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ABSTRACT

In this dissertation we investigate self-distributive algebraic structures and their coho-

mologies, and study their relation to topological problems in knot theory. Self-distributivity

is known to be a set-theoretic version of the Yang-Baxter equation (corresponding to Rei-

demeister move III) and is therefore suitable for producing invariants of knots and knotted

surfaces. We explore three different instances of this situation. The main results of this dis-

sertation can be, very concisely, described as follows. We introduce a cohomology theory of

topological quandles and determine a class of topological quandles for which the cohomology

can be computed, at least in principle, by means of the cohomology groups of smaller and

discrete quandles. We utilize a diagrammatic description of higher self-distributive structures

in terms of framed links via a functorial procedure called doubling, and generalize previously

known (co)homology theories to introduce a cocycle invariant of framed links. Finally, we

study a class of ternary self-distributive structures called heaps, and introduce two cohomol-

ogy theories that classify their extensions. We show that heap cohomology is related to both

group cohomology (via a long exact sequence) and ternary self-distributive cohomology (the

heap second cohomology group canonically injects into the ternary self-distributive one with

modified coefficients). We also develop the theory in the context of symmetric monoidal

categories.
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CHAPTER 1 : INTRODUCTION

Knot theory is the study and classifications of the embeddings of S1, the unit circle

in the plane R2, into the three dimensional euclidean space R3 or its compactification S3.

Such an embedding is what we refer to as a knot. Two knots are considered to be equivalent

if there exists an ambient isotopy transforming one into the other. In other words, given

two knots K1 and K2, we say that they are equivalent, and write K1
∼= K2, if there exists

a continuous map F : [0, 1] × R3 −→ R3 such that F (0, K1) = K1, F (1, K1) = K2 and

F (t, •) is required to be a homeomorphism for all t, see [PS97] for instance. It is often

required in the literature a “smoothness” assumption, meaning that the embeddings are

differentiable maps with nonsingular differential, the isotopies depend smoothly on the first

variable t ∈ [0, 1] and for a fixed value of the parameter t, they induce a diffeomorphism

of R3 onto itself. Equivalently, we can require embeddings to be piecewise linear. The two

types of requirements are essentially the same, in the sense that the two theories can be seen

to correspond “bijectively”. Smooth (and pieciewise linear) knots admitting an immersion in

R2, obtained as a projection, with finitely many double points (no tangent points allowed)

are called tame, in contrast with wild knots, to which no extra requirement is applied. More

generally, a link is an embedding of finitely many copies of S1. The definition of isotopy in

the case of links is essentially the same as in the case of knots.
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1.1 Knot diagrams

Of fundamental importance to the classification of knots and links, is the concept of

diagram of a knot or a link. This is a generically immersed closed plane curve together with

over/under crossing information corresponding to each double point. See the description in

Chapter 1 of [CS98], for a detailed account of knot diagrams and their generalizations to

knotted surfaces. See also [CJK+, PS97]. The relevance of the concept of diagram relies in

the fact that it allows to translate topological problems into combinatorial ones.

Given two diagrams D1 and D2, it is natural to ask whether they represent the same

knot/link or not. Consider for instance the "O" shaped and the "8" shaped diagrams. It is

intuitively clear that they both correspond to the same embedding of the circle, since it is

possible to untwist the 8. The answer to this question has been given by K. Reidemeister

in the 1930’s. To this purpose, he has introduced three kinds of diagram manipulations

that now are referred to as Reidemeister moves of type I, II and III. We refer the reader to

[PS97, CS98] for a diagrammatic depiction of Reidemeister moves.

Theorem 1.1.1. Two link diagrams correspond to isotopic links if and only if one can be

obtained from the other via plane isotopies and finitely many applications of Reidemeister

moves.

This fundamental result provides the correspondence between topology of knots/links

and combinatorics. To determine isotopic classes of links is the same as to determine classes

of diagrams up to plane isotopy and Reidmeister moves.

2



1.2 Knot Invariants

In order to classify knots/links (up to ambient isotopy), it is of central importance

the notion of knot invariant, i.e. a quantity that does not depend on the representatiave of

the equivalence class of the knot/link.

Famous examples of knot invariants include polynomial invariants like Alexander

polynomial, Jones polynomial, HOMFLY-PT polynomial; homological invariants such as

Khovanov homology (a categorification of Jones polynomial); categorical invariants such as

the Reshetikin-Turaev invariant for ribbon graphs.

Of specific interest to us, will be the notion of cocycle invariant introduced by Carter,

Jelsovsky, Kamada, Langfor and Saito in [CJK+], and generalized by Carter, Elhamdadi,

Grana and Saito in [CEGnS] to the case of quandle homology with non abelian coefficients.

See also [CES, CENS]. We give a brief overview of this invariant, along with the notion of

quandle and its homology in Section 1.3 below.

1.3 Quandles and Cocycle Invariants

Quandles are algebraic objects that encode the essence of Reidmeister moves. They

have been introduced in the 1920’s in [BM29], under the name of Distributive Groups. See

also [Tak43].

Matveev, in [Mat], and Joyce, in [Joy82], later showed that for a given a knot, using

a procedure similar to the Wirtinger presentation of the fundamental group (i.e. the first

3



homotopy group), it is possible to construct what is called fundamental quandle of the knot.

They also showed that the fundamental quandle is a complete invariant of a knot, up to mirror

symmetry and orientation reversal. Unfortunaly, this invariant is usually computationally

extremely difficult to determine. The books [Nos17, EN] are good references regarding the

theory of quandles.

Definition 1.3.1. A quandle is a set X togehter with a binary operation ∗ : X ×X −→ X

satisfying the following three axioms

• x ∗ x = x, for all x ∈ X,

• the right multiplicaiton map − ∗ x : X −→ X is a bijection for all x ∈ X, where − is

a placeholder,

• (x ∗ y) ∗ z = (x ∗ z) ∗ (y ∗ z), for all x, y, z ∈ X.

Remark 1.3.1. The three axioms in the definition of quandle correspond to Reidmeister

moves of type I, II and III.

A binary operation satisfying only the third axiom (self-distributivity) is called shelf,

while a binary operation satisfying second and third axioms is called rack. Therefore a

quandle is an idempotent rack.

Given two quandles (resp. racks or shelfs) (X, ∗X) and (Y, ∗Y ), we define a ho-

momorphism of quandles (resp. racks or shelfs) f : X −→ Y , to be a map satisfying

f(x ∗X y) = f(x) ∗Y f(y) for all x, y ∈ X. Quandles (resp. racks or shelfs) together with

4



their homomorphisms give rise therefore to a category. The isomorphisms in this categories

are the bijective homomorphisms.

Example 1.3.2. Every group G, endowed with the operation of conjugation x ∗ y := yxy−1

defines a quandle structure. This quandle is called conjugation quandle.

Example 1.3.3. A group G with the operation a ∗ b := ba−1b is a quandle called the core

quandle of G.

Example 1.3.4. Any Λ(= Z[t, t−1])-module M is a quandle with a ∗ b := ta + (1− t)b, for

a, b ∈M , and is called an Alexander quandle.

Example 1.3.5. Given a group G and an automorpism f ∈ Aut(G), it is easy to show that

x∗y := f(xy−1)y defines a quandle structure. This is called a generalized Alexander quandle.

Remark 1.3.6. If X is a rack, then by the second axiom of Definition 1.3.1, it follows

that the right multiplication map Rx is a bijection for all x ∈ X. Moreover, using the

third axiom of Definition 1.3.1, it follows that Rx is a rack automorphism. Consider now the

subgroup of Aut(X) generated by the right multiplication maps Rx, indicated by Int(X), and

called the interior automorphisms group. A rack is said to be indecomposable if Int(X) acts

transitively on X. The word connected is also commonly found in the literature. We prefer

to use “indecomposable” mostly because of the possible ambiguity arising in the topological

context of Chapter 2.

In [CJK+], a cohomology theory of quandles has been introduced, and utilized to

construct invariants of knots, called cocycle invariants. We briefly recall the definition of
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quandle (co)homology.

Let (X, ∗) be a quandle. Define the chain group of order n, written Cn(X), to be the

free group generated by n-tuples (x1, . . . , xn) ∈ X×n. We define differentials ∂n : Cn(X) −→

Cn−1(X) on generators by the assignment

∂n(x1, . . . , xn) :=
n∑
i=2

[(x1, . . . , x̂i, . . . , xn)− (x1 ∗ xi, x2 ∗ xi, . . . , x̂i, . . . , xn)],

where, as usual, the symbol ̂ indicates omission of the underlying element. It is easy to see

that the differentials ∂n satisfy ∂n−1∂n = 0, therefore defining a chain complex. As usual,

Zn(X) indicates the group of n-cycles, and Bn(X) indicates the subgroup of n-boundaries.

Given an abelian group A, we obtain a cohomology theory by dualization. We refer the reader

to [Moc, Nos] for examples of computations of quandle cohomology groups and constructions

that relate the quandle cohomology to invariant theory, respectively.

Definition 1.3.2 ([CJK+]). A coloring of a link diagram D by a quandle X, is a function

C : R −→ X, where R is the set of arcs of the diagram D, with the following property.

Suppose we have a crossing as in Figure 1.1 left, where we assume the orientation of the over

arc to be downward, with the over arc r given the color C(r) = y, and the under arcs r1

and r2, reading from top to bottom. Then it is required that if C(r1) = x, r2 is given color:

C(r2) = x ∗ y.

Remark 1.3.7. A crossing as in the left diagram of Figure 1.1, with arrows oriented down-

wards, is called a positive crossing. In the same situation, with inverted over-passing/under-

6



passing arrows, we say that the crossing is negative. A good mnemonic rule to remember

how to determine if a crossing is positive or negative is given by the “right hand rule”, as for

the cross product. See Figure 4 in [CJK+].

1

0 1

y

0
, y , 

y

y )T* y

yx

(x x

y

x*

x

Figure 1.1: Diagrammatic representations of a binary (left) and ternary (right) operations

In order to define the cocycle invariant, we need one more preliminary definition.

Definition 1.3.3 ([CJK+]). Let φ ∈ Z2(X,A) be a quandle 2-cocycle. A Boltzmann weight

B(τ, C), at the crossing τ is defined in the following way. Let y be the color of the over arc

and x and x∗y be the colors of the under arcs accoding to the rules in Definition 1.3.2. Then

we set B(τ, C) := φ(x, y)ε(τ), where ε(τ) = ±1 for a positive (resp. negative) crossing τ .

Finally, we are able to introduce the cocycle invariant.

Definition 1.3.4 ([CJK+]). Given φ ∈ Z2(X,A), the Botlzmann state sum is given by the

expression ∑
C

∏
τ

B(τ, C),

where the sum is taken over all the possible colorings of the link diagrams, and for a given

coloring, τ varies among all the crossings.

7



Remark 1.3.8. Observe that in Definition 1.3.3 and Definition 1.3.4, the group A is assumed

to be in multiplicative notation. The Boltzmann state sum is an element of the group ring

of A.

In [CJK+] is then proved that the Boltzmann state sum is indeed a link invariant.

Specifically, we have the following result.

Theorem 1.3.9. The Boltzmann state sum in Definition 1.3.4 is invariant under Reidmeis-

ter moves. It therefore defines an invariant of links denoted by Φ(K).

As we will see in Chapter 3, it is possible to generalize this construction to the

case of framed links and their diagrams using ternary quandle cohomology and a functorial

procedure that we call doubling.

1.4 Ternary and Higher Arity Self-Distributivity

The notion of quandle has been recently generalized to ternary and higher arity

operations, see for instance [CEGM, Gre]. As will be described in Chapter 3, a diagrammatic

interpretation of these operations requires now more strings at once and is particularly

suitable to describe framed links. We hereby recall the definition of ternary self-distributive

operation and ternary cohomology. The natural generalization to higher arities is obtained by

introducing the appropriate number of variables and does not present a particular hindrance.

We begin with the following definitions.

8



Definition 1.4.1. Let (X,T ) be a set equipped with a ternary operation T : X×X×X → X.

The operation T is said to be ternary self-distributive if it satisfies the following condition

for all x, y, z, u, v ∈ X,

T (T (x, y, z), u, v) = T (T (x, u, v), T (y, u, v), T (z, u, v)).

Definition 1.4.2. Let T : X ×X ×X → X be a ternary distributive operation on a set X.

If for all a, b ∈ X, the map Ra,b : X → X given by Ra,b(x) = T (x, a, b) is invertible, then

(X,T ) is said to be a ternary rack. If further T satisfies

T (x, x, x) = x

, for all x ∈ X. Then (X,T ) is called a ternary quandle.

Example 1.4.1. The following constructions are found in [EGM].

• Let (X, ∗) be a rack and define a ternary operation on X by T (x, y, z) = (x ∗ y) ∗ z,

for all x, y, z ∈ X. It is straightforward to see that (X,T ) is a ternary rack. Note that

in this case Ra,b = Rb ◦Ra. We will say that this ternary rack is induced by a (binary)

rack.

In particular, if (X, ∗) is an Alexander quandle with x ∗ y = tx + (1 − t)y, then the

ternary rack coming from X has the operation

T (x, y, z) = t2x+ t(1− t)y + (1− t)z.

9



• Let M be any Λ-module where Λ = Z[t±1, s]. The operation T (x, y, z) = tx+sy+(1−

t− s)z defines a ternary rack structure on M . We call this an affine ternary rack.

In particular, consider Z8 with the ternary operation T (x, y, z) = 3x + 2y + 4z. This

affine ternary rack given in [EGM] is not induced by an Alexander quandle structure

as described in the preceding item since 3 is not a square in Z8.

• Any group G with the ternary operation T (x, y, z) = xy−1z gives a ternary rack. This

operation is well known and called heap (sometimes also called groud) of the group G.

For a ternary distributive operation T on X, we also use the notation

x ∗ y := T (x, y0, y1),

where y = (y0, y1). Although strictly speaking T (x, y0, y1) is not equal to T (x, (y0, y1)), no

confusion is likely to happen by this convention. Furthermore, for x = (x0, x1), we use the

notation x ∗ y to represent

(x0 ∗ y, x1 ∗ y) = (T (x0, y0, y1), T (x1, y0, y1)).

In this notation the ternary distributivity can be written as

(x ∗ y) ∗ z = (x ∗ z) ∗ (y ∗ z)

in analogy to the binary case.
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We also recall the definition of homology of ternary racks [EGM]. Define first Cn(X)

to be the free abelian group generated by (2n + 1)-tuples (x0, x1, . . . , x2n) of elements of a

ternary rack (X,T ). Define the differentials ∂n : Cn(X) −→ Cn−1(X) as:

∂n(x0, x1, . . . , x2n)

=
n∑
i=1

(−1)i[(x0, . . . , x̂2i−1, x̂2i, . . . , x2n)

−(T (x0, x2i−1, x2i), . . . , T (x2i−2, x2i−1, x2i, ), x̂2i−1, x̂2i, . . . , x2n)].

Definition 1.4.3. The nth homology group of the ternary rack X is defined to be:

Hn(X) = ker∂n/im∂n+1.

By dualizing the chain complex given above, we get a cohomology theory for ternary

racks.
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CHAPTER 2 : CONTINUOUS COHOMOLOGY OF TOPOLOGICAL

QUANDLES

Topological quandles were introduced by R.L. Rubinsztein in [Rub07] to construct an

invariant of links, indicated with the symbol JQ(L), for a link L and a fixed topological quan-

dle Q. Roughly speaking, this invariant is a topological space consisting of the fixed points

of the action of an element of the braid group Bn on a topological quandle Q. Two other

possible interpretations of the invariant are as follows. Given a link L, we can contruct the

fundamental quandle Q(L) associated to it. It is possible to show that the space of quandle

homomorphism Homq(Q(L), Q) endowed with the compact-open topology is homeomorphic

to JQ(L). Lastly, one can interpret JQ(L) as the space of coloring of a fixed diagram D of

the link L, with colors belonging to Q. This point of view is due to Oleg Viro (see [Rub07]).

The main purpose of this chapter is to introduce a cohomology theory for topological

quandles and techniques to compute continuous cohomology groups. One natural question

that arises is whether or not the continuous cohomology differs from the standard (discrete)

one. We will show that it is indeed the case that the two theories differ, providing an

explicit example in which the continuous (i.e. topological chomology is zero while the discrete

cohomology is not.

The chapter is organized as follows. In the first section we recall the definition and
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basic examples of topological quandles. In the second section we introduce a cohomology

theory for topological quandles and study general properties of the first and second cohomol-

ogy groups. In particular we will see that, as usual, the second cohomology group classifies

extensions. In the third section we introduce the notion of inverse and direct limit of quan-

dles and utilize it to provide a computation of cohomology groups. Furthermore we will

see that the cohomology groups of inverse limits of quandles are isomorphic, under certain

hypothesis to the direct limit of the cohomology of the components, a result analogous to

one which is quite known in the group theoretic context.

The present chapter is based on the article [ESZ19].

2.1 Basics of Topological Quandles

Definition 2.1.1. Let X be a topological space together with a continuous operation ∗ :

X ×X −→ X, usually indicated as ∗(x, y) = x ∗ y. We say that X is a topological quandle

if ∗ satisfies the properties

• for all x ∈ X we have x ∗ x = x, i.e. the operation is idempotent;

• for all y ∈ X the right multiplication map X −→ X, given by x 7→ x ∗ y is a homeo-

morphism;

• for all x, y, z ∈ X (x ∗ y) ∗ z = (x ∗ z) ∗ (y ∗ z).

Here we have a list of typical examples of topological quandles encountered in the

literature.
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Example 2.1.1. Any topological group G becomes a topological quandle with operation

∗ given by conjugation: x ∗ y = y−1xy. This quandle is denoted Conj(G), the conjugation

quandle associated to G.

For a topological group G and a continuous automorphism f : G → G, x ∗ y =

f(xy−1)y for x, y ∈ G defines a topological quandle structure on G. This is called a gen-

eralized Alexander quandle and is denoted by (G, f). If G is abelian, then the conjugation

quandle is called an Alexander quandle.

In particular, for any T ∈ GL(n,R), Rn can be given a topological quandle structure

by defining x ∗ y = Tx+ (I − T )y, for all x, y ∈ Rn, where I denotes the identity matrix.

The following two examples can be found in [Rub07].

Example 2.1.2. Consider the n-dimensional sphere Sn ⊂ Rn+1. The operation x ∗ y =

2 〈x|y〉 y − x, for all x, y ∈ Sn endows the sphere with a topological quandle structure,

where 〈x|y〉 denotes the standard inner product in Rn+1. Also, this operation induces a

topological quandle structure on the real projective space RPn giving a topological quandle

homomorphism Sn → RPn.

Example 2.1.3. Let V be a finite dimensional complex vector space and let q ∈ C be

a modulus one complex number. For each 1 ≤ k ≤ dim(V ), consider the grassmannian

Grk(V ). Given an element U ∈ Grk(V ), choose an orthonormal basis {u1, . . . , uk} of U and

define the map ιqU : V −→ V by the assignment ιqU(v) = qv + (1 − q)
∑

i 〈v|ui〉 v, where

〈−|−〉 stands for the standard inner product. We can define an operation on Grk(V ) by
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U ∗ V = ιqV (U). This operation turns the grassmannian into a topological quandle.

We can define the category of topological quandles, denoted T Q, as follows. The

objects are topological quandles and, given two objects X and Y , a morphism f : X −→ Y

is a morphism of quandles that is continuous with respect to the topologies of X and Y . It

is clear that T Q is a subcategory of Q, the category of quandles.

2.2 Continuous Cohomology

In this section we define a cohomology theory for topological quandles. We would

also like to point out that a similar construction for smooth quandles has been introduced

by Nosaka in [Nos18].

Let X be a topological quandle. Let A be a topological abelian group, T : A → A

be a continuous automorphism, and A is also considered with the generalized Alexander

quandle structure (A, T ). We define the n-cochain group to be the set of continuous maps

from n-tuples (x1, . . . , xn) ∈ Xn to A, endowed with the abelian group structure induced by

pointwise addition in A, where Xn is given the product topology. We indicate the n-cochain

group by the symbol Γn(X,A). Define the maps Γn(X,A) −→ Γn+1(X,A), n ∈ N as in the

discrete case, namely

δi0f(x1, . . . , xn+1) = f(x1, . . . , x̂i, . . . , xn+1);

δi1f(x1, . . . , xn+1) = f(x1 ∗ xi, . . . , xi−1 ∗ xi, xi+1, . . . , xn+1).
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We now set the differentials to be

δn =
n+1∑
i=1

(−1)i[Tδi0 − δi1].

It is easy to show that the differentials satisfy δn+1δn = 0. We therefore define the nth-

cohomology group as usual and indicate them by Hn
TC(X,A). We assume further that

the map δ0 is defined to be the canonical inclusion of the trivial group into Γ1(X,A), i.e.

H1
TC(X,A) = Γ1(X,A).

When T = 1, the groups Hn
TC(X,A) are called (untwisted) continuous quandle coho-

mology groups and will be denoted Hn
C(X,A).

Continuous cohomology groups in low dimensions take the following form.

Example 2.2.1. Let X be a topological quandle and (A, T ) be a topological Alexander

quandle. Then a continuous map η : X → A is a continuous 1-cocycle if it satisfies T [η(y)−

η(x)] − [η(y) − η(x ∗ y)] = 0, that is, η is a continuous quandle homomorphism, η(x ∗ y) =

Tη(x) + (1 − T )η(y). If, in particular, T = 1 and A is considered as a topological abelian

group with trivial quandle structure, then the 1-cocycle condition is η(x ∗ y) = η(x).

A continuous map φ : X2 → A is a 2-cocycle if and only if it satisfies the condition:

Tφ(x1, x2) + φ(x1 ∗ x2, x3) = Tφ(x1, x3) + (1− T )φ(x2, x3) + φ(x1 ∗ x3, x2 ∗ x3)

and φ(x, x) = 0. These considerations appear in [CES] except the requirement of continuity.
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The notation that we will use throughout the rest of this chapter, to indicate the

various type of cohomologies, is summarized as follows.

HQ : Original (untwisted) HT : Original twisted

HC : Continuous (untwisted) HTC : Continuous twisted

HGC : Continuous generalized (quandle module)

The cohomologyHGC is a continuous version of Andruskiewitsch-Grana’s generalized quandle

cohomology, see [AGn], and will be treated in Section 2.5.

2.3 First Continuous Cohomology Groups

We determine next, the first continuous cohomology group of certain topological

quandles satisfying some suitable hypothesis. First, we have the following result for untwisted

continuous cohomology.

Proposition 2.3.1. Let X be a topological quandle and A be an Alexander topological quna-

dle. If X is indecomposable, then the first cohomology group H1
C(X,A) is isomorphic to

A.

Remark 2.3.2. We note the similarity between this result and the more traditional case of

the first cohomology group of a path-connected topological space.

Proof. Let x, x′ ∈ X be arbitrary elements of X and let f : X → A be a 1-cocycle. By

indecomposability of X there exist y1, . . . , yn ∈ X such that (· · · (x ∗ε1 y1) ∗ε2 · · · ∗εn yn) = x′,
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such that εi = ±1, where ∗−1 is defined by x ∗−1 y = z if z ∗ y = x. Recall that in this case

the 1-cocycle condition is f(x ∗ y) = f(x), which also implies f(x ∗−1 y) = f(x). Therefore

f(x′) = f(· · · (x ∗ε1 y1) ∗ε2 · · · ∗εn yn) = f(· · · (x ∗ε1 y1) ∗ε2 · · · ∗εn−1 yn−1)

where the second equality follows from the 1-cocycle condition for f . Inductively it follows

that f is a constant map. On the other hand, any constant map satisfies the cocycle condition

and is continuous, hence it is in H1
C(X,A) = Z1

C(X,A). As a consequence there is a bijective

correspondence between H1
C(X,A) and A that respects the group structures as the group

operation of cocycles is pointwise. �

We also have the following result regarding the first twisted continuous cohomology

groups.

Proposition 2.3.3. Let X = (Rn, S) and A = (Rm, T ) be indecomposable Alexander quan-

dles, where S, T are continuous additive automorphisms. Then H1
TC(X,A) is isomorphic

to

{ F + a : Rn → Rm | a ∈ A, F is linear, FS = TF }.

Proof. Since X and A are indecomposable, we have I − S and I − T invertible. Let G ∈

H1
TC(X,A). Then G is a continuous quandle homomorphism G : X → A. Then for all a ∈ A,

G + a ∈ H1
TC(X,A). For any G ∈ H1

TC(X,A), there is a ∈ A such that (G + a)(0) = 0.

By certain results due to E.W. Clark, see Appendix, we have that F = G+ a is linear, and

FS = TF . Hence the result follows. �
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2.4 Second Continuous Cohomology Groups

Our next objective is to estabilish a bijective correspondence between extensions of

topological quandles and second continuous cohomology groups, and utilize this result to

determine families of topological quandles having non trivial second continuous cohomology

groups. We start with the following

Definition 2.4.1. Assume we are given a topological quandleX and a topological Alexander

quandle (A, T ). For a continuous 2-cocycle ψ ∈ Z2
TC(X,A) (so that ψ(x, x) = 0 for all

x ∈ X), a quandle structure is defined on X × A by

(x, a) ∗ (y, b) = (x ∗ y, a ∗ b+ ψ(x, y))

for all x, y ∈ X and a, b ∈ A, as in [CENS]. The resulting quandle is denoted by X ×ψ A

and called a topological extension of X by A.

Remark 2.4.1. The projection π : X ×ψ A→ X is a topological quandle homomorphism.

We define morphisms in the class of extensions of X by the abelian group A and,

consequently, define an equivalence relation corresponding to the isomorphism classes. The

class of extensions of X by A can be viewed therefore as a category. Consider two topological

extensions X ×ψ A and X ×φ A where ψ and φ are two 2-cocycles. A morphism X ×ψ A→

X×φA of extensions of X by A is a morphism of topological quandles f : X×ψA→ X×φA

making the following diagram commute
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In particular, if f is an isomorphism of topological quandles with the property of

making the above diagram commute, it will be called an isomorphism of topological exten-

sions. Two extensions are equivalent if there is an isomorphism f as above. We now prove

the following result, analogous to the classification of the second cohomology group for group

cohomology and the corresponding result for discrete quandles, as in [CENS, CES].

Proposition 2.4.2. There is a bijective correspondence between equivalence classes of topo-

logical abelian extensions of X by A and the second cohomology group H2
TC(X,A) of X with

coefficients in A.

Proof. Although computations below are similar to those in [CES], we examine topological

aspects of the argument. Assume X ×ψ A and X ×φ A are two topological extension of X

with ψ and φ cohomologus 2-cocycles (i.e. they differ by a coboundary). Consider the map

f : X ×A→ X ×A, (x, a) 7→ (x, a+ g(x)), where g : X → A is such that δg = ψ− φ. Since

g ∈ Z1
TC(X,A), g is continuous, and so is f . We have

f((x, a) ∗ (y, b)) = f(x ∗ y, a ∗ b+ φ(x, y)) = (x ∗ y, a ∗ b+ φ(x, y) + g(x ∗ y)).
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On the other hand we have

f(x, a) ∗ f(y, b) = (x, a+ g(x)) ∗ (y, b+ g(y)) = (x ∗ y, a ∗ b+ g(x) ∗ g(y) + ψ(x, y)).

These two terms are equal since φ = ψ + δg, hence f is an isomorphism of quandles. Since

it is also a homeomorphism and clearly makes the required diagram commute, we get that

X ×ψ A and X ×φ A are equivalent.

Conversely, assume X ×ψ A and X ×φ A are equivalent. Say f : X × A → X × A

is an isomorphism of topological extensions. Since, by definition, both π(x, a) = x and

π(f(x, a)) = x, the map f is determined by its second component. Using the group structure

of A we can also write f as f(x, a) = (x, a + g(x)) for some map g : X → A. Now the

continuity of f implies the continuity of g. Since f is a morphism of quandles we get, for all

x, y ∈ X and all a, b ∈ A,

(x ∗ y, a ∗ b+ g(x ∗ y) + ψ(x, y)) = f((x, a) ∗ (y, b))

= f(x, a) ∗ f(y, b) = (x ∗ y, a ∗ b+ g(x) ∗ g(y) + φ(x, y)).

Equating the second component, we find that ψ and φ differ by δg, i.e. they are representa-

tives of the same cohomology class, since g is continuous. �

Let (G,+) be a topological abelian group. Consider Gm with the binary operation

21



given by the rule

(a1, . . . , am) ∗ (b1, . . . , bm) = (a1, a2 + b1 − a1, . . . , am + bm−1 − am−1).

By direct computation we see that the operation just defined respects the defining axioms

for a quandle structure and it is continuous, hence define a topological quandle structure on

Gm.

Proposition 2.4.3. Let (G,+) be a topological abelian group, x 6= 0, and (Gm, ∗) be the

topological quandle defined as above. Then H2
C(Gm, G) 6= 0.

Proof. Consider the following 2-cycle (in the usual sense of discrete homology):

α = (0, . . . , 0)× (x, 0, . . . , 0) + (0, x, 0, . . . , 0)× (−x, x, 0, . . . , 1) ,

where × has been used to better indicate that α is an element of Gm × Gm. By direct

computation using the boundary map, it follows that α is indeed a 2-cycle. Consider also

the 2-cocycle:

φ : Gm ×Gm −→ G

defined by

φ( (a1, . . . , am)× (b1, . . . , bm) ) = bm − am .

Again by direct computation using the coboundary map it can be shown that φ is a cocycle.

Applying φ to α we get φ(α) = x 6= 0. The lemma below shows therefore that φ is not
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null-cohomologus, and we obtain H2
C(Gm, G) 6= 0. �

Lemma 2.4.4. Let X be a topological quandle, and (A, T ) be a topological Alexander quandle.

Let α ∈ ZT
n (X,A) be an n-cycle (in the usual sense of discrete homology), and φ ∈ Zn

TC(X,A)

be a continuous n-cocycle. If φ(α) 6= 0, then [φ] 6= 0 ∈ Hn
TC(X,A).

Theorem 2.4.5. Let X = (Rn, S) and A = (Rm, T ) be Alexander quandles, where S ∈

GLn(R) and T ∈ GLm(R), respectively. Then H2
TC(X,A) 6= 0 if the following conditions

hold for k > 1:
∑k+1

i=0 (−S)i = 0 =
∑k+1

i=0 (−T )i, and there exists an n × m matrix C such

that
∑k

`=0(−T )`C(
∑k−`+1

j=1 (−S)j) 6= 0.

Proof. Let w =
∑k

i=0 T
i(ui, vi). One computes

∂w =
k∑
i=0

T i[T (ui) + (1− T )(vi)− (Sui + (1− S)vi)]

= [(v0)− (Su0 + (1− S)v0)]

+
k−1∑
i=1

T i[(ui−1)− (vi−1) + (vi)− (Sui + (1− S)vi)]

+T k+1[(uk)− (vk)].

By setting

v1 = Su0 + (1− S)v0, ui−1 = Sui + (1− S)vi, vj = vj−2, and uk = vk−1 (2.1)
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for i = 1, . . . , k and j = 2, . . . , k, we obtain

∂w = (
k+1∑
`=0

(−T )`)[(v0)− (v1)].

Hence the condition (2.1) and the assumption
∑k+1

`=0 (−T )` = 0 implies ∂w = 0.

For k odd, set

uk−2i = (
2i+1∑
j=2

(−S)j)u0 + (1−
2i+1∑
j=2

(−S)j)v0

uk−(2i+1) = (−
2i+2∑
j=1

(−S)j)u0 + (
2i+2∑
j=0

(−S)j)v0

and for even k, set

uk−2i = (−
2i+1∑
j=1

(−S)j)u0 + (
2i+1∑
j=0

(−S)j)v0

uk−(2i+1) = (
2i+2∑
j=2

(−S)j)u0 + (1−
2i+2∑
j=2

(−S)j)v0.

Then it is checked by induction that these satisfy Equations (2.1).

For φ(x1, x2) = C(x1 − x2) one computes

φ(w) =
k∑
`=0

φ(T `(u`, v`)) =
k∑
`=0

T `C(u` − v`) =
k∑
`=0

(−T )`C(
k−`+1∑
j=1

(−S)j)(u0 − v0)

as desired. The last equality is obtained by substituting the formulas for uk−2i and uk−(2i+1)
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for each case of k odd and even. �

Example 2.4.6. Let n = 4, m = 2, S = T ⊕T , and T =

0 −1

1 1

. Then S2−S+ 1 = 0 =

T 2−T +1. Let C = (I, I) where I is 2×2 identity matrix. Then C−TCS = (I−S2, I−S2)

is not the zero matrix, and applying Theorem 2.4.5 we obtain H2
TC(X,A) 6= 0.

2.5 Continuous Cohomology with Quandle Modules

The goal of this section is to introduce a topological version of the cohomology theory

generalized in [AGn] and exhibit explicit examples with non-trivial continuous cohomology.

We adapt the definition of quandle module, see the original paper [AGn]), to the topological

case by requiring the triple (A, η, τ) to consist of a topological abelian group and continuous

morphisms. In this setting, consider the abelian groups Γn(X,A), δi0 and δi1 as defined above

in Section 2.2. Define the differentials by the following formula

δn :=
n+1∑
i=2

(−1)i
(
η[x1,··· ,x̂i,··· ,xn+1],[xi,··· ,xn+1]δ

i
0 − δi1

)
+ τ[x2,x3,...,xn+1],[x1,x3,...,xn+1]δ

1
0

where

[x1, x2, x3, . . . , xn] = ((· · · (x1 ∗ x2) ∗ x3) · · · ) ∗ xn.
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As in the discrete case, it is easy to see that we obtain a cochain complex

· · · → Γn(X,A)
δ−→ Γn+1(X,A)→ · · ·

The resulting cohomology groups are denoted by Hn
GC(X,A).

Following [AGn], if X is a topological quandle and (A, η, τ) is a topological quandle

module, we can define a topological quandle structure on X × A by

(x, a) ∗ (y, b) = (x ∗ y, ηx,y(a) + τx,y(b) + κx,y),

for all x, y ∈ X and a, b ∈ A, where X × A is given the product topology. This formula

defines a topological quandle structure if and only if κx,y is a 2-cocycle of this cohomology

theory.

Similar definition and arguments as in Section 2.4 show that there is a bijective

correspondence between the second generalized continuous cohomology group of X, with

coefficients in A, and equivalence classes of extensions of X by A. We will leave the details

to the reader.

Example 2.5.1. Let G be the subgroup of GL(2n,R) for a positive integer n, consisting of

block matrices of the form
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G =

 E =

 S O

C T


∣∣∣∣∣∣∣∣∣ S, T ∈ GL(n,R), C ∈ M(n,R)

 ,

where O denotes the zero matrix, and consider X = G× Rn with quandle operation

(E0, x0) ∗ (E1, x1) = (E1E0E
−1
1 , S1x0 + (I − S1)x1),

where Ei =

 Si O

Ci Ti

 for i = 0, 1. Let A = Rn and consider endomorphisms of A defined

by η(E0,x0),(E1,x1)(a) = T1a and τ(E0,x0),(E1,x1)(a) = (I − T1)a. It is checked by computation

that these define an X-module structure on A.

Theorem 2.5.2. Let X and A be as in Example 2.5.1. Then we have

H2
GC(X,A) 6= 0

Proof. The quandle operation on X × A = G× R2n defined by

(E0, u0) ∗ (E1, u1) = (E1E0E
−1
1 , E1u0 + (I − E1)u1),
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where ui = (xi, ai) and ai ∈ A for i = 0, 1 are computed as operation on X × A as

[ (E0, x0), a0 ] ∗ [ (E1, x1), a1 ]

= [ E1E0E
−1
1 , S1x0 + (I − S1)x1, T1a0 + (I − T1)a1 + C1(x0 − x1))].

Let p : X × A → X by p( [(E, x), a)] ) = (E, x). Then we find that p defines the extension

of X by the X-module A, with the 2-cocycle κ(E0,x0),(E1,x1) = C1(x0 − x1).

We show that κ is not a coboundary. Let E =

 −I O

C −I

, and w = [(E, x), (E, 0)]−

[(E,−x), (E, 0)] be a 2-chain. Since ∂( (x, y) ) = ηx,y(x) + τx,y(y)− (x ∗ y), one computes

∂(w) = (−I)(E, x) + (2I)(E, 0)− (E, (−I)x+ (2I)0)

− [(−I)(E,−x) + (2I)(E, 0)− (E, (−I)(−x) + (2I)0) = 0.

Hence w is a 2-cycle. One also computes

κ(E,x),(E,0) − κ(E,−x),(E,0) = C1(x− 0)− C1(−x− 0)

= C1(2x)

and by choosing x,C1 such that C1x 6= 0, we obtain that κ is not a coboundary by the

argument similar to Lemma 2.4.4. �

28



2.6 Continuous Cohomology vs Discrete Cohomology

Given a topological quandle X, there is an obvious forgetful functor F : T Q −→ Q,

from the category of topological quandles to the category of (discrete) quandles. Therefore,

for a given topological abelian group A, associated to any topological quandles there are two

type of cohmology. The classical discrete cohomology, Hn
T (F(X);A), where we also use the

discrete topology on the group A, and the topological one, Hn
TC(X;A). The main purpose

of this section is to show that the two theories are different. In other words, there exists

topological quandles having Hn
T (F(X);A) 6= Hn

TC(X;A).

Remark 2.6.1. We also observe that there is another obvious “discretization” functor D :

Q −→ T Q, that turns a discrete quandle into a topological one by endowing it with the

discrete topology, and works on morphisms as the identity. It is clear that in this case, we

have Hn
TC(D(X);A) = Hn

T (X;A), for all n ∈ N.

Remark 2.6.2. The pair of functors (F ,D) is an adjoint pair.

Let A be a topological abelian group and p : E → X be a principal A-bundle; a fiber

bundle with a fiber preserving right action of A on E that acts freely and transitively.

Definition 2.6.1 (cf. [Eis]). Let E,X be connected topological quandles and A be a topo-

logical abelian group. A principal (abelian) quandle extension by A is a continuous surjective

quandle homomorphism p : E → X that is a principal A-bundle such that for all x, y ∈ X

and a ∈ A, the following conditions hold:

(i) (x ∗ y) · a = (x · a) ∗ (y · a), (equivariance),
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(ii) (x · a) ∗ y = (x ∗ y) · a. (commutativity of right actions).

In particular, the quandle homomorphism in Example 2.1.2 is a principal abelian

quandle extension by Z2.

Lemma 2.6.3. Let A be a topological abelian group and p : E → X be a principal abelian

quandle extension by A. Let s : X → E be a set-theoretic section; p ◦ s = idX . Then for all

x, y ∈ X, there exists a unique element a ∈ A such that s(x) ∗ s(y) = s(x ∗ y) · a.

Proof. Since p is a quandle homomorphism, we have

p(s(x) ∗ s(y)) = (ps)(x) ∗ (ps)(y) = x ∗ y = (ps)(x ∗ y).

Since A acts freely and transitively, there is a unique a such that s(x) ∗ s(y) =

s(x ∗ y) · a. �

Remark 2.6.4. In the preceding lemma, the unique element a is determined by x, y ∈ X,

so that we denote it by a = φ(x, y). Then we obtain a function φ : X ×X → A.

Lemma 2.6.5. Let φ : X × X → A be defined as above. Then φ is a quandle (abelian)

2-cocycle.

Proof. We perform the following computations analogous to those in [CENS] and [Eis]:

(s(x) ∗ s(y)) ∗ s(z) = [ s(x ∗ y) · φ(x, y) ] ∗ s(z)

= [ s(x ∗ y) ∗ s(z) ] · φ(x, y)
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= s((x ∗ y) ∗ z) · [φ(x ∗ y, z)φ(x, y)],

(s(x) ∗ s(z)) ∗ (s(y) ∗ s(z)) = [ s(x ∗ z) · φ(x, z) ] ∗ [ s(y ∗ z) · φ(y, z) ]

= ([ s(x ∗ z) · φ(x, z)φ(y, z)−1 ] ∗ s(y ∗ z)) · φ(y, z)

= (s(x ∗ z) ∗ s(y ∗ z)) · [(φ(x, z)φ(y, z)−1)φ(y, z)]

= s((x ∗ z) ∗ (y ∗ z)) · [(φ(x ∗ z, y ∗ z)φ(x, z)],

and s(x)∗s(x) = s(x∗x) ·φ(x, x) gives φ(x, x) = 0. Hence φ satisfies the 2-cocycle condition.

�

Remark 2.6.6 (Nosaka). The argument works also for non-abelian groups A. See [AGn]

for non-abelian 2-cocycles.

Example 2.6.7. Consider p : S2 → RP2 as in Example 2.1.2. Let

P+ := {(x, y, z) ∈ S2 : z > 0 or z = 0, y > 0 or y = z = 0, x > 0}

and P− := S2 \ P+. Let s : RP2 → S2 be a set-theoretic section defined by s([x]) = x

where x ∈ P+. Then the map φ of the preceding lemma provides a non-zero 2-cocycle. For

example, φ([1, 0, 0], [0, 1, 0]) = 1 ∈ Z2. In this case, as a set S2 is regarded as RP2 × Z2.

Remark 2.6.8. Let p : E → X be a principal abelian quandle extension by A, and fix a

set-theoretic section s : X → E. For any given u ∈ E, let x = p(u), then there is a unique

a = as(u) such that u = s(x) · a. Similarly for v ∈ E let y = p(v) and v = s(y) · b. Then one
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Proof. Since (X,∆, ε) is a comonoid in C by hypothesis, we just need to prove that ternary

self-distributivity of µ. We use the following commutative diagram

where we have omitted the symbol � in the product of morphisms, omitted the

subscripts corresponding to the switching morphisms τ , to slightly shorten the notation

and, finally, we have used the notation ◦ to indicate the composition of morphisms. The

leftmost τ : X7 → X7 is the composition of symmetry constraints corresponding to the

transposition (5, 6)(4, 5)(5, 6)(4, 5)(3, 4), proceeding clockwise, τ : X9 → X9 corresponds to

(4, 5)(3, 4)(4, 5)(3, 4)(2, 3). The reader can easily find the correct compositions correspond-

ing to the remaining τ ’s by a diagrammatic approach. The triangles on the right and on the

bottom are instances of type 1 and type 0 axioms, respectively. The middle triangle com-

mutes as a consequence of Lemma 4.6.8. The other diagrams can be seen to be commutative

either by applying the comonoid axioms or naturality of the braiding. Finally, by direct

inspection we can see that the upper perimeter of the diagram corresponds to the LHS of

TSD, as stated in Definition 4.6.3. �
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CHAPTER 5 : FUTURE WORK

In this final chapter, we provide a brief description of future projects we intend to

embark upon. This list includes projects that are currently at a germinal stage (i.e. some

proofs have been done but they lack an overall structure), or at a hypothetical stage (i.e.

based on preliminary considerations we believe it is possible to obtain certain results).

5.1 Non-Associative/Quantum Algebra and Knot Theory

The cocycle invariant introduced in Section 3.7 has not been computed in any practical

examples. It is therefore of fundamental importance to determine the invariant in some

specific cases. In particular, we ask whether or not the invariant distinguishes certain framed

links. Is it possible to find certain families of framed links for which it is possible to compute

the cocycle invariant?

Graña proved in [Gn02] that cocycle invariants are “quantum” invariants, in the sense

that it is possible to obtain them as the trace of a certain endomorphism in an appropirate

category. Does an analogous result hold in the case of framed link cocycle invariant? Is it

possible to utilize the categorical doubling procedure described in Chapter 3 to generalize

Graña’s proof to the framed cocycle link invariant case? In this perspective, we expect that

the internalization prcoedure of categorical self-distributivity will play a crucial role.
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Lastly, we intend to complete a currently ongoing project (with M. Elhamdadi and

M. Saito) regarding Yang-Baxter (YB) operators and their homology theory. It has been

conjectured, based on strong computational evidence, that the homology groups of a certain

YB operator have rank 2 and a torsion described by means of the Fibonacci sequence [PW].

In [ESZc], we are making progress towards the understanding of this conjecture [ESZc]

using skein theoretic procedures. Our current results are in concordance with the conjecture

and solve part of it. Homology and cohomology theories of Yang-Baxter operators are highly

promising tools to develop new invariants of knots but it is still an open problem to determine

these invariants and relate them to well known invariants. Explicit computations of homology

groups for specific YB operators are exiguous and the computational methods applied so far

are rather rudimentary. The skein techniques introduced in [ESZc] seem to be applicable to

a vast range of YB operators and to be suitable to systematically (algorithmically) compute

homology.

5.2 Koszul Duality for Operads and its Ramifications

More recently I have been increasingly interested in the theory of operads and, more

specifically, operadic Koszulity and (co)homology. I am currently studying Koszul duality

theory of the Jordan operad (in [Zap]), whose algebras are the well known Jordan algebras.

For years, the problem of Koszul duality of Jordan operad has been considered not well posed,

due to the fact that the Jordan operad is cubic. In this paper it is estabilished that, with

a certain suitable presentation, the Jordan operad is quadratic-linear Koszul, whose main
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impact lies in the fact that the cobar construction of its dual cooperad is a resolution of it.

An explicit description of the notion of Homotopy Jordan Algebra is given, as a corollary of

the aforementioned Koszul duality, by means of Maurer-Cartan elements in the enveloping

differential-graded Lie algebra. My next goal is to proceed to study infinity morphisms,

homotopy transfer theorem and the deformation complex in this context. We expect that

these results might be applied to the study of Jordan super-algebras.

The following project is similar, in spirit, to the previous one. Hartwig, Larsson and

Silvestrov have introduced in [HLS06], a generalized version of the Jacobi identity and studied

in subsequent works, what are now known as “Hom” versions of famous algebraic structures

(i.e. Hom-Lie algebras, Hom-associative algebras, Hom-Nambu brackets, Hom-Jordan al-

gebras etc.). Whereas the main motivation to study these kind of structures comes from

Theoretical Physics (Conformal Field Theories and Quantum Gravity among others), it is

inherently interesting to understand these “deformed” algebras. Based on our considerations

and current understanding, we pose the following:

Conjecture 5.2.1. The operad controlling the Hom-Jacobi identity is Koszul, and the Ho-

motopy Hom-Lie algebras obtained via the standard cobar resolution produce the n-ary

Hom-Nambu Lie brackets introduced in [AMS09].

The implications of such a result, if true, in Theoretical Physics provide quite an

interesting perspective for future work.
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5.3 Applied Mathematics

In this section, we give a brief explanation of a project we have started to work on

during Fall 2019, in an Internship at the Biomedical & Clinical Informatics Lab at University

of Michigan, Ann Arbor.

It has recently proposed in [ZNL18], a method to construct Neural Networks by

means of Tropical Algebra and Tropical Geoemtry. In [ZNL18], the authors show that there

is a bijective correspondence between Feedforward Neural Networks and Tropical Rational

Functions (i.e. he tropical version of rational functions in Algebraic Geoemtry). It is possible

therefore, at least in principle, to produce decision making algorithms based on Tropical

Hypersurfaces. We intend to develop a method of diagnosis of heart failure based on “tropical

networks”.
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APPENDIX A : CONTINUOUS ISOMORPHISMS OF TOPOLOGICAL
QUANDLES

In this appendix we show that continuous isomorphism classes differ from algebraic
isomorphism classes for topological quandles. The results of this appendix were obtained by
W. Edwin Clark.

Lemma .0.1. [Ree] If T : Rn → Rm is additive and continuous, then T is R-linear.

Remark .0.2. We recall [Nel] that an Alexander quandle (X,T ) is indecomposable if and
only if I − T is surjective. If (Rn, T ) is a topological generalized Alexander quandle that is
indecomposable such that T is additive, then I − T is surjective, and Lemma .0.1 implies
that T is linear. Hence I − T is invertible.

Lemma .0.3. Let (Rn, S) and (Rm, T ) be topological Alexander quandles, such that I − S
and I − T are invertible. Let F : Rn → Rm be a continuous quandle homomorphism such
that F (0) = 0. Then S, T, F are R-linear and the condition FS = TF holds.

Proof. First from Lemma .0.1, S and T are linear. Since F is a quandle homomorphism,

F (Sx+ (I − S)y) = TF (x) + (I − T )F (y) (1)

holds for all x, y ∈ Rn. By setting x = 0 and y = 0 respectively in Equation(1) and using
the assumption F (0) = 0, we obtain

F ((I − S)y) = (I − T )F (y), (2)

and
F (Sx) = TF (x), (3)

which is the condition FS = TF . These Equations (2) and (3) also imply

F (Sx+ (I − TS)y) = F (Sx) + F ((I − S)y). (4)

By the invertibility assumptions, we have {Sx | x ∈ Rn} = Rn and {(I−S)y | y ∈ Rn} = Rn.
Hence Equation (4) implies that F (a+b) = F (a)+F (b) for all a, b ∈ Rn. Since F is additive
and continuous, Lemma .0.1 implies that F is linear. �

Solving the matrix equation FS = TF can be found, for example, in [Bar]. A direct
calculation gives the following lemma.
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Lemma .0.4. Let (Rn, S) and (Rm, T ) be Alexander quandles. Let F : Rn → Rm be a
quandle homomorphism. Let a ∈ Rm. Then F+a : Rn → Rm defined by (F+a)(x) = F (x)+a
for x ∈ Rn is a quandle homomorphism.

Proposition .0.5. Let (Rn, S) and (Rn, T ) be indecomposable topological Alexander quan-
dles. If F : Rn → Rn is a continuous quandle isomorphism such that F (0) = 0, then S, T, F
are R-linear and S and T are similar: T = FSF−1.

Proof. By Lemma .0.1, S, T, F are linear. By Lemma .0.3, S and T are similar via F . �

Proposition .0.6. There is a family with continuum cardinality of topological quandle struc-
tures on Rn for all n > 0, such that its elements are pairwise non-isomorphic as topological
quandles but are isomorphic as algebraic quandles.

Proof. Let Q(u) be the field of rational functions over R with variable u. Let s ∈ R be a
transcendental number. Let Q(u) act on Rn by the scalar multiple f(u) · x = f(s)x. Let s, t
be distinct transcendentals. Then there are two vector space structures on Rn over Q(u) by
multiples by s and t. They have the same dimension as vector spaces, and therefore, there is
a vector space isomorphism F : Rn → Rn over Q(u), and it satisfies F (sx) = tF (x). Hence
F is a quandle isomorphism. If F is continuous, then F is linear over R by Lemma .0.3, and
Fs = sF = tF and s = t, a contradiction. Hence F is a quandle isomorphism that is not
continuous. �
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APPENDIX B : EXAMPLE 3.6.8 REVISITED

In this appendix we explicitly show that the map in Example 3.6.8 is indeed self-
distributive. Each equality is obtained by applying the Jacobi identity as in the proof of
Lemma 3.3 in [CCES]. In fact, each step corresponds to one of the diagrams in the proof
of Theorem 3.6.6 (cf. figure 3.8). Recall also the definition of the diagonal ∆, from Lemma
3.6.7, and the inductive definition for ∆3 at the beginning of Section 3.6. Explicitly, we have
for ∆3:

∆3(a, x) = (a, x)⊗ (1, 0)⊗ (1, 0) + (1, 0)⊗ (0, x)⊗ (1, 0) + (1, 0)⊗ (1, 0)⊗ (0, x).

To make the steps easier for the reader, we declare the terms that are going to be replaced
according to the Jacobi identity, and underline the replacing terms in the subsequent equality.
We obtain therefore:

T (T ((a, x)⊗ (b0, y0)⊗ (b1, y1))⊗ (c0, z0)⊗ (c1, z1))

= (ab0b1c0c1, b0b1c0c1x+ b1c0c1[x, y0] + b0c0c1[x, y1]

+c0c1[[x, y0], y1] + b0b1c1[x, z0] + b1c1[[x, y0], z0]

+b0c1[[x, y1], z0] + c1[[[x, y0], y1], z0] + b0b1c0[x, z1]

+b1c0[[x, y0], z1] + b0c0[[x, y1], z1] + c0[[[x, y0], y1], z1]

+b0b1[[x, z0], z1] + b1[[[x, y0], z0], z1] + b0[[[x, y1], z0], z1]

+[[[[x, y0], y1], z0], z1]).

Applying the Jacobi identity to the terms b0c1[[x, y1], z0], c1[[[x, y0], y1], z0], b0[[[x, y1], z0], z1]
and [[[[x, y0], y1], z0], z1] we obtain:

= (ab0b1c0c1, b0b1c0c1x+ b1c0c1[x, y0] + b0b1c1[x, z0]

+b1c1[[x, y0], z0] + b0c0c1[x, y1] + c0c1[[x, y0], y1]

+b0c1[[x, z0], y1] + c1[[[x, y0], z0], y1] + b0c1[x, [y1, z0]]

+c1[[x, y0], [y1, z0]] + b0b1c0[x, z1] + b1c0[[x, y0], z1]

+b0b1[[x, z0], z1] + b1[[[x, y0], z0], z1] + b0c0[[x, y1], z1]

+c0[[[x, y0], y1], z1] + b0[[[x, z0], y1], z1] + [[[[x, y0], z0], y1], z1]

+b0[[x, [y1, z0]], z1] + [[[x, y0], [y1, z0]], z1]).

We now apply the Jacoby identity to the term b1c1[[x, y0], z0], b1[[[x, y0], z0], z1], c1[[[x, y0], z0], y1]
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and [[[[x, y0], z0], y1], z1] to obtain:

= (ab0b1c0c1, b0b1c0c1x+ b0b1c1[x, z0] + b1c0c1[x, y0]

+b1c1[[x, z0], y0] + b0c0c1[x, y1] + b0c1[[x, z0], y1]

+c0c1[[x, y0], y1]] + c1[[[x, z0], y0], y1] + b1c1[x, [y0, z0]]

+c1[[x, [y0, z0]], y1] + b0c1[x, [y1, z0]] + c1[[x, y0], [y1, z0]]

+b0b1c0[x, z1] + b0b1[[x, z0], z1] + b1c0[[x, y0], z1]

+b1[[[x, z0], y0], z1] + b0c0[[x, y1], z1] + b0[[[x, z0], y1], z1]

+c0[[[x, y0], y1], z1] + [[[[x, z0], y0], y1], z1] + b1[[x, [y0, z0]], z1]

+[[[x, [y0, z0]], y1], z1] + b0[[x, [y1, z0]], z1] + [[[x, y0], [y1, z0]], z1]).

Next, we use the Jacoby identity on the terms b0c0[[x, y1], z1], b0[[[x, z0], y1], z1], b0[[x, [y1, z0]], z1],
c0[[[x, y0], y1], z1], [[[[x, z0], y0], y1], z1], [[[x, [y0, z0]], y1], z1] and [[[x, y0], [y1, z0]], z1].

= (ab0b1c0c1, b0b1c0c1x+ b0b1c1[x, z0] + b1c0c1[x, y0]

+b1c1[[x, z0], y0] + b0b1c0[x, z1] + b0b1[[x, z0], z1]

+b1c0[[x, y0], z1] + b1[[[x, z0], y0], z1] + b0c0c1[x, y1]

+b0c1[[x, z0], y1] + c0c1[[x, y0], y1] + c1[[x, [y0, z0]], y1]

+b1c1[x, [y0, z0]] + b0c0[[x, z1], y1] + b0[[[x, z0], z1], y1]

+c0[[[x, y0], z1], y1] + b1[[x, [y0, z0]], z1] + [[[[x, z0], y0], z1], y1]

+[[[x, [y0, z0]], z1], y1] + b0c1[x, [y1, z0]] + c1[[x, y0], [y1, z0]]

+b0[[x, z1], [y1, z0]] + [[[x, y0], z1], [y1, z0]] + b0c0[x, [y1, z1]]

+b0[[x, z0], [y1, z1]] + c1[[[x, z0], y0], y1] + c0[[x, y0], [y1, z1]]

+[[[x, z0], y0], [y1, z1]] + [[x, [y0, z0]], [y1, z1]] + b0[x, [[y1, z0], z1]]

+[[x, y0], [[y1, z0], z1]]),

Lastly, making use of the Jacobi identity on the terms b1c0[[x, y0], z1], b1[[[x, z0], y0], z1],
c0[[[x, y0], z1], y1], b1[[x, [y0, z0]], z1], [[[[x, z0], y0], z1], y1], [[[x, [y0, z0]], z1], y1] and
[[[x, y0], z1], [y1, z0]] we obtain:
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= (ab0b1c0c1, b0b1c0c1x+ b0b1c1[x, z0] + b0b1c0[x, z1]

+b0b1[[x, z0], z1] + b1c0c1[x, y0] + b1c1[[x, z0], y0]

+b1c0[[x, z1], y0] + b1[[[x, z0], z1], y0] + b0c0c1[x, y1]

+b0c1[[x, z0], y1] + b0c0[[x, z1], y1] + b0[[[x, z0], z1], y1]

+c0c1[[x, y0], y1] + c1[[[x, z0], y0], y1] + c0[[[x, z1], y0], y1]

+[[[[x, z0], z1], y0], y1] + b0c1[x, [y1, z0]] + b0[[x, z1], [y1, z0]]

+c1[[x, y0], [y1, z0]] + [[[x, z1], y0], [y1, z0]] + b1c1[x, [y0, z0]]

+b1[[x, z1], [y0, z0]] + c1[[x, [y0, z0]], y1] + [[[x, z1], [y0, z0]], y1]

+b1c0[x, [y0, z1]] + b1[[x, z0], [y0, z1]] + c0[[x, [y0, z1]], y1]

+[[[x, z0], [y0, z1]], y1] + b1[x, [[y0, z0], z1]] + [[x, [[y0, z0], z1]], y1]

+[[x, [y0, z1]], [y1, z0]] + b0c0[x, [y1, z1]] + b0[[x, z0], [y1, z1]]

+c0[[x, y0], [y1, z1]] + [[[x, z0], y0], [y1, z1]] + [[x, [y0, z0]], [y1, z1]]

+b0[x, [[y1, z0], z1]] + [[x, y0], [[y1, z0], z1]]).

This last term can be seen to coincide with the right-hand side of the self-distributivity
equation:

T (T⊗3)�3 (13 ⊗∆⊗2
3 )((a, x)⊗ (b0, y0)⊗ (b1, y1))⊗ (c0, z0)⊗ (c1, z1)).

It follows therefore, that the map T turns X into a ternary self-distributive object in the
category of vector spaces.
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