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Abstract

In the first part of this dissertation we introduce two matrix iso-spectral problems, a Kaup-Newell type

and a generalization of the Dirac spectral problem, associated with the three-dimensional real Lie algebras

sl(2,R) and so(3,R), respectively. Through zero curvature equations, we furnish two soliton hierarchies.

Hamiltonian structures for the resulting hierarchies are formulated by adopting the trace identity. In ad-

dition, we prove that each of the soliton hierarchies has a bi-Hamiltonian structure which leads to the

integrability in the Liouville sense. The motivation of the first part is to construct soliton hierarchies with

infinitely many commuting symmetries and conservation laws.

The second part of the dissertation is dedicated to the investigation of exact solutions to some nonlinear

evolution equations. We find lump solutions and lump-type solutions to a (2+1)-dimensional 5th-order

KdV-like equation and a (3+1)-dimensional Jimbo–Miwa-like equation, respectively. Moreover, we explore

interaction solutions of lump-type solutions with kink solutions and resonance stripe solitons solutions for

the Jimbo–Miwa-like equation. Finally, we consider a Riemann-Hilbert problem for a coupled complex

modified-KdV system and present its N -soliton solutions.



Chapter 1

Introduction

1.1 Background

Soliton theory is interesting and attractive: it relates to many areas of mathematics and has a variety of

applications in physics. In 1834, John Scott Russell discovered the first solitary wave on the Edinburgh-

Glasgow canal. The theory has developed mainly in the last decade starting with by [53]. According to

Russel, he noticed a water wave created when a moving boat suddenly stopped. The wave traveled through

the channel at a steady speed and without a change in shape or form. Russel called this wave the “great

wave of translation”. Unlike low-amplitude dispersive waves, this wave could not be explained by linear

partial differential equations (PDEs) which introduced a controversy between scientists. Russel continued

studying the wave in the laboratory and concluded that the amount of water in the wave is the same as the

amount displaced and the solitary wave speed, s, can be defined as

s2 = g(h+m), (1.1)

where h is the water depth, g is the gravitational acceleration and m is the wave amplitude. In 1870’s,

Boussinesq [7] and Lord Rayleigh [52] also considered the problem. They contributed to the field by

deriving the wave profile z = u(x, t) as follows

u(x, t) = m sech2 α(x− st), (1.2)

where α−2 = 4h2(h+m)
3m , for any m > 0. In 1895, Korteweg and de Vries provided an equation for u(x, t)

that adopts (1.2) as a solution [30]. They conducted a comprehensive theoretical analysis and derived what

is called now the Korteweg-de Vries (KdV) equation:

ut − 6uux + uxxx = 0. (1.3)

Herein u is the water surface elevation and the subscripts denote partial differentiation. No further substan-

tial investigations were done in this area prior to 1965 when Kruskal and Zabusky used digital simulation to
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solve the initial value problem for the KdV equation with periodic boundary conditions. They discovered

that nonlinear waves solutions of the KdV equation interact with each other elastically, and they called

these waves “solitons” [73]. This result paved the way for great studies in the field and in 1967 Gardener,

Greene, Kruskal and Miura innovated the inverse scattering method and were able to analytically solve

the KdV equation and found all its soliton solutions [15]. Later, the method was applied to solve many

other important nonlinear equations like the nonlinear Schrödinger (NLS) equation, the sine-Gordon equa-

tion [1, 4, 49], and these equations are known as integrable equations. More work related to the inverse

scattering method was considered by Lax in 1968 [31]. Lax introduced a method for associating a pair of

linear operators, known as the “Lax pair”, with nonlinear evolution equations so that the eigenvalues of the

linear operators are constants of the motion for the nonlinear evolution equations. Ablowitz, Kaup, Newell

and Segur in 1974 derived from a matrix spectral problem, nonlinear evolution equations which can be

solved using inverse scattering method [3]. Moreover, the theory of integrability was spread in different

domains such as the Riemann-Hilbert approach [49] and the direct method [22] and until now the devel-

opments of the theory continue. Although there is no precise definition of a soliton, it can be defined as a

solution of nonlinear evolution equations which possesses the following properties:

1. is localized in the region, i.e., it decays to a constant at infinity,

2. depicts a wave of permanent form,

3. can collide with other solitons but preserve their individual shapes and speeds.

A soliton becomes a solitary wave when it is infinitely separated from any other soliton [11].

1.2 Dissertation Outline

The organization of this dissertation is as follows. Chapter 2 is assigned to consider two matrix iso-

spectral problems associated with the three-dimensional simple linear Lie algebra sl(2,R) and the three-

dimensional special orthogonal real Lie algebra so(3,R), respectively. Based on the spectral matrices and

via the zero curvature formulation we construct two soliton hierarchies.

In Chapter 3, we use the trace identity, a special case of the variational identity, to formulate Hamiltonian

and bi-Hamiltonian structures of the soliton hierarchies and to prove that they are Liouville integrable.
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Chapter 4 studies lump and lump-type solutions of two nonlinear evolution equations of mathematical

physics. First, we produce lump solutions for a (2+1)-dimensional 5th-order KdV-like equation and lump-

type solutions for a Jimbo-Miwa-like equation in (3+1)-dimension. Then we inspect interaction solutions

of lump-type solutions and kink solutions and resonance stripe solitons solutions for the Jimbo-Miwa-like

equation.

In Chapter 5, we present the Ablowitz-Kaup-Newell soliton hierarchy with two potentials. Then a

Riemann-Hilbert problem is built for the third nonlinear system in the hierarchy which is a coupled complex

modified Korteweg-de Vries system. At the end, we generate N -soliton solutions for the system through

solving the associated non-regular Riemann-Hilbert problem.

3



Chapter 2

Spectral Problems and Soliton Hierarchies of Integrable Systems

2.1 Introduction

In the past decades, researchers become more interested in studying soliton theory due to its usefulness

in understanding nonlinear phenomena [1, 4, 11]. A standout amongst the most essential research areas in

soliton theory is discovering soliton hierarchies along with their exact solutions and integrable properties.

Solitons hierarchies can be derived from appropriate spectral problems associated with matrix Lie alge-

bras. In 1974, Ablowitz, Kaup, Newell and Segur constructed an infinite hierarchy of integrable equations

known as the AKNS hierarchy which contains the nonlinear Schrödinger equation [3]. Other significant

hierarchies followed such as the Kaup-Newell (KN) [27], the Wadati Konno Ichikawa [64], and Dirac hier-

archies [19].

We start this chapter by giving some basic definitions and notations [51]. The rest of the chapter is orga-

nized as follows. In Section 2.3, we introduce some methods for constructing integrable systems and their

application to the KdV equation and the nonlinear Schrödinger equation. In Section 2.4, we prove that an

isospectral matrix problem of Kaup-Newell type endangers a hierarchy of soliton equations. In Section

2.5, a generalized so(3,R) counterpart spectral problem of the Dirac soliton hierarchy is proposed and its

associated soliton hierarchy is generated.

2.2 Preliminaries

Let x = (x1, x2, . . ., xp) be the independent variables and u = (u1, u2, . . ., uq) be the dependent variables

in the spaces X = Rp and U = Rq, respectively, where R is the set of real number. Let O be an open

subset of X × U .

DEFINITION 2.2.1. The collection of smooth functions L(x, u(n)) that depend on x, u and derivatives of u

till a finite order n is algebra and we denote it by A. Any function L(x, u(n)) ∈ A is called a differential
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function. The differential function L(x, u(n)) is expressed as L[u] if the number of derivatives of u that L

depends on is not important.

DEFINITION 2.2.2. The quotient space of A under the image of the total divergence is the space F of

functionals L =
∫
L dx.

The vector space of q-tuples of differential functions, L[u] = (L1[u], L2[u], ..., Lq[u]), where Lj ∈

A, 1 ≤ j ≤ q, is denoted by Aq.

DEFINITION 2.2.3. The Gateaux derivative of an q-tuple of differential functions

L[u] = L(x, u(n)) ∈ Aq,

is a differential operator dL : Ar → Aq defined so that

dL(Q) = L′(u)[Q] =
d

dε
L[u+ εQ[u]]

∣∣∣
ε=0

, (2.1)

for any Q ∈ Ar.

EXAMPLE 1. If

L[u] = ux + uux,

then the Gateaux derivative of L is

dL(Q) = L′[Q] =
d

dε

[
(ux + εDxQ) + (u+ εQ)(ux + εDxQ)

]∣∣∣
ε=0

= DxQ+ uDxQ+ uxQ.

DEFINITION 2.2.4. A Lie algebra is a vector space g over a field F together with a bilinear operation called

a Lie bracket [ , ]g : g× g→ g which satisfies the following properties

1. skew-symmetry, i.e., for every X,Y ∈ g

[X,Y ]g = −[Y,X]g, (2.2)

2. The Jacobi identity holds,that is, for all X,Y, Z ∈ g

[X, [Y,Z]]g + [Z, [X,Y ]]g + [Y, [Z,X]]g = 0. (2.3)
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If a Lie bracket of two elements X and Y of a Lie algebra g is zero, i.e, [X,Y ]g = 0, we say that X and

Y commute. If for every X,Y in a Lie algebra g satisfies [X,Y ]g = 0 then g is said to be commutative.

DEFINITION 2.2.5. The commutator of two q-tuples of differential functions L,K ∈ Aq is defined as

[L,K] = L′K −K ′L. (2.4)

(Aq, [., .]) forms a Lie algebra over R.

DEFINITION 2.2.6. The i-th total derivative of

L[u] = L(x, u(n)),

is the unique smooth function DiL(x, u(n+1)) defined as

DiL =
∂L

∂xi
+

q∑
α=1

∑
J

uαJ,i
∂L

∂uαJ
, (2.5)

where, for J = (j1, ..., jk),

uαJ,i =
∂uαJ
∂xi

=
∂k+1uα

∂xi∂xj1 ...∂xjk
. (2.6)

The sum in (2.5) is over all J’s of order 0 ≤ #J ≤ n, where n is the highest order derivative appearing in

L.

EXAMPLE 2. If we take X = R2 and U = R, then the two total derivatives Dx and Dy are given by

DxL =
∂L

∂x
+ ux

∂L

∂u
+ uxx

∂L

∂ux
+ uxy

∂L

∂uy
+ uxxx

∂L

∂uxx
+ · · · , (2.7)

DyL =
∂L

∂y
+ uy

∂L

∂u
+ uxy

∂L

∂ux
+ uyy

∂L

∂uy
+ uxxy

∂L

∂uxx
+ · · · . (2.8)

If we take L = xyuxy, then

DxL = yuxy + xyuxxy, (2.9)

DyL = xuxy + xyuxyy. (2.10)

DEFINITION 2.2.7. If we can write a partial differential equation as

ut = K[u] = K(x, t, u, ux, uxx, · · · ), (2.11)

then it is called an evolution equation. HereK[u] is a differential functions and u(x, t) is a column vector of

dependent variables. Eq.(2.11) is known as a nonlinear evolution equation (NLEE) when K is a nonlinear

function.
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2.3 Integrable Systems Derivation Methods

There are many tools for constructing integrable systems in the literature. For example, the Lax pair [31],

zero-curvature representation and the Tu-Ma scheme [37, 61, 62]. This section aims to shed light on these

methods in details.

2.3.1 Lax Pair

Lax pair concept was originated in 1968 by Peter Lax [31]. He discovered a particular class of nonlinear

evolution equations

ut = K[u] = K(x, t, u, ux, uxx, · · · ), (2.12)

corresponds to linear PDEs

Lψ = λψ, ψt = Aψ, (2.13)

with linear differential operators L and A known as Lax pair. Herein the function ψ is an eigenfunction of

L associated with the eigenvalue λ. Taking the derivative of the left equation in (2.13) with respect to t and

utilizing the right one leads to

d

dt
(Lψ) =

d

dt
(λψ) = λψt = A(λψ) = ALψ, (2.14)

and

d

dt
(Lψ) =

dL

dt
ψ + Lψt =

dL

dt
ψ + LAψ, (2.15)

which gives rise to

dL

dt
+ LA−AL = 0, (2.16)

or equivalently,

dL

dt
+ [L,A] = 0. (2.17)

Here [L,A] = LA−AL is the commutator of the operators L andA. Eq.(2.17) is said to be a Lax equation.

When the eigenvalues λ are time-independent i.e., λt = 0, the eigenvalue problem (2.13) is known as an

isospectral problem.
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EXAMPLE 3. Consider the Lax pair
L = − ∂2

∂x2
+ u,

A = −4
∂3

∂x3
+ 6u

∂

∂x
+ 3

∂u

∂x
.

(2.18)

An easy calculation shows that

[L,A] =
[
− ∂2

∂x2
+ u,−4

∂3

∂x3
+ 6u

∂

∂x
+ 3

∂u

∂x

]
=
∂3u

∂x3
− 6u

∂u

∂x
, (2.19)

and

dL

dt
=
∂u

∂t
. (2.20)

Inserting Eqs(2.19) and (2.20) into the Lax equation (2.17), we obtain

ut − 6uux + uxxx = 0, (2.21)

which is the famous KdV equation.

2.3.2 Zero Curvature Representation

Let 
ψx = U(x, t;λ)ψ,

ψt = V (x, t;λ)ψ,

(2.22)

be a system of linear partial differential equations where U and V are matrix functions of the variables x

and t which depend on the spectral parameter λ and the column vector ψ has entries depend on (x, t, λ).

Differentiate the first equation in (2.22) with respect to t and the second one with respect to x, respectively,

we get

ψxt = Ut(λ)ψ + U(λ)ψt, (2.23)

and

ψtx = Vx(λ)ψ + V (λ)ψx. (2.24)

Now, the consistency condition ψxt = ψtx with (2.22) leads to

Ut(λ)ψ + U(λ)ψt − Vx(λ)ψ − V (λ)ψx = (Ut(λ)− Vx(λ) + [U(λ), V (λ)])ψ = 0, (2.25)
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or equivalently,

Ut − Vx + [U, V ] = 0. (2.26)

Eq.(2.26) is called the zero curvature equation and the whole scheme is called the zero curvature represen-

tation [61]. Many nonlinear integrable equations admit the zero curvature representation (2.26).

DEFINITION 2.3.1. A nonlinear evolution equation

ut = K(u), (2.27)

is called Lax integrable if it admits the zero-curvature representation (2.26).

EXAMPLE 4. If

U =

−iλ u

−ū iλ

 , V =

−2iλ2 + iuū iux + 2λu

iūx − 2λū 2iλ2 − iuū

 (2.28)

where u = u(x, t) and ū is the complex conjugate of u, then the zero curvature equation (2.26) leads to the

nonlinear Schrödinger (NLS) equation

iut + uxx + 2u2ū = 0. (2.29)

A soliton hierarchy is a hierarchy of equations of the form

utm = Km[u] = Km(x, t, u, ux, uxx, ...), (2.30)

can be formed from an evolution equation

ut = K[u] = K(x, t, u, ux, uxx, ...), (2.31)

by using the zero curvature equation (2.26). In this hierarchy, each member commutes with any other

member and is a symmetry of Eq.(2.31). This indicates that the symmetries of any equation in the hierarchy

comprise vector fields {Kn : n = 0, 1, 2, · · · } that are mutually commutative, i.e.,

[Kn,Km] = 0, n,m = 0, 1, 2, · · · . (2.32)

2.3.3 Tu-Ma Scheme

The Tu-Ma scheme [37, 62, 63] is the most practical tool to construct soliton hierarchies. We start with

some notations and then present the steps for this scheme.
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Let so(3,R) be the collection of all 3 × 3 trace-free, skew symmetric matrices whose elements are real

numbers. If the Lie bracket of two elements M1,M2 ∈ so(3,R) is defined by the matrix commutator

[M1,M2] = M1M2 −M2M1 (2.33)

then so(3,R) is a Lie algebra of dimension 3. We can choose a basis for this Lie algebra consisting of the

elements e1, e2, and e3 that defined as

e1 =


0 0 −1

0 0 0

1 0 0

 , e2 =


0 0 0

0 0 −1

0 1 0

 , e3 =


0 −1 0

1 0 0

0 0 0

 , (2.34)

then the commutator relations are gives as follows

[e1, e2] = e3, [e2, e3] = e1, [e3, e1] = e2. (2.35)

The three-dimensional special linear Lie algebra, sl(2,R), consists of 2 × 2 trace-free matrices and has

three basis elements

e1 =

1 0

0 −1

 , e2 =

0 1

0 0

 , e3 =

0 0

1 0

 , (2.36)

with the following commutator relations

[e1, e2] = 2e2, [e2, e3] = e1, [e3, e1] = −2e3. (2.37)

DEFINITION 2.3.2. If g is a finite-dimensional Lie algebra over the complex space C, then their corre-

sponding loop algebra g̃ is given by

g̃ = g⊗ C[λ, λ−1], (2.38)

where C[λ, λ−1] is the set of Laurent polynomials in λ. Let {e1, ..., er} be a basis of g. Then {e1(n), ..., er(n)|n ∈

Z}, where ej(n) = ej ⊗ λn = ejλ
n (1 ≤ j ≤ r), provides a basis for g̃.

In the steps below, we explain how to built hierarchies of soliton equations using the Tu-Ma procedure.

Step 1 Begin with a spatial iso-spectral problem

φx = Uφ = U(u, λ)φ, U(u, λ) ∈ g̃. (2.39)

The spectral parameter λ is time independent i.e., λt = 0 and u is a column vector of dependent

variables, based on a matrix loop algebra g̃ associated with a given matrix Lie algebra g, often being

simple or semisimple.
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Step 2 Find a solution

W = W (u, λ) =
∑
i≥0

W0,iλ
−i, W0,i ∈ g, i ≥ 0, (2.40)

to the stationary zero curvature representation

Wx = [U,W ]. (2.41)

Step 3 Introduce a sequence of Lax matrices

V [n] = V [n](u, λ) = (λnW )+ + ∆n ∈ g̃, n ≥ 0, (2.42)

so that the temporal spectral problems are formulated as

φtn = V [n]φ = V [n](u, λ)φ, n ≥ 0. (2.43)

Here P+ represents the polynomial part of P in λ and the term ∆n belongs to a Lie algebra g̃ is a

modification term which aims to ensure that the compatibility conditions of Eq.(2.39) and Eq.(2.43),

that is, the zero curvature equations

Utn − V [n]
x + [U, V [n]] = 0, n ≥ 0, (2.44)

present a hierarchy of soliton equations

utn = Kn(u), n ≥ 0. (2.45)

In this dissertation, we apply the Tu-Ma scheme to derive new hierarchies of soliton equations by taking

the matrix loop algebra g̃ to be

s̃l(2,R) =
{ ∞∑
j=0

Mjλ
m−j |Mj ∈ sl(2, R), j ≥ 0, m ∈ Z

}
(2.46)

and

s̃o(3,R) =
{ ∞∑
j=0

Mjλ
m−j |Mj ∈ so(3, R), j ≥ 0, m ∈ Z

}
(2.47)

The matrix loop algebras s̃l(2,R) and s̃o(3,R) are associated with the three-dimensional special linear Lie

algebra sl(2,R), and the three-dimensional special orthogonal Lie algebra so(3,R), respectively.
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2.4 A Soliton Hierarchy of Kaup-Newell Type

In this section, we are going to generate a hierarchy of soliton equations of Kaup-Newell type from the

isospectral problem

φx = Uφ = U(u, λ)φ, u =

p
q

 , φ =

φ1

φ2

 , (2.48)

associated with the Lie algebra sl(2,R) with the following spectral matrix

U = (λ2 + αq)e1 + λpe2 + λe3 =

λ2 + αq λp

λ −(λ2 + αq)

 ∈ s̃l(2,R). (2.49)

Here α is an arbitrary nonzero real constant and e1, e2, and e3 are the basis for sl(2,R) given by (2.36).

This spectral problem (2.48)-(2.49) is unlike the real form of the Kaup-Newell spectral problem [27] with

the spectral matrix

U =

λ2 λp

λq −λ2

 . (2.50)

THEOREM 2.1. The spectral problem (2.48) with the spectral matrix (2.49) produces a hierarchy of soliton

equations

utn = Kn =

 −2an+1,x

1
α(an+1,x − cn+1,x)

 , n ≥ 0, (2.51)

where elements of Kn can be provided from the following recursion relations
ai,x = pci − bi,

bi+1 = pai+1 − αqbi + 1
2bi,x, i ≥ 0.

ci+1 = ai+1 − αqci − 1
2ci,x.

(2.52)

Proof. Let W represented as

W = ae1 + be2 + ce3 =

a b

c −a

 ∈ s̃l(2,R), (2.53)

be a solution of the stationary zero curvature representation (2.41). Then Eq.(2.41) leads to
ax = λpc− λb,

bx = 2αqb+ 2λ2b− 2λpa,

cx = −2αqc− 2λ2c+ 2λa.

(2.54)
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Taking the Laurent series expansions of a, b and c as

a =
∑
i≥0

aiλ
−2i, (2.55)

b =
∑
i≥0

biλ
−2i−1, (2.56)

c =
∑
i≥0

ciλ
−2i−1, (2.57)

then substituting them into Eq.(2.54) and comparing the coefficients of the same powers of λ, gives rise to
ai,x = pci − bi,

bi+1 = pai+1 − αqbi + 1
2bi,x, i ≥ 0.

ci+1 = ai+1 − αqci − 1
2ci,x,

(2.58)

We take the initial values 
a0 = 1,

b0 = p,

c0 = 1,

(2.59)

which are obtained by solving the equations
a0,x = pc0 − b0,

a0p− b0 = 0,

a0 − c0 = 0.

(2.60)

From the last two equations in (2.58), we have

ai+1,x = −αpqci −
1

2
pci,x + αqbi −

1

2
bi,x. (2.61)

The sequence of functions {ai, bi, ci | i ≥ 1} can be uniquely determined from (2.58) by setting constant

of integration to zero, that is

ai|u=0 = bi|u=0 = ci|u=0 = 0, i ≥ 1. (2.62)

Through Maple symbolic computations, the first few sets of the sequence are presented as follows
a1 = −1

2p,

b1 = 1
2px − αpq −

1
2p

2,

c1 = −αq − 1
2p;

(2.63)

13




a2 = αpq + 3

8p
2 − 1

4px,

b2 = α2pq2 + 3
2αp

2q + 3
8p

3 − 1
2αpqx − αpxq −

3
4ppx + 1

4pxx,

c2 = α2q2 + 3
2αpq + 3

8p
2 + 1

2αqx;

(2.64)

and 

a3 = −3
2αp

2q − 3
2α

2pq2 − 5
16p

3 − 1
8(−6αq − 3p)px − 1

8pxx,

b3 = −α3pq3 − 3α2p2q2 − 15
8 αp

3q + 3
2α

2pqqx + 3
2α

2pxq
2 − 5

16p
4 + 3

4αp
2qx

+3αpqpx + 5
16p

2px − 1
4αpqxx −

3
4αpxxq −

3
4αpxqx −

1
2ppxx −

3
8p

2
x + 1

8pxxx,

c3 = −α3q3 − 3α2pq2 − 15
8 αp

2q − 3
2α

2qqx − 5
16p

3 − 3
4αpqx −

1

4
αqxx − 1

8pxx.

(2.65)

Now, based on the form of the matrix U in (2.49) and the recursion relations (2.58), we introduce the lax

matrices

V [n] = λ(λ2n+1W )+ + ∆n ∈ s̃l(2,R), n ≥ 0, (2.66)

with ∆n selected as

∆n = δne1 =

δn 0

0 −δn

 , n ≥ 0. (2.67)

As a result, we obtain

V [n]
x − [U, V [n]] = λ(λ2n+1Wx)+ + δn,xe1 − λ[U, (λ2n+1W )+]− [U, δne1], n ≥ 0, (2.68)

On one hand, we have

(λ2n+1Wx)+ − [U, (λ2n+1W )+] =

 0 −2pan+1 + 2bn+1

2an+1 − 2cn+1 0

 , n ≥ 0, (2.69)

and on the other hand, we have

[U, δne1] = −2λpδne2 + 2λδne3 =

 0 −2λpδn

2λδn 0

 , n ≥ 0. (2.70)

Hence Eq.(2.68), for n ≥ 0, becomes

V [n]
x − [U, V [n]] = λ

 0 −2pan+1 + 2bn+1

2an+1 − 2cn+1 0

+

 δn,x 2λpδn

−2λδn −δn,x

 . (2.71)
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Consequently, from the zero curvature equations (2.44), we get
ptn = 2pδn − 2pan+1 + 2bn+1,

qtn = 1
αδn,x, n ≥ 0,

−2δn + 2an+1 − 2cn+1 = 0.

(2.72)

Solving the last equation for δn gives

δn = an+1 − cn+1, n ≥ 0. (2.73)

Inserting the value of δn into the other equations in (2.72), we reach
ptn = −2an+1,x,

qtn = 1
α(an+1,x − cn+1,x), n ≥ 0,

(2.74)

whose vector form is as follows

utn = Kn =

 −2an+1,x

1
α(an+1,x − cn+1,x)

 , n ≥ 0. (2.75)

�

PROPOSITION 2.1. The functions {ai, bi, ci | i ≥ 1} defined by Eq.(2.58), with the initial data (2.59) and

under the conditions (2.62) are differential functions in u with respect to x, hence, they are all local.

Proof. In the view of the stationary zero curvature representations (2.41), we can work out that

d

dx
tr(W 2) = 2tr(WWx) = 2tr(W [U,W ]) = 0. (2.76)

It is clearly to see that

a2 + bc = (a2 + bc)|u=0 = 1, (2.77)

since tr(W 2) = 2(a2 + bc). The last equality in (2.77) follows from the initial values (2.59). By using the

Laurent series expansions of the functions a, b and c in (2.55), we can rewrite Eq. (2.77) as∑
k≥0

∑
l≥0

akalλ
−2(k+l) +

∑
k≥0

∑
l≥0

bkclλ
−2(k+l)−2 = 1. (2.78)

For each i ≥ 0, we balance the coefficients of λi and this leads to

ai = −1

2

( ∑
k+l=i,
k,l≥1

akal +
∑

k+l=i−1,
k,l≥0

bkcl

)
, i ≥ 2. (2.79)
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Upon considering the above relation and the first two relations in (2.58), an application of mathematical

induction tell us that all the functions {ai, bi, ci | i ≥ 1} are differential functions in u with respect to x,

and thus they are all local. �

From the recursion relations (2.58) we have

an+1,x = pcn+1 − bn+1

= p(−1
2cn,x − αqcn + an+1)− (1

2bn,x − αqbn + pan+1) (2.80)

= (1
2∂ − αq)an,x + (−1

2p−
1
2∂p∂

−1)cn,x,

and

cn+1,x = −1
2cn,xx − α∂qcn + an+1,x

= (1
2∂ − αq)an,x + (−1

2∂ − α∂q∂
−1 − 1

2p−
1
2∂p∂

−1)cn,x, (2.81)

where ∂ = ∂
∂x and ∂−1 is the inverse operator of ∂. Consequently,

−2an+1,x = (1
2∂ − αq −

1
2p−

1
2∂p∂

−1)(−2an,x) + (−αp− α∂p∂−1)( 1
αan,x −

1
αcn,x),

(2.82)

and

1
αan+1,x − 1

αcn+1,x = (− 1
4α∂ −

1
2∂q∂

−1)(−2an,x) + (−1
2∂ − α∂q∂

−1)( 1
αan,x −

1
αcn,x).

(2.83)

Therefore, we can write the soliton hierarchy (2.51) as

utn = Kn =

 −2an+1,x

1
α(an+1,x − cn+1,x)

 = Φ

 −2an,x

1
α(an,x − cn,x)

 , n ≥ 1, (2.84)

where Φ is a recursion operator given by

Φ =

1
2∂ − αq −

1
2p−

1
2∂p∂

−1 −αp− α∂p∂−1

− 1
4α∂ −

1
2∂q∂

−1 −1
2∂ − α∂q∂

−1

 . (2.85)

The first nonlinear system in the above hierarchy is

ut1 =

p
q


t1

= K1 =

 −2αpxq − 2αpqx − 3
2ppx + 1

2pxx

−2αqqx − 1
2pqx −

1
2pxq −

1
2qxx −

1
4αpxx

 . (2.86)
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2.5 Generalization of the Dirac Soliton Hierarchy

The classical Dirac spectral problem [19]

φx = Uφ = U(u, λ)φ ∈ s̃l(2,R), (2.87)

where

U = pe1 + (λ+ q)e2 + (−λ+ q)e3 =

 p λ+ q

−λ+ q −p

 ∈ s̃l(2,R), (2.88)

is associated with the Lie algebra sl(2,R) with the basis elements e1, e2, and e3 defined in (2.36), while its

so(3,R) counterpart [77] is given by

φx = Uφ = U(u, λ)φ ∈ s̃o(3,R), (2.89)

with

U = pe1 + (λ+ q)e2 + (−λ+ q)e3

=


0 λ− q −p

−λ+ q 0 −λ− q

p λ+ q 0

 ∈ s̃o(3,R), (2.90)

where the basis elements e1, e2, and e3 defined in (2.34). In this section, we form a generalization of the

spectral problem (2.90) and derive its soliton hierarchy. Introduce the spectral matrix

U = pe1 + (λ+ q + h)e2 + (−λ+ q − h)e3

=


0 λ− q + h −p

−λ+ q − h 0 −λ− q − h

p λ+ q + h 0

 ∈ s̃o(3, R), h = α(p2 + 2q2), (2.91)

associated with the isospectral problem

φx = Uφ = U(u, λ)φ, u =

p
q

 , φ =


φ1

φ2

φ3

 , (2.92)

where α is a real constant.
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THEOREM 2.2. The spectral problem (2.92) with the spectral matrix (2.91) creates a hierarchy of soliton

equations

utn = Kn =

2an+1 − 8αqbn+1

−cn+1 + 4αpbn+1

 , n ≥ 0, (2.93)

with components of Kn can be determined from the recursion relations
ai+1 = 1

2ci,x + qbi − aih,

ci+1 = pbi − cih− ai,x, i ≥ 0.

bi+1,x = qci+1 − pai+1,

(2.94)

Proof. Select the shape of a solution W of the stationary zero curvature equation (2.41) to be

W = ce1 + (a+ b)e2 + (a− b)e3 =


0 −a+ b −c

a− b 0 −a− b

c a+ b 0

 ∈ s̃o(3,R).

Accordingly, Eq.(2.41) leads to 
ax = −λc− hc+ pb

bx = qc− pa

cx = 2λa+ 2ha− 2qb.

(2.95)

Letting

a =
∑
i≥0

aiλ
−i, (2.96)

b =
∑
i≥0

biλ
−i, (2.97)

c =
∑
i≥0

ciλ
−i, (2.98)

and choosing the initial values 
a0 = 0,

b0 = 1,

c0 = 0,

(2.99)
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we get the recursion relations 
ai+1 = 1

2ci,x + qbi − hai,

ci+1 = pbi − hci − ai,x, i ≥ 0.

bi+1,x = qci+1 − pai+1,

(2.100)

The following condition is imposed on the constants of integration

ai|u=0 = bi|u=0 = ci|u=0 = 0, i ≥ 1, (2.101)

to guarantee the uniqueness of the sequence of functions {ai, bi, ci | i ≥ 1}.

With the aid of Maple symbolic computation, we can compute the sequence of functions {ai, bi, ci | i ≥

1} recursively by utilizing the relations in (2.100) with the initial values (2.99) . We list the first three sets
a1 = q,

b1 = 0,

c1 = p;

(2.102)


a2 = 1

2px − α(p2 + 2q2)q,

b2 = −1
4p

2 − 1
2q

2,

c2 = −α(p2 + 2q2)p− qx;

(2.103)

and 
a3 = −1

2qxx −
1
2q

3 + α2(p2 + 2q2)2q − 1
4qp

2 − α(p2 + 2q2)px − α(ppx + 2qqx)p,

b3 = α(q2 + 1
2p

2)(p2 + 2q2)− 1
2pxq + 1

2qxp,

c3 = −1
2pxx −

1
2pq

2 + α2(p2 + 2q2)2p− 1
4p

3 + α(2ppx + 4qqx)q + 2α(p2 + 2q2)qx.

(2.104)

Now, we consider the corresponding temporal spectral problems

V [n] = (λnW )+ + ∆n ∈ s̃o(3,R), n ≥ 0, (2.105)

where ∆n is taking to be

∆n = fne2 + gne3

(2.106)

=


0 −gn 0

gn 0 −fn

0 fn 0

 , n ≥ 0.
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Consequently, we attain

V [n]
x − [U, V [n]] = (λnWx)+ + ∆n,x − [U, (λnW )+]− [U,∆n], n ≥ 0, (2.107)

On one hand, we have

(λnWx)+ − [U, (λnW )+] =


0 cn+1 −2an+1

−cn+1 0 cn+1

2an+1 −cn+1 0


= 2an+1e1 − cn+1e2 − cn+1e3, n ≥ 0. (2.108)

On the other hand, we obtain

∆n,x − [U,∆n] =


0 −gn,x + pfn −kn

gn,x − pfn 0 −fn,x − pgn

kn fn,x + pgn 0


= kne1 + (fn,x + pgn) e2 + (gn,x − pfn) e3, n ≥ 0, (2.109)

where

kn = q(fn − gn)− (λ+ h)(fn + gn). (2.110)

A direct calculation gives

Utn =


0 −qtn + htn −ptn

qtn − htn 0 −qtn − htn
ptn qtn + htn 0


= ptne1 + (qtn + htn)e2 + (qtn − htn)e3, n ≥ 0. (2.111)

Substituting the relations (2.108)-(2.111) into the zero curvature equations (2.44), we see that

gn = −fn,

ptn = 2an+1 + 2qfn, n ≥ 0.

qtn = −cn+1 − pfn,

htn = fn,x,

(2.112)
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Using the second and the third equations of the above system, we can compute

fn,x = htn = α(2pptn + 4qqtn)

= 2αp(2an+1 + 2qfn) + 4αq(−cn+1 − pfn) (2.113)

= 4αpan+1 − 4αqcn+1

= −4αbn+1,x,

where the last equation in (2.100) is utilized. Therefore,

fn = −4αbn+1. (2.114)

Inserting the value of fn into (2.112), we get the following hierarchy of soliton equations
ptn = 2an+1 − 8αqbn+1,

qtn = −cn+1 + 4αpbn+1, n ≥ 0,

(2.115)

that is,

utn = Kn =

2an+1 − 8αqbn+1

−cn+1 + 4αpbn+1

 , n ≥ 0. (2.116)

�

PROPOSITION 2.2. The functions {ai, bi, ci | i ≥ 1} defined by Eq.(2.100), with the initial data (2.99) and

under the conditions (2.101) are differential functions in u with respect to x, hence, they are all local.

The proof is analogous to the proof of proposition (2.1) and so we omit the details.

Through lengthy computation involving the relations in (2.100), we can write the hierarchy (2.93) as

utn = Kn =

2an+1 − 8αqbn+1

−cn+1 + 4αpbn+1

 = Φ

2an − 8αqbn

−cn + 4αpbn

 , n ≥ 1, (2.117)

where the recursion operator Φ is given by

Φ =

Φ11 Φ12

Φ21 Φ22

 , (2.118)
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with

Φ11 = 4α2(p2 + 2q2)q∂−1p− 2α∂p∂−1p+ α(p2 + 2q2)− q∂−1p− 16α2q∂−1q∂q∂−1p

+4αq∂−1q∂ − 8α2q∂−1p∂p∂−1p− 4α2q∂−1(p2 + 2q2)p, (2.119a)

Φ12 = −∂ + 8α2(p2 + 2q2)q∂−1q − 4α∂p∂−1q − 2q∂−1q − 16α2q∂−1p∂p∂−1q

−4αq∂−1p∂ − 32α2q∂−1q∂q∂−1q − 8α2q∂−1(p2 + 2q2)q, (2.119b)

Φ21 =
1

2
∂ − 2α2(p2 + 2q2)p∂−1p− 2α∂q∂−1p+

1

2
p∂−1p+ 8α2p∂−1q∂q∂−1p

−2αp∂−1q∂ + 4α2p∂−1p∂p∂−1p+ 2α2p∂−1(p2 + 2q2)p, (2.119c)

Φ22 = α(p2 + 2q2)− 4α2(p2 + 2q2)p∂−1q − 4α∂q∂−1q + p∂−1q + 8α2p∂−1p∂p∂−1q

+2αp∂−1p∂ + 16α2p∂−1q∂q∂−1q + 4α2p∂−1(p2 + 2q2)q. (2.119d)

The first nonlinear system in the hierarchy (2.93) is

pt2 = −qxx + 8αq
(

1
2α(p2 + 2q2)p2 + 1

2qxp−
1
2qpx + α(p2 + 2q2)q2

)
− q3 − 1

2qp
2

+2α2(p2 + 2q2)2q − 2α(p2 + 2q2)px,

qt2 = 1
2pxx − 4αp

(
1
2α(p2 + 2q2)p2 + 1

2qxp−
1
2qpx + α(p2 + 2q2)q2

)
+ 1

2pq
2 + 1

4p
3

−α2p(p2 + 2q2)2 − 2α(p2 + 2q2)qx.

(2.120)
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Chapter 3

Hamiltonian Structure of the Integrable Soliton Hierarchies

3.1 Introduction

The Hamiltonian formalism method is an attractive topic in the integrable theory. In 1971, Gardner [14]

and Faddeev and Zakharov [74] studied the Hamiltonian approach to integrability of nonlinear evolution

equations. They independently showed that the KdV equation is the first known equation that constitutes

an infinite dimensional completely integrable Hamiltonian system. Their discovery led to more research in

this area and Hamiltonian formulations of other interesting models are constructed. Magri [46] developed

an important result in the Hamiltonian theory. He found that integrable Hamiltonian systems have an

additional structure. They are bi-Hamiltonian systems, that is, they are Hamiltonian with respect to two

different compatible Hamiltonian operators. Magri’s theory provides the relation between the existence

of a bi-Hamiltonian formulation for a system and its integrability in the Liouville sense. The goal of this

chapter is to study Hamiltonian structures of the soliton hierarchies introduced in Chapter 2 and to discuss

their integrability using bi-Hamiltonian structures. We begin by recalling some basic definitions and results

that we need to go further. Most of the facts and notations are from [50].

3.2 Preliminaries

Recall from Chapter 1 that A is the algebra of smooth functions L(x, u(n)) depending on x, u and deriva-

tives of u up to finite order n and its quotient space under the image of the total divergence is the space

F of functional L =
∫
L dx. Aq is the vector space of q-tuples of differential functions, L[u] =

(L1[u], L2[u], ..., Lq[u]), where Lj ∈ A, 1 ≤ j ≤ q.

DEFINITION 3.2.1. [12] Given an evolution equation

ut = K(u), K ∈ Aq. (3.1)

A vector-valued function S ∈ Aq is called a symmetry of Eq.(3.1) if the infinitesimal transformation

u(t)→ u(t) + εS(u(t)), (3.2)
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leaves (3.1) form invariant. K(.) is a symmetry.

If Q ∈ Aq is a vector field and u is a solution of (3.1), then one get

dQ

dt
=
∂Q

∂t
+Q′[ut] =

∂Q

∂t
+Q′[K] =

∂Q

∂t
+K ′[Q]− [K,Q]. (3.3)

where
d

dt
denotes the total t-derivative and [., .] is defined by Eq.(2.4).

THEOREM 3.1. [13] A vector field S ∈ Aq is a symmetry of (3.1) if and only if S satisfies

∂S

∂t
= [K,S]. (3.4)

As a result, we have the following corollary.

COROLLARY 3.0.1. When a vector field S ∈ Aq is explicitly independent of t , that is,
∂S

∂t
= 0, then S is

a symmetry of (3.1) if and only if [K,S] = 0.

Generally speaking, a symmetry of an evolution equation generates a transformation that takes solutions

to solutions. If we know a symmetry of an evolution equation we can derive new solutions from any known

solution.

DEFINITION 3.2.2. Let

D =
∑
J

LJ [u]DJ , LJ ∈ A, (3.5)

be a differential operator. The adjoint operator of D is the differential operator D† which satisfies∫
Ω
L.DPdx =

∫
Ω
P.(D†L)dx, (3.6)

for every pair of differential functions L,P ∈ A which vanish when u ≡ 0, every domain Ω ⊂ Rp and

every function u = f(x) of compact support in Ω. Using integration by parts gives rise to

D† =
∑
J

(−D)J .LJ , (3.7)

which means that for any P ∈ A

D†P =
∑
J

(−D)J .[LJP ]. (3.8)

In a similar way, if D : Ar → Aq is a matrix differential operator with entries Djk, then its adjoint

operator D† : Aq → Ar has entries D†jk = (Dkj)†, the adjoint of the transpose components of D.
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EXAMPLE 5. If

D = D3
x − u2Dx, (3.9)

then its adjoint D† is given by

D† = (−Dx)3 − (−Dx).u2 = −D3
x + u2Dx + 2uux. (3.10)

DEFINITION 3.2.3. An operator D mapping Aq into itself is called self-adjoint if

D† = D, (3.11)

it is called skew-adjoint if

D† = −D. (3.12)

EXAMPLE 6. Consider the operators

D1 = D2
x + u, (3.13)

and

D2 = D3
x + 2uDx + ux. (3.14)

The adjoint operators of D1 and D2 are

D†1 = D2
x + u = D1, (3.15)

and

D†2 = −D3
x − 2uDx − ux = −D2, (3.16)

respectively. Thus, D1 is self adjoint, while D2 is skew adjoint.

DEFINITION 3.2.4. A linear differential operator Φ : Aq → Aq is called a recursion operator for (3.1) if

it satisfies the property that whenever S ∈ Aq is a symmetry of (3.1), so is ΦS.

DEFINITION 3.2.5. [36] Assume that Φ : Aq → Aq is a differential operator and K ∈ Aq. The Lie

derivative of Φ with respect to K is a differential operator LKΦ : Aq → Aq defined as

(LKΦ)Q = Φ[K,Q]− [K,ΦQ], Q ∈ Aq. (3.17)
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THEOREM 3.2. [12, 36] A linear differential operator Φ : Aq → Aq is a recursion operator for K ∈ Aq

if and only if

LKΦ = Φ′[K]− [K ′,Φ] = 0, (3.18)

which means that when ∂Φ
∂t = 0, Φ is invariant under K.

DEFINITION 3.2.6. [12] A differential operator Φ : Aq → Aq is said to be a hereditary symmetry if it

satisfies the following

Φ2[Q,R] + [ΦQ,ΦR]− Φ{[Q,ΦR] + [ΦQ,R} = 0 Q,R ∈ Aq. (3.19)

DEFINITION 3.2.7. [50] The variational derivative of a functional P ∈ F is defined by∫ (δP
δu

)T

ξdx = P ′(u)[ξ(u)], ξ ∈ Aq, (3.20)

where P ′ is the Gateaux derivative defined in (2.1).

DEFINITION 3.2.8. [50] A linear operator D : Aq → Aq is called Hamiltonian if its Poisson bracket

{P,Q}D =

∫ (δP
δu

)T

.D
(δQ
δu

)
dx, P,Q ∈ F , (3.21)

satisfies the conditions of skew-symmetry

{P,Q}D = −{Q,P}D (3.22)

and for all functionals P,Q,R ∈ F , the Jacobi identity

{{P,Q},R}D + {{R,P},Q}D + {{Q,R},P}D = 0, (3.23)

is hold.

DEFINITION 3.2.9. A system of evolution equations of the form

ut = D δH
δu

, (3.24)

is called a Hamiltonian system. Here D is a Hamiltonian operator, δ is the variational derivative with

respect to u and a functionalH =
∫
Hdx ∈ F is referred to as a Hamiltonian functional.

LEMMA 3.1. [50] Let the variational derivatives of the functionals P,Q,R be

δP
δu

= P,
δQ
δu

= Q,
δR
δu

= R ∈ Aq. (3.25)
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Consequently, the following expression∫ [
P.D′[DR]Q+R.D′[DQ]P +Q.D′[DP ]R

]
dx = 0, (3.26)

is equivalent to the Jacobi identity (3.23) or more frequently,

〈P,D′[DR]Q〉+ 〈R,D′[DQ]P 〉+ 〈Q,D′[DP ]R〉 = 〈P,D′[DR]Q〉+ cycle(P,Q,R) = 0. (3.27)

PROPOSITION 3.1. [50] Assume that D is a q × q matrix differential operator with bracket (3.21) on the

space of functionals. Then the bracket is skew-symmetric, i.e., (3.22) holds, if and only ifD is skew-adjoint:

D† = −D.

PROPOSITION 3.2. [50] Let D be a q × q skew-adjoint matrix differential operator. Then the bracket

(3.21) satisfies the Jacobi identity (3.23) if and only if for all q-tuples P,Q,R ∈ Aq, the relation in (3.26)

vanishes.

LEMMA 3.2. [50] Given an q × q skew-adjoint matrix differential operator D. If all the coefficients of D

are independent of the potential vector u or its derivatives, then D is a Hamiltonian operator.

EXAMPLE 7. The KdV equation

ut = uxxx + uux, (3.28)

is Hamiltonian in two different ways

ut = D1
δH2

δu
= D2

δH1

δu
. (3.29)

The Hamiltonian functionals are

H1 =

∫
1

2
u2dx, H2 =

∫ (1

6
u3 − 1

2
u2
x

)
dx, (3.30)

with the corresponding operators

D1 = Dx, D2 = D3
x +

2

3
uDx +

1

3
ux, (3.31)

Clearly, D1 is a Hamiltonian operator since it is skew-adjoint and independent of u. The operator D2 is

also Hamiltonian and the proof can be found in [46].

DEFINITION 3.2.10. • Any conservation law of a system of evolution equations (3.1) takes the form

DtT + Div X = 0, (3.32)
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where Div denotes spatial divergence and the conserved density T (x, t, u(n)) can be assumed to depend

only on x-derivatives of u. Equivalently, for Ω ⊂ X , the functional

T [t;u] =

∫
Ω
T (x, t, u(n))dx (3.33)

is a constant, does not depend on t, for all solutions u such that T (x; t;u(n))→ 0 as x→ ∂Ω.

• A conserved functional of a Hamiltonian system

ut = D δH
δu

, (3.34)

is a functional T =
∫
Tdx which determines a conservation law (3.32) of (3.34).

THEOREM 3.3. [62] Assume that D, E : Aq → Aq are two linear operators and suppose that

1. both D and DE are skew-adjoint, i.e.,

D† = −D, (DE) = E†D (3.35)

2. there exists a series of scalar functions {Hn} that satisfies

Enf(u) =
δHn
δu

, (3.36)

for some f(u) ∈ Aq.

Then {Hn} is a common series of conserved densities for the whole hierarchy of equations

ut = DEnf(u), (3.37)

and we have

{Hn,Hm}D = 0 ∀m,n ≥ 0. (3.38)

DEFINITION 3.2.11. [40] A system of evolution equations (3.1) is called Liouville integrable if it can be

written as the Hamiltonian system (3.24) with a well defined Poisson bracket {. , .} and it possesses an

infinite number of conserved functionals {Hn} which are in involution in pairs {Hn,Hm}D = 0.

DEFINITION 3.2.12. LetD and E be a pair of q×q skew-adjoint matrix differential operators. ThenD and

E is said to form a Hamiltonian pair if every linear combination aD + bE with a, b ∈ R is a Hamiltonian

operator.
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DEFINITION 3.2.13. A system of evolution equations (3.1) is called a bi-Hamiltonian system if there exist

two Hamiltonian functionals H1,H2 and a Hamiltonian pair D, E so that the system (3.1) can be written

as

ut = K[u] = D δH2

δu
= E δH1

δu
(3.39)

EXAMPLE 8. According to example 7, the KdV equation

ut = uxxx + uux, (3.40)

is bi-Hamiltonian equation with a Hamiltonian pair

D = Dx, E = D3
x +

2

3
uDx +

1

3
ux. (3.41)

LEMMA 3.3. [50] Two skew-adjoint operators D and E constitute a Hamiltonian pair if and only if all

D, E and D + E are Hamiltonian operators.

DEFINITION 3.2.14. If there exists a nonzero differential operator D̃ : Ar → A for a differential operator

D : Aq → Ar so that

D̃.D ≡ 0, (3.42)

then D is said to be degenerate.

EXAMPLE 9. The matrix operator

D =

D3
x −D2

x

D2
x −Dx

 , (3.43)

is degenerate, since if D̃ = [1,−Dx], then D̃.D ≡ 0.

THEOREM 3.4. [50] Let

ut = K1[u] = D δH1

δu
= E δH0

δu
, (3.44)

be a bi-Hamiltonian system of evolution equations. Assume that the operator D of the Hamiltonian pair is

non-degenerate Let R = ED−1 be the corresponding recursion operator, and let K0 = D δH0

δu
. Assume

that for each n = 1, 2, · · · we can recursively define

Kn = RKn−1, n ≥ 1, (3.45)

meaning that for each n, Kn−1 lies in the image of D. Then there exists a sequence of functionals

H0,H1,H2, · · · such that
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1. for each n ≥ 1, the evolution equation

ut = Kn[u] = D δHn
δu

= E δHn−1

δu
, (3.46)

is a bi-Hamiltonian system,

2. the symmetries {Kn} are all mutually commuting

[Km,Kn] = 0, m, n ≥ 0, (3.47)

3. the Hamiltonian functionalsHn are all in involution with respect to either Poisson bracket:

{Hm,Hn}D = 0 = {Hm,Hn}E m,n ≥ 0, (3.48)

and hence provide an infinite collection of conservation laws for each of the bi-Hamiltonian systems in

(3.46).

In what follows, we use the trace identity [37, 61, 62]

δ

δu

∫
tr
(
W
∂U

∂λ

)
dx = λ−γ

∂

∂λ
λγ tr

(
W
∂U

∂u

)
, γ = −λ

2

d

dλ
ln |tr(W 2)|, (3.49)

which is a powerful method for presenting the hierarchies (2.51) and (2.93) in Hamiltonian forms.

3.3 Bi-Hamiltonian Structures of the Kaup-Newell Type Hierarchy

A Hamiltonian structure and a bi-Hamiltonian structure of the Kaup-Newell type hierarchy (2.51) are in-

vestigated in this section.

3.3.1 Hamiltonian Structure

It is direct to see

∂U

∂λ
=

2λ p

1 −2λ

 , ∂U

∂p
=

0 λ

0 0

 , ∂U

∂q
=

α 0

0 −α

 . (3.50)
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Thus, we have

tr
(
W
∂U

∂λ

)
= tr

2λa+ b ap− 2λb

2λc− a pc+ 2λa

 = 4λa+ b+ pc, (3.51)

tr
(
W
∂U

∂p

)
= tr

0 λa

0 λc

 = λc, (3.52)

tr
(
W
∂U

∂q

)
= tr

αa −αb

αc αa

 = 2αa. (3.53)

Plugging these quantities into the trace identity (3.49) leads to

δ

δu

∫
(4λa+ b+ pc)dx = λ−γ

∂

∂λ
λγ

 λc
2αa

 . (3.54)

If we balance the coefficients of λ−2n−1 in Eq.(3.54), then we obtain

δ

δu

∫
(4an+1 + bn + pcn)dx = (γ − 2n)

 cn

2αan

 , n ≥ 0. (3.55)

The identity with n = 1 yields γ = 0, and hence we have

δ

δu
Hn+1 =

 cn+1

2αan+1

 , n ≥ 1, (3.56)

with the Hamiltonian functionals

H0 =

∫
1

2
(ppx + qqx)dx, (3.57)

Hn+1 =

∫
4an+2 + bn+1 + pcn+1

−2(n+ 1)
dx, n ≥ 1. (3.58)

The above calculation is the proof of the coming proposition.

PROPOSITION 3.3. The Kaup-Newell type soliton hierarchy (2.51) can be written in the Hamiltonian form

utn = Kn =

 −2an+1,x

− 1
α(an+1,x − cn+1,x)

 = J

 cn+1

2αan+1

 = J
δHn+1

δu
, n ≥ 1, (3.59)
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where the Hamiltonian operator J is defined as

J =

 0 − 1
α∂

− 1
α∂

1
2α2∂

 , (3.60)

and the Hamiltonian functionalsH0 andHm+1 are defined as

H0 =

∫
1

2
(ppx + qqx)dx, (3.61)

Hn+1 =

∫
4an+2 + bn+1 + pcn+1

−2(n+ 1)
dx, n ≥ 1. (3.62)

It is easy to see that

J† =

 0 1
α∂

1
α∂ − 1

2α2∂

 = −J, (3.63)

which means that the operator J is a skew-adjoint and since its components do not depend on the potentials

p and q or their derivatives, lemma 3.2 tells us that J is a Hamiltonian operator.

3.3.2 Bi-Hamiltonian Structure

PROPOSITION 3.4. The soliton hierarchy of the Kaup-Newell type (2.51) has a bi-Hamiltonian structure

utn = Kn = J
δHn+1

δu
= M

δHn
δu

, n ≥ 1, (3.64)

with a second Hamiltonian operator M defined by

M =

 p∂ + ∂p q∂ − 1
2α∂

2

∂q + 1
2α∂

2 0

 , (3.65)

J andHn+1 are given by (3.60) and (3.62), respectively.

Proof. First, we need to prove that the operator N given by

N = µ

 0 − 1
α∂

− 1
α∂

1
2α2∂

+ η

 p∂ + ∂p q∂ − 1
2α∂

2

∂q + 1
2α∂

2 0

 , (3.66)

where µ and η are arbitrary real constants, is a Hamiltonian operator, that is, we need to show that

1. N is a skew-adjoint, and
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2. N satisfies the Jacobi identity (3.23) or equivalently

〈X,N ′[NY ]Z〉+ 〈Y,N ′[NZ]X〉+ 〈Z,N ′[NX]Y 〉 =

〈X,N ′[NY ]Z〉+ cycle(X,Y, Z) = 0, (3.67)

for any vectors of functions X,Y and Z, where 〈·, ·〉 denotes the inner product and cycle(X,Y, Z)

denotes the cyclic permutation of X,Y, Z [44].

We see that

N † =

 η(−∂p− p∂) µ
α∂ + η(−q∂ + 1

2α∂
2)

µ
α∂ + η(−∂q − 1

2α∂
2) − µ

2α2∂

 = −N, (3.68)

which implies that N is a skew-adjoint operator. Now, assume that

X =

X1

X2

 , Y =

Y1

Y2

 , Z =

Z1

Z2

 , W =

W1

W2

 , (3.69)

are two dimensional vectors of functions. From (3.66) we have

NY =


ηP (Y ) + η∂pY1 − µ

αY2,x − η
2αY2,xx

−µ
αY1,x + η∂qY1 + η

2αY1,xx + µ
2α2Y2,x

 :=


W1(Y )

W2(Y )

 = W, (3.70)

where P (Y ) = (pY1,x + qY2,x). Applying the definition of the Gateaux derivative, N ′[W ] is computed as

follows

N ′[W ] = N ′[NY ] =

η∂W1 + ηW1∂ ηW2∂

η∂W2 0

 . (3.71)

Then

N ′[NY ]Z =

η∂W1Z1 + ηW1Z1,x + ηW2Z2,x

η∂W2Z1

 . (3.72)

So, we have

〈X,N ′[NY ]Z〉 = η

∫
X1(∂W1Z1 +W1Z1,x +W2Z2,x)dx+ η

∫
X2∂W2Z1dx. (3.73)

Using integration by parts, the above equality becomes

〈X,N ′[NY ]Z〉 = −η
∫
X1,x(W1Z1 + ∂−1W1Z1,x + ∂−1W2Z2,x)dx− η

∫
X2,xW2Z1dx

= −η
∫

(X1,xW1 +X2,xW2)Z1dx− η
∫
X1,x∂

−1(W1Z1,x +W2Z2,x)dx.

(3.74)
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Using integration by parts again with the cyclic permutation of X,Y and Z, we obtain∫
(X1,xW1 +X2,xW2)Z1dx+ cycle(X,Y, Z) = 0, (3.75)

and ∫
X1,x∂

−1(W1Z1,x +W2Z2,x)dx+ cycle(X,Y, Z) = 0. (3.76)

Consequently,

〈X,N ′[NY ]Z〉+ cycle(X,Y, Z) = 0. (3.77)

Therefore, the operator N is a Hamiltonian operator. This implies that the operator M defined by

M = ΦJ =

 p∂ + ∂p q∂ − 1
2α∂

2

∂q + 1
2α∂

2 0

 , (3.78)

and obtained from the operator N by setting µ = 0 and η = 1 is a Hamiltonian operator where Φ is given

by (2.85). Furthermore, the operator J +M , found by setting µ = 1 and η = 1 in the operator N ,

J +M =

 0 − 1
α∂

− 1
α∂

1
2α2∂

+

 p∂ + ∂p q∂ − 1
2α∂

2

∂q + 1
2α∂

2 0

 (3.79)

is also a Hamiltonian operator. Thus, according to lemma 3.3 the operators J and M constitute a Hamil-

tonian pair. This means that the hierarchy of soliton equations (2.51) possesses a bi-Hamiltonian structure

(3.64). The proof is completed. �

Due to the result in [46], the bi-Hamiltonian hierarchy (3.64) is said to be Liouville integrable, i.e., has

infinitely many conserved functions in involution

{Hm,Hn}J =

∫ (δHm
δu

)T

J
δHn
δu

dx = 0, m, n ≥ 0, (3.80)

{Hm,Hn}M =

∫ (δHm
δu

)T

M
δHn
δu

dx = 0, m, n ≥ 0, (3.81)

and commuting symmetries

[Km,Kn] = K ′m(u)[Kn]−K ′n(u)[Km] = 0, m, n ≥ 0. (3.82)

3.4 Bi-Hamiltonian Structures of the Generalized Dirac Soliton Hierarchy

In this section, we consider a Hamiltonian and a bi-Hamiltonian structures of the generalized Dirac hierar-

chy (2.93).
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3.4.1 Hamiltonian Structure

PROPOSITION 3.5. The generalized Dirac hierarchy of soliton equations (2.93) possesses the following

Hamiltonian structure for n ≥ 1 :

utn = Kn =

2an+1 − 8αqbn+1

−cn+1 + 4αpbn+1

 = J

 4αpbn+1 + cn+1

2an+1 + 8αqbn+1

 = J
δHn+1

δu
, (3.83)

where the operator J defined as

J =

 −16αq∂−1q 1 + 8αq∂−1p

−1 + 8αp∂−1q −4αp∂−1p

 , (3.84)

is a Hamiltonian operator and the Hamiltonian functionalHn+1 is given by

Hn+1 =

∫
2bn+2

−(n+ 1)
dx, n ≥ 1. (3.85)

Proof. To constitute Hamiltonian structures, we apply the trace identity (3.49). From the partial derivatives

∂U

∂λ
=


0 λ 0

−1 0 −1

0 1 0

 , ∂U

∂p
=


0 2αp −1

−2αp 0 −2αp

1 2αp 0

 , (3.86)

and

∂U

∂q
=


0 −1 + 4αq 0

1− 4αq 0 −1− 4αq

0 1 + 4αq 0

 , (3.87)
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we have

tr
(
W
∂U

∂λ

)
= tr


a− b −c a− b

0 −2b 0

−a− b c −a− b

 = −4b, (3.88)

tr
(
W
∂U

∂p

)
= tr


2αp(a− b)− c −2αpc 2αp(a− b)

−(a+ b) −4αpb −a+ b

−2αp(a+ b) 2αpc −2(a+ b)αp− c

 = −8αpb− 2c, (3.89)

tr
(
W
∂U

∂q

)
= tr


4αq(a− b)− a+ b −4αqc− c 4αq(a− b) + a− b

0 −2a− 8αqb 0

a+ b− 4αq(a+ b) −c+ 4αqc −(a+ b)− 4αq(a+ b)


= −4a− 16αqb. (3.90)

In this case, the trace identity (3.49) presents

δ

δu

∫
2b dx = λ−γ

∂

∂λ
λγ

 4αpb+ c

2a+ 8αqb

 . (3.91)

Equating coefficients of λ−n−1 in the equality shows

δ

δu

∫
2bn+1dx = (γ − n)

 4αpbn + cn

2an + 8αqbn

 , n ≥ 0. (3.92)

Checking a special case with n = 1 yields γ = 0, and thus we get

δ

δu
Hn+1 =

 4αpbn+1 + cn+1

2an+1 + 8αqbn+1

 , n ≥ 1, (3.93)

with the Hamiltonian functional

Hn+1 =

∫
2bn+2

−(n+ 1)
dx, n ≥ 1. (3.94)

Now from the recursion relations (2.100), we have

2an+1 − 8αqbn+1 = (2an+1 + 8αqbn+1)− 16αqbn+1

= (2an+1 + 8αqbn+1)− 16αq∂−1qcn+1 + 16αq∂−1pan+1 (3.95)

= (1 + 8αq∂−1p)(2an+1 + 8αqbn+1)− 16αq∂−1qcn+1 − 64α2q∂−1pqbn+1

= (1 + 8αq∂−1p)(2an+1 + 8αqbn+1)− 16αq∂−1q(4αpbn+1 + cn+1),
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and

−cn+1 + 4αpbn+1 = −(cn+1 + 4αpbn+1) + 8αpbn+1

= −(cn+1 + 4αpbn+1) + 8αp∂−1qcn+1 − 8αp∂−1pan+1 (3.96)

= (−1 + 8αp∂−1q)(cn+1 + 4αpbn+1)− 32αp∂−1qpbn+1 − 8αp∂−1pan+1

= (−1 + 8αp∂−1q)(4αpbn+1 + cn+1)− 4αp∂−1p(2an+1 + 8αpbn+1).

The soliton hierarchy (2.93) with the relations (3.95) and (3.96) tell us that

utn = Kn =

2an+1 − 8αqbn+1

−cn+1 + 4αpbn+1



=

 −16αq∂−1q 1 + 8αq∂−1p

−1 + 8αp∂−1q −4αp∂−1p

 4αpbn+1 + cn+1

2an+1 + 8αqbn+1


= J

δHn+1

δu
, n ≥ 1. (3.97)

Finally, we need to show that the operator

J =

 −16αq∂−1q 1 + 8αq∂−1p

−1 + 8αp∂−1q −4αp∂−1p

 , (3.98)

is a Hamiltonian operator. It is a skew-adjoint since

J† =

 16αq∂−1q −1− 8αq∂−1p

1− 8αp∂−1q 4αp∂−1p

 = −J, (3.99)

and the Jacobi identity can be easily verified in a similar way as in the proof of proposition 3.4. Thus J is

a Hamiltonian operator. This finishes the proof. �

3.4.2 Bi-Hamiltonian Structure

Through heavy and long calculations which involve the recursion relations (2.100), we find that

δHn+1

δu
=

 4αpbn+1 + cn+1

2an+1 + 8αqbn+1

 = Ψ

 4αpbn + cn

2am + 8αqbm

 = Ψ
δHn
δu

, (3.100)

where

Ψ =

Ψ11 Ψ12

Ψ21 Ψ22

 , (3.101)
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with

Ψ11 = −4α2p∂−1q(p2 + 2q2)− 2αp∂−1p∂ − α(p2 + 2q2) + p∂−1q + 16α2p∂−1q∂q∂−1q

+4α∂q∂−1q + 8α2p∂−1p∂p∂−1q + 4α2p(p2 + 2q2)∂−1q, (3.102)

Ψ12 = −1

2
∂ + 2α2p∂−1p(p2 + 2q2)− 2αp∂−1q∂ − 1

2
p∂−1p− 8α2p∂−1q∂q∂−1p

−2α∂q∂−1p− 4α2p∂−1p∂p∂−1p− 2α2p(p2 + 2q2)∂−1p, (3.103)

Ψ21 = ∂ − 8α2q∂−1q(p2 + 2q2)− 4αq∂−1p∂ + 2q∂−1q + 16α2q∂−1p∂p∂−1q

−4α∂p∂−1q + 32α2q∂−1q∂q∂−1q + 8α2q(p2 + 2q2)∂−1q, (3.104)

Ψ22 = −α(p2 + 2q2) + 4α2q∂−1p(p2 + 2q2)− 4αq∂−1q∂ − q∂−1p− 8α2q∂−1p∂p∂−1p

+2α∂p∂−1p− 16α2q∂−1q∂q∂−1p− 4α2q(p2 + 2q2)∂−1p. (3.105)

Utilizing a similar but more complicated argument than the proof of proposition 3.4 and in [44], it can

be proved that the operator

N = µJ + ηM, (3.106)

where µ and η are arbitrary real constants, is a Hamiltonian operator where J is defined by (3.84) and M

is given by

M = JΨ = ΦJ =

M11 M12

M21 M22

 , (3.107)
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with

M11 = ∂ + 8α2q∂−1q(p2 + 2q2) + 4αq∂−1p∂ + 2q∂−1q − 16α2q∂−1p∂p∂−1q − 4α∂p∂−1q

−32α2q∂−1q∂q∂−1q + 8α2q(p2 + 2q2)∂−1q + 16α2q∂−1q(p2 + 2q2), (3.108)

M12 = 4αq∂−1q∂ − α(p2 + 2q2)− 4α2q∂−1p(p2 + 2q2) + 8α2q∂−1p∂p∂−1p− q∂−1p

+2α∂p∂−1p+ 16α2q∂−1q∂q∂−1p− 4α2q(p2 + 2q2)∂−1p, (3.109)

M21 = α(p2 + 2q2)− p∂−1q + 16α2p∂−1q∂q∂−1q − 4α2p∂−1q(p2 + 2q2)− 2αp∂−1p∂

+8α2p∂−1p∂p∂−1q − 4α2p(p2 + 2q2)∂−1q − 4α∂q∂−1q, (3.110)

M22 =
1

2
∂ +

1

2
p∂−1p+ 2α2p∂−1p(p2 + 2q2)− 4α2p∂−1p∂p∂−1p− 8α2p∂−1q∂q∂−1p

−2αp∂−1q∂ + 2α2p(p2 + 2q2)∂−1p+ 2α∂q∂−1p. (3.111)

Herein Φ is defined by (2.118)-(2.119) and has the following property

Φ = Ψ†. (3.112)

Setting µ = 0 and η = 1 in (3.106) tells that M is a Hamiltonian operator and taking µ = η = 1 leads

to J +M is a Hamiltonian operator. This implies that J and M compose a Hamiltonian pair (lemma 3.3).

Thus, we can say that the generalized Dirac soliton hierarchy (2.93) is bi-Hamiltonian:

utn = Kn = J
δHn+1

δu
= M

δHn
δu

, n ≥ 1, (3.113)

with the second Hamiltonian operator M being given by (3.107) and J , Hn+1 being defined in (3.84) and

(3.85), respectively.

According to [46], the bi-Hamiltonian hierarchy (3.113) is Liouville integrable, i.e., has infinitely many

conserved functions in involution

{Hm,Hn}J =

∫ (δHm
δu

)T

J
δHn
δu

dx = 0, m, n ≥ 0, (3.114)

{Hm,Hn}M =

∫ (δHm
δu

)T

M
δHn
δu

dx = 0, m, n ≥ 0, (3.115)
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and commuting symmetries

[Km,Kn] = K ′m(u)[Kn]−K ′n(u)[Km] = 0, m, n ≥ 0. (3.116)
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Chapter 4

Lump and Interaction Solutions of Two Nonlinear Partial Differential Equations

4.1 Introduction

Scientists are looking for exact solutions to nonlinear evolution equations due to their numerous applica-

tions in different areas of sciences. It has been known that finding exact solutions for nonlinear evolution

equations including soliton equations can be an intricate and complicated work. In general, a method

that solves one nonlinear equation might not be effective for other equations. This led Ryogo Hirota to

search for a successful tool to solve many types of nonlinear equations and to establish the direct method

which is now called ”Hirota direct method” [22]. In 1971, Hirota found multi-soliton solutions of the KdV

equation and derived an explicit expression for its N -soliton solutions by the first application of his direct

method [21]. Over the last few decades, exact solutions for many nonlinear evolution equations have been

obtained by applying the Hirota direct method [48].

Recently, the idea of finding rational solutions in addition to the rouge wave solutions to nonlinear

evolution equations has flourished. Lump solution is a type of rational function solution which localize in

all directions in the space [18, 45]. Many studies have been conducted in order to calculate lump solutions

for a large number of nonlinear evolution equations. Among these equations are the Kadomtsev petviashvili

(KPI) equation [24, 47, 54], the three wave resonant interaction equation [26], and the B-KP equation [18].

In 2015, Ma developed a new direct method, depends on quadratic functions, to generate lump or lump-

type solutions [41]. Lump solutions for more nonlinear evolution equations have been found following

Ma’s method. For instance, the (2+1)-dimensional Boussinesq equation [35], the dimensionally reduced

p-gKP and p-gBKP [42] and the BKP equation [72]. In addition to lump solutions, interaction solutions of

lump with another kind of solutions including resonance stripe solitons [32] and kink solutions [76,79] have

also brought a lot of attention and have been investigated. We begin this chapter by providing some basic

notations, definitions, and important results. In Section 4.3, we study lump solutions to a (2+1)-dimensional

5th-order KdV-like equation. In Section 4.4, we seek lump-kind solutions and interaction solutions between
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lump-kind and kink solutions and between lump-kind and resonance stripe solitons solutions for a Jimbo-

Miwa-like equation in (3+1)-dimension.

4.2 Preliminaries

4.2.1 Hirota Derivatives

DEFINITION 4.2.1. [22] Let g(t, x) and h(t, x) be differentiable functions in t and x. A binary differential

operator, called the D-operator, is defined by

Dm
t D

n
xg · h ≡

( ∂
∂t
− ∂

∂s

)m( ∂
∂x
− ∂

∂y

)n
g(t, x)h(s, y)

∣∣∣
s=t,y=x

(4.1)

≡ ∂m

∂sm
∂n

∂yn
g(t+ s, x+ y)h(t− s, x− y)

∣∣∣
s=0,y=0

,

where m,n = 0, 1, 2, · · · . This type of differential operator is called a bilinear operator, due to the obvious

linearity in both of its arguments. The D-operators are known as the Hirota derivatives.

EXAMPLE 10. From the definition, it is direct to calculate

Dxg · h = gxh− ghx, (4.2)

D2
xg · h = gxxh− 2gxhx + ghxx, (4.3)

D3
xg · h = gxxxh− 3gxxhx + 3gxhxx − ghxxx, (4.4)

D4
xg · h = g4xh− 4gxxxhx + 6gxxhxx − 4gxhxxx + gh4x, (4.5)

DxDtg · h = gxth− gxht − gthx + ghxt, (4.6)

D3
xDtg · h = gxxxth− 3gxxthx + 3gxthxx − gthxxx − gxxxht (4.7)

+3gxxhxt − 3gxhxxt + ghxxxt,

where the subscript gx denote the partial derivative of g with respect to x and similarly for the others.

DEFINITION 4.2.2. A nonlinear partial differential equation is said to have a Hirota bilinear form if it is

equivalent to

n∑
i,j=1

Pmij (D)gi · gj = 0, m = 1, · · · , r, (4.8)

where n, r ≥ 1, Pmij (D) are linear operators, and gi’s are new dependent variables, under a dependent

variable transformation.
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Generally, the definition of the D-operators can be extended to high dimensional spaces as follows.

DEFINITION 4.2.3. Let M ∈ N, and x, x′ ∈ RM such that x = (x1, x2, · · · , xM ), x′ = (x′1, x
′
2, · · · , x′M ).

Assume that g and h are infinitely differentiable functions in RM . Then

Dn
j g · h = Dn

xjg · h ≡
( ∂

∂xj
− ∂

∂x′j

)n
g(x)h(x′)

∣∣∣
x′=x

= gxj (x)h(x)− g(x)hxj (x), (4.9)

and the higher order D-operator is given by

(Dn1
1 Dn2

2 · · ·D
nM
M )g · h =

M∏
j=1

(
∂

∂xj
− ∂

∂x′j

)nj

g(x)h(x′)|x′=x

(4.10)

=

n1∑
k1=0

· · ·
nM∑
kM=0

(−1)
∑M

j=1(nj−kj)
M∏
j=1

(
nj
kj

)
∂kj

∂x
kj
j

g(x)
∂nj−kj

∂x
nj−kj
j

h(x),

where n1, n2, · · · , nM ≥ 0, and

nj
kj

 :=
nj !

kj !(nj − kj)!
is the binomial coefficient.

EXAMPLE 11. If g is a differentiable function of x, y, z and t, then

(DxDyDzDt)g · g = 2(gxyztg − gxytgz − gxyzgt − gxztgy − gyztgx + gxygzt + gxzgyt + gxtgyz).

(4.11)

4.2.2 Properties of the D-operators

We list some properties of the operators Dt, Dx [22]. For convenience, we introduce an operator Dz and a

differentiation ∂
∂z by

Dz = µDt + εDx,
∂

∂z
= µ

∂

∂t
+ ε

∂

∂x
, (4.12)

where µ and ε are constants. The following properties are obtained easily from the definition

1.

Dm
z g · 1 =

∂m

∂zm
g. (4.13)

2. If the functions g and h interchange, then

Dm
z g · h = (−1)mDm

z h · g, (4.14)

from which we have, if m is odd,

Dm
z g · g = 0. (4.15)
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3.

Dm
z g · h = Dm−1

z Dzg · h = Dm−1
z (gzh− ghz). (4.16)

4. The identity

Dz(Dzf · g) · h+Dz(Dzg · h) · f +Dz(Dzh · f) · g = 0, (4.17)

holds for any functions f, g and h. If we write Dzf · g as [f, g], then the identity (4.17) can be written

as the Jacobi identity

[[f, g], h] + [[g, h], f ] + [[h, f ], g] = 0, (4.18)

which indicates one connection between the D-operators and Lie algebras.

4.2.3 Bilinear Forms of Some Nonlinear Evolution Equations

Consider the KdV equation

ut + 6uux + uxxx = 0. (4.19)

Through the dependent variable transformation

u = 2(log f)xx, (4.20)

Eq.(4.19) becomes

2fxtf − 2fxft + 2f4xf − 8fxxxfx + 6f2
xx = 0, (4.21)

with the Hirota bilinear form

(DxDt +D4
x)f · f = 0. (4.22)

The Kadomtsev-Petviashvili (KP) equation

(ut + 6uux + uxxx)− uyy = 0, (4.23)

has the bilinear form

ffxt − fxft + 3f2
xx + ff4x − 4fxfxxx − fyyf + f2

y = 0, (4.24)
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and can be expressed in the Hirota bilinear form

(DtDx +D4
x −D2

y)f · f = 0, (4.25)

under the transformation (4.20).

The Sawada-Kotera equation

ut + u5x + 15uuxxx + 15uxuxx + 45u2ux = 0, (4.26)

can be expressed in the bilinear form

2fxtf − 2fxft + 2f6xf − 12f5xf + 30f4xfxx − 20f2
xxx = 0, (4.27)

and has the Hirota bilinear form

(DxDt +D6
x)f · f = 0, (4.28)

through the transformation (4.20).

4.2.4 Hirota Direct Method

Hirota’s method is one of the most successful direct techniques for constructing exact solutions to different

nonlinear evolution equations. Through this method we can test if a specific equation satisfies the necessary

requirements to admit solitary wave solutions and soliton solutions.

The first step in Hirota’s method is to transform a nonlinear evolution equation

F [u] = F (u, ux, ut) = 0, (4.29)

into a Hirota bilinear form

P (D)f · f = 0, (4.30)

under a suitable dependent variable transformation. The next step is to use the perturbation method to find

a solution for the bilinear equation which finally leads to N -soliton solutions for the nonlinear evolution

equation. The technique applies to any equation that can be written in bilinear form, either as a single

bilinear equation or as a system of coupled bilinear equations.

EXAMPLE 12. Consider the KdV equation (4.19). We look for a solution of the Hirota bilinear form (4.22)

by expanding f as

f = 1 + εf1 + ε2f2 + ε3f3 + · · · , (4.31)
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where ε is a small parameter. Substituting (4.31) into (4.21) and collecting terms with the same power of

ε, we obtain 

O(ε) : (DxDt +D4
x)(f1 · 1 + 1 · f1) = 0,

O(ε2) : (DxDt +D4
x)(f2 · 1 + f1 · f1 + 1 · f2) = 0,

O(ε3) : (DxDt +D4
x)(f3 · 1 + f2 · f1 + f1 · f2 + 1 · f3) = 0,

O(ε4) : (DxDt +D4
x)(f4 · 1 + f3 · f1 + f2 · f2 + f1 · f3 + 1 · f4) = 0,

· · ·

(4.32)

The first equation in (4.32) can be written as a linear differential equation for f1

∂

∂x

(
∂

∂t
+

∂3

∂x3

)
f1 = 0. (4.33)

To generate one-soliton solution for the KdV equation we set

f1 = exp(η1), with η1 = κ1x+ ω1t+ µ0
1, (4.34)

where κ1, ω1 and µ0
1 are constants. Inserting f1 into Eq.(4.33) we obtain the nonlinear dispersion relation

ω1 = −κ3
1, (4.35)

and the second equation in (4.32) allows to set f2 = 0.

Consequently we can take

fn = 0, n > 2. (4.36)

Finally, letting ε = 1 leads to

f = 1 + f1 = 1 + exp
(
κ1x− κ3

1t+ µ0
1

)
, (4.37)

and by substituting f into (4.20) with (4.35), we get the one-soliton solution of KdV

u(x, t) = 1
2κ

2
1 sech2{1

2(κ1x− κ3
1t+ x10)}. (4.38)

Similarly, to find two-soliton solution for the KdV equation, we choose

f1 = exp(η1) + exp(η2), with ηi = κix+ ωit+ µ0
i , i = 1, 2, (4.39)

to be the solution of (4.33) where κi, ωi and µ0
i (i = 1, 2) are constants.
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Note that

fn = 0, n ≥ 3. (4.40)

Substituting f = 1 + εf1 + ε2f2 into the relations (4.32) and making the coefficients of εk, k =

0, 1, · · · , 4, to vanish gives rise to

ωi = −κ3
i , i = 1, 2, (4.41)

and

f2 = A12 exp(η1 + η2), (4.42)

where

A12 =
(κ1 − κ2

κ1 + κ2

)2
. (4.43)

At last, we may set ε = 1, hence the two-soliton solution for the KdV equation is obtained from

u(x, t) = 2
∂2

∂x2
(log f), (4.44)

where

f = 1 + exp(η1) + exp(η2) +A12 exp(η1 + η2). (4.45)

This result implies that two solitons are not destroyed after their interaction. Same calculation as above is

applied to generate the three-soliton solution for the KdV equation. The formulation of N -soliton solutions

for the KdV equation with N ≥ 3 is tedious and the analysis becomes more complicated (see [4] for

details).

4.2.5 Generalized Bilinear Differential Operators and Bilinear Equations

Though a large class of nonlinear evolution equations possess Hirota bilinear form, there are still some

nonlinear equations which can not be written in Hirota bilinear form. In 2011, a kind of generalized bilinear

differential operatorsDp based on a natural number p has been proposed [38]. The operatorsDp allow us to

construct more generalized bilinear differential equations, different from Hirota bilinear equations, which

still hold nice mathematical properties.
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The Dp-operators

DEFINITION 4.2.4. Suppose that M,p are two natural numbers. The bilinear differential operators Dp are

defined as [38]

(Dn1
p,1D

n2
p,2 · · ·D

nM
p,M )g · h = (Dn1

p,x1D
n2
p,x2 · · ·D

nM
p,xM

)g · h

=
M∏
j=1

(
∂

∂xj
+ αp

∂

∂x′j

)nj

g(x)h(x′)|x′=x (4.46)

=

n1∑
k1=0

· · ·
nM∑
kM=0

(αp)
∑M

j=1(nj−kj)
M∏
j=1

(
nj
kj

)
∂kj

∂x
kj
j

g(x)
∂nj−kj

∂x
nj−kj
j

h(x),

where n1, n2, · · · , nM ≥ 0, x, x′ ∈ RM such that x = (x1, x2, · · · , xM ), x′ = (x′1, x
′
2, · · · , x′M ), and

g and h are infinitely differentiable functions in RM . Here for s ∈ Z, the s-th power of αp is defined as

follows

αsp = (−1)rp(s), if s ≡ rp(s) mod p, (4.47)

with 0 ≤ rp(s) < p. If g and h are functions of x, t, then (4.46) becomes

(Dm
p,xD

n
p,t)g.h =

(
∂

∂x
+ αp

∂

∂x′

)m( ∂

∂t
+ αp

∂

∂t′

)n
g(x, t)h(x′, t′)|x′=x,t′=t

=
m∑
j=0

n∑
k=0

(
m

j

)(
n

k

)
αjpα

k
p

∂m−j

∂xm−j
∂j

∂x′(j)
∂n−k

∂tn−k
∂k

∂t′(k)
g(x, t)h(x′, t′)|x′=x,t′=t

=

m∑
j=0

n∑
k=0

(
m

j

)(
n

k

)
αjpα

k
p

∂m+n−j−k

∂xm−jtn−k
g(x, t)

∂j+k

∂xjtk
h(x, t), (4.48)

where m,n ≥ 0.

If p is an even number (p = 2k, k ∈ N), then rp(s)− s should be an even number as well. Consequently

we have

αsp = (−1)rp(s) = (−1)rp(s)−s(−1)s = (−1)s. (4.49)

As a result, D2k,x = Dx which means that all the above generalized bilinear operators Dp turn into the

Hirota bilinear derivatives.

EXAMPLE 13. Taking p = 3, the powers of αs are

α3 = −1, α2
3 = α3

3 = 1, α4
3 = −1, α5

3 = α6
3 = 1, · · · , (4.50)
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so the pattern of symbols

−,+,+,−,+,+, · · · (p = 3). (4.51)

Using the definition with the above pattern of symbols, we can compute

D3,xg · h = gxh− ghx = Dxg · h, (4.52)

D3
3,xg · h = gxxxh− 3gxxhx + 3gxhxx + ghxxx, (4.53)

D4
3,xg · h = g4xh− 4gxxxhx + 6gxxhxx + 4gxhxxx − gh4x, (4.54)

D5
5,xg · h = g5xh− 5g4xhx + 10gxxxhxx + 10gxxhxxx − 5gxh4x + gh5x, (4.55)

D3,xD3,tg · h = gxth− gxht − gthx + ghxt, (4.56)

D3
3,xD3,tg · h = gxxxth− 3gxxthx + 3gxthxx + gthxxx − gxxxht

+ 3gxxhxt + 3gxhxxt − ghxxxt. (4.57)

EXAMPLE 14. When p = 5, we have

α5 = −1, α2
5 = 1, α3

5 = −1, α4
5 = α5

5 = 1, α6
5 = −1, (4.58)

α7
5 = 1, α8

5 = −1, α9
5 = α10

5 = 1, · · · , (4.59)

and the pattern of symbols

−,+,−,+,+,−,+,−,+,+ · · · (p = 5). (4.60)

From the definition we find

D5,xg · h = gxh− ghx = Dxg · h, (4.61)

D3
5,xg · h = gxxxh− 3gxxhx + 3gxhxx − ghxxx, (4.62)

D4
3,xg · h = g4xh− 4gxxxhx + 6gxxhxx − 4gxhxxx + gh4x, (4.63)

D5
5,xg · h = g5xh− 5g4xhx + 10gxxxhxx − 10gxxhxxx + 5gxh4x + gh5x, (4.64)

D5,xD5,tg · h = gxth− gxht + gthx − ghxt, (4.65)

D3
5,xD5,tg · h = gxxxth− gxxxht − 3gxxthx + 3gxthxx − gthxxx+ (4.66)

+ 3gxxhxt − 3gxhxxt + ghxxxt.

Generalized Bilinear Equations

Consider a multivariate polynomial

P = P (x1, x2, · · · , xM ). (4.67)
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A generalized bilinear differential equation is defined by [38]

P (Dp,x1 , Dp,x2 , · · · , Dp,xM )g · g = 0. (4.68)

When p = 2k, k ∈ N, the above relation becomes a Hirota bilinear equation .

EXAMPLE 15. If we choose p = 3, then under the logarithmic transformation

u = 2 log(f)xx, (4.69)

we obtain the generalized bilinear KdV equation [78]

(D3,xD3,t +D4
3,x)f · f = 2fxtf − 2fxft + 6f2

xx = 0, (4.70)

and the generalized bilinear Boussinesq equation [59]

(D2
3,t +D4

3,x)f · f = 2fttf − 2f2
t + 6f2

xx = 0. (4.71)

EXAMPLE 16. If we choose p = 5, then again under the logarithmic transformation (4.69) we attain the

generalized bilinear KdV equation

(D5,xD5,t +D4
5,x)f · f = 2fxtf − 2fxft + 2f4xf − 8fxxxfx + 6f2

xx = 0, (4.72)

and the generalized bilinear Boussinesq equation

(D2
5,t +D4

5,x)f · f = 2fttf − 2f2
t + 2f4xf − 8fxxxfx + 6f2

xx = 0. (4.73)

Comparing the generalized bilinear equations constructed in the two examples, we conclude that different

number p results in different bilinear equation.

In the next two sections, we adopt the generalized bilinear operators Dp given by (4.46) to introduce a

(2+1)-dimensional 5th-order KdV-like equation and a (3+1)-dimensional Jimbo-Miwa-like equation with

p = 5 and p = 3, respectively.

4.3 Lump Solutions to a (2+1)-Dimensional 5th-order KdV-like Equation

The (2+1)-dimensional 5th-order KdV equation reads [29]

KdV5th := 36ut + u5x + 15uxuxx + 15uuxxx + 45u2ux − 5uxxy − 15uuy

− 15ux

∫
uydx− 5

∫
uyydx = 0, (4.74)
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which is the (2+1)-dimensional analogue of the Caudrey-Dodd-Gibbon-Kotera-Sawada(CDGKS) equation

[70]. When uy = 0, Eq.(4.74) reduces to the Sawada-Kotera equation [9, 56]

ut + u5x + 15uxuxx + 15uuxxx + 45u2ux = 0. (4.75)

Eq.(4.74) has a widespread adoption in many physical branches, such as conserved current of Liouville

equation, two dimensional quantum gravity gauge field, and conformal field theory [25, 34, 55, 68].

4.3.1 A (2+1)-Dimensional 5th-order KdV-like Equation

Under the dependent variable transformation

u = 2(ln f)xx, (4.76)

with f = f(x, y, t), the (2+1)-dimensional fifth-order KdV equation(4.74) becomes the following (2+1)-

dimensional Hirota bilinear equation

B5thKdV := (D6
x − 5D3

xDy + 36DxDt − 5D2
y)f.f

= 72fxft − 72fxtf + 2f6xf − 12f5xfx + 30f4xfxx − 20f2
xxx (4.77)

+10fxxxfy − 30fxxfxy + 30fxxyfx − 10fxxxyf − 10fyyf + 10f2
y = 0,

where Dx, Dy, and Dt are the Hirota derivatives (4.1).

Utilizing the generalized bilinear operators Dp (4.46) with p = 5, we can generalized the Hirota bilinear

5th-order KdV equation(4.77) into

GB5thKdV := (D6
5,x − 5D3

5,xD5,y + 36D5,xD5,t − 5D2
5,y)f.f

= 30f4xfxx − 20f2
xxx − 10fxxxyf + 10fxxxfy − 30fxxfxy (4.78)

+ 30fxxyfx + 72fxtf − 72fxft − 10fyyf + 10f2
y = 0.

Eq.(4.78) is a generalized bilinear 5th-order KdV equation. Under the transformations

u = 6(ln f)x, v = 6(ln f)y, (4.79)

which was suggested by the Bell polynomial theories [17,39,66], Eq.(4.78) is transformed into the follow-

ing fifth-order KdV-like nonlinear differential equation [5]

ut + 11
279936u

6 + 25
15552u

4ux + 5
972u

3uxx + 5
288u

2u2
x − 5

2592u
3v + 5

54uuxxux + 5
432u

3
x − 5

432uvux

− 5
432uyu

2 + 5
432u

2uxxx + 5
54u

2
xx − 5

72uyux + 5
72uxuxxx + 1

36uu4x + 1
36u5x − 5

36vy = 0. (4.80)
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Therefore, if f solves the bilinear Eq.(4.77) or (4.78), then u = 6(ln f)xx or u = 6(ln f)x and v =

6(ln f)y will solve the nonlinear Eq.(4.74) or (4.80).

4.3.2 Lump Solutions to the 5th-order KdV-like Equation

In this section, we are going to generate lump solutions to Eq.(4.80) by searching for quadratic function

solutions to Eq.(4.78) with the assumption

f = g2 + h2 + a9,

g = a1x+ a2y + a3t+ a4, (4.81)

h = a5x+ a6y + a7t+ a8,

where aj , (1 ≤ j ≤ 9), are real constants to be determined later. Note that using a sum involving one

square, in the two dimensional space,will not generate exact solutions which are rationally localized in all

directions in the space.

First, we substitute Eq.(4.81) into Eq.(4.78) and then make all coefficients of distinct polynomials of x,

y, and t equal to zero by using Maple symbolic computation package. We get a collection of algebraic

equations in aj , (1 ≤ j ≤ 9); solving the collection of algebraic equations, we achieve the following two

classes of solutions

Case 1: 

a1 = 0, a2 = a2, a3 = −5a3
2a9

54a4
5

,

a4 = a4, a5 = a5, a6 = −a
2
2a9

3a3
5

,

a7 =
5a2

2(−9a6
5 + a2

2a
2
9)

324a7
5

, a8 = a8, a9 = a9,

(4.82)

where aj , (j = 2, 4, 5, 8, 9), are real free parameters which need to satisfy a5 6= 0 and a9 > 0 in order to

ensure that the corresponding solutions f is well defined and positive, respectively.

The set of parameters in (4.82) construct a class of positive quadratic function solutions to Eq.(4.78):

f =

(
− 5a3

2a9t

54a4
5

+ a2y + a4

)2

+

(
5a2

2(−9a6
5 + a2

2a
2
9)t

324a7
5

+ a5x−
a2

2a9y

3a3
5

+ a8

)2

+ a9,

(4.83)
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and the resulting class of quadratic function solutions, in turn, yields a class of lump solutions to the (2+1)-

dimensional 5th-order KdV-like equation (4.80) through the dependent variable transformation:

u = 6(ln f)xx =
6(fxxf − f2

x)

f2

=
12(a2

1 − a2
5)(−g2 + h2)− 48a1a5gh+ 12(a2

1 + a2
5)a9

(g2 + h2 + a9)2
, (4.84)

where the function f is defined by Eq.(4.81), and the functions g and h are given as follows:

g = −5a3
2a9

54a4
5

t+ a2y + a4, (4.85)

h =
5a2

2(−9a6
5 + a2

2a
2
9)

324a7
5

t+ a5x−
a2

2a9

3a3
5

y + a8. (4.86)

Case 2: 

a1 = a1, a2 = a2, a3 =
5(a1a

2
2 − a1a

2
6 + 2a2a5a6)

36(a2
1 + a2

5)
,

a4 = a4, a5 = a5, a6 = a6, a7 =
5(2a1a2a6 − a2

2a5 + a5a
2
6)

36(a2
1 + a2

5)
,

a8 = a8, a9 =
−3(a1a2 + a5a6)(a2

1 + a2
5)2

(a1a6 − a2a5)2
,

(4.87)

where aj , (j = 1, 2, 4, 5, 6, 8), are arbitrary constants to be determined with the following restricted

conditions

∆1 : = a2
1 + a2

5 =

∣∣∣∣∣∣a1 −a5

a5 a1

∣∣∣∣∣∣ 6= 0, ∆2 := a1a2 + a5a6 =

∣∣∣∣∣∣a1 −a5

a6 a2

∣∣∣∣∣∣ < 0,

∆3 : = a1a6 − a2a5 =

∣∣∣∣∣∣a1 a2

a5 a6

∣∣∣∣∣∣ 6= 0. (4.88)

• ∆1 makes the corresponding solutions f well-defined,

• ∆2 assures that the solution f is positive, and

• ∆3 guarantees the localization of the solutions u in all directions in the (x, y)-plane.

Since these parameters are arbitrary, the corresponding solutions of Eq.(4.80) are more general. The

parameters a1, a5 indicate that the wave velocity in the x direction is arbitrary and a2, a6 illustrate the
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arbitrariness of the wave velocity in the y direction. The parameters a4, a8 represent the invariance of

variables and a3, a7 show the wave frequency which are represented by other quantities.

This set of parameters, in turn, generates positive quadratic function solutions to Eq.(4.78):

f =

(
a1x+ a2y +

5(a1a
2
2 − a1a

2
6 + 2a2a5a6)

36(a2
1 + a2

5)
t+ a4

)2

(4.89)

+

(
a5x+ a6y +

5(2a1a2a6 − a2
2a5 + a5a

2
6)

36(a2
1 + a2

5)
t+ a8

)2

+
−3(a1a2 + a5a6)(a2

1 + a2
5)2

(a1a6 − a2a5)2
.

Consequently, a kind of lump solutions to Eq.(4.80) through the transformation u = 6(ln f)xx and (4.81)

is achieved as follows

u = 6(ln f)xx =
6(fxxf − f2

x)

f2

=
12(a2

1 − a2
5)(−g2 + h2)− 48a1a5gh+ 12(a2

1 + a2
5)a9

(g2 + h2 + a9)2
, (4.90)

where the functions g and h are given by:

g = a1x+ a2y +
5(a1a

2
2 − a1a

2
6 + 2a2a5a6)

36(a2
1 + a2

5)
t+ a4, (4.91)

h = a5x+ a6y +
5(2a1a2a6 − a2

2a5 + a5a
2
6)

36(a2
1 + a2

5)
t+ a8. (4.92)

Choosing a special value for the free parameters in case 1 and 2, we can construct specific lump solutions

u of Eq.(4.80). One special pair of positive quadratic function solutions and lump solutions with specific

values of the parameters in case 1 is given as follows. First, the selection of the parameters

a2 = 4, a4 = 0, a5 = 2, a8 = 0, a9 = 1, (4.93)

leads to

f =
34225

26244
t2 − 370

243
ty +

148

9
y2 − 350

81
tx+ 4x2 − 8

3
xy + 1, (4.94)

and the lump solution

u = −u1

u2
, (4.95)
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with

u1 = 1259712(27025t2 − 113400tx+ 115560ty + 104976x2 − 69984xy − 408240y2 − 26244),

u2 = (34225t2 − 113400tx− 39960ty + 104976x2 − 69984xy + 431568y2 + 26244)2. (4.96)

If we take a particular choice of the parameters in case 2 as follows

a1 = 1, a2 = −1

2
, a4 = 0, a5 = 0, a6 = 3, a8 = 0, (4.97)

then we have

f =
34225

26244
t2 − 370

243
ty +

148

9
y2 − 350

81
tx+ 4x2 − 8

3
xy + 1, (4.98)

and the lump solution

u = −u3

u4
, (4.99)

with

u3 = 248832(27025t2 − 113400tx+ 115560ty + 104976x2 − 69984xy − 408240y2 − 26244),

u4 = (34225t2 − 113400tx− 39960ty + 104976x2 − 69984xy + 431568y2 + 26244)2. (4.100)

Figure 1 shows the profile of the lump solutions in case 1 with the special choice of the parameters (4.93)

at t = 0. Figure 2 presents the profile of the lump solutions in case 2 with the special choice of the param-

eters (4.97) at t = 0.
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(a) 3D plot

(b) density plot

(c) x-curves

Figure 1.: Plots of the lump solution (4.95)-(4.96) at t = 0.
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(a) 3D plot

(b) density plot

(c) x-curves

Figure 2.: Plots of the lump solution (4.99)-(4.100) at t = 0.
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4.4 Interaction Solutions to a Jimbo-Miwa-like Equation in (3+1)-Dimension

In the KP soliton hierarchy [8, 23, 67, 69], the second equation reads

uxxxy + 3uxxuy + 3uxyux + 2uyt − 3uxz = 0, (4.101)

which is known as the Jimbo-Miwa (JM) equation in (3+1)-dimension [23]. Eq.(4.101) adopted by physicist

to explain particular waves in (3+1)-dimension. Exact solutions for the JM Eq.(4.101) are considered

especially by using the Hirota direct method [33] even though the equation is not-integrable.

4.4.1 A Jimbo-Miwa-like Equation in (3+1)-Dimension

Using the Cole-Hopf transformation

u = 2(ln f)x. (4.102)

and the Hirota bilinear derivatives (4.1), Eq.(4.101) transforms to the following Hirota bilinear equation

BJM (f) : = (D3
xDy + 2DyDt − 3DxDz)f.f (4.103)

= 2(ffxxxy − fyfxxx + 3fxyfxx − 3fxfxxy + 2ftyf − 2ftfy − 3fxzf + 3fxfz) = 0,

Under the generalized bilinear operators Dp (4.46) with p = 3, we can generalize the bilinear JM

Eq.(4.103) into

GBJM (f) : = (D3
3,xD3,y + 2D3,yD3,t − 3D3,xD3,z)f.f

= 2(3fxxfxy + 2fytf − 2fyft − 3fxzf + 3fxfz) = 0. (4.104)

Employing the relation between f and u defined by (4.102), the generalized bilinear JM Eq.(4.104)

becomes [6]

GPJM (u) : = 9
8u

2uxv + 3
8u

3uy + 3
4uvuxx + 3

4u
2
xv + 3

4u
2uxy + 9

4uuxuy

+ 3
2uxxuy + 3

2uxuxy + 2uyt − 3uxz = 0, (4.105)

where vx = uy. The transformation (4.102) is a characteristic one in establishing Bell polynomial theories

of integral equations [39,60] and can transform generalized bilinear equations to nonlinear partial differen-

tial equations. The definite link between the generalized bilinear Eq.(4.104) and the JM-like Eq.(4.105) is

given by

GPJM (u) =

[
GBJM (f)

f2

]
x

. (4.106)
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The standard JM Eq.(4.101) is different than the JM-like Eq.(4.105) since the later has higher order

nonlinearity and more terms and if f is a solution for the generalized bilinear Eq.(4.104), then u = 2(ln f)x

will be a solution for the JM-like Eq.(4.105).

4.4.2 Lump-type Solutions to the Jimbo-Miwa-like Equation

We begin with searching for positive quadratic function solutions to the bilinear Eq.(4.104) by presenting

f as the form

f = g2 + h2 + a11,

g = a1x+ a2y + a3z + a4t+ a5, (4.107)

h = a6x+ a7y + a8z + a9t+ a10,

in order to obtain lump-type solutions for Eq.(4.105) where aj , (1 ≤ j ≤ 11), are real constants to be

determined. Next, we substitute Eq.(4.107) into Eq.(4.104) and make all the coefficients of distinct polyno-

mials of x, y, z and t equal to zero. A collection of algebraic equations in the parameters aj , (1 ≤ j ≤ 11),

are obtained and then solved by taking advantage of the computer algebra system Maple. The following

sets of solutions are achieved

Case 1: 

a1 = a1, a2 = −a6a7

a1
, a3 = −2

3

a4a6a7

a2
1

, a4 = a4,

a5 = a5, a6 = a6, a7 = a7, a8 =
2

3

a4a7

a1
,

a9 =
a4a6

a1
, a10 = a10, a11 = a11,

(4.108)

where aj , (j = 1, 4, 5, 6, 7, 10, 11), are real free parameters that meet the following requirements

• a1 6= 0 to ensure well-definedness of f , and

• a11 > 0 to maintain the positiveness of f .
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Case 2: 

a1 = a1, a2 = −a6a7

a1
, a3 = −a6a8

a1
, a4 =

3

2

a1a8

a7
,

a5 = a5, a6 = a6, a7 = a7, a8 = a8,

a9 =
3

2

a6a8

a7
, a10 =

a5a6

a1
, a11 = a11,

(4.109)

where aj (j = 1, 5, 6, 7, 8, 11) are arbitrary constants which have to fulfill the conditions

• a1a7 6= 0 to make the corresponding solutions f well defined, and

• a11 > 0 to support the positiveness of f .

Case 3:

a1 = a1, a2 = a2, a3 = −2

3

a1(a2a4 − a7a9) + a6(a2a9 + a4a7)

a2
1 + a2

6

, a4 = a4,

a5 = a5, a6 = a6, a7 = a7, a8 =
2

3

a1(a2a9 + a4a7)− a6(a2a4 + a7a9)

a2
1 + a2

6

,

a9 = a9, a10 = a10, a11 = −3

2

(a1a2 + a6a7)(a2
1 + a2

6)2

(a1a9 − a4a6)(a1a7 − a2a6)
,

(4.110)

where aj , (j = 1, 2, 4, 5, 6, 7, 9, 10), are arbitrary constants to be determined with the following restricted

requirements

• a2
1 + a2

6 6= 0 to assure the well-definedness of the solutions f ,

• (a1a2 + a6a7)

(a1a9 − a4a6)(a1a7 − a2a6)
< 0 to guarantee that f is positive, and

• (a1a9−a4a6)(a1a7−a2a6) 6= 0 to make that the corresponding solutions u localize in certain directions

in the space.

We get three classes of quadratic function solutions fj(j = 1, 2, 3), defined by (4.107), from the above

cases of solutions, to the bilinear JM Eq.(4.104); and the resulting quadratic function solutions, in turn, yield
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three classes of lump-type solutions uj(j = 1, 2, 3), to the JM-like Eq.(4.105) through the transformation

(4.102). All the rational function solutions uj → 0, (j = 1, 2, 3), when the corresponding sum of squares

g2 + h2 → ∞. However, they do not approach zero in all directions in the space of x, y, z due to the

character of (3+1)-dimensions in the resulting solutions, therefore, they are lump-type solutions but not

lump solutions.

Aiming to analyze the dynamic behavior of the solutions uj , (j = 1, 2, 3), the following values for the

parameters are selected:

a1 = 2, a4 = 1, a5 = −1, a6 = 2, a7 = 3, a10 = 4, a11 = 1, (4.111)

for case 1, then the following lump-type solution is attained:

u1 =
4(4x+ 2t+ 3)

4x2 + 9y2 + z2 + t2 + 6yz + 4tx+ 6x+ 15y + 5z + 3t+ 9
. (4.112)

For case 2, we let

a1 = 2, a5 = −1, a6 = 2, a7 = 3, a8 = 4, a11 = 1, (4.113)

and we obtain the lump-type solution:

u2 =
16(2x+ 4t− 1)

8x2 + 18y2 + 32z2 + 32t2 + 48yz + 32tx− 8x− 16t+ 3
. (4.114)

We choose

a1 = 1, a2 = 0, a4 = 1, a5 = 2, a6 = −1, a7 = 1,

a9 = 0, a10 = 0, (4.115)

for case 3 and hence the lump-type solution is given by:

u3 =
12(6x− 3y − 2z + 3t+ 6)

18x2 + 9y2 + 2z2 + 9t2 − 18xy − 12xz + 6yz + 18tx− 6tz + 36x− 12z + 36t+ 90
.

(4.116)

The profiles of the lump-type solutions (4.112)–(4.116) are showed in figures 3–5.

61



(a) 3D plot

(b) density plot

Figure 3.: Profiles of the lump-type solution (4.112) with z = 1 at t = 0.
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(a) 3D plot

(b) density plot

Figure 4.: Profiles of the lump-type solution (4.114) with y = 1 at t = 0.
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(a) 3D plot

(b) density plot

Figure 5.: Profiles of the lump-type solution (4.116) with z = 1 at t = 1.

64



4.4.3 Interaction Solutions of Lump-type Solutions and Kink Solutions

The interaction solutions between a lump-type and a stripe of the JM-like Eq.(4.105) is explored in this

section. We add an exponential function to the quadratic function solution (4.107) as

f = g2 + h2 + el + a16,

g = a1x+ a2y + a3z + a4t+ a5, (4.117)

h = a6x+ a7y + a8z + a9t+ a10,

l = a11x+ a12y + a13z + a14t+ a15,

where aj , (j = 1, ..., 16), are real constants to be determined where a16 > 0. With symbolic computation

via Maple on a direct substitution of Eq.(4.117) into Eq.(4.104), and by collecting all the coefficients

about x, y, z, t, ea11x+a12y+a13z+a14t+a15 , we reach the following set of constraining relations among the

parameters 

a1 = −a6a7

a2
, a3 =

2

3

a2a9

a6
, a4 = −a7a9

a2
,

a8 = −2

3

a9a7

a6
, a12 = a13 = 0, a14 =

a9a11

a6
,

aj = aj(j = 2, 5, 6, 7, 9, 10, 11, 15, 16),

(4.118)

with a2a6 6= 0. Hence, we can express the exact interaction solution of u as follows

u = 2(ln f)x =
2fx
f

=
4a1g + 4a6h+ 2a11e

l

f
, (4.119)

where

f = g2 + h2 + el + a16,

g = −a6a7

a2
x+ a2y +

2

3

a2a9

a6
z − a7a9

a2
t+ a5, (4.120)

h = a6x+ a7y −
2

3

a9a7

a6
z + a9t+ a10,

l = a11x+
a9a11

a6
t+ a15,
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and a2, a5, a6, a7, a9, a10, a11, a15 and a16 are arbitrary real constants.

The coming after special choices for the parameters is taken to illustrate the interaction phenomena

between a lump-type solution and a stripe solution as:

a2 = 2, a5 = 1, a6 = −1, a7 = 2, a9 = 3, a10 = 0,

a11 = 4, a15 = −2, a16 = 4. (4.121)

Then the mixed lump-type stripe solution to Eq.(4.105) reads:

u = − 4(−6t+ 2x+ 1 + 2e−12t+4x−2)

18t2 − 12tx+ 2x2 + 8y2 − 32yz + 32z2 − 6t+ 2x+ 4y − 8z + 5 + e−12t+4x−2
. (4.122)

The asymptotic behaviors of the solution (4.122) are presented in figures 6 and 7. They exhibit the inter-

action between the lump-type soliton and the kink wave.

4.4.4 Interaction Solutions of Lump-type Solutions and a Pair of Resonance Stripe Soliton

We investigate the collision between lump-type and a pair of resonance stripe soliton in this section. First,

we redefine the quadratic function f as the following form

f = g2 + h2 + cosh (l) + a15,

g = a1x+ a2y + a3z + a4t+ a5, (4.123)

h = a6x+ a7y + a8z + a9t+ a10,

l = a11x+ a12y + a13z + a14t,

where aj , (j = 1, ..., 15), are constants to be determined and a15 > 0. Next, through substituting

Eq.(4.123) into Eq.(4.104) and collecting all the coefficients about x, y, z, t, cosh(a11x+ a12y + a13z + a14t)

and sinh(a11x+ a12y + a13z + a14t), the parameters of the solution are determined by

a1 = −2

3

a7a9

a3
, a4 = −a7a9

a2
, a6 =

2

3

a2a9

a3
,

a8 =
a3a7

a2
, a12 = a13 = 0, a14 =

3

2

a3a11

a2
,

aj = aj(j = 2, 3, 5, 7, 9, 10, 11, 15),

(4.124)
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(a) y = 1, t = 5

(b) y = 2, t = 10

(c) y = 3, t = 15

Figure 6.: Profiles of the interaction solution (4.122) with different values of y, t.
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(a) x = 0, z = 1

(b) x = 3, z = 2

(c) x = 15, z = 4

Figure 7.: Profiles of the interaction solution (4.122) with different values of x, z.
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with a2a3 6= 0. Then we can attain a class of explicit solutions of the JM-like equation (4.105) by substitut-

ing the above relations into the corresponding equations as we did in Section 4.4.3. The exact expression

for u is as follows

u = 2(ln f)x =
2fx
f

=
4a1g + 4a6h+ 2a11 sinh(l)

f
, (4.125)

where

f = g2 + h2 + cosh(l) + a15,

(4.126)

g = −2

3

a7a9

a3
x+ a2y + a3z +−a7a9

a2
t+ a5, (4.127)

h =
2

3

a2a9

a3
x+ a7y +

a3a7

a2
z + a9t+ a10,

l = a11x+
3

2

a3a11

a2
t,

and a2, a3, a5, a7, a9, a10, a11 and a15 are free parameters. Figure 8 illustrates the typical phenomena in the

interaction between a lump-type and a resonance soliton with the parameters

a2 = 1, a3 = 2, a5 = 4, a7 = −1, a9 = 2,

a10 = −1, a11 = 1, a15 = 0. (4.128)

In this case the mixed lump-type resonance soliton solutions to Eq.(4.105) are given by:

u = −u1

u2
, (4.129)

with

u1 = 2(16x+ 48t+ 9 sinh(3t+ x) + 36),

u2 = 8x2 + 18y2 + 72z2 + 72t2 + 48tx+ 72yz + 36x+ 90y + 180z + 108t (4.130)

+ 9 cosh(3t+ x) + 153.

Figure 8 illustrates the interaction of the lump-type and the pair of stripe soliton (4.129)-(4.130).
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(a) t = −65 (b) t = −20

(c) t = −2 (d) t = 0

(e) t = 30 (f) t = 65

Figure 8.: Profiles of the interaction solution (4.129) with different values of t and y = 5.
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Chapter 5

N -soliton Solutions of a Coupled Complex Modified-KdV System by the Riemann-Hilbert Approach

5.1 Introduction

The study of nonlinear waves is an interesting research area in Mathematics. Since the discovery of solitons

in 1834, nonlinear dispersive wave equations have been used to formulate nonlinear wave phenomenon in

many fields such as fluid dynamics, nonlinear plasma and optics among others. The analysis and com-

putation of soliton equations are difficult and challenging because of the nonlinearity. Moreover, finding

solitons and explaining their elastic collision needs mathematical methods that are different from those

used to solve linear partial differential equations. The Riemann-Hilbert method is one of the powerful tools

to construct solutions of integrable equations, specially soliton solutions [16, 20, 28, 49, 65, 71, 75]. The

method is introduced as a modern version of the inverse scattering transform method [28, 49, 75], which

also can be used to analyze the long time asymptotics of solutions of integrable systems [10]. This chapter

is structured as follows. In Section 5.2, we define some terminologies and state some important results. In

Section 5.3, we introduce regular and non-regular Riemann-Hilbert problems and present their solutions.

In Section 5.4, we re-derive the Ablowitz-Kaup-Newell-Segur (AKNS) integrable hierarchy with two com-

ponents. In Section 5.5, a Riemann-Hilbert problem of a coupled complex modified Korteweg-de Vries

system is formulated and its N -soliton solutions are generated.

5.2 Preliminaries

We start by introducing some basic terminologies and results.

DEFINITION 5.2.1. • When a complex function f is differentiable at every point in a neighborhood of a

point z = z0 then f is called analytic at z0.

• A function f is analytic on a region R of the complex plane C if it is analytic at every point in R.

• We say f is entire if it is analytic in the whole complex plane.
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THEOREM 5.1 (Liouville Theorem). [2] If a complex-valued function f(z) is entire and bounded in the z

plane, then f(z) is constant.

THEOREM 5.2. [2] Given a simple closed contour Γ. If a function f is analytic on some simply connected

domain containing Γ, then

f(z) =
1

2πi

∫
Γ

f(ξ)

ξ − z
dξ, for any interior point z. (5.1)

Equation (5.1) is called Cauchy’s Integral Formula.

DEFINITION 5.2.2. • A point z = z0 is said to be a singular point of a complex valued function f(z) if

f is not analytic at z0, i.e., f ′(z0) does not exist.

• A point z = z0 is called an isolated singular point of f(z) if f is analytic in some neighborhood of the

point z0 and not at z0.

DEFINITION 5.2.3. • If a function f(z) has the form

f(z) =
φ(z)

(z − z0)M
, (5.2)

then an isolated singularity at the point z0 of f(z) is called a pole. Here M is a positive integer,

M ≥ 1, and φ(z) is analytic function in some neighborhood of z0 with φ(z0) 6= 0.

• A function f(z) is said to have a simple pole if M = 1, and an M -th order pole if M ≥ 2.

EXAMPLE 17. The function

f(z) =
z − 1

(z − 5)(z + 2)2
, (5.3)

has a simple pole at z = 5 and a second order pole at z = −2.

DEFINITION 5.2.4. • Assume that Φ(λ) is a matrix function. If det Φ(λ0) = 0 for some point λ = λ0,

then Φ is said to have a zero at λ0. Obviously, the inverse matrix Φ−1(λ) has a pole of finite order at

this point.

• A zero at λ = λ0 of a matrix function Φ(λ) is called simple if the pole at this point is of the first order.

DEFINITION 5.2.5. A complex valued function f(z) which is analytic on a region R except for a set of

poles of finite order is called meromorphic on R.
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DEFINITION 5.2.6. A complex valued function f(z) is said to satisfy a Hölder condition on a contour Σ if

for any two points z1 and z2 on Σ

|f(z1)− f(z2)| ≤ γ |z1 − z2|µ , γ > 0, 0 < µ ≤ 1. (5.4)

If µ = 1, then the Hölder condition (5.4) becomes the Lipschitz condition.

DEFINITION 5.2.7. The principal value of the integral
∫

Σ
f(ξ)
ξ−z dξ, denoted by −

∫
, is defined by

−
∫

Σ

f(ξ)

ξ − z
dξ = lim

ε→0

∫
Σ−Σε

f(ξ)

ξ − z
dξ, z ∈ Σ, (5.5)

where Σε refers to the part of Σ that is centered around z and has length 2ε.

The region on the left side of the positive direction of a contour Σ is labeled by ⊕, and the region on

right side by 	.

Figure 9.: The ⊕ and 	 regions on the sides of Σ

DEFINITION 5.2.8. Consider the integral

Φ(z) =
1

2πi

∫
Σ

φ(ξ)

ξ − z
dξ, (5.6)

where Σ is a simple contour and φ(ξ) is a function satisfying a Hölder condition on Σ. Define the following

two limits

Φ±(t) = lim
z→t±

1

2πi

∫
Σ

φ(ξ)

ξ − z
dξ, (5.7)

where t ∈ Σ, and lim
z→t±

means the limits as z approaches t along a curve lying entirely in the ⊕, 	 regions,

respectively.

These limits have a crucial role in the theory of Riemann-Hilbert problems and can be found by the

following lemma.
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LEMMA 5.1 (Plemelj Formulae). [2] Suppose that Σ is a simple and smooth contour (closed or open) and

a function φ(ξ) satisfy a Hölder condition on Σ. Then the Cauchy type integral Φ(z), Eq.(5.6), has the

limiting values Φ±(t) as z approaches Σ from the left and the right, respectively, and t is not an endpoint

of Σ. These limits are given by

Φ±(t) = ±1

2
φ(t) +

1

2πi
−
∫

Σ

φ(ξ)

ξ − t
dξ, (5.8)

or equivalently,

Φ+(t)− Φ−(t) = φ(t). (5.9)

Consider a simple, smooth, closed contour Γ that divides the complex z plane into two regions, namely

R+ and R−, where R+ is on the left of the positive direction of Γ.

Figure 10.: The contour Γ with the regions R+ and R−

DEFINITION 5.2.9. A sectionally analytic function Φ(z) is a scalar function that defines in the entire com-

plex plane C except for points on Γ and satisfies the following:

1. Φ(z) is analytic in each of the regions R+ and R− except at z =∞, and

2. as z approaches any point t on Γ along any path that lies wholly in eitherR+ orR−, the function Φ(z)

approaches the limiting value, Φ+(t) or Φ−(t), respectively.

The values Φ±(t) are called the boundary values of the function Φ(z).

From above we can say that if a function Φ(z) has the value Φ+(t) on Γ, then it is continuous in the

closed region R+ ∪ Γ. Similarly for the region R− ∪ Γ.

THEOREM 5.3 (Generalized Liouville’s Formula). [43] Assume that Φ, A and B are square matrices

depending on the variable x. If Φ satisfies a linear matrix differential equation

Φx = AΦ + ΦB, (5.10)
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then we have

(det Φ)x = [tr(A) + tr(B)] det Φ, (5.11)

and thus

det Φ(x) = e
∫ x
x0

[tr(A(y))+tr(B(y))]dy
det Φ(x0), (5.12)

where x0 ∈ R is a given initial point.

The following proposition is one of the applications of Theorem 5.3 which is useful in determining

solutions to Riemann-Hilbert problems.

PROPOSITION 5.1. Assume that Φ, A and B are square matrices functions depending on the variable x. If

Φ satisfies

Φx = [A,Φ] +BΦ, (5.13)

then we have

(det Φ)x = tr(B) det Φ. (5.14)

5.3 Riemann-Hilbert Problems

A Riemann-Hilbert problem (RHP) can be stated as follows: Let Γ be a closed contour in the complex λ

plane which can be assumed to pass through infinity. Particularly, Γ can be considered to be a real line

−∞ < λ <∞ treated as a circle in C ∪ {∞} passing through∞. Assume that G(λ) is an N ×N matrix

function defined on Γ. We need to assemble matrix functions P+(λ) and P−(λ) that are analytical inside

and outside Γ, respectively, in the way

P−(λ)P+(λ) = G(λ), (5.15)

on Γ. When Γ is the real line P+ has to be analytical in the upper half-plane and P− has to be analytical in

the lower half-plane.

REMARK 1. • The solution of a Riemann Hilbert problem (5.15) is not unique. Indeed, if (P−, P+) is a

solution and g is any constant non-degenerate matrix, then P−g, g−1P+ will satisfy

(P−g)(g−1P+) = P−P+ = G. (5.16)

Hence, they are a solution of the Riemann-Hilbert problem (5.15) with the same G(λ).
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• To avoid the non-uniqueness of solutions, the Riemann-Hilbert problem has to be normalized by speci-

fying a value of P+ or P− at some point in the domain of the analyticity. Herein, the Riemann-Hilbert

problem is normalized by assuming that

P±(λ)→ I, λ→∞. (5.17)

This type of normalization is said to be canonical.

5.3.1 Regular Riemann-Hilbert Problems

If P− and P+ are degenerate nowhere in their domain of analyticity, i.e., detP±(λ) 6= 0, then the

Riemann-Hilbert problem (5.15) is said to be regular.

PROPOSITION 5.2. Under the canonical normalization condition (5.17), the solution of a regular Riemann-

Hilbert problem is unique.

Proof. Let (P−1 , P
+
1 ) and (P−2 , P

+
2 ) be two solutions to the Riemann-Hilbert problem (5.15). Then on the

contour Γ

P−1 (λ)P+
1 (λ) = P−2 (λ)P+

2 (λ), (5.18)

and thus

P+
1 (λ)(P+

2 )−1(λ) = (P−1 )−1(λ)P−2 (λ), λ ∈ Γ. (5.19)

Define a function χ(λ) as

χ(λ) = P+
1 (λ)(P+

2 )−1(λ) = (P−1 )−1(λ)P−2 (λ). (5.20)

We see that detP±1 6= 0 and detP±2 6= 0 in their analytical domains due to the fact that the Riemann-

Hilbert problem is regular. Thus, χ(λ) can be analytically extended from Γ to the whole complex plane C.

From the canonical normalization condition (5.17), we have

χ(λ)→ I, λ→∞, (5.21)

Using the Liouville Theorem 5.1, the matrix function χ(λ) is constant, and therefore

χ(λ) = P+
1 (λ)(P+

2 )−1(λ) = (P−1 )−1(λ)P−2 (λ) = I, λ ∈ C. (5.22)

Hence

P±1 (λ) = P±2 (λ), λ ∈ C. (5.23)
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In what follows, we construct the unique solution for the regular Riemann-Hilbert problem in the λ-

complex plane [49]. The variable x is held down in the notation since this construction depends on λ. The

solution relies upon solving a system of singular integral equations on Γ.

First, a normalization condition is chosen for the Riemann-Hilbert problem at a point λ0 ∈ C, say,

outside Γ

P−(λ0) = I, (5.24)

and then set

P+(λ0) = g. (5.25)

We are looking for a solution of the form

(P−)−1(λ) = h+

∫
Γ

φ(ξ)

ξ − λ
dξ, inside the contour Γ, (5.26)

and

P+(λ) = h+

∫
Γ

φ(ξ)

ξ − λ
dξ, outside the contour Γ. (5.27)

The function h can be determined using the normalization condition as

h = g −
∫

Γ

φ(ξ)

ξ − λ0
dξ. (5.28)

From the Plemelj formula (5.1), (P−)−1 and P+ on the contour Γ are given by

(P−)−1(λ) = h+−
∫

Γ

φ(ξ)

ξ − λ
dξ + πiφ(λ),

(5.29)

P+(λ) = h+−
∫

Γ

φ(ξ)

ξ − λ
dξ − πiφ(λ),

for λ ∈ Γ. Substituting Eqs.(5.28) and (5.29) into (5.15), we get the following singular integral equations

for φ

g −
∫

Γ

φ(ξ)

ξ − λ0
dξ + πiφ(λ)T (λ) +−

∫
Γ

φ(ξ)

ξ − λ
dξ = 0, λ ∈ Γ, (5.30)

where T = (G+I)(G−I)−1. The solution of the above integral equation leads to the solution of the regular

Riemann-Hilbert problem. If the contour is the real axis and the normalization condition is canonical, so

that h = g = I , Eq.(5.30) becomes

1

πi

[
−
∫ ∞
−∞

φ(ξ)

ξ − λ
dξ + I

]
+ φ(λ)T (λ) = 0. (5.31)
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Scalar Case

When N = 1 and P−, P+ are ordinary functions, the solution of the regular Riemann-Hilbert problem can

be written in an explicit form. By taking the logarithm of Eq.(5.15), we have

ln
(
P+
)
− ln

(
P−1
−
)

= ln(G). (5.32)

Since P−, and P+ have no zeros inside their domain of analyticity, their logarithms are also analytical

and can be represented in the form of a Cauchy integral. In order to satisfy Eq.(5.32), we take

ln
(
P+
)

=
1

2πi

∫ ∞
−∞

lnG(ξ)

ξ − λ
dξ, Im(λ) < 0, (5.33)

ln
(
(P−)−1

)
=

1

2πi

∫ ∞
−∞

lnG(ξ)

ξ − λ
dξ, Im(λ) > 0. (5.34)

Therefore,

P+ = exp
[ 1

2πi

∫ ∞
−∞

lnG(ξ)

ξ − λ
dξ
]
,

(5.35)

P− = exp
[
− 1

2πi

∫ ∞
−∞

lnG(ξ)

ξ − λ
dξ
]
.

5.3.2 Non-regular Riemann-Hilbert Problems

In general, Riemann-Hilbert problems are not regular, that is, detP±(λ) have zeros at finite points on

their domain of analyticity. In this section, we discuss the Riemann-Hilbert problem (5.15) with simple

zeros [71] and the contour Γ is taking to be the real line R. The study of the general case where some or all

zeros are multiple zeros can be found in [57, 58]. We begin by assuming that the normalization condition

is canonical. Suppose that P+ is an analytical function in the upper half-plane C+ = {z ∈ C| Im(z) > 0}

with N simple zeros {λi ∈ C+ : 1 ≤ i ≤ N}. And suppose that P− is an analytical function in the lower

half-plane C− = {z ∈ C| Im(z) < 0} with N simple zeros {λ̂i ∈ C− : 1 ≤ i ≤ N}. All these zeros are

assumed to be off the real line R. Define two functions

P̃+ =

n∏
i=1

λ− λ̂i
λ− λi

P+, (5.36)

P̃− =

n∏
i=1

λ− λi
λ− λ̂i

P−. (5.37)

The functions P̃± are also analytical but have no zeros. It is clear that

P̃± → I, λ→∞, (5.38)
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and on the real line R, we have

P̃−P̃+ = P−P+ = G. (5.39)

Therefore, P̃± constitute a regular Riemann-Hilbert problem and can be determined by (5.35). This

shows the if the Riemann-Hilbert problem has zeros then it is not unique. Thus, in addition to the matrix

functionG, the contour Γ and the normalization condition; the positions of the zeros have to be specified as

well. The solution of a non-regular Riemann-Hilbert problem under the canonical normalization condition

exists if and only if the number of zeros inside the contour equals to the number of zeros outside the contour.

We see that the kernel of P+(λi) consists of only one column vector vi and the kernel of P−(λ̂i) has only

one row vector v̂i, this is because the zeros {λi ∈ C+ : 1 ≤ i ≤ N} and {λ̂i ∈ C− : 1 ≤ i ≤ N} are

assumed to be simple. Hence,

P+(λi)vi = 0, v̂iP
−(λ̂i) = 0, 1 ≤ i ≤ N. (5.40)

The solution of a Riemann-Hilbert problem with zeros is given by the following theorem which reduces

a non-regular RHP to a regular one. The theorem was proved first by Kawata [28] and then by Zakharov

and Shabat [75] (See also [49, 71]).

THEOREM 5.4. [28] Under the canonical normalization condition (5.17), the solution to the non-regular

Riemann-Hilbert problem

P−(λ)P+(λ) = G(λ), λ ∈ R (5.41)

with zeros(5.40) is given by

P+(λ) = P̂+(λ)X(λ), (5.42a)

P−(λ) = X−1(λ)P̂−(λ), (5.42b)

with

X(λ) = I +

N∑
j,k=1

vj(M
−1)jkv̂k

λ− λ̂k
, (5.43a)

X−1(λ) = I −
N∑

j,k=1

vj(M
−1)jkv̂k

λ− λj
, (5.43b)

M is an N ×N matrix with (j, k)th element given by

Mjk =
v̂jvk

λ̂j − λk
, 1 ≤ j, k ≤ N, (5.44)
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detX(λ) =
N∏
k=1

λ− λk
λ− λ̂k

, (5.45)

and P̂±(λ) is the unique solution to the regular Riemann-Hilbert problem:

P̂−(λ)P̂+(λ) = X(λ)G(λ)X−1(λ), λ ∈ R (5.46)

with P̂±(λ) are analytic in the upper and lower half-plane C±, respectively, and P̂±(λ)→ I as λ→∞.

Proof. The proof of this theorem depending on the construction method. Let (λ1, λ̂1) be a pair of zeros

associated with the vectors (|v1〉 , 〈v̂1|) in Eq.(5.40). We denote column vectors vj by |vj〉 and row vectors

v̂j by 〈v̂j | to distinguish them from each other. Define a matrix X1 as

X1(λ) = I +
λ̂1 − λ1

λ− λ̂1

|v1〉 〈v̂1|
〈v̂1|v1〉

, (5.47)

which is meromorphic with a simple pole at λ = λ̂1 ∈ C−. Simple linear algebra calculation leads us to

X−1
1 (λ) = I − λ̂1 − λ1

λ− λ1

|v1〉 〈v̂1|
〈v̂1|v1〉

, (5.48)

X1(λ1) |v1〉 = 0, 〈v̂1|X−1
1 (λ̂1) = 0, (5.49)

and

detX1(λ) =
λ− λ1

λ− λ̂1

. (5.50)

Then, let

R+
1 (λ) = P+(λ)X−1

1 (λ), R−1 (λ) = X1(λ)P−(λ). (5.51)

The residue of R+
1 (λ) at λ = λ1 is

Res(R+
1 (λ), λ1) = lim

λ→λ1
{(λ− λ1)ψ+(λ)X−1

1 (λ)} (5.52)

= lim
λ→λ1

{
(λ− λ1)ψ+(λ)− (λ̂1 − λ1)ψ+(λ)

|v1〉 〈v̂1|
〈v̂1|v1〉

}
= 0, (5.53)

where we use Eq.(5.40). Similarly, we can find the residue of R−1 (λ) at λ = λ̂1

Res(R−1 (λ), λ̂1) = 0. (5.54)

Hence, R+(λ) and R−(λ) are analytic in C+ and C−, respectively. Moreover,

detR+
1 (λ1) 6= 0, detR−1 (λ̂1) 6= 0. (5.55)
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Next, we construct a set of matrices {Xj : 2 ≤ j ≤ N} as

Xj(λ) = I +
λ̂j − λj
λ− λ̂j

|wj〉 〈ŵj |
〈ŵj |wj〉

, j = 2, . . . , N, (5.56)

where (λj , λ̂j) are zeros associated with the vectors (|vj〉 , 〈v̂j |) in Eq.(5.40), and the vectors (|wj〉 , 〈ŵj |)

are related to (|vj〉 , 〈v̂j |) as

|vj〉 = X−1
1 (λj)X

−1
2 (λj) . . . X

−1
j−1(λj) |wj〉 , (5.57a)

and

〈v̂j | = 〈ŵj |Xj−1(λ̂j)Xj−2(λ̂j) . . . X1(λ̂j). (5.57b)

Then we define the matrix functions R±j (λ) by

R+
j (λ) = R+

j−1(λ)X−1
j (λ), R−j (λ) = Xj(λ)R−j−1(λ), j = 2, . . . , N. (5.58)

It is easy to verify that

detXj(λ) =
λ− λj
λ− λ̂j

, j = 2, . . . , N. (5.59)

Using the relations (5.40) and (5.57)-(5.58), we observe that

R+
j−1(λj) |wj〉 = 0, 〈ŵj |R−j−1(λ̂j) = 0, j = 2, . . . , N. (5.60)

Combining all the above results, we see that the functions P±(λ) can be written as in (5.42), where

X(λ) = XN (λ)XN−1(λ) . . . X1(λ). (5.61)

Furthermore, the matrix functions P̂±(λ) in (5.42) have the following properties

1. analytic in C±, respectively,

2. det P̂±(λ) 6= 0 in their analyticity domain, and

3. have the asymptotic condition P̂±(λ)→ I as λ→∞.

By utilizing formula (5.59) and (5.61), detX(λ) can be obtained by Eq.(5.45). From (5.56) and (5.61),

we can find that

X−1(λ) = X−1
1 (λ)X−1

2 (λ) . . . X−1
N (λ). (5.62)
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and

X−1
j (λ) = I − λ̂j − λj

λ− λj
|wj〉 〈ŵj |
〈ŵj |wj〉

, j = 2, . . . , N, (5.63)

From the product formula (5.61) and (5.62), we can see that X(λ) and X−1(λ) are both meromorphic

functions with simple poles at {λ̂j , 1 ≤ j ≤ N} outside Γ and {λj , 1 ≤ j ≤ N} inside Γ, respectively.

To complete the proof of this theorem we need to show that X(λ) and X−1(λ) have the representation

(5.43a)-(5.44), which can be obtained from the following steps.

Step 1 The relations in (5.56) and (5.61) show that X(λ) has simple pole singularities at each λ̂j . Accord-

ing to Eq.(5.57b), we can find that

Res(X(λ), λ̂j) = |zj〉 〈v̂j | , (5.64)

for a certain column vector |zj〉. Therefore, X(λ) can be written as

X(λ) = I +
N∑
j=1

1

λ− λ̂j
|zj〉 〈v̂j | . (5.65)

In the same way, from Eqs(5.57a) and (5.62)-(5.63), we can expand X−1(λ) as

X−1(λ) = I −
N∑
j=1

1

λ− λj
|vj〉 〈ẑj | , (5.66)

for a certain row vector 〈ẑj |. In the above representations (5.65)-(5.66), vectors {|zj〉 , 〈ẑj |} are related

to the vectors {|vj〉 , 〈v̂j |}. To discover this dependence we use the relation

X(λ)X−1(λ) = I. (5.67)

Step 2 Substitute Eq.(5.66) into the L.H.S of Eq.(5.67) and equating the residue ofX−1 at each λj to zero,

we obtain

X(λj) |vj〉 = 0, 1 ≤ j ≤ N. (5.68)

Then substitute Eq.(5.65) into the above equation, we get a linear system of equations as

M(|z1〉 , |z2〉 , . . ., |zN 〉) = (|v1〉 , |v2〉 , . . ., |vN 〉), (5.69)

where M is the matrix defined by (5.44).

Step 3 By solving the above system for {|zj〉} and inserting the result into (5.65), we reach the X(λ)

representation in (5.43a).

Apply similar calculations as in Steps 2 and 3 to X(λ), we can obtain the representation (5.44) for X−1.

The proof of the theorem completes. �
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5.4 Ablowitz-Kaup-Newell-Segur Hierarchy with Two Components

We begin with the matrix spectral problem

φx = Uφ = U(u;λ)φ, φ =


φ1

φ2

φ3

 , (5.70)

where

U =


−iλ p1 p2

5p̄1 − 3ip̄2 iλ 0

3ip̄1 + 2p̄2 0 iλ

 , (5.71)

u is the potential column vector

u =

p1

p2

 , (5.72)

and λ is a spectral parameter. The functions p1, p2 are functions of the spatial variable x and the temporal

variable t. For convenience we let

q1 = 5p̄1 − 3ip̄2, (5.73a)

q2 = 3ip̄1 + 2p̄2. (5.73b)

To formulate the associated Ablowitz-Kaup-Newell-Segur (AKNS) soliton hierarchy [3], we use the Tu-

Ma scheme and follow the same procedure we did in Chapter 2. We start by solving the stationary zero

curvature equation

Wx − [U,W ] = 0, (5.74)

with a solution W taking to be of the form

W =


a b1 b2

c1 d1 d2

c2 d3 d4

 . (5.75)
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Then we get 

ax = i(p1c1 + p2c2 − q1b1 − q2b2),

b1,x = i(−2λb1 − p1a+ p1d1 + p2d3),

b2,x = i(−2λb2 − p2a+ p1d2 + p2d4),

c1,x = i(2λc1 + q1a− q1d1 − q2d2),

c2,x = i(2λc2 + q2a− q1d3 − q2d4),

d1,x = i(q1b1 − p1c1), d2,x = i(q1b2 − p2c1),

d3,x = i(q2b1 − p1c2), d4,x = i(q2b2 − p2c2).

(5.76)

Taking W as a formal series:

W =


a b1 b2

c1 d1 d2

c2 d3 d4

 =

∞∑
m=0

Wmλ
−m, Wm = Wm(u) =


a[m] b

[m]
1 b

[m]
2

c
[m]
1 d

[m]
1 d

[m]
2

c
[m]
2 d

[m]
3 d

[m]
4

 , m ≥ 0, (5.77)

and comparing the coefficients of the same powers of λ in the system (5.76), we obtain the following

recursion relations

b
[m+1]
1 = −1

2(−ib[m]
1,x + p1a

[m] − p1d
[m]
1 − p2d

[m]
3 ),

b
[m+1]
2 = −1

2(−ib[m]
2,x + p2a

[m] − p1d
[m]
2 − p2d

[m]
4 ),

c
[m+1]
1 = −1

2(ic
[m]
1,x + q1a

[m] − q1d
[m]
1 − q2d

[m]
2 ),

c
[m+1]
2 = −1

2(ic
[m]
2,x + q2a

[m] − q1d
[m]
3 − q2d

[m]
4 ), m ≥ 0.

a
[m]
x = i(p1c

[m]
1 + p2c

[m]
2 − q1b

[m]
1 − q2b

[m]
2 ),

d
[m]
1,x = i(q1b

[m]
1 − p1c

[m]
1 ), d

[m]
2,x = i(q1b

[m]
2 − p2c

[m]
1 ),

d
[m]
3,x = i(q2b

[m]
1 − p1c

[m]
2 ), d

[m]
4,x = i(q2b

[m]
2 − p2c

[m]
2 ),

(5.78)

with the initial values 
b
[0]
1 = b

[0]
2 = 0, c

[0]
1 = c

[0]
2 = 0,

a
[0]
x = 0, d

[0]
1,x = d

[0]
2,x = d

[0]
3,x = d

[0]
4,x = 0.

(5.79)

We choose

a[0] = −1, d
[0]
1 = d

[0]
4 = 1, d

[0]
2 = d

[0]
3 = 0, (5.80)
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and require the following condition on constants of integration in (5.78):

Wm|u=0 = 0, m ≥ 1, (5.81)

that is, we make them equal to zero.

Therefore, the set {a[m], b
[m]
1 , b

[m]
2 , c

[m]
1 , c

[m]
2 , d

[m]
1 , d

[m]
2 , d

[m]
3 , d

[m]
4 ,m ≥ 1} is uniquely determined.

By direct calculations using the recursion relations (5.78), the first four sets of the sequence are given by


b
[1]
1 = p1, b

[1]
2 = p2,

c
[1]
1 = q1, c

[1]
2 = q2,

a[1] = 0, d
[1]
1 = d

[1]
2 = d

[1]
3 = d

[1]
4 = 0;

(5.82)



b
[2]
1 = 1

2 ip1,x, b
[2]
2 = 1

2 ip2,x,

c
[2]
1 = −1

2 iq1,x, c
[2]
2 = −1

2 iq2,x,

a[2] = 1
2(p1q1 + p2q2),

d
[2]
1 = −1

2p1q1, d
[2]
2 = −1

2p2q1,

d
[2]
3 = −1

2p1q2, d
[2]
4 = −1

2p2q2;

(5.83)



b
[3]
1 = −1

4 [p1,xx + 2p1(p1q1 + p2q2)] , b
[3]
2 = −1

4 [p2,xx + 2p2(p1q1 + p2q2)] ,

c
[3]
1 = −1

4 [q1,xx + 2q1(p1q1 + p2q2)] , c
[3]
2 = −1

4 [q2,xx + 2q2(p1q1 + p2q2)] ,

a[3] = −1
4 i(p1q1,x + p2q2,x − p1,xq1 − p2,xq2),

d
[3]
1 = −1

4 i(p1,xq1 − p1q1,x), d
[3]
2 = −1

4 i(p2,xq1 − p2q1,x),

d
[3]
3 = −1

4 i(p1,xq2 − p1q2,x), d
[2]
4 = −1

4 i(p2,xq2 − p2q2,x);

(5.84)
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and

b
[4]
1 = −1

8 i [p1,xxx + 3p1,x(p1q1 + p2q2) + 3p1(p1,xq1 + p2,xq2)] ,

b
[4]
2 = −1

8 i [p2,xxx + 3p2,x(p1q1 + p2q2) + 3p2(p1,xq1 + p2,xq2)] ,

c
[4]
1 = 1

8 i [q1,xxx + 3q1,x(p1q1 + p2q2) + 3q1(p1q1,x + p2q2,x)] ,

c
[4]
2 = 1

8 i [q2,xxx + 3q2,x(p1q1 + p2q2) + 3q2(p1q1,x + p2q2,x)] ,

a[4] = −1
8

[
3(p1q1 + p2q2)2 + p1q1,xx + p2q2,xx − p1,xq1,x − p2,xq2,x + p1,xxq1 + p2,xxq2

]
,

d
[4]
1 = 1

8(3p1q1(p1q1 + p2q2) + p1,xxq1 − p1,xq1,x + p1q1,xx),

d
[4]
2 = 1

8(3p2q1(p1q1 + p2q2) + p2,xxq1 − p2,xq1,x + p2q1,xx),

d
[4]
3 = 1

8(3p1q2(p1q1 + p2q2) + p1,xxq2 − p1,xq2,x + p1q2,xx)

d
[4]
4 = 1

8(3p2q2(p2q2 + p2q2) + p2,xxq2 − p2,xq2,x + p2q2,xx).

(5.85)

Now, we consider the temporal spectral problems

φtn = V [n]φ = V [n](u, λ)φ, (5.86)

with a series of Lax matrices

V [n] = (λnW )+ =
n∑

m=0

Wmλ
n−m, n ≥ 0, (5.87)

where P+ denotes the polynomial part of P in λ.

Substituting (5.71) and (5.87) into the zero curvature equation

Utn − V [n]
x + [U, V [n]] = 0, (5.88)

we get the AKNS soliton hierarchy with two components

utn =

p1

p2


tn

= Kn = i

−2b
[n+1]
1

−2b
[n+1]
2

 , n ≥ 0. (5.89)

The second nonlinear integrable system in the hierarchy (5.89) is
p1,t3 = −1

4

[
p1,xxx + 6p1,x

(
5 |p1|2 + |p2|2

)
+ 9ip1,x

(
p̄1p2 − 2p1p̄2

)
+ 3p2,x

(
2p1p̄2 + 3i |p1|2

)]
,

p2,t3 = −1
4

[
p2,xxx + 3p2,x

(
5 |p1|2 + 4 |p2|2

)
+ 9ip2,x

(
2p̄1p2 − p1p̄2

)
+ 3p1,x

(
5p̄1p2 − 3i |p2|2

)]
,

(5.90)

which is a coupled complex modified Korteweg-de Vries (mKdV) system.
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5.5 A Riemann-Hilbert Problem for a Coupled Complex Modified-KdV System

The aim of this section is to generate N -soliton solutions for the coupled complex mKdV system (5.90)

using the Riemann-Hilbert approach [49], where the spatial variable x is defined on the real line.

5.5.1 Formulating a Riemann-Hilbert Problem

The Lax Pair and Eigenfunctions

One of the important steps in constructing a Riemann-Hilbert problem associated with system (5.90) is to

bring in equivalent matrix spectral problems so that we can guarantee the existence of bounded analytical

eigenfunctions in the upper or lower half-plane C±. The Lax pair of the coupled complex mKdV system

(5.90) is

φx(x, t;λ) = U(x, t)φ(x, t;λ), (5.91a)

φt(x, t;λ) = V (x, t)φ(x, t;λ), (5.91b)

where φ = (φ1, φ2, φ3)T is a vector or a matrix function, λ is the spectral parameter and

U(x, t) = iλΛ + iP, (5.92a)

V (x, t) = iλ3Λ + iQ, (5.92b)

with

Λ =


−1 0 0

0 1 0

0 0 1

 , P =


0 p1 p2

5p̄1 − 3ip̄2 0 0

3ip̄1 + 2p̄2 0 0

 , (5.93)

and

Q = λ2Q(2) + λQ(1) +Q(0). (5.94)

Herein

Q(2) = P, Q(1) =


1
2(p1q1 + p2q2) 1

2 ip1,x
1
2 ip2,x

−1
2 iq1,x −1

2p1q1 −1
2p2q1

−1
2 iq2,x −1

2p1q2 −1
2p2q2

 , (5.95)
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and

Q(0) =


Q

(0)
11 Q

(0)
12 Q

(0)
13

Q
(0)
21 Q

(0)
22 Q

(0)
22

Q
(0)
31 Q

(0)
32 Q

(0)
33

 . (5.96)

where

Q
(0)
11 = −1

4 i(p1q1,x + p2q2,x − p1,xq1 − p2,xq2), Q
(0)
12 = −1

4p1,xx − 1
2(p2

1q1 + p1p2q2),

Q
(0)
13 = −1

4p2,xx − 1
2(p1p2q1 + p2

2q2), Q
(0)
21 = −1

4q1,xx − 1
2(p1q

2
1 + p2q1q2),

Q
(0)
22 = −1

4 i(p1,xq1 − p1q1,x), Q
(0)
23 = −1

4 i(p2,xq1 − p2q1,x), (5.97)

Q
(0)
31 = −1

4q2,xx − 1
2(p1q1q2 + p2q

2
2), Q

(0)
32 = −1

4 i(p1,xq2 − p1q2,x),

Q
(0)
33 = −1

4 i(p2,xq2 − p2q2,x).

For convenience we put q1 = 5p̄1 − 3ip̄2 and q2 = 3ip̄1 + 2p̄2. The compatibility condition of the Lax

pair (5.91) gives the zero curvature equation, Ut − Vx + [U, V ] = 0, which is exactly system (5.90).

To formulate a Riemann-Hilbert problem we assume that the potentials p1(x, t) and p2(x, t) are suffi-

ciently smooth functions of (x, t) which decay to zero as x, t → ±∞, (to guarantee the existence of φ for

x ∈ (−∞,∞)), and satisfy the integrable conditions∫ ∞
−∞

∫ ∞
−∞
|x|m1 |t|m2(|p1|+ |p2|)dxdt <∞, m1,m2 = 0, 1. (5.98)

The function φ defined in Eq.(5.91) is treated as a fundamental matrix of those linear equations. Looking

at Eq.(5.91), we observe that when x, t → ±∞, we have φ ∼ eiλΛx+iλ3Λt. Therefore rather than working

with the original form of Lax pair (5.91), it is more convenient to introduce a new eigenfunction ψ(x, t;λ)

as

φ(x, t;λ) = ψ(x, t;λ)eiλΛx+iλ3Λt, (5.99)

Set P̌ = iP and Q̌ = iQ. Using (5.99), the new Lax pair equations read

ψx = P̌ψ + iλ[Λ, ψ], (5.100a)

ψt = Q̌ψ + iλ3[Λ, ψ]. (5.100b)

REMARK 2.

tr(P̌ ) = tr(Q̌) = 0. (5.101)
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In the scattering problem, we only consider the spectral analysis of the x-part of (5.100), where the time

t is fixed and has been omitted in the notation.

Now let us introduce two matrix solutions ψ±(x, λ) of Eq.(5.100a) with the following asymptotic con-

ditions

ψ±(x, λ)→ I, x→ ±∞, (5.102)

respectively, where I is the 3 × 3 identity matrix. The subscripts in ψ± represent which end of the x-axis

the boundary conditions are set.

PROPOSITION 5.3.

detψ±(x, λ) = 1, for all (x, λ). (5.103)

Proof. Since ψ± satisfies Eq.(5.100a), that is

(ψ±)x = P̌ψ± + iλ[Λ, ψ±], (5.104)

we can apply the special case of the generalized Liouville’s formula using Proposition 5.1 to obtain

(detψ±)x = [tr(P̌ )] detψ±. (5.105)

Since tr(P̌ ) = 0, we get

detψ±(x, λ) = constant, for all x. (5.106)

Using the asymptotic condition (5.102), we prove (5.103). �

The Scattering Matrix S(λ)

Let

E(x, λ) = eiλΛx, (5.107)

and

Φ = ψ−E, Ψ = ψ+E. (5.108)

The matrix functions Φ(x, λ) and Ψ(x, λ) are linearly dependent since they are both matrix solutions of

(5.91a). Hence, they should be related by a matrix, say S(λ), as

Φ(x, λ) = Ψ(x, λ)S(λ), λ ∈ R. (5.109)
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So we have

ψ− = ψ+ESE
−1, λ ∈ R, (5.110)

where S(λ) = (sjk)3×3 is the scattering matrix. From Eq.(5.103), it is clear that

detS(λ) = 1. (5.111)

The Definition of P±(λ)

PROPOSITION 5.4. For λ ∈ R, the relation in (5.100a) can be converted to the Volterra integral equations

ψ−(x, λ) = I +

∫ x

−∞
eiλΛ(x−y)P̌ (y)ψ−(λ, y)eiλΛ(y−x)dy, (5.112a)

ψ+(x, λ) = I −
∫ ∞
x

eiλΛ(x−y)P̌ (y)ψ+(λ, y)eiλΛ(y−x)dy. (5.112b)

Proof. Dealing with Eq.(5.91a) as an inhomogeneous ordinary differential equation where P̌ φ is the inho-

mogeneous term, we see that E is the solution of the homogeneous part

φx = iλΛφ. (5.113)

Then through the method of variation of parameters with the asymptotic condition (5.102), we attain

Eq.(5.112). �

If the convergence of the integrals on the right hand sides of the Volterra integral equations (5.112) is

guaranteed, then the eigenfunctions ψ±(x, λ) allow analytical extensions off the real axis λ ∈ R.

LEMMA 5.2. If we write down ψ±(x, λ) as ψ± = (ψ
(1)
± , ψ

(2)
± , ψ

(3)
± ) where ψ(i)

± (i = 1, 2, 3) are columns,

then we have

1. ψ(1)
− , ψ

(2)
+ , and ψ(3)

+ are analytic in λ ∈ C+,

2. ψ(1)
+ , ψ

(2)
− , and ψ(3)

− are analytic in λ ∈ C−.

Proof. Based on Λ and P̌ , it is clear that the integral equation for the first column of ψ−, ψ(1)
− , consists of

only the exponential element e2iλ(x−y) that decays while λ ∈ C+, and the integral equation for the last two

columns of ψ+, ψ(2)
+ and ψ(3)

+ , consists of only the exponential element e2iλ(y−x) that also decays while

λ ∈ C+. Therefore, we can analytically extend the three columns ψ(1)
− , ψ

(2)
+ and ψ(3)

+ to the upper half

plane C+. In the same way, the columns ψ(1)
+ , ψ

(2)
− and ψ(3)

− can be analytically extended to the lower half

plane C−. �
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Hence, the matrix solution

P+ = P+(x, λ) = [ψ
(1)
− , ψ

(2)
+ , ψ

(3)
+ ] = ψ−H1 + ψ+H2, (5.114)

is analytic for λ ∈ C+, and the matrix solution

[ψ
(1)
+ , ψ

(2)
− , ψ

(3)
− ] = ψ+H1 + ψ−H2, (5.115)

is analytic for λ ∈ C−, where

H1 ≡ diag(1, 0, 0), H2 ≡ diag(0, 1, 1). (5.116)

From the Volterra integral equations (5.112), we get

P+(x, λ)→ I, λ ∈ C+ →∞, (5.117)

and

[ψ
(1)
+ , ψ

(2)
− , ψ

(3)
− ]→ I, λ ∈ C− →∞. (5.118)

In what follows, the analytic counter part of P+ in the lower half plane C− is constructed. From

Eq.(5.100), we find that the adjoint equation of the x-part reads

ψAx = −ψAP̌ − iλ[ψA,Λ]. (5.119)

PROPOSITION 5.5. The inverse matrices ψ−1
± satisfy the adjoint equations (5.119).

Proof. Substituting Eq.(5.100a) into the relation

0 = (I)x = (ψψ−1)x = ψxψ
−1 + ψ(ψ−1)x, (5.120)

we get

(ψ−1)x = −ψ−1P̌ − iλ[ψ−1,Λ], (5.121)

which means that ψ−1
± satisfies the adjoint equation (5.119) �

By expressing ψA± as

ψA+ =


ψ̃

(1)
+

ψ̃
(2)
+

ψ̃
(3)
+

 , ψA− =


ψ̃

(1)
−

ψ̃
(2)
−

ψ̃
(3)
−

 , (5.122)
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where ψ̃(j)
± denotes the jth row of ψA± (j = 1, 2, 3), and using similar approach as in the proof of Lemma

5.2, we can show that the adjoint matrix solution

P− = P−(x, λ) =


ψ̃

(1)
−

ψ̃
(2)
+

ψ̃
(3)
+

 = H1ψ
A
− +H2ψ

A
+, (5.123)

is analytic for λ in the lower half-plane C−, and the adjoint matrix solution
ψ̃

(1)
+

ψ̃
(2)
−

ψ̃
(3)
−

 = H1ψ
A
+ +H2ψ

A
−, (5.124)

is analytic for λ in the upper half-plane C+. Similarly, we find that

P−(x, λ)→ I, λ ∈ C− →∞, (5.125)

and 
ψ̃

(1)
+

ψ̃
(2)
−

ψ̃
(3)
−

→ I, λ ∈ C+ →∞. (5.126)

The Riemann-Hilbert Problem and the Time Evolution of the Scattering Data

Now, two matrix functions P±(x, λ) that are analytic in C±, respectively, have been built. On the real line,

combining Eqs.(5.110), (5.114), and (5.123), we arrive at

P−(x, λ)P+(x, λ) = G(x, λ), λ ∈ R, (5.127)

where

G = E(H1 +H2S(λ))(H1 + S−1(λ)H2)E−1,

= E


1 ŝ12 ŝ13

s21 1 0

s31 0 1

E−1. (5.128)

S−1(λ) = (S(λ))−1 = (ŝjk)3×3 is the inverse of the scattering matrix S(λ). Hence, the associated matrix

Riemann-Hilbert problem we desire to formulate for the coupled complex mKdV system (5.90) is defined
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by the relations (5.127)-(5.128). The canonical normalization condition for this RHP is determined from

(5.117) and (5.125) as

P±(x, λ)→ I, λ ∈ C± →∞. (5.129)

To complete the direct scattering transform, the time evolution of the scattering data

{ŝ12(λ), ŝ13(λ), s21(λ), s31(λ), λ ∈ R; λk, λ̂k, vk, v̂k, 1 ≤ k ≤ N}, (5.130)

has to be determined.

PROPOSITION 5.6. The scattering coefficients s12(λ), s13(λ), s21(λ), s31(λ) are time dependent while all

other scattering coefficients are time independent.

Proof. Recall Eq.(5.110)

ψ−E = ψ+ES, λ ∈ R. (5.131)

Since ψ± satisfies Eq.(5.100b), then multiplying Eq.(5.100b) byE we find that ψ−E, that is, ψ+ES also

complies with the temporal equation (5.100b).

Substituting ψ+ES into Eq.(5.100b) leads to

(ψ+ES)t = Q̌(ψ+ES) + iλ3[Λ, ψ+ES]. (5.132)

By Taking the limit of the above equation as x→∞, and utilizing the asymptotic condition (5.102) for

ψ+ in addition to the vanishing condition Q̌→ 0 as x→ ±∞, we obtain

St = iλ3[Λ, S]. (5.133)

This equation leads to
s12(λ, t) = s12(λ, 0)e2iλ3t, s13(λ, t) = s13(λ, 0)e2iλ3t,

s21(λ, t) = s21(λ, 0)e−2iλ3t, s31(λ, t) = s31(λ, 0)e−2iλ3t,

(5.134)

and all other scattering coefficients are time independent. �
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5.5.2 N -Soliton Solutions of the Coupled Complex Modified-KdV System

In this section, we analyze the solution for the Riemann-Hilbert problem with zeros. As mentioned in

Section 5.3, the solution to the non-regular Riemann-Hilbert problem (5.127) is not unique except if we

specify the zeros of detP+ in the upper half of the λ-plane and detP− in the lower half of the λ-plane and

find the structures of kerP± at these zeros.

Based on the definition of P±, Eq.(5.114), Eq.(5.123) and the scattering relation(5.110), we have

detP+(λ) = s11(λ), detP−(λ) = s22(λ)s33(λ)− s23(λ)s32(λ), (5.135)

and since detS = 1, we get

detP+(λ) = s11(λ), detP−(λ) = ŝ11(λ). (5.136)

The number of zeros for detP+ and detP− should be the same, or otherwise the associated Riemann-

Hilbert problem is not solvable. Hence, let N be a natural number and assume that s11 has N simple zeros

{λk ∈ C+, 1 ≤ k ≤ N}, and ŝ11 has N simple zeros {λ̂k ∈ C−, 1 ≤ k ≤ N}. Then each of kerP+(λk)

(kerP−(λ̂k)) contains only a single column vector vk (row vector v̂k), respectively,

P+(λk)vk = 0, v̂kP
−(λ̂k) = 0, 1 ≤ k ≤ N. (5.137)

The Riemann-Hilbert problem (5.127) with the canonical normalization condition (5.129) and the zero

structure (5.137) can be solved using Theorem 5.4 and hence the potential P can be reconstructed as

follows. By expanding P+ in the way that

P+(x, λ) = I +
1

λ
P+

1 (x) +O(
1

λ2
), λ→∞, (5.138)

and substituting this expansion into Eq.(5.100a) (noting that P+ is a solution to this equation), and com-

paring terms of the same order in λ−1, we observe that

P̌ = −i[Λ, P+
1 ]. (5.139)

Consequently, the potential matrix P can be presented by

P = −[Λ, P+
1 ] =


0 2(P+

1 )12 2(P+
1 )13

−2(P+
1 )21 0 0

−2(P+
1 )31 0 0

 , (5.140)

where P+
1 = ((P+

1 )jl)3×3. This implies that the potentials p1 and p2 can be obtained by

p1 = 2(P+
1 )12, p2 = 2(P+

1 )13. (5.141)
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The Symmetry Properties

Notice that the potential matrix

P =


0 p1 p2

5p̄1 − 3ip̄2 0 0

3ip̄1 + 2p̄2 0 0

 , (5.142)

has the following symmetry property

P † = −BPB−1, (5.143)

where the superscript ”†” refers to the Hermitian conjugate, and the anti-Hermitian matrix B is given by

B =


1 0 0

0 2 3i

0 −3i 5

 . (5.144)

The following proposition shows the symmetry properties of the scattering matrix S(λ) and the matrix

solution ψ±.

PROPOSITION 5.7. Zeros of detP+ and detP− satisfy the symmetry property

λ̂k = λ̄k, 1 ≤ k ≤ N, (5.145)

and vectors in kerP+(λk) and kerP−(λ̂k) have the involution relation

v̂k = v†kB, 1 ≤ k ≤ N, (5.146)

Proof. First we find the involution property of the matrix function ψ±.

Taking the Hermitian conjugate of Eq.(5.100a), we have

(ψ†±(λ̄))x = −iλ[ψ†±(λ̄),Λ]− ψ†±(λ̄)P̌ †. (5.147)

Then multiplying Eq.(5.147) by B from the right and utilizing the symmetry property (5.143), gives

(ψ†±(λ̄)B)x = −iλ[ψ†±(λ̄)B,Λ]− ψ†±(λ̄)BP̌ , (5.148)

this means that ψ†±(λ̄)B is a matrix solution for the adjoint equation (5.119).

Noting that ψ−1
± (λ) is also a matrix solution of Eq.(5.119), this implies that ψ†±(λ̄)B and ψ−1

± (λ) must

be linearly related, say, ψ†±(λ̄)B = Cψ−1
± (λ), where the matrix C does not depend on x. Through the
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boundary conditions (5.102) of ψ±(λ), we conclude that C = B. Thus, the involution property illustrated

as follows

ψ†±(λ̄) = Bψ−1
± (λ)B−1, (5.149)

is satisfied by the matrix solutions ψ±, where λ̄ denotes the complex conjugate of λ.

Second, it follows from the scattering relation (5.110) that S satisfies

S†(λ̄) = BS−1(λ)B−1, (5.150)

which gives rise to the following relation

s11(λ̄) = ŝ11(λ). (5.151)

Hence, we have

λ̂k = λ̄k, 1 ≤ k ≤ N. (5.152)

Finally, the involution property of P± comes from the above property in addition to Eqs(5.114) and

(5.123) as

(P+)†(λ̄) = BP−(λ)B−1. (5.153)

The symmetry properties (5.146) for the vectors vk and v̂k is obtained by taking the Hermitian conjugate

of the left equation in (5.40) and using the properties (5.145) and (5.153) to attain

v†kBP
−(λ̂k) = 0, 1 ≤ k ≤ N. (5.154)

As a result of comparing the above equation with the second equation in (5.137), one obtain

v̂k = v†kB, 1 ≤ k ≤ N. (5.155)

�

The Spatial and Temporal Evolutions

Now we determine the spatial and temporal evolutions for the kernel vectors (vk, v̂k), (1 ≤ k ≤ N) as

follows. Differentiate the first equation in (5.137) with respect to x and note that P+ satisfies Eq.(5.100a),

we have

P+(λk, x)
(dvk
dx
− iλkΛvk

)
= 0, 1 ≤ k ≤ N. (5.156)
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This means that for each k = 1 . . . N ,
dvk
dx
− iλkΛvk is in the kernel of P+(λk) and so is a constant

multiple of vk. With out loss of generality, we may assume that

dvk
dx

= iλkΛvk, 1 ≤ k ≤ N. (5.157)

On the other hand, we take the t-derivative of P+(λk)vk = 0 and utilize Eq.(5.100b) to get

dvk
dt

= iλ3
kΛvk, 1 ≤ k ≤ N. (5.158)

By solving the two equations above, we reach

vk(x, t) = eiλkΛx+iλ3kΛtvk,0, 1 ≤ k ≤ N, (5.159)

where each vk,0 = vk(x = 0, t), 1 ≤ k ≤ N , is an arbitrary constant column vector. Adopting similar

arguments for v̂k, one attains

v̂k(x, t) = v̂k,0e
−iλ̂kΛx−iλ̂3kΛt, 1 ≤ k ≤ N, (5.160)

where each v̂k,0 = v̂k(x = 0, t), 1 ≤ k ≤ N , is an arbitrary constant row. From the involution property of

the vector v̂k(x, t) (5.146), it follows that

v̂k(x, t) = v†k,0e
−iλ̄kΛx−iλ̄3kΛt, 1 ≤ k ≤ N. (5.161)

N -Soliton Solutions

In order to generate N -soliton solutions we take the jump matrix G to be the identity matrix I in the

Riemann-Hilbert problem (5.127). In this case, the scattering data (s21, s31, ŝ12, ŝ13) are all zeros, and the

corresponding scattering equation (5.100) is called reflectionless. This special Riemann-Hilbert problem

has the unique solution given by Theorem 5.4 as

P+(λ) = I −
N∑

j,k=1

vj(M
−1)jkv̂k

λ− λ̂k
, (5.162)

and

P−(λ) = I +
N∑

j,k=1

vj(M
−1)jkv̂k

λ− λj
. (5.163)

where the matrix M = (Mjk)N×N and its entries Mjk are given by Eq.(5.44).

From the expansion of P+ (5.138), we see that

P+
1 (x, t) = −

N∑
j,k=1

vj(M
−1)jkv̂k. (5.164)
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Using the symmetry property (5.145) and the involution property (5.146), we see that P+
1 (x, t) satisfies

(P+
1 )† = −BP+

1 B
−1. (5.165)

Therefore, through the reconstruction formula (5.141) we obtain the N -soliton solutions to the coupled

complex mKdV system (5.90):

p1 = 2(P+
1 )12 = −2

N∑
j,k=1

vj,1(M−1)jkv̂k,2, (5.166)

p2 = 2(P+
1 )13 = −2

N∑
j,k=1

vj,1(M−1)jkv̂k,3, (5.167)

where the vectors vk = (vk,1, vk,2, vk,3)T and v̂k = (v̂k,1, v̂k,2, v̂k,3), 1 ≤ k ≤ N , are given by (5.159) and

(5.161), respectively.
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