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Abstract

Cancer is one of the most deadly diseases that the world has been fighting against over

decades. An enormous number of research has been conducted, via a wide scale of ap-

proaches, raging from genetic analysis to mathematical modeling. Survival analysis is a

well-performed methodology frequently used to estimate the survival probability of a patient.

Although there has been a large number of methods for survival analysis, efficient exploration

of a high-dimensional feature space has been challenging due to its computational cost and

complexity. This thesis adapts the component-wise gradient boosting algorithms for cancer

survival analysis, and also proposes a new gradient boosting algorithm based on optimizing

the Brier’s score. The new method is illustrated with the analysis of the microarray data of

diffuse large B-cell lymphoma (DLBCL). The new gradient boosting approach not only has

identified similar important biomarkers as previous statistical studies on the same data set,

but also offers more insights and gained understanding on medical aspects. In addition, the

performance of the new method is demonstrated through a simulation study and compared

with a variety of statistical and machine learning methods.



1 Introduction

1.1 Cancer

Cancer is a collection of related diseases, which the body’s cells start to divide without

stopping and inflate the surrounding tissues. Normally, human cells grow and duplicate in

demand of body need. New cells are continuously reproduced to replace dead or damaged

cells. In appearance of cancer, however, cells growth abnormally, old and damaged cells

are not eliminated as usual and new cells are duplicated abundantly. In many cases, these

cells can keep dividing without limitation and may form tumors. Malignant tumors, which

are dangerous and deadly, invade the nearby tissues and compete with normal cells for

nutrient. Additionally, this type of cancerous tumors can break off and metastasize to a

new distant site via the blood or lymph system. The metastasis may form new tumors

far from the original tumor (primary site of cancer). On the other hand, benign tumors

do not invade the neighbor environment and can be removed. Hardly ever benign tumors

grow back, while the malignant tumors sometimes do [2]. Based on the annual report of

American Cancer Society, 1,762,450 new cancer cases were recorded in 2019, resulting in

606,880 deaths [2]. The most common site with cancer development is the digestive system

with 328,030 new cases, discovered in the same year. The trend in age-adjusted cancer

death rates (both sexes) from 1930 to 2016 has witnessed a significant increase in lung and

bronchus sites and a gradual decrease in stomach site. The survival rate within 5 years

for all cancers has grown remarkably since early 1960s, and is nearly doubled from 39% to

70% among whites and tripled from 27% to 63% among blacks. This thesis develops a new



machine learning technique for improved prediction of cancer survival probability by using

the gradient boosting method for optimizing the Brier score over a high-dimensional feature

space. The new method offers improved precision of prediction, computational efficiency,

and improved understanding of the contributing features (important biomarkers). We will

illustrate the model via a data set for diffuse large B-cell lymphoma.

1.2 Survival data analysis

In the current data-driven world for cancer studies, survival data can be analyzed by a great

number of methods. However, those methods might be categorized into two major classes,

which are statistical and machine learning methods. Traditionally statistical methods play

a crucial role in survival analysis. Non-parametric methods such as Kaplan-Meier product

limit estimators [3], Nelson-Aalen estimators [4] and life-table [5] laid a strong foundation

for early related research. Nevertheless, non-parametric methods do not offer insights on the

contribution of quantitative covariates to the survival probability. Thus, semi-parametric

approaches such as the Cox’s regression models [6] have been more popular for survival anal-

ysis, which allow us to take into account the impacts of covariates based on the proportional

hazards assumption. Some commonly used Cox’s regression models include penalized Cox

regression such as Lasso and Ridge regression [7] [8] and time-dependent Cox models [9].

However, the restriction of Cox models is often due to the violation of proportional hazards

assumption. In fact, the assumption is often not met for many survival data. Therefore,

parametric models such as linear regression (Buckley James) [1], penalized regression [10]

or the accelerated failure time (AFT) models [11] are often used. However, when we have a

high dimensional feature space, the application of these statistical methods could be limited

due to its associated computational complexity. Hence, the machine learning methods which

are more powerful for big data analysis could be a more popular alternative for analyzing

high dimensional survival data. Some well-known machine learning tools that have been

adapted for survival analysis include survival trees [12] [13], Bayesian network [14], neutral



network [15], support vector machine [16], ensemble methods such as random survival for-

est [17] and bagging survival trees [18], gradient boosting [19] [20] and some more advanced

learning methods such as active learning, transfer learning [21] and multi-task learning [22].

This thesis mainly focuses on gradient boosting methods, which offers both the simplicity

of statistical methods and the computational power of machine learning techniques. Existing

work on applying boosting methods to survival analyses have explored a variety of objective

(loss) functions such as the negative partial log-likelihood [19], the ranked-based Gehan

loss [23], the (smooth) C-index [24]. In this thesis, we are going to propose a new gradient

boosting method using the modified Brier score as the loss function to optimize a aspect

of model performance and demonstrate its advantage over some existing gradient boosting

methods through a simulation study.

1.3 Diffuse Large B-cell Lymphoma (DLBCL) Studies

Diffuse large-B-cell lymphoma is a disease involving molecular heterogeneity. In [25], three

gene expression signatures, which are germinal-center B-cell, stromal-1 and stromal-2, were

used to build a multivariate model. The Affymetrix U113 plus 2.0 microarrays was used to

profile the gene-expression. The data set explored in this thesis includes microarray data of

diffuse large B-cell lymphoma of patients received the gold standard CHOP treatment [25].

Originally, survival time and status of 181 patients were recorded with 54,675 covariates.

However, those covariates are filtered by a pre-selection procedure for high-dimensional data.

Previous study [25] showed that the survival rate post treatment was influenced by differences

in immune cells, fibrosis and angiogenesis. The previous study [25] also had access to a larger

data set, which contains demographic of patients, Ann arbor stage, extra nodal sites, ECOG

performance status and IPI score. Rosenwald et al. [26] indicated that the cure rate of

patients who have extensive disease was around 0.35 to 0.40. It is also showed in [25] that

the relative risk of death was 2.76% with 95% CI (1.9,3.9). Zhu Wang and C.Y.Wang [1]



used the same data set to evaluate the performance of Buckley-James boosting algorithm.

Twelve probe sets were selected in this study which summarized shown in Table 1.1.

Table 1.1: Probe set ID and corresponding gene symbol derived from Zhu Wang and
C.Y.Wang BJ boosting [1]

Probe set Gene symbol Coefficient
1558999 x at LOC283922/PDPR −0.104
1561016 x −0.098
1562727 at −0.045
1568732 at 0.116
212713 at MFAP4 0.058
224043 at UPB1 0.121
229839 at SCARA5 0.112
237515 at TMEM56 −0.019
237797 at DNM1L 0.212
240811 at −0.010
242758 x at JMJD1A 0.112
244346 at 0.111



2 Statistical Methods for Survival Analysis

2.1 Survival Data and Functions

In the study of time-to-event data, we may not be able to observe the exact event time

for the units in the study. For instance, in a study about the survival time of a particular

cancer, we are interested in when the death of a patient occurs. However, not all patients

die during the study period, For patients who have survived by the end of the study, the

exact event times are not observed, i.e the ”failure” are expected to occur after the recorded

time period. On the other hand, in retrospective studies, the failures have occurred before

the termination of the study. Two main objectives of survival modeling are to estimate the

survival probability of a patient and to determine which covariates have significant impacts

on the survival probability.

Let (Ti, δi, Zi) be the survival data for the ith patient, where Ti is the observed event

time, δi is the status death or being alive and Zi is a set of covariates associated with patient

i. The survival function, which is the probability of an object surviving beyond a given time

t, is

S(t) = P (T ≥ t) = 1− P (T ≤ t) = 1− FT (t), for t ≥ 0,

where FT (t) is the cumulative distribution function at time t. The hazard function is a

conditional density, given that the event of interest has not happened prior to time t, which

can be expressed as

h(t) = lim
h→0

P (t ≤ T < t+ h|T ≥ t)

h
=
f(t)

S(t)
.



The cumulative hazard function is given by

H(t) =

∫ t

0

h(s)ds = − logS(t)

We also have a useful relationship given by

h(t) = − d

dt
log[1− F (t)] = − d

dt

(
− logS(t)

)
.

2.2 Kaplan-Meier Product Limit Estimator

Kaplan-Meier (KM) product limit estimator is a non-parametric statistic used to estimate the

survival function of the time-to-event (lifetime) data [3]. Sometimes, patients in a particular

treatment program may leave the program. This will result in partial observations, i.e it is

known the patient has survived a certain time but the exact failure time is unknown. The

KM estimator of survival function - first introduced by Edward L.Kaplan and Paul Meier,

is given by

Ŝ(t) =
∏
i:ti≤t

(
1− di

ni

)
,

where ti is the observed event time, di is the number of events that are recorded at time t

and ni is the number of patients survived by time ti. The KM estimator is one of the most

commonly used statistics in non-parametric survival analysis, due to its ease for computation

and visualization. Nevertheless, it does not allow an connection with qualitative predictors.

Survival data sets with continuous covariates are often treated by parametric survival models

or Cox proportional hazards models. To assess the uncertainty of KM estimates, we use

γ̂i = di
ni

to calculate binomial proportions of death in the time interval [ti, ti+1). The variance

of γi is then given by

V ar(γ̂) =
γ̂i(1− γ̂i)

ni
.



Then the Greenwoods’s formula yields

V̂ar(Ŝ(t)) = [Ŝ(t)]2
∑
i:ti≤t

di
(ni − di)ni

.

Even though the non-parametric method is flexible, it is difficult to incorporate the

quantitative covariates. That means it is hard to connect how individuals differ in their

survival probability with other features through the KM estimates. However, the KM curve

can serve as an a useful tool to validate the Cox proportional hazards assumption. If the KM

curves of two groups intersect, it may be an evidence of non-proportional hazards between

the two survival curves.

2.3 Cox Proportional Hazards Models

The proportional hazards model, which is in a family of semi-parametric model, assumes

that the ratio of hazards of groups remain a constant as time changes [6] [27]. Let zi =

(zi1, ..., zip), i = 1, ..., n be the set of covariates associated with the ith patient. The hazard

function of Cox proportional hazards model is expressed as

λ(t|zi) = λ0(t) exp(η) = λ0(t) exp(zTi w),

where λ0(t) is the baseline hazard (when all covariates are zeros), w = {w1, ..., wp} is a vector

of coefficients and η = zTi w = w1zi1 + ...+ wpzip is the prognostic index. The parameters in

Cox proportional hazards model is estimated via maximizing the partial likelihood, which is

given by:

pl(w) =
n∏
i=1

[
exp(zTi w)∑

j∈R(Ti)
exp(zTj w)

]δi
.

In the above equation, R(Ti) is the set of patients at risk at time ti, and is defined as

R(ti) := {j : Tj ≥ ti}. Tsiatis (1981) [28] and Andersen and Gill (1982) [29] proved that it is

possible to use the partial likelihood in place of the full likelihood to make inferences about



w. First, we derive the log-partial likelihood by taking logarithm of the partial likelihood

function, which can be writen as

l(w) = log pl(w) =
n∑
i=1

δiz
T
i w− log

( ∑
j∈R(Ti)

exp(zTj w)

)
(1)

Let G(w) be the partial likelihood score function, which is given by the first derivative

of the log-partial likelihood as in

G(w) =
∂

∂w
l(w).

The solution of G(w) = 0, denoted by ŵ is the maximum partial likelihood estimate of

w. Tsiatis, et.al [28] also proved that ŵ−w
SE(ŵ)

asymptotically follows the standard normal

distribution. Additionally, the variance of ŵ can be computed as

Var(ŵ) =

[
− ∂2

∂w2
l(w)

]−1

|w=ŵ.

The proportional assumption can be validated by several methods, such as visualization

through the Kaplan-Meier curves or using the Schoenfeld residual test [30].

2.4 Accelerated Failure Time Models

An accelerated failure time (AFT) model is characterized as an parametric survival model,

which has a completely specified the distribution of survival time [31]. Unlike proportional

hazards models, an accelerated failure time model assumes that the survival time is acceler-

ated or decelerated under the effect of covariates, i.e the model describes the acceleration or

deceleration of the survival time as a function of the covariates, which can be mathematically

presented as

S(t) = S0(kt), t ≥ 0,



where S and S0 are survival functions of two populations and k is a constant accelerating

factor. Let λ(t) be the hazard function of an AFT model and θ = exp(−ZT
i w), then the

accelerated failure time model can be given by:

λ(t|θ) = θλ0(θt).

Let Ti be the failure time of the ith instance, and then we have

log(Ti) = − log(θ) + log(θTi) = ZT
i w + σεi,

where w = (w1, ..., wp)
T and σ are the unknown parameters.

The estimation and inference of the AFT models have been introduced by Kalbeisch and

Prentice [32]. Let Yi = min(log Ti, logCi), where Ci represents the censoring time of patient

i, which is assumed to be independent of w and σ. Let yi be the observed data of Yi, then

the log-likelihood function is given by

l(w, σ) =
n∑
i=1

δi

[
log f

(
yi − zTi w

σ

)
− log(σ)

]
+ (1− δi) logS

(
yi − zTi w

σ

)
,

where f(.) and S(.) are the corresponding density and survival functions of εi. Let ei =

yi−zTi w

σ
, then the score function of the log-likelihood of the AFT models can be written in

the matrix form of

U(w, σ) =

[
Uw(w, σ)

Uσ(w, σ)

]
=

[
σ−1ZTΓ

σ−1(eTΓ− 1T δ)

]
,

where Γ = (γ1, ..., γp)
T ,

γi = −
[
δi
∂ log f(ei)

∂ei
+ (1− δi)

∂ logS(ei)

∂ei

]
,



1T = (1, ..., 1)T and e = [exp(e1), ..., exp(ep)]
T . The maximum likelihood estimates (MLEs)

for w and σ are derived by solving U(w, σ) = 0, which can be obtained by a numerical

nonlinear optimizer, such as the Newton-Raphson algorithm (which is the optimization al-

gorithm used in the ”survreg” function in the R survival package).

One of the most commonly used AFT models is the log-logistic model, which has a non-

monotonic hazard function. The hazard function of the log-logistic model increases at the

early lifetime, and then decreases later on. The distribution of the errors of the log-logistic

model is given by

γi = δiei
1− δi

1− Φ(ei)

∂

∂ei
Φ(ei),

where Φ(.) is the cumulative density function of the standard normal distribution. In con-

trast, the Weibull distribution has a PDF given by

f(t) =
α

β

(
t

β

)α−1

exp(−(t/β))α,

where α and β are the shape and scale parameters, respectively. The Weibull distribution

has a monotonic hazard function, whose shape is dependent on the shape parameter. Par-

ticularly, the shape parameter less than one indicates a monotonically decreasing hazard

function. In the case of a unit shape parameter, the Weibull distribution is simply an expo-

nential distribution with a constant failure rate. The error distribution follows a standard

extreme value distribution, which is given by

γi = exp(ei)− δi.

The uncertainty of the estimated parameters (wT , σ) can be performed by hypothesis test-

ing [32]. Let Θ = (w, σT ) be the parameter space, which can be partitioned into Θ =

{θ(1), θ(2)} = {(w1, σ1), (w2, σ2)}. Let Θ0 = {(θ(1), θ
(2)
0 )}, then the hypothesis test on H0 :



θ(2) = θ
(2)
0 is performed by the likelihood ratio test

Λ = 2

[
l(θ̂(1), θ̂(2))− l(θ(1), θ

(2)
0 )

]
.

It is previously proved that Λ has a χ2 distribution with its degree of freedom equals the

length of θ(2).



3 Machine Learning Methods

3.1 General Boosting Methods

In this section, we are going to introduce the fundamental of the boosting methods, starting

from the forward stagewise boosting, continuing on with the additive tree-based boosting,

and then proceeding with the gradient boosting, which has been the most popular boosting

methods and have demonstrate their successes through many applications and being among

the winner solutions of many Kaggle competitions. The main idea is to build an ensemble of

weak learners by optimizing a loss function of interest via a steepest decent algorithm. To

scale for a high-dimenational feature space, the component-wise gradient boosting methods

with various choices of the loss function will be explored.

3.2 Forward Stagewise Boosting

Boosting has become one of the most efficient and well-performed learning structures, which

has been continuously developing in the last two decades. The first simple form of the boost-

ing procedure was proposed by Schapire (1990) [33], and had drawn an extensive attentions of

many researchers. Originally, the algorithm was created for classification problems; however,

it was later on adapted to handle regression problems as well. One of the well-known de-

velopments is Adaptive Boosting (AdaBoost) for classification problem formulated by Yoav

Freund and Robert Schapire. [34] Then Friedman et al. [35] introduced the additive tree mod-

els, which are applicable for both regression and classification problems. The idea behind

boosting is to ensemble weak learners, which are slightly better than random guessing, into



a more powerful model for improved predictions. Forward stagewise additive modeling [36]

could result in an easy interpretation (Algorithm 1). Mathematically, the model is given by

f(z) =
M∑
m=1

wmb(z; θm), (2)

where wm,m = 1, ...,M are the coefficients (weights) and b(z; θm) are real functions of z,

characterized by a set of parameters θm. We also need to define the loss (objective) function,

denoted by Φ(y, f(z, θ)). The loss function must be a convex function. There are many

choices of the loss function such as the squared-error loss, the absolute-error loss, Huber

loss, etc. [36] In survival analysis, the negative partial log-likelihood function can also be

used as the loss function [37].

Beginning with a chosen initial value of f0(z), typically chosen as zero, forward stagewise

modeling adds a new basis function at each iteration, keeping the same set of parameters

and coefficients that have been already included in the model. The aim of the mth iteration

is to find the ”best” base leaner and its weights b(z, θm) and wm which minimizes the loss

function Φ(y, fm(z)). This result, says wmb(z; θm) is added to the result derived from the

(m− 1)th iteration to form a new model. The parameter estimation is relying on the choice

of base leaners and the loss function. For example, in the case of the simple linear regression

(SLR) base learners and the squared-error loss function, we have

Φ(y, fm(z)) =
n∑
i=1

(
yi −

M∑
m=1

wmb(z; θm)

)2

=
n∑
i=1

(
yi −

M∑
m=1

wmθmZ

)2

The estimates for θ̂m and ŵm are solutions to the system of equations

n∑
i=1

∂

∂wm

Φ(yi, f(z)) = 0



and
n∑
i=1

∂

∂θm
Φ(yi, f(z)) = 0,

which can be obtained by numerical methods. Nevertheless, in the next section, we will in-

troduce the boosting trees, which use the tree-based base learners. The parameter estimation

process is more complicated than the above example.

Algorithm 1 Forward stage-wise boosting Additive Model

1. Initialize f0(z) = 0

2. For m = 1 to M :

(a) Compute

(ŵm, θ̂m) = arg min
wm,θm

N∑
i=1

Φ

(
y, fm−1(zi) + wmb(zi; θm)

)
.

(b) Update fm(z) = fm−1(z) + ŵmb(z; θ̂m)

3.2.1 Boosting Trees

In addition to the forward stagewise additive modeling, boosting tree is another powerful

boosting method. Classification and regression trees (CARTs) partition the feature space

into disjoint regions Rj, i = 1, ..., J [36]. Each of the regions, defined by their terminal nodes

will be assigned a constant Cj, then the prediction is obtained by: z ∈ Rj =⇒ f(z) = Cj.

Generally, the mathematical form of a tree is

T (z; Θ) =
J∑
j=1

CjI(z ∈ Rj),

where Θ = {Rj, Cj}Jj=1 are the parameters associated with the J prediction regions. The

estimation of the model parameters is basically a optimization problem, which is to minimize

the empirical risk
∑J

j=1

∑
zj∈Rj

Φ(yi, Cj). The solution can be obtained using the greedy or



top-down recursive partitioning strategy for finding Rj such that

Θ̂ = arg min
Θ

N∑
i=1

Φ̂(yi, T (z; Θ)).

The boosting tree model also has an forward stagewise expression, as it can be represented

by

fM(z) =
M∑
m=1

T (z; Θm).

The implementation of boosting trees with the gradient boosting in XGBoost package has

achieved tremendously outstanding result among current data analysis competitions. [38]

Algorithm 2 Steepest Descent Algorithm

1. Initialize f0 = 0

2. For m = 1 to M :

(a) Compute the negative gradient vector u[m]

u
[m]
i = −

[
δΦ(yi, f(zi))

δf(zi)

]
f(zi)=fm−1(zi)

(b) Compute the step length νm

νm = arg min
ν

Φ(fm−1 + νu[m])

(c) Update
fm = fm−1 + νmu[m]

The main task of algorithms introduced above is to find a set of parameters which mini-

mizes the loss function. The optimization problem can be solved numerically by the gradient

descent algorithm (analytically called method of steepest descent) [36]. We can restate the

optimization as the following. Let Φ(f) =
∑N

i=1 Φ(yi, f(zi)) be a convex and differential

loss function. We need to find f = {f(z1), ..., f(zN)} which minimizes Φ(f), mathematically



denoted by

f̂ = arg min
f

Φ(f)

The solution given by the steepest descent algorithm is expressed as

fM =
M∑
m=0

νmu[m],

where νmu[m] is the increment vector at the mth step. The steepest descent is a greedy

algorithm, since the negative gradient vector u[m] is the local direction where the loss function

decreases most quickly.

Algorithm 2 can be adapted into boosted tree modeling, to handle the difficulty of finding

Rj.

Algorithm 3 Gradient Tree Boosting Algorithm

1. Initialize

f0(y) = arg min
θ

N∑
i=1

Φ(y, θ).

2. For m = 1 to M :

(a) For i = 1, ..., N compute the pseudo residuals

rim = −
[
δΦ(yi, f(zi))

δf(zi)

]
f=fm−1

.

(b) Fit a regression tree to predict rim, obtaining terminal regions Rjm, j = 1, ..., Jm

(c) For j = 1, ..., Jm compute

θjm = arg min
θ

∑
zi∈Rjm

Φ(y, fm−1(z) + θ)

(d) Update

fm(z) = fm−1(z) +
Jm∑
j=1

θjmI(z ∈ Rjm).

3. Output f̂(z) = fM(z)



3.3 Gradient Boosting Based on Optimizing the Partial Likelihood

Although the gradient boosting algorithm has a great number of advantages, there exists a

concerning issue, which is variable selection. In contemporary data-driven world, we usually

deal with high-dimensional data, which demands computationally expensive analysis, as

well as appropriate methods for variable selection. Especially, microarray data used in

biomedical research has an enormous number of predictors, much greater than the number

of observations. Therefore, Cox’s proportional hazard model is not practical to be used.

Component-wise boosting for multivariate linear model proposed by Peter Buhlmann et.al

(2006) is a remedy for the issue [37] [39]. Instead of fitting the base-learners for the entire set

of covariates Z = {z1, ..., zp}, component-wise boosting uses base-learners to fit one variable

at a time zj, j = 1, ..., p, and then select the best update in each iteration see (Algorithm 4).

The negative log-partial likelihood is chosen to be the loss function

Φ(δi, f(z,w)) = −l(w) = − log pl(w) = −
n∑
i=1

δiz
T
i w + log

( ∑
j∈R(Ti)

exp(zTj w)

)
.

The final model has the same form as the regular Cox’s regression model, however the set of

weights w is obtained by Algorithm 4.

3.4 Gradient Boosting via Optimizing the Concordance Index (C- index)

The concordance index (C-index) or Harrell’s CH is one of tools used for evaluating the

performance of a survival model. Given a pair of patients (i, j) with prognostic indices (ηi, ηj)

and the corresponding survival times (Ti, Tj). The C-index is defined as the probability of

a patient having larger prognostic index but actually survives in shorter period of time.



Algorithm 4 Component-wise Gradient Boosting

1. Initialize ŵ[0] = (0, ..., 0) and the learning rate 0 ≤ ν ≤ 1.

2. For m = 1 to M , compute:

u[m] =
∂Φ(y, f(z,w))

∂f(z,w)

∣∣∣∣
w=ŵ[m−1]

= −∂l(w)

∂w

∣∣∣∣
w=ŵ[m−1]

3. For zj in Z = {z1, ..., zp}:

(a) Fit base-learners b(zj, θj) with response variable u[m] and obtain the least squared

estimator θ̂j.

(b) Select an index k in {1, ..., p}, such that:

k = arg min
j

n∑
i=1

(u[m] − zTj θ̂j)
2

4. Update w[m] = w[m−1] + νθ̂k

Particularly, C-index is given by

C = P (ηi > ηj|Ti < Tj).

Andreas Mayr et al. [40] used the smoothed C-index as the loss function of component-

wise gradient boosting algorithm. Due to the natural discrete form of C-index, the authors

proposed a smoothed version of this statistic, which is given by approximating the indicator

function I(ηj > ηi) by sigmoid function.

sig(ηj − ηi) =
1

1 + exp(−ηj−ηi
σ

)
.

It is also assumed that the survival probability is estimated non-parametrically by a Kaplan-

Meier curve K(.). The smoothed C-index is a continuous function of time T and prognostic



index η, which has mathematical form

Ĉsmt(t, η) =

∑
i,j

δj
K(tj)2

I(tj < ti)sig(ηj − ηi)∑
i,j

δj
K(tj)2

I(tj < ti)
(3)

In the same study, the authors achieved a model with the best discriminatory C-index by

altering the loss function l(w) in Algorithm 4 by the negative of equation 3 . However,

we will later show that in the trade-off of the choice of loss function, the Brier’s score of

(smooth) C-index is outperformed by gradient boosting Brier’s score.

3.5 Gradient Boosting via Optimization of the Gehan Loss

Algorithm 5 Component-wise Gradient Boosting using rank-based Gehan loss.

1. Initialize ŵ[0] = (0, ..., 0) and the learning rate 0 ≤ ν ≤ 1.

2. For m = 1 to M , compute:

u[m] = − ∂

∂w

1

n

n∑
i=1

[
1

n
δi

n∑
j=1

(
ri(w)− rj(w)

)
I
(
ri(w) ≤ rj(w)

)]∣∣∣∣
w=ŵ[m−1]

3. For zj in Z = {z1, ..., zp}:

(a) Fit base-learners b(zj, θj) with response variable u[m] and obtain the least squared

estimator θ̂j.

(b) Select an index k in {1, ..., p}, such that:

k = arg min
j

n∑
i=1

(u[m] − zTj θ̂j)
2

4. Update w[m] = w[m−1] + νθ̂k

The proportional hazards assumption is vital for above algorithms, since the final models

will be Cox regression model. However this assumption is often neglected, thus AFT model

can be a promising alternatives for Cox proportional hazard model. There are a well-known

method proposed to approach boosting AFT model, namely Hothorn et al. (2006) using the



inverse-probability weighting (IPW). Nevertheless, Johnson and Q.Long et al. (2011) [23]

proposed tree-boosting rank-based Gehan loss for semi-accelerated failure time model, which

defines as the weighted sum of pairwise differences. Let Oi be the fully observed failure time,

we have

Φ(δ,w) = − 1

n

n∑
i=1

[
− 1

n
δi

n∑
j=1

(
ri(w)− rj(w)

)
I
(
ri(w) ≤ rj(w)

)]
,

where ri(w) = logOi −wTzi.

We employed the Gehan rank-based gradient boosting in our research, due to several

reasons, which will be address in chapter 4.



4 Gradient Boosting via Optimization of Modified

Brier Score

The Brier score is developed to evaluate the accuracy of probabilistic predictions in

survival analysis. The response of survival analysis is often binary (death or alive). The Brier

score measured the squared discrepancy between the response and the predicted survival

probability. A better model should have a lower Brier score. Therefore the objective of each

boosting step is to minimize the modified Brier score, which is defined as

B(w) = Φ(δi, f(zi,w)) =
n∑
i=1

(δi − S(t|z))2 =
n∑
i=1

(
δi − S0(t)exp(z

T
i w)

)2

. (4)

The modified version neglects the constant term 1/n in the original version, which will not

affect the optimization. The gradient vector of the ith instance is given by

ui =
∂Φ(δi, f(zi, w))

∂f(zi, w)
=
∂B(w)

∂w
.

By taking partial derivatives of the components wj, j = 1, ..., p of the coefficient vector w,

we have

uij =
∂B(w)

∂wi
= −2zTij log(S0)

[
δi − S0(t)exp(zTi w)

]
exp (zTi w)S0(t)exp(zTi w).

Unlike the above algorithms, here the target of boosting is not the prognostic index, but

instead being the survival probability. Thus, the form of first order derivative is more



Algorithm 6 Component-wise Gradient Boosting using Brier’s score as the loss function

1. Initialize w[0] = (0, ..., 0) and learning rate 0 ≤ ν ≤ 1.

2. For m = 1 to M

(a) Compute the gradient vector:

uij =
∂Φ(δi, f(zi,w))

∂f(zi,w)

= −2zTij log(S0)

[
δi − S0(t)exp(zTi w)

]
exp (zTi w)S0(t)exp (zTi w).

∣∣∣∣
w=w[m−1]

(b) Compute all possible updates of weight vector w[m] using least square method:

θ̂j = (zTj zj)
−1zTj uj

(c) Find the best update k, which is

k = arg min
j

n∑
i=1

(ui − zTj θ̂j)
2

(d) Update

w
[m]
k = w

[m−1]
k + νθ̂k

3. Output: Weight vector w[M ]

complicated. The variable selection is performed via the component-wise approach. For

the ith observation, we obtain a gradient vector uij of length p. Thus, at each iteration, a

gradient matrix of dimension n× p is produced, which can be written as :



z11 ... z1p

z21 ... z2p

zn1 ... znp


n×p



w11 ... w1p

w21 ... w2p

wp1 ... wpp


p×p

=



u11 ... u1p

u21 ... u2p

un1 ... unp


n×p

Let zi, wi and ui be column vectors of length n in above matrix. We can rewrite the matrices



above as partition matrices in the form of

[
z1| ... |zp

] [
w1| ... |wp

]
=

[
u1| ... |up

]

The component-wise routine is used to fit the base learner on response ui and predictor zi,

reproducing all possible updates on the set of weights.

In the later section, it is found that the algorithm outperforms its competitors in terns

of minimizing the Brier score, both in training and testing cohorts.



5 Parametric Analysis for the DLBCL data

5.1 Kaplan-Meier Estimate of the Survival Function

The Kaplan-Meier curves provides us a general view on the data set. Within first 5 years,

the baseline survival probability drops significantly to 46.7%. In the next 5 years, the rate

is continuing drop but gradually instead, to 34.6% by 10.6 years. Patients, who have been

survived beyond year 11th possess a survival chance of 31.8%. A first glance at the histogram

of survival time (in year) (Figure 5.1), we proposed that an exponential distribution would

be the best fit for the baseline survival distribution. However, the analysis thereafter will

include exponential distribution, as well as the Weibull 2 parameters, log-normal and log-

logistic. We found that the log-logistics model is the best-fitted distribution the baseline

survival time. (Table 5.1)

5.2 Parametric Estimate of the Survival Function

Table 5.1: Results of parametric models on DLBCL survival time with comparing metric of
AIC information criteria.

Exponential Weibull Log-normal Log-logistics
Number of parameters 1 2 2 2

AIC 624.97 571.77 582.54 566.54

The probability density function of Log-logistics distribution (Fisk distribution) is given



by:

f(t;α, β) =
(β/α)(t/α)β−1

(1 + (t/α)β)2
, t ≥ 0

The scale parameter α is a positive number and also median value of the distribution. On

the other hand, shape parameter β < 1 indicates that there does not exit unimodality in the

model. As a consequence, the expected life time is undefined. The cumulative distribution

function is

F (t;α, β) =
1

1 + (t/α)−β

Figure 5.1: Kaplan-Meier product-limit estimate of survival time with 95% confident interval
(shaded region)

By using maximum likelihood estimation and Newton-Raphson algorithm [41] imple-

mented in R-studio, MLEs of scale and shape parameters are α̂ = 4.071465 and β̂ = 0.715382,

respectively.



Figure 5.2: Histogram and probability density function (PDF) of log-logistic fit on the
survival time.

As a result, the density distribution of survival time has the form

f(t) =
0.1757(t/4.07165)0.284618

(1 + (t/4.071465)0.715382)2
, t > 0.

Figure 5.3 illustrates that the assumed density curve has long fat tail and positive skewness.

The majority of area under the curve (71.77%) is within 10 years, i.e P (T ≤ 10) = 0.7177.

The medical interest is often to estimate the survival rate of a patient with first 5 years,

which is

P{A patient survives up to 5 years} = P (T ≤ 5) = 0.5367.

Noticeably, the survival rate between year 5th to year 10th drops to under 11.8718%, given

that this patient has survived beyond year 5. Thus, we can classify patients surviving in this

period as high risk group, in contrast to who are still alive up to 5 years (Figure 5.3).



Figure 5.3: Corresponding cumulative distribution function (CDF) of log-logistic fit on the
survival time

5.3 Boosted Tree Classification Model

In the next part of this chapter, we will validate the proportional hazards assumption. Us-

ing tests and plots from the scaled Schoenfeld residuals. The violation of the proportional

hazard assumption is represented by a non-zero slope. Therefore, any nonlinear relationship,

which is discovered in the plot of the residuals as a function of time, can indicate the vio-

lation of proportional hazard assumption. Additionally, in case of high dimensional feature

space, [42] proposed that covariates with most importance score (best separate alive and

deceased patients) can be used to validate the assumption. Firstly, we create a tree-based

classifier which implement the Extreme Gradient Boost (XGBoost) [38] with the binary lo-

gistic function as the loss function. To perform the classifying process, we create a grid

search for hyper-parameters, which include the learning rate ν and maximum depth of a tree

T .

It is shown that the stopping criteria is highly related to the learning rate, thus we



Table 5.2: First 20 covariates from the Cox’s proportional hazard test, with Chi-square
statistic and p-value.

ρ χ2 p-value
X217320 at 0.03408516 0.61760805 0.43193754
X242936 at −0.04952279 1.52970279 0.21615706

X1553607 at −0.14325457 10.14971603 0.00144323
X238498 at 0.06975792 1.51952073 0.21769203

X1561316 at −0.19253580 18.86935049 0.00001400
X233046 at 0.01307213 0.05749129 0.81050593
X238845 at 0.05242758 2.03359225 0.15385658

X1555939 at −0.02398130 0.34493307 0.55699551
X229839 at 0.06160926 2.06830635 0.15038845

X1568574 x at −0.11670569 4.24673681 0.03932583
X1560025 at 0.12852035 8.58176531 0.00339546
X232947 at −0.22203410 28.38298975 0.00000010
X241235 at −0.17320187 20.68739285 0.00000541

X224221 s at −0.09565856 6.28885046 0.01214998
X1568751 at −0.04222970 1.48853993 0.22244314

X1562309 s at −0.01698123 0.13654472 0.71174048
X244546 at −0.06535564 2.13214249 0.14423902

X210600 s at −0.07831158 3.69695166 0.05451197
X1561140 at −0.10121657 4.06587337 0.04375805
X231478 at −0.02512684 0.21626282 0.64190234

GLOBAL 180.64060816 0.00000142

can choose an arbitrary value of learning rate between 0 and 1. The algorithm separates

two classes remarkably well, reaching 82.32% of accuracy in leave-one-out study. At each

fold, an importance matrix is obtained by measuring the frequency of chosen features. One

thing worth mentioning is that the feature selection is stable, which means the algorithm

deriving the same importance matrix at each fold. In (Figure 5.4), the bottom panel shows

the importance of a covariates based on its selected frequency, whereas the top panel in

the relative importance defined by the fraction of frequency of a covariate over the most

importance covariate (X 217320 at). Secondly, we fit the Cox’s regression model on the top

100 covariates to assess graphical results from Schoenfeld residuals as a function time, as

well as the goodness-of-fit test. Table 5.2 shows first 10 results (out of 100) of the goodness-

of-fit test on proportional assumption. As we can see, there actually are several probe sets



Figure 5.4: Importance ranked by the frequency of to be chosen by XGboost algorithm,
ordered from top to bottom.

Figure 5.5: Schoenfeld Residuals Test Results: The solid lines smooth the spread of Schoen-
feld residuals in neighborhood of 0.

satisfying the proportional hazard assumption, such as X217320 at, X242936 at, X238498 at,

Et cetera.



However, the global test indicates the violation of proportional hazard assumption, χ2 =

180.64 at significance of 0.00000142. Furthermore, the plots of Schoenfeld residuals as a

function time again indicate non-proportionality, where non-linear relationship appears in

plots of X1553697 at and X1561316 at.



6 Simulation Study

A simulated study was conducted in order to evaluate and compare boosting methods. For

simplicity, the simulated data (n = 1000) is assumed to be exponentially distributed, due to

the constant hazard. We also set the ground truth, which contains the first five active covari-

ates with coefficients of 0.5({βi}5
i=1 = 0.5) and the remaining 995 is non-active covariates.

The baseline PDF of survival time (Figure 6.1) is generated from

f(t) = 0.5e−0.5t

and

log

[
λ(t|Zi)
λ0(t)

]
= 0.5× z1 + 0.5× z2 + 0.5× z3 + 0.5× z4 + 0.5× z5

First of all, we repeat the parametric analysis to obtain the baseline distribution of

survival time. The estimated distribution of baseline survival probability is

Ŝ0(t) = e−0.508517t

Since the data is simulated, we are certain that the proportional hazard is satisfied. One

of the most versatile methods for survival analysis is Lasso Cox regression (L-Cox). Based

on L1-norm penalty, L-Cox shrinks the coefficients of non-significant covariates exactly equal

to zero, performing feature selection by finding minimum penalty. We performed 5-fold cross



Figure 6.1: Baseline survival probability density function of simulated data, using exponen-
tial survival function.

Figure 6.2: 5-fold cross-validation of L-Cox model, using partial likelihood deviance as scoring
criteria for parameter tuning (log(λ))



Table 6.1: Comparison of gradient boosting algorithms in large simulated data (p = 1000).

L-Cox gbL gbC gbG gbB
Number of selected features 10(5) 10(5) 11(5) 5(5) 12(5)
Train Brier’s score 0.5322 0.5642 0.6723 0.9063 0.2763
Test Brier’s score 0.9458 1.2834 1.3385 1.5032 0.5398
Test C-index 0.7112 0.6908 0.8977 0.6811 0.6673

validation on the simulated data, in order to obtain the best penalty λ, which minimizes the

partial likelihood deviance. Figure 6.2 shows that λ = 0.06479103 gives us the best L-Cox

model with 10 selected covariates. 5 out of 10 selected covariates are correct and relatively

closed to the ground truth.

Table 6.2: Comparison of gradient boosting algorithms in smaller simulated data (p = 10).

L-Cox gbL gbC gbG gbB
Train Brier’s score 1.2036 1.4108 1.7166 1.9862 0.5589
Test Brier’s score 2.0143 2.4234 2.6523 2.9087 0.9887
Test C-index 0.6267 0.5802 0.7419 0.5792 0.5017

Table 6.3: Estimate of coefficients from simulated data with optimally tuned parameter by
implementation of grid search.

β1 β2 β3 β4 β5

gbL 0.405619 0.197475 0.150577 0.479283 0.501966
gbG 0.457558 0.195512 0.115215 0.562434 0.547816
L-Cox 0.460840 0.252616 0.208977 0.529942 0.553262
gbB 0.487321 0.398092 0.467893 0.367896 0.401365
gbC 0.384246 0.492172 0.501973 0.439576 0.497782

We suspect that the number of non-active covariates (p = 995) is the reason for the over-

fitted number of covariates. Thus, we created a smaller data set with only 10 covariates. The

ground truth is remained the same as the first simulated data. We now apply four gradient

boosting algorithms on the simulated data, which are gradient boosting via optimization of

partial log-likelihood (gbL), modified Brier score (gbB), smoothed C-index and Gehan loss

function (gbG). As a result, all of the algorithms select the correct set of active covariates.

In Table 6.1, gbC produced the best C-index, while the remaining algorithms have a slightly

smaller C-index. However, the Brier’s score of gbC is significant higher than gbB algorithm,



which is only 0.2763 and 0.5398 in train and test set, respectively. On the other hand, gbG

selected the exact number of active covariates, while the other algorithms seem to be over-

fitted. Table 6.2 is the results of applying these gradent boosting on the smaller data set.

Again, the gbC has the largest C-index of 0.7419, significant higher than other. Nevertheless,

gbB outperforms other algorithms with aspect of minimizing the Brier’s score, achieving the

smallest Brier’s score of 0.5017 in test set and 0.9887 in train set.



7 Gradient Boosting for Analyzing the DLBCL data

We compare four methods based on the component-wise gradient boosting algorithms,

which include the gradient boosting via optimization of the partial log-likelihood (gbL), the

modified Brier score (gbB), the smoothed C-index and the Gehan loss function (gbG). To

avoid overfitting, we performed 5-fold cross-validation with a log-logistic baseline, to obtain

the average training and testing errors for both the Brier score and the concordance C-index.

(Table 7.1).

First of all, a gbB model is built on entire data set, to select 211 most important covari-

ates, then the model with selected covariates is used to perform the cross validation. Based

of the modified Brier’s score loss, the gbB outperforms the remaining algorithm, with the

smallest test error of 0.2861, in compare to 0.5230 and 0.9726 of gbL and gbG, respectively.

On the other hand, the log-likelihood of gbB is higher than those of gbL and gbG. Addi-

tionally, the C-index of the gbB is 0.7402, which is remarkably smaller than C-indices of the

gbL and gbG (0.92) approaches. The stability of feature selection of gbG is outstanding,

since the algorithm picks up the same number of probe sets (204) after 1000 iterations and

the in-bag log-likelihood converges at approximately 11.648. On the other hand, gbL does

not seem to be converging on the log-likelihood, which has resulted in a continuous increase

in number of parameters as the number of boosting steps increases (*). Thus, we decided to

use only results produced by gbB, gbC and gbG for further analysis.

The two algorithms select a set of 20 common covariates, which includes four probe sets



Table 7.1: Comparison of gradient boosting algorithms with Brier’s score as train-test cross
validation.

gbL gbB gbG gbC
Number of selected features 176-295* 211 204 220
Train Brier’s score 0.5230 0.0933 0.5379 0.6011
Test Brier’s score 0.8466 0.2861 0.9726 0.8473
Test C-index 0.9106 0.7402 0.9173 0.9711

identified by the twin boosting from [1].

The probe sets selected seem to be matching with medical facts after consulting with

subject matter experts. First of all, we would like to briefly interpret the biological rele-

vance of some common probe sets selected by the two algorithms. The most remarkable

probe set found is 239672 at, which possesses gene symbol BLID. A BH3-like motif, which

is encoded by this gene, contains protein associated to cell death. Localizing in both the

mitochondrion and cytoplasm, the protein may be reasonable for apoptosis. The cell death

inducer BH3-like Motif Containing and breast cancer cell protein are aliases for BLID. Be-

sides, HS6ST2 (1552766 at) is heparan sulfate proteoglycans, which plays an important role

in cell growth and migration. Likewise, ADRA1A (237390 at), alpha-1-adrenergic receptors,

create mitogenic responses and regulate growth, as well as induce cell’s proliferation. The

gene may bleed prostatic hypertrophy, which strongly related to prostate cancer. As we

know, cancers are diseases related to abnormal growth of cells. Hence, it is not surprising

our results indicate the two above genes might impact survival probability of a patient. Ad-

ditionally, probe set 155899 x at, which has gene symbol LOC283922/PDPR, is represented

as Pyruvate Dehydrogenase Phosphatase Regulatory Subunit Pseudogene. This probe set

was also found in [1] with negative coefficient. SLC17A1 gene (1560884 at) is also a protein

coding gene, which might be a reason for gout and hyperuricemia. Its pathways are trans-

portation of glucose and other compounds like sugars, salts, metal ions and acids. 237797 at

is DNM1L gene, which encodes an element of the dynamin superfamily (or known as protein

coding gene). In case of dysfunction, several neurological disorders might be induced, such

as Alzheimer’s disorder. Some diseases related to DNLM1L are encephalopathy induced by



mitochondrial defection and peroxisomal fission 1. The pathways of DNLM1L include CDK-

mediated phosphorylation and removal Cdc6, the same as ABCA13 (1553605 a at), which is

also discovered by gbB and gbG. Schizophrenia is also mental disease, induced by ABCA13.

Figure 7.1: Plot of deviance residuals with smoothed line indicating the spread around zero
(shaded region is 95% confident interval.)

We now conduct model diagnostics on the gbB model, which includes 220 probe sets.

First of all, we validate the proportional hazards assumption by using the Schoenfeld residuals

test. The test result in a test statistic χ2 = 7.41 with a global significance level of 0.0065,

which is not highly practically significant based on our experience. Thus, there seems no

strong evidence of non-proportional hazards. Second, as we discussed in the previous section,

the gbB algorithm is expected to outperfom other algorithms when the Brier score is selected

as the comparison criterion. Particularly, the gbB model achieves a Brier’s score of 0.03524,

which is remarkably small among existing competitors. In addition, the C-index from the

gbB model is 0.745, which is also considerably smaller than the C-indices of the gbL and

gbG models. In addition, the plot of deviance residuals as shown in Figure 7.1 is generally



Figure 7.2: Importance plot of top 50 probe sets. Top panel: gbB algorithm, bottom panel:
gbG algorithm.

symmetric around the horizontal line at x = 0. In addition, 7 out of 180 might be considered

as influential observations, since the absolute values of deviance excess 2.



Figure 7.3: Top panel: Brier’s score of patients at risk. Bottom panel: Predicted survival
probability of patients at risk.

The importance matrices of the covariates from the gbG and gbB methods are evaluated

based on the frequency that a covariate is selected by the algorithms. As we can see, the

probe set X 229839 at is the dominant key variable in the importance matrix of the gbG



algorithm. While in the gbB importance matrix, the dominant probe sets are X 1570180 at

and X 237390 at. What is worthy mentioning is that probe set X 1558999 x at, which ap-

peared [1] in the top ten important covariates from both algorithms.

Figure 7.3 illustrates the survival probability of patients at risk and time (in months)

and the corresponding Brier score. The first impression from the plot is that the survival

probability within the first 5 years is very high, above 0.8736. After that it gradually

decreases, which matches the inherent nature of the survival probability. Including the

covariates was helpful for improving the prediction of survival experience. On the other

hand, the Brier scores of cases with the occurrence of events observed in the first 5 years

are relatively small (below 0.03), indicating there is higher prediction efficiency for earlier

failures. However, there are still a few observations (such as patients 35, 52, 57, 75, 83, 113

and 152) with relatively large Brier score, which indicates some important probe sets might

still be missing from the fitted model for predicting the survival experience of these group

patients.



8 Concluding Remarks

This thesis has applied a number of component-wise gradient boosting algorithms for

analyzing the DLBCL data. In addition, it has developed a new gradient boosting algorithm

based on optimizing the Brier score, and demonstrate the new method outperforms many

existing boosting algorithms on multiple reliability metrics through a simulation study. Al-

though the gradient boosting algorithms are built upon statistical models, they outperform

the traditional statistical methods when exploring high dimensional feature space by lever-

aging the computing power of the machine learning algorithms. The new gradient boosting

method is demonstrated to minimize the predictive Brier score and the C-Index, as well as

selects the correct features from the simulation study. In addition, the new boosting algo-

rithm also selected a set of covariates from the DLBCL data, which matches with medical

or biological facts and offers insights on a deeper understanding of diffuse large B-cell lym-

phoma.

The implementation of gradient boosting based on optimizing the Brier score with the

XGboost algorithm has a great potential to further improve the computational efficiency

and accuracy, as the XGboost is much more powerful boosting algorithm than the gradient

boosting. By taking into account the Hessian matrix of the loss function, the future study on

applying XGboosting for optimizing the Brier score can be both challenging and also highly

promising. Another objective of the future study is to create a R package for implementing

the gradient boosting and the XGboosting with the Brier score, which can facilitate broad



applications of the new methods in survival analysis of cancer and other medical data.
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[39] Bühlmann Peter. Boosting for high-dimensional linear models. The Annals of Statistics,

2006.

[40] Andreas Mayr, Harald Binder, Olaf Gefeller, and Matthias Schmid. The evolution of

boosting algorithms. Methods of information in medicine, 53(06):419–427, 2014.

[41] Robert I Jennrich and PF Sampson. Newton-raphson and related algorithms for maxi-

mum likelihood variance component estimation. Technometrics, 18(1):11–17, 1976.

[42] Matthias Schmid and Torsten Hothorn. Flexible boosting of accelerated failure time

models. BMC Bioinformatics, June 2008.


	Gradient Boosting for Survival Analysis with Applications in Oncology
	Scholar Commons Citation

	tmp.1585271163.pdf.U1Kic

