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Abstract

Parametric analysis of any real-world data is the most powerful tool to characterize

the probabilistic behavior in social, economic, medical, epidemiological, and other areas

of study. In the present study, we identify the theoretical Probability Distribution Func-

tion(PDF) for Democracy Index Scores (DIS) from the Economist Intelligence Unit (EIU)

database and estimate the maximum likelihood estimates of the theoretical PDFS. We also

identify the individual PDFs for each of the clusters, Full Democracy, Flawed Democracy,

Hybrid Regime, and Authoritarian Regime defined by the Economist Intelligence Unit

(EIU).

A statistical model is a convenient instrument to predict the future value of any real

phenomenon. In addition to identifying probability distributions, we predict the DIS for

167 countries of the world through a regression model with a high degree of accuracy.

Then we do cluster analysis through (K − means) clustering algorithm based on the DIS

predicted by the corresponding statistical model we have developed.

By extracting Corruption Perception Index (CPI) and World Governance Index (WGI)

from Transparency International (TI) and World Bank (WB) databases respectively, we es-

timate a theoretical PDF of CPI for 175 countries of the world. Moreover, we estimate in-

dividual PDFs for each of the clusters - Highly Corrupted, Moderately Corrupted, Fairly

Corrupted, and Least Corrupted countries of the world.

We conducted statistical analyses on Hemophilia A based on the data retrieved from

Centers for Disease Control and Prevention (CDC) CHAMP F8 surveillance program to

identify the risk factors involved in Severity level of Hemophilia A. We have identified a

statistical model for probability prediction of the Severity level of Hemophilia A.

ix



Finally, we have studied some standard machine learning algorithms to compare and

identify the best algorithm to classify and predict the correct state of a prediabetes con-

dition in individuals. For this present study, the data was extracted from the National

Health and Nutrition Examination Surveys (NHANES), part of the Centers for Disease

Control and Prevention (CDC). We compare the identified champion algorithm to the ex-

isting machine learning algorithms suggested by some researchers in other countries of

the world.
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1 Parametric Analysis of Economist Intelligence Units (EIU) Democracy Index

Scores (DIS) of 167 Countries in the world

1.1 Introduction

Democracy has been defined in hundreds of ways. However, almost all definitions fit

under one of four major types: economic, social, communitarian, or political democracy.

Economic, social, and communitarian democracy tend to be defined in terms of outcomes:

the equalization of wealth, income, and status, or the creation and maintenance of a feel-

ing of belonging in a community or communities, and the promotion of participation

within them. Political democracy is different because it is almost necessarily defined by

its procedures and institutions rather than its outcomes. Political democracy does not

promise economic equality, social justice, or a feeling of community; whatever outcomes

result from political democracy are consistent with this kind of democracy as long as the

proper procedures produced them. Procedural political democracy is in itself divided

into sub-types [14].

All national states today have a form of representative democracy. Representation is

so common that we tend to forget that there is an alternative: direct participatory democ-

racy, in which voters make policy decisions themselves instead of electing representa-

tives to decide for them. Representative democracy, in turn, can vary between a popular

sovereignty tendency and more liberal versions. In a popular sovereignty democracy,

the majority rules: whatever the people want becomes the law. Liberal democracy lim-

its the power of the majority by guaranteeing some fundamental rights of individuals

(and sometimes groups) and by creating constitutional checks on executive, legislative,

1



and judicial powers. This set of types and sub-types is neither exhaustive nor univer-

sally accepted; one could make additional distinctions in the set of liberal representa-

tive democracies to distinguish consolidated democracies from transitional ones, parlia-

mentary from 3 presidential democracies, unitary from federal democracies, high-quality

from low-quality democracies, and so on. However, this basic typology is useful for de-

scribing how political scientists have faced the challenge of measuring democracy.

1.2 EIUs Measure of Democracy

The Economist Intelligence Unit’s of democracy [32], on a 0 to 10 scale, is based on

the ratings for 60 indicators grouped in five categories mentioned above. Each category

has a rating on a 0 to 10 scale, and the overall index of democracy is the simple average

of the five category indexes. The category indexes are based on the indicator scores in

the category converted to 0 to 10 scale. Adjustments to the category scores are made if

countries do not score a 1 in the following critical areas of democracy:

• Whether national elections are free and fair

• The security of the voters

• The influence of foreign powers on government

• The capability of the civil service to implement policies

If the scores for the first three questions are 0 (or 0.5), one point (0.5 points) is deducted

from the index in the relevant category (either the electoral process and pluralism or the

functioning of government). If the score for 4 is 0, one point is deducted from the func-

tioning of the government category index. The index values are used to place countries

within one of four types of regimes:

(1) Full democracies— scores of 8- 10

2



(2) Flawed democracies— scores of 6 to 7.9

(3) Hybrid regimes— scores of 4 to 5.9

(4) Authoritarian regimes— scores below 4

Threshold points for regime types depend on overall scores that are rounded to one

decimal point. Based on the scores defining different kinds of regimes for any country to

be fell in the definitions are elaborated in detail. For the scoring system, the EIU has used

a combination of a dichotomous and a three-point scoring system for the 60 indicators.

According to their claim, a dichotomous 1-0 scoring system (1 for yes and 0 for no) has

some drawbacks, but it has several distinct advantages over more refined scoring scales

(such as 1-5 or 1-7). Also, they say, for many indicators, the possibility of a 0.5 score is

introduced, to capture grey areas where a simple yes or no is problematic with guidelines

as to when that should be used. Thus for many indicators, there is a three-point scoring

system, which represents a compromise between simple dichotomous scoring and the

use of more beautiful scales. They also declare that a crucial, differentiating aspect of

their measure is that in addition to experts’ assessments they use, where available, public

opinion surveys- mainly the World Values Survey (Say, WVS). Indicators based on the

surveys predominate heavily in the political participation and political culture categories,

and a few are used in the civil liberties and functioning of government categories. In

addition to the WVS, other sources that can be leveraged include the Euro-barometer

surveys, Gallup polls, Asian Barometer, Latin American Barometer, Afro barometer, and

national surveys.

Given below, Figure 1.1 is the schematic diagram of the complete data set that we have

used for pdf estimation.

As part of our preliminary preparation of the dataset, we have checked to see that

the data was randomly collected to determine if there is any biasness, and it does not

contain any outliers. So, after these tests as mentioned earlier, we proceeded to find the

3



Figure 1.1: Data Diagram of Democracy Index Score (DIS)

best Probability Distribution Functions (PDF) of all the DIS scores and each of the four

classifications of Democracy, namely, Full, Flawed, Hybrid, and Authoritarian Regime.

1.2.1 Finding PDF of Democracy Index Scores (DIS)

In the process of finding the best-fitted PDF, we have implemented the methodology of

graphing the variable DIS, which will give us an initial idea of what the distribution may

look like [55]. Then we shall identify the best candidates for the PDF that characterizes

the subject variable. The following, Table 1.1, shows the primary statistic of the variable

democracy scores (DIS) of 167 countries of the world.

Table 1.1: Descriptive Statistic of DIS of 167 Countries of the World

Descriptive Statistics of DIS Countries

Mean Median Std. Deviation Skewness Kurtosis

5.548 5.792 2.177 -0.082 -1.034

From Table 1.1 above, we see that the average (mean) democracy index score for all

the countries of the world is 5.548 and the standard deviation is approximately 2.18. It

should be noted that the data is slightly left skewed with skewness value of -0.08153. A
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histogram of the scores also supports the same information provided in the descriptive

statistics information.

Figure 1.2: Histogram of Democracy Index Scores

1.2.1.1 Goodness-of-Fit tests for All DIS:

We proceeded by testing the goodness-of-fit for a number of well defined PDFs using

three statistical tests, namely, Kolomogrov-Smirnov [35], Anderson-Darling [5] and Chi-

square [12]. The Kolmogorov-Smirnov test is based on minimum difference estimation.

The Anderson-Darling measures whether the data can be transformed into the uniform

probability distribution and the Chi-square test for goodness-of-fit is a measure of relative

error squared [51]. We have found that the Mixed Gaussian PDF best fits all the DIS data

as it is supported by the results given in Table 1.2 below.
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Table 1.2: Goodness-of-Fit Summary

α p-value Do Not Reject/Reject

Kolmogorov-Smirnov 0.05 0.9993 Do Not Reject

Anderson-Darling 0.05 0.984 Do Not Reject

Chi-Squared 0.05 0.5268 Do Not Reject

Thus, we proceed to discuss and fit the Mixed Gaussian PDF of the DIS of 167 coun-

tries of the world.

1.2.1.2 PDF of Democracy Index Score (DIS):

After passing the data through the aforementioned three goodness-of-fit tests [19],

the probability distribution that captures the characteristics of DIS the best is the “Mixed

Gaussian Probability Density Function”. A Gaussian mixture model [17] is parameterized

by two types of values, the mixture component weights and the component means and

variance/covariance. For a Gaussian mixture model with K components, the Kth compo-

nent has a mean of µk and standard deviation of σk for the univariate case. In our case

K = 2. The analytical structure is given by:

f (x) =
k

∑
i=1

φiN
(

x|µi, σ2
i

)
,

with,

N (x|µi, σi) =
1

σi
√

2π
exp

(
− (x− µi)

2

σ2
i

)
, −∞ ≤ X ≤ ∞

(1.1)

The mean and the variance is 5.554 and 4.912, respectively, with standard deviation of

2.216. Alternative analytical form of the PDF given in equation 1.1 has the following form

of PDF:
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f (x) =


φ1e
− (

x−µ1)
2

2σ2
1√

2πσ1(φ1+φ2)
+ φ2e

− (
x−µ2)

2

2σ2
2√

2πσ2(φ1+φ2)

0, otherwise

(1.2)

For our data, the approximate maximum likelihood estimates (MLE) of the parameters

(σi, µi, and φi) of 1.1 are given in the Table 1.3 below:

Table 1.3: MLEs of Mixture Distribution fitted to DIS

MLEs of DIS scores

µ̂1 µ̂2 σ̂1 σ̂2 φ̂1 φ̂2

3.107 6.877 0.974 1.437 0.351 0.649

Thus, the estimated analytical form of the subject PDF is given by-

f (x) =


0.144e−0.53(x−3.11)2

+ 0.18e−0.24(x−6.88)2
, 0 ≤ X ≤ 10

0, otherwise
(1.3)

The graph of 1.3 is given below by Figure 1.3:

Figure 1.3: PDF plot of DIS (Mixed Gaussian PDF)
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Thus, if a country was selected at random from the 167 countries, one can identify

the probability of its classification of the four categories of Democracy. By using the plots

given in Figure 1.3, one can easily identify the areas under the curve for each of the classes

of democracy defined by EIU. For example, if anyone calculates the probability of DIS

within the range of 7.64 to 10, then the corresponding probability would be the probability

of any country falling in the ‘Fully Democratic’category and so on. Furthermore, the

moment generating function of 1.3 is given by

MX(t) = 0.351e(3.11t+0.47t2) + 0.65e(6.88t+1.033t2) (1.4)

The moment generating function (MGF) is given in the equation 1.4 can be used to

calculate the moments of higher-order and consequently to calculated the mean and vari-

ance of the Mixed Gaussian PDF. Thus, if a country is selected at random from the popu-

lation of 167 countries, we will expect its DIS to be 5.554. Also, we calculate the variance,

V[X] = 4.912 and standard deviation, STDV[X] = 2.216. Note that these estimates are

close to the basic statistics given in Table 1.1, which assures the quality of the fit of Mixed

Gaussian PDF.

The Cumulative Distribution Function of the DIS is as follows:

F(x) = P(X ≤ x) =
φ1erfc

(
µ1−x√

2σ1

)
2 (φ1 + φ2)

+
φ2erfc

(
µ2−x√

2σ2

)
2 (φ1 + φ2)

(1.5)

where, θ1 and θ2 are 0.351 & 0.649 respectively.

The graph of cumulative distribution function is by following Figure 1.4 below,

8



Figure 1.4: CDF plot of Democracy Index Scores

The Figure 1.4, is very useful in the cases, for example, if anyone wants to know the

probability of any country will have a DIS less than 3.8 (i. e. P[DIS ≤ 3.8]), then from

the above figure it is shown that the probability would be 0.278 or approximately 28%

of the areas under the cumulative probability distribution curve. Also, if we are curious

about the likelihood of any country’s DIS less than or equal to 5.6, then from the Figure

1.4, one can easily estimate it and the probability is approximately 0.81 or 81% area under

the cumulative curve and so on.

Now we will proceed to find the PDF for each of the four classified categories of

Democracy in the following sections.

1.2.2 PDF of “Fully Democratic”Countries

Here we shall proceed to find the probability distribution that characterizes the prob-

abilistic behavior of only the DIS data for Full Democracy. To do this, we have imple-

mented the same steps we have used in finding the overall PDF of DIS for all democracy

9



classifications. For this purpose, we have started with the basic descriptive statistics of

Fully Democratic countries.

Table 1.4: Descriptive Statistics of DIS of Fully Democratic Countries

Descriptive Statistics of DIS of Fully Democratic Countries

Mean Median Std. Deviation Skewness Kurtosis

8.429 8.168 0.633 0.779 -0.469

From the table above, we see that this subset of the overall data is slightly right-

skewed with a value of 0.77913, and it has a mean of 8.4292. The histogram of the Full

Democratic Countries is given below Figure 1.5. From this histogram, the implication is

that we need to fit some sort of mixed probability distribution.

Figure 1.5: Fitted PDF to Histogram of Fully Democratic Countries

Using the three goodness-of-fit tests to the present data of fully democratic countries,

we have identified that the data can be characterized probabilistically by the “Mixed dis-

tribution of 2– Gaussian PDF”. The justification of this selection is confirmed by the three
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methods of goodness-of-fit that we used in Table 1.5 given below confirms that the best

pdf for the full democratic data is the Mixed Gaussian PDF.

Table 1.5: Goodness-of-Fit Summary for Fully Democratic Countries

α p - value Do Not Reject/Reject

Kolmogorov-Smirnov 0.05 0.916 Do Not Reject

Anderson-Darling 0.05 0.986 Do Not Reject

Chi-Squared 0.05 0.9462 Do Not Reject

Thus, the fitted theoretical PDF of the subject data is given by-

f (x) =
k

∑
i=1

φiN
(

x|µi, σ2
i

)
,

Here,

N
(

x|µi, σ2
i

)
=

1
σi
√

2π
exp

(
− (x− µi)

2

σ2
i

) (1.6)

The approximate MLEs of the parameters that drive the estimated Mixed Gaussian

PDF are given by Table 1.6 below:

Table 1.6: MLEs of PDF of Fully Democratic Countries

MLEs of Fully Democratic Countries

µ̂1 µ̂2 σ̂1 σ̂2

9.024 7.93 0.525 0.1704

also, ∑2
i=1 φ̂i = φ̂1 + φ̂2 = 0.53 + 0.47 = 1.00, are the weights of 2- Gaussian PDF

of the mixed distribution. Thus, the analytical structure of the estimated PDF of Fully

Democratic countries of the world is given by
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f (x) =


0.36e−1.8(x−9.02)2

+ 1.23e−17.21(x−7.93)2
, 7.6 ≤ X ≤ 10

0, otherwise
(1.7)

The graph of the PDF of 1.7 is given in Figure (1.6a) below.

(a) PDF of Fully Democratic Countries

P[X≥9]=1-P[X≤9]=0.246

7.5 8.0 8.5 9.0 9.5 10.0
x

0.2

0.4

0.6

0.8

1.0

1.2

f (x)

(b) PDF with shaded area for P(X ≥ 9)

Figure 1.6: Plotting PDF of DIS of Fully Democratic Countries of the World

The expected value and variance of the Fully Democratic data subset is 8.4482 and

0.4453, respectively. That is, if a country is selected at random from this cluster we expect

it’s DIS will be approximately 8.45. Also, the probability that a country will have a DIS of

more than 9 is 0.246 as shown in Figure (1.6b).

The CDF of the Fully Democratic countries of the world is given by-

F(x) = P(X ≤ x) =
1
4

erfc
(

µ1 − x√
2σ1

)
+

1
4

erfc
(

µ2 − x√
2σ2

)
(1.8)

The graph of F(x) in equation 1.8 is given below by Figure (1.7a):
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(a) CDF of Fully Democratic Countries
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(b) CDF with shaded area for P(8.5 ≤ X ≤ 9.5)

Figure 1.7: Plotting CDF of DIS of Fully Democratic Countries of the World

The plotting of Figure 1.7 is very useful in the case if anyone wants to estimate the

probability of any country selected at random from this subset of the population and

curious about the probability of that country will have a score more than 8.5 but less than

9.5 i.e.P(8.5 ≤ X ≤ 9.5) = 1− P(X ≤ 8.5) − [1− P(X ≤ 9.5)], then that probability is

0.312 as shown in Figure 1.7b.

1.2.3 PDF of “Flawed Democratic”Countries

We shall now proceed to find the probability distribution that characterizes the prob-

abilistic behavior of only the DIS data for Flawed Democracy. To do this, we have imple-

mented the same steps we have used in finding the overall PDF of DIS for all democracy

classifications. For this purpose, we have started with the basic descriptive statistics of

Flawed Democratic countries.

Table 1.7: Descriptive Statistics of Flawed Democratic Countries

Descriptive Statistics of Flawed Democratic Countries

Mean Median Std. Deviation Skewness Kurtosis

6.665 6.672 0.5592 0.0745 -1.0085

From Table 1.7 above, we see that this subset of the overall data has a mean 6.67.

The histogram of the subject dataset is given below Figure 1.8. From this histogram, the
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implication is that we need to fit some sort of mixed probability distribution for this data

subset as well.

Figure 1.8: Fitted PDF to Histogram of Flawed Democratic Countries

Using the three goodness-of-fit tests to the present data of Flawed democratic coun-

tries, we have identified that the data can be characterized probabilistically by the Mixed

distribution of 3– Gaussian PDF.

The justification of this selection is confirmed by the three methods of goodness-of-fit

that we used in Table 1.8 given below confirms that the best pdf for the Flawed democratic

data is Mixed of 3 - Gaussian PDF.

Table 1.8: Goodness-of-Fit Summary for Flawed Democratic Countries

α p - value Do Not Reject/Reject

Kolmogorov-Smirnov 0.05 0.996 Do Not Reject

Anderson-Darling 0.05 0.999 Do Not Reject

Chi-Squared 0.05 0.964 Do not Reject

Thus, the fitted theoretical PDF of the subject data is given by-
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Figure 4.12: Predicted vs. Actual probabilities of CLR

The objectives of this study were to identify statistically significant variables that affect

the outcome variable “Severity Level”. Also, we wanted to see statistically significant

categories of variables interacting with each other affecting the categories of response

variable if any. At the same time, we wanted to rank the main effect variables that are

contributing to the response and eventually come up with a model that is statistically

significant and robust with a high degree of prediction probability and convergence.

So, we have identified statistically significant variables that affect the Severity Level by

implementing a various methodology for model building, and we have compared them

through some statistics. It turns out that the attributable variables Race, Domain and

Mutation type are the most significant variables to predict the probability of the severity

level of hemophilia A shown in Table 4.7. Also, we have investigated the interaction

terms among the attributable variables, and it turns out that there were no interactions

among variates as per out data concerns.

In terms of finding the best model driven by our data at hand, the Cumulative Logis-

tic Regression considering the statistically significant covariates only as the independent

variables has fast convergence rate and best results based on our data. This model is pre-
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dicting the probability for each of the response category with about 87% accuracy under

the ROC as per C statistic shown in Table 4.11.

In the context of the disease, the model given in Equation 4.4, has not violated the pro-

portional odds assumption of the CLM. In brief, as per the model is given in equation 4.4,

it indicates that proteins A1, A2, A3, B, C1 of Domain mutation will affect the probability

of severity level of any individual in an increasing manner, i. e., if the doctors and scien-

tists can identify these proteins in the blood then they have to provide some treatments

that will locate these proteins and reduce their positive effects to increase patients prob-

ability of being in the Mild category (lowest category of Severity Level in Hemophilia A)

from very severe category of the disease and it has to be opposite in case of C2 protein to

improve or alleviate the severity level of any patient.

As per model in Equation 4.4, Race is affecting the probability of individuals being

in one of the three categories of response variable, and there is no real-life treatment of

to change Race of individuals we might conclude that being in the different categories

of Severity level by race categories are totally in the hands of mother nature. How-

ever, it is conclusive that the majority of patients in the severe category comes from

White Non-Hispanic rather than other categories of Race. On the other hand, the term

X4|3 = Mutation(Nonsense) has the smallest coefficient in the model mentioned above

indicates that Nonsense type mutation change in the gene of individual will have maxi-

mum effect on the response outcome and to change/alleviate the severity level of any in-

dividual, it is suggested to attack/reverse this particular type of mutation cause and con-

sequently change other types of mutations such as X4|1 = Mutation(Frameshi f t), X4|2 =

Mutation(LargeChange), X4|4 = Mutation(SmallChange) in this order as per data at hand

suggests.
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4.6 Contribution

In this study, we have conducted uni-variate and multivariate analysis for some sig-

nificant variables related to hemophilia A. During this process, we have achieved some

insights listed as follows:

1. We found a cumulative logistic model and estimated its parameters.

2. This model can be used to predict the probability of any individuals severity level

of hemophilia A with 87% accuracy.

3. Medical doctors and professionals will find useful for classifying any individual as

one of the three levels of hemophilia based on information regarding individual’s

Domain (Location of mutation change), Mutation (Type of Protein change) and Race

4. Based on proper severity level, medical doctors, physician, and other medical orga-

nizations will be able to decide proper treatment program for that individual after

having the genetic profile analyzed.
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5 A Machine Learning Classification Model for Detecting Prediabetes

5.1 Introduction

Insulin is one of the many essential hormones produced by our pancreas that works

as an accelerator to break the blood sugar and process those sugars (glucose) in such a

way so that micro-cells in our body can absorb those to produce energy and heat in the

human body. If the cells in the body do not normally respond to insulin, then this state of

sugar insulation is termed as the Prediabetes [11]. Approximately 84 million American

Adults - more than 1 out of 3 - have prediabetes. Among those with prediabetes, about

90% do not know they have this hormonal condition. If this stage goes untreated, then

there is an increased risk of developing type -2 diabetes, heart disease, and stroke as per

CDC [43]. In terms of preventing some risks involved with prediabetes condition, it is

very significant and vital to detect the prevalence of prediabetes [53]. Also, the risk of

cardiovascular disease and mortality is almost two times as high in individuals with a

condition of prediabetes [16, 42]. Early detection, diagnosis, and intervention for predia-

betes is a highly desired preventive measure that can be taken by anyone to avoid all the

complications, prevent the transition of state for individuals from prediabetes to other

type of diabetes (type - 2) and the model can be deployed to detect this condition with a

very cost-effective way [54, 29].

In recent years, artificial intelligence research has been used to quantify almost all

areas of human intervention with disease diagnosis and treatment selection. Machine

learning is one of the broad areas of artificial intelligence that uses statistical methods for

data classification and clustering. There are a handful of machine learning techniques
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have been utilized and applied in the clinical domain to predict any disease condition

and have implied higher accuracy for diagnosis rather than classical methods [60].

5.2 Methodology and Materials

5.2.1 Data Source

The National Center for Health Statistics (NCHS), Division of Health and Nutrition

Examination Surveys (DHANES), part of the Centers for Disease Control and Prevention

(CDC), has conducted a series of health and nutrition surveys since the early 1960s. The

National Health and Nutrition Examination Surveys (NHANES) were conducted peri-

odically from 1971 to 1994. In 1999, NHANES became continuous. Every year, approx-

imately 5,000 individuals of all ages are interviewed in their homes and complete the

health examination component of the survey [1].

5.2.2 Data Description

In this dataset, Risk for prediabetes is the response variable, and all other covariates

are subdivided into different variable clusters based on the attributes of those variables

such as Demographic, Diet Behavior, Weight, Height, Physical Activities, and Symptoms

as shown in Figure 5.1. The NHANES sample represents the total non-institutionalized

civilian US population residing in the 50 states and District of Columbia. As with previous

NHANES samples, a four-stage sample design was used in NHANES 2011–2014. The first

stage consisted of selecting PSUs from a frame of all US counties.

5.2.3 Risk Factors

At the beginning of variable inclusion in the machine learning algorithm, all the at-

tributes under the sub-cluster of covariates are taken into the model feed, and sequen-

tially variables are ranked in the final machine learning model according to their impor-

tance determined by the relative importance calculated using the actual model. In this
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modeling, Age, Weight, Height, Poverty Ratio, and Blood pressures, are the continuous

variables, and the rest of the attributes are categorical in variable measurements.

Figure 5.1: Schematic Diagram of Prediabetes Data

5.2.4 Machine Learning Modeling

In this study, we have used a supervised learning algorithm such as Decision Tree,

Support Vector Machine (SVM), Gradient Boosting, Random Forest, Logistic Regression,

and Neural Network. Also, for all the algorithms, all the observations was subdivided in

65% for Training Set, 25% for Validation and 10% for Testing. Then all the models were

compared according to their Average Squared Error (ASE), Captured Response Percentage

(CRP) and Areas Under (ROC). The champion model is selected with the lowest value of

ASE and the highest value of CRP and areas under ROC. In the following sections, some

machine learning algorithms are discussed very briefly.
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5.2.4.1 Decision Tree

The decision tree algorithm falls under the category of supervised learning [39]. They

can be used to solve both regression and classification problems. The decision tree uses

the tree representation to solve the problem in which each leaf node corresponds to a class

label, and attributes are represented on the internal node of the tree. We can represent any

Boolean function on discrete attributes using the decision tree. While using the decision

tree, there are some basic assumptions are made as follows:

• at the beginning, the whole training dataset is considered as the root

• featured values are preferred to be categorical

• based on attributable values records are distributed recursively

• statistical methods are used for ordering attributes as root or internal node

5.2.4.2 Support Vector Machine (SVM)

More formally, a support-vector machine [46] constructs a hyperplane or set of hy-

perplanes in a high- or infinite-dimensional space, which can be used for classification,

regression, or other tasks like outlier detection. Intuitively, a good separation is achieved

by the hyperplane that has the largest distance to the nearest training-data point of any

class (so-called functional margin), since in general the larger the margin, the lower the

generalization error of the classifier.

5.2.4.3 Gradient Boosting

Gradient boosting is a machine learning technique for regression and classification

problems, which produces a prediction model in the form of an ensemble of weak predic-

tion models, typically decision trees. It builds the model in a stage-wise fashion as other

boosting methods do, and it generalizes them by allowing optimization of an arbitrary

differentiable loss function. [21]
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5.2.4.4 Forest Model

A forest is an ensemble of decision trees [48, 21], each one able to predict its own

response to a set of input variables. The results from the individual trees are combined

to provide the final prediction. For a categorical target, the forest model’s prediction is

either the most popular class (as determined by a vote) or the average of the posterior

probabilities of the individual trees. For an interval target, the forest model’s prediction

is the average of the estimates from the individual decision trees. The forest algorithm

uses the following process to build each tree:

1. The algorithm selects a sample of cases, with replacement, from the original training

data.

2. Then, for each node, the algorithm selects a sample of input variables from all avail-

able inputs.

3. From this sample, the input that has the strongest association with the target is used

in the splitting rule for that node.

Therefore, the method of selecting the input variable for a splitting rule is different for

a forest than it is for the split-search process used to build an individual tree. Each tree is

created on a different sample of the cases, and each splitting rule is based on a different

sample of the inputs. This process ensures that the individual models in the ensemble

are more varied. The process that the forest algorithm uses to build the individual trees

and then combine the results of the predictions is a more stable model than a single tree.

Training each tree with different data reduces the correlation of the predictions of the

trees. This, in turn, is likely to improve the predictions of the forest as compared to the

naïve method of using the same data to build all the trees in a forest. The forest algorithm

also takes random samples of the inputs. Therefore, the trees in the forest use different

combinations of cases and inputs to determine the splits. This additional perturbation

leads to greater diversity in the trees and often better predictive accuracy. Each sample of

the original training data that is selected to train a specific decision tree is called bagged
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data. For each tree in the forest, the data that are withheld from training are called an out-

of-bag sample. Model assessment measures (such as misclassification rates and average

squared error) and iteration plots are constructed on both the entire training data set and

the out-of-bag sample.

5.2.4.5 Artificial Neural Network (ANN)

An artificial neural network (ANN)[27] is a network of simple elements called artifi-

cial neurons, which receive input, change their internal state (activation) according to that

input, and produce output depending on the input and activation. An artificial neuron

mimics the working of a biophysical neuron with inputs and outputs but is not a biolog-

ical neuron model. The network forms by connecting the output of certain neurons to

the input of other neurons forming a directed, weighted graph. The weights, as well as

the functions that compute the activation, can be modified by a process called learning,

which is governed by a learning rule.

5.2.5 Statistical Analyses

Ranking Variable Importance

In this study, we have taken 20 covariates into the initial consideration but considered

16 variables in total to build the machine learning model determined by the TREE SPLIT

procedure [2, 18]. It measures variable importance based on the following metrics:

• Count-based variable importance counts the number of times in the tree that a par-

ticular variable is used in a split.

• Surrogate-count-based variable importance tallies the number of times that a vari-

able is used in a surrogate splitting rule.

• RSS-based variable importance measures variable importance based on the change

of RSS when a split is found at a node.
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Figure 5.2 shows the ranking of relative importance by this process for those variables

considered initially, and Age is the most important risk factor for predicting prediabetes

found by this process.

Figure 5.2: Ranking of Important Covariates

Missing Data Imputation

Because the data was collected from the survey and missing information is inherent

characteristics for this dataset, we have used multiple imputation [45] method to impute

missing information for each of the attributable variables considered in the model build-

ing process.
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5.2.5.1 Variable Selection

In our analysis, we have considered those variables accepted by all the algorithms be-

cause each algorithm has its own selection criterion to be considered in the final analysis

[25]. After running the input selection criterion for each of the algorithms we have ended

up with selecting 16 inputs as shown in the Table 5.1.

Table 5.1: Variables Selected by all Algorithms

1 RISK DIAB BINARY TARGET
⊙

2 AGE INTERVAL INPUT

3 AVG DRI DAY INTERVAL INPUT

4 DAY ACTIVE 60M RC NOMINAL INPUT

5 EDUCATION NOMINAL INPUT

6 FAMILY SIZE NOMINAL INPUT

7 GENDER BINARY INPUT

8 GREATEST WEIGHT INTERVAL INPUT

9 HEIGHT INTERVAL INPUT

10 H DIET NOMINAL INPUT

11 MARITAL NOMINAL INPUT

12 MILK CONS NOMINAL INPUT

13 MOD WORK DAY NOMINAL INPUT

14 N FROZEN PIZZA30 INTERVAL INPUT

15 RACE NOMINAL INPUT

16 SMOKING NOMINAL INPUT

17 WEIGHT INTERVAL INPUT

18 N NOT HOME MEAL NOMINAL REJECTED Combination Criterion

19 N READY EAT30 NOMINAL REJECTED Combination Criterion

20 WALK BIC NOMINAL REJECTED Combination Criterion
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It turns out that, No. of not a home meal, No. of ready to eat meal in the last 30 days,

and Walking-biking variables are rejected by all the algorithms.

After selecting appropriate covariates for the model building, we have tried most of

the commonly known machine learning algorithms mentioned in the section ?? and at the

end of the analysis, we have compared all the models to determine the champion model

based on ASE (Average Squared Error) [57], CRP (Captured Response Percentage), and

ROC [26]. Figure 5.3 shows the complete flow chart of the analysis.

Figure 5.3: Flow chart of the Analysis

In the flow chart figure above, the whole process of data analysis and machine learn-

ing model building is postulated with respect to our analysis. In this workflow, we have
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considered six most commonly known machine learning algorithms, among those, five

are under supervised machine learning algorithms (Decision Tree, SVM, Gradient Boost,

Forrest, Logistic Regression) and one is under supervised and unsupervised machine al-

gorithm (Neural Network) both.

5.3 Proposed Champion Model

In the process of building a machine learning model, we have implemented six differ-

ent types of algorithms and compared their results with each other to determine the best

model. After considering the numerical values of ROC, ASE, Captured response per-

centage, and KS (Youden)[20]and it turns out the Random Forest model is the champion

machine learning model for classifying the prediabetes patients. In the following Table

5.2, the comparative results are shown.

Table 5.2: Model Comparison For Prediabetes Data

Algorithm Name ASE KS (Youden) ROC Area CRP Champion

Forest 0.115 0.1298 0.593 5.226 z

Neural Network 0.249 0.0000 0.500 5.074

SVM 0.192 0.0320 0.501 5.175

Logistic Regression 0.117 0.0720 0.539 5.124

Decision Tree 0.118 0.0730 0.552 5.256

Gradient Boosting 0.117 0.0903 0.545 4.819

From the above table, we see that the greatest KS (Youden) among all the models

is for Forest about 0.1298 and areas under the ROC curve is 0.593 and this model has the

smallest ASE (Average Squared Error) among all the model algorithm as per our analysis.

So, to determine the champion model, we have selected the “Forest”to be the best model

among machine learning algorithms.
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5.4 Results & Discussion

Since the Forest algorithm is the champion one as a machine learning model, we will

discuss the results of this model in detail. Forest model is the ensemble of Decision Tree,

and the options we have used to build this model such that, the number of trees used

was 50, during the Tree splitting options, the class target criterion used is the Entropy,

maximum depth of the Tree was 12, minimum leaf size used was 15, the number of bins

for the continuous variable was 100. After setting all the values in the algorithm, we

have acquired the Forest model, and as per our champion model, we have ranked the

attributable variables according to the relative importance in Figure 5.4 below.

Figure 5.4: Ranking of Important Variables in the Champion Model
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The five most important factors are Number of days moderate work, Self-reported the great-

est weight (pounds), Age of Participants, Total number of people in the Family, and Current self-

reported weight (pounds).

The next Figure 5.5 below shows the Average Squared Error for the proposed model. It

is very important to see that the ASE decreases as the model trees grow larger, but after 20

trees it becomes flat and remains flat for all the training, validation and test data partitions

through 50 trees that were the option used for the number of trees in the algorithm.

Figure 5.5: Avg. Sq. Error for Proposed model (Forest)

In the case of assessing the model through the ROC curve, it is a plot of sensitivity (the

true positive rate) against 1-specificity (the false positive rate), which are both measures

of classification based on the confusion matrix. These measures are calculated at various

cutoff values. To help identify the best cutoff to use when scoring data, the KS Cutoff

reference line is drawn at the value of 1-specificity where the greatest difference between

sensitivity and 1-specificity is observed for the VALIDATE partition. The KS Cutoff line

is drawn at the cutoff value 0.85, where the 1-specificity value is 0.574, and the sensitivity

value is 0.687. Cutoff values range from 0 to 1, inclusive, in increments of 0.05. At each

cutoff value, the predicted target classification is determined by whether the Risk of Pre-
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diabetes, which is the predicted probability of the event “2”(category - NO) for the target

Risk_diab, is greater than or equal to the cutoff value. When P_Risk_diab2 (category -

NO) is greater than or equal to the cutoff value, then the predicted classification is the

event; otherwise, it is a non-event.

Figure 5.6: ROC for Proposed model (Forest)

The confusion matrix for each cutoff value contains four cells that display the true

positives for events that are correctly classified (TP), false positives for non-events that are

classified as events (FP), false negatives for events that are classified as non-events (FN),

and true negatives for non-events that are classified as non-events (TN). True negatives in-

clude non-event classifications that specify a different non-event. Sensitivity is calculated

as TP/(TP + FN). Specificity, the true negative rate, is calculated as TN/(TN + FP),

so 1-specificity is FP/(TN + FP). The values of sensitivity and 1-specificity are plotted

at each cutoff value. A ROC curve that rapidly approaches the upper-left corner of the

graph, where the difference between sensitivity and 1-specificity is the greatest, indicates

a more accurate model. A diagonal line where sensitivity = 1-specificity indicates a ran-

dom model.

Captured response percentage is calculated by sorting each partition in descending

order by the predicted probability of the target event P_Risk_diab2, which represents the
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predicted probability of the event “2”(category - NO) for the target Risk_diab. The data

is divided into 20 quantiles (demi-deciles, with 5% of the data in each), and the number

of events in each quantile is computed. Captured response percentage is the percentage

of the total number of events that are in that quantile. With no model, it is expected that

5% of the events are in each quantile.

Figure 5.7: Captured Response Percentage for Proposed model (Forest)

At the 5% quantile (depth of 5), the VALIDATE partition has a Captured response

percentage of 5.4 (compared to the expected value of 5 for no model). The best possible

value of Captured response percentage for this partition at depth 5 is 5.8. At the 5%

quantile (depth of 5), the TRAIN partition has a Captured response percentage of 5.8

(compared to the expected value of 5 for no model). The best possible value of Captured

response percentage for this partition at depth 5 is 5.79. At the 5% quantile (depth of 5),

the TEST partition has a Captured response percentage of 5.4 (compared to the expected

value of 5 for no model). The best possible value of Captured response percentage for this

partition at depth 5 is 5.83.

As part of model validation, we have used another plot called Cumulative Lift. The

cumulative lift for a particular quantile is the ratio of the number of events across all

quantiles up to and including the current quantile to the number of events that would
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be there at random, or equivalently, the ratio of the cumulative response percentage to

the baseline response percentage. The cumulative lift at depth 10 includes the top 10

percent of the data, which is the first two quantiles, which would have 10% of the events

at random. Thus, cumulative lift measures how much more likely it is to observe an event

in the quantiles than by selecting observations at random.

Figure 5.8: Cumulative Lift for Proposed model (Forest)

The VALIDATE partition has a Cumulative Lift of 1.07 in the 10% quantile (depth of

10) meaning there are about one times more events in the first two quantiles than expected

by random (10% of the total number of events). Because this value is greater than 1, it

is better to use your model to identify responders than no model, based on the selected

partition. The TRAIN partition has a Cumulative Lift of 1.16 in the 10% quantile (depth of

10) meaning there are about one times more events in the first two quantiles than expected

by random (10% of the total number of events). Because this value is greater than 1, it is

better to use your model to identify responders than no model, based on the selected

partition. The TEST partition has a Cumulative Lift of 1.07 in the 10% quantile (depth of

10) meaning there are about one times more events in the first two quantiles than expected

by random (10% of the total number of events). Because this value is greater than 1, it is
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better to use your model to identify responders than no model, based on the selected

partition.

Cumulative lift is calculated by sorting each partition in descending order by the pre-

dicted probability of the target event P_Risk_diab2, which represents the predicted prob-

ability of the event “2”(category - NO) for the target Risk_diab. The data is divided into

20 quantiles (demi-deciles, with 5% of the data in each), and the number of events in each

quantile is computed.

In terms of model accuracy, we have plotted the accuracy plot for this model. Accu-

racy is the proportion of observations that are correctly classified as either an event or

non-event, calculated at various cutoff values. Figure 5.9 below shows the accuracy of

the proposed model. Cutoff values range from 0 to 1, inclusive, in increments of 0.05.

Figure 5.9: Accuracy Plot for Proposed model (Forest)

At each cutoff value, the predicted target classification is determined by whether

P_Risk_diab2, which is the predicted probability of the event “2”(category - No) for the

target Risk_diab, is greater than or equal to the cutoff value. When P_Risk_diab2 is

greater than or equal to the cutoff value, then the predicted classification is the event,

otherwise it is a non-event. When the predicted classification and the actual classifica-

tion are both events (true positives) or both non-events (true negatives), the observation
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is correctly classified. If the predicted classification and actual classification disagree,

then the observation is incorrectly classified. Accuracy is calculated as (true positives +

true negatives)/(total observations).

From the results of the present study, it indicates that the Forest model that we have

developed performed better than any other existing model used for classifying and pre-

dict the prevalence of Prediabetes condition among the US population. Although, ANN

could be used as the best model for this study purpose which also suggested by some

machine learning model for screening individuals for prediabetes developed by Choi et

al. [13] where six risk factors were used to build the model from the Korean population

on prediabetes, but considering 16 risk factors included in our study produced Forest is

the best machine learning algorithm. On the other hand, Meng et al. [38] did comparative

study among the performances of logistic regression, ANNs, and decision tree models for

predicting diabetes as well as prediabetes in Chine population using common risk factors.

Regarding Meng et al. study, the ANNs model was the least suggested model with the

most inferior performance in terms of accuracy. These indicate that our model is consis-

tent with their machine learning model. Also, if any clinical study or research wants to

use the model to classify the individual prediabetes state with more risk factors involved,

then our proposed model will perform the best at a higher accuracy.

Although there are some common risk factors (covariates/attributes) that were in-

cluded in our model and other machine learning models developed for prediction of pre-

diabetes condition [13, 38, 33], they have considered less number of risk factors (covari-

ates) than our model. In the case of a large number of risk factors included in the model,

the Forest model will perform relatively better.
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5.5 Contribution

In this present study, we have constructed a reasonably better classification algorithm

for prediabetes in the USA population. Also, we have achieved crucial insights that will

be very useful in terms of practical relevancy of this study.

1. In case of interested countries, they can implement a similar type of methodologies

to classify the individuals with prediabetes condition.

2. This classification algorithm can be used by government agencies, scholars, and

researchers to develop region or state-specific machine learning models.

3. The development of such a model can be deployed as a web application with a user-

friendly calculator program. This will enable the access of mass people, including

the medical scholars and professionals.

4. Early diagnosis or preventive measures with correctly identified prediabetes state

will impact the public health issue on this subject matter.

5. This type of classification technique will help to reduce the incidence of other health

issues related to prediabetes conditions such as heart disease, stroke, and obesity

among early diagnosed and undiagnosed portion of the population.
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Conclusion & Contributions

In this dissertation, we have found the probability distribution function, PDF, of the

Democracy Index Scores, DIS, that have been documented by the Economist Intelligence

Unit, EIU. Having identified the PDF of the subject data, we can characterize the proba-

bilistic behavior of different types of Democracy of different countries of the world. The

EIU collected information of 167 countries in the world and descriptively classified each

country as (1). Full Democracy, (2). Flawed Democracy, (3). Hybrid Regime, and (4).

Authoritarian Regime. Thus, we have characterized the probabilistic behavior of all the

DIS scores or the DIS for each of the four categories of Democracy around the globe and

obtain other useful information.

As a continued study of the DIS scores from EIU, we have formulated a model with a

very high R2 & this is consistent with adjusted− R2 because this eliminates the biasness

of the interaction introduced in the model due to human interactions in the subject area.

The final evaluation of the model is, during the process of developing the model, we left

30% of the observation out of the model building from each stratum that is made after the

cluster analysis by the k−means and Multinomial Logistic Regression analysis chapter. We

have used the developed model to classify those democracy index scores.

The practical usefulness of the proposed model would be, to utilize to predict Democ-

racy Index Scores of any new country included in the model with a certain degree of

assurance. A misclassification of a country in determining its democracy scores could be

detrimental to that country. Because, if WB (World Bank) decides not to give out grants to

the non-democratic country that is mistakenly classified as “Hybrid Democratic”country,

but in reality, it should be classified into the “Flawed Democratic”criterion and so on.
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In the present study, we have identified the probability distribution function, PDF, of

the Corruption Perception Index, CPI, that have been documented by the Transparency

International, TI, and WGI of WB. Having identified the PDF of overall CPI, we charac-

terized the probabilistic behavior of Corruption categories for 175 countries of the world.

The TI collected information of 175 countries, and we have classified each of the countries

into one of four different categories as (1) Least corrupted, (2) Fair Corrupted, (3) Mod-

erately Corrupted, and (4) Highly Corrupted Countries. Then, we proceeded to find the

PDF and CPDF of each of the four categories.

Furthermore, while we were studying F8 mutation on Hemophilia A, we have found

that race and inhibitor history are independent of each other. We also found that the

severity level of hemophilia A is statistically related to the races of the individuals of

the US population to some degree based on our analysis. However, we have found that

the severity level is highly dependent on the History of Inhibitors for the US population.

Also, from the local and cumulative odds ratios indicates that the Odds of Whites being in

the Mild and Severe level of the disease are significantly higher than those of the African

Americans and other race categories.

Finally, the Forest model that we have identified while studying prediabetes risk per-

formed better than any other existing model used for classifying and predicting the preva-

lence of Prediabetes condition among the US population. Also, ANN (Artificial Neural

Network) and SVM (Support Vector Machine), our second and third best models, respec-

tively. They could be used as one of the champion models for predicting prediabetes

suggested by some researchers who studied the machine learning models for screening

individuals on prediabetes condition, developed by Choi et al.[13] where six risk factors

were used to build the model from the Korean population on prediabetes. However, con-

sidering 16 risk factors included in our study determined that Forest is the best machine

learning algorithm. On the other hand, Meng et al. [38] did a comparative study among
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the performances of logistic regression, ANNs, and decision tree models for predicting

diabetes as well as prediabetes in the Chinese population using common risk factors.

Regarding Meng et al. study, the ANNs model was the least suggested model with the

weakest performance in terms of accuracy. These indicate that our model is consistent

with their machine learning model. Although there are some common risk factors (co-

variates/attributes) that were included in our model and other machine learning models

developed for prediction of prediabetes condition [13, 38, 33], they have considered few

risk factors. In the case of a finitely large number of risk factors included in the model,

the Forest model will perform relatively better.
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