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Abstract

Ensemble methods are commonly used for building predictive models for classification. Mod-

els that are unstable to perturbations in the training set, such as the decision tree, often see

considerable reductions in error when grouped, using bootstrapped resamples of the training

data to train many models.

The non-parametric bootstrap, however, has limited efficacy when used on severely imbal-

anced data, especially when the number of observations of one or more classes is exceptionally

small. We explore the fractional random weighted bootstrap, which randomly assigns frac-

tional weights to observations, as an alternative resampling procedure in training machine

learning ensembles, particularly decision tree ensembles.

We carry out a methodological study comparing the standard bagging and random forest

ensemble models for decision trees against their fractionally random weighted alternatives,

finding some evidence supporting their use on data with severe imbalance.
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1 Introduction

Among the most common tasks faced by statisticians and data scientists are those of

classification and decision making. Much statistical literature has been written on how to

build models that can sort new data into one of two or more disparate classes.

The problem of classification is one of still very active development, especially in light of

advancements in computational power and the increasing availability of massive quantities

of labeled data. Many algorithms have been developed for classification tasks, utilizing both

linear and nonlinear techniques.

As a result of the availability of more powerful computers, it has become increasingly

common to train not just one model, but many models that are then grouped into an

ensemble. Ensemble models are usually built by training a collection of models, either in

parallel or sequence, on bootstrapped resamples of the original training dataset, allowing for

the resulting ensemble to consist of many different models.

The bootstrap procedure, however, is not without its limitations. While the procedure

has allowed analysts to produce considerably better estimates under limited data, it can

often fail in the face of labeled data where one or more classes are exceptionally rare. When

there are few observations of the rare events in the observed data, the regular bootstrap

resamples could result in even fewer rare events and hence lead to biased predictions.

In this paper, we examine an alternative technique known as the fractional-random-

weighted (FRW) bootstrap for training ensembles of classification models. Specifically, we

focus on a subset of classification models known as decision trees and their ensemble coun-

terparts bagged trees and random forests.
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We begin by reviewing classification problems and related methods, evaluating classifica-

tion models, bootstrapping, ensemble methods, and issues with classification of imbalanced

data. We then proceed to introduce the FRW bootstrap, and we illustrate how to modify

ensemble methods to adopt the FRW bootstrap, and finally we conduct a study comparing

the FRW methods to their traditional counterparts on several datasets.
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2 Literature Review

2.1 Overview of Classification Problems

Classification models are distinguished from other models by both their end result - a single

discrete class, or a vector of probabilities representing the likelihood of a datapoint being

each of a set of classes - and the data that they’re trained on.

Classification algorithms are a subset of machine learning algorithms referred to as ”su-

pervised learning algorithms”. That is, classification is done on unlabeled data using models

trained on labeled data. An example of this might be a medical analyst with data for patients

showing symptoms of one of two diseases with similar presentations. The analyst may train

a model on a dataset where the patients were confirmed to have one disease or the other,

then use that model to predict which disease incoming patients are presenting with.

Many techniques exist to carry out classification and decision making on new data given

a set of labeled training data, such as logistic regression [21], näıve Bayes classifiers [31],

decision trees [23], support vector machines [9], and neural networks [30]. The focus of this

paper is on decision tree models, but we begin by introducing linear models for classification

for comparison and to introduce some of the problems associated with classification.

2.2 General Linear Models

Especially in the binary case, an immediately appealing possibility for solving the classi-

fication problem is to use a regression technique to predict the probability of a datapoint

belonging to a given class or not. However, linear regression models are not suitable as the

3



classification data are categorical. General linear regression models are more appropriate for

modeling categorical responses. Since the probabilities are bounded between 0 and 1 and

the simple linear link function (a function linking the mean response with the predicting

covariates) could be problematic when the true probability is close to 0 or 1.

The most common GLM used for classification is the logistic regression model. This model

uses the logistic link function which links the log odds with the predictors. The predicted

probability using the logistic link function is naturally bounded within the probability range

between 0 and 1.

The logistic regression model takes the form:

Yi ∼ Binomial(pi) (1)

log(
pi

1− pi
) = β0 + β1xi1 + ...+ βkxik

Henceforth we can predict the probability of a data point beling to a certain class as its

covariate vector xi and the vector of parameters β. The odds predicted by this model then

takes the form:

ORi = (
pi

1− pi
) = eβ

Txi , (2)

Which can be transformed to yield the predicted probability

p(xi) =
eβ

Txi

1− eβTxi
(3)

The parameters of the model can be estimated using maximum likelihood estimation (MLE)

by finding the parameters that maximize the log-likelihood function.
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Suppose that we have a set of n training points (yi,xi). In the binary case, the probability

that for an individual datapoint yi = 1 is given by p(xi), with P (yi = 0) = 1 − p(xi). The

likelihood function is thus:

L(β0, β) =
n∏
i=1

p(xi)
yi [1− p(xi)]1−yi (4)

By utilizing the log-likelihood to break the likelihood apart, then substituting p(xi) by

Eqn. (3), we have

l(β0, β) =
n∑
i=1

yip(xi) + (1− yi)log [1− p(xi)]

=
n∑
i=1

log [1− p(xi)] +
n∑
i=1

yilog
p(xi)

1− p(xi)
=

n∑
i=1

log [1− p(xi)] +
n∑
i=1

yi(β
Txi)

=
n∑
i=1

−log
[
1 + eβ

Txi

]
+

n∑
i=1

yi(β
Txi)

Then by taking the derivative with respect to the individual parameters and set the deriva-

tives to equal zero, we arrive at:

∂l

∂βj
= −

n∑
i=1

1

1 + eβ
Txi

eβ
Txixij +

n∑
i=1

yixij

=
n∑
i=1

[yi − p(xi;β)]xij (5)

The above equation normally has no closed form solution, but can we can use numerical

methods, such as Newton’s method and iterative scaling [22], to yield parameter estimates.

Logistic regression as a classification model has one final requirement: a decision bound-

ary – a line that separates the space of observable data into two regions denoting the two

classes. This decision boundary is effectively a choice as to what level of p is acceptable for

determining that a data point belongs to one class over another. For some situations, it may

be acceptable to shift this boundary away from parity in order to improve the accuracy of

5



prediction on one class (or minimize the costs associated with misclassifying into one of the

two classes).

The logistic regression model can be expanded to response variables of more than two

classes in the form of the multi-class logistic regression model. Under this model, instead of

a single set of parameters β, each class ci = k ∈ 1, . . . , K will have its own parameter set

β(k). The predicted conditional probabilities are given by the expression:

Pr(Y = ci|xi) =
eβ

(ci)
T
xi∑K

ci=1 e
β(ci)

T
xi

(6)

Note that the above expression is exactly equivalent to the equation (3) in the binary case.

The parameters of this model can similarly be estimated by numerical methods in conjunction

with MLE.

2.3 Decision Trees

One of the most common, widely used, easily implemented, and easily interpreted alterna-

tives to logistic regression is that of the decision tree.

Decision trees stand out among classification methods for being uniquely interpretable.

Their representation of the structure of their internal knowledge is easy even for laymen to

read: proceeding from the root node, each subsequent node represents a new decision layer,

with the final nodes or “leaves” representing a final decision or classification.

Given a training sample of n observations on a class variable Y with k possible outcomes,

and a set of p predictor variables X1, . . . , Xp, a classification tree produces a set of “rect-

angular” sets A1, . . . , AR that are partitions of the original dataset corresponding to some

“split” on one or more of the p predictor variables.

Classification and regression tree methods yield rectangular sets by a series of recursive

partitions, which can be represented as a tree structure. An initial split on one of the

predictor variables is determined using some optimal splitting criterion, such as the Gini

6



criterion, the twoing criterion [19], and the entropy criterion [23] (which we will elaborate

upon later). Within each of the two rectangular sets resulting from this split, a new split is

found on one of the predictor variables by the same method. This is carried out recursively

until some stopping criterion is met.

The initial split would be represented in a tree structure as the root node. Each subse-

quent split branches off from the split (node) before it. When no more splits could be done

based on some chosen termination criterion, terminal nodes specifying one of the classes are

created.

Each branch of the resulting decision tree is itself a decision tree (or subtree) on the

remaining dataset. That is, the remaining splits can operate as an independent decision tree

conditioned on the set of data at the root node of the subtree.

Splits can also be thought of as statements of conditional probability. Each side of a split

contains a subset of the original dataset, and each subset has its own class proportions. The

proportion of members of the class j on side A, pA,j, represents the conditional probability

of a datapoint sorted into side A being a member of class j. Terminal nodes work similarly:

conditioned on all prior splits, data arriving at terminal node m has probability pm,j of being

a member of class j, where pm,j is the proportion of data at that node of class j.

Given a subset Ai of the data after some set of splits S = (s1, . . . , sk), the probability

that a datapoint meeting the set of conditions S being a member of class C is given by:

P (a ∈ C|S) =
nc,i
nAi

, (7)

where the numerator denotes the number of members of class C in Ai and the denomina-

tor denotes the size of Ai. Iterating over all possible classes would yield the conditional

probability distribution of classes for data meeting the condition set S.

Given a decision tree and a test datapoint, the datapoint can be classified by descending

the decision tree. Beginning at the root node, the datapoint is directed along an edge of

7



the tree descending from the current node by whichever condition it meets. This process is

repeated recursively until a terminal node is reached, giving a classification for the datapoint.

[23]. Alternatively, the terminal node can itself represent a conditional probability: the class

proportions within the subregion of the training data captured by that terminal node give

probabilities for a new datapoint being a member of each class conditioned on the prior

splitting conditions being met.

We give an example of splitting regions in Figure 2.1. For a given tree such as the fol-

lowing, we might have a set of splitting regions such as the following:

Figure 2.1: An example decision tree (left) with splitting regions (right) in Euclidean space

The key insight here is that each “split” on a decision tree corresponds to a “straight”

decision threshold in Euclidean space. Where a logistic regression yields a single curve

splitting the decision space into two sides, the decision tree model can split a decision space

into many regions bounded by a condition on a single variable. The general algorithm for a

decision tree works is summarized in the flow diagram shown in Figure 2.2:

8



Figure 2.2: A flow diagram demonstrating the algorithmic steps for constructing a decision
tree

2.3.1 Constructing a Decision Tree

Decision trees can be constructed in many ways and several different algorithms are com-

monly used for training a new decision tree on a set of training data. In general, a decision

tree is trained on a training set X by successively splitting the training dataset into smaller

and smaller chunks, each ”split” chosen from among the space of all possible conditionals over
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the set of all available parameters. Each potential split is evaluated by a goodness-of-split

function G(s,X), with the best scoring split used at that junction.

The general algorithm for decision tree construction is as follows [5]:

1. For each model parameter βi, iterate over every potential split in the training set for

that parameter Xβi . Let s by the split that minimizes G(s,X)

• For numerical variables, the set of splits is a set of real numbers si : si <= xi, xi ∈Xβi
.

Here, each si is simply a numerical point that splits the dataset into a set that is

greater than that point and a set that is less than or equal to that point.

• For categorical variables, the set of potential splits is the powerset - or, set of all

possible subsets of a set - of the set of classes, P (Xβi). Each si ∈ PXβi splits

the dataset into those points that are members of the split’s subset of classes and

those which are not.

2. Create two training subsets, X left and Xright, such that one subset meets the criteria

given by s and the one subset fails to meet the criteria given by s

3. For each training subset, repeat steps 1 and 2 until some stopping criterion is met,

retaining each splitting criterion and its relative position to other splits.

4. Optionally, prune the resulting tree according to a given set of pruning criteria.

5. To each terminal node, assign a class

In the first step, we begin with a training set and a pre-chosen goodness-of-split function.

Each level of each factor that is present in our dataset represents a possible split, separating

the dataset into two sets, where one meets some condition on that level of that factor and

the other does not meet the condition. For numeric variables, the condition is typically a

“less than or equal to” type relation, whereas for categorical variables, the splitting condition

would separate the data into one set that are in a given subset of classes and another set

that are not.
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We iterate through every possible split and test that splitting condition with our goodness-

of-split function. The set of possible splitting conditions is given by our training dataset: for

a numeric variable, every quantity present in the data is a potential splitting point, and for

a categoric variable, every possible unordered set of categories present in the data represents

a potential splitting point.

The split that minimizes the value of the function is the optimal split at this depth. In

our next step, we create two training subsets based on the split. We then carry out the

same procedure iteratively, until a stopping criterion is met. Finally, the resulting tree can

be pruned – reduced to a tree of less depth - according to some given pruning criterion.

During the pruning step, utilizing one of several different rules, splits are iteratively removed

from the tree, replaced instead by terminal nodes combining the nodes on either side of the

removed split.

This generalized algorithm suggests several places where specific decision tree algorithms

can differ from one another given the same dataset: in the goodness-of-split function, the

stopping criteria, and the pruning criteria. Many different decision tree algorithms have been

proposed and are seen in practice today, including ID3, C4.5, and CHAID.

The ID3 (Iterative Dichotomiser 3) algorithm utilizes the information gain to create splits,

growing a tree to its maximum size and then utilizing a pruning step. This was Quinlan’s

original 1986 algorithm and utilized only discrete attributes. [23]

The C4.5 algorithm works similarly, but introduced partitioning of continuous attribute

values into discrete intervals. [24]

The CHAID algorithm, proposed in 1980 by Kass [18], builds classification trees using

non-binary splitting. This algorithm uses Bonferroni adjusted p-values to determine the

most significant split.

Breiman introduced a joint classification and regression tree model, CART, or Classifica-

tion and Regression Trees. [5] CART trees utilize the Gini impurity rather than information

gain to determine goodness of split.
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The goodness-of-split function is the primary determinant of what splits appear in a

decision tree. At each node of a decision tree, the test data is partitioned into two regions

(or more, if the tree is not binary). The best partition is chosen by evaluating many potential

partitions using a metric called an impurity function.

Suppose p = (p1, . . . , pk) are proportions of k classes present in a given set of data X.

f(p) is an impurity function if it meets the following criteria: f(p) is convex, has a maximum

when all pj are equal, and is a minimum when one of the pi = 1. [5]

A given split s produces two sets of data, a “left” set containing a proportion of the data

PL and a “right” set containing a proportion of the data PR. Given an impurity function

and a set of splits s on a dataset X, the goodness-of-split function can be defined as [28]:

G(s,X) = f(p)–PLf(pL)− PRf(pR) (8)

The most common impurity functions (and, therefore, goodness of split functions) are

information gain and the Gini impurity coefficient. In general, these and other splitting

criteria arrive at decision trees with similar rules and similar rates of error [3]. However, the

Gini coefficient prefers to put the largest class into one pure node and all other classes into

the other node while splitting, whereas the entropy metric prefers to balance the sizes of the

two children nodes. [6]

The Gini impurity measure can be interpreted as the training error rate of a splitting rule.

Within a node i, each class j occurs with proportion pij. If an observation was classified by

the splitting rule at this node as class j with probability pij, the error rate would be exactly

the Gini impurity of that node:

∑
j′

pij(1− pij) (9)

That is, the impurity of any node is the set of products pc(1− pc) where pc is the proportion

of some class c within that node. Thus we can calculate the Gini impurity of either side of
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a given split: GL and GR. The total Gini impurity of a given split is equal to the sum of

the impurity of each node, weighted by the proportion of the original dataset present in that

node. That is:

Gsplit = pRGR + (1− pR)GL (10)

Where pR is the proportion of the original dataset assigned to the right side of the split.

This expression can be interpreted, as well, as a summation over the intraclass variance over

the training observations captured by the node. [15] (Elements of Statistical Learning II,

page 310)

The information gain metric evaluates the decrease in entropy from a given split on

a dataset. The entropy, or expected information, of a dataset is given by the following

summation over classes:

H =
∑
i

−pilog2pi (11)

The information gain is defined in terms of H by subtracting the entropy of the left and

right nodes from the entropy of the dataset pre-split, weighted by the proportion of the

original dataset present in each side of the split:

∆H = H − pLHL − pRHR (12)

When utilizing the information gain metric, the feature chosen to split over is the one

that yields the highest information gain by the above equation.

Other metrics include the variance reduction metric, Chi-Square, and information gain

ratio. The Gini impurity measure is the primary metric that we test in our simulations.

In order to grow a decision tree, there must be a stopping criterion. A stopping criterion

prevents overfitting – without one, a decision tree could grow to provide a terminal node for

every single training observation. Stopping criteria also prevent a tree from growing overly

complex, which can be detrimental in cases where the researcher desires an interpretable

13



decision tree. Common stopping rules include:

• A maximum tree depth

• A minimum number of training observations on each side of a split

• A minimum (or maximum) value from the information metric required to create a split

• All instances in the remaining training set belong to a single class

Each of the above stopping rules can yield subtly different results. A maximum tree depth

sets a hard limit on the number of splits that can exist, especially in a binary decision tree.

For instance, a maximum depth of 3 in a binary decision tree would yield, at most, 7 splitting

criteria in the tree. A minimum number of training observations or minimum information

value can yield very imbalanced trees: for instance, an early split that captures most of the

variation in one level of a class can yield one side with no further splits, but an opposite side

with potentially many splits. Loose stopping rules can lead to large trees and overfitting,

but exceedingly strict stopping rules can lead to small and underfit trees.

An additional method of controlling overfitting and complexity is pruning of the resulting

decision tree. It is often prudent to grow a tree beyond optimal size and prune afterwards,

allowing the tree to explore more of the sample space before being cut back. [26] There are

numerous pruning methods for decision trees. For the sake of brevity, listed below are a few

such methods with minimal detail, including (Mingers, 1989):

• Critical Value Pruning: (Mingers 1987)

– A critical value of the goodness-of-split measure is specified. Values of the goodness-

of-split measure are retained during tree creation, and those nodes which do not

meet or exceed the critical value are pruned post-creation unless a node in the

subtree meets or exceeds the critical value.

• Reduced Error Pruning: (Quinlan, 1987)
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– For each node in the decision tree, remove the subtree and leave the node as a leaf

that classifies as the most common class at that node. The change is kept if the

performance on a validation set is no worse than the original tree. Which nodes

are ultimately removed is decided in order of accuracy – the changes that result

in the greatest improvement in accuracy are retained first, and pruning continues

until further pruning is harmful to accuracy on the validation set.

– Requires a training, test, and validation set, so is most useful when large amounts

of data are available.

• Pessimistic Error Pruning: (Quinlan, 1986)

– For each node of the decision tree represents a split as well as a subtree in itself.

The splitting rule of the node yields one misclassification rate, while the entire

subtree yields a different misclassification rate:

∗ Node misclassification with continuity correction = number of misclassifica-

tions + 1/2

∗ Subtree misclassification with continuity correction = sum of the number of

misclassifications at each leaf + the number of leaves/2

– The subtree is only retained if its corrected error rate is more than one standard

error better than the node error rate, where standard error is given by:

∗ SE(T ) =
√

n(T )(N(T )−n(T ))
N(T )

∗ Where n(T) is the number of misclassifications in the subtree or node and

N(T) is the number of training set examples at that node (or in that subtree).

In general, when growing decision trees, the researcher must make decisions on what sort of

metric they feel is relevant to their problem, what stopping criteria to use, and how to prune

the resulting decision trees. In some cases, it may be good to have very strong stopping

criteria and minimal if any pruning – e.g. to generate many decision trees in a short period
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of time. In other cases, it may be preferable to have weak stopping criteria that produce

large, complex trees, and use a more elaborate pruning scheme in order to arrive at more

robust decision trees (at the cost of computational time).

2.4 Evaluating Classification Models

As with any statistical model, a primary concern when building a classifier is evaluating its

performance. In general, we want to evaluate our models on out of sample data - usually,

data that was held back during the training process specifically for this purpose. There is

often little relationship between the error on the training set and the error on the testing set.

Testing on out of sample data provides better feedback on how the model can be expected

to perform ”in the wild”, and restrains the risk of overfitting to our training data.

In a machine learning context, carefully chosen metrics and well constructed test datasets

can be especially important, as these metrics are also used to guide the selection of hyper-

parameters for training a final model.

2.4.1 True Positives, False Positives, Recall and Precision

Suppose we have a classifier f̂(x, T ) trained on a training set T with a set of labels cj. For any

observation xi that is a member of the test set xi, i = 1, . . . , n, the estimated response f̂(x, T )

has four potential outcomes relative to some given class cj: true positive, false positive, true

negative, false negative. Let us denote the true class of xi as γ(xi). Then we have the

following definitions

• True Positive (TP): f̂(xi, T ) = cj AND γ(xi) = cj

• False Positive (FP): f̂(xi, T ) = cj AND γ(xi) 6= cj

• True Negative (TN): f̂(xi, T ) 6= cj AND γ(xi) 6= cj

• False Negative (FN): f̂(xi, T ) 6= cj AND γ(xi) = cj
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In the binary case, the number of true positives for one class is equal to the number of

true negatives for the other class, and the number of false positives for one class is equal to

the false negatives for the other.

These metrics are usually examined in terms of rates. For instance, the true positive

rate (TPR) would be the proportion of true positives to total positives in the test set (true

positives + false negatives). This is often referred to as the recall or sensitivity of a model

(for that class). Another rate of interest is the precision, which is the proportion of true

positives to total predicted positives (true positives + false positives).

A useful tool in analyzing the performance of a model is what’s known as the confusion

matrix. This presents the TP, FP, TN, and FN in an easily digestible format. For each class,

the confusion matrix displays the number of members of that class that were predicted as

each class. This can be used for any number of classes, and we demonstrate an example for

three classes below.

Suppose a model has been trained to distinguish among three classes and we wish to

evaluate its performance on a set of 300 testing observations, where each class is represented

equally. A potential confusion matrix may look like the following:

Actual A Actual B Actual C

Predicted A 70 80 30

Predicted B 20 20 20

Predicted C 10 0 50

Table 2.1: An example confusion matrix for a classification model on three classes.

Note that each column sums to the total number of observations of that class in the training

set (in this case, 100). We can make a quick assessment of the classifier’s performance. We

might observe that the classifier most effectively predicts A and least effectively predicts B
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and that the classifier most often predicts A, among other observations. Here, the recall for

class A is 70/100. The precision for class A, however, is 70/180. The recall for class B is

20/100, with a precision of 20/60. Finally, the recall for class C is 50/100, with a precision

of 50/60.

2.4.2 Receiver-Operator Curves, Precision-Recall Curves, and Area Under the

Curve

An alternative method of quantifying the predictive power of a model is the Receiver-

Operator Characteristic curve (ROC curve) and the area under the ROC curve (AUC).

Given a binary classifier that outputs probabilities, the analyst must decide at what prob-

ability cutoff to sort a datapoint into one or the other class – it may be that the analyst

obtains better results by sorting a datapoint into the 1-class when the trained model predicts

a probability of, for instance, 0.6 of the datapoint being the 1-class.

The ROC curve plots the true-positive rate for a class on the y-axis versus the false-positive

rate on the x-axis: in general, the more false-positives we’re willing to accept, the more true-

positive’s we’ll capture. The greater the area under this curve, the lower of a false-positive

rate we need accept in order to capture more true-positives. Changing the false-positive rate

is equivalent to simply adjusting the probability boundary for sorting into one class or the

other. [7]

18



Figure 2.3: Example of an ROC curve: Blue highlight is the area under a ”mean” curve with
an AUC of 0.5, green highlight is the area under an ROC curve for a fitted model having an
AUC of 0.8

A related measure is the Precision-Recall Curve and it’s AUC. More commonly used in

imbalanced dataset contexts [10], the PRAUC quantifies the tradeoff between the precision

of a model and it’s recall. In general, the greater precision of a model, the lower the recall,

and vice versa – however, for a well fitted model, the tradeoff is more generous, allowing

for both greater recall and precision without having to trade off one for the other. This is

captured by the AUC – the greater the AUC, the higher the joint precision and recall.

Measures based on the ROC and PR curves are most useful in contexts where optimizing

for recall and precision alone may yield poor results, which can often occur in contexts of

dataset imbalance.

2.5 Bootstrapping

Often, a statistician or data scientist is faced with limited data or wants to make more robust

inferences on the population. More generally, the analyst is often faced with situations where

the ideal would be to take multiple independent samples from the population.
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A key example of this issue is in assessing the statistical accuracy of an estimate. Because

the population is unknown, the error between the sample statistics and the true population

parameter the statistic is measuring cannot itself be directly measured. In this case, it would

be ideal to take multiple samples and measure the variance in the sample statistic among

multiple samples. This is often not possible, however.

The non-parametric bootstrap simulates the process of taking multiple samples from the

population by repeatedly sampling m observations, with replacement, from a dataset of size

n, where m ≤ n. We provide a formal definition below [12]:

Definition 2.1. The Bootstrap Let X = (X1, . . . , Xn), Xi ∼ F represent a random sample

of size n drawn from an unspecified distribution F , with x = (x1, . . . , xn) representing an

observed realization of the random sample. Let F̂ represent a sample probability distribution,

where a mass of 1
n

is located at each point xi ∈ x.

With F̂ fixed, a bootstrap sample is collected by drawing a random sample of size n from

F̂ :

X∗ = (X∗1 , . . . , X
∗
n), and X∗i ∼ F̂ (13)

Let x∗ = (x∗1, . . . , x
∗
n) represent an observed bootstrap resample. The distribution of a sample

statistic S(X, F ) can be approximated by the bootstrap distribution of the statistic,

S∗(X∗, F̂ ).

On each set of resampled data, the test statistic of interest is calculated or the model of

interest is retrained. The variance in the test statistic or the performance of the model can

then be measured using the set of results from this procedure.

Suppose we have a set of data X = (x1, . . . ,xn) and let S(X) represent a sample statistic

measured on that data. Under the bootstrapping procedure, we draw k resamples from

the dataset and generate a sample statistic S(X i), i = 1, ..., k for each resample, yielding a

set of sample statistics S = S(X1), ..., S(Xk). Using S, we can generate statistics on the

distribution of S(X), such as the variance:
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S̄ =
1

k

k∑
i=1

S(X i)

ˆV ar[S(X)] =
1

k − 1

k∑
i=1

(S(X i)− S̄)2 (14)

Figure 2.4: Diagram of generating sampling distribution statistics using bootstrapped statis-
tics on resamples from the original dataset

By similar means, any other measure of interest on the sampling distribution can be derived

using the bootstrap.

2.6 Bootstrap Aggregating (Bagging)

A common usage of the bootstrap procedure is to improve an estimate or prediction. Given

a set T of training data (yn, xn), n = 1, . . . , N where each yi is a response, either numerical

or a label, suppose we have a procedure to form a predictor f(x, T ) that yields a predicted

response ŷ

With a sequence of training sets Tk, each drawn from the same underlying distribution, it

is possible to construct a better predictor than the single predictor from our single training
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set. If our response is numerical, the obvious method would be simply to replace f(x, T )

with the average response f(x, Tk) over k.

If our response is instead a class label, one method (though not the only method, as this

would be dependent on the underlying predictor constructed) of aggregating over the f(x, Tk)

is to carry out a voting procedure, where all k labels ŷk = f(x, Tk) are collected and the

most common label is treated as the aggregate response.

In most cases, the analyst will not have many sets of training data available. In such cases,

the bootstrapping procedure conducted n times over a single training set T yields our set of

training sets Tk.

Consider, for instance, a regression model. For each of the n bootstrap samples Tk, we fit

the regression model anew, yielding an estimator fk. For a given observation x, the bagged

estimate of the response is given by averaging over the k estimated responses:

(fbag)(x) =
1

n

n∑
k=1

fk(x) (15)

In (Breiman, 1994), Breiman states: “if perturbing the learning set can cause significant

changes in the predictor constructed, then bagging can improve accuracy”. In general if a

predictive procedure is unstable, bootstrap aggregation (bagging) can lead to considerable

improvement in accuracy.

2.7 Ensemble Decision Tree Methods

In the machine learning literature, ensemble models have a long history. A variety of ensemble

methods exist for usage across many different model types. Among the earliest theoretical

examinations of ensemble methods were Kearn’s 1988 paper and Schapire’s 1990 paper,

wherein the notion of weak and strong learners were introduced.

A weak learner is an algorithm that produces classifiers that are, at minimum, consistently

better than random guessing.
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The error rate for a classifier produced by this algorithm is given by [20]:

e <=
1

2
− γ, γ >= 0 (16)

By contrast, a strong learner is one whose error rate can be arbitrarily close to zero given an

arbitrarily high sample size. A core question in early machine learning papers was whether

there exists an algorithm that, given a weak learner, can produce an arbitrarily strong

learning. Schapire (1990) [27] answered this in the affirmative, showing that weak learnability

and strong learnability are equivalent. The hypothesis boosting algorithm was introduced

therein, which was the basis of boosting algorithms in ML models that have been introduced

since.

In this paper, our focus is on the bagged trees and random forest ensemble methods for

decision trees, which we introduce below.

2.7.1 Bagging Decision Trees

The simplest form of ensemble method for decision trees is the bagged model. As previously

discussed, bagging allows us to use bootstrapping to generate a series of training sets, each

of which can be used to generate a new predictor. Our aggregate predictor simply averages

the predictions of the individual models in some way to yield a prediction.

The decision tree model is an unstable model (Breiman, 1994). That is, slight perturbations

to the training set T can yield large differences in the resulting model f(x, T). As a result,

it can be expected that trees trained under resamples of the original training set will be

noticeably different, and that the aggregate method will be closer to optimality as a result

than a single decision tree will be on its own. We’re concerned with two kinds of output:

class probabilities and classifications. There exist multiple possible ways for aggregating over

our models. For calculating an aggregate probability, we could:

• Substitute the proportion of votes for a class in the ensemble as the probability of that

class, or
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• Average over the vector of class probabilities predicted by each tree in the ensemble

For predicting a label, we could:

• Label the data according to which had the greatest number of votes

• Label the data according to which had the highest average probability

• Label the data according to a threshold probability

Breiman (1996) utilized the C4.5 decision tree algorithm (utilizing normalized information

gain as a splitting criterion) to demonstrate the efficacy of bagging decision trees on a set of

seven datasets, producing classifiers with an error rate ranging from 0.57-0.94 of the error of

a single classifier trained on the original dataset.

2.7.2 Random Forests

The random forest algorithm is an algorithm that produces an ensemble of learners trained

in parallel, similar to the bagging algorithm. However, in addition to selecting random

subsets of the data, the random forest algorithm also selects random subsets of the predicting

variables. This reduces correlation among the trees in the ensemble.

Correlation among decision trees is defined in terms of the raw margin function. The margin

function is given by:

mr(x, y) = PΘ(h(x,Θ) = y)− max
j=/=y

PΘ(h(x,Θ) = j) (17)

Where x is an input datapoint, y is the true class of that datapoint, Θk is a family of iid

random vectors, and h(x,Θk), k = 1, . . . , L is an ensemble of classifiers. Thus, the margin

function is the difference between the probability that the ensemble assigns to the true class

and the probability that the ensemble assigns to the class it deems most probable beside the

true class. [4]

The raw margin function is then given as
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rm(Θ, x, y) = I(h(x,Θ) = y)− I(h(x,Θ) = j(x, y)) (18)

Here, I(·) is the indicator function and j(x, y) stands for the most probable class (as deemed

by the ensemble) beside the true class. The raw margin function represents the difference

in votes within the ensemble between the true class and the most probable class beside the

true class.

The correlation among decision trees is simply the correlation of rm(Θ, x, y) and rm(Θ′, x, y)

among all pairs of (Θ,Θ′). This is what we seek to minimize when using random forest

techniques.

2.8 Classification on Imbalanced Datasets

The models discussed thus far are all useful in the classification context to varying degrees.

One common obstacle faced by analysts in training classification models, however, is that of

the imbalanced dataset.

Most classification problems encountered in the wild are not perfectly balanced. When the

data in question is especially imbalanced, the analyst is usually most interested in the low

probability class or classes, and often the greatest cost of misclassification is with the low

probability class(es) as well.

Imbalanced data can present issues for evaluating the performance of a model. [2] Many

evaluation metrics become unreliable as the datasets in question become more imbalanced.

As discussed previously, the recall and precision alone are often not enough to tell the whole

story - ROC and PR curves are especially useful in imbalanced datasets.

Training algorithms themselves often respond poorly to severely imbalanced data. [8] As a

result of their reliance on the nonparametric bootstrap, ensemble machine learning methods

in particular face issues when training on imbalanced data. As the bootstrap procedure

samples from the original training set, if the proportion of a class is extremely low, there’s
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a high probability of some resamples that contain very few or no instances of that class.

Models trained on these resamples will never predict the low probability class.

Several data level methods exist for handling imbalanced training datasets to improve clas-

sification on the low probability class. [16] Among these techniques, the most common are

oversampling and undersampling. [29]

In undersampling, a training dataset with a more balanced class distribution is constructed

by sampling (or resampling) from the original training dataset as ordinary, then randomly

remove members of the majority class.

In oversampling, a training dataset with a more balanced class distribution is constructed by

sampling from the original training dataset as ordinary, and randomly resampling additional

datapoints from the subset of data representing the minority class. Oversampling can also

be carried out by fabricating datapoints using the empirical distributions of the minority

class data subset’s parameters.

Alternatively, samples of pre-specified sizes can be randomly drawn from each class’ subset

of the original training dataset, allowing the analyst to build a training set with an exactly

specified class distribution. In addition, more advanced modifications of under- and over-

sampling exist whereby the removed (or added) datapoints are chosen according to some

analytical criteria.
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3 Chapter 3: Fractional Random Weighting for

Classification on Imbalanced Data

3.1 Fractional Random Weighted Bootstrapping

In this paper, we examine the utility of the fractional randomly weighted (FRW) bootstrap

as an alternative to the non-parametric bootstrap for training ensemble decision tree models.

The FRW bootstrap offers an alternative resampling method that never fails to capture every

single class in a multi-class dataset, regardless of the underlying probability distribution of

the classes. [25]

Under the fractional random weighted bootstrap, every observation in the training dataset

is paired with a fractional weight drawn from a probability distribution, such that the sum

of the weights is equal to the number of discrete observations. For each “resample”, a new

set of weights is drawn and assigned to the training data. Statistics can then be computed,

and models trained, on the dataset with modification for weighting the observations.

The most examined form of the FRW bootstrap utilizes the uniform Dirichlet distribution

to generate weights. However, the FRW bootstrap can utilize any continuous distribution

to draw weights that has a mean and standard deviation of 1, as long as the weights drawn

are positive and independently, identically distributed.

The probability density function of the Dirichlet distribution of order n (where n is the

sample size of the dataset we’re bootstrapping) is given by:
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f(w1, . . . , wn;α1, . . . , αn) =
1

B(α1, . . . , αn)

n∏
i=1

wαi−1
i (19)

Where B(α1, . . . , αn) is a normalization factor equal to the multivariate beta function, the

vector (w1, . . . , wn) is our weight vector and
∑

iwi = 1, and (α1, . . . , αn) is a vector of positive

real parameters. [14] When using the FRW bootstrap, the alpha parameter is always set to

1.

The FRW bootstrap, like the non-parametric bootstrap, is provably consistent. [13] That is:

FRW ML Estimation 1. Let x1, . . . ,xn be a set of random iid observations. Given a set

of unknown parameters θ, the FRW maximum likelihood estimator θ̂∗ → θ if and only if the

maximum likelihood estimator θ̂ → θ as n→∞.

Proof. Let X = x1, . . . ,xn be a set of n random iid observations, and let θ be a vector of

unknown parameters. The log-likelihood function is written:

l̄(θ) =
1

n

n∑
i=1

li(θ;xi) (20)

where li(θ;xi) is the contribution to the likelihood made by observation i. The maximum

likelihood estimate θ̂ is the solution to the first derivative:

l̄′(θ) =
∂l̄(θ)

∂θ
= 0 (21)

Let W = w1, . . . , wn be a set of iid weights drawn from the exponential distribution with

mean 1. The fractional random weighted log-likelihood is given by

l̄∗(θ) =
1

n

n∑
i=1

wili(θ;xi) (22)

and the MLE is obtained by similar means as above. Let h(θ) be the expectation of the

log-likelihood function and note that E[l̂(θ)] = h(θ). Let us assume that the MLE θ̂ is

28



consistent, and thus V ar[l̄(θ)] → 0 as n → inf. We show consistency of the FRW MLE by

demonstrating that the expectation of the FRW log-likelihood expression is equivalent to the

expectation of the standard log-likelihood, and that the variance of the same also converges

to 0. The expectation of the FRW log-likelihood is given as:

E[l̂ ∗ (θ)] =
1

n

n∑
i=1

E[wili(θ;xi)]

=
1

n

n∑
i=1

Exi
[Ewi

[wili(θ;xi)]|xi]

=
1

n

n∑
i=1

E[li(θ;xi)]

= h(θ) (23)

We note here that the third expression is equivalent to the first due to separability and the

fact that under the FRW model,
∑n

i=1wi = 1. The variance of the FRW log-likelihood is

given by:

V ar[l̄ ∗ (θ)] = V ar[E[l̄ ∗ (θ)|X]] +E[V ar[l̄ ∗ (θ)|X]]

=
1

n
[2V ar[li(θ,xi)] + h(θ)2]→ 0 as n→ inf (24)

It has been shown that FRW bootstrap estimators (such as bootstrapped confidence inter-

vals) have good properties under other distributions as well. Jin (2001) provides examples

using the Gamma(1, 1) and Beta(sqrt(2) – 1, 1) distributions. [17] In general, as long as

the weights can be represented as iid random variables from a continuous distribution with

a mean and standard deviation of 1, such that the sum of the weights is a random variable

with expectation n, the FRW bootstrap is well behaved.

The FRW bootstrap has proven utility for statistical estimators on censored and heavily

imbalanced datasets. We hypothesized that ensemble decision tree methods utilizing the
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FRW bootstrap would produce more accurate decision tree models on datasets with few

observations of one or more of the classes.

3.2 FRW Bootstrapping for Ensemble Methods

Bagging, random forests and other common ensemble machine learning methods utilize the

non-parametric bootstrap to resample from the dataset of interest in order to train additional

models to add to the ensemble. However, there exist many contexts in which the non-

parametric bootstrap cannot improve accuracy, or worse, can reduce it. In particular, when

working with censored datasets, datasets with very few observations of one or more types of

event in the data, or small datasets with many classes or one or more low probability classes,

the non-parametric bootstrap can fail to adequately represent the training data when training

ensemble models. For such datasets, the non-parametric bootstrap may fail to sample any

of the low probability class(es), or may only sample very few of the low probability class(es),

resulting in one or more classes being neglected entirely from one model in the ensemble.

While a dataset of interest would never 0 observations of a class of interest, a large dataset

of size n with a small number of observations m of a class may have a surprisingly large

chance of resampling with no observations of the low probability class. In r resamples with

replacement, the number of resamples we’d expect to contain no observations of class A is

given by (n−m
n

)nr.

For instance, in a dataset of 5000 observations, where only 5 are of class A and the rest are

class B, should we take 1,000 resamples, the number of resamples we’d expect to contain no

observations of class A is: (5000−5
5000

)50001000 = 6.721. Across 10,000 resamples, that number

increases to 67.21.
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Figure 3.1: Distribution of number of observations of a low probability class (5 observations
in an n=5000 sample)

While many ensemble methods, provided some tuning would be able to deal with this level

of imbalance, in some instances we may have as few as 1, 2, or 3 training observations

altogether, even in a massive dataset.

Should a resample in an ensemble be drawn containing none of the low probability class,

the resulting model would be of negligible or negative value in the ensemble for correctly

predicting the low probability class. Furthermore, due to the constraints of many common

classification models, if only one or two observations are drawn, a model may not be trainable

or may be equally as bad as if there were no observations of the low probability class.

In order to utilize the FRW bootstrap in ensemble models, the metric for evaluating splits

on the data has to be modified to account for weights. This is relatively simple for the Gini

splitting criterion.

Definition 3.1. Weighted Gini Criterion Let T = (x1, y1), . . . , (xn, yn) be a set of training

data, where yk is a class label. Let wk represent the weight assigned to xk ∈ X. Then the

weight of all members of a single class or set of classes j in a set of data can be denoted

Wj =
∑n

k=1wkIj(k), where Ij(k) is an indicator function for the class or set of classes j. The

weight of all members of a single class within a single node i may be denoted Wij.

At node i, the proportion of observations in a class j is thus pij =
Wij

Wi
, where Wi denotes

the sum of the weights at node i. Reusing our previous expression for node impurity under
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the Gini splitting criterion, the impurity at node i is now expressed:

Gi =
∑
j

pij(1− pij) =
∑
j

[
Wij

Wi

(1− Wij

Wi

)]

=
∑
j

[

∑
k∈n(i) wkIj(k)∑

k∈n(i) wk
(1−

∑
k∈n(i) wkIj(k)∑

k∈n(i) wk
)]

Furthermore, the Gini split impurity under fractional random weighting is now:

Gsplit = pLGL + (1− pL)GR =

∑
k∈Lwk

n
GL +

∑
k∈R wk

n
GR

=

∑
k∈Lwk

n

∑
j

[
WLj

WL

(1− WLj

WL

)] +

∑
k∈R wk

n

∑
j

[
WRj

WR

(1− WRj

WR

)]

Similar modifications can be made to other splitting metrics. For instance, the information

gain criterion can be rewritten using the same notation as above:

Definition 3.2. Weighted Information Gain Let T = (x1, y1), . . . , (xn, yn) be a set of train-

ing data, where yk is a class label. Let wk represent the weight assigned to xk ∈X.

The weighted entropy of a node i is given by:

Hi = −
∑
j

pijlog2pij = −
∑
j

[
Wij

Wi

log2(
Wij

Wi

)]

The information gain from splitting the data at node O into two nodes L and R is then:

∆H = HO − pLHL − pRHR

=
∑
j

[
WOj

WO

log2(
WOj

WO

)]

−
∑

k∈Lwk

n

∑
j

[
WLj

WL

log2(
WLj

WL

)]

−
∑

k∈R wk

n

∑
j

[
WRj

WR

log2(
WRj

WR

)]

All other aspects of the decision tree algorithm should work similarly as before. These
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modifications are not unique to fractional random weighting, as they are also necessary to

utilize case weighting (e.g. for denoting classes whose misclassification is more costly). In

practice, most standard decision tree implementations utilize case weighting, to which a

vector of fractional weights can be passed.
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4 Chapter 4: Methodology for Algorithm Study

4.1 Datasets

Four datasets were selected to build a comparison of standard ensem-

ble models against models built using FRW bootstrapping: the Heart

[11] dataset (https://archive.ics.uci.edu/ml/datasets/Heart+Disease), Iris

[11] dataset (https://archive.ics.uci.edu/ml/datasets/Iris), Glass [11] dataset

(https://archive.ics.uci.edu/ml/datasets/glass+identification), and Credit Card Fraud [1]

dataset (https://www.kaggle.com/mlg-ulb/creditcardfraud). The bulk of our analysis

focused on the Heart and Credit Card Fraud datasets, which are presented below - the Iris

and Glass results can be found in Appendix 1.

The Heart dataset is a multiclass dataset, but can be treated as binary, with positive obser-

vations having heart disease and negative observations not having heart disease. The Heart

dataset is not on its own severely imbalanced. To conduct simulations on imbalanced data,

we randomly select 1, 2, 3, 4, 5, and 10 training observations of the positive class and coupled

them with 100 observations of the negative class. This dataset had 303 observations total,

13 predictor variables and 1 label.

A severely imbalanced credit card fraud dataset was selected from Kaggle as an example of

naturally imbalanced data. This dataset has 285,299 observations, 492 of which are fraud,

with 30 predictor columns and a single column labeling each row as fraud or not fraud. We

trained models on this dataset at varying sample sizes. Reducing the sample size reduced the

number of training observations of the low probability class while retaining the same class
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proportions, allowing us to compare performance of the models when only the number (and

not the proportion) of training observations of the low probability class changed. Models

were trained at sample sizes of 1500, 2000, and 3000.

4.2 Grid Searching

In order to control for the effect of hyperparameters, a grid search was conducted over sets

of hyperparameters. In each simulation, models were trained with the same hyperparameter

tunings for comparison against each other.

Furthermore, repeated simulations were conducted on a smaller subset of hyperparameter

tunings and averaged to estimate an average effect from the FRW model.
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5 Chapter 5: Results and Analysis

5.1 Heart Data

The Heart dataset is not a naturally imbalanced dataset, but it represented a good oppor-

tunity to test at various levels of imbalance. The Heart dataset has 302 observations near

evenly split between patients having heart disease (139 observations) and patients without

heart disease (163 observations), and 13 predictor variables.

We constructed imbalanced datasets by randomly selecting 1, 2, 3, 4, 5, and 10 observations

of the positive class and 100 observations of the negative class.

At all but the 5 and 10 observation levels, performance was minimal from either the standard

or the FRW models, achieving virtually no recall on the low probability class. At 5 and 10

observations, we saw noticeable improvement from the FRW model at the naive threshold.

A much more significant difference in performance is observable under the AUC metrics. The

FRW bagging model saw consistently higher ROC-AUC and PR-AUC than the standard

model when broken down by the number of low probability training observations and the

number of trees in the model. The improvement in performance varied from modest to

relatively great, with the greatest improvement seen at the lowest numbers of trees and the

lowest numbers of training observation.

This pattern could be observed under both the bagging and the random forest models, with

apparently diminishing effect of the FRW procedure as the number of training observations

and the number of trees in the ensemble increased.
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5.1.1 Performance at the Naive Threshold

Bagging Performance

Figure 5.1: Recall (left) and Precision (right) for bagging models on the Heart dataset

Random Forest Performance

Figure 5.2: Recall (left) and Precision (right) for random forest models on the Heart dataset
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5.1.2 AUC Metrics

Bagging performance

Tree

Count
LP Count 1 2 3 4 5 6+

20 ROCAUC Diff 0.0149 0.0324 -0.0003 -0.0071 -0.0401

20 PRAUC Diff 0.0743 0.1315 -0.0169 -0.0156 -0.0393

50 ROCAUC Diff 0.0271 0.0257 0.0168 0.0091 -0.0102 -0.0180

50 PRAUC Diff 0.1621 -0.0832 0.0143 -0.0041 0.0059 -0.0079

100 ROCAUC Diff 0.01140 0.0348 0.0239 0.0392 -0.0020 0.0062

10 PRAUC Diff -0.0257 0.1421 0.0225 0.0142 -0.0052 0.0019

Table 5.1: Mean difference in ROC-AUC and PR-AUC between standard and FRW boot-
strapping models at each level of low probability training observations under the bagging
model. There was an overall mean increase in ROC-AUC of 0.0062, with variability 0.0067.
There was an overall mean increase in PR-AUC of 0.0222, with variability 0.0880.

Breaking down the ROC-AUC and PR-AUC differences across different numbers of low

probability training observations demonstrates a trend towards higher performance by the

FRW procedure at lower counts. As the number of low probability training observations

increases, the FRW and standard procedures tend to converge towards similar levels of

performance.
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Figure 5.3: AUC (left) and PRAUC (right) for bagging models on the Heart dataset, broken
down by low probability training observation count

Figure 5.4: AUC (left) and PRAUC (right) for bagging models on the Heart dataset, broken
down by tree count

Visually breaking down the performance by number of low probability training observations

makes the trend more obvious. In addition to having a higher mean performance, the FRW

model tended to have a slightly wider range of performance, with the best performing FRW

models tending to perform better than the best performing models under the standard

procedure.

Breaking down the performances by tree count reveals a more modest trend towards higher

mean performances by the FRW model, but no clear trend in performance variability.

We can examine these trends closer by separating out performance by both tree count and

LP training observation count.
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Figure 5.5: Plots of average spread of ROC-AUC (left) and PR-AUC (right) for bagging
models with 20 trees on the Heart dataset

Figure 5.6: Plots of average spread of ROC-AUC (left) and PR-AUC (right) for bagging
models with 50 trees on the Heart dataset

Figure 5.7: Plots of average spread of ROC-AUC (left) and PR-AUC (right) for bagging
models with 100 trees on the Heart dataset
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Breaking down performance by both tree count and number of low probability training

observations makes the difference in performance more clear. While there were some cases

of reduced performance under AUC measures by the FRW model, in general the FRW model

achieved greater mean performances, with the strongest models performing better than the

strongest models under the standard procedure. The difference in performance was most

pronounced at very low observation counts for the low probability class, with the difference

moderately diminished at higher tree counts.

Random Forest performance

Tree

Count
LP Count 1 2 3 4 5 6+

20 ROCAUC Diff 0.0042 0.0325 0.0055 -0.0192 0.0178

20 PRAUC Diff -0.0085 0.0793 0.0322 -0.0092 -0.0039

50 ROCAUC Diff -0.0077 0.0204 0.0143 0.0270 0.029 -0.0067

50 PRAUC Diff -0.2673 -0.1004 -0.0016 -0.0215 -0.0085 -0.0021

100 ROCAUC Diff -0.0028 -0.0354 0.0444 0.0269 -0.0034 0.0045

100 PRAUC Diff 0.0162 -0.0685 0.0303 0.0151 -0.0069 -0.0012

Table 5.2: Mean difference in ROC-AUC and PR-AUC between standard and FRW boot-
strapping models at each level of low probability training observations under the random
forest model. There was an overall mean increase in ROC-AUC of 0.0077, with variance
0.0103. There was an overall mean decrease in PR-AUC of -0.0088, with variance 0.1060.

Breaking down the ROC-AUC and PR-AUC differences across different numbers of low

probability training observations fails to reveal any particular trend under the random forest

model. The FRW procedure doesn’t appear to consistently hurt or harm ROC-AUC, while

consistently attaining slightly lower PR-AUC numbers.

41



Figure 5.8: AUC (left) and PRAUC (right) for random forest models on the Heart dataset,
broken down by low probability training observation count

Figure 5.9: AUC (left) and PRAUC (right) for random forest models on the Heart dataset,
broken down by tree count

The trend observed previously under the bagging model is sustained under the random

forest model as well, with more pronounced differences between the model performances at

lower training counts and lower numbers of trees. Both sets of models converge to similar

ROC-AUCs and PR-AUCs at higher tree and observation counts.
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Figure 5.10: Plots of average spread of ROC-AUC (left) and PR-AUC (right) for random
forest models with 20 trees on the Heart dataset

Figure 5.11: Plots of average spread of ROC-AUC (left) and PR-AUC (right) for random
forest models with 50 trees on the Heart dataset

Figure 5.12: Plots of average spread of ROC-AUC (left) and PR-AUC (right) for random
forest models with 100 trees on the Heart dataset
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Further breaking down the performance by both tree count and low probability training

observations upholds the trend, with greater average performance by the FRW model in

most cases, with a few exceptions. We continue to see a general trend towards greater

average performance by the FRW model, especially at lower training counts of the low

probability observation and tree counts, with the strongest models under the FRW procedure

often outperforming the strongest models under the standard procedure and performance

converging at higher training and tree counts.
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5.2 Credit Data

The credit card dataset was a large (284,807 observations), extremely imbalanced

(284,215:492 ratio of negative to positive dataset collected from Kaggle. With 30 predic-

tor variables, this dataset represented a real world example of a challenging and imbalanced

classification problem to test our methods against.

At the naive threshold, we saw considerable improvement in recall from the FRW model.

In particular, while no models attained high performance at the naive threshold at 1 and 2

observations of the low probability class, the FRW model began correctly classifying members

of the low porbability class as early as 3 training observations, and maintained consistently

higher recall over the regular model at other levels of training observations.

AUC metrics showed similar gains in performance, with the FRW models consistently outper-

forming the regular models - both bagging and random forests - in ROC-AUC and PRAUC.

The effect was most pronounced at very low training observations, but AUC metrics remained

consistently higher for the FRW models at almost all training levels.

Simulations were conducted at training sizes of 1500, 2000, and 3000. However, results are

split on the number of training observations of the low probability class. In most simulations,

we observed very high or perfect recall and precision even at the naive threshold for the high

probability class. Performance, as such, was more a function of the number of low probability

observations than of the number of high probability observations.
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5.2.1 Performance at the Naive Threshold

Figure 5.13: Recall (left) and precision (right) at the naive threshold for bagging models,
under both standard bootstrapping and FRW bootstrapping, on credit card fraud data

Figure 5.14: Recall (left) and precision (right) at the naive threshold for random forest
models, under both standard bootstrapping and FRW bootstrapping, on credit card fraud
data

At the naive threshold, there appears to be a marked difference in recall by models generated

with the FRW procedure. While neither procedure yields models that perform exceptionally

at the naive threshold when the number of low probability training observations is low, the

FRW models achieve modest performance at lower counts and retain higher mean perfor-

mances throughout.
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5.2.2 AUC Metrics

Bagging Performance

Tree

Count
LP Count 1 2 3 4 5 6+

20 ROCAUC Diff 0.1286 0.1649 0.0611 0.0300 0.5312 -0.0490

20 PRAUC Diff 0.1384 0.1320 -0.0536 0.0642 -0.1574 -0.192

50 ROCAUC Diff 0.1483 0.0877 0.0236 -0.0023 -0.0115 -0.0050

50 PRAUC Diff 0.3530 0.1723 -0.0516 -0.1404 -0.2569 -0.053

100 ROCAUC Diff 0.1654 0.0314 0.0165 -0.0024 -0.0063 -0.0179

100 PRAUC Diff 0.2398 0.0280 0.0181 -0.0092 -0.0620 -0.1500

Table 5.3: Mean difference in ROC-AUC and PR-AUC between standard and FRW boot-
strapping models at each level of low probability training observations under the bagging
model, with positive values favoring the FRW model. Overall mean difference in ROC-AUC
was 0.0489, with a variance of 0.0139. Overall mean difference in PR-AUC was 0.0291, with
a variance of 0.0484.

The same trend we observed in the Heart data under the bagging model appears here, with

a very pronounced positive effect on the ROC-AUC and PR-AUC from the FRW procedure.

The effect diminishes at greater numbers of low probability training observations, and is

most profound at the smaller ensemble sizes.
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Figure 5.15: Plots of average spread of ROC-AUC (left) and PR-AUC (right) for bagging
models on the Credit Card Fraud dataset, split by number of training observations

Figure 5.16: Plots of average spread of ROC-AUC (left) and PR-AUC (right) for bagging
models on the Credit Card Fraud dataset, split by number of trees

We examined the average difference in ROC-AUC and PR-AUC over various counts of train-

ing observations above, then examined the average difference in performance across tree

counts. In addition to greater mean ROC-AUC and PR-AUC values, the ROC-AUC and

PR-AUC were much more consistent, with reduced variability compared to the standard

procedures at lower training observations and lower tree counts.
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Figure 5.17: Plots of average spread of ROC-AUC (left) and PR-AUC (right) for bagging
models with 20 trees on the Credit Card Fraud dataset

Figure 5.18: Plots of average spread of ROC-AUC (left) and PR-AUC (right) for bagging
models with 50 trees on the Credit Card Fraud dataset

Figure 5.19: Plots of average spread of ROC-AUC (left) and PR-AUC (right) for bagging
models with 100 trees on the Credit Card Fraud dataset
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Breaking down by both tree count and low probability class training observation count made

the trend more clear: the FRW model had the greatest positive effect on performance at

the lowest tree and training observation counts. We conducted simulations at 20, 50, and

100 trees composing the ensemble. The most pronounced differences appeared at the 20 and

50 tree counts, with the performance gap between standard ensemble and FRW ensembles

closing at lower observation counts under higher tree counts.

As in the Heart dataset, we see that the strongest models produced under the FRW procedure

tend to perform better than the strongest models produced under the standard bootstrap-

ping procedure. Furthermore, the FRW procedure results in lower variability in ROC-AUC

performance than the standard model in many cases where the performance is improved.

FRW models had greater performance under the PRAUC metric on average as well, but the

difference tended to be more modest, especially at high tree counts.

Random Forest Performance

Tree

Count

LP

Count
1 2 3 4 5 6+

20 ROCAUC Diff 0.0813 0.0422 0.0123 -0.0233 0.0809 0.0077

20 PRAUC Diff 0.0621 0.0918 0.1241 0.1296 0.0072 0.0656

50 ROCAUC Diff 0.0922 0.0226 0.0150 -0.0383 0.0043 0.0035

50 PRAUC Diff 0.0873 0.1970 0.0716 -0.1657 0.0121 -0.0081

100 ROCAUC Diff 0.0976 0.0242 0.0004 -0.0018 -0.0031 -0.0027

100 PRAUC Diff 0.0855 0.0079 -0.0009 0.0316 -0.0002 0.0095

Table 5.4: Mean difference in ROC-AUC and PR-AUC between standard and FRW boot-
strapping models at each level of low probability training observations under the random
forest model, with positive values favoring the FRW model. Overall mean difference in ROC-
AUC was 0.0235, with a variance of 0.0167. Overall mean difference in PRAUC was 0.0515,
with a variance of 0.0790.
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Figure 5.20: Plots of spread of ROC-AUC (left) and PR-AUC (right) for random forest
models on the Credit Card Fraud dataset, split across count of low probability training
observations

Figure 5.21: Plots of spread of ROC-AUC (left) and PR-AUC (right) for random forest
models on the Credit Card Fraud dataset, split across tree count

Breaking down the performance of the RF models at different counts of low probability

observations reveals a similar trend as under the bagging model. As before, we observe the

greatest difference in performance at low tree counts and low numbers of observations of the

low probability training class. Under the random forest models, there’s also a trend towards

reduced variability by the FRW models, especially among models with the same ensemble

size.
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Figure 5.22: Plots of average spread of ROC-AUC (left) and PR-AUC (right) for random
forest models with 20 trees on the Credit Card Fraud dataset

Figure 5.23: Plots of average spread of ROC-AUC (left) and PR-AUC (right) for random
forest with 50 trees on the Credit Card Fraud dataset

Figure 5.24: Plots of average spread of ROC-AUC (left) and PR-AUC (right) for random
forest with 100 trees on the Credit Card Fraud dataset
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Breaking down model performance by both tree count and low probability training obser-

vations upholds the previous trends, with the most pronounced effects at low numbers of

training observations and low tree counts. As before, the FRW model appeared to have a

more modest effect on PR-AUC, and performance under both metrics appeared to converge

as ensemble size and the count of low probability training observations increased.
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6 Concluding Remarks

Performance measures of our models across multiple datasets suggest a positive effect when

training in limited contexts - very low numbers of training observations and low numbers of

trees.

In general, the FRW model appeared to improve performance at the naive threshold mod-

estly, especially in contexts of more limited data. However, the greatest apparent difference

in performance was in the ROC-AUC and PR-AUC metrics.

Under the ROC-AUC and PR-AUC metrics, the FRW model consistently outperformed the

standard bootstrapping ensembles at low tree counts and at low observation counts for the

low probability class. The effect diminished as tree count and observation counts increased.

The FRW model showed consistently greater mean performance over the equivalent standard

model in both AUC metrics, but most prominently in the ROC-AUC metric. Furthermore,

the strongest models trained under the FRW procedure tended to have better performance

than the strongest models trained under the standard bootstrapping procedure. In some

cases, we also observed reduced variability in model performance under the FRW procedure,

resulting in greater consistency of model performance.

The FRW methods appeared to have the most profound effect on the credit card dataset

when the number of low probability training observations was very low. As this was the

dataset with the greatest number of columns and the greatest imbalance, it is likely that

the FRW bootstrap proves most useful when the parameter space is large, the number of

observations of a low probability class is extremely limited, and when the number of samples

to explore the parameter space over is small.
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At minimum, the FRW method appears no worse on average than using the standard boot-

strap. The FRW bootstrap offers an option for confronting data imbalance without misrep-

resenting the underlying data structure, introducing less risk of overfitting than alternative

sampling strategies such as oversampling. Given the minimal difference in computational

time, this method may prove useful as a first option prior to implementing more elaborate

sampling schemes when dealing with highly imbalanced data.

Furthermore, the improved performance at fewer resamples and lower training sizes suggests

the FRW model may serve a role in producing quicker turnaround in model production,

allowing ensembles to be trained more quickly, requiring smaller data and fewer resamples.

Future work might focus on other resampling methods utilizing continuous weighting. In

addition, as the fractional random weighted bootstrap has seen much use for statistical

inference on censored data, future experimentation might explore FRW ensemble methods

on labeling for censored data.

In addition, ensemble methods exist for many other machine learning algorithms, such as

the support vector machine and logistic regression. The evidence of performance differences

attained on decision tree ensembles indicate it may be fruitful to explore FRW alternatives

for other ensemble methods.
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A Additional Datasets

In addition to the Heart and Credit Card Fraud datasets, we conducted simulations over

the Iris and Glass datasets to test the FRW method on multiclass classification problems.

On each of these datasets, we trained at varying numbers of training observations in order

to observe the effect of increasingly low numbers of training counts to select on. The Iris

dataset is perfectly balanced across three classes with a total of 150 observations, while the

Glass dataset has six classes unevenly distributed across 214 observations.

A.1 Iris Data

The Iris dataset has an even class distribution (with 50 observations of each of 3 classes).

While not highly imbalanced, at small sample sizes, this dataset would suffer from the

same issue posed by highly imbalanced data: potentially excluding classes in bootstrapped

resamples. The Iris data provides a starting point for comparison of our models. As there

were only five predictor variables, only bagging models were tested on the Iris dataset.

We saw mixed effects of the FRW resampling method on this dataset. Recall was modestly

improved in some cases (e.g. on Setosa at 50 observations, Virginica at all observation counts,

and Versicolor at 15 and 30 observations), but moderately worse in others (e.g. on Setosa at

15 and 30 observations, Bersicolor at 50 observations). Precisions was also modestly affected,

with similar mixed results
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Regular Mean Recalls

Setosa Virginica Versicolor

15 Observations 0.45 0.2 0.35

30 Observations 0.9271 0.7698 0.7346

50 Observations 0.9946 0.9247 0.9035

Table A.1: Recall by class of the standard bagging model. Each row represents an average
over all simulations conducted at a set sample size.

FRW Mean Recalls

Setosa Virginica Versicolor

15 Observations 0.375 0.225 0.4

30 Observations 0.9220 0.8064 0.7381

50 Observations 1.0 0.9394 0.8975

Table A.2: Recall by class of the FRW bagging model. Each row represents an average over
all simulations conducted at a set sample size.

Regular Mean Precisions

Setosa Virginica Versicolor

15 Observations 0.3235 0.3222 0.3206

30 Observations 0.9253 0.7627 0.8672

50 Observations 0.9963 0.9036 0.9279

Table A.3: Precision by class of the regular bagging model. Each row represents an aver-
age over all simulations conducted at a set sample size. Note that these numbers are not
completely accurate - simulations where a method made no predictions of a class are not
counted, as precision would be NaN.
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FRW Mean Precisions

Setosa Virginica Versicolor

15 Observations 0.3230 0.3218 0.3208

30 Observations 0.9400 0.7602 0.9041

50 Observations 1.0 0.9053 0.9376

Table A.4: Precision by class of the FRW bagging model. Each row represents an average over
all simulations conducted at a set sample size. Note that these numbers are not completely
accurate - simulations where a method made no predictions of a class are not counted, as
precision would be NaN.

Recall Visualizations

Table A.5: Recall on Iris dataset at 15 (left), 30 (middle), and 50 (right) training observations

Precision Visualizations

Table A.6: Precision on Iris dataset at 15 (left), 30 (middle), and 50 (right) observations

At 30 and 50 training observations, we see moderately improved performance over the stan-

dard model, especially on the versicolor class. Precision was only modestly improved at 30

and 50 observations over the standard model.
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A.2 Glass Data

The Glass dataset posed a particular challenge, having six classes, several of them with few

observations and several with many observations. Across both random forest and bagging

models, we saw little difference in either recall or precision between the standard and FRW

models.

Class 1 2 3 5 6 7

Count 69 76 17 13 9 29

Table A.7: Class counts for Glass dataset

A.2.1 Bagging on Glass Data
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Table A.8: Recall (left) and Precision (right) for bagging models on the Glass dataset at
100 (top) and 150 (bottom) training observations. Across both random and FRW models,
performance was relatively similar.

A.2.2 Random Forests on Glass Data

Figure A.1: Recall (left) and Precision (right) for random forest models on the Glass dataset
at 100 (top) and 150 (bottom) training observations. Similar to the bagging model, perfor-
mance was largely unaffected by the FRW procedure under the random forest model.
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B Decision Tree and Ensemble Code

library(MCMCpack)

library(rpart)

library(data.table)

# Builds a tree using a bootstrap sample

bootstrap_tree <- function(dataset , factors , group , train_size ,tree_

control){

samp <- bootstrap(dataset , train_size , TRUE)

if(length(unique(samp[,group])) < 2){

#make root tree if fewer than 2 groups are present

root_tree <- as.character(samp[1,group])

return(root_tree)

}

else{

if(is.na(tree_control)){

# Tree without control

Tree <- rpart(reformulate(termlabels=factors , response=group),

data=samp , method="class")

return(Tree)

}

else{
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# Tree with control

Tree <- rpart(reformulate(termlabels=factors , response=group),

data=samp , method="class", control=tree_control)

return(Tree)

}

}

}

# Builds a tree using an FRW bootstrap sample

frw_tree <- function(dataset , factors , group , tree_control , weight){

if(length(unique(dataset[,group])) <2){

root_tree <- as.character(dataset[1,group])

return(root_tree)

}

else{

if(is.na(tree_control)){

Tree <- rpart(reformulate(termlabels=factors , response=group),

data=dataset ,weights=weight , method="class")

return(Tree)

}

else{

Tree <- rpart(reformulate(termlabels=factors , response=group),

data=dataset ,weights=weight , method="class", control=tree_

control)

return(Tree)

}

}

}
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# Builds a bag of regular decision trees

Reg_Bag <- function(dataset , tree_count , factors , group , train_size

=0, tree_control=NA){

if (train_size == 0){

train_size = nrow(dataset)

}

rbag <- replicate(tree_count , bootstrap_tree(dataset , factors ,

group , train_size ,tree_control), simplify=FALSE)

return(rbag)

}

# Builds an FRW bag of decision trees

FRW_Bag <- function(dataset , tree_count , factors , group ,tree_control

=NA){

weights <- rdirichlet(tree_count , alpha=rep(1, nrow(dataset)))

frwbag <- lapply(as.list(seq(1, tree_count)), function(x) frw_tree

(dataset , factors , group , tree_control , weights[x,]))

return(frwbag)

}

# Constructs a standard random forest

Reg_RF <- function(dataset , tree_count , factors , group , train_size

=0, max_fac=5, tree_control=NA){

if(train_size ==0){

train_size = nrow(dataset)

}

subfac <- function (){

facs <- sample(factors , max_fac)

return(facs)
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}

rfbag <- replicate(tree_count , bootstrap_tree(dataset , subfac (),

group , train_size , tree_control), simplify=FALSE)

return(rfbag)

}

# Constructs an FRW random forest

FRW_RF <- function(dataset , tree_count , factors , group , max_fac=5,

tree_control=NA){

subfac <- function (){

facs <- sample(factors , max_fac)

return(facs)

}

weights <- rdirichlet(tree_count , alpha=rep(1, nrow(dataset)))

frw_rfbag <- lapply(as.list(seq(1, tree_count)), function(x) frw_

tree(dataset , subfac (), group , tree_control , weights[x,]))

return(frw_rfbag)

}

#

# The section below contains many different prediction methods ,

encompassing several different prediction types and

# averaging mechanisms for generating ensemble predictions

#

# Returns the top most voted for class

bag_prediction <- function(bag , datapoint){

predictions <- unlist(lapply(seq(1, length(bag)), function(x) tree
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_prediction(bag[[x]], datapoint)))

return(names(sort(table(predictions), decreasing=TRUE)[1]))

}

# Utilizes the above method to make predictions on a dataframe of

new observations

bag_prediction_df <- function(bag , test_data){

predictions <- lapply(seq(1, nrow(test_data)), function(x) bag_

prediction(bag , test_data[x,]))

predictions_df <- do.call(rbind , predictions)

return(predictions_df)

}

# Returns the class vote that each tree made

bag_prediction_long <- function(bag , datapoint){

predictions <- unlist(lapply(seq(1, length(bag)), function(x) tree

_prediction(bag[[x]], datapoint)))

return(predictions)

}

# Probability prediction using proportion of tree votes

bag_prediction_prop <- function(bag , datapoint , classes){

predictions <- bag_prediction_long(bag , datapoint)

counts <- as.data.frame(table(predictions))

counts$Freq <- counts$Freq/length(predictions)

for(class in classes){

if(!(is.element(class , counts$predictions))){

new_row <- list(class , 0)

counts <- rbindlist(list(counts , new_row))
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}

}

return(counts)

}

# Uses the above method to make predictions on a dataframe of new

observations

bag_prediction_prop_df <- function(bag , test_data , classes){

prop_preds <- lapply(seq(1, nrow(test_data)), function(x) bag_

prediction_prop(bag , test_data[x,], classes))

out_df <- do.call(rbind , prop_preds)

colnames(out_df) <- c("Class", "Probability")

out_df$pred_ID <- ceiling(as.numeric(rownames(out_df))/length(

classes))

out_df <- dcast(data=out_df , formula=pred_ID~Class , value.var="

Probability")

return(out_df)

}

# Probability prediction using response function - i.e. averages

over the probabilities returned by rpart

bag_prediction_prob <- function(bag , datapoint , classes){

predictions <- lapply(seq(1, length(bag)), function(x) tree_

prediction_prob(bag[[x]], datapoint , classes))

prediction_df <- do.call(rbind , predictions)

return(colMeans(prediction_df))

}

# Uses the above method to make predictions on a dataframe of new
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observations

bag_prediction_prob_df <- function(bag , test_data , classes){

prob_preds <- lapply(seq(1, nrow(test_data)), function(x) bag_

prediction_prob(bag , test_data[x,], classes))

out_df <- do.call(rbind , prob_preds)

return(out_df)

}

# Returns all probabilities predicted by trees in the bag

bag_prediction_probs_long <- function(bag , datapoint , classes){

predictions <- lapply(seq(1, length(bag)), function(x) tree_

prediction_prob(bag[[x]], datapoint , classes))

prediction_df <- do.call(rbind , predictions)

return(prediction_df)

}

# Wrapper for rpart ’s prediction method to account for root trees

# Returns a class prediction

tree_prediction <- function(tree , datapoint){

if(is.character(tree)){

return(tree)

}

else{

prediction <- predict(tree , datapoint , type="class")

return(levels(prediction)[prediction ])

}

}
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# Wrapper for rpart ’s prediction method to account for root trees

# Returns a probability prediction

tree_prediction_prob <- function(tree , datapoint , classes){

pvec <- rep(0, length(classes))

prediction_df <- as.data.frame(matrix(nrow=0, ncol=length(classes)

))

prediction_df <- rbind(prediction_df, pvec)

colnames(prediction_df) <- classes

if(is.character(tree)){

prediction_df[1,tree] <- 1

}

else{

prediction <- predict(tree , datapoint , type="prob")

pclasses <- dimnames(prediction)[[2]]

for(i in seq(1, length(pclasses))){

prediction_df[1,pclasses[i]] <- prediction[i]

}

}

return(prediction_df)

}

# Standard bootstrapping method , sampling with replacement

bootstrap <- function(dataset , count , replacement){

resample <- dataset[sample(nrow(dataset), count , replace=

replacement) ,]

return(resample)

}
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