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Abstract

Phospholipids are present in all parts of cells and are used in many signalling and struc-

tural roles. As structural molecules they act as the main component of cellular membranes.

Bilayer properties are heavily influenced by the structure of their component polar lipids, and

different lipids are found in different organisms. A distinguishing feature of Archaeal plasma

membranes is that their phospholipids contain ether-links, as opposed to bacterial and eu-

karyotic plasma membranes where phospholipids primarily contain ester-links. In our work

we examine the effects of salt on bilayer structure in the case of both ester- and ether-linked

lipid bilayers. We use molecular dynamics simulations and compare equilibrium properties

of two model lipid bilayers in NaCl salt solution — POPC and its ether-linked analog that

we refer to as HOPC. We make the following key observations. The headgroup region of

HOPC “adsorbs” fewer ions compared to the headgroup region of POPC. Consistent with

this, we note that the Debye screening length in the HOPC system is ∼10% shorter than

that in the POPC system. Herein, we introduce a protocol to identify the lipid-water inter-

facial boundary that reproduces the bulk salt distribution consistent with Gouy-Chapman

theory. We also note that the HOPC bilayer has excess solvent in the headgroup region

when compared to POPC, coinciding with a trough in the electrostatic potential. Waters

in this region have longer autocorrelation times and smaller lateral diffusion rates compared

to the corresponding region in the POPC bilayer, suggesting that the waters in HOPC are

more strongly coordinated to the lipid headgroups. Furthermore, we note that it is this

region of tightly coordinated waters in the HOPC system that has a lower density of Na+

ions. Based on these observations we conclude that an ether-linked lipid bilayer has a lower

binding affinity for Na+ compared to an ester-linked lipid bilayer.
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1 Introduction1

1.1 Ether- and Ester-linked Phospholipids

Phospholipids are a diverse species of biological molecules used in many roles in life.2

These molecules are amphipathic, with a headgroup that is hydrophillic attached to hy-

drophobic acyl chains by a glycerol backbone.3,4 These molecules, when above a critical

concentration in aqueous solution, self assemble into various aggregate structures in order to

reduce the exposure of the hydrophobic chains to polar solvent — these structures include

micelles, vesicles, and bilayers along with others.4 Phospholipids tend to form bilayers, where

the hydrophillic headgroups face the solvent and the hydrophobic acyl chains face into the

center of the structure.4,5 In living cells, lipid bilayers help to delimit the cell and the en-

vironment, acting as one of the major constituents of the cellular plasma membrane.6 The

plasma membrane consists of a mixture of many lipid species, as well as proteins and lipid-

like molecules, and the mixture is tuned by the cell to adapt the structure and flexibility of

the plasma membrane to different environments.2,3, 7 Furthermore, the cellular membrane is

the interface for exchange of nutrients with the environment, and also the interface for the

transmission of signals to and from the outside of the cell. This exchange is done through

passive diffusion, proteins, and other molecules embedded into the membrane, and through

the formation of vesicles and buds out of the lipid bilayer.6 The behavior and function of

the plasma membrane is heavily dependent on the structure of the bilayer, which again can

be influenced directly by the mixture of phospholipids constituting the membrane.2,7

Phospholipids can be modified in a variety of ways to change their chemical construction,

and the structure of the individual molecules manifest significant changes in the stucture

1Portions of this chapter have been previously published in Biochimica et Biophysica Acta (BBA) -
Biomembranes Volume 1861, Issue 5, 1 May 2019, Pages 907-915, and have been reproduced with permission
from Elsevier.1
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of aggregates, like lipid bilayers or cell membranes. Polar headgroups can be charged or

zwitterionic.4 The fatty acid chains can be saturated or unsaturated, and can have many

lengths depending on the needs of the cell — differing the acyl chains influences the phase

behavior of the bilayer, which can help cells to adapt to changes in temperature.5,7

Phospholipids can also use several types of chemical links between the glycerol back-

bone and the fatty acid chains.8,9 Phospholipids containing ether-links represent one of

the many major evolutionary divides — while they make up much of the phospholipids of

archaeal membranes, they are present in only small fractions in eukarya and bacteria.8–10

These phospholipids differ from the more common ester-linked phospholipids of bacterial

and eukaryotic membranes in that they lack fatty acid carbonyl groups (see figure 1.1).

The chemical difference between ester- and ether-linked lipids has been shown to influence

bilayer properties including both structure and permeability.11–16 Experiments show that

model bilayers composed exclusively of ether-linked lipids have smaller dipole potentials

compared to bilayers composed of their ester-linked analogs;13 a result also predicted by

a molecular dynamics (MD) study done by our group.16 The interfacial water in ether-

linked lipid bilayers is also more structured compared to that in ester-linked lipid bilayers,

as observed in NMR experiments in the form a larger quadrupolar splitting constants,13 and

as also reproduced in our simulations.16 Two independent experimental studies also show

that ether-linked lipid bilayers are less permeable to water compared to bilayers composed

of their ester-linked analogs.11,12

Nevertheless, all studies aimed at examining differences between ester- and ether-linked

lipid bilayers have been carried out in pure water, except for the one recent study by Leonard

et al.where an all-atom force field was parameterized for a different model ether-linked lipid.17

In the work by Leonard et al., the primary analysis given was for systems without salt, and

did not treat the system with salt beyond structural measurements.17 The questions of how

ions bind differenty to bilayers of ether- and ester-linked lipids as well as how they interact

with the bilayers electrostatically are still open to investigation. The inclusion of ions in a
2



Figure 1.1: Chemical structures of representative phospholipids highlighting the
difference between ether- and ester-links. POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-
phosphatidylcholine) is a diester lipid and HOPC (1-hexadecyl-2-(9-octadecenyl)-sn-glycero-
3-phosphatidylcholine) is its diether analog that lacks fatty acid carbonyl groups.

3



bilayer system is an important step to acheiving a more phisiologically relevant system —

biological membranes are always exposed to ions.6 In biology, the affects of ions on bilayer

structure cannot be ignored. As such, several studies show that salt significantly affects

the properties of ester-linked lipid bilayers.17–23 For example, in our previous works on the

interactions of monovalent and divalent ions on zwitterionic ester-linked lipid bilayers18,19

we found that monovalent cations insert into headgroup region. We reported reduction in

area per lipid, increase in bilayer thickness, increased range of ordered solvent at the bilayer

surface, and an increase in the electrostatic dipole potential of the bilayer. Despite the work

done on these lipids in the past, the question of how ions interact with bilayers of ether-linked

phospholipids compared to ester-linked remains a topic of interest.

1.2 Using Molecular Dynamics to Study Biological Membranes

In order to explore the question of how ions interact with bilayers of ether- and ester-

linked lipids, we utilize Molecular Dynamics (MD) simulations.

Computational methods like molecular dynamics must strike a balance between compu-

tational cost and accuracy. The most expensive computations using ab initio methods with

minimal approximations are the most accurate, but are only feasible for very small systems.24

For biologically relevant systems, a classical approximation is able to reproduce most impor-

tant phenomena.3,24 MD makes this classical approximation, expressing particles as points

in space, with masses centered at the nucleus.3 Functional forms and functional parame-

ters needed to calculate the hamiltonian of systems are defined in a force-field. Bonds and

bond angles are modeled as harmonic potentials, and torsional parameters within molecules

are modeled using periodic functions. Non-bonded interactions are modeled using simple

pairwise-additive potentials and generally do not treat many-body interactions.3,25 Van der

Waals (VdW) dispersion and hard-shell repulsion are usually treated using a Lennard-Jones

6-12 potential, and short-range electrostatics are represented by a coulomb potential.3,25

The potential terms are added together over the whole system of particles to get the over-

all potential function of the system, which is then used to evolve the system over time by
4



integrating Newton’s laws of motion.26 An example of the total potential can be seen in

equation 1.1.3

Vtot =
∑
bonds

Kb(r − r0)2

+
∑
angles

Kθ(θ − θ0)2

+
∑

improper

KΦ(Φ− Φ0)2

+
∑

torision

Kφ[1− cos(nφ− φ0)]

+
∑

Estatic

qiqj
rij

+
∑
V dW

Aij
r12
ij

− Bij

r6
ij

(1.1)

Most force-fields for molecular dynamics treat charges on particles in the system as an

average picture of overall electronic behavior, as the timescale of electronic fluctuations is

much smaller than the timescale of MD simulations; this means bonds are permanent, and

average charge densities are fixed to particles.3 Some force fields treat electronic polarizability

as an explicit term in the potential function;27,28 however most MD force-fields do not include

this while still giving a good reproduction of experimental results.3,17,29

To ensure accurate reproduction of experimental results from complex systems, force-

fields are developed and optimized to directly reproduce experimental data in simple model

systems. To develop force-fields, systems of small molecules can be optimized to repro-

duce experimental heats and enthalpies of vaporization, molecular volumes, and densities of

condensed phases.29–32 For systems of whole lipid bilayers, experimental methods such as

deuterium NMR, small angle x-ray scattering, and small angle neutron scattering can be

used to get ensemble average values for bilayer ordering and structure and are often used to

validate lipid simulations.3,15–17,19,27,29,33 We can also look at electrostatic properties such

as the bilayer electrostatic dipole potentials,13,34 or mechanical properties like bilayer com-

pressibility or surface tension.16,19,35 For optimization of force-fields using small molecules,
5



experimental heats and enthalpies of vaporization, molecular volumes, and densities of con-

densed phases can be used.29–32

The earliest lipid simulations often used a united atom representation of the lipids, which

simplified lipid chains by expressing carbon groups as beads rather than explicitly defining

hydrogens.36–38 These simulations focused on validation with experimental values for bilayer

structure, such as area per lipid and bilayer thickness that are taken from SAXS and SANS

measurements. Later development of force-fields included calculating partial charges for

different parts of the lipid molecules using ab initio quantum calculations.37,39 Chiu et

al.calculated charges in this way for the GROMOS 43-A1 force-field of DPPC in 1995.39

Berger et al.sought to further improve the densities given by the GROMOS force-field in

1997 by optimizing VdW parameters using molecular volumes and heats of vaporization in

small hydrocarbon molecules to improve the acyl chains of DPPC,30 work that was continued

by Chiu et al.,31,32 Later, further optimization was carried out by Chiu et al.in 2009 to im-

prove torsional and VdW parameters using experimental heats of vaporization and densities,

and validated the overall result by predicting small-angle x-ray scattering results for model

lipid bilayers to create the GROMOS 43-A1S3 lipid force field that we use for this work,

which gave excellent reproduction of SAXS form-factors for different lipids.29 Parameters

for the ether-links were added to the force-field by Kruczek et al.in 2017,19 and the force-

field was demonstrated to work well with ion parameters from Joung and Cheatham III40 by

reproucing ion binding constants in the same year.19
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2 Interaction of salt with ether- and ester-linked phospholipid bilayers1

In this work we seek to answer the general questions of how salt interacts with ether-linked

lipid bilayers, and how ether-linked lipid bilayers differ from ester-linked lipid bilayers in the

presence of salt. We addressed these questions by carrying out a molecular dynamics simula-

tion of 1-hexadecyl-2-(9-octadecenyl)-sn-glycero-3-phosphatidylcholine lipid bilayer (HOPC)

in NaCl salt. We also compared results of this simulation against our previous simulation of

1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine lipid bilayer (POPC) in NaCl.19 Ad-

ditionally, to gain insight into how salt modulates differences between ether- and ester-linked

lipid bilayers, we also compared these simulations against those of ether- and ester-linked

lipid bilayers in pure water.16

2.1 Methods

The trajectories for the POPC bilayer in 200 mM NaCl were taken from our previous

work,19 and were re-analyzed to address the specific goals of this project. The trajectories

for the HOPC bilayer were generated as described below, following the same protocol we

used for the POPC bilayer. Analysis was carried out using GROMACS41–45 utility tools,

and in-house software developed using GROMACS API.

2.1.1 HOPC bilayer construction

To construct the HOPC bilayer, we first place 100 lipids on 10 × 10 nm grid to form

a bilayer leaflet, and then reflect the leaflet to create the second leaflet of the bilayer. We

then introduce 30,000 water molecules into the space outside the bilayer, which gives a 150:1

waters to lipid ratio. We then replace 216 randomly-selected waters with 108 Na+ and 108

1Portions of this chapter have been previously published in Biochimica et Biophysica Acta (BBA) -
Biomembranes Volume 1861, Issue 5, 1 May 2019, Pages 907-915, and have been reproduced with permission
from Elsevier.1
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Cl- ions to set an initial NaCl concentration of 200 mM. Note that the high water to lipid

ratio is necessary to get a good representation of bulk solvent, as the addition of salt increases

the distance of solvent ordering from the bilayer surface.19 We then remove bad contacts

by energy minimizing using the steepest descent approach. Finally, we subject the system

to one cycle of annealing. Heating is done under constant pressure to 500K, but in steps

of 100K to avoid excess kinetic energy divergence. During heating, each step is simulated

for 10 ps. Cooling is also performed under constant pressure, but in smaller decrements –

cooling from 500K to 400K is done in 5 steps, and cooling from 400K to 300K in steps of 10

steps. Each cooling step is simulated for 50 ps. The total annealing time is 850 ps.

2.1.2 Simulation Details

MD simulation is performed using GROMACS version 5.1.5.41–45 Water is described using

the SPC/E model,46 and we use the united atom Gromos 43A1-S3 parameters for lipids and

lipid-water cross terms developed by our group.16,29 These parameters have been verified in

previous works without salt against experimental SAXS data to ensure accurate reproduction

of bilayer structure.16 Parameters for HOPC are derived from those for ether-linkages used for

di-hexadecyl phosphatidylcholine developed for previous work without ions.16 Ion-ion and

ion-water interactions are described using parameters developed by Joung and Cheatham

III,40 and the ion-lipid cross terms are calculated explicitly using Lorentz–Berthelot rules .19

These ion parameters were verified in previous work for binding constants as well as electro-

static potential, and we reported good reproduction of experimental results.19 Temperature

is held constant at 300K using the Nosé-Hoover thermostat,47 and a coupling constant of 0.5

ps. Pressure is maintained at 1 bar using the Parrinello-Rahman semisotropic barostat,48

and a pressure coupling constant of 1.5 ps. All bonds are constrained using the P-LINCS

algorithm.49 Neighbor-lists are updated every other time step, and integration is carried out

using the leap-frog Verlet scheme. Long-range electrostatics beyond 16 Åare computed using

the smooth particle mesh Ewald algorithm,50 and Lennard-Jones interactions are calculated
8



with a cutoff of 16 Å. As before,19 a continuous MD simulation is run for 0.5 µs.

2.2 Results and Discussion

2.2.1 Bilayer Structure

We first compare mass densities of the different chemical components of HOPC against

those of POPC (see figure 2.1).

We find that the headgroup region of HOPC has a higher density of solvent compared

to POPC – this is visible as a distinct peak in the solvent density profile in the HOPC

system. We verified that this additional peak does not result from accumulation of ions by

comparing mass density profiles of only water molecules. This peak is similar to observations

of a smaller peak made in our previous simulations in the absence of salt, and may be a direct

result of the ether-linked lipids.16

Table 2.1 compares the structural properties of HOPC and POPC bilayers. Lipid volumes

Vl = Vc + Vhg, where Vc and Vhg are the volumes of lipid chains (tails) and headgroups.

These are computed using the approach given in Petrache et al.51 In this approach, we first

compute the number densities ni(z) of the various system components as a function of the

bilayer normal (z). We then use these ni(z) to determine their partial molecular volumes,

vi, by optimizing the objective function,

Ω(vi) =
ns∑
zj

(1−
Ngroups∑
i=1

(ni(zj)vi))
2. (2.1)

Here, Ngroups = 7 are the different system components including methyls (vCH3), methines

(vCH2), methylenes (vCH), headgroup carbons, headgroup and backbone oxygens, headgroup

phosphate and nitrogen, and water (vH2O). Using these partial molecular volumes, we com-

pute Vc = 2vCH3 + 2vCH1 + 28vCH2 and Vhg = 10vhgC + 2vP&N + 8vhgO . We find that the

headgroup volume of HOPC is 27.1 Å3 smaller than POPC, due likely to the absence of car-

bonyl groups. As expected for lipids with the same hydrocarbon chains, the chain volumes

are similar in the two lipids.
9



 100

 300

 500

 700

 900

 1100
(a) POPC

M
as

s 
D

en
si

ty
 (

kg
 m

−
3 )

Water and Ions
Water

Headgroup and Backbone
Chains

 100

 300

 500

 700

 900

 1100

 0  10  20  30  40

(b) HOPC

 

Distance from Bilayer Center (Å)

Figure 2.1: Comparison of component mass densities between the HOPC and POPC systems.
Densities are computed by dividing the box dimension along the membrane normal into 2000
slices. For clairity of presentation, error bars are indicated for every 10th slice. Mass densities
of solvent and ions, water, lipid headgroup and backbone, and lipid chains are shown. The
plot for HOPC shows a peak in the water density inside the headgroup region that is not
present in POPC, similar to what was seen in our previous work with DHPC.16
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Table 2.1: Comparison of HOPC and POPC bilayer structure properties: Vl is the lipid
volume; Vc and Vh are the partial volumes of lipids chains and headgroups, respectively;
2Dc and Db are chain and bilayer thickness, respectively; Al = Vc/Dc is the area per lipid.
Nw is the number of perturbed waters in the system, defined as those behind the hydration
boundary. ∆ν is the quadrupolar splitting constant of each system.

POPC with NaCl HOPC with NaCl

Vc (Å3) 898.4 ± 1.2 900.0 ± 1.0

Vh (Å3) 318.9 ± 0.9 290.2 ± 0.9

Vl (Å3) 1217.3 ± 0.5 1190.2 ± 0.9

2Dc (Å) 30.95 ± 0.32 32.13 ± 0.25

Db (Å) 46.22 ± 0.49 46.05 ± 0.34

Al (Å2) 58.07 ± 0.63 56.03 ± 0.45

Dhh (Å) 40.24 ± 0.75 42.62 ± 0.88

Nw 22.6 22.3

∆ν (Hz) 194.99 1756.08

We also use the number densities computed above (ni(z)) to determine lipid chain

thickness (2Dc) and bilayer thickness (Db). These results are found experimentally from

x-ray and neutron scattering.15 In our simulations these parameters are found by first

computing the probability of finding the i-th group in each slice of the simulation box,

Pi(z) = ni(z)/
∑

i ni(z). We define 2Dc as the distance between the Gibbs’ surfaces on the

interfacial probability densities of lipid chains. Each of the two surfaces is computed by

identifying the point on the curve where the integrals of probability densities in the interfa-

cial regions above and below the surface are equal. We compute Db in a similarly, but from

solvent probability densities. We find that both POPC and HOPC have similar membrane

thicknesses (Db); however a comparison of 2Dc indicates that the hydrophobic chains in

HOPC are slightly thicker than those in POPC, reflecting tighter chain packing. This is also

evident from comparison of electron densities (see figure 2.2).
11
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Figure 2.2: Electron Densities of Simulated Systems. Symmetrized electron density distri-
bution of each simulated system as a function of z. We can see the distribution for HOPC is
broader, with a longer peak-to-peak distance than in the POPC distribution. Furthermore,
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Electron density distributions are experimentally measured using x-ray scattering, by

taking the reverse-fourier transform of the scattering form-factor.3,15,33 Since the experi-

mental x-ray scattering is dependent on the model used to compute the reverse-transform,

we often calculate the form-factor of our simulated bilayer to compare to experiment by

transforming the electron density distribution.16,19,29 Since such data is not available for our

current lipid system as far as we know, we cannot do this comparison here.

We also use the electron density distribution to calculate the peak-to-peak distance Dhh,

which is used another measure of the bilayer thickness. This is roughly reflective of the

distance between the electron-dense phosphate groups on either bilayer leaflet.

Dhh values for POPC and HOPC indicate that the ether-linked bilayer is ∼2Åthicker on

average than the ester-linked bilayer. This discrepancy between the values of Db and Dhh is

likely due to the irregular shape of the distribution of solvent in the headgroup of HOPC —

the extra region of solvent accumulation may move the Gibbs’ surface used for finding Db

into the bilayer surface.

The difference in bilayer thickness can also be shown directly from comparison of chain

order parameters (See figure 2.3). As lipid chains become more ordered on average, bilayer

thickness increases.33

We determine chain order parameters from the chain order tensor Sαβ defined as

Sαβ =
1

2

〈
3 · cos(θα) · cos(θβ)− δαβ

〉
, (2.2)

where θα and θβ are the angles made by the molecular axes with α and β as either x, y, or

z, and δαβ is the Kroneker-delta function. For the saturated bonds52

−SSatCD =
2

3
Sxx +

1

3
Syy, (2.3)
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be seen in table 2.1.
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and for unsaturated bonds53

−SUnsatCD =
1

4
Szz +

3

4
Syy ∓

√
3

2
Syz (2.4)

We then use Vc and Dc to calculate areas per lipid, Al = Vc/Dc. We find that the lateral

surface area of HOPC is slightly smaller than that of the POPC bilayer.

2.2.2 Membrane-salt interactions

Ions prefer to associate or coordinate with specific sites in the headgroup regions of

the lipid bilayers (See figure 2.4) — Na+ ions near phosphates and Cl- ions near cholines.

Here we note that ion peaks are positioned similarly in both HOPC and POPC systems.

Cl- ions do not enter the bilayer headgroup region, while Na+ ions move far into this region

of the bilayer surface. However, the Na+ densities trail off deeper into the POPC bilayer

by ∼ 5 Å (visible in the inset of figure 2.4). In fact, we find that more ions localize in

the POPC bilayer — Averaged over the last 150 ns we see 74.45 ± 0.56 Na+ ions bound

to POPC, compared to 62.27 ± 2.00 Na+ ions bound to HOPC. We consider an ion to be

bound to the membrane when half or fewer of the inner-shell coordination partners of the

ion are waters. The inner shell of Na+ ions is defined using a cutoff of 3.15 Å based on radial

distribution functions of Na+ with the water oxygens.54 The Cl- ions do not lose waters and

do not seem to adsorb on the bilayer, hence we have not analyzed the binding behavior of

Cl- in this work. Figure 2.5 shows the inner-shell coordination environment of Na+ ions as

a function of their positions in the bilayer. For this, we used a cutoff of 3.3 Å, based on the

radial distribution functions of Na+ with the various lipid oxygens (data not shown). When

Na+ ions are bound, they are primarily coordinated by phosphate oxygens — this holds for

both HOPC and POPC. The main difference between POPC and HOPC is in how carbonyl

oxygens, backbone oxygens, and water oxygens coordinate with ions. In POPC, ions are

partially coordinated by both carbonyl oxygens and water, but not by backbone oxygens;
15
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Figure 2.4: Comparison of headgroup component and ion number densities between the
HOPC and POPC systems. The inset zooms in on the ordinate axis to visualize the extent
of ion adsorption into bilayer as well as ion densities in the bulk. Densities are computed
by dividing the box dimension along the membrane normal into 2000 slices. Error bars are
indicated for every 10th slice. We note that sodium ions have a broader distribution in
POPC than in HOPC. The peak of the Na+ distribution in POPC is also closer to the center
of the bilayer than in HOPC. This may be due to the interaction of ions with the carbonyl
oxygens (shown in red) that are present in POPC but absent in HOPC. In both bilayers, the
chloride ions gather near the positively charged choline trimethylammonium, shown in blue.
The inset shows the distribution of ions in the transitional region from the bilayer surface to
bulk solvent. As one looks further out from the bilayer, the density of Na+ and Cl- equalize,
as is expected in bulk solvent.
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the various lipid oxygens. This chart was made by dividing the box into 400 slices, and then
symmetrizing around the bilayer center. Data is averaged over the last 100ns of simulation
trajectory. Errorbars are shown for every tenth data point. Note that the coordination
number of Na+ drops from 6 to 5 as it interacts deeper in both bilayers, and this drop occurs
sooner in the HOPC system than in POPC. No values are shown for at distances less than
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however, in HOPC backbone oxygens do partially coordinate Na+ . This may contribute

to the deeper penetration of Na+ into the POPC bilayer, and the greater number of ions

adsorbed onto the POPC bilayer surface when compared to HOPC.

2.2.3 Water structure and dynamics

As we noted above in Figure 2.1, the headgroup region of HOPC has a higher density of

water than POPC. We have also noted previously that in general salts tend to extend the

region of structured water near the bilayer surface.19 To gain further insight into how the

absence of carbonyl groups in ether lipid bilayers increases water density, we systematically

characterize the structure and dynamics of water.

Figure 2.6 compares the integrated radial distribution of water hydrogens around lipid

oxygens. We note that there is very little water directly coordinating the backbone oxygens

in the POPC bilayer (∼1/3 water per lipid). Compared to backbone oxygens, more water

directly coordinates the ester carbonyl oxygens and the phosphate oxygens in POPC. We see

a larger number of waters coordinating with the backbone oxygens in HOPC than in POPC,

nearly 2 waters per lipid. Therefore, we attribute the higher density of water in HOPC to

coordination with backbone oxygens.

Note that in POPC, carbonyls oxygens compete with phosphates for water coordination.

Consequently, we expect waters to have a greater average ordering in the HOPC headgroup.

We had observed this greater ordering in our previous comparative study of diether- and

diester-lipid bilayers.16

In order to further explore solvent ordering by the bilayer surface, we compute order

parameters of water O-H bonds. The first order parameter (P1) is calculated by time-

averaging the cosine of the angle θ that the OH bond makes with the bilayer normal, that

is P1 = 〈cos(θ)〉. Consequently, a positive value represents an orientation away the bilayer.

The second parameter, which is defined as the second Legendre polynomial of cos(θ), that

is, P2 = 〈(3 · cos2(θ) − 1)〉/2. We calculate both P1 and P2 as a function of position along
18
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the bilayer normal, and they are shown in figure 2.7.

We find that the water in the headgroup region is clearly more ordered in the HOPC

bilayer. Figure 2.7b shows the second order parameter. We note that the induced perturba-

tions in the water layer are more prominent in HOPC than that of POPC. At the same time,

however, we find that the numbers of water that are ordered in the two systems are similar.

We count the average number of non-bulk (perturbed) waters as waters within the non-zero

region of the second order parameter. We find this boundary by fitting an exponential func-

tion to the region starting at the peak in the first order parameter, and taking the inverse

of the length-scale of the fitted function as the position of the surface. The region beyond

this point is considered bulk water. We will refer to this surface as the hydration boundary

for the remainder of the paper. For the purpose of counting the number of waters in the

surface, we truncated the box at this boundary, to a length of 35 ångströms. Numbers of

perturbed waters per lipid for each system can be seen in table 2.1 line 8.

We also use these order parameters to compute the quadrupolar splitting of water as

measured in NMR experiments. It is essentially a weighted average of the second order

parameter, similar to the one derived by Kruczek et al.:16

∆ν =
3

4
χ

1

Nw

z0∑
zi=0

nw(zi)P2(zi), (2.5)

where the number of perturbed waters in the system is Nw, nw is the number of waters in

each slice of the box, and P2(zi) is the value of the second order paramter in the ith slice.

We take the quadrupolar splitting constant of water χ = 220KHz from Åman et al.55 The

summation over slices is carried out from the bilayer center (z = 0) to the end of the box.

We report that the quadrupolar splitting of water in the POPC system is 194.99 Hz, and

that in the HOPC system is 1756.08 Hz (also shown in table 2.1, line 9). These values

reflect a similar difference to what we observed in our earlier comparative study of ether-

and ester-linked lipid bilayers in pure water.16
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Figure 2.7: The first and second order parameters, P1 and P2, of water O-H bonds. Each
parameter is calculated by first dividing the simulation box into 2000 slices, and then aver-
aging the data separately in each slice. The box is symmetrized around the bilayer center,
and thus only half the box is shown. Standard deviations are calculated by dividing the
trajectory into over 5ns blocks. The dashed vertical lines in the P2 plot are demarkations for
the different spatial regions, B−1, B+, B−2, and Bbulk, as discussed in the associated text. P1

is the average of the first legendre polynomial of the cosine of the angle between the bilayer
normal and the O-H bond vector of each water molecule per box slice. P2 is the average of
the second legendre polynomial. Looking to P1, both systems exhibit similar magnitudes of
ordering. P2 shows a more complicated distribution, with larger magnitudes of ordering in
all regions in the HOPC system.
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Next we compute the lateral diffusion coefficient of water. To gain detailed insight, we

compute it separately for four different regions along the bilayer normal. We define these

regions using the P2(z) profile: B−1 is the region closest to the bilayer center where P2(z) is

negative; B+ is the region where P2(z) is positive; B−2 is the region beyond the B+ boundary

where P2(z) is negative; and the remaining portion beyond B−2 we refer to as bulk. These

regions are also labeled in figure 2.7. The diffusion coefficients for waters in these regions

are included in table 2.2. They are calculated using Einstein’s relationship, and a protocol

detailed in our previous study.16 Taking note of the overall pattern, the lateral diffusion

decreases progressively as one moves deeper into the bilayer. Additionally, in the innermost

regions B−1 and B+ water diffuses more slowly in HOPC compared to POPC. This result is

similar to what we observed previously16 in simulations without salt.

To characterize the orientational dynamics of waters, we compute autocorrelations of the

O-H bonds,

CO−H(t) =

〈
~vO−H(0) · ~vO−H(t)

〉
. (2.6)

We calculate expectation values separately for all the 2 Å slices along the bilayer normal by

tracking individual water molecules for 500ps, and also averaging over all waters in the slice.

We also weight each water by the fraction of duration it spends in each slice. This is done in

5 ns chunks, and then averaged over the trajectories. We then model these autocorrelations

as a sum of three exponential terms,

CO−H(t) = A1e
−t/τ1 + A2e

−t/τ2 + (1− A1 − A2)e−t/τ3 , (2.7)

where Ai are positive, and τi are correlation times. Fitting is carried out using the Marquardt-

Levenberg least-squares fitting method. The correlation times are plotted in figure 2.8.

We find that τ1 shows a profile similar to what we observed for ether- and ester-lipids

simulated in pure water.16 Additionally, we find that the correlation times τ1 and τ2 in the

HOPC bilayer are all longer than in POPC. The maximum correlation times of 1838 ps in
22
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Table 2.2: Diffusion coefficients of water measured in nm2/s in different regions along the
bilayer normal (see figure 2.7 and related text for the definitions of the different spatial re-
gions. The two innermost-bilayer regions B−1 and B+ in HOPC contain waters that have
a greatly lowered diffusion coefficient. In the regions B−2 and bulk, the bilayer composi-
tion does not seem to change the diffusion behavior. These values were calculated using
the method outlined in previous work by our lab16 The various regions are illustrated on
figure 2.7.

B−1 (nm2/s) B+ (nm2/s) B−2 (nm2/s) Bulk (nm2/s)

HOPC 0.85 ± 0.59 1.783 ± 0.94 16.1 ± 5.24 26.67 ± 0.65

POPC 1.075 ± 0.62 3.078 ± 0.74 16.27 ± 5.19 27.30 ± 0.66

HOPC and 1019 ps in POPC are characteristic of rotationally immobile waters inside the

bilayer surface and also of crystallographically-resolved waters in protein-protein interfaces.56

Note that τ3, which is of the order of picoseconds, is close to the sampling time of our

trajectories. Thus, we regard it simply as a fitting parameter.

Overall, we find that the headgroup water in HOPC is significantly more organized and

also diffuses more slowly as compared to the headgroup water in POPC. This is similar to

what we had observed16 when we compared another diether lipid bilayer against its chemically

analogous diester-lipid bilayer, but in the absence of NaCl. This leads us to conclude that

in ether-linked lipid bilayers water forms a rigid and immobile layer within the headgroup

region of the bilayer, and exposure to a moderate concentration of salt does not disrupt this

layer.

2.2.4 Bilayer electrostatics

The dipole potential of a bilayer is the potential difference between the inside of the

bilayer and bulk water. In our previous comparative study of ether- and ester-linked bilayers

in pure water16 we had found that the dipole potential of the ether-linked lipid bilayer was

56± 5 mV smaller than that of the ester-linked lipid bilayer, and this finding was consistent

with experiment.13 We also know that membrane association with salt can modify its dipole
24



potential, with increases of around 200mV from that of a bilayer without salt reported

previously.19,57,58

Figure 2.9 compares the electrostatic potential in HOPC and POPC as a function of

distance along the bilayer normal. These are calculated from an integration of the one

dimensional Poisson’s equation,

φ(z) = − 1

ε0

∫ z

0

∫ z′

0

ρ(z)dzdz′ + C1z + C2, (2.8)

where ρ(z) is the charge density along the bilayer normal, and ε0 is the vacuum permittivity.

Note that we integrate this equation using two boundary conditions — the electric field in

bulk water is zero, yielding C2 = 0, and the potential at the simulation box boundary is also

zero, which makes C1 = 0.

The first observation we make is that the dipole potentials of both HOPC and POPC are

similar; a behavior distinct from that observed in simulations in pure water. Nevertheless,

the overall electrostatic potential profiles are similar to those observed in pure water. Firstly,

a characteristic peak near the phosphate region still exists, and this peak is higher for the

diether lipid bilayer. This could potentially serve as a higher permeation barrier in the

diether-linked lipid system. This interpretation is consistent with our observation above

that there are fewer membrane-associated ions in HOPC compared to POPC. Secondly, the

diether-linked lipid system had a trough next to the peak, which is absent in the diester-

linked lipid bilayer, and may serve as a trap for solvent molecules. In fact, the spatial location

of the trough corresponds to the high water density region in the HOPC bilayer.

2.2.5 Salt distribution at the bilayer-solvent interface

The behavior of salt near bilayer surfaces is often modeled using Gouy-Chapman theory;

a mean-field approximation that has its roots in Poisson-Boltzman theory.4,59 This theory

also forms the basis for electrophoretic mobility studies.59,60 In this theory, water is modeled

as a dielectric continuum in which ion particles behave as an uncorrelated gas. This means
25
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Figure 2.9: Comparison of electrostatic potentials between the HOPC and POPC systems.
These distributions are calculated by integrating the charge density of our systems twice,
assuming the potential goes to zero at the box edge and that the electric field of bulk solvent
is zero. Looking to the region from the bilayer center to around 10 Å, one can see the bilayer
dipole potential. We see very similar values for this in both systems. We also see a large
peak in the HOPC system, and a large trough that is not present in POPC. The larger peak
at the bilayer surface may provide a barrier to solvent and dissolved ions, and the trough
may be a trap that causes the buildup of solvent in the bilayer headgroup region.
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that the number density distribution of ions in the dielectric continuum only depends on the

temperature and the electrostatic potential applied to the system.

So far, due to limitations from system size and ionic force field parameters, we have

refrained from comparing or validating our simulations at the atomistic level against this

theory. Here, we show convergence between these atomistic simulations and the Poisson-

Boltzman theory.

Within Poisson-Boltzmann theory, the number density of ions near the bilayer surface is

described as

ρ(z) = ρ0 exp
(
−z̄eβψ(z)

)
, (2.9)

where ρ0 is the ion density in the bulk, z̄ is the valency of the ion, β = (kbT )−1, e is the

charge on an electron, and ψ(z) is the electrostatic potential. We define the interfaces as the

hydration boundaries (see subsection 2.2.3 ‘Water structure and dynamics’). The lengths of

the solvent occupied regions, D, in each of the two systems are listed in table 2.3. We set

the center of this solvent occupied region as z = 0, which then implies that the interfaces

are essentially at z = ±D/2 nm, as illustrated in figure 2.10. We model ψ(z) as a sum of

two Debye-Huckle potentials,4 each a reflection of the other around the center of the solvent

occupied region:

ψ1(z) = ψs exp

(
−K(z +

D

2
)

)
(2.10)

ψ2(z) = ψs exp

(
K(z − D

2
)

)
(2.11)

ψ(z) = ψ1(z) + ψ2(z)−
(
ψ1(0) + ψ2(0)

)
(2.12)

Here ψs = σ/ε0εK is the electrostatic potential at the bilayer surface, where σ is the surface

charge density of the bilayer leaflet.4 K is the inverse Debye length,

K =

√∑
i

ρ0,iz̄2
i

e2

ε0εkbT
, (2.13)
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Table 2.3: Parameters in Gouy-Chapman theory. K was calculated using equation 2.13.
This was done using the value for ρ0 for each system, found by taking the average number
density of Cl- ions within the solvent-occupied region of the box. The charge density σ was
calculated by integrating the charge of the ions from the bilayer center to the surface at
35 Å from the bilayer center for each system, shown to be the hydration boundary of both
bilayers. D gives the length of the solvent-occupied region of each simulation box.

K(nm−1 ) D nm ρ0 (nm−3) σ (e nm−2)

POPC 0.98±0.021 13.167±0.0071 0.043±0.0018 0.13

HOPC 1.09±0.037 13.752±0.0068 0.060±0.0041 0.128

where the sum of ρ0,i’s is over all the included ions in our system. Note that in Equ. 2.12

we subtract out the value of the potential at the center of the solvent occupied region from

ψ(z). Note also that the form of ψs is valid only for small surface potentials, generally

those smaller than 20 millivolts.4 Our systems have a relatively small surface charges (See

table 2.3), which will result in small surface potentials (See table 2.3). The surface charges

are calculated by integrating charge densities of ions contained behind the surface. We chose

to do this because all other parts of the simulated system are uncharged, and the surface is

entirely charged by the adsorbed ions.

Figure 2.11 compares the potential and ion distribution obtained from theory against

those estimated directly from simulations.

We note a very close match between the two. Additionally, we find that HOPC shows

a slightly larger K than POPC, indicating a ∼10% shorter screening length for the system.

This means that a bilayer of HOPC is better shielded from environmental electric fields. The

shorter screening length in the HOPC is also reflective of the smaller number of ions that

adsorb onto the surface of the bilayer, as this directly results in a larger number density in

bulk solvent due to the fixed number of ions in our system.
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Figure 2.10: Illustration of bulk ion distribution, with surfaces used in Gouy-Chapman theory
calculations. For the purpose of illustration, solvent has been hidden from this image. Cl- ions
have been colored in green, and Na+ ions are shown in red. Surfaces set at the hydration
boundary of each bilayer leaflet are shown with dotted lines. The center of the solvent
occupied region of the box is set at zero.
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Figure 2.11: Comparison of Gouy-Chapman theory predictions and simulation results. The-
oretical distributions are given by the solid lines, and data from our simulations are shown
as points with error bars. (a) and (c) show the electrostatic potentials of each system. For
clarity, we show error-bars for the simulation results for every 13th point. The Debye-Huckle
potentials shown follow the form given in equation 2.12. (b) and (d) show the number density
distribution of ions in each system. Error-bars for the simulation results are shown for every
30th point. Note that both systems are translated to center around the solvent-occupied
region of the box, giving an interspace region of ∼13 nm in each system. Parameters used
in Gouy-Chapman theory are in table 2.3
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3 Conclusion

Phospholipids are an important part of all living things, acting as the major constituent

of cellular plasma membranes. The great variety of phospholipid species allows organisms

another parameter to fine-tune the behavior and structure of their membranes in order to

adapt to a wide range of different environments.2 This tunability makes lipid bilayers inter-

esting to study, as small changes in lipid structure can result in large changes in the overall

bilayer structure.3 Classical molecular dynamics simulations are well suited to studying lipid

bilayers,3 and have been used extensively to study these systems over the last 25 years.

In our work, we have sought to model the interactions between dissolved ions and model

ether- and ester-linked lipid bilayers. We found that ether-linked lipid bilayers show a distinct

peak in solvent density that is not disrupted by the inclusion of a moderate concentration

of salt. This region shows significantly reduced lateral diffusion, and longer autocorrelation

times than the same region in an analogous ester-linked lipid bilayer. Furthermore, we find

that the characteristic lower dipole potential of an ether-linked bilayer reported in previous

work16 is increased to match that of the ester-linked bilayer in the presence of salt. We also

find that, with our new protocol for determining the interface boundary of the lipid bilayer,

our simulations model ion distributions and electrostatic potentials from Gouy-Chapman

theory well. The shorter screening length in the ether-linked system suggests better shielding

from electric fields far from the bilayer compared to the ester-linked system. This is a result

of the ether-linked lipid bilayer’s lower affinity for ions than the ester-linked analog.
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