017a), where SSS at 1-km resolution 

is not readily available from satellite measurements.  

To overcome this difficulty, a multilayer perceptron neural network (MPNN) is 

developed to estimate SSS from MODIS and SeaWiFS (Chen et al., 2017b). This SSS model is 

mainly based on the optical properties of the colored dissolved organic matter (CDOM) and its 

relationship with SSS (Vodacek et al., 1997; Hu et al., 2003; Coble et al., 2004; Del Vecchio and 

Blough, 2004). However, the CDOM characteristics depend on individual rivers, and the CDOM-

SSS relationship also varies with space and time (Chen, 1999; Hu et al., 2003; Del Vecchio and 

Blough, 2004; Bowers and Brett, 2008; Bai et al., 2013; Geiger et al., 2013). To overcome these 

difficulties, the MPNN model developed in Chen et al. (2017b) bypasses the need of CDOM as 

an intermediate step, but estimates SSS directly from satellite-derived SST and remote sensing 

reflectance (Rrs(λ), m-1) in the visible bands. This model shows a RMSE of 1.2 PSU and R2 of 

0.86 for a wide range of SSS (i.e., 1~37) with uncertainties always < 1 PSU for SSS > 30, and 

therefore is being able to generate SSS data products at 1-km resolution to be used in surface 

pCO2 models. 
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Most of the published satellite-based pCO2 models (e.g., Hales et al., 2012; Signorini et 

al., 2013), as well as the models described in Chapters 2 and 3, are developed for single-process 

dominated regions. These regional pCO2 models are developed using various approaches and 

different combinations of environmental variables. With the available SSS data products from 

ocean color remote sensing in the GOM (Chapter 4), the feasibility of developing a unified pCO2 

model for multi-process dominated regions ( GOM, Gulf of Maine) is demonstrated (Chapter 5). 

Such a pCO2 model leads to spatial and temporal (e.g., seasonal and interannual) distribution 

patterns of surface pCO2 in the GOM that can be interpreted as being driven by different physical 

and biological processes. This unified satellite pCO2 model has a RMSE of 9.1 µatm and R2 of 

0.95 for pCO2 between 145 and 550 µatm.  

Finally, to improve the accuracy of satellite mapping of surface pCO2 in the complex 

coastal waters, the mechanisms and dominant controls of the variations in surface pCO2 on 

seasonal and interannual time scales are further investigated using in situ time series data along 

the coasts of U. S. and its territories (Chapter 6). It is found that, in tropical and subtropical 

coastal waters, the seasonal variations of surface pCO2 are mainly controlled by SST (with a few 

exceptions in the river-dominated, upwelling-dominated, and coral-reef-dominated systems), 

while in the subpolar or high latitude regions, the seasonal variations of surface pCO2 are mainly 

dominated by non-temperature effects. In contrast, on interannual time scale, with the increase 

of the atmospheric pCO2, surface pCO2 also shows increasing trends over most of the sites 

selected for this study. In the tropical and subtropical coastal waters, the increasing trends in 

surface pCO2 are mainly attributed to non-temperature effect, while in the subpolar or high 

latitude regions, they are mainly caused by the effect of SST. More biological data are required 

to better understand the biological effects on surface pCO2 variations.  
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2. Research implications 

2.1. Satellite mapping of surface pCO2 

In principle, surface ocean pCO2 is mainly controlled by four oceanic processes: 

thermodynamics, ocean mixing, air-sea CO2 exchange, and biological activities (Fennel et al., 

2008; Ikawa et al., 2013; Xue et al., 2016). Therefore, any environmental variables related to 

these processes can be used to remotely estimate surface pCO2. In practice, SST, SSS, Chl and 

Kd are determined to be the best variables to model surface pCO2 in the GOM. The selection of 

these variables (except Kd) concurs with many of the published studies (e.g., Lohrenz and Cai, 

2006; Lohrenz et al., 2010; 2018; Hales et al., 2012; Signorini et al., 2013; Bai et al., 2015). In 

this study, Kd is found to be an important biological proxy. More importantly, although the GOM 

encompasses several sub-regions that are dominated by distinct and complex physical and 

biogeochemical processes (Figure 1.1), SST, SSS, Chl and Kd are found to be the common 

environmental variables in affecting surface pCO2 over the GOM. However, it is known that, in 

addition to these variables, other variables (e.g., mixed layer depth and wind speed) can also 

affect surface pCO2 (e.g., Jamet et al., 2007; Salisbury et al., 2008; Chierici et al. 2009; Shadwick 

et al., 2010; Nakaoka et al., 2013; Parard et al., 2014). Therefore, in order to apply the developed 

pCO2 model on a global scale, further investigations need to be conducted to examine the 

sufficiency of these four environmental variables (SST, SSS, Chl, and Kd) in estimating surface 

pCO2. The significantly improved model performance from this effort suggest that many of the 

published pCO2 models may need to be revisited. 

Due to the dynamic and complex characteristics of the coastal oceans and prior to this 

work, the satellite estimated pCO2 always showed relatively large uncertainties (e.g., RMSE > 
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20 µatm, or RMSE > 30 µatm in river-dominated regions). Furthermore, due to the lack of 

sufficient surface pCO2 data, contradictory results about the air-sea CO2 flux in the GOM have 

also been reported (Takahashi et al., 2009; Xue et al., 2014; Benway and Coble, 2014). In this 

dissertation, the considerable gaps of available synoptic pCO2 data in the GOM are filled through 

extensive algorithm development effort. Various approaches, such as multi-nonlinear regression, 

principle component analysis and regression, neural network, supporting vector machines, 

regression tree, and random forest, are all thoroughly tested and compared toward an improved 

accuracy (e.g., RMSE < 10 µatm) in the satellite-derived pCO2. With the synoptic surface pCO2 

at relatively high spatial and temporal resolutions available from satellites, it is now 

straightforward to calculate air-sea CO2 flux in future works. This will lead to an improved 

understanding of the carbon budget and carbon cycling in the GOM. More importantly, the 

unified pCO2 approach demonstrated here shows potentials for other regions (e.g., Gulf of Maine), 

and thus may greatly facilitate carbon-flux studies in other region.  

Finally, with rapidly increasing atmospheric pCO2 resulting from anthropogenic forcing, 

it is expected that surface pCO2 would also show a similar or detectable increasing rate 

(Takahashi et al., 2009; 2014). However, no such clear trends are observed in either the satellite-

derived pCO2 for the GOM or in situ time series of pCO2 data in the northern GOM (e.g., buoy 

C3 in Chapter 6). In other words, based on the results presented in this study, currently it is 

difficult to conclude whether there is a significantly increasing trend in the surface pCO2 in the 

GOM, despite the fact that the satellite-based surface pCO2 does show slight increases after 2012. 

This is possibly due to 1) the buoy-based time series data may not be representative of the entire 

GOM, especially for the open GOM waters, and 2) if the model inputs (SST, SSS, Chl, and Kd) 

do not show apparent trend, the modeled pCO2 would not show any trend either. Therefore, in 
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future studies of surface pCO2, in order to capture the response of surface pCO2 to the increased 

atmospheric pCO2 on interannual time scale, the latter should be used as the model input as well. 

 

2.2. Further implications 

The SSS work presented in this dissertation has implications beyond its use in satellite 

mapping of surface pCO2. Accurate estimation of SSS from ocean color remote sensing is critical 

to characterizing many physical and biogeochemical processes in coastal ocean waters (Fennel 

et al., 2011; Xue et al., 2013). It can not only be used to examine the mixing characteristics 

between different water masses (e.g., riverine freshwater versus oceanic water) (Hu et al., 2004; 

Horner-Devine et al., 2015; Yang et al., 2015), but it can also be used to trace the pathways of 

the terrestrial runoffs into the ocean as well as to characterize the optical properties of the ocean 

waters related to hypoxia and algal blooms (Rabalais et al., 1996; 2002; Weisberg et al., 2014; 

2016; Le et al., 2016). The SSS algorithm developed here (Chen et al., 2017b) may also be 

implemented within near-real time applications in monitoring water properties in the near future. 

Likewise, the general approach of using neural network to implicitly address relationships 

between spectral reflectance and SSS may be applied to other coastal regions to derive SSS from 

ocean color measurements.  

Similar to the neural network approach used on SSS estimation, the approaches proposed 

in this dissertation to estimate surface pCO2 may be extended to other regions as well. Although 

the relative importance of the four processes (thermodynamics, physical ocean mixing, biological 

activities, air-sea CO2 exchange) that control the variations of surface pCO2 may vary in different 

oceanic ecosystems (e.g., upwelling-dominated, river-dominated, or current-dominated), for 

example at different latitudes, the proposed machine learning approach used to generate the pCO2 
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model for the multi-process dominated GOM waters shows great potential for estimating surface 

pCO2 from other oceanic waters (Chapter 5, Chen et al., submitted). At present, due to the lack 

of synoptic and accurate mapping of surface pCO2 in coastal margins, it is still difficult to 

quantify the role of coastal oceans in cycling atmospheric CO2 as either a source or a sink (e.g., 

Borges, 2005; Cai et al., 2006). As such, the proposed approach in this dissertation can be 

implemented and tested on global continental margins as well as in global open-ocean waters to 

improve our knowledge of global oceanic carbon cycling.  

 

3. Future work 

3.1. Research  

In the past, controversial results have been reported on whether the GOM acts as a CO2 

source or sink (Takahashi et al., 2009; Xue et al., 2014; Benway and Coble, 2014). Based on the 

synoptic and long-term satellite-based pCO2 data products provided in this work, an important 

next step is to estimate the air-sea CO2 flux in the GOM waters. Subsequently, the variations of 

the air-sea CO2 fluxes in the past years (e.g., at least > 15 years from MODIS) can be analyzed 

towards a better understanding of the carbon cycling in the GOM. 

With the increases of atmospheric pCO2 resulting from anthropogenic forcing, how the 

ocean responds to such increases is one of the top concerns in marine carbonate studies (e.g., 

Doney et al., 2009). Therefore, future works on pCO2 remote sensing must improve the model 

capacity in capturing interannual variations surface pCO2 in response to changes in atmospheric 

pCO2. In particular, based on the in situ time series data, surface pCO2 shows clear increasing 

trends in most of the study sites along the U. S. However, based on the remotely sensed pCO2 

from this work, surface pCO2 trends in the GOM are less conclusive. Considering the dynamic 
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and complex oceanic processes in the GOM, it could be possible that surface pCO2 did not 

increase much over this study period; it could also be possible that the interannual changes in 

surface pCO2 were not captured well by the environmental variables used in the developed pCO2 

models. As such, further investigation and improvement of the developed pCO2 models are 

needed, possibly through the use of the atmospheric pCO2 as one of the input variables.  

Finally, to better quantify surface pCO2 from satellite measurements, the biological 

effects on surface pCO2 must be to be investigated in greater detail in the future. At present, Chl 

and Kd are used as general proxies of the biological activities in modulating surface pCO2. 

However, due to the complex processes of the biological activities (e.g., photosynthesis, 

respiration, and calcification), the signals in Chl and Kd may not co-vary with surface pCO2 on 

the same time scales.  For example, it was surprising to find that Chl and Kd are insignificant to 

surface pCO2 changes (Chapter 5). Such results could be caused by data scarcities and large 

uncertainties in the satellite-derived Chl and Kd, especially in coastal ocean waters. As such, 

more work is still needed to study the effects of biological activities on surface pCO2. In 

particular, how surface pCO2 changes, together with other environmental variables (e.g., 

apparent oxygen utilization, nutrients, dissolved oxygen, and Chl), before, during, and after algal 

blooms needs to be investigated.  

 

3.2. Product delivery 

Surface pCO2 is a key parameter in assessing air-sea CO2 flux and understanding ocean 

acidification. While algorithms and data products are developed in this study, effective delivery 

of these products to the end-users still requires more efforts, especially for a user groups of 

different needs. For example, the North American Carbon Program (NACP) is a multi-agency, 
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multidisciplinary scientific research program which focuses on carbon sources and sinks. The 

surface pCO2 data products can be provided to researchers in this program to study carbon cycles. 

The NOAA Ocean Acidification Program (OAP) is dedicated to improving our understanding of 

how (and how fast) the ocean chemistry is changing. The interannual variations of the surface 

pCO2 in different regions of the GOM (e.g., river-dominated northern GOM, WFS, and open 

GOM waters), after accounting for the anthropogenic factor, can help to understand the response 

of the GOM waters to anthropogenic forcing. Further, similar to the NOAA Pacific Marine 

Environmental Laboratory (PMEL) moored pCO2 systems (Chapter 6), virtual buoy systems 

(VBS) presenting surface pCO2 time series at pre-selected locations of the GOM may be 

developed (Hu et al., 2014) in coordination with the NOAA PMEL carbon program.   

In addition to the major data products (surface pCO2) developed here, SSS estimated from 

ocean color satellite measurements is also an important data product for many applications, from 

water quality monitoring to ecosystem research. Currently, SSS data products have been 

generated in retrospective mode, which can be shared with many research and environmental 

groups. Once SSS data products are generated and updated in near real-time, these products may 

be delivered to various user groups through the common web portal established at the University 

of South Florida Optical Oceanography Lab (https://optics.marine.usf.edu).  

 

4. Conclusions 

Ocean color satellites provide synoptic and frequent measurements of the surface ocean to 

study the changing ocean chemistry. Integrating satellite data with traditional ship- and buoy-based 

measurements can provide further insights into understanding of variations of surface pCO2 and 

CO2 flux. Compared with previous efforts in mapping surface pCO2 from satellite measurements, 

https://optics.marine.usf.edu/
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the most significant outcome of this research is its use of machine learning to establish models to 

estimate SSS and surface pCO2 resulting in greatly reduced uncertainties even for multi-process 

dominated complex regions. The accurate surface pCO2 data products enable a better 

understanding of controlling mechanisms of their spatial, seasonal, and inter-annual variations. 

The developed datasets of SSS and surface pCO2 are expected to facilitate more studies of carbon 

cycling between atmosphere and ocean, for example to better quantify the role of continental 

margins as potential CO2 sources or sinks, and to better quantify the ocean’s role in absorbing 

atmosphere CO2.   
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