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ABSTRACT 

 

The genesis of this research was the Deepwater Horizon oil spill, which discharged petroleum 

and gas into the Gulf of Mexico for 87 days in 2010.  High-resolution fluorescence spectroscopy 

was employed for the detection of petroleum in seawater samples following the oil spill. 

Fluorescence arises from the chemical structure of π-bonding in C=C bonds, especially those in 

aromatic structures.  Spectrofluorometry was also used to observe and track the formation of 

petroleum plumes in seawater undergoing controlled physical dispersion in a wave tank, both 

with and without the addition of chemical dispersant.  Further, the changing fluorescence 

characteristics of a broad range of 25 types of petroleum, with the addition of chemical 

dispersant at differing application rates, were investigated in the laboratory.  

 

Following the guidance provided in the U.S. SMART protocol, many researchers employed a 

variety of in situ fluorometers to inform their water sampling efforts in tracking the oil spill, as 

well as to gauge the effectiveness of chemical dispersant application to surface slicks. Excitation 

emission matrix spectroscopy (EEMS) was performed on discrete water samples collected and 

analyzed, both at sea and in our laboratory in the year following the DWH oil spill, in order to 

investigate the optimal excitation and emission wavelengths for the detection of petroleum.  

 

In order to further explore the performance of in situ fluorometers used following the DWH oil 

spill, EEMS analysis was performed on discrete water samples collected in a series of wave tank 
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experiments conducted at the Bedford Institute of Oceanography (BIO) in Nova Scotia, Canada.  

In situ fluorometers were mounted within the wave tank, which was then filled with filtered 

seawater from Halifax Harbor.  A randomized series of experiments using oil collected from the 

DWH oil spill, both fresh and weathered, with and without the addition of chemical dispersant, 

was conducted over a two-week period.  High-resolution EEMs of water samples collected at 

specific time points were compared with the fluorescence signals collected with in situ 

instruments, as well as with chemical analysis by GC/MS. 

 

Finally, a series of experiments was conducted to investigate the variation in fluorescence signals 

exhibited by a broad variety of oil types. EEMS analyses of 25 types of oil, both without the 

addition of chemical dispersant, and at three different dispersant to oil ratios (DORs) was 

performed using artificial seawater in baffled trypsinizing flasks on a shaker table.  Chemical 

analysis was also performed by GC/MS on oil-in-water samples, with no chemical dispersant 

added, and on samples at the highest DOR of 1:20. Parallel Factor Analysis (PARAFAC) was 

utilized in an attempt to identify components specific to petroleum, dispersant, and/or natural 

colored dissolved organic matter (CDOM) both within each experimental series and across all 

samples.  Four characteristic oil-type fluorescence peaks were identified in the EEMS analyses. 

A clear linear relationship was seen between fluorescence intensity and concentration of 2-ring 

polycyclic aromatic hydrocarbons (PAHs) in oil-water without chemical dispersant; however, the 

relationship between fluorescence intensity and PAH concentration at highest chemical DOR 

was not straightforward.  Comparison of fluorescence intensity in the four peak regions enabled 

a division into two overarching oil types related to oil viscosity. As evidenced by EEMS, higher 

viscosity Type II oils do not respond well to the addition of chemical dispersant. PARAFAC 
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analysis showed changes in the contribution of intensity from different fluorescence regions with 

increasing levels of dispersion, likely related to the action of chemical dispersant reducing oil 

droplet size, which in turn reduces reabsorption of fluorescence. 

 

Results of EEMS analysis of wave tank samples provided good agreement with the signal from 

all in situ fluorometers tested and showed that all instruments would have been able to detect oil-

type fluorescence in the field.  Differences were noted in the evolution of fluorescence peak 

location over the 90-minute course of the experimental series between oil with and without 

chemical dispersant. Highest intensity oil-type fluorescence was found at the excitation and 

emission wavelength pair known to be characteristic of naphthalene. Chemical analyses showed 

a relationship between 2-ring and 3-ring PAHs only with dispersed oil. Good correspondence 

was also seen between total benzene, toluene, ethylbenzene and xylene (BTEX) concentration 

and a ratio of fluorescence intensity at two emission wavelengths. PARAFAC analysis showed 

agreement with components found in the baffle-flask series. 

 

EEMS analyses of field samples collected in the Gulf of Mexico in the year following the DWH 

oil spill show correspondence between fluorescence intensity in the oil-type regions seen in both 

the bench-scale and mesoscale experimental series. An interesting evolution of oil-type 

fluorescence intensity over the course of the three research cruises showed the continued 

presence of petroleum at or near the surface, as well as a continued deep-water petroleum 

signature through May 2011. The interplay of fluorescence intensity at oil-type and protein-type 

fluorescence regions also appeared to show the response of oil-degrading bacteria. 
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This research has shown the presence of fluorescence peak regions characteristic of petroleum, 

which can be distinguished from protein-like and CDOM-like fluorescence naturally present in 

the marine environment. Further, fluorescence measurements can be accomplished with very 

small quantities of sample (3 mL), are relatively fast to process, do not involve complex pre-

processing, and are sensitive down to the ppb range. PAHs are known to be toxic at very low 

concentrations.  Chronic petroleum spills are ubiquitous, and with petroleum exploration in ever 

more extreme environments, future large-scale spills are unfortunately likely to occur. The 

ability to track petroleum spills, especially in deep sub-surface plumes, will facilitate rapid 

response efforts to protect vulnerable marine ecosystems, which are still little-understood or 

perhaps even remain undiscovered. 
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GENERAL INTRODUCTION 

 

FLUORESCENCE SPECTROSCOPY 

Fluorescence is one of two forms of luminescence, or the emission of light from a substance; the 

other being phosphorescence.  One of the earliest observations of natural fluorescence was made 

by Sir John Frederick William Herschel in 1845 when he observed the “beautiful celestial blue 

colour” apparent in a quinine solution exposed to sunlight.  We now understand that it is the 

aromatic ring structure present in the quinine molecule, which is responsible for the phenomenon 

he observed.  Other aromatic molecules that emit fluorescence, including fluorescein and 

rhodamine b, which give antifreeze a green or red-orange glow, the proteins — tyrosine, 

tryptophan and phenylalanine, and polycyclic aromatic hydrocarbons (Lakowicz 2006). 

 

Sir G. G. Stokes is responsible for the term “fluorescence” as his initial research involved 

exposing the mineral fluorspar to UV light and noting the resulting emission of blue light.  

Following the publication of Herschel’s observation of light emitted by the quinine solution, 

Stokes did further research with quinine sulfate solutions.  In 1852 he noted the fact that emitted 

fluorescence typically has less energy, or lower wavelength, than the excitation energy absorbed 

by a material.  This is known as Stokes Law or the Stokes Shift (Lakowicz 2006; Abramowitz 

and Davidson 2012). 
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The processes that take place between the absorption and emission of light are illustrated by the 

Jablonski diagram (Figure 1), named for Polish physicist Professor Alexander Jablonski (1898-

1980), who is considered to be the father of fluorescence spectroscopy.   

 

 

Figure 1.1.  Jablonski diagram illustrating the processes at play in luminescence (patterned after Lakowicz 2006).  

Upon excitation by incident photons, electrons in fluorophores (molecules capable of 

fluorescence) are promoted from the ground state to an excited state (S0Sn).  Return of 

electrons from higher excited states to the S1 orbital occurs in approximately 10-12 s via non-

radiative routes—rotational and/or vibrational relaxation.  In the excited singlet state, when an 

electron in the S1 orbital is paired with an electron having opposite spin in the ground state, 

return of the excited electron to the S0 orbital is allowed and takes place rapidly—on the order of 

10-8 s — occurring with energy released in the emission of a photon.  Fluorescence lifetime can 

thus be defined as the average time between the excitation and the return to ground state of a 
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fluorophore and is typically on the order of 10 ns, but can be in the sub-nanosecond range 

(Lakowicz 2006).  Formally, the fluorescence lifetime is defined as the time in which the initial 

fluorescence intensity of a fluorophore decays to 1/e (~37 %) of the initial intensity.  Quantum 

yield is the number of emitted photons with respect to the number of absorbed photons; 

therefore, fluorophores with the highest quantum yields display the brightest emissions 

(Lakowicz 2006). 

 

When an excited fluorophore collides with another molecule before release of a photon through 

fluorescence, that energy may be transferred in the collision, resulting in quenching of the 

fluorophore.  Energy may also be transferred between two fluorophores in a non-collisional 

process known as fluorescence resonance emission transfer (FRET).  This process results in 

quenching of the first fluorophore with enhanced fluorescence of the second. 

 

If, however, an excited electron undergoes spin conversion resulting in a spin, which is parallel 

to the paired electron in the ground state, intersystem crossing to the T1, or triplet state, takes 

place resulting in phosphorescence rather than fluorescence.  The transition from the T1 state to 

the ground state is “forbidden,” so transition time is comparatively slow—on the order of 10-3 to 

100 s.  Phosphorescent lifetimes are typically in the range of milliseconds to seconds, and may be 

even longer (Lakowicz 2006; Johnson and Davidson 2012). 

 

Fluorescence spectroscopy has been used for decades to investigate the properties and 

distribution of the light-reactive constituent of dissolved organic matter (DOM) in the marine 

environment (Chen and Bada 1992; Coble 1996).  Following his earlier work on absorption of 
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light by seawater, Kurt Kalle discovered in 1949 that seawater fluoresced upon irradiation with 

ultraviolet light, coining the term “Gelbstoff”—literally “yellow matter” in his native German—

to identify the material responsible for this phenomenon (Duursma 1974).  Kirk (1976) suggested 

a change to the term “gilvin” (from the Latin term meaning pale yellow), however we now 

commonly refer to this material as colored (or chromophoric) dissolved organic matter (CDOM).  

It is important to note that while all CDOM absorbs light, not all emits fluorescence.  Therefore, 

the portion of dissolved organic matter that emits fluorescence is termed FDOM. 

 

Following on this early work, two overall types of FDOM were identified by researchers:  

humic-like substances, recognized by excitation at 230-260 nm and 320-350 nm paired with 

emission at 420-450, and protein-like substances with excitation at 220 nm and 275 nm and with 

emission at 300-305 nm (characteristic of tyrosine), and emission at 340-350 nm (characteristic 

of tryptophan).  Today, spectrofluorometers are equipped with monochromators, which allow 

greater wavelength resolution, high-intensity xenon lamps that are capable of excitation energy 

at the low end of the ultraviolet range, and photomultiplier tubes or CCD detectors.  These 

improvements in fluorescence detection make high resolution characterization of FDOM 

possible.  Coble et al. (1990) introduced the use of excitation-emission matrix (EEM) 

spectroscopy for the identification of CDOM.  To record EEMs, the excitation spectra and 

emission spectra of a substance are recorded simultaneously.  The resulting three-dimensional 

map of sample fluorescence enables the detection of multiple fluorescence peaks, potentially 

characterizing multiple components.  (HORIBA Instruments Incorporated, 2013) Fluorophores 

now identifiable in natural waters include proteins, pigments, lignin phenols, humic substances 

and hydrocarbons (Coble 1996; Coble et al. 2014). 
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PETROLEUM AND FLUORESCENCE SPECTROSCOPY 

Petroleum is an assemblage of naturally-occurring complex mixtures of hundreds, if not 

thousands, of hydrocarbon compounds.  As the chemical composition of crude petroleum varies 

widely, characterization has historically required the employment of a great deal of time as well 

as complex instrumentation in gravimetric, solvent extraction, and chromatographic laboratory 

methods (Ryder 2005).  Spectroscopic techniques, however, have been used in the petroleum 

industry for over half a century in mud logging and in analysis of core samples in the field 

(Ryder 2005), as well as more recently in the characterization of crude oil for improved 

optimization in the refining process (Steffens et al. 2011).   

 

Petroleum hydrocarbons fluoresce due to the presence of a wide variety of aromatic structures — 

from simple benzene ring structures to highly complex asphaltenes.  Hydrocarbon fluorescence 

is strongly influenced by chemical composition, with heavier crude oils having broad, higher-

wavelength, and less intense emission bands, as well as shorter fluorescence lifetimes than 

lighter oils.  Fluorescence spectroscopy has great, though as yet unproven, potential for 

identification of chemical composition.  However, the chemical complexity of fluorophores and 

quenching species present in the composition of petroleum, coupled with inherent physical 

properties, such as viscosity and optical density, do present unique analytical challenges 

(Steffens et al. 2011) 

 

With pure substances (e.g., chlorophyll a), emission wavelength is independent of excitation 

wavelength.  However, the chemical complexity of petroleum results in differing emission 

profiles with variation in excitation wavelength, most likely due to the excitation of different 
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fluorophore populations.  Quantum yields and fluorescence lifetimes of petroleum are also 

highly dependent on excitation wavelength, with UV excitation giving best results (Ryder 2005).  

This is strong evidence for the need for broad spectrum EEMs analysis in order to determine 

whether deeper UV excitation would result in improved petroleum detection in the marine 

environment.  The advantages of the high selectivity and sensitivity of fluorescence 

spectroscopy, coupled with the non-destructive nature and relative ease of sample analysis, and 

the portability of the latest instruments, combine to make this method a potentially powerful 

analytical tool for the investigation of petroleum in this arena.   

 

FLUORESCENCE SPECTROSCOPY AND THE DEEPWATER HORIZON OIL SPILL 

From the initial blowout on April 20, 2010, to the capping of the wellhead on July 15, 2010, an 

estimated 4.93 million barrels of light sweet crude oil (±10 %) were released at a depth of 

approximately 1500 m (Federal Interagency Solutions Group 2010).  Additionally, an estimated 

2.1 million gallons of chemical dispersant were applied between May 15 and July 12 in an effort 

to prevent the oiling of beaches and sensitive wetlands (Mascarelli 2010; National Oceanic and 

Atmospheric Administration 2010).  Approximately 0.77 million gallons of the dispersant 

Corexit® 9500A were introduced directly via a jet placed into the petroleum flowing from the 

wellhead and another 1.4 million gallons of Corexit® 9500A and/or Corexit® 9527 were applied 

at the surface by aircraft or from small vessels (Kujawinski et al. 2011).  While dispersant to oil 

ratios (DORs) varied widely under real-world conditions, the target DOR was 1:20 (Federal 

Interagency Solutions Group 2010; Incident Specific Preparedness Review Team 2011), based 

on the successful application of dispersant in a 1966 tanker spill off the coast of Wales (Purnell 

2002), as well as work by Khelifa et al. (2009).  This was the first time in history that dispersant 
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was applied at depth, and it appears to have changed not only the physical behavior of the 

petroleum via enhancing the formation of small droplets, which remained in suspension within a 

sub-surface plume; but also the solubility of the petroleum compounds, and therefore 

detectability. 

 

In the month immediately following the blowout, scientists from universities and governmental 

agencies responded by gathering available instruments and travelling to the vicinity of the 

Deepwater Horizon (DWH) wellhead in order to determine the scope and impact of the spill, 

including researchers from the University of South Florida (USF) College of Marine Science.  

The National Atmospheric and Oceanic Administration (NOAA) deployed eight ships on various 

missions during the summer of 2010, including the R/V Brooks McCall.  Many research groups 

conducted water column profiling in the northeastern Gulf of Mexico, and observations recorded 

often included fluorescence.  However, the in situ fluorometers utilized are typically configured 

to operate within a very narrow range of excitation-emission wavelengths, largely due to the 

inherent limitations of broad-spectrum light sources.  Most of these instruments were configured 

to wavelengths appropriate either for the detection of CDOM or for detection of chlorophyll a.  

One such instrument was the WET Labs’ ECO CDOM fluorometer used on the R/V Brooks 

McCall.  Bench-top calibration of the instrument response to various concentrations of dispersed 

Mississippi Canyon (MC)252 source oil — petroleum from the wellhead — in seawater was 

conducted at Louisiana State University.  While this instrument was designed to be capable of 

detecting CDOM in the ppb range, results showed that the ECO CDOM fluorometer was capable 

of detecting petroleum only down to approximately 1 ppm (Joint Analysis Group for the 

Deepwater Horizon Oil Spill 2011).  The testing protocol also found that fluorescence quenching 
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occurred with increased DOR (Joint Analysis Group (JAG) for the Deepwater Horizon Oil Spill 

2011).   

 

Another fluorometer deployed in the Gulf of Mexico in the months following the DWH oil spill 

was targeted specifically at petroleum detection — the Chelsea AQUAtracka aromatic 

hydrocarbon fluorometer (λex 239 nm/λem 360 nm).  Camilli et al. (2010) tracked fluorescence to 

the southwest of the wellhead using this instrument, as well as Seapoint Sensors’ SUVF CDOM 

fluorometer (λex 370 nm/λem 440 nm).   These researchers found the response from the Chelsea 

instrument was more highly correlated with methane, benzene, and naphthalene levels detected 

by the TETHYS mass spectrometer than was the response from their SUVF CDOM fluorometer 

(Camilli et al. 2010), indicating that the deeper UV excitation/emission of the AQUAtracka 

instrument was better able to identify the complex sub-surface plume.  They also found an 

oxygen anomaly detected at approximately 950 m, which corresponded with the fluorescence 

response from the Chelsea instrument, but not with the response from the SUVF CDOM 

fluorometer.  This would also appear to indicate that the higher excitation/emission wavelengths 

of the SUVF instrument configuration might have liked in the region of a fluorescence shoulder 

rather than targeting the true Fmax.   

 

PARAFAC ANALYSIS 

Originally designed to model complexity in the field of psychometrics (Carroll and Chang 1970; 

Harshman 1970), parallel factor analysis (PARAFAC), also known as canonical decomposition 

(CANDECOMP), was first employed in the analysis of fluorescence data within the following 

decade (Appellof and Davidson 1981).  More recently, PARAFAC has been widely embraced by 
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chemometricians and used to tease apart the overlapping fluorescence components of complex 

chemical mixtures containing fluorescent substances ranging from proteins and pigments to 

pesticides and PAHs (Anderson and Bro 2003).  PARAFAC analysis thus enables the 

decomposition of the complex, three-way data produced in an EEM analysis into some number 

of component signals (Bro 1997).  In their application of PARAFAC analyses to PAH mixtures, 

Selli et al. (2004) found the ability to separate and identify five different factors correlated with 

five PAH compounds.  More recently, PARAFAC has been used in the analysis of the fate and 

transport of dispersed oil from the DWH oil spill (Mendoza et al. 2013; Zhou et al. 2013; D'Sa et 

al. 2016). 

 

Presented with hundreds of complex fluorescence EEM data sets containing [samples x 

excitation x emission] data, PARAFAC analysis can reduce this complexity to [samples x 

intensity at a few important wavelength pairs] (Murphy et al. 2014).  In the past, this information 

gathering was often done via time-consuming “peak-picking”, whereby EEMs were visually 

inspected for apparent Fmax location, then fluorescence intensity data at that excitation/emission 

point was copied and pasted into a spreadsheet for further analysis.  While that method is still 

widely used, PARAFAC provides the capability to turn what is a somewhat qualitative task into 

a more quantitative exercise. However, careful preparation of the data is critical in order to 

obtain a meaningful outcome.  PARAFAC analysis also allows the consideration of minor 

fluorescence peaks, which may have been missed due to overwhelm by higher-intensity major 

peaks, but these may be no less informative in the analysis of EEM results.  More importantly, 

PARAFAC analysis allows for direct comparison to chemical composition upon successful 

modelling of an EEM data set (Murphy et al. 2014).  The steps that must be undertaken for 
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successful PARAFAC analysis are: (1) importing raw data and assembling the dataset; (2) 

preprocessing to correct biases, removing scatter and normalizing the data; (3) exploring the 

dataset to remove possible outliers and developing preliminary models; (4) validating the model 

by determining the proper number of components and evaluating model fit; (5) interpreting 

results (Murphy et al. 2013). 

 

SUMMARY 

Throughout geologic history, petroleum hydrocarbons have entered the environment through 

natural seeps and erosion in a fairly limited yet chronic mode (Bartha 1986).  As these natural 

sea floor seepages are not subject to the erosive forces present in the terrestrial environment, they 

may be vast and sustained over long periods of time (Varney 2000).  However, petroleum 

hydrocarbons in the marine environment occurred at relatively minor levels until human 

activities radically increased their presence in the 20th century.  As input levels become amplified 

through anthropogenic introduction, either through the chronic, ongoing leaks that constitute the 

overall largest volume, or through attention-getting catastrophic spill events, petroleum 

hydrocarbons become marine pollutants, occupying an intermediate position in the range 

between highly biodegradable and highly recalcitrant substances (Bartha 1986).  

 

While the DWH oil spill was the first time an incident of this proportion and at this extreme 

depth has occurred, it is undoubtedly not the last.  The Gulf Coast is the largest source of 

offshore U.S. oil and gas resources, and drilling activities have continually increased over the 

past two decades.  Louisiana’s outer continental shelf, where the DWH accident occurred, is the 

most extensively developed petroleum region in the country (Thibodeaux et al. 2011).  This was 
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also the first time that chemical dispersants were utilized in large volume, applied not just at the 

surface, but injected into the pressurized multiphase jet of gas and petroleum emerging from the 

wellhead. 

 

At present, many chemodynamic processes involving petroleum and dispersants within the water 

column and in the benthos are poorly understood, and some are completely unknown 

(Thibodeaux et al. 2011).  As the U.S. moves forward with the extraction of petroleum resources 

from geologic formations in ever deeper waters, it is imperative that we better understand the 

potential behavior of hydrocarbons — both petroleum and dispersants — at the extremes of 

pressure and temperature present in that environment.  Our goal was the use of 

spectrofluorometry coupled with PARAFAC statistical analyses, to quite literally shed new light 

on these important questions in the hope that this research could also provide first responders 

with valuable information with respect to instrumentation and approaches suitable for rapid 

detection of petroleum hydrocarbons in the ocean. This is critical for facilitating quick decision-

making during to mitigate the toxicity of petroleum hydrocarbons and dispersants to sensitive 

marine ecosystems. 

 

Although a catastrophic spill event inspired my interest in this research direction, the widespread 

use of petroleum hydrocarbons in today’s world inevitably results in chronic petroleum discharge 

to the natural environment, from both accidental and intentional releases during its extraction, 

transportation, and consumption.  It is estimated that approximately 260,000 metric tons of 

petroleum enter the waters off North America each year; assuming an average specific gravity 

for petroleum of 0.88, this is equivalent to 1.9 million barrels of oil (U.S. National Resource 
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Council 2003).  Improvements in the use of spectrofluorometry will enable greater sensitivity, as 

well as faster and easier detection of petroleum in the marine environment. Therefore, this 

research has the potential to be important for the detection and remediation of chronic petroleum 

inputs as well for catastrophic events, sparing sensitive marine ecosystems from the known 

toxicity of components such as PAHs, which are listed in the Clean Water Act as section 307 

Toxic Pollutants (JiJi et al. 2000), and can be damaging from the cellular level to lethal for 

marine organisms as well as humans. 

 

While the chronological order of my investigations ranged from the largest scale to the smallest, 

the following chapters of my thesis will begin with the smallest scale and progress to the largest 

scale in order to best inform results found in the field samples.   
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SCALE LEVEL I – EVALUATING EFFECTIVENESS OF PHYSICAL AND 

CHEMICAL DISPERSION OF OIL IN SEAWATER USING THE BAFFLED FLASK 

TEST FOR SPECTROFLUOROMETRIC ANALYSIS OF 25 TYPES OF PETROLEUM 

 

INTRODUCTION 

Fluorescence spectroscopy has been used for decades to investigate the properties and 

distribution of the light-reactive constituent of DOM in the marine environment (Chen and Bada 

1992; Coble 1996).  Coble et al. (1990) first used excitation-emission matrix EEMS for the 

identification of CDOM and identified a useful new piece of information—the wavelength 

independent fluorescence maximum (Fmax).  Fluorophores now identifiable in natural waters 

include proteins, pigments, lignin phenols, humic substances, as well as hydrocarbons (Coble 

1996; Coble et al. 2014). 

 

Petroleum is an assemblage of naturally-occurring complex mixtures of hundreds, if not 

thousands, of hydrocarbon compounds.  As the chemical composition of crude petroleum varies 

widely, characterization has historically required the employment of time-consuming analyses 

utilizing complex instrumentation for gravimetric, solvent extraction, and chromatographic 

laboratory methods (Ryder 2005).  Spectroscopic techniques, however, have been used in the 

petroleum industry for over half a century in mud logging and in analysis of core samples in the 

field (Ryder 2005), as well as more recently in the characterization of crude oil for improved 

optimization in the refining process (Steffens et al. 2011).   
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Petroleum hydrocarbons fluoresce due to the presence of carbon to carbon bonds, especially 

those within aromatic structures ranging from simple benzene rings to highly complex 

polynuclear aromatic hydrocarbons (PAHs), such as asphaltenes. However, the greater the 

molecular weight of the compound, the higher the likelihood of fluorescence suppression 

(Strausz et al. 2009).  Thus fluorescence is strongly influenced by chemical composition, with 

heavier crude oils having broad, higher-wavelength, less intense emission bands than lighter oils.  

Therefore, fluorescence spectroscopy has great potential for identification of chemical 

composition, i.e., fingerprinting.  However, instrument to instrument comparisons, as well as 

relationship with other time and labor intensive petroleum detection methods (i.e., GC-FID, GC-

MS, HPLC), have been lacking.  Within the past decade, researchers at the Centre for Offshore 

Oil, Gas and Energy Research, Fisheries and Oceans Canada developed the Fluorescence 

Intensity Ratio (FIR) in an effort to enable better instrument to instrument comparison for bench-

scale fluorometers (Bugden et al. 2008).  More recently, other researchers have utilized another 

ratio of fluorescence intensity at specific wavelength pairs (FI), as well as the changes in spectral 

shape, in the detection of petroleum in the marine environment (Baszanowska and Otremba 

2017).  Our project builds on this important research and examines the relationship between 

fluorescence intensity and chemical analyses. 

 

Petroleum spills in the marine environment, especially those originating from deep-sea drilling 

operations, result in multi-phase flows leading to plumes of varying inherent densities, as well as 

slicks of varying thickness on the ocean surface.  Dispersion into and within the water column 

facilitates oil biodegradation by naturally occurring petroleum-degrading microorganisms, which 

are ubiquitous in the marine environment due to the presence of this rich source of reduced 
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carbon from natural oil seeps (Hazen et al. 2010; Das and Chandran 2011; Xu et al. 2018).  

Naturally occurring physical dispersion by wind and currents can be enhanced by the application 

of chemical dispersants, which may also serve as an initial food source by oil degrading bacteria 

(Lee et al. 2013).  Dispersants have been employed in response to more than 200 oil spills since 

first being utilized following the Torrey Canyon grounding off the coast of England and France 

(Ufford et al. 2014; Molinier et al. 2018).  Their use is intended to enhance biodegradation by 

increasing the ratio of surface area to volume in oil droplets, thus making petroleum 

hydrocarbons more available to oil-degrading microbes (Lessard and DeMarco 2000; Venosa 

and Zhu 2003). 

 

Designed for application to a surface slick, chemical dispersants were introduced directly into the 

petroleum flowing from the wellhead for the first time during the DWH blowout, with 

approximately 1.4 million gallons of Corexit® 9527 and 9500A applied to the sea surface and an 

additional 0.77 million gallons of Corexit® 9500A injected into the high-pressure oil flow at a 

depth of 1.5 km (Kujawinski et al. 2011; Reddy et al. 2011).  With the addition of chemical 

dispersant to the physical forces influencing dispersion and trajectory, the resulting micron-size 

oil droplets created a neutrally buoyant subsurface plume observed at more than 35 km in length 

and approximately 1,100 m depth (Camilli et al. 2010).  Fluorescence anomalies in surface 

waters, as well as those correlated with dissolved oxygen depressions at depths below 800 m, 

provided evidence of two distinct oiled regions (Diercks et al. 2010; Kessler et al. 2011; Smith et 

al. 2014).  In-depth reviews by the Joint Analysis Group (JAG) of data collection following the 

DWH oil spill found a connection in the subsurface plume between in situ fluorescence intensity 

and dissolved oxygen (Joint Analysis Group 2010).   
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The U.S. SMART guidance document recommends fluorometry as the “most technologically 

advantageous detection method” for monitoring dispersant application. Currently the document 

refers to in-situ fluorometers, with fixed excitation-emission wavebands (U.S. Coast Guard et al. 

2006).  Following the DWH blowout, a variety of instruments were used to track spilled oil, 

including many off-the-shelf in situ fluorometers.  Bench top scanning spectrofluorometers 

capable of producing 3D fluorescence EEMs also proved useful.  Upon review of data collected 

during the spill, uncertainties regarding instrument specifications and capabilities made it clear 

that performance testing of sensors exposed to simulated, dispersed oil plumes was necessary 

(Conmy et al. 2014a).  Correlating that information with bench-scale experiments would further 

illuminate best practices for the use of fluorometers in future spill responses.  Enhanced 

detection of dispersed petroleum within the water column will be critical to mounting a timely 

spill response for effective containment and remediation in the future.   

 

Research was planned by the Canadian Department of Fisheries and Ocean (DFO) Center for 

Offshore Oil, Gas and Energy Research (COOGER) into the differentiation between physical 

and chemical dispersion effectiveness (DE) of oil using the wave tank facilities at the Bedford 

Institute of Oceanography (BIO).  In conjunction with that research, a series of bench-scale 

dispersed oil-in-seawater experiments was conducted in the Coble Lab at the USF College of 

Marine Science on 25 oils at four dispersant to oil ratios (DORs) using Corexit® 9500A.  

Analysis of the resulting 3D fluorescence EEMs for oil-specific results, as well as differing 

effects of dispersant and DORs, were also compared to the chemistry results of oil components, 

which was carried out at COOGER.  Given recent advances with in situ fluorometers, enabling 

lower UV-wavelength detection, these findings would help to discern wavelength regions 
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influenced by dispersed oil within seawater, improve interpretation of fluorescence data, and 

inform decision-making by responders.  

 

Chemical Oil Dispersants and the Baffle Flask Test for Dispersion Effectiveness 

Dispersants were first used in the field in 1967, when 10,000 tonnes of a “detergent” 

manufactured by BP was poured onto the sea and shore following the Torrey Canyon tanker 

accident in the UK.  That first generation of dispersants, which were formulated from industrial 

degreasers, proved to have relatively high toxicity to oil degrading microbes and, therefore, led 

to development of second generation dispersants specifically designed to treat oil spills (Ufford 

et al. 2014; Vaughn 2017).  Although less toxic, these were formulated to be applied at a high 

DOR of 1:1 to 1:3; consequently, the large quantities required for effective oil spill treatment 

spurred development of third generation dispersants, which are those currently in use.  Divided 

into Type 2, which are intended to be diluted with seawater and applied by surface vessels, and 

Type 3, which are concentrated and intended for application by aircraft, these are solutions of 

surfactants (such as dioctyl sodium sulfosuccinate, or DOSS) with minimal solvents, and 

additives, which may increase biodegradability, improve dissolution into an oil slick, and/or 

increase long-term stability.  Corexit® 9527 incorporates a water matrix, while Corexit® 9500A 

employs a hydrocarbon solvent (Ufford et al. 2014).  The principal action of all dispersants is to 

reduce the oil-water interfacial tension in order to promote migration of oil droplets into the 

water column with minimal mixing energy.  The application target is to reach a concentration of 

surfactant molecules, which will form a uniform monolayer at the oil-water interface of oil 

droplets.  Recommended application rates for maximum dispersant effectiveness (DE) range 

from DOR 1:5 to 1:100 (Ufford et al. 2014). 
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Studies of DE have been carried out at a wide range of scales: in the laboratory through bench-

scale testing, in mid- to large-scale facilities such as wave tanks (among others), and in the field.  

There are inherent advantages and disadvantages to each.  Field testing would understandably 

have the highest relationship to real-world oil spills, but is expensive, complex, and carries 

obvious environmental concerns.  There is also a lack of control over environmental variables, 

which is a major drawback of wave-tank testing as well (Ufford et al. 2014).  Testing at a facility 

such as the BIO wave tank (Fig. 2.1) does allow for replication of the same physical dispersion 

provided in the real world by breaking and plunging waves, but is also not completely 

representative of open sea conditions due to phenomena such as wall effects (Nedwed and 

Coolbaugh 2008), and interfacial film formation, which can affect oil spreading (King et al. 

2013).  The advantages of bench-scale testing, primarily using agitated flasks, are the simplicity, 

relatively low cost, and short duration of test runs, which make replication possible; however, 

problems such as wall effects and formation of surfactant films (Nedwed and Coolbaugh 2008), 

as well as mixing energy not consistent with plunging/breaking waves in the open sea, call into 

question the connection with real-world results (Ufford et al. 2014). 

 

Before 1994, most laboratories determined DE using the Revised Standard EPA Test (Ufford et 

al. 2014).  Detailed in the Federal Register (40 CFR Part 300; EPA 1984), this method utilized 

130 L of seawater in a stainless steel tank to which a measured mass of oil and dispersant was 

added.  A centrifugal pump would then circulate the contents of the tank, and samples would be 

removed from the bottom of the tank after 10 minutes to 2 hours of mixing.  Following 

extraction into dichloromethane or chloroform, oil concentration was measured by 

spectrophotometry at 620 nm.  Beginning in the mid-1980s, various agitated flask test methods 
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Figure 2.1.  The wave tank facility at Bedford Institute of Oceanography.  Dimensions: 32 m long, 0.6 m wide, and 

2 m high (1.5 m water depth; 28,800 L volume).  Breaking and non-breaking waves generated by a computer-

controlled flat-type wave maker situated to provide mixing energies and achieve dispersant effectiveness observed 

in the field.  Reprinted from “Submersible Optical Sensors Exposed to Chemically Dispersed Crude Oil: Wave Tank 

Simulations for Improved Oil Spill Monitoring,” by R.N. Conmy, et al., 2014, Environmental Science & 

Technology, 48, p. 1803. Copyright 2014 by American Chemical Society.  Reprinted with permission. 

were developed in order to reduce scale and simplify the determination of DE.  These include the 

Warren Spring Laboratory (WSL), Exxon Dispersant Effectiveness Test (EXDET), and 

Environment Canada’s Swirling Flask Test (SWT).  Performed by the combination of a small 

amount of water (120-250mL), oil and dispersant in differing types of closed containers, 

followed by application of various forms of mixing energy, DE was then determined by post-test 

measurement of oil concentration in the water column by either spectrophotometry or gas 

chromatography (Clayton et al. 1993).  The SFT was adopted by the U.S. Environmental 

Protection Agency (EPA) in 1994 as the official method for evaluation of DE for the 

determination of a dispersant’s eligibility for listing on the National Oil and Hazardous 

Substances Pollution Contingency Plan (NCP) product schedule (Venosa et al. 2002).  Inclusion 

on the list was contingent on a dispersant being at least 45% effective (the fraction of the total 

mass of oil entrained as droplets within the water) in dispersing South Louisiana crude oil and/or 
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Prudhoe Bay crude oil, and was required for a dispersant’s use in the United States (Sorial et al. 

2001).   

 

However, within one year it became clear that large discrepancies existed between DE data 

submitted by dispersant manufacturers and that obtained by laboratories contracted by the EPA 

(Venosa et al. 2002).  This led to a rigorous examination of all of the variables inherent in the 

SFT, including consideration of the flask design.  Three types of flasks were tested: the modified 

Erlenmeyer flask with a side spout specified for use in the SFT, a modified Erlenmeyer flask 

with a glass stopcock added near the bottom for sample withdrawal, and a modified baffled 

trypsinizing flask with a glass stopcock added near the bottom of the flask for sample 

withdrawal.  Results showed the baffled flask was most effective in DE, with results approaching 

100 % (Sorial et al. 2004a; 2004b).  Round robin inter-laboratory testing of DE of six dispersants 

was conducted by nine laboratories on two oils (South Louisiana and Prudhoe Bay crudes), using 

a slightly modified SFT protocol, and baffled trypsinizing flasks.  Results gave better between-

lab reproducibility, as well as better within-lab repeatability, using the baffle flask test (BFT) 

than with the SFT.  It was found that, due to the design of the baffle flask, mixing energy was 

more similar to the over-and-under energy of wave action on the open sea, and sample 

withdrawal from the stopcock at the bottom of the flask prevented the remixing that occurred 

with tipping of the flask to decant the sample in the SFT (Venosa et al. 2002).   

 

More recent testing measured the DE of Corexit® 9500 on 23 crude oils, comparing results from 

bench-scale WSL, EXDET, and BFT protocols, with a pilot test performed at the Oil and 

Hazardous Materials Simulated Environmental Test Tank (OHMSETT) facility in Leonardo, 
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New Jersey. Results strengthened the case for using the BFT as the standard test for inclusion of 

dispersants on the NCP, and it is now pending adoption as the EPA’s official testing protocol 

(Holder et al. 2015). 

 

In summary, studies of bench-scale testing of dispersants differ due to the testing variables in 

each protocol, including differences in container design, dispersant application method, type of 

mixing energy, length of settling time, and sampling method.  These impact DE results, as well 

as making inter-method comparisons difficult.  In all cases, samples are collected under static 

conditions following some period of settling, which is one very important difference between 

bench-scale testing and real world DE. (Ufford et al. 2014).  Further, mixing energy differences 

between breaking/plunging waves and action within a flask have been questioned.  Attempts to 

compare bench-scale testing methods with wave tank testing have been done, with varying 

results (Trudel et al. 2005; Kaku et al. 2006; Srinivasan et al. 2007; Li et al. 2009; Holder et al. 

2015).  Of the bench-scale methods included, the BFT protocol results were best correlated with 

wave-tank testing; however, underestimation of DE, especially for heavier weight oils, was 

found (S.L. Ross Environmental Research and MAR Inc. 2011; Trudel et al. 2011; Holder et al. 

2015).  Importantly, in bench-scale testing methods, mixing energy, mixing time, and settling 

time were purposely adjusted in order to create distinction between high and lower performing 

dispersants, while wave tank test conditions were designed solely to simulate oil spills at sea 

(Trudel et al. 2011).  Finally, efforts began in the 1980s to correlate bench-scale and/or mid- to 

large-scale wave tank DE study results with real-world results (Daling and Lichtenthaler 

1986/87).  Trudel and colleagues found that results of wave-tank testing at OHMSETT reflected 

at-sea results “reasonably well” (Trudel et al. 2005).   
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The goal of this project was to provide laboratory analyses for the evaluation of oil fluorescence 

characteristics, with and without dispersant, of a wide variety of petroleum types from around 

the world in order to: 

 Identify characteristic fluorescence intensity maxima (Fmax) for each oil type; 

 Characterize changes in fluorescence shape and/or intensity due to the addition of 

dispersant at set DORs; 

 Discover the potential existence of overarching groups into which oil types could be 

categorized based on their fluorescence characteristics; 

 Compare fluorescence EEMS signatures with chemical analysis by GC-MS;  

 Create an “EEMS library” containing a wide range of oil types. 

 

MATERIALS AND METHODS 

Twenty-five oil samples from the DFO and EPA stockpiles (covering a range of oil types with 

widely varying viscosity) were received from COOGER DFO in December 2013 (Fig. 2.2).  

Following an extensive literature search, a table of oil characteristics was created (Appendix A), 

which includes the oil industry standard, API gravity.  A glassware cleaning protocol was 

followed to ensure highest analytical integrity: 125 mL amber glass bottles with PTFE-lined caps 

were acid washed followed by rinsing with fresh tap water several times.  Bottles were baked 

overnight in a muffle furnace at 450 ˚C, then cooled and recapped.  All other glassware (beakers, 

volumetric flasks, Erlenmeyer flasks, graduated cylinders, and Pasteur pipettes) were acid 

washed and rinsed with deionized water, rinsed with HPLC grade methanol and then placed 

overnight in a drying oven at 30 ˚C. 
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Figure 2.2.  Twenty-five oil samples received from COOGER DFO – December 2013. 

 

Table 2.1.  List of oil used for EEM analyses 

Light (API >31.1°) Medium (API 22.3 – 31.1°) Heavy (API <22.3°) 

Arabian Light (32.2°) Alaska North Slope (29.7°) Access Western Blend Dilbit (21.3°) 

Brent (38.2°) Alaskan North Slope    (10% 
weathered) 

Belridge Heavy (13.6°) 

Federated (39.4°) Heidrun (28.6°) Cold Lake Dilbit (21.5°) 

Gullfaks (32.7°) Lago (25.0°) Hondo (19.5°) 

Hibernia (35.6°) MESA (30.3°) IFO 40 (21.9°) 

MC252—Discoverer 
Enterprise (37.2°) 

Sea Rose (29.8°) IFO 120 (18.4°) 

MC252—generic (35.2°) Vasconia (26.3°) IFO 180 (14.1°) 

Scotian Shelf Condensate 
(53.2°) 

 IFO 300 (11.9°) 

Terra Nova (33.8°)  Santa Clara (22.1°) 

 

Artificial Seawater Protocol 

To isolate petroleum/dispersant specific fluorescence, the decision was made to use artificial 

seawater rather than natural seawater, in order to eliminate complication of the fluorescence 
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signal from any naturally-occurring CDOM.  Fresh artificial seawater was prepared by adding 

34.5 g Tropic Marin® salts (Dr. Biener GmbH, Wartenburg, Germany) to 1 L ultrapure water 

dispensed from Millipore Milli-Q unit (≤ 4 ppb DOM) into a 1.5 L glass beaker.  A magnetic 

stir-bar was added, the beaker was covered with aluminum foil and stirred on an electric stir 

plate for 20 minutes at room temperature (~24 °C).  Fresh artificial seawater was prepared in 1 L 

quantity following this protocol at the beginning of each experiment to be used for creation of 

dispersed oil in seawater and for blanks to measure fluorescence against. 

 

Dispersed Oil-in-Seawater Experiments 

Dispersed-oil-in-seawater experiments were performed by following the COOGER DFO 

protocol, “Methods for Fluorescence Analysis using the Baffled Flask Test,” (Appendix B), 

which was based on the BFT method developed by Sorial et al. (2004c) and is currently pending 

approval as the US EPA’s official DE determination method (Venosa et al. 2002).  COOGER 

DFO provided three 150 mL trypsinizing (baffled) flasks, with stopcocks placed near the bottom 

of the flasks and an Eppendorf Biomaster 4830 micropipettor with positive displacement 

Mastertips (1-20 μL) to ensure accurate pipetting of viscous oils.  Artificial seawater, MC252 oil, 

and Corexit® 9500A were employed to arrive at appropriate concentrations to be used for the 

entire experimental series on 25 oils with chemical dispersant at multiple DORs.  Planned 

concentrations were 1, 10, 100, and 1,000 ppm (by volume); however, the 1 ppm concentration 

was dropped due to the limitations of the flask and micropipettor volumes.  Based on 

spectrofluorometric analysis, the 100 ppm dispersed oil in water (10 µL oil in 100 mL water) 

concentration was determined to be the target, which would give results within a linear region of 

fluorescence. 
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Spectrofluorometric analyses were performed on a HORIBA Scientific Aqualog, while varying 

the instrument’s settings (excitation and emission increments, gain setting, and integration time) 

in order to determine optimal settings (Appendix C).  An artificial seawater blank was analyzed 

at the beginning of the preliminary experimental procedure, as well as at the beginning of each 

day for the entire research project, in order to enable subtraction of background fluorescence 

arising from the artificial seawater in each sample analysis, as well as to collect Raman peak 

data.  This would allow conversion of sample fluorescence intensity into Raman Units (RU) 

(Lawaetz and Stedmon 2009). 

 

Finally, a quinine sulfate dehydrate dilution series was created consisting of:  0.5N H2SO4 

solvent; 100 ppm 1˚ solution; 100 ppb 2˚ solution; 1, 3, 5, 10, and 20 ppb quinine sulfate 

solutions.  Absorbance was collected on the Aqualog, and results were plotted for the creation of 

a concentration curve, which would enable cross-calibration of the instrument’s built-in quinine 

sulfate tool, used to convert fluorescence intensity results into Quinine Sulfate Equivalents 

(QSE) (Velapoldi and Mielenz 1980).   

 

Laboratory EPA BFT Protocol 

Fresh artificial seawater was prepared for each step of the series by adding 34.4 g Tropic Marin® salts 

to 1 L ultrapure water, dispensed from Millipore Milli-Q unit (≤ 4 ppb DOM) into a 1.5 L glass beaker, 

adding a magnetic stir bar, covering the beaker with aluminum foil, and stirring on electric stir plate 

for 20 min at room temperature (~24 °C). 
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DORs of 0 (no dispersant added), 1:200, 1:100, and 1:20 were then created from each oil type 

immediately before analysis as detailed in Table 2.2. 

 

Table 2.2.  Preparation of sample DORs 

Step DOR oil (mL) dispersant (µL)  

1  0 0.01 0 No preparation necessary.  Pipette 10 µL oil directly from 
20 mL clear glass sample vial with Teflon-lined cap onto 
surface of 100 mL artificial seawater. 

2 1: 200 2.0 10 Pipette oil from 20 mL clear glass sample vial with Teflon-
lined cap, followed by dispersant, into an 8.6 mL amber vial, 
cover with Teflon-lined cap, shake by hand for 30 seconds.  
Pipette 10 µL oil/dispersant mixture from amber vial onto 
surface of 100 mL artificial seawater. 

3 1: 100 2.0 20 As above. 

4 1: 20 2.0 100 As above. 

 

A slightly modified version of the COOGER DFO protocol, “Methods for Fluorescence Analysis 

using the Baffled Flask Test,” was employed for sample analysis, as follows.  Three replicates of 

dispersed oil in seawater solution were prepared simultaneously. Erlenmeyer baffle flasks were 

placed into holders on a New Brunswick Innova 2100 orbital shaker (Eppendorf AG, Germany), 

with a variable speed (25-500 rpm) and orbital diameter of 0.75″ (1.9 cm). 100 mL of freshly 

prepared artificial seawater was added to each flask, then the flask opening was covered with 

Parafilm.  The film was retracted briefly to dispense 10 μL oil or dispersed oil onto the water 

surface in each flask, then replaced.  Samples were then mixed on the orbital shaker for 0.2 hr. 

(12 min.) at 200 rpm. 

 



29 

 

Immediately upon cessation of mixing, approximately 2 mL solution was drained through the 

stopcock and discarded, followed by 3.5 mL solution dispensed from each flask directly into 

each of three 4.0 mL UV-grade quartz cuvettes.  These were immediately covered with Teflon 

stoppers to prevent evasion of volatiles (Fig. 2.3).  A fourth cuvette was filled with artificial 

seawater to serve as a blank for the sample analysis series. 

 

Figure 2.3.  Trypsinizing (baffle) flasks containing dispersed oil in artificial seawater (left) and corresponding 

samples removed from each flask, ready for spectrofluorometric analysis. 

Analysis of sample #1 was immediately performed on the HORIBA Scientific Aqualog 

spectrofluorometer to collect absorbance and fluorescence intensity using the following 

parameters: 

 Excitation from 800 nm to 200 nm at 3 nm increments 

 Emission from 249.125 nm to 828.335 nm (CCD detector parked at 534.19) at 8 pixel 

increments 

 Gain set to medium 

 Initial integration time of 0.1 sec 
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If the resulting total photon count was outside the manufacturer’s recommended optimal range 

(15,000 to 65,000), integration time was adjusted and sample #1 was re-analyzed until a total 

photon count within range was obtained, with a goal of ~30,000 total photons.  Samples #2 and 

#3 were then analyzed using the optimum integration time.  Analysis of all three samples usually 

took less than 10 minutes, and in all cases was accomplished within 20 minutes. 

 

Due to variation from laboratory to laboratory, and even differences in instrument to instrument 

performance from the same manufacturer, it is necessary to convert fluorescence intensity “raw 

counts” to a standardized unit for useful reporting purposes.  Traditionally, the fluorescence 

community has utilized a dilution series of quinine sulfate dihydrate in weak acid to convert 

instrument output to Quinine Sulfate Equivalents (QSE) (Velapoldi and Mielenz 1980; Coble 

1996; Conmy et al. 2014b).  However, in recent years the alternate method of reporting in 

Raman Units (RU) has gained favor (Murphy et al. 2010).  Due to inherent properties of water 

molecules, the Raman scatter peak is a reliable feature which can be utilized by collecting a scan 

of ultra-pure water at the beginning of each day, and then using the ratio of raw counts to the 

area under the curve of the Raman peak (approximately 381 - 426 nm) to convert fluorescence to 

RU.  As the Quinine Sulfate SRM is no longer available from NIST (National Institute of 

Standards and Technology), our results are reported in RU and we offer a conversion factor to 

QSE using the highest quality quinine sulfate dehydrate readily available. 

 

Modifications to the COOGER DFO protocol, “Methods for Fluorescence Analysis using the 

Baffled Flask Test,” based on the BFT procedure (Sorial et al. 2004a) were: 
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 Mixing of dispersant and oil before dispensing into baffle flasks containing artificial sea 

water — Limitations of flask and micropipettor volumes would not allow for creation of 

DOR 1:200 by dispensing oil into the flask followed by dispensing of dispersant onto the 

oil, so the decision was made to mix dispersant with oil prior to introduction to baffle 

flasks for all DORs.  This is the method employed in the Swirling Flask Test (Fingas et 

al. 1987). 

 Analysis of samples immediately upon cessation of mixing — Settling time was 

incorporated into the BFT protocol to allow for distinction between DE results for 

dispersants being considered for inclusion on the NCP (Sorial et al. 2004a).  Since we 

were using only one dispersant already determined to have high DE (Corexit® 9500A), 

and as our goal was to characterize fluorescence of dispersed petroleum at sea, settling 

time was eliminated.  However, in order to investigate the effect of settling time, at the 

outset of the project, three additional samples of Arabian Light at DOR 1:20 were 

collected from the stopcock of flask #2 after approximately 40 min settling time.  

Spectrofluorometric analysis showed average total photon count from these three samples 

was only 0.8 % lower than the corresponding sample, which was analyzed after no 

settling time.  For the balance of the project, and for most oils at multiple DORs, two 

additional replicates were collected from one randomly selected flask after approximately 

20 minutes settling time, then analyzed on the Aqualog.  In most cases, post-settling 

results were less than 2 % lower than the corresponding original sample, and in a number 

of cases post-settling results were actually slightly higher (shown in Table 2.3). 

 Oil-in-water samples were analyzed for absorbance as well as fluorescence before as well 

as following extraction — Due to the small amount of each oil sample (~10 mL), time  
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Table 2.3.  Analysis of replicates 

Date Oil DOR 
Sample 
Name 

Integration 
time (s) 

Settling 
Time 
(m) 

Total 
Proton 
Counts 

Mean 
Total 

Proton 
Counts 
(original 
samples) 

1 StDev 
(original 
samples) 

Mean Total 
Proton 
Counts 

(replicates) 
1 StDev 

(replicates) 

Relative 
Difference 

(%) 

27-May-14 
Arabian 
Light 1:20 ArLtD1 0.1  56,000      

   D2 0.1  56,400      

   D2b 0.1 ~40  55,800      

   D2c 0.1 ~40  56,600      

   D2d 0.1 ~40  55,000      

      D3 0.1   55,600 56,000 400 55,950 719 -0.27 

24-Jun-14 Heidrun 0 HeidrunA1b 0.05  36,200      

   HeidrunA2 0.05  39,200      

   HeidrunA3 0.05  37,600      

   HeidrunA3r1 0.05 ~20  36,800      

      HeidrunA3r2 0.05 ~20  37,200 37,667 1501 37,000 283 1.60 

26-Jun-14 Hibernia 1:100 HiberniaC1b 0.05  39,600      

   HiberniaC2 0.05  40,800      

   HiberniaC3 0.05  39,000      

   HiberniaC1r1 0.05 ~10 40,400      

      HiberniaC1r2 0.05 ~10 39,400 39,800 917 39,900 707 -2.31 
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limitations, and with our goal being the characterization of fluorescence and relationship 

with chemistry, rather than dispersant efficiency, a post-extraction concentration curve of 

DE was not created.  Instead, post-extraction samples were sent to DFO COOGER for 

analysis of total petroleum hydrocarbons (TPH). 

 

Statistical analysis of results included linear regression of fluorescence and chemistry data using 

MS Excel, as well as PARAFAC analysis of fluorescence results using MATLAB (The 

MathWorks 2018) and the PLS toolbox (Eigenvector Research 2018). 

 

Chemical Analysis 

After approximately ten minutes settling time, additional samples were removed from each 

baffle flask for extraction and analysis of alkanes and PAHs.  Approximately 30 mL solution was 

withdrawn through the stopcock into a 50 mL graduated cylinder (actual volume recorded), then 

transferred into a 125 mL amber glass bottle with a Teflon-lined cap.  The graduated cylinder 

was rinsed three times with 10 mL methylene chloride.  After each rinse, the methylene chloride 

was transferred into the amber bottle containing the sample (total volume recorded).  After 

capping with a Teflon-lined cap, each bottle was shaken by hand for 30 seconds and then placed 

inside the laboratory fume hood until the end of the day, at which time all bottles were placed on 

a New Brunswick Innova 2100 orbital shaker inside a fume hood and gently stirred at 90 rpm for 

18 hrs.  Samples in amber bottles were then held in the laboratory refrigerator at 4 °C until 

overnight shipment with blue ice freezer packs to Bedford Institute of Oceanography for 

chemical analysis of petroleum hydrocarbons at COOGER DFO. 
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Dilution Series  

At the conclusion of the project, three representative oils were selected for creation and analysis 

of dilution series for analysis on the Aqualog (Alaska North Slope, IFO-120, and MC252 

Discoverer Enterprise).  Glassware was acid-washed, then rinsed with methanol and placed in a 

drying oven at 30 ºC overnight, then rinsed 3x with artificial seawater before use. 

 

Volumetric flasks were first partially filled with artificial seawater and stoppers inserted.  

Following the Experimental BFT Protocol developed for this research project, one flask of 100 

ppm dispersed oil in seawater was created to be used as primary stock (1°).  At the completion of 

stirring, approximately 2 mL was drained from the stopcock and discarded, followed by 3.5 mL 

dispensed into a 4.0 mL quartz cuvette.  This cuvette was covered with a Teflon cap, and 

immediately analyzed for absorbance and fluorescence on the Aqualog using the parameters 

previously given.  While analysis took place, 1 mL 1° solution was removed from the baffle 

flask using a glass pipette and dispensed into the partially-filled 100 mL volumetric flask to 

create the 1 ppm secondary (2°) solution.  Artificial seawater was added to the fill line using a 

Pasteur pipette, and the flask was stoppered and inverted 12x to mix thoroughly. 

 

A clean cuvette was then filled with the 2° solution and immediately analyzed in the Aqualog.  

The remaining 2° solution was then used to create 500, 100, 50, 10, and 1 ppb solutions.  

Cuvettes were protected from light until analysis in order from highest to lowest concentration 

on the Aqualog.  A maximum integration of time of 10 sec was used on the lowest 

concentrations in order to avoid questionable results due to photobleaching of fluorophores. 
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RESULTS AND DISCUSSION 

Following spectrofluorometric analysis of all 25 oil types at each of the four DORs, four 

characteristic excitation/emission (Ex/Em) peak locations were identified:  Fmax1 – Fmax4 (Fig. 

2.4).  The highest intensity peak (Fmax1) occurred, without exception, at Ex 221-239 nm/Em 335-

344 nm and was paired with a blue-shifted (towards shorter wavelengths), lower intensity peak 

(Fmax2) at Ex 215-221 nm/Em 285-308 nm in all oil samples.   

 

A third broad, low-intensity peak (Fmax3) was observed at Ex 215-305 nm/Em 418-571 nm, but 

appeared in only 68% of oil samples.  Light crude oils (Table 2.4) exhibited Fmax3 peaks at all 

DORs, with the exception of Scotian Shelf Condensate (SSC). Fluorescence in the Fmax3 region 

was identified at all DORs in only one medium weight oil (Heidrun), and was not present at any 

DOR in one medium oil (Vasconia).  Two medium-weight oils emitted measurable fluorescence 

in the Fmax3 region only with full dispersion (Lago and MESA), while Sea Rose showed 

fluorescence at DORs 1:100 and 1:20.  One medium weight oil, Alaska North Slope (both fresh 

and 10% weathered), exhibited unusual Fmax3 behavior, with measureable fluorescence at DOR 0, 

1:100, and 1:20, but not at DOR 1:200.  Finally, for the heavy weight oils, Fmax3 was almost 

completely absent at all DORs, with the exception of fluorescence at DOR 1:20 for Cold Lake 

Dilbit and IFO-40, and across all DORs for one anomalous member of this group—Access 

Western Blend Dilbit.   

 

By definition, dilbit is a mixture of bitumen—essentially an extra heavy crude oil with API 

gravity < 10.0°—and a diluent—either a light condensate or naptha (Priaro 2014).  The chemical 

composition present in each component may account for the unusual Fmax3 fluorescence observed 
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in the dilbits.  These results are somewhat similar to the Intermediate Fuel Oils (IFOs), which are 

not true crude oils, but marine fuels produced from a mixture of heavy post-refinery residuum 

and the heaviest fraction of distillates, which are added to reach a desired kinematic viscosity 

(i.e., IFO 300 = 300 mm2/s at 50 ºC)  (ICF Consulting Group 1999).  This may help to explain 

the appearance of Fmax3 fluorescence in IFO-40.  Clearly, the presence of fluorescence in the 

Fmax3 region, especially at DOR 1:20, appears to be closely tied to API gravity, and thus to 

density as well as kinematic viscosity, since API gravity = (141.5/Specific Gravity) – 131.5 

(Fingas 2011).  The absence of Fmax3 region fluorescence in heavy weight oils may be due to 

retention of energy within the large, complex hydrocarbons, which make up the highest density 

oils.  Additionally, the appearance of fluorescence in the Fmax3 region at highest DORs in the 

medium weight oils Lago, MESA, and Sea Rose would also seem to suggest that the creation of 

smaller droplet sizes with effective dispersion leads to a decrease in reabsorption of fluorescence 

within droplets.   

 

A fourth region of broad, low-intensity fluorescence (Fmax4) was identified at Ex 269-291 nm/Em 

326-353 nm and exhibited in all oils at all DORs.  Therefore, Fmax1 and Fmax4 oil-in-water 

fluorescence regions appear to be analogous to the characteristic CDOM fluorescence regions 

‘AC’ (formerly A) at Ex 260 nm/Em 400-460 nm and ‘C’ at Ex 320-365 nm/Em 420-470 nm 

(Coble et al. 2014).   

 

In addition to maximum fluorescence intensity (in RU), full width at half maximum (FWHM) 

was recorded for all peaks.  Further, fluorescence intensity at Ex/Em 281/340 nm and Ex/Em 

281/450 nm was recorded to enable calculation of the FIR for all samples. Optimum settings for 
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signal collection on the Aqualog necessitated excitation at 3 nm intervals, which accounts for the 

1 nm discrepancy from the published FIR wavelengths  (Bugden et al. 2008).  Finally, 

fluorescence intensity of each sample was recorded at wavelength settings as near as possible to 

the specified Ex/Em wavelength setting of five off-the-shelf in situ fluorometers (Conmy et al. 

2014b), which were all employed in the response to the DWH oil spill.  Selected results are 

presented in Table 2.4, along with results of chemical analyses completed by researchers at DFO 

COOGER, using their Agilent 6890N gas chromatograph with an Agilent 5975B mass 

spectrometer.  Complete fluorescence results are presented in Appendix D. 

 

Finally, EEM contour plots for all oils, which characterize each oil and illustrate the effect of 

DOR on the fluorescence properties, are presented in Appendix E.  The ability to identify oil 

source would undoubtedly be particularly useful in the prevention and abatement of oil spill 

pollution.  Efforts to determine characteristic fluorescence fingerprints have existed since the 

1970s (Frank 1975) and have received renewed attention with the advent of improved 

fluorescence detection systems (Bugden et al. 2008). 

 

Intensity of Fmax1 was consistently strong across all oil samples, with no ambiguity in peak 

location.  The observed Ex/Em range of significant fluorescence intensity was fairly narrow with 

FWHM of only 37-50 nm, and little to no change in peak location with increasing DOR.  

However, ten oil samples displayed a slight increase (approximately 4.5 nm) in FWHM with 

maximum dispersion (DOR 1:20).  This was true of six of the nine light oils (Arabian Light, 

Brent, Federated, Gullfaks, Hibernia and Terra Nova), but only one of the seven medium oils 

(MESA) and one of the nine heavy oils (IFO-120).  One medium weight oil (Lago) and one 
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Table 2.4.  25 oil types fluorescence results and chemical analyses 

Type I   Fmax
1   Alkanes 2-3 rings 4-5 rings Type II   Fmax

1   Alkanes 2-3 rings 4-5 rings 

Oils DOR (RU) FIR (µg/L) (µg/L) (µg/L) Oils DOR (RU) FIR (µg/L) (µg/L) (µg/L) 

Alaska North 
Slope 0 697.07 21.59 375 160 8 

Access 
Western 
Blend Dilbit 

0 39.58 12.24 93 19 10 

1:200 715.01 37.73       1:200 46.52 14.20       

1:100 839.60 6.87       1:100 49.84 8.97       

1:20 1171.63 0.88 3019 566 65 1:20 60.19 1.15 258 57 38 

Alaska North 
Slope (10% 
weathered) 

0 812.97 22.75 545 201 14 
Belridge 
Heavy 0 118.69 5.31 42 52 30 

1:200 831.70 21.86       1:200 161.75 5.65       

1:100 828.06 8.98       1:100 140.96 4.93       

1:20 1109.51 0.93 3312 598 74 1:20 147.09 3.51 44 84 52 

Arabian Light 
0 400.42 7.90 733 124 12 

Cold Lake 
Dilbit 0 120.61 20.72 155 94 23 

1:200 357.62 12.06       1:200 120.65 18.01       

1:100 426.82 2.68       1:100 125.85 13.11       

1:20 701.75 0.39 6004 642 103 1:20 133.15 1.94 368 210 58 

Brent 
0 646.18 7.78 1068 183 12 

Heidrun 
0 902.69 4.61 382 392 43 

1:200 660.37 6.88       1:200 909.47 6.32       

1:100 708.16 2.03       1:100 964.31 3.80       

1:20 1098.42 0.69 5954 553 59 1:20 1098.90 0.80 684 620 82 

Federated 
0 574.35 3.72 1921 238 30 

Hondo 
0 283.04 21.99 412 84 3 

1:200 607.97 2.06       1:200 312.27 18.73       

1:100 645.28 0.97       1:100 274.80 20.66       

1:20 1223.17 0.37 6501 617 87 1:20 288.01 17.01 319 74 1 

Gullfaks 
0 937.00 5.86 762 373 26 

IFO-40 
0 1173.91 33.15 1324 560 172 

1:200 934.42 5.64       1:200 1246.63 59.63       

1:100 933.08 3.30       1:100 1338.56 42.94       

1:20 1524.21 0.69 1943 749 61 1:20 1458.79 4.40 4354 1508 570 
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Table 2.4 (cont’d).  25 oil types fluorescence results and chemical analyses 

Type I   Fmax
1   Alkanes 2-3 rings 4-5 rings Type II   Fmax

1   Alkanes 2-3 rings 4-5 rings 

Oils DOR (RU) FIR (µg/L) (µg/L) (µg/L) Oils DOR (RU) FIR (µg/L) (µg/L) (µg/L) 

Hibernia 0 938.08 7.46 2289 335 24 IFO-120 0 3030.69 117.26 343 696 51 

1:200 951.49 3.22       1:200 2903.21 334.13       

1:100 978.62 1.66       1:100 3090.23 88.73       

1:20 1812.41 0.50 6095 635 59 1:20 2527.73 42.66 840 3097 122 

MC252 

(Discoverer 

Enterprise) 

0 998.50 4.97 1578 350 30 IFO-180 0 1263.05 38.88 866 645 326 

1:200 1009.18 3.07       1:200 1394.42 42.40       

1:100 1085.54 1.23       1:100 1703.55 5.76       

1:20 1998.60 0.39 3992 583 69 1:20 1532.99 12.28 2933 1986 1109 

MC252 

(generic) 
0 857.35 4.81 1468 267 21 IFO-300 0 720.55 65.84 446 295 192 

1:200 877.78 3.11       1:200 443.51 48.50       

1:100 964.02 0.97       1:100 465.91 75.70       

1:20 1795.13 0.41 5093 624 68 1:20 661.50 43.02 366 248 162 

MESA 0 757.84 20.04 1388 268 24 Lago 0 352.22 12.53 1289 146 18 

1:200 806.76 12.21       1:200 398.40 11.30       

1:100 745.17 6.33       1:100 367.75 9.10       

1:20 1107.09 1.09 4088 524 62 1:20 453.10 0.93 4221 346 52 

Sea Rose 0 1145.29 10.65 1583 320 19 Santa Clara 0 157.30 23.17 209 28 0 

1:200 1223.98 7.40       1:200 147.55 27.03       

1:100 1236.63 2.16       1:100 154.98 19.29       

1:20 1973.55 0.72 5903 721 70 1:20 169.39 7.39 1196 81 3 

Terra Nova 0 665.50 6.81 1038 186 11 Scotian Shelf 

Condensate 
0 946.52 43.40 447 127 0 

1:200 719.72 3.96       1:200 1408.59 51.61       

1:100 821.24 1.47       1:100 1487.16 49.14       

1:20 1380.34 0.40 5608 540 50 1:20 1337.98 51.42 1057 220 0 

           Vasconia 0 844.93 34.44 2550 415 59 

        1:200 828.37 53.23       

        1:100 835.62 29.32       

        1:20 935.79 3.64 4402 631 96 
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Figure 2.4.  Alaska North Slope dispersed oil in artificial seawater at DOR 1:20 with locations of Fmax1, Fmax2, Fmax3 

and Fmax4 indicated.  Note that maximum fluorescence intensity at Fmax3 is mostly obscured by masking of second 

order Rayleigh scattering. 

heavy oil (Access Western Blend Dilbit) showed the same slight increase in FWHM at both 

DORs 1:100 and 1:20.  

 

The impact of applying the Aqualog’s built-in Inner Filter Effect correction tool (IFE) to 

fluorescence intensity was also calculated for Fmax1.  This correction utilizes the measured 

absorbance of the sample to correct for fluorescence emitted by fluorophores within the sample,        

but then re-absorbed within the sample itself.  It is interesting to note that application of the IFE 

resulted in only a small magnification of the fluorescence signal at DORs 0, 1:200, and 1:100 for 

all oil samples; however, there was a clear delineation at DOR 1:20 which allowed 

categorization of oil samples into two overarching categories:  Oil Type I, with IFE effect > 2.5, 

and Oil Type II, with IFE effect < 2.5 (Table 2.4).  This appears to be due to the increase in 
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optical density, and thus absorbance, caused by interaction between Corexit® 9500A and fully 

dispersed Type I oils. Photographs of four representative pre-analysis samples, along with the 

resulting EEMs of oil type are shown in Figs. 2.5 and 2.6 to illustrate the difference in 

fluorescence between the types regardless of being a light, medium, or heavy crude oil. 

 

The SSC as well as all of the IFOs showed atypical fluorescence profiles, which were quite 

different from the other oil samples. Condensate is an ultra-light crude oil, defined as having an 

API gravity of 50 – 120 degrees (Limited 2018). Often associated with natural gas deposits, and 

sometimes referred to as “natural gasoline,” it is employed in the dilution of heavier crude oils 

before their use as refinery feedstocks.  Comprised largely of relatively short-chain alkanes (also 

known as paraffins), condensates may contain naphthenes and/or aromatics, which are 

considered impurities.  Characteristically transparent and close to odorless, our SSC sample was 

completely clear and colorless.  Based on the oil analysis by DFO COOGER, SSC had the lowest 

concentration of 3-ring PAHs (2 µg/L), with the exception of Santa Clara (1 µg/L); these two 

oils were also alone in containing no 4-5 ring compounds.  SSC was unique in that highest 

fluorescence was seen at DOR 1:100 (Fmax1 = 1487 RU), decreasing slightly at DOR 1:200 (Fmax1 

= 1409 RU), and even more at DOR 1:20 (Fmax1 = 1338 RU). 

 

The IFOs, known as “bunker” or marine fuels, also showed confounding fluorescence results.  

As previously mentioned, these are not crude oils at all, but blends of the heavy residuum 

remaining after the refining process, which advantageously removes the lighter fractions 

(kerosene, diesel, and home heating fuels).  The process can be managed to result in a specific 

viscosity by not removing the heaviest fraction of distillate (ICF Consulting Group 1999).  The 
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Figure 2.5.  Photographs of pre-analysis samples of Type I (left) and II (right) oils for DOR = 1:20. Arabian Light is 

a light oil (API gravity > 31.1°), MESA is a medium oil (API gravity 22.3 – 31.1°).  IFO 40 and Santa Clara are 

heavy oils (API gravity < 22.3°).  

initial production of IFO 380 (kinematic viscosity = 380 mm2/s at 50 ºC) is followed by addition 

of some combination of the light distillate fractions in order to produce lighter IFOs (Vermeire 

2012).  Therefore, IFOs will retain properties of both the high-molecular-weight residuum and 

whichever lighter-weight distillate fraction(s) are incorporated.  IFOs produced by different 

refineries will vary in chemical composition due to the source crude oil, as well as the different 

processing methods employed (Lunel and Davies 2001).  As both the SSC and IFOs tended to 

skew both fluorescence and chemical results, these will be eliminated from the following  
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Figure 2.6.  EEMs of Type I (left) and II (right) oils for DOR = 1:20. Arabian Light is a light oil (API gravity > 

31.1°), MESA is a medium oil (API gravity 22.3 – 31.1°).  IFO 40 and Santa Clara are heavy oils (API gravity < 

22.3°).  

discussion of the ranges observed in fluorescence peaks for the other 21 oils (see Figs. 2.7 and 

2.9). 

 

Overall, Fmax1 intensity ranged from a minimum of 39.58 RU (Access Western Blend Dilbit 

DOR 0) to 3090.23 RU (IFO 120 DOR 1:100).  Fmax1 intensity within Type I oils ranged from 

357.62 RU (Arabian Light DOR 1:200) to the overall high 1998.60 RU (MC252 Discoverer 

Enterprise DOR 1:20), while the range in Type II oils was the overall low of 39.58 RU (Access 

Western Blend Dilbit DOR 0) to a high of 1098.90 (Heidrun DOR 1:20). 
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Figure 2.7.  Fmax1 fluorescence for Light Oils (API gravity > 31°), in order of increasing density:  1. Scotian Shelf 

Condensate, 2. Federated, 3. Brent, 4. MC252—Discoverer Enterprise, 5. Hibernia, 6. MC252—generic, 7. Terra 

Nova, 8. Gullfaks, 9. Arabian Light.  Note discrepancy in Scotian Shelf Condensate fluorescence pattern (circled) 

from that of all other Light Oils.   

 

Figure 2.8.  Fmax1 fluorescence for Medium Oils (API gravity = 22.3° to 31°), in order of increasing density:           

1. MESA, 2. Alaska North Slope (ANS), 3. ANS 10% weathered, 4. Sea Rose, 5. Heidrun, 6. Vasconia, 7. Lago. 
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Figure 2.9.  Fmax1 fluorescence for Heavy Oils (API gravity < 22.3°), in order of increasing density:  1. Santa Clara, 

2. IFO 40, 3. Cold Lake Dilbit, 4. Access Western Blend Dilbit, 5. Hondo, 6. IFO 120, 7. IFO 180, 8. Belridge 

Heavy, 9. IFO 300.  Note discrepancy in all Intermediate Fuel Oils (circled) from that of all other Heavy Oils. 

Shouldn’t the title be Intermediate and Heavy Fuel Oils? 

While the excitation wavelength of maximum intensity for Fmax2 remained relatively consistent, 

the emission wavelength varied within, as well as among, oil samples.  The occurrence of double 

and triple peaks, as well as minor sub-peaks, within the Fmax2 region was fairly common. It was 

sometimes difficult to distinguish the Fmax2 peak from the shoulder of a very strong Fmax1 peak, 

especially at higher DORs. For this reason, determination of the true FWHM was sometimes 

problematic.  For Fmax2 intensity, Type I oils ranged from 63.95 RU (Brent DOR 1:200) to 

437.32 RU (MC252 Discoverer Enterprise DOR 1:20), and Type II oils ranged from 25.07 RU 

(Belridge Heavy DOR 0) to 164.07 RU (Heidrun DOR 1:20). 

 

For the oils which did display an Fmax3 peak, it was most apparent at the highest DOR (1:20), and 

some oils exhibited a strong Fmax3 peak across all DORs (e.g., Brent, Federated).  However, in 
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those oils the Fmax3 peak at DOR 1:20 was significantly blue shifted from the Fmax3 location 

observed at lower DORs.  FWHM of the Fmax3 peak was much greater than that of any other peak 

(145-283 nm), with the exception of the three lower DORs of Access Western Blend Dilbit (52-

56 nm).  Identification of highest Fmax3 intensity proved somewhat problematic as it tended to 

reside in the second order Rayleigh region, a band of high intensity light resulting from 

scattering by water molecules.  The edge of highest intensity might also lie in this region, so 

determination of the true FWHM was also problematic for many oil types.  Traditionally, second 

order Rayleigh is eliminated by simply masking this region (10-12 nm).  Although algorithms 

have been developed to model the character of fluorescence peaks lying within (Zepp et al. 2004; 

Bahram et al. 2006), assumptions about the linearity of fluorescence must be made in order to do 

so, and the true signal behavior cannot be known.  For this reason, as our goal was to identify 

signals which could also be detected by in situ instruments, the decision was made to identify the 

maximum fluorescence intensity lying outside of the second order Rayleigh region rather than to 

attempt interpolation of the data.   

 

As previously mentioned, Fmax3 intensity was not always present, and it was observed far more 

often in Type I oils with a range of 2.64 RU (Arabian Light DOR 1:200) to 744.69 (MC252 

Discoverer Enterprise DOR 1:20).  Only four of the Type II oils exhibited Fmax3 peaks and these 

ranged from 2.45 RU (Access Western Blend Dilbit DOR 0) to 174.93 RU (Heidrun DOR 1:20). 

 

As with Fmax2, the Fmax4 region sometimes contained double peaks.  Interesting spectral shapes 

for this region were also observed, especially in higher-density oils such as Access Western 

Blend Dilbit, Belridge Heavy, and Cold Lake Dilbit.  FWHM ranged from 27 nm to 73 nm, for 
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all oils save one.  The exception was Access Western Blend Dilbit, with FWHM of 77-110 nm.  

Intensity at Fmax4 ranged from 33.53 RU (Arabian Light DOR 1:200) to 231.86 RU (MC252 

Discoverer Enterprise DOR 1:20) in Type I oils and from 4.93 RU (Access Western Blend Dilbit 

DOR 0) to 116.97 RU (Heidrun DOR 1:20) in Type II oils. 

 

Results of the concentration dilution series showed that the Aqualog was consistently capable of 

detecting dispersed oil in artificial seawater in the three oils tested (Alaska North Slope, IFO-

120, and MC252 Discoverer Enterprise) at all four DORs, down to at least 50 ppb.  However, 

detecting dispersed oil below 100 ppb necessitated increasing the integration time to 10 sec/scan 

in order to collect sufficient total proton counts, which resulted in a total analysis time of 

approximately 30 minutes for each sample.  Since the Aqualog scans from high to low 

wavelengths, and much of the fluorescence signal from petroleum resides in the low UV 

wavelength range, photobleaching of the sample as well as temperature effects certainly may 

have impacted these results. 

 

Fluorescence as a Function of Chemistry  

Samples of dispersed oil in artificial seawater (DOR 0 and DOR 1:20 for each oil type), 

extracted into methylene chloride were analyzed via GC-MS at DFO COOGER.  Total alkanes, 

2-ring, 3-ring, and 4-ring PAHs (see Table 2.5 for list of hydrocarbons in each class) were each 

plotted against Fmax1, Fmax2, Fmax3, and Fmax4.  For all samples without chemical dispersion 

(DOR0), the strongest relationship appeared to be between fluorescence at Fmax3 and total 2-ring 

PAHs (Fig.2.10) (R2 = 0.87, p = 0.04).  However, stronger statistical significance was present in 

the relationship between fluorescence intensity at Fmax4 and 2-ring PAHs (Fig. 2.10, bottom) (R2  
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Table 2.5.  Individual hydrocarbon compounds reported as total alkanes, total 2-ring, 3-ring and 4-ring PAHs 

Total Alkanes: Total 2-ring PAHs: Total 3-ring PAHs Total 4-ring PAHs: 

n-decane naphthalene phenanthrene pyrene 

undecane methylnaphthalene anthracene methylpyrene 

dodecane dimethylnaphthalene methylphenanthrene dimethylpyrene 

tridecane trimethylnaphthalene dimethylphenanthrene trimethylpyrene 

tetradecane tetramethylnaphthalene trimethylphenanthrene tetramethylpyrene 

pentadecane acenaphthene tetramethylphenanthrene naphthobenzothiophene 

hexadecane acenaphthylene fluoranthene methylnaphthobenzothiophene 

heptadecane fluorene  dimethylNBenzothiophene 

2,6,10,14-TMPdecane 
(pristane) methylfluorene 

 
trimethylNbenzothiophene 

octadecane dimethylfluorene  tetramethylNbenzothiophene 

2,6,10,14-TMHdecane 
(phytane) trimethylfluorene 

 
benz[a]anthracene 

nonadecane dibenzothiophene  chrysene 

eicosane methyldibenzothiophene  methylchrysene 

heneicosane dimethyldibenzothiophene  dimethylchrysene 

docosane trimethyldibenzothiophene  trimethylchrysene 

tricosane tetramethyldibenzothiophene  tetramethylchrysene 

tetracosane   benzo[b]fluoranthene 

pentacosane   benzo[k]fluoranthene 

hexacosane   benzo[e]pyrene 

heptacosane   perylene 

octacosane    

n-nonacosane    

tricontane    

n-heneicontane    

dotriacontane    

tritriacontane    

tetratriacontane    

n-pentatriacontane    

17α(H), 21β (H)-hopane    

17β(H), 21α(H)-hopane    
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= 0.85, p < 0.001) and in the relationship between fluorescence intensity at Fmax1 and 2-ring 

PAHs (Fig. 2.11, top) (R2 = 0.82, p < 0.001).  It is important to note; however, that only 12 of the 

25 oil types exhibited any fluorescence in the Fmax3 region at DOR 0 (Access Western Blend 

Dilbit, Alaska North Slope--both fresh and 10% weathered, Arabian Light, Brent, Federated, 

Gulfaks, Heidrun, Hibernia, MC252--both Discoverer Enterprise and generic, and Terra Nova).  

These relationships support the fact that larger, more complex PAHs fluoresce at longer emission 

wavelengths.   

 

For all oils with chemical dispersion at DOR 1:20, logarithmic rather than linear regressions best 

modeled all relationships; overall, these were much weaker than those found at DOR 0, though. 

Linear regression appeared to show the strongest functional relationship between 2-ring PAHs 

and fluorescence at Fmax3 (Fig. 2.12, top); however, it was not statistically significant (R2 = 0.74, 

p = 0.83).  A moderate relationship was also noted between 4-ring PAHs and fluorescence at 

Fmax3 (Fig. 2.12, bottom), athough this proved not to be statistically significant as well (R2 = 0.73, 

p = 0.93).  Regressions between 2-ring PAHs and fluorescence intensity at Fmax1 (Fig. 2.13, top) 

(R2 = 0.54, p = < 0.001), and between 2-ring PAHs and Fmax4 fluorescence (Fig. 2.12, bottom) 

(R2 = 0.53, p < 0.001) indicated that oil did not explain as large a percentage of the variability in 

fluorescence as the previous regressions; however, these two relationships are statistically 

significant.  Interestingly, these are the two relationships that most closely related in the DOR0 

water samples, as well.  Clearly, the relationship between fluorescence results and chemical 

analyses is complex and deserves further study.  It is likely that the effect of chemical dispersant 

on petroleum plays a complex role in fluorophore emissions, which might well be specific to 

each individual oil type. 



50 

 

 

 

Figure 2.10. For all oil types at DOR 0, total concentration of 2-ring, 3-ring, and 4-ring PAHs (µg/L) against 

fluorescence intensity (RU) at Fmax3 (top), and against Fmax4 (bottom).  
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Figure 2.11. For all oil types at DOR 0, total concentration of 2-ring, 3-ring, and 4-ring PAHs (µg/L) against 

fluorescence intensity (RU) at Fmax1 (top), and against Fmax2 (bottom).  
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Figure 2.12. For all oil types at DOR 1:20, total concentration of 2-ring, 3-ring, and 4-ring PAHs (µg/L) against 

fluorescence intensity (RU) at Fmax3 (top), and against Fmax4 (bottom). 
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Figure 2.13. For all oil types at DOR 1:20, total concentration of 2-ring, 3-ring, and 4-ring PAHs (µg/L) against 

fluorescence intensity (RU) at Fmax1 (top), and against Fmax2 (bottom). 
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The effect of full dispersion (DOR 1:20) on dissolved hydrocarbons can also be investigated by 

taking the ratio of total alkanes + PAHs at DOR 1:20 to total alkanes + PAHs at DOR 0—the 

Chemical Dispersibility Ratio (CDR).  These ranged from a low of 0.8 for two heavy oils—

Hondo and IFO 300—up to a maximum of 7.8 for Arabian Light.  Although heavy oils tended 

to have lower CDRs and light oils tended to have higher ratios, oil density was not correlated 

with chemical dispersion.  For example, the heavy oil Santa Clara (API Gravity 22.1°) had the 

third highest CDR (5.4), while SSC, by far the lightest oil (API Gravity 46.6°), had a CDR of 

only 2.2.  The effect of dispersion on fluorescence intensity can be similarly investigated by 

taking the ratio of Fmax1 fluorescence intensity at DOR 1:20 to that at DOR 0, resulting in the 

Fluorescence Dispersibility Ratio (FDR).  This also shows a general increasing trend with 

increasing API Gravity, with a statistically significant moderate linear relationship (R2 = 0.55, 

p = < 0.001) (Fig. 2.14). 

 

All four IFOs (IFO-40, IFO-120, IFO-180, and IFO-300), as well as SSC, showed fluorescence 

and chemistry anomalies that tended to skew overall results.  With respect to SSC, all other 

light oils (API Gravity < 22.3°) exhibited increasing fluorescence intensity with increasing 

DOR, culminating in a marked increase at DOR 1:20; however, SSC actually showed a 

significant decrease in fluorescence intensity at DOR 1:20, dropping to below the level 

exhibited at DOR 1:200.  It is particularly unusual that fluorescence intensity at the highest 

DOR is lower than that at DORs 1:200 and 1:100.  Additionally, SSC was the only light oil 

which exhibited no Fmax3 fluorescence at any DOR.  Chemically, SSC was also unusual, 

containing a very high proportion of 2-ring to 3-ring PAHs—52.2 for DOR 0 and 58.6 for 

DOR 1:20.  With the exception of Santa Clara, with a 2-ring to 3-ring ratio of 31.9 at DOR 0,  
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Figure 2.14. Fluorescence Dispersibility Ratio (FDR) vs. decreasing oil density shows a moderate relationship 

between fluorescence and oil density.  With the removal of the data point for SSC, linear regression improves the 

relationship between fluorescence and oil density (R2 = 0.71). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.15. Chemical Dispersibility Ratio (CDR), ordered from low to high, with corresponding Fluorescence 

Dispersibility Ratio (FDR).  
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all other oil types had a ratio of 10 or less at both DOR 0 and DOR 1:20. SSC also contained 

no 4-ring or 5-ring PAHs, unlike all other oils with the exception of DOR 0 Santa Clara.  All 

four of the IFOs fell into the heavy oil group (API Gravity > 31°), in which all other oils 

showed little to no increase in fluorescence intensity with increasing DOR, as well as 

maximum Fmax1 intensity of just 60-288 RU.  The IFOs, however, showed far greater Fmax1 

intensity across the board (721-3031 RU) along with clear separation with increasing DOR.  

Like SSC, IFO-120, IFO-180, and IFO-300 also exhibited a drop in Fmax1 intensity at DOR 

1:20; in fact, IFO-120 Fmax1 at DOR 1:20 was actually 17 % lower than at DOR 0. These same 

three IFOs also had the highest overall concentration of PAHs, and all four IFOs were the only 

oils to contain any anthracene. For all oil types, total alkanes as a function of fluorescence 

intensity was found to be only loosely related, as total concentration increased overall in 

relation to fluorescence intensity.  This is as expected since fluorescence arises from the π-

electron cloud present in aromatic compounds rather than from the carbon to carbon bonds 

present in straight chain compounds. 

 

PARAFAC Analysis 

The fluorescence profiles of the 25 oils in the BFT analysis are related to the underlying 

complexity of the chemical compounds that comprise them.  In an attempt to identify those 

connections, PARAFAC analysis was performed on the fluorescence data.  The PLS Toolbox 

(Eigenvector Research 2018) was used within MATLAB (The MathWorks 2018) to 

accomplish this task.  After importing raw data and assembling datasets, three constraints were 

applied to all samples: normalization, EEM filtering, and non-negativity.  Normalization was 

done to compensate for the wide variation in fluorescence intensity across oil types (e.g., Fmax1 
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= 39.6 RU for Access Western Blend Dilbit to Fmax1 = 3090.2 RU for IFO-120) in order to 

prevent samples with high fluorescence intensity values from skewing the model.  Further, 

normalization of maximum intensity to 1 (inf-Norm) was chosen rather than normalization of 

the entire area of fluorescence (1-Norm) to preserve differences in spectral shape.  EEM 

filtering was applied in order to remove artifacts of the fluorescence analysis process known as 

first and second order Rayleigh scatter.  This was accomplished by interpolating data across 

those regions (12 nm for first order Rayleigh and 24 nm for second order Rayleigh); zero 

values were also assigned to sub-Rayleigh wavelengths since fluorescence emission takes place 

at wavelengths above excitation due to Stokes shift.  Raman scatter, the other light-related 

artifact which must be removed before PARAFAC analysis can be performed, was 

accomplished as sample analysis was done by subtracting a sample blank of artificial seawater 

from each sample.  Finally, after running several PARAFAC test models using 4, 5, 6 and 7-

components on a dataset containing the DOR 0 sample from flask #1 of all 25 oil types, data 

between excitation at 200 nm and 212 nm was excluded.  The inherent “noise” typically found 

at excitation < 240 nm, related to the low intensity of xenon lamps in that region, led to this 

decision.  Excluding data at excitation and emission wavelengths above 680 nm was also 

employed in order to improve processing results since no fluorescence information of value 

was contained in that region. 

 

The biggest challenge in PARAFAC modelling is in determining the most appropriate number 

of component factors.  While it is important to ensure separation of all individual factors, it is 

also critical not to select too many components in order to avoid over-fitting the data.  Bro (1997) 

suggests several ways of doing this in his PARAFAC tutorial: comparison of the resulting factor 
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profiles with background knowledge of expected components, consideration of the residuals, and 

split half validation of the model. The latter has also been recommended by other researchers 

(Harshman and Lundy 1994; Murphy et al. 2013).  Split half analysis is accomplished by 

randomly dividing the data into two independent subsets and applying the model to each of the 

subsets.  In theory, if the correct number of components has been selected, the two halves of the 

data should each fit the model well; however, Murphy cautions that a relatively large data set is 

necessary in order for this to hold true (2013). Smilde et al. (2004) also caution that some 

phenomena observed in a data subset which do not match the overall model may just happen to 

be present in that particular random half of the data.  Thus, we might anticipate that split half 

validation will work better with samples within oil weight subdivisions, than with the dataset 

containing all 25 oils as a whole.   

 

Bro and Kiers (2003) have also advised using core consistency of the model to validate that the 

correct number of components has been selected.  All of these methods were employed for the 

following analyses by first noting the percentage of data fit by the model, next checking the core 

consistency of the model, then inspecting residuals, inspecting the loadings for Mode 3 

(excitation) and Mode 2 (emission), and inspecting EEMs of each component. Finally, split half 

analysis was performed.  In all cases, several models were run with different numbers of 

components to ensure selection of the most appropriate model. 

 

  



59 

 

All 25 Oil Types 

DOR 0 

Initially, a five-component model was fit to the dataset, followed by 4-, 6-, and 7-component 

models.  Best overall fit was obtained with the six-component model, which explained 99.5% of 

the data.  Core consistency was 52%, and split half validation was 56.4% (Fig. 2.16).  Review of 

residuals showed they were minimal with random distribution, and inspection of plots of Mode 2 

and Mode 3 loadings (Fig. 2.17), shows that, although components are tightly spaced, all appear 

as separate and distinct peaks.  Variation per component (Fig. 2.18), as well as EEMs of 

individual components (Fig. 2.19), also supported choice of the 6-factor model for best fit.  Fig. 

2.18 shows that Component 1 accounted for >20% to 40% (unique fit and fit) of the data, while 

Component 2 contributed 5-10% (unique fit and fit) and Components 3-6 accounted for 5% or 

less of the data, respectively.  While Component 6 accounted for a very low percentage of the 

data, the 6-component model was still a better fit to the data than the 5-component model. 

 

DOR 1:100 

A six-component model was initially fit to the dataset containing all 25 oil types at DOR 1:00 as 

that was the best fit for the DOR 0 dataset.  However, for the DOR 1:100 dataset, the 5-

component model proved to be the best fit, explaining 99.4 % of the data with core consistency 

of 72 % and split half validation of 75.8 %.  Residuals were minimal and randomly distributed, 

and visual inspection of loadings (Fig. 2.20) again shows that components are tightly spaced, but 

all appear as separate and distinct peaks.  Variation per component (Fig. 2.21) and component 

EEMs (Fig. 2.22) led to acceptance of the 5-component model.  Fig. 2.21 shows Component 1 
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Figure 2.16.  Example of split half validation for the 6-component model of 25 oil types at DOR 0 showing 

individual fit of data splits.  Set 1 data vs. the model is shown for Mode 2 and Mode 3 on the left; and Set 2 data vs. 

the model is presented for Mode 2 and Mode 3 on the right.   

Figure 2.17.  Mode 3 Loadings (Excitation) and Mode 2 Loadings (Emission) for all 25 oil types—DOR0 using 6-

component model.  Note difference in x-axis scales.   

 

 

 

 

 

Figure 2.18.  Variation per component for 

6-component model of all 25 oil types at 

DOR0. 

 

Mode 3 Mode 3 
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Figure 2.19.  EEM views of the six components of the PARAFAC model for 25 oil types at DOR 0.  Component 

#1:  Fmax = Ex 224nm/Em 335nm; Component #2:  Fmax = Ex 230nm/Em 340nm; Component #3: Fmax = Ex 

239nm/Em 363nm; Component #4: Fmax = Ex 218nm/Em 290 nm; Component #5: Fmax = Ex 221nm/Em 322nm; 

Component #6: Fmax = Ex 260nm/Em 474-511nm. 

accounted for >35% to almost 50% (unique fit and fit) of the data, while Components 2-5 

accounted for 5% or less of the data, respectively. 
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Figure 2.20.  Mode 3 Loadings (Excitation) and Mode 2 Loadings (Emission) for all 25 oil types—DOR 1:100 

using 5-component model.  Note difference in x-axis scales.   

 

 

 

 

 

 

 

 

Figure 2.21.  Variation per component for the 

5-component model of all25 oil types at DOR 

1:100. 

 

 

DOR 1:20 

A six-component was initially fit to the dataset containing all 25 oil types at DOR 1:20; however, 

an error message warning that two or more components may be fitting the same data was 

displayed, and the core consistency was <0 %.  Fitting a 5-component model to the data, 

however, resulted in 98.9 % of the data explained by the model as well as core consistency of 84 

% and a split half validation of 84 %.  Overall, residuals were minimal and randomly distributed; 

however, residuals appeared to occur at somewhat higher wavelengths than at other DORs.  
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Figure 2.22.  EEM views of the five components of the PARAFAC model for 25 oil types at DOR 1:100.  

Component #1:  Fmax = Ex 224nm/Em 335nm; Component #2:  Fmax = Ex 254-266nm/Em 455-501nm; Component 

#3: Fmax = Ex 230nm/Em 344nm; Component #4: Fmax = Ex 242nm/Em 363 nm; Component #5: Fmax = Ex 

218nm/Em 290nm. 

Visual inspection of loadings (Fig. 2.23), and variation per component (Fig. 2.24) led to final 

acceptance of the 5-component model.  Note that the effect of full dispersion appears to broaden 

and shift emission peaks to longer wavelengths (Fig. 2.25).  Analysis of variation per component 

(Fig. 2.24) shows Component 1 accounted for 25 to 30 % of the data (unique fit and fit) while 
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Component 2 has increased to >10 % to 25 % (unique fit and fit) of the data.  Contribution from 

Component 3 and 4 have increased, as well.   

Figure 2.23.  Mode 3 Loadings (Excitation) and Mode 2 Loadings (Emission) for all 25 oil types—DOR 1:20 using 

5-component model.  Note difference in x-axis scales.   

 

 

 

 

 

Figure 2.24.  Variation per component for the 5-

component model of all 25 oil types at DOR 

1:20. 

 

 

Summary of PARAFAC Modelling 

PARAFAC analysis of EEM datasets for the 25 oil types at DOR 0, DOR 1:100, and DOR 1:20 

show interesting changes in fluorescence intensity with increasing dispersion. However, we see a 

decrease in distinct components from six at DOR 0 to five at DOR 1:100 and 1:20. Three 

components at DOR 0 and DOR 1:100 match peak positions identified in previous studies of 

natural waters (AT, AM and AC) (Coble et al. 2014); however, that is true of only one component 
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Figure 2.25.  EEM views of the five components of the PARAFAC model for 25 oil types at DOR 1:20.  

Component #1:  Fmax = Ex 224nm/Em 335nm; Component #2:  Fmax = Ex 233-266nm/Em 432-450nm; Component 

#3: Fmax = Ex 230-242nm/Em 501-520nm; Component #4: Fmax = Ex 233nm/Em 349nm; Component #5: Fmax = Ex 

218nm/Em 290nm. 

at DOR 1:20 (AT).  The relative contribution from each of these components changes with 

dispersion as well.  The AC-like component contributes least to the model at DOR 0, and 

increases in importance to second in the model for DOR 1:100, while the contribution from the 

AT-like component drops from second at DOR 0 to third at DOR 1:100 and the contribution from 

the AM-like peak drops from third to fourth.  
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From analysis of plots of Mode 3 (Excitation) and Mode 2 (Emission) Loadings, it appears that 

increased dispersion results in a broadening and shift to longer emission wavelengths as well as 

in a larger contribution of fluorescence intensity at longer wavelengths.  Upon examination of 

the EEMs of each component, several other patterns emerge.  Even with the minimal dispersion 

at DOR 1:100, contribution to the overall model from a broad fluorescence peak, which provided 

the least contribution to the overall model at DOR 0 — Component #6, became second in 

importance at DOR 1:100, albeit with a contribution to the model of only about 5 %.  Upon full 

dispersion at DOR 1:20, this broad, high-wavelength peak retained importance to the model of 

approximately 5-7 %; however, another broad, but slightly lower wavelength peak appeared as 

Component #2 with 12-25 % contribution to the overall model.  Throughout the entire analysis, 

Component #1 at Ex 224 nm/Em 335 nm remained the most important contribution to the model, 

which confirms this fluorescence region as the best target for detecting oil in the marine 

environment.  However, since the region represented by Component #2 in the DOR 1:20 dataset 

becomes a major contribution to the model only upon effective dispersion, the FIR ratio (Bugden 

et al., 2008) can be used to track this important parameter.  

 

The MC252 oil samples used for these analyses, both that either were collected onboard the 

Discoverer Enterprise or the generic version provided by BP, are classified as light, sweet crude 

based on density and sulfur content.  Overall, oil types range from light to heavy due to the 

proportion of n-alkanes (paraffins) and cyclo-alkanes (napthenes) vs. aromatic hydrocarbon 

compounds, while sulfur content determines the rank of sweet (<1 %) vs. sour (>1 %).  These 

characteristics arise from kerogen source and reservoir maturity (Tissot and Welte 1978).  The 

25 oils analyzed in this project cover a wide range of light to heavy oil types, as well as a range 
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of sulfur content.  Oil fluorescence phenomena arise from the presence of π-bonding in aromatic 

C=C bonds, leading to highest fluorescence intensity from polycyclic aromatic hydrocarbons 

(Ryder 2005), with fluorescence intensity tending to increase with increasing molecular weight 

(Mendoza et al. 2013).  However, the presence of fluorescence quenching species, as well as 

energy transfer between complex molecules, complicates the isolation of compound-specific 

fluorescence in crude oil analysis.  Fluorescence research has shown that heavy oils generally 

have broad, weak fluorescence while lighter oils have narrower, more intense emission bands 

(Steffens et al. 2011).  Due to the hundreds, if not thousands, of complex hydrocarbons present in 

crude oils, characterization of fluorescence arising from specific PAH molecules would be time 

consuming, if not impossible.  However, PARAFAC analysis of these 25 oil types has shown 

that it is possible to use fluorescence characterization in specific wavelength regions for 

detection of non-dispersed vs. dispersed oil across a wide variety of oil types. 

 

Coming from the well depth of approximately 1,600 m, the MC252 oil source is by far the 

deepest of all our 25 oil type sources; however, a number of other oil types were sources from 

offshore well locations.  These include the light oils, Brent and Gulffaks from the North Sea 

(140-230 m water depth), as well as Hibernia, SSC and Terra Nova from offshore eastern 

Canada (12-100 m water depth).  Intermediate weight oils, Heidrun from the Norwegian Sea 

(350 m water depth) and Sea Rose from off the coast of Newfoundland, Canada (100 m water 

depth), as well as the heavy oil Hondo from offshore California (260 m water depth) were also 

included in this study.  The intermediate weight Alaskan North Shore, both fresh and 10 % 

weathered, would be representative of oil, which may be sourced from offshore Alaska in the 

future.  Additionally, with the presence of approximately 3,000 platforms in the U.S. Gulf of 
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Mexico (BOEM, 2016), understanding the characterization of non-dispersed and dispersed 

MC252 oil will certainly aid in preparedness for the possibility of future oil spill events in that 

region. 

 

CONCLUSIONS 

Although petroleum is ubiquitous as a low-level, naturally-occurring component of the marine 

environment due to natural seeps, anthropogenic introduction of much greater concentrations 

occurs during well-drilling, as well as in transportation of fossil fuels. Just within the Gulf of 

Mexico, high-volume crude oil flows include the Ixtoc I (> 3 million bbl, from June 1979 to 

March 1980) (Jernelov and Linden 1981) and the DWH blowout (4.9 million bbl from April to 

August 2010) (Federal Interagency Solutions Group 2010).  Added to this are chronic, lower-

level spills such as the that emanating from the Taylor Energy site where Platform 23051 was 

located before destruction by Hurricane Ivan in 2004 (Harrison 2017).  Events such as these 

combine with intentional as well as accidental releases in the transportation and use of 

petroleum-based fuels.  And of course this is not unique to the Gulf of Mexico, but transpires 

globally. 

 

Detection of low concentrations of petroleum in the marine environment is critically important in 

order to enable protection of sensitive ecosystems from the inherent toxicity arising largely from 

PAHs, which are proven to be toxic, mutagenic and carcinogenic (D'Sa et al. 2016).  The use of 

dispersants must be carefully weighed in order to determine whether the impact of dispersing oil 

into the water column will be positive due to the enhancement of microbial biodegradation, or 

overwhelmingly negative due to toxicity to organisms within the water column and in the 
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benthos.  Long-term environmental effects have yet to be fully determined (Ufford et al. 2014). 

Prevention of slick formation and mitigation of oil on the ocean surface, which will eventually 

reach shorelines and wetlands, is also an important consideration. 

 

The SMART protocol calls for the use of in situ fluorometers to detect petroleum in the marine 

environment in this decision-making effort (U.S. Coast Guard et al. 2006).  While GC-MS has 

gained overwhelming acceptance in the scientific community for the quantification of petroleum, 

due to the sensitivity of the majority of GC-MS instruments, use of this analysis method is not 

generally practical for use at sea (D'Sa et al. 2016).  Off-the-shelf fluorometers have been used to 

detect petroleum in the marine environment for decades; however, intercomparison between 

instruments with varying wavelength detection, as well as correlation of the heretofore largely 

qualitative data with quantitative chemical analyses, such as that presented by Conmy et al. 

(2014a), is important in order to provide confirmation for first responders.  In situ fluorometers 

capable of delivering two emission wavelengths in order to give FIR data could also prove more 

useful in future oil response efforts to determine the effectiveness of dispersant delivered in both 

subsurface and surface applications. 

 

Our results define differences between Type I and Type II oils, which will aid decision-makers in 

choosing an appropriate course of action in dispersant application.  Studies suggest that, while 

there appears to be an upper limit of dispersant effectiveness with increasing oil viscosity, there 

is not a direct relationship (Canevari et al. 2001) and chemical composition is more important 

(Mukherjee et al. 2011).  Future work is needed to determine how specific petroleum 

components play a role.  The creation of the database of EEMs for 25 oils at four DORs is a first 
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step in that direction, and will also allow for advantageous “fingerprinting” characterization in 

the marine environment of the behavior of oils over a wide range of chemical composition and 

kinematic viscosity. 

 

REFERENCES 

 

Bahram M, Bro R, Stedmon C, Afkhami A. 2006. Handling of rayleigh and raman scatter for 

parafac modeling of fluorescence data using interpolation. Journal of Chemometrics. 

20(3-4):99-105. 

Baszanowska E, Otremba Z. 2017. Fluorometric index for sensing oil in the sea environment. 

Sensors. 17. 

Bro R. 1997. Parafac. Tutorial and applications. Chemometrics and Intelligent laboratory 

Systems. 38:149-171. 

Bro R, Kiers HAL. 2003. A new efficient method for determining the number of components in 

parafac models. Journal of Chemometrics. 17:274-286. 

Bugden JBC, Yeung CW, Kepkay PE, Lee K. 2008. Application of ultraviolet fluorometry and 

excitation-emission matrix spectroscopy (eems) to fingerprint oil and chemically 

dispersed oil in seawater. Marine pollution bulletin. 56:677-685. 

Camilli R, Reddy CM, Yoerger DR, Van Mooy BAS, Jakuba MV, Kinsey JC, McIntyre CP, 

Sylva SP, Maloney JV. 2010. Tracking hydrocarbon plume transport and biodegradation 

at deepwater horizon. Science. 330:201-204. 

Canevari GP, Calcaveccio P, Beckier KW, Lessard RR, Fiocco RJ. 2001. Key parameters 

affecting the dispersion of viscous oil. International Oil Spill Conference 

Proceedings.479-483. 

Chen RF, Bada JL. 1992. The fluorescence of dissolved organic matter in seawater. Marine 

Chemistry. 37:191-221. 

Clayton JR, Jr., Payne JR, Farlow JS. 1993. Oil spill dispersants: Mechanisms of action and 

laboratory tests. Boca Raton, FL: C.K. Smoley. 

Coble PG. 1996. Characterization of marine and terrestrial dom in seawater using excitation-

emission matrix spectroscopy. Marine Chemistry. 51:325-346. 

Coble PG, Green SA, Blough NV, Gagosian RB. 1990. Characterization of dissolved organic 

matter in the black sea by fluorescence spectroscopy. Nature. 348(6300):432-435. 

Coble PG, Spencer RM, Baker A, Reynolds DM. 2014. Aquatic organic matter fluorescence. In: 

Coble PG, Lead J, Baker A, Reynolds DM, Spencer RM, editors. Aquatic organic matter 

fluorescence. New York, NY: Cambridge University Press. p. 75-122. 



71 

 

Conmy RN, Coble PG, Farr J, Wood AM, Lee K, Pegau WS, Walsh ID, Koch CR, Abercrombie 

MI, Miles MS et al. 2014a. Submersible optical sensors exposed to chemically dispersed 

crude oil: Wave tank simulations for improved oil spill monitoring. Environmental 

science & technology. 48(3):1803-1810. 

Conmy RN, Del Castillo CE, Downing BD, Chen RF. 2014b. Experimental design and quality 

assurance: In situ fluorescence instrumentation. In: Coble PG, Lead J, Baker A, Reynolds 

DM, Spencer RM, editors. Aquatic organic matter fluorescence. New York, NY: 

Cambridge University Press. p. 190-230. 

D'Sa EJ, Overton EB, Lohrenz SE, Maiti K, Turner RE, Freeman A. 2016. Changing dynamics 

of dissolved organic matter fluorescence in the northern gulf of mexico following the 

deepwater horizon oil spill. Environmental science & technology. 50:4940-4950. 

Daling PS, Lichtenthaler RG. 1986/87. Chemical dispersion of oil. Comparison of the 

effectiveness results obtained in laboratory and small-scale field tests. Oil & Chemical 

Pollution. 3:19-35. 

Das N, Chandran P. 2011. Microbial degradation of petroleum hydrocarbon contaminants: An 

overview. Biotechnology Research International. 2011. 

Diercks A-R, Highsmith RC, Asper VL, Joung D, Zhou Z, Guo L, Shiller AM, Joye SB, Teske 

AP, Guinasso N et al. 2010. Characterization of subsurface polycyclic aromatic 

hydrocarbons at the deepwater horizon site. Geophysical Research Letters. 37(2). 

Eigenvector Research I. 2018. Pls_toolbox. Manson, WA. 

Federal Interagency Solutions Group, Oil Budget Calculator Science and Engineering Team,. 

2010. Oil budget calculator--deepwater horizon. 

Fingas M. 2011. Introduction to oil chemical analysis. In: Fingas M, editor. Oil spill science & 

technology. Elsevier. 

Fingas MF, Bobra MA, Velicogna RK. 1987. Laboratory studies on the chemical and natural 

dispersability of oil. International Oil Spill Conference Proceedings. 1987(1):241-246. 

Frank U. 1975. Identification of petroleum oils by fluorescence spectroscopy. International Oil 

Spill Conference Proceedings. 1975(1):87-91. 

Harrison SJ. 2017. Lessons from the taylor energy oil  spill: History, seasonality, and nutrient 

limitation. [Athens, GA]: University of Gorgia. 

Harshman RA, Lundy ME. 1994. Parafac: Parallel factor analysis. Computational Statistics & 

Data Analysis. 18:39-72. 

Hazen TC, Dubinsky EA, DeSantis TZ, Andersen GL, Piceno YM, Singh N, Jansson JK, Probst 

A, Borglin SE, Fortney JL et al. 2010. Deep-sea oil plume enriches indigenous oil-

degrading bacteria. Science. 330(6001):204-208. 

Holder EL, Conmy RN, Venosa AD. 2015. Comparative laboratory-scale testing of dispersant 

effectiveness of 23 crude oils using four different testing protocols. Journal of 

Environmental Protection. 6(6):628-639. 

ICF Consulting Group. 1999. In-use marine diesel fuel. In: Agency USEP, editor. 



72 

 

Jernelov A, Linden O. 1981. Ixtoc i: A case study of the world's largest oil spill. Ambio. 

10(6):299-306. 

Joint Analysis Group. 2010. Review of preliminary data to examine subsurface oil in the vicinity 

of mc252#1, may 19 to june 19, 2010. In: National Oceanic and Atmospheric 

Administration, editor. Silver Spring, MD: U.S. Dept. of Commerce. 

Kaku VJ, Boufadel MC, Venosa AD. 2006. Evaluation of mixing energy in laboratory flasks 

used for dispersant effectiveness testing. Journal of Environmental Engineering. 

132(1):93-101. 

Kessler JD, Valentine DL, Redmond MC, Du M, Chan EW, Mendes SD, Quiroz EW, Villanueva 

CJ, Shusta SS, Werra LM et al. 2011. A persistent oxygen anomaly reveals the fate of 

spilled methane in the deep gulf of mexico. Science. 331(6015):312-315. 

King TL, Clyburne JAC, Lee K, Robinson BJ. 2013. Interfacial film formation: Influence on oil 

spreading rates in lab basin tests and dispersant effectiveness testing in a wave tank. 

Marine pollution bulletin. 71:83-91. 

Kujawinski EB, Kido Soule MC, Valentine DL, Boysen AK, Longnecker K, Redmond MC. 

2011. Fate of dispersants associated with the deepwater horizon oil spill. Environmental 

science & technology. 45:1298-1306. 

Lawaetz AJ, Stedmon CA. 2009. Fluorescence intensity calibration using the raman scatter peak 

of water. Applied spectroscopy. 63(8). 

Lee K, Nedwed T, Prince RC, Palandro D. 2013. Lab tests on the biodegradation of chemically 

dispersed oil should consider the rapid dilution that occurs at sea. Marine pollution 

bulletin. 73:314-318. 

Lessard RR, DeMarco G. 2000. The significance of oil spill dispersants. Spill Science & 

Technology Bulletin. 6(1):59-68. 

Li Z, Lee K, King T, Boufadel MC, Venosa AD. 2009. Evaluating crude oil chemical dispersion 

efficacy in a flow-through wave tank under regular non-breaking wave and breaking 

wave conditions. Marine pollution bulletin. 58(5):735-744. 

Condensate. 2018. [accessed]. https://www.glossary.oilfield.slb.com/Terms/c/condensate.aspx. 

Lunel T, Davies L. 2001. Response to bunker fuel oil: The options. Proceedings of the 

International Oil Spill Conference. 2001(1):597-603. 

Mendoza WG, Riemer DD, Zika RG. 2013. Application of fluorescence and parafac to assess 

vertical distribution of subsurface hydrocarbons and dispersant during the deepwater 

horizon oil spill. Environmental Science Processes & Impacts. 15(1017-1030). 

Molinier V, Goue EL, Rondon-Gonzales M, Passade-Boupat N, Bourrel M. 2018. Optimization 

of chemical dispersants effectiveness in case of subsurface oil spill. Colloids and 

Surfaces A. 541:43-51. 

Mukherjee B, Turner J, Wrenn BA. 2011. Effect of oil composition on chemical dispersion of 

crude oil. Environmental Engineering Science. 28(7):497-506. 

https://www.glossary.oilfield.slb.com/Terms/c/condensate.aspx


73 

 

Murphy KR, Butler KD, Spencer RGM, Stedmon CA, Boehme JR, Aiken GR. 2010. 

Measurement of dissolved organic matter fluorescence in aquatic environments: An 

interlaboratory comparison. Environmental science & technology. 44(24):9405-9412. 

Murphy KR, Stedmon CA, Graeber D, Bro R. 2013. Fluorescence spectroscopy and multi-way 

techniques. Parafac. Analytical Methods. 5(23):6557-6566. 

Nedwed T, Coolbaugh T. 2008. Do basins and beakers negatively bias dispersant-effectiveness 

tests? Proceedings of the International Oil Spill Conference.835-842. 

A bitumen and dilbit primer. 2014. [accessed 2019]. 

https://www.behance.net/gallery/16654901/A-BITUMEN-AND-DILBIT-PRIMER. 

Reddy CM, Arey JS, Seewald JS, Sylvia SP, Lemkau KL, Nelson RK, Carmichael CA, McIntyre 

CP, Fenwick J, Ventura GT et al. 2011. Composition and fate of gas and oil released to 

the water column during the deepwater horizon oil spill. Proceedings of the National 

Academy of Sciences. 109(50):20229-20234. 

Ryder AG. 2005. Analysis of crude petroleum oils using fluorescence spectroscopy. In: Geddes 

CD, Lakowicz JR, editors. Reviews in fluorescence 2005. Springer. p. 169-198. 

S.L. Ross Environmental Research, MAR Inc. 2011. Comparison of large-scale (ohmsett) and 

small-scale dispersant effectiveness test results. In: U.S. Department of the Interior 

BoSaEE, editor. Ottawa, ON. p. 50. 

Smilde A, Bro R, Geladi P. 2004. Validation and diagnostics. Multi-way analysis with 

applications in the chemical sciences. John Wiley & Sons, Ltd. p. 145-173. 

Smith RH, Johns EM, Goni GJ, Trinanes J, Lumpkin R, Wood AM, Kelble CR, Cummings SR, 

Lamkin JT, Privoznik S. 2014. Oceanographic conditions in the gulf of mexico in july 

2010, during the deepwater horizon oil spill. Continental Shelf Research. 77:118-131. 

Sorial GA, Koran KM, Holder E, Venosa AD, King DW. 2001. Development of a rational oil 

spill dispersant effectiveness protocol. Proceedings of the International Oil Spill 

Conference. 2001(1):471-478. 

Sorial GA, Venosa AD, Koran KM, Holder E, King DW. 2004a. Oil spill dispersant 

effectiveness protocol. I: Impact of operational variables. Journal of Environmental 

Engineering. 130(10):1073-1084. 

Sorial GA, Venosa AD, Koran KM, Holder E, King DW. 2004b. Oil spill dispersant 

effectiveness protocol. Ii: Performance of  revised protocol. Journal of Environmental 

Engineering. 130(10):1085-1093. 

Sorial GA, Venosa AD, Koran KM, Holder E, King DW. 2004c. Oil spill dispersant 

effectiveness protocol. Ii: Performance of revised protocol. Journal of Environmental 

Engineering-Asce. 130(10):1085-1093. 

Srinivasan R, Lu Q, Sorial GA, Venosa AD, Mullin J. 2007. Dispersant effectiveness of heavy 

fuel oils using the baffled flask test. Environmental Engineering Science. 24(9):1307-

1320. 

Steffens J, Landulfo E, Courrol LC, Guardani R. 2011. Application of fluorescence to the study 

of crude petroleum. Journal of fluorescence. 21:859-864. 

https://www.behance.net/gallery/16654901/A-BITUMEN-AND-DILBIT-PRIMER


74 

 

Strausz OP, Safarik I, Lown EM. 2009. Cause of asphaltene fluorescence intensity variation with 

molecular weight and its ramifications for laser ionization mass spectrometry. Energy & 

Fuels. 23:1555-1562. 

The MathWorks I. 2018. Matlab. Release 2018b ed. 

Tissot BP, Welte DH. 1978. Petroleum formation and occurrence. Germany: Springer-Verlag. 

Trudel BK, Belore RC, Guarino A, Lewis A, Mullin J. 2005. Determining the viscosity limits for 

effective chemical dispersion: Relating ohmsett results to those from tests at-sea. 

Proceedings of the International Oil Spill Conference. 2005(1):71-76. 

. Review of a decade of dispersant operational research conducted under simulated at-sea 

conditions at ohmsett. 34th AMOP (Artic and Marine Oilspill Program) Technical 

Seminar on Environmental Contamination and Response; 2011; Banff, Alberta, Canada. 

Environment Canada. 

U.S. Coast Guard, National Oceanic and Atmospheric Administration, U.S. Environmental 

Protection Agency, Centers for Disease Control and Prevention, Minerals Management 

Service. 2006. Special monitoring of applied response technologies. 

Ufford A, McKeon CD, Owston RA, Plumlee JG, Supak KR. 2014. Dispersant effectiveness 

literature synthesis. In: U.S. Department of the Interior BoSaEE, editor. Washington, DC: 

Southwest Research Institute. 

Vaughn A. 2017 18 March 2017. Torrey canyon disaster--the uk's worst-ever oil spill 50 years 

on. The Guardian. 

Velapoldi RA, Mielenz KD. 1980. A fluorescence standard reference material: Quinine sulfate 

dihydrate. In: U.S. Department of Commerce NBoS, editor. Washington, DC: U.S. 

Government Printing Office. 

Venosa AD, King DW, Sorial GA. 2002. The baffled flask test for dispersant effectiveness: A 

round robin evaluation of reproducibility and repeatability. Spill Science & Technology 

Bulletin. 7(5-6):299-308. 

Venosa AD, Zhu X. 2003. Biodegradation of crude oil contaminating marine shorelines and 

freshwater wetlands. Spill Science & Technology Bulletin. 8(2):163-178. 

Vermeire MB. 2012. Everything you need to know about marine fuels. Ghent, Belgium. 

Xu X, Liu W, Tian S, Wang W, Qi Q, Jiang P, Gao X, Li F, Li H, Yu H. 2018. Petroleum 

hydrocarbon-degrading bacteria for the remediation of oil pollution under aerobic 

conditions: A perspective analysis. Frontiers in Microbiology. 9(2885). 

Zepp RG, Sheldon WM, Moran MA. 2004. Dissolved organic fluorophores in southeastern us 

coastal waters: Correction method for eliminating rayleigh and raman scattering peaks in 

excitation-emission matrices. Marine Chemistry. 89(1-4):15-36. 

 



75 

 

 

 

 

 

 

SCALE LEVEL II – CHARACTERIZING THE EFFECTS OF PHYSICAL AND 

CHEMICAL DISPERSION OF OIL IN SEAWATER VIA SPECTROFLUOROMETRY 

IN WAVE TANK EXPERIMENTS 

 

INTRODUCTION 

The need for standardized procedures to monitor the effectiveness of response technologies 

following oil spills has been apparent since the 1980s.  To serve as an overarching guide, the 

Special Monitoring of Applied Response Technologies (SMART) program was initiated by a 

meeting of Federal oil spill scientists and responders in Mobile, Alabama, in November 1997.  

Building upon existing protocols and procedures, and created through a joint collaboration 

between the United States Coast Guard, NOAA, the U.S. EPA, the Centers for Disease Control 

and Prevention, and a portion of the Minerals Management Service (now under the Bureau of 

Safety and Environmental Enforcement), the SMART program outlines monitoring protocols to 

be used in concert with the application of dispersants, as well as the use of in-situ burning.  First 

adopted by the EPA in January 2001, and intended to be a “living document,” the SMART 

protocol was updated in August 2008 and utilized for the response to the DWH oil spill in 2010 

(U.S. Coast Guard et al. 2006).   

 

Inherent in the employment of SMART protocols is the assumption that application of 

dispersants is an optional method to be used for the remediation of oil spills.  Since dispersant 

application enhances the production of small oil droplets, oil is more easily suspended in the 
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water column and dispersed by currents (Li and Garrett 1998), and the increased ratio of surface 

area to volume aids accessibility to oil degrading bacteria (Lessard and DeMarco 2000; Venosa 

and Zhu 2003).  Full dispersant effectiveness (DE) depends upon an optimal dispersant to oil 

ratio (DOR), along with the presence of mixing energy such as wave action (Chandrasekar et al. 

2006).  In order to ascertain DE level, three levels of monitoring have been employed: 

 Tier I—visual monitoring, coupled with infrared or other remote detection methods; 

 Tier II—combination of visual monitoring with real-time in situ monitoring at a single 

depth, paired with collection of water samples for later laboratory analysis; 

 Tier III—an expansion of foregoing methods to include in situ monitoring at multiple 

depths, the use of a portable water laboratory for further analysis, as well as further water 

sampling. 

 

The use of fluorometry is specifically suggested as “the most technologically advantageous 

detection method” in Tier II; however, the type of fluorometer is not specified.  The single depth 

prescribed for data collection is one meter, but it is noted that sea conditions may require 

monitoring at a depth of up to two meters.  Tier III directions call for measurements to be 

collected at multiple depths in order to observe the dilution of oil to background levels; however, 

there is no guidance provided on how that determination should be made.  (U.S. Coast Guard et 

al. 2006). 

 

Use of the SMART protocol in response to the DWH oil spill was complicated by the fact that 

dispersants were not only applied at the sea surface to visible surface slicks, as in past spill 

response efforts, but also applied to the oil exiting the well-head at 1,500 m.  A total of 25,505 
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bbl (4,054,971 L) of dispersant was applied at the sea surface during the 86-day duration of the 

spill, and 18,379 bbl (2,922,028 L) were introduced into the sub-sea oil and gas plume over the 

course of 65 days (Federal Interagency Solutions Group 2010).  The high-pressure, high-

temperature nature of the flow from the well head resulted in small (<100 µ) droplets that failed 

to rise, which led to the formation of sub-surface plumes (Camilli et al. 2010; Kessler et al. 

2011).  Natural dispersion by sub-surface ocean currents took place, as well as additional 

weathering if and when oil reached the sea surface (Federal Interagency Solutions Group 2010).  

The presence of a high proportion of gas, in a wide range of bubble sizes, which may have been 

able to separate from the main oil flow and travel in a separate direction, complicated monitoring 

(Federal Interagency Solutions Group 2010; Reddy et al. 2011).  Therefore, adherence to the 

SMART protocol required the deployment of monitoring instruments close to the surface, as well 

as at depths of up to 1,500 meters.   

 

A variety of in situ instruments with various specifications were used by research teams in the 

response to the DWH oil spill.  Variances in fluorometers included differing light sources, 

different fixed excitation/emission wavelengths, and variation in bandpass settings.  In order to 

provide cross-comparison of data, a series of experiments were planned to evaluate the response 

of fluorometers to both fresh and weathered oil, with and without the addition of dispersant, 

using the wave tank facility at BIO in Dartmouth, Nova Scotia in the Spring of 2011.  Discrete 

water samples also were chemically analyzed by the scientists in the BIO laboratory via GC-FID 

for total petroleum hydrocarbons (TPH) and by GC-MS for PAHs and for benzene, toluene, 

ethylbenzene and xylene (BTEX). 
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My research focused on determining the optimal wavelengths for oil detection by analyzing 

discrete water samples collected from the wave tank using a HORIBA Aqualog—a 

spectrofluorometer capable of collecting absorbance as well as scanning a broad range of 

excitation/emission wavelengths.  The resulting 3D EEM spectra showed the location of specific 

excitation/emission fluorescence maxima for fresh oil, with and without dispersant, as well as for 

weathered oil, both with and without dispersant.   

 

Observation of the evolving changes in fluorescence response over the course of the 90 min 

experiment resulted in important insights for the analysis of data collected with these specific 

instruments in the field following the DWH oil spill.  Further, the planned experimental series 

elucidated the effect of dispersant application on petroleum fluorescence, as well as explored the 

effects of both chemical and physical weathering on the inherent fluorescence of oil with or 

without dispersant. 

 

MATERIALS AND METHODS 

A fourteen-day hydrocarbon fluorescence workshop was held at BIO, in Dartmouth, Nova 

Scotia, Canada on May 30 to June 10, 2011, hosted by the Centre for Offshore Oil, Gas and 

Energy Research, with the goal of cross-calibration of fluorometers which were utilized in the 

response to the DWH oil spill in the Gulf of Mexico.  Scientists came from NOAA, the USF 

College of Marine Science, the U.S. EPA, Moss Landing Marine Labs (representing the Alliance 

for Coastal Technologies), Louisiana State University, the Oil Spill Recovery Institute at Prince 

William Sound Science Center, Dalhousie University/Satlantic, WetLabs, and HORIBA, as well 

as BIO’s COOGER group.  Payne Environmental Consultants provided a large-volume sampler.  
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Funding was provided by the U.S. Integrated Ocean Observing System (IOOS) through the 

Alliance for Coastal Technology (ACT), and NOAA (through supplemental appropriation for 

DWH), as well as by the visiting scientists’ home institutions and Canada’s DFO in concert with 

COOGER. 

 

Through collaboration between the U.S. EPA and DFO Canada, BIO’s 16 meter wave tank was 

originally designed and built in 2004, then extended to 32 m in 2006 (Fig. 2.1).  Equipped with a 

flap-type wave generator capable of creating both rolling and breaking waves, conditions similar 

to those affecting open ocean DE could be observed within a controlled environment (Fisheries 

and Oceans Canada 2017).  The tank was filled to a depth of 1.5 m with approximately 28,800 L 

of seawater pumped from the Bedford Basin of Halifax Harbor and filtered through serial 25 µ 

and 5 µ filters.  A crossbeam was affixed to the top of the tank approximately 8 m from the 

location where oil would be added, and the following instruments were mounted on the cross-

beam at a depth of approximately 80 cm:  

1. Wetlabs ECO-CDOM fluorometer 

2. Wetlabs ECO-Triplet for CDOM fluorometer 

3. Turner Cyclops C-7 for Hydrocarbons fluorometer 

4. Chelsea UV-AQUAtracka for Crude Oil fluorometer 

5. Chelsea UV-AQUAtracka for Refined Oil and CDOM fluorometer 

6. Satlantic SUNA – UV Spectrophotometer 

 

COOGER’s Sequoia Scientific LISST-1000X optical laser diffraction instrument was mounted 

in the tank approximately 1 m behind the fluorometers closer to the outflow of the tank.  This 
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instrument, which detects particles (e.g., oil droplets) by measuring beam attenuation and 

forward scattering, was used in the SMART protocol on the RV Brooks McCall following the 

DWH oil spill.  It was included in this experimental series since the goal of maximum DE is a 

decrease in oil droplet size, and chemical dispersants also have a demonstrated effect on the 

fluorescence of oil in seawater (Bugden et al. 2008).   

 

A WETLAB SAFIre (Spectral Absorption and Fluorescence Instrument) multi-channel flow-

through fluorometer was also included in the experimental series as a second potential prototype 

for future spill responses.  Unlike other in situ fluorometers, the SAFIre has a wide wavelength 

range (220 – 700 nm) with six excitation wavelengths and 16 emission wavelengths and is able 

to acquire data across this wavelength range every 2 sec.  It can be deployed to a depth of 500 m.  

Due to space constraints within the wave tank, the SAFIre was positioned in a water bath on the 

platform adjacent to the tank.  This was done in order to maintain temperatures for optimal 

instrument performance, based on previous research (Conmy et al. 2004).  Sample water was 

introduced into the instrument’s flow-through input via Nalgene PVC tubing affixed to the center 

of the crossbeam to which the other in situ fluorometers were attached. 

 

On May 30, a preliminary planning meeting was held at BIO, resulting in defining plans for four 

core experiments, each of which would be conducted twice: (1) artificially weathered oil without 

dispersant, (2) artificially weathered oil with dispersant at a DOR of 1:25, (3) fresh oil without 

dispersant, and (4) fresh oil with dispersant at a DOR of 1:25.  Randomized assignment of 

protocols was done as shown in Table 3.1.  The oil to be used for all experiments was light, 

sweet Louisiana crude identified as MC252 (for Mississippi Canyon Block 252 of the Macondo 
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Prospect), which had been collected during the DWH oil spill on board the Discoverer 

Enterprise on July 26, 2010.  Artificial weathering for those protocols was accomplished by 

bubbling ultra-pure nitrogen through a glass pipette into 4 L of oil contained in an amber bottle 

for approximately 36 hours.  The resulting loss of mass equated to weathering of 7.1 % 

(Robinson 2011).  Corexit® 9500A was the dispersant used.  Immediately preceding each 

experimental procedure, 100 mL oil or oil/dispersant mixture was added to 1L of seawater and 

agitated at standard mixing energy on an orbital shaker for 20 min.  The resulting mixture was 

poured onto the surface of the water in the wave tank 10 m downstream from the wave 

generating paddles (Fig. 3.1, left).  Instruments attached to a rotating crossbeam were located an 

additional 10 m further downstream (Fig. 3.1, right).  The resulting concentration of the oil or 

oil/dispersant mixture in the tank was ≤ 3 ppb (Conmy et al. 2014). 

 

Figure 3.1.  Weathered oil/dispersant mixture is poured onto the water surface on the afternoon of June 3 after wave 

generation has begun (above).  In situ fluorometers attached to a crossbeam in the tank (right). 
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Table 3.1.  Details of wave tank series protocols 

Date Time Exp# 
Temp 
(°C) 

Salinity 
(ppt) Oil (ml) Weathered? DOR 

Start 
Time 

Time Oil 
Added 

End 
Time Notes   

May 31 AM A 14.6 25.8 200 no 1:25   1114 1417 static 45 min, then flow through Exp A 

Jun 2 AM B 9.9 27.6 200 no 1:25 1045 1108   static 60 min, then flow through Exp B 

Jun 2 AM 1 10 27.3 100 yes 0 915 921 1051 flow through Exp 1 

Jun 2 PM 2 10.3 27.3 100 yes 0 1338 1353 1523 flow through Exp 2 

Jun 3 AM  x x x x x x x   cancelled due to heavy rain   

Jun 3 PM 3 14 26.4 100 yes 1:25 1522 1524 1654 flow through, pollen on tank surface Exp 3 

Jun 4 AM 4 10.4 26.8 100 yes 1:25 912 923 1123 flow through Exp 4 

Jun 4 PM 5 11.2 27.2 100 no 0 1358 1424 1554 flow through Exp 5 

Jun 5 AM 6 10.8 27.6 100 no 1:25 927 940 1110 flow through, sun interference? Exp 6 

Jun 5 PM 7 9.3 28.6 100 no 0 1330 1341 1511 flow through, sunny with tarp Exp 7 

Jun 6 AM 8 11.8 28.0 100 no 1:25 914 921 1051 flow through, rainy with tarp Exp 8 

Jun 6 PM 9 9.8 28.9 100 yes 1:25 1330 1347 1517 flow through, windy Exp 9 

Jun 7 AM 10 10.6  10 no 1:25 839 929 1028 standard additions, static tank Exp 10 

Jun 7 AM 10 11.6  10(20) no 1:25 1033   1130     

Jun 7 AM 10 12.2  30(50) no 1:25 1132 1137 1237     

Jun 7 PM 10 12.6  50(100) no 1:25 1238 1242 1440     

Jun 7 PM 10 13  100(200) no 1:25 1342 1346 1446     

Jun 7 PM 10 13.4 28.0 200(400) no 1:25 1450 1450       

Jun 8 AM 11 10.8 
28.0 - 
29.3 10 no 1:25 815 901 1320 60 min static; then flow through Exp 11 

Jun 8 PM 12   0  4 ml 1525 1543   Corexit® 9500 only, static Exp 12 

Jun 8 PM 12 10.5 29.3 0  40 ml   1625       
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On May 31 and June 1, two shakedown experimental runs were conducted (Exp. A and B) in 

order to test instrument response and finalize specifications for the core experiments.  For Exp. A 

and B, 200 ml of fresh oil was used with dispersant at DOR 1:25.  On May 31, the wave tank 

was operated in static mode for 45 min, then in flow-through mode; on June 1, static mode was 

increased to 60 minutes, followed by operation in flow-through mode.  This was accomplished 

by continuously pumping filtered seawater into the tank at a rate of 3.8 L/sec (60 gal/min) and 

allowing the water to exit the opposite end of the tank, resulting in the oil or oil/dispersant 

mixture traveling as a plume with the flowing water current.  Moppers were used to absorb oil or 

oil/dispersant mixture before discharge back into Halifax Harbor.   

 

For the core experiments (Exp 1 - 9), the amount of oil was decreased to 100 mL, and the tank 

was operated solely in flow-through mode.  Discrete water samples for EEMS analysis as well as 

chemical analysis were collected from the wave tank via siphon through a Nalgene tube located 

at the same depth as the instruments.  Samples for 3D EEMS analysis were collected in pre-

ashed 125 mL amber bottles, first rinsing each bottle three times with sample, then completely 

filling and immediately closing it with a Teflon-lined cap.  Bottles were place inside a covered 

cardboard carton and delivered to the laboratory for spectrofluorometric analysis within ten 

minutes of collection.  Samples for TPH and GC-MS analysis were also collected in 125 mL 

amber bottles, and samples for BTEX analysis were collected in 40 mL P&T vials. Three sample 

blanks were collected at the start of each experimental run; immediately following the addition 

of oil or oil/dispersant mixture to the wave tank (t = 0), and samples were then collected at t = 2, 

4, 6, 8, 10, 15, 20 30, 60, and 90 min.  The tank was then completely drained and cleaned with 
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Big Orange detergent and seawater between experiments, and sensor optical windows were 

cleaned as well (Conmy et al. 2014). 

 

Following the completion of the core experiments, several additional experimental protocols 

were planned and carried out on June 7 and 8, 2011.  First, a step-up experiment in which the 

wave tank was operated in static mode and an additional quantity of oil was added at one hour 

intervals (Exp. 10) was performed in order to observe instrument performance at or near signal 

saturation.  On the morning of June 8, low end of the instruments’ dynamic range was 

investigated by adding just 10 mL of oil with dispersant at DOR 1:25 (Exp. 11) and operation of 

the tank in static mode for 60 min, then transitioning to flow-through mode until oil signal was 

no longer detected.  Finally, on the afternoon of June 8, instrument response to dispersant only 

was tested by the addition of 4 ml of Corexit® 9500A to the wave tank with operation in static 

mode for approximately 40 min, followed by the addition of another 40 ml of Corexit® 9500A 

and continued operation of the tank in static mode (Exp. 12). 

 

For full fluorescence analysis, a HORIBA Aqualog spectrofluorometer with charge coupled 

device (CCD) detector was used to collect absorbance and 3D EEMs in the laboratory at BIO.  

The detector was set to medium gain with dark current offset.  Spectra were generated with 

excitation from 550 nm to 220 nm in 5 nm increments, using 1 sec integration time, and 

collection of resulting emission between 213 nm and 610 nm.  For each experimental series, 

three sample blanks were analyzed at the outset, and the mid-range response was then stored and 

utilized for blank subtraction of Raman scatter for all samples in that series.  Following data 

collection, each sample was individually corrected for inner-filter effect, and both first and 
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second-order Rayleigh scatter were masked.  Finally, the 3D scale was manipulated to normalize 

output to the maximum intensity present in each sample.  A total of 140 discrete samples were 

analyzed in Canada, and 48 samples from were frozen and transported back to the Coble 

Laboratory at the USF College of Marine Science for further future fluorescence analyses. 

 

Statistical analysis of results included linear regression of fluorescence and chemistry data using 

MS Excel, as well as PARAFAC analysis of fluorescence results using MATLAB (The 

MathWorks 2018) and the PLS toolbox (Eigenvector Research 2018). 

 

RESULTS AND DISCUSSION 

Previous work by other researchers examining fluorescence of oil types over a wide range of 

dynamic viscosities found two broad UV peaks centered at 340 nm (likely associated with PAHs 

of  ≤ 3 rings (Wakeham 1977) and at 445 nm [likely associated with PAHs of  ≥ 3 rings 

(Wakeham 1977; von der Dick and Kaldreuth 1985; Smith and Sinski 1999; Patra and Mishra 

2002)] with excitation at 240 ‒ 300 nm (Bugden et al. 2008).  Upon mixing with Corexit® 

9500A dispersant, an overall increase in emission intensity was observed in all oil types; 

however, the increase centered at 445 nm was greater.  Therefore, Bugden (2008) suggested use 

of the Fluorescence Intensity Ratio (FIR), i.e., fluorescence intensity at Ex/Em 280 nm/340 nm 

divided by fluorescence intensity at Ex/Em 280 nm/445 nm, for determination of DE since the 

ratio decreased with dispersant application.  They posited that the use of the FIR would 

potentially be very useful in future cross-instrument comparisons. 
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Figure 3.2.  EEM contour of MC252 oil dispersed with Corexit® 9500A (DOR 1:25) in seawater.  Water was 

collected at the surface at an uncontaminated location on a December 2010 research cruise aboard the R/V 

Weatherbird II.  Final effective concentration of ~100 ppb (4 ul Corexit® 9500A to 1mL MC252 in 100 mL clean 

seawater) analyzed on Horiba Fluoromax4.  Symbols added to represent center wavelengths of in situ fluorometers: 

Chelsea Technologies Group AQUAtrackas Ex/Em 239 nm/360 nm and 239 nm/440 nm (), Turner Designs 

Cyclops Ex/Em 320 nm/510 nm (), and WETLabs, Inc. ECO Ex/Em 370 nm/460 nm () along with the FIR of 

Ex/Em 280 nm/340 nm:280 nm/445 nm () after (Conmy et al. 2014). 

Early studies of fluorescence in aromatic hydrocarbons (dissolved in cyclohexane) reported 

fluorescence maximum (Fmax) of benzene at Ex/Em 255 nm/278 nm, naphthalene at 275 nm/322 

nm, anthracene at 358 nm/418 nm, and pyrene at 338 nm/385 nm (Berlman 1965).  Schwarz and 

Wasik’s (1976) work with aromatic hydrocarbons dissolved in water reported almost identical 

results.  They also found Fmax of benzene at Ex/Em 255 nm/278 nm, naphthalene at 275 nm/320 

nm, and pyrene with major excitation peak at 240 nm, two lower absorbance peaks at 265 nm 

and 335 nm and a single emission peak at 372 nm.  Consulting the new PhotochemCAD online 

Emission Wavelength (nm) 

QSE 
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database, Fmax for benzene is reported at Ex/Em 255 nm/285 nm, naphthalene at excitation 276 

nm with two emission peaks at 322 and 334, anthracene with two excitation peaks at 356 and 

376.5 nm and two emission peaks at 374.5 (almost completely overlapping the latter excitation 

peak) and 396.5 nm, pyrene with Fmax at Ex/Em 241 nm/381 nm and the similar two minor 

absorbance peaks at 273 and 335 nm (Taniguchi and Lindsey 2018). 

 

In the nine core experiments, behavior of fluorescence intensity observed in 3D EEMs differed 

markedly between treatments with chemical dispersants and those with only physical dispersion 

(Fig. 3.3).  For fresh oil without chemical dispersant (FOWO), data in Exp. 1 were anomalous. 

Fluorescence intensity peaked almost immediately (t = 2 min.) and exhibited the highest intensity 

overall in all experiments without chemical dispersant.  In fact, the increase in fluorescence to 

91.54 QSE at t = 2 min. could be treated as an outlier at the 95 % confidence interval according 

to Dixon’s Q Test (Rorabacher 1991); however, at t = 4 the fluorescence intensity in FOWO 

Exp. 7 rose to almost the same level as that present in Exp. 1.   

 

In concert with the change in Fmax Ex/Em, the abrupt rise in fluorescence, transitioning from the 

humic-like range of the traditional A Peak (Coble 1996; del Vecchio and Blough 2004; Cory and 

McKnight 2005) to Ex/Em 270 nm/325 nm, which is characteristic of naphthalene, clearly 

marked the beginning of the oil fluorescence signature.  The behavior of weathered oil without 

chemical dispersant (WOWO) Exp. 2 was similar to that seen in FOWO Exp. 7; however, the 

same shift in Fmax Ex/Em and intensity was not observed in the third FOWO experimental series 

(Exp. 5) until t = 8.  In every series without chemical dispersant, fluorescence intensity shifted to 

the naphthalene-like Ex/Em range by t = 8 and remained there until t = 90 min.  Fluorescence 
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intensity, however, showed a roller-coaster like trend, dropping and rising again to a slightly 

lower peak three times in all FOWO experiments and twice in the WOWO experimental series 

(Fig. 3.3, left).  At the final time point, the Fmax Ex/Em in WOWO Exp. 2 had shifted back to a 

humic-like signature of Ex/Em 250 nm/354 nm, but all FOWO series remained in the 

naphthalene-like range to the conclusion of the experiment.  In all cases, fluorescence intensity 

returned to levels slightly elevated from that in the initial samples at t = 0. 

 

Figure 3.3. Left: Core experiments with fresh and weathered oil, no chemical dispersant. Right: Core experiments 

with fresh and weathered oil, with chemical dispersant at DOR 1:25. 

In the five experimental series for oil plus chemical dispersant, fluorescence trends differed 

markedly from that observed in the oil dispersed only by wave action (Fig. 3.3, right).  Similar 

changes were observed in Fmax Ex/Em location, beginning in the humic-like range and shifting to 

naphthalene-like at the t = 4 time point.  With the exception of the anomalous intensity spike in 

Exp. 1, fluorescence intensities were similar in both treatments at t = 2, but then remained much 

lower in the chemically dispersed series at t = 4.  At t = 8, however, fluorescence intensity in 

WOWO Exp. 3 and fresh oil with dispersant (FOW) Exp. 8 increased over four times in the 

former and approximately three times in the latter, greatly surpassing the highest intensity 
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observed at any time point in the series without chemical dispersant.  Fluorescence intensity then 

dropped by about half at t = 30 in weathered oil with dispersant (WOW) Exp. 3, and by about 

one-third in FOW Exp. 8, but rose dramatically by 2.5 times in WOW Exp. 4, by a multiple of 

five in Exp. 9 and by slightly less than twice in FOW Exp. 6.  All fluorescence intensities 

decreased steadily from the maximum until the last samples was collected at t = 90.  The 

character of sharp initial fluorescence intensity increase followed by continuing decline was 

greatest in WOWO Exp. 3, but similar in FOW Exp. 8.  A more gradual increase in fluorescence 

intensity as well as a more gradual decline was observed in WOW Exp. 4, as well as in FOW 

Exp. 6 and WOW Exp. 9.  Notably, no evidence of the roller-coaster like fluorescence intensity 

behavior was observed in any chemically-dispersed oil experiment.  The fluorescence intensity 

also remained significantly elevated from that observed at t = 0, and the Fmax Ex/Em remained in 

the naphthalene-like region for all experiments with chemical dispersant.  Since oil fluorescence 

arises largely from PAHs, these results suggest that a greater portion of the water column is 

exposed to higher concentrations of PAHs and they remain present for a longer period of time 

following the use of chemical dispersant. 

 

Chemical analysis of MC252 oil at BIO by GC-MS showed less than 0.1 % PAHs with five 

benzene rings, 13 % with four rings, 8 % with three rings, and 79 % with two rings (Fig. 3.4).  

The fluorescence signature of oil, both chemically dispersed and physically dispersed only, at 

naphthalene’s characteristic Fmax Ex/Em 270 nm/325 nm in the wave tank experimental series, 

could certainly be related to the high proportion of naphthalene and homologous compounds in 

MC252 oil. 
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Table 3.2.  Comparison of core experiments — location and concentration (QSE) of maximum fluorescence peak 

(Fmax) 

  t = 0 t = 2 t = 4 

Treatment Exp # Ex Em QSE Mean StDev Ex Em QSE Mean StDev Ex Em QSE Mean StDev 

FOWO 

1* 260 299 7.43     270 325 91.54     270 325 88.84     

5 250 559 3.40     250 374 3.48     250 397 5.85     

7 255 351 2.46 4.43 2.64 250 293 2.80 32.61 51.04 270 325 78.13 57.61 45.14 

WOWO 2 250 446 2.13 2.13 NA 250 492 2.99 2.99 NA 275 325 93.70 93.70 NA 

WOW 

3 540 553 7.37     250 620 2.98     270 325 30.31     

4 250 620 2.94     250 364 4.07     270 325 19.50     

9 255 512 9.49 6.60 3.34 250 338 3.39 3.48 0.55 250 328 5.50 18.44 12.44 

FOW 
6 250 613 3.47     250 613 2.36     275 325 50.70     

8 470 610 10.73 6.48 5.13 250 299 4.58 2.87 1.57 270 325 42.35 28.10 5.90 

 

  t = 6 t = 8 t = 10 

Treatment Exp # Ex Em QSE Mean StDev Ex Em QSE Mean StDev Ex Em QSE Mean StDev 

FOWO 

1* 270 325 85.20     270 325 115.05     270 325 112.44     

5 270 325 27.56     275 325 89.54     275 325 59.76     

7 265 325 45.49 52.75 29.50 275 325 42.47 82.35 36.82 275 325 52.90 75.03 32.58 

WOWO 2 270 325 75.11 75.11 NA 270 325 54.43 54.43 NA 270 325 64.14 64.14 NA 

WOW 

3 270 325 137.20     275 325 167.55     270 325 137.13     

4 270 325 40.85     275 325 49.28     270 325 82.20     

9 255 357 9.50 62.52 66.55 270 325 30.30 82.37 74.37 270 325 58.62 92.65 40.28 

FOW 
6 275 325 54.96     270 325 77.33     270 325 112.02     

8 270 325 113.69 32.23 41.53 270 325 158.66 53.81 57.51 275 325 148.56 85.32 25.84 
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Table 3.2 (cont’d).  Comparison of core experiments — location and concentration (QSE) of maximum fluorescence peak 

(Fmax) 

  t = 15 t = 20 t = 30 

Treatment Exp # Ex Em QSE Mean StDev Ex Em QSE Mean StDev Ex Em QSE Mean StDev 

FOWO 

1* 270 325 71.60     270 325 85.11     270 325 45.91     

5 270 325 68.47     275 325 61.84     270 325 38.54     

7 270 325 47.23 62.43 13.26 270 325 38.80 61.92 23.15 265 325 24.65 36.37 10.79 

WOWO 2 275 325 57.85 57.85 NA 265 325 38.24     275 325 58.75 58.75 NA 

WOW 

3 270 325 89.91     275 325 94.27     270 325 82.64     

4 275 325 111.71     270 325 132.60     270 325 126.92     

9 270 325 123.58 108.40 17.08 270 325 137.73 121.53 23.75 270 325 158.62 122.73 38.16 

FOW 
6 270 325 128.50     275 325 129.02     270 325 125.71     

8 270 325 134.76 126.04 4.43 270 325 119.40 133.38 6.80 270 325 102.38 142.17 16.50 

 

  t = 60 t = 90 

Treatment Exp # Ex Em QSE Mean StDev Ex Em QSE Mean StDev 

FOWO 

1* 275 325 23.17     265 325 10.39     

5 275 325 16.25     275 325 10.98     

7 270 322 14.30 17.91 4.66 260 318 9.20 10.19 0.91 

WOWO 2 275 325 11.92 11.92 NA 250 354 12.10 12.10 NA 

WOW 

3 270 325 66.20     270 325 55.86     

4 275 325 101.04     270 325 62.27     

9 270 325 114.44 93.89 24.90 270 325 51.13 56.42 5.59 

FOW 
6 270 325 93.90     265 325 54.58     

8 270 325 73.16 104.17 14.67 270 325 59.66 52.86 3.59 

*Tom King's notes state that this experiment was weathered oil, not fresh.    
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Figure 3.4.  PAH concentrations (ng/L) of 2-, 3-, 4-, and 5-ring benzene compounds in MC252 oil in artificial 

seawater.  Oil was collected on board the Discoverer Enterprise on June 26, 2010, mixed with artificial seawater for 

spectrofluorometric analysis in Coble Lab baffle flask experiments in June 2014, and shipped to Bedford Institute of 

Oceanography for analysis of PAHs by GC-MS. 

Chemical analyses of samples were carried out at all but one experimental time point for FOW 

Exp. 6 (no BTEX for t = 4 min. and no alkanes or PAHs for t = 45 min.), but at every 

experimental time point for FOWO Exp. 7 on June 5, 2011.  Comparing Fmax intensity to 

chemistry analyses, the best correspondence is found between fluorescence intensity and BTEX 

concentration in Exp. 6 (Fig. 3.5, right).  A relationship is also noted between fluorescence and 

both total 2-ring PAHs and total alkanes in the chemically dispersed experimental series; 

however, there is an early spike at t = 2 min. in PAHs and alkanes that is not reflected in the 

fluorescence results, and there is a slight dip in both PAHs and alkanes at t = 20 min, that is also 
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not observed in fluorescence intensity.  As separate water samples were collected in series to be 

analyzed for BTEX, TPH, and fluorescence, it is possible that individual samples contained 

slightly differing petroleum components.  Overall, Fmax fluorescence intensity at Ex/Em 270 

nm/325 nm appeared to track BTEX and PAHs in the chemically dispersed oil very well.  

Maximum fluorescence intensity of 129 QSE (ppb) at t = 15 and 20 min time points was 

approximately 2.5 times the maximum total 2-ring PAH concentration of 52.0 ng/mL (ppb), but 

was only 40 % of the maximum total alkanes concentration of 314 ng/L (ppb) at t = 4 min. 

 

Figure 3.5.  Fluorescence intensity vs. total 2-ring and 3-ring PAHs (left) and vs. total alkanes and BTEX (right) for 

the FOW experimental series on the morning of June 5, 2011. 

Chemical analyses of water samples from the afternoon of June 5 in the FOWO Exp. 7 showed 

that neither 2-ring PAHs nor BTEX corresponded as well with Fmax intensity at Ex/Em 270 

nm/325 nm as that seen in Exp. 6 (Fig. 3.6).  At the outset, BTEX and fluorescence mirrored 

roller-coaster like behavior until t = 6 min, but then went in opposite directions until t = 45 min, 

at which point fluorescence tracked BTEX until the end of the experimental series.  

Concentration of PAHs also did not follow that overall trend, but alkanes did show some 

evidence of the roller-coaster like behavior.  In this series, fluorescence intensity peaked first at 

t = 4 min, while total 2-ring PAHs did not peak until t = 6 min, lending credence to the 
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possibility that water chemistry differences were present in individual water samples.  Maximum 

fluorescence intensity of 78.1 QSE (ppb) at 4 min was over four times the total 2-ring PAH 

concentration of 18.4 ng/mL (ppb) at t = 6 min.  In both experimental series, both 2-ring and 3-

ring PAHs dropped before fluorescence intensity fell off, while BTEX and total alkanes did not.  

This may be partially due to the detection limit of the GC-FID analysis method; however, it is 

also likely that Fmax fluorescence intensity at Ex/Em 270 nm/325 nm is not due solely to the low 

molecular weight PAHs.  Our results confirm previous in-laboratory research, which proposed 

that the fluorescence signal arising from dispersed oil in seawater as measured by two Turner 

fluorometers (Ex/Em 254nm /350 nm and 350nm /410-455 nm) was due to a combination of 

PAHs and was also influenced by the presence of volatile organic compounds including BTEX 

(Lambert et al. 2003). 

 

In Fig. 3.7, linear regressions show statistically significant functional relationships between 

BTEX and fluorescence intensity at both Ex/Em 280 nm/340 nm and Ex/Em 280 nm/450 nm, 

with a slightly lower p value at the lower emission wavelength (left), for each category of 

experimental protocol.  A stronger relationship is seen between BTEX concentration and 

fluorescence intensity in the FOW and WOW experiments with addition of chemical dispersant, 

where variability in BTEX explains 92 to 96% of the variation in fluorescence as seen in the 

linear relationship at the lower emission wavelength. Statistical significance was high, with p < 

0.001 for each regression, ranging from a low of p = 7.982 x 10–20 for BTEX vs. fluorescence 

intensity at Ex/Em 280/340 in the WOW series (Fig. 3.7, left) to p = 5.815 x 10–5 for BTEX vs. 

fluorescence intensity at Ex/Em 280/450 in the FOWO series (Fig. 3.7, right). 
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Figure 3.6.  Fmax intensity (QSE), total 2-ring and 3-ring PAHs (left) and Fmax intensity (QSE) with total alkanes and 

BTEX (right) for the FOWO experimental series on the afternoon of June 5, 2011. 

 

Figure 3.7.  Fluorescence intensity at Ex/Em 280 nm/340 nm (left) and at Ex/Em 280 nm/450 nm (right) for the 

three WOW experiments, two FOW experiments, and two FOWO experiments.   

SAFIre Instrument Response 

The WETLABs SAFIre fluorometer was positioned in a water bath on the platform adjacent to 

the tank and water was introduced from a site adjacent to the in situ fluorometers in the wave 

tank via Nalgene tubing.  Fluorescence intensity at six excitation wavelengths and sixteen 

emission wavelengths was recorded over the course of the wave tank experimental series.  Data 

collected in Exp. #6 using fresh MC252 oil and Corexit® 9500A at DOR 1:25 on the morning of 

June 5, 2011 are presented in Figure 3.8.  Use of the excitation channel at 280 nm and two 
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emission channels at 380 nm and 450 nm allowed continuous examination of the FIR, which has 

been found useful in determining DE (Bugden et al. 2008).  Fluorescence intensity data at the 

outset of the experiment displays the same patchy spiking quality as that observed in the 

Aqualog data, with fluorescence smoothing out at approximately t = 20 min.  An interesting 

evolution of fluorescence intensity at these two wavelengths can be seen from t = 20 min to the 

end of the experiment at t = 90 min.  The evolution of fluorescence intensity from the 

combination of physical and chemical dispersion resulted in a “horseshoe” appearance in the 

graph of fluorescence at Ex/Em 280 nm/450 nm vs. Ex/Em 280 nm/380 nm (right).  This could 

be due to the loss of higher molecular weight oil components, but is likely due to loss of larger 

oil droplets from the water column.  The ability to simultaneously observe fluorescence intensity 

at these two wavelengths could potentially be of great value in tracking the evolution of physical 

and chemical dispersion of oil in the marine environment.  The ability to take the ratio of two 

fluorescence intensities also results in a unitless measurement, which more easily allows 

instrument-to-instrument comparisons. 

 

Figure 3.8.  Fluorescence intensity at Ex/Em 280/380 nm and at Ex/Em 280/450 for Experiment #6 with fresh 

MC252 oil and Corexit® 9500 at DOR 1:25 as recorded by the WETLAB SAFIre multi-channel fluorometer.  

Fluorescence intensity is reported in instrument units. 
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PARAFAC Analysis 

Using MATLAB version R2018b with the drEEM and N-way toolboxes (Murphy et al. 2013), 

and with the assistance of Drs. Kathleen Murphy and Urban Wünsch, PARAFAC analysis was 

performed on the discrete bottle EEM data from the nine core experiments.  The N-way toolbox 

is a multi-way analysis for PARAFAC analysis, and the drEEM toolbox then makes use of that 

outcome in the analysis of 3D EEMs.  A seven-component model was first used to fit all samples 

in the nine core experimental series; however, a six-component model was found to give the best 

overall fit with good core consistency (15.8%) and low residuals.  Fig. 3.9 gives Ex/Em loadings 

for each of the six components. Fig. 3.10 presents the EEM view of each component. 

 

Component 1, with the greatest overall contribution to the model has Fmax at Ex/Em 285 

nm/328.2 nm, very similar to the naphthalene-like Fmax location discovered through peak-

picking.  Component 2, with Fmax Ex/Em at 260 nm/324.9 nm, appears to be modelling more 

BTEX-like fluorescence.  Component 3 has a broad Fmax centered at Ex/Em 265 nm/505.8 nm, 

which appears to be capturing the effect of dispersant on fluorescence.  Components 4 and 6 both 

have double peaks, the former at Ex/Em 255 nm/409.7 nm (A Peak) and 305 nm/409.7 nm (C 

Peak); the latter at Ex/Em 255 nm/475.8 nm and 370 nm/472.5 nm, which may also be modelling 

the effects of dispersant on CDOM fluorescence.  Component 5 has a petroleum-like Fmax at 

Ex/Em 255 nm/363.9 nm with an intensity nearly equivalent to Components 1 and 2, but 

contributing far less to the model. 
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Figure 3.9.  Emission and Excitation loadings for the six-component model. 

 

Figure 3.10.  EEM view of each of the six components.  Components 1-3 (top, left to right) and 4-6 (bottom, left to 

right), in order of decreasing overall contribution to the model. Fluorescence intensity was normalized before 

running the model. 

 

CONCLUSIONS 

While every attempt was made to hold experimental variables constant, some real-world 

conditions impacted the wave tank experiments and almost certainly influenced results: high 

winds, varying air temperature (9.8 to 16.8 °C), water temperature (9.3 to 14.0 °C), and salinity 

(25.8 to 28.9 ‰), as well as changes in water quality due to heavy precipitation, tide stage, and 

deposition of wind-blown pollen.  In particular, participants’ scientific logs noted visible pollen 

Ex/Em = 285/328 Ex/Em = 260/325 

Ex/Em = 265/506 

Ex/Em = 255/410 

and 305/410 

Ex/Em = 255/364 

Ex/Em = 255/476 

and 370/473 
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on the water surface at the beginning of Exp. 3 on the afternoon of June 3; the tank had been 

filled at the beginning of the morning and then was not used until afternoon due to heavy 

precipitation.  On June 5, winds were strong and opposite the direction of water flow in the tank, 

impacting surface oil flow, and participants’ notes stated that the surface oil sheen was observed 

moving upstream during Exp. 7.  Although these conditions were likely reflected in the 

fluorescence data, they also could be typical natural influences to physical and chemical oil 

dispersion that might be encountered in coastal regions.   

 

The addition of a side tarp to the platform adjacent to the wave tank in order to counteract winds 

and light rain toward the end of the experimental series also altered experimental conditions, but 

would not be reflective of real-world conditions.  In retrospect, this modification would have 

been best done prior to the beginning of all experimental series.  Additionally, the thorough pre-

mixing of dispersant with oil for the chemically-dispersed experiments, as well as the method of 

adding oil or oil/dispersant mixture to the wave tank by pouring onto the surface of the water, 

were unlike conditions that would be encountered in real-world spills. 

 

That said, this collaborative effort provided invaluable confirmation of the usefulness of a 

number of in situ instruments that were used to collect data in the field during the DWH oil spill 

(Conmy et al. 2014).  Through the data collected by the other participating scientists, results of in 

situ fluorometer and LISST instrument response, and comparison with chemical analyses, results 

showed that all fluorometers, despite differences in fixed instrument settings, were able to detect 

chemically dispersed oil down to at least 300 ppb, which is below the limit of detection for the 

GC-FID method for TPH.  The lower limit of GC-MS chemical analysis conducted at BIO was 
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100 ppb.  This demonstrated that all of the tested instruments were capable of  providing 

valuable information during the DWH oil spill (Conmy et al. 2014). 

 

Further, my EEMS analysis of discrete water samples taken at specified time points enabled the 

determination of the characteristic Fmax of MC252 oil, as well as the spectral shape of the full 

EEM profile of MC252 oil, which confirmed that all in situ instruments tested were “seeing” 

some portion of the overall EEM oil signature.  My work also confirmed the utility of the FIR as 

a tool to measure DE without the need to convert raw fluorescence units into a standard (e.g., 

QSE).  Since the FIR is a ratio of fluorescence intensity at two wavelength pairs, it is a unitless 

measurement which could potentially be very useful for instrument cross-comparison.  It could 

also be informative in the development of the next generation of in situ fluorometers capable of 

detection at multiple emission wavelengths. 

 

The discovery of the same naphthalene-like optimal wavelength of Ex/Em 270 nm/325 nm for 

Fmax intensity in both solely physically dispersed oil as well as in physically and chemically 

dispersed oil has the potential to inform future instrument specifications.  While it is important to 

consider the possibility of over-saturation of the fluorescence signal with a fixed wavelength 

setting at the Fmax region for oil, such as that observed in the Chelsea AQUAtracka with Ex/Em 

239 nm/360 nm, it is also vitally important to be able to detect oil or oil/dispersant plumes at 

concentrations in the low ppb range.  Studies of marine organisms over the years following the 

DWH oil spill have documented impacts not only from visible surface oiling, but also from 

chronic, low-level exposure, such as the low reproductive success rate in bottlenose dolphins 

(Kellar et al. 2017)  
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SCALE LEVEL III – FLUORESCENCE EEMS ANALYSIS OF FIELD SAMPLES 

COLLECTED IN THE NORTHERN GULF OF MEXICO DURING THE YEAR 

FOLLOWING THE DWH SPILL OF NATIONAL SIGNIFICANCE 

 

INTRODUCTION 

Shortly before 10:00 pm on April 20, 2010, an undetected flow of hydrocarbons from the 

exploratory Macondo well escalated to a blowout, causing two separate explosions and an 

ensuing fire on the Transocean Deepwater Horizon (DWH) submersible drilling platform, 

located approximately 50 miles southwest of the Mississippi Delta at latitude 28° 44.20′ North 

and longitude 88° 23.23′ West (NOAA Office of Response and Restoration 2010; Bureau of 

Ocean Energy Management 2011).  A confluence of events including last-minute changes to well 

design and construction, misinterpretation of warning indicators, and inadequate response to 

controlling the well resulted in the death of 11 men on April 20 and a consequent flow of 

hydrocarbons into the Gulf of Mexico for 87 days (Bureau of Ocean Energy Management 2011).  

The DWH blowout was identified as a U.S. Spill of National Significance (40 CFR § 300.323 

1999), and the challenges to response efforts were characterized by Incident Commander Thad 

W. Allen as more akin to the first moon landing than to those surrounding the grounding of the 

Exxon Valdez, second in U.S. history to the magnitude of the DWH oil spill (Allen 2010).   

 

Delivery of an estimated 4.9 million barrels (779 million L) of petroleum into the Gulf of 

Mexico by the time the wellhead was capped on 15 July, 2010, was accompanied by application 
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of approximately 2.1 million gallons (7.9 million L) of dispersant (Corexit® EC9500A and 

EC9527A) (Daly et al. 2016).  Several factors produced novel transport and fate issues — the 

extreme 1,522 m depth of the hydrocarbon release, the dispersive force created by large volumes 

of methane and oil released under high pressure, and the application of dispersant directly into 

the flow from the wellhead, in addition to application at the surface (Joye et al. 2011; Kessler et 

al. 2011; Lubchenco et al. 2012; McNutt et al. 2012; Paris et al. 2012; Daly et al. 2016; Rogener 

et al. 2018).   

 

These factors, acting in concert, supported the development of persistent subsurface oil plumes, 

which were found associated with O2 anomalies (Valentine et al. 2010; Joye et al. 2011; Kessler 

et al. 2011).  The depressed O2 readings were initially questioned as a possible result of 

instrument fouling (Mascarelli 2010); however the O2 departures were ultimately found to be 

correlated with fluorescence spikes by a number of researchers employing in situ fluorometers to 

track subsurface oil (Diercks et al. 2010; Goni et al. 2010; Joint Analysis Group 2010; Smith et 

al. 2014).   

 

The SMART protocol developed through a collaborative effort of the U.S. Coast Guard, NOAA, 

U.S. EPA, Centers for Disease Control and Prevention, and Minerals Management Service calls 

for three tiers of observation in support of the remediation of oil spills through the application of 

chemical dispersants.  (See Chapter 3 for protocol details.)  The guidelines were developed with 

the use of a flow-through fluorometer as the monitoring instrument of choice, although it is 

stated that “alternative instruments” may be used (U.S. Coast Guard et al. 2006).  In the response 

to the DWH oil spill over the weeks and months following the blowout, researchers employed a 
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variety of in situ fluorometers in the effort to track the oil/dispersant.  Affixed to CTD rosettes, 

these instruments were configured to measure fluorescence at instrument-specific fairly narrow 

excitation and emission wavelengths.  These results were reported as simply “fluorescence” in 

most cases, and some uncertainty surrounded what, exactly, these fluorometers were detecting; 

analysis was further complicated by the changing spectral qualities of the petroleum due to 

physical and chemical weathering.   

 

First described by Kalle (1949) and studied since then by many researchers, CDOM has been 

categorized into two general pools described by the wavelength ranges of their maximum 

fluorescence intensity — a humic-like component and a protein-like component.  The humic-like 

component was first identified at emission of 420 – 450 nm with excitation at 230 – 260 nm and 

320 – 350 nm (C Peak), while the protein-like pool was identified by emission at 300 – 305 nm 

(B Peak) and 340 – 350 nm (T Peak) upon excitation at 220 and 275 nm (Coble 1996 and 

references therein). Further research expanded the humic-like pool to identification of the M 

Peak at emission of 350 – 420 nm with excitation at 240 and 290 – 310 nm; this slightly blue-

shifted peak is observed in the marine environment, although less commonly than the previously 

identified C Peak.   

 

Arising from aromatic structures remaining in the remineralization of terrestrial matter delivered 

via riverine transport (allocthonous), as well as from sediment and microbial sources in the 

marine environment (autocthonous), the varied sources and complex chemical composition of 

the dissolved organic matter gives rise to a multifaceted fluorescence signal, which can be 

difficult to tease apart (Coble et al. 2014).  The addition of the thousands of fluorescent 
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compounds present in petroleum, whether arising from natural seeps or from anthropogenic 

input, makes the deconstruction of the fluorescence signature more challenging, but there are 

important insights that can be brought to bear on this complex puzzle. 

Historically, laboratory analysis for TPH in the aqueous environment may be accomplished in a 

variety of ways; commonly used methods include the gravimetric method, infrared spectroscopy, 

and gas chromatography with a flame ionization detector (FID) or mass spectrometer (MS) 

(Adeniji et al. 2017).  More recently, gas chromatography has been coupled with metastable ion 

reaction monitoring (GC-MS-MS) and isotope ratio chromatography (GC-IRMS), and the use of 

two-dimensional gas chromatography (GC × GC) has also been employed (Christensen et al. 

2004).  However, there are multiple drawbacks to using any of these methods at sea.  First, all 

involve collection of a significant quantity of water (usually ≥ 1L), followed by the use of toxic 

and/or flammable organic solvents for pre-analysis extraction — a time-consuming process — 

followed by analysis with sensitive equipment, which generally does not well tolerate shipboard 

conditions (Adeniji et al. 2017).  Conversely, the use of spectrofluorometry for the identification 

of petroleum hydrocarbons in the marine environment is an ideal method since it is non-

destructive and enables fast analysis with small quantities of sample (3 mL) and gives highly 

sensitive results (ppb range) (Li et al. 2004).   

 

The intrinsic property of fluorescence in petroleum has likely been recognized since before the 

dawn of science, and the petroleum industry has long used this property in exploration and 

drilling operations (DeMent 1947). Scientific researchers have utilized spectrofluorometry in the 

identification of oil spills, a technique referred to as fingerprinting, since the mid-1970s (Frank 

1975; John and Soutar 1976; Mason and Kerley 1988). Earliest studies of the correspondence 
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between the chemical composition of petroleum and resulting fluorescence dates to the mid-

1980s, with the discovery that lower density was related to higher intensity at shorter 

wavelengths (Henry and Donovan 1984). 

 

Previous researchers in the Coble laboratory analyzed discrete water samples collected with 

Niskin bottles mounted on a CTD rosette on cruises aboard the R/V Nancy Foster in June 2010 

and on the R/V Weatherbird II in May and August 2010.  Samples were collected in the region 

to the northeast of the DWH wellhead and analyzed using EEMS.  Evidence for a deep plume at 

~1,100 m was found, along with evidence for another plume at a mid-water depth of 300 – 450 

m.  The range of EEM fluorescence patterns found in some water samples collected at the 

surface, as well as at various depths in the water column, compared well with a surface oil 

mousse sample and with samples of DWH source oil (MC252) with Corexit® 9500A added at a 

DOR of 1:25 for a final concentration of ~100 ppb.  This indicated the presence of oil and 

oil/dispersant in the water column.  Fluorescence intensity at the higher excitation/emission 

wavelengths typical of naturally occurring CDOM were also observed at some depths, indicating 

that the oil/dispersant plumes were confined to distinct layers.  Highest fluorescence intensities 

for the sub-surface petroleum plume were observed at the Ex/Em wavelengths of 230 nm/330 nm 

(Coble et al. 2011; Paul et al. 2013).   

 

Water samples were also collected aboard the NOAA vessel R/V Walton Smith in August 2011 

and analyzed in the Coble Laboratory with the goal of detection of the Mississippi River plume 

travelling through the Florida Straits along the southern tip of Florida.  Results showed evidence 

of protein-like and humic-like fluorescence peaks typically present in the marine environment 
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resulting from new biological production (Coble et al. 2014); these results were contrasted with 

samples potentially containing the presence of oil and/or dispersants. 

 

The goal of this research was to build on previous results from the Coble Laboratory by 

continuing to collect water samples from the DeSoto Canyon region, to the northeast of the 

DWH wellhead, onboard Florida Institute of Oceanography’s (FIO) R/V Weatherbird II on oil 

spill response cruises WB1210 in December 2010, WB0211 in February 2011, and WB0511 in 

May 2011.  Through analysis of EEMs of water samples collected over the year following the 

DWH oil spill, we planned to investigate the continued presence of oil/dispersant in the water 

column, and, hopefully, to find evidence of recovery. EEMS analysis of pore water extracted 

from sediment cores collected at several sites on the December 2010 research cruise were also 

analyzed for the possible presence of an oil signature in sediments.  This work will help to better 

characterize the optimal Ex/Em wavelength target for fluorometer detection of oil/dispersant in 

the marine environment, and will clarify how the fluorescence signal changes over time 

following the action of temporal chemical and physical weathering. 

 

MATERIALS AND METHODS 

The Coble Laboratory water collection field protocol was used, as follows:  125 mL amber glass 

bottles with PTFE-lined caps were acid washed, followed by rinsing with fresh tap water several 

times and then inverting on racks to air dry.  Bottles were combusted overnight in a muffle 

furnace at 450 ˚C, then cooled, covered with foil and recapped.  Before sample collection, bottles 

were rinsed 3x with 5 – 10 mL sample before filling.  The collection protocol for CDOM called 

for filtration of water samples using a glass syringe and Whatman glass microfiber filters (GF/F) 
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to remove particles ≥ 0.7 µm.  For acidification of samples, bottles were filled with 

approximately 80 mL sample water, then acidified to pH = 2 through the addition of 1 mL of 1M 

HCl, and bottle tops were wrapped with Teflon tape after recapping to prevent leakage. 

 

Water samples were collected aboard the NOAA ship Nancy Foster in July 2010 and sent to the 

Coble Laboratory for fluorescence analysis.  A total of eleven water samples were collected at 

four stations, acidified with HCl to pH = 2, and refrigerated at 4 °C until delivery to the Coble 

Laboratory where they were analyzed on a HORIBA Fluoromax2.   

 

Water samples were collected by members of the Coble Laboratory research group aboard the 

R/V Weatherbird II in August 2010.  Sampling sites were selected to the east of the DWH 

wellhead in order to not only sample visibly oiled surface waters, but also in an attempt to track 

the subsurface plume.  With knowledge of prevailing winds in the Gulf of Mexico and formation 

of the Loop Current in the summer of 2010, and with the support of modelling based on an 

existing ocean circulation model (Weisberg et al. 2011), a series of sampling sites were identified 

(Fig. 4.1).  Water samples were collected with Niskin bottles mounted on a CTD rosette at 

predetermined depths, as well as at the top and bottom of thermocline, chlorophyll maximum, 

and at indication of oiling (e.g., acoustic scattering layer, high fluorescence or particle density at 

depth).  Three replicates were collected from each Niskin bottle in order to compare results of 

fluorescence analysis on whole vs. filtered vs. acidified samples.  Sample bottles were stored 

upright and refrigerated at 4 °C until analysis on a HORIBA Fluoromax2.  Samples were 

analyzed on a HORIBA Fluoromax2, processed using GRAMS and MATLAB software. 
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Figure 4.1.  Map of the northern Gulf of Mexico showing the location of the DWH wellhead and three of the sites 

where water samples were collected aboard the R/V Weatherbird II oil response cruises in December 2010, 

February 2011 and May 2011.  Days of oiling is superimposed.  Map courtesy of Kendra Daly and Kate Dubickas. 

Continued water sampling was conducted in the Gulf of Mexico over the year following the 

DWH blowout in order to detect and monitor presence of oil in the water column.  Water 

samples were collected on three oil response research cruises to the east/northeast of the DWH 

wellhead aboard the R/V Weatherbird II on 1 – 10 December 2010, 17 – 22 February 2011, and 

2 – 7 May 2011 (Table 4.1).  Twelve 20 L Niskin bottles mounted on a CTD rosette sampler 

were triggered on the upcast at set depths, as well as at depths where evidence of O2 minima 

and/or fluorescence spikes were noted on the downcast.  Due to the extreme sensitivity of 

fluorescence analyses, our samples were the first taken from the Niskin bottles followed by 

collection of samples for other chemical analyses (gases, nutrients, chlorophyll,  
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Table 4.1. Samples collected in the year following the DWH oil spill which are included in 

this study 

 
Station ID 

 
Latitude 

 
Longitude 

 
Date 

Sample Collection and (Maximum) 
Water Depths (m) 

July 2010 NOAA NF-10-13-DWHLC (R/V Nancy Foster) to determine potential effects of the 
Loop Current and associated eddies on the transport of oil to the SSE of the DWH wellhead  

NF Sta70 28.0°N 88.2°W 17 July 2010 4.8, 990.8 

NF Sta71 28°37.07′N 88°26.20′W 17 July 2010 3.4, 596, 1150 

NF Sta72 28°37.80′N 88°14.79′W′ 17 July 2010 2.8, 6, 1340 

NF Sta73 28°45.41′N 88°23.95′W 17 July 2010 2.6, 30, 794, 1166 

August 2010 FIO/USF (R/V Weatherbird II) to investigate the impact of the BP oil spill on the 
northern Gulf of Mexico ecosystem, focusing on the lower end of the food web 

DSH10 28 58.542 87 51.992 10 Aug 2010 (1518) 

DSH08 29 06.016 87 52.895 10 Aug 2010 (1200) 

December 2010 FIO/USF (R/V Weatherbird II) to investigate, in the water column and 
sediments, the persistence and impact of BP oil to the northern Gulf of Mexico ecosystem 

PCB06 29 6.117 87 17.313 04 Dec 2010 Surface, 45, 60, 250, 300, 965 
(1050) 

DSH08 29 07.345 87 52.145 08 Dec 2010 Surface, 50, 200, 280, 400, 1100 
(1100) 

DSH10 28 58.254 87 52.438 08 Dec 2010 Surface, 35, 245, 435, 995, 1500 
(1535) 

February 2011 FIO/USF (R/V Weatherbird II) to investigate the impact of the BP oil spill on the 
northern Gulf of Mexico ecosystem, focusing on the lower end of the water column food web 
and the flux of oil to the seafloor 

DSH10 28 58.57 87 52.10 19 Feb 2011 2, 10, 25, 50, 60, 75, 110, 150, 300, 
400, 500, 786, 1000, 1100, 1200, 
1400 (1500) 

DSH08 29 07.35 87 52.12 20 Feb 2011 Surface, 25, 55, 100, 115, 160, 300, 
400, 750, 1000, 1100 (1100) 

PCB06 29 07.7 87 16.0 21 Feb 2011 2, 10, 17, 50, 84, 100, 300, 400, 500, 
750 (1000) 

May 2011 FIO/USF (R/V Weatherbird II) to investigate the impact of the BP oil spill on the 
northern Gulf of Mexico ecosystem, focusing on the lower end of the water column food web 
and the flux of oil to the seafloor 

DSH10 

28 58.610 87 52.266  

07 May 2011 Surface, 10, 21, 50, 75, 90, 215, 
300, 400, 500, 1000, 1100, 1200, 
1400 (1500) 

DSH08 29 7.405 87 52.079 07 May 2011 Surface, 25, 50, 75, 100, 300, 400, 
500, 750, 1000 (1100) 

August 2011 NOAA (R/V Walton Smith) to acquire shipboard data to corroborate satellite 
imagery and document the in situ surface characteristics of the Mississippi River plume along 
the eastern edge of the Loop Current to the Florida Keys 

01 25.64508 80.12412 02 Aug 2011 Surface 

15 24.64465 81.01707 03 Aug 2011 Surface 

21 24.53642 81.41122 03 Aug 2011 Surface 

21.5 24.48428 81.38937 03 Aug 2011 Surface, 19, 70, 133 

25 24.39397 82.76852 04 Aug 2011 Surface 
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pigments/HPLC).  After filling, sample bottles were immediately placed upright in the 

refrigerator and held at 4 °C until analysis on a HORIBA fluorometer.   

 

Samples from the December cruise were analyzed on a HORIBA Fluoromax2 

spectrofluorometer at sea as time allowed, and remaining samples were frozen at sea for eventual 

thaw and analysis on a HORIBA Fluromax4 spectrofluorometer in the Coble Laboratory.  

Unfortunately, the Fluoromax2 was inoperable following the December 2010 cruise, and repair 

was impossible.  Therefore, samples from the February and May 2011 cruises were analyzed 

solely on the Fluoromax4.  Every attempt was made to run samples at sea as soon as practicable 

following collection; however, if circumstances were not conducive (e.g., rough seas, insufficient 

travel time between sample sites, problems with shipboard Milli-Q water quality) samples were 

frozen at sea for future thaw and analysis in the Coble Laboratory.  A test of each instrument’s 

xenon lamp was performed at the beginning of each day, and a blank containing Milli-Q water 

was used to conduct an instrument alignment test, and then used in an EEM analysis before 

running samples each day.  Results were translated into QSE units through dividing proton 

counts per sec (CPS) by the slope of a quinine sulfate dilution series (conversion factor = 3200) 

(Coble et al. 1993). 

 

December 2010 

Samples were collected aboard the R/V Weatherbird II during the 1 – 10 December 2010 cruise; 

two water samples were collected at each location depth in pre-fired amber bottles.  One sample 

was acidified, and the second was left unaltered. Based on analysis of filtered vs. non-filtered 

samples on the August 2010 cruise, no filtering was done in order to avoid inadvertent removal 
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of petroleum hydrocarbons and/or dispersant.  The HORIBA Fluoromax2 was used to analyze 

samples at sea, and a routine for a “short EEM,” with excitation at just four wavelengths, was 

used to run all samples as soon as possible following collection to look for any signs of oil 

remaining in the water column.  As many full EEMs as possible were also run at sea on both the 

whole and acidified samples.  Samples of pore water centrifuged from upper sections of selected 

sediment cores collected on the cruise were also analyzed at sea, with dilution as necessary to 

avoid oversaturation of the fluorescence signal.  After returning to the Coble Laboratory at the 

USF College of Marine Science, the remaining samples were analyzed and processed on the new 

Fluoromax4 instrument using FluorEscence software.  Since excitation and emission corrections 

were applied automatically with this software, the only post-processing done was translation to 

QSE units. 

 

February and May 2011 

Water samples were collected aboard the R/V Weatherbird II on 18 – 22 February 2011 and 5 – 

7 May 2011 following the previously noted Coble Laboratory collection protocol; however, due 

to decay of the fluorescence signal detected in the analysis of acidified vs. frozen samples from 

the December 2010 cruise, a decision was made to no longer acidify samples.  Only a single 

whole sample was collected at each location depth on these two cruises; they were placed 

immediately into the onboard laboratory refrigerator and maintained at 4 °C until analysis.  The 

HORIBA Fluoromax4 instrument was taken aboard on both cruises, and as many water column 

samples as possible were analyzed at sea.  Pore water from sections of selected sediment cores 

was also analyzed at sea, with dilution as necessary to avoid oversaturation of the fluorescence 

signal.  Samples that were not analyzed at sea were analyzed as soon as possible after return to 
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the Coble Laboratory.  Again, the only post-processing to EEMs was translation to QSE units.  

However, upon deeper inspection of EEMs collected on the Fluoromax4, a problem with the 

instrument’s emission correction file was detected, which required retroactive application of new 

correction files to all EEMs collected on that instrument.  This was accomplished using 

MATLAB (The MathWorks 2018). 

 

To provide a framework for discussion of water samples collected in the Gulf of Mexico during 

the response to the DWH oil spill, surface seawater collected during the December 2010 R/V 

Weatherbird II cruise from an unoiled location was analyzed on the Fluoromax4 to provide an 

EEM of typical seawater.  This water was collected in Perdido Pass using a bucket and was 

stored frozen in the Coble Laboratory until analysis.  Another sample of this water was then used 

to create dispersed oil in seawater using 1 mL MC252 oil (collected from the Discoverer 

Enterprise) and 4 µL Corexit® 9500A for a DOR of 1:25 (final concentration of ~100 ppb).  

This enabled conversion of fluorescence in QSE to the equivalent ppb oil with chemical 

dispersant.  Finally, an EEMS analysis of tyrosine was performed on a solution created by 

dissolving 0.08 g tyrosine (stock on hand in the Coble Laboratory) in 1 L Milli-Q water to show 

the contrast between the Fmax Ex/Em and spectral shape of Peak B and oil-type fluorescence. 

 

In the sample of typical seawater (Fig. 4.2, top left), minor fluorescence intensity is visible at 

Ex/Em 275 nm/300 nm (B Peak).  Note that fluorescence intensity increases in this region in the 

dispersed oil sample (Fig. 4.2, top right), albeit at a slightly higher emission wavelength.  This is 

joined by high fluorescence intensity at Ex/Em 275 nm/325 nm and a broad, low fluorescence  
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Figure 4.2.  EEMs of typical seawater collected at the surface with a bucket at Perdido Pass on 7 December 2010 

(top left), and with the addition of MC252 oil and Corexit® 9500A at DOR 1:25 for a final concentration of 100 ppb 

(top right).  The scale is the same for both EEMs.  On the bottom right is an EEM of primary stock solution of 

tyrosine dissolved in Milli-Q water (bottom left).  Analysis performed on HORIBA Fluoromax4. 

peak centered at Ex/Em 250 nm/450 nm, all of which are typical of dispersed oil in seawater.  Of 

note is the important difference between the fluorescence intensity characteristic of proteins, 

typified by the EEM of tyrosine dissolved in water (Fig. 4.2, bottom left), and that of dispersed 

MC252 oil (Fig. 4.2, top right).  In addition to the maximum fluorescence intensity shown at 

Ex/Em 275 nm/300 – 305 nm, tyrosine-like proteins typically display a fluorescence peak of 

lower intensity at Ex/Em 230 nm/300 – 305 nm.  However, the fluorescence intensity of oil in 

the Ex/Em 230 nm/325 nm range is of equal or even higher intensity than that seen at Ex/Em 275 
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nm/325 nm.  We propose that this difference can be used to facilitate the distinction between 

proteins and oil in the natural environment. 

 

August 2011 

Water samples were collected at the surface only, as well as samples collected at additional 

depths, at 23 separate stations aboard the NOAA vessel R/V Walton Smith in August 2011.  The 

goal of this cruise was to utilize FDOM to look for evidence of the Mississippi River plume 

along the southwest coast of Florida, through the Florida Straits, and along the southeast Florida 

coastline.  Samples were collected using the Coble Laboratory CDOM protocol, including 

filtration using a glass syringe and Whatman GF/F; however, samples were not acidified but 

were frozen at sea.  Following thaw in the laboratory refrigerator for two days, samples were 

analyzed on the HORIBA Fluoromax4 in the Coble Laboratory. 

 

RESULTS 

The water samples collected in August 2011 along the Florida coastline aboard the NOAA ship 

Walton Smith are the last samples analyzed in this study; however, we begin with those results in 

order to provide a fluorescence profile that is very typical of naturally-occurring CDOM and 

protein fluorescence in the marine environment.  This provides an appropriate background 

against which to compare water samples showing petroleum-related fluorescence profiles.  We 

will then present results from the samples collected in the Gulf of Mexico over the course of the 

thirteen months following the beginning of the DWH oil spill, first aboard the R/V Nancy Foster 

in July 2010, and then aboard the R/V Weatherbird II in August and December, 2010, and in 

February and May, 2011. 
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R/V Walton Smith – August 2011 

Results of EEMs analysis showed elevated fluorescence intensity at Ex/Em 275 nm/350 nm (T 

Peak) and Ex/Em 320 nm/400 nm (C Peak), evidence of the presence of proteins and FDOM, 

respectively, potentially arising from the influence of the Mississippi River plume as it traversed 

the Florida Straits.  Samples from locations 15 and 21 (Fig. 4.4, top) show typical “bluewater” 

fluorescence, while samples from locations 1 and 25 (Fig. 4.4, bottom) show significant protein 

and CDOM fluorescence.  In Fig. 4.5, the surface sample from location 1 shows the strongest 

protein as well as CDOM fluorescence (top), while the deepest sample (bottom right) shows an 

insignificant protein peak as well as greatly reduced FDOM fluorescence.  This would be a very 

typical marine depth profile. 

 

An elevated ratio of fluorescence intensity at Peak T to Peak C is indicative of flooding from an 

urbanized river due to the presence of sewage outflow (Baker 2001; Khamis et al. 2018), and 

Mississippi River flooding took place at near record levels in April/May 2011.  Figure 4.6 

presents chlorophyll a vs. the ratio of Peak T to Peak C, showing the likely influence of the 

Mississippi River plume in the R/V Walton Smith samples from August 2011. 

 

EEMS analysis of the samples collected on the R/V Walton Smith in August 2011 show protein-

like fluorescence (Peak T) ranging from 0.22 to 10.8 ppb QSE, with an average of 1.55 and 

median of 1.11 ppb QSE.  The highest values were found in the two samples collected near the 

outlet of the Shark River at the surface.  The Shark River is a major distributary of the Harney 

River, draining the southwestern Everglades National Park, thus a high level of biological 

productivity would naturally be reflected in the outflow.  These two samples were extremely 

anomalous, 6.5 and 9.8 times higher than the average found in all other samples.  Lowest 
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protein-like fluorescence was found in the sample from 133 m near the coastline to the south of 

Big Pine Key.  In fact, the lowest six values were all found in deep water samples, and all 

samples collected below 85 m had levels less than 1.0 ppb QSE.  Only two samples collected at 

the surface had Peak T fluorescence in this range, and these two were located just to the south of 

the Dry Tortugas and in the middle of the Florida Strait. 

 

CDOM fluorescence ranged from 0.03 to 8.85 ppb QSE, with an average of 1.31 and a median of 

0.93 ppb QSE.  Remarkably, the levels of CDOM found in the two samples influenced by the 

Shark River with high protein-like fluorescence had CDOM levels near the mean for all samples 

collected on this cruise.  The highest levels of CDOM fluorescence were found in water samples 

collected at 70 m and 133 m just off the coast near Big Pine Key; these were both more than five 

times higher than the mean for samples on this cruise.  Interestingly, the second-highest CDOM 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3.  Google Earth image with marked locations of selected water samples collected at the surface aboard the 

NOAA ship R/V Walton Smith in the Florida Straits in August 2011. 
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Figure 4.4.  EEMs of water samples collected at locations identified in Fig. 4.3.  Units on color bar are CPS.  Fluorescence intensity in ppb QSE is indicated at Ex/Em 275 nm/350 nm 

(T Peak) and 320 nm/400 nm (C Peak).   
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Figure 4.5.  EEMs of water samples collected just to the south of Location 1 in Fig. 4.3.  Samples collected at the surface (top left), at 18.5 m (top right), at 70 m (bottom left), and at 

133 m (bottom right).  Units on color bar are CPS.  Fluorescence intensity in ppb QSE is indicated at Ex/Em 275 nm/350 nm (T Peak) and 320 nm/400 nm (C Peak).   
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Figure 4.6.  Chlorophyll a versus the ratio of protein-like to humic-like fluorescence in water samples showing 

the likely influence of the Mississippi River plume collected aboard the R/V Walton Smith in August 2011. 

fluorescence was seen in the sample with the lowest protein-like fluorescence.  The three 

lowest values for CDOM fluorescence were found in water samples collected at 137 m, 60 m, 

and 197 m.  The sample from 60 m had higher than average protein-like fluorescence; 

however, the other two samples had lower than average protein-like fluorescence along with 

the low CDOM signal.  Fluorescence at depths < 100 m typically arises from primary 

production related DOM, and it rapidly decreases with depth below the photic zone.  Any 

remaining fluorescence signal in the deep ocean is usually a humic-like or protein-like 

signature (Schifter et al. 2017) 

 

R/V Nancy Foster – July 2010 

Samples were collected on July 17, 2010, in the vicinity of the DWH wellhead two days after 

it was successfully capped (Fig. 4.7, top left, and Table 4.1).  EEMS analysis of eight samples 

showed fluorescence peaks at Ex = 230 and 275 nm and Em = 330 nm, indicative of the 
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presence of petroleum.  Of note is the parallel between the fluorescence maxima in this 

region and the published fluorescence maxima of naphthalene (Mendoza et al. 2013).  

Naphthalene was found to be the predominant PAH present (65 %) in MC252 crude oil 

provided to researchers by BP (Liu et al. 2012), which was also confirmed by chemical 

analyses of water samples collected during the BIO wave tank experiments reported in 

Chapter 2.   

 

Further evidence for the correspondence between fluorescence in this region and petroleum 

hydrocarbons arises from the reported fluorescence maxima of BTEX compounds at Em = 

285 – 291 nm with excitation at 252 – 275 nm (Taniguchi and Lindsey 2018).  Mendoza et al. 

(2013) reported three fluorescence peaks for benzene at Ex/Em 225 nm/335 nm, 250 nm/275 

nm, and 250 nm/550 nm (in order of decreasing intensity), as well as three for toluene at 

Ex/Em 260 nm/280 nm, 260 nm/560 nm, and 225 nm/415 nm (2013).  Naphthalene has a 

reported double peak at Em = 320 – 322 nm and 324 nm upon excitation at 275 nm 

(Giamarchi et al. 2000; Taniguchi and Lindsey 2018).  Mendoza et al. (2013) also noted three 

peaks for naphthalene at Ex/Em 275 nm/330 nm, 225 nm/330 nm, and 230 nm/495 nm, again 

in order of decreasing intensity.  These results are well-correlated with the appearance of oil-

related fluorescence maxima at Ex/Em 225 nm/330 nm and 275 nm/330 nm in our EEMS 

analysis at all three scales — baffle flask experiments, wave tank experiments and field 

samples. 

 

The highest level of oil-type fluorescence was observed in the sample from Station 71 

collected at 1,150 m (23.8 ppb QSE), providing evidence of a sub-surface oil plume; 

however, as expected at this depth, CDOM fluorescence was very low in this sample (0.77 

ppb QSE) (Fig. 4.8, right).  Based on the standard created in the Coble Laboratory, the oil-
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type fluorescence in this sample was equivalent to 7.51 ppb MC252 oil with Corexit® 9500A 

at DOR 1:20. This signal was associated with the fluorescence detected by a CTD-mounted 

WET Labs ECO FLCDRTD in situ fluorometer, as well as with a slight O2 depression (Fig. 

4.7) (Goni et al. 2010; Smith et al. 2014).   

 

The second-highest oil-fluorescence signal was in the sample from Station 73 at 2.6 m (16.7 

ppb QSE); however, CDOM fluorescence was also elevated in this sample (5.04 ppb QSE), 

as would be expected in a typical surface water sample.  Moderate levels of oil-type 

fluorescence were seen in two samples, from Station 71 at 3.4 m (7.19 ppb QSE) and from 

Station 72 at 2.8 m (7.07 ppb QSE).  The shallower sample also displayed typical surface 

CDOM fluorescence of 2.39 ppb QSE.  Minor levels of oil-type fluorescence were seen at 

Station 70 in both samples collected at that site, with 3.63 ppb QSE in the sample at 4.8 m 

and 3.14 ppb QSE in the sample at 991 m.  The latter provided further evidence of a 

deepwater plume, along with the oil-type fluorescence seen in the sample at Station 73 from 

1,166 m (3.32 ppb QSE).  Finally, the sample from 30 m at Station 74 displayed oil-type 

fluorescence of 2.13 ppb QSE.   

 

The sample from Station 71 at 1,150 m (23.8 ppb QSE) was the highest oil-type fluorescence 

signal seen overall in any of our field samples from the Gulf of Mexico for the entire 

experimental series.  Based on the standard created in the Coble Laboratory, this was 

equivalent to 7.51 ppb MC252 oil with Corexit® 9500A at DOR 1:20. 
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Figure 4.7.  Locations of sampling stations NF Sta71, 72 and 73 (top, left), and CTD/LADCP hydrography 

conducted near the DWH MC252 wellhead on July 1, 2010.  From “Oceanographic conditions in the Gulf of 

Mexico in July 2010, during the Deepwater Horizon oil spill,” by R.H. Smith, et al., Continental Shelf Research, 

77, p. 118.  Copyright 2014 by Elsevier Ltd.  Reprinted with permission. 
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Figure 4.8.  Water samples collected aboard the R/V Nancy Foster from 2.6 m at Station 73 (left) with highest 

fluorescence signature of oil at or near the surface, and sample from 1150 m at Station 71 (right) showing 

evidence of the deep water plume in July 2010. 

R/V Weatherbird II – August 2010 

Water samples collected aboard the R/V Weatherbird II on 10 August 2010 at DSH10 were 

analyzed on a HORIBA Fluoromax2, and EEMs were created with MATLAB (The 

MathWorks 2018).  Figure 4.9 depicts fluorescence intensity at selected Ex/Em wavelength 

pairs in all water samples collected at DSH10 (top left).  Elevated fluorescence intensity at 

Ex/Em 225 nm/330 nm and 275 nm/330 nm, is again noted.   

 

These fluorescence results appear to characterize a subsurface plume at 400 m, which is 

corroborated by the dissolved oxygen depression at 452 m shown in the depth profile of CTD 

data for dissolved O2 and salinity (Fig. 4.9, top right).  Mendoza et al. (2013) also found 

evidence of a sub-surface plume at 400 m to the north of the DWH wellhead in May/June 

2010 aboard the NOAA ship Gordon Gunter.  EEMs of water samples at the surface (Fig. 

4.9, bottom left) and at 400 m (Fig. 4.9, bottom center) show the presence of oil at 9.2 ppb 

QSE and 8.7 ppb QSE, respectively.  However, the sample collected at 1,000 m (Fig. 4.9, 

bottom right) shows only normal marine CDOM fluorescence peaks C and AC (1.2 ppb QSE).   

.
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Figure 4.9.  Plot of fluorescence intensity at five selected excitation/emission pairs (top left) for all water samples collected aboard the R/V Weatherbird II at DSH10 on 10 

August 2010 and depth profile of CTD data for dissolved oxygen and salinity (top right).  EEMs of water samples collected at the surface, 400 m and 1,000 m (bottom, left to 

right). 
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R/V Weatherbird II Time Series – December 2010, February 2011, and May 2011 

Due to storms and resulting rough seas on both the December 2010 and February 2011 

cruises, it was not possible to visit all sites on the cruise plan for every cruise; however, 

samples were collected from sites DSH08 and DSH10 on all three cruises.  Although site 

PCB06 was not on the plan for the May 2011 cruise, samples were collected at that site in 

both December 2010 and February 2011.  Therefore, fluorescence analyses of water samples 

from these three sites are presented as they best represent the evolving presence of oil to the 

northeast of the DWH wellhead over the year following the initial blowout.  The site with 

maximum water depth was DSH10 at ~1,500 m, followed by DSH08 at ~1,100 m, and 

PCB06 at ~1,000 m.  Fig. 4.1 shows the spatial relationship of these sites to the DWH 

wellhead, and specific latitudes and longitudes are given in Table 4.1. 

 

Although previous analyses of water samples by the Coble Laboratory research group 

showed maximum fluorescence associated with the presence of oil with excitation at 225 nm, 

output of the 150-W xenon lamp source in the Fluoromax4 is very low below 250 nm, which 

requires the application of a very high correction factor.  The resulting signal is extremely 

variable, and it is difficult to distinguish true fluorescence from noise at excitation = 225 nm.  

Since fluorescence maxima of small molecular weight aromatic hydrocarbons at excitation 

wavelengths of 252 – 275 nm is supported by the scientific literature, Ex/Em 275 nm/324 nm 

and 275nm /330 nm are presented in the following figures as indicative of the presence of oil. 

 

Appendix E presents the results EEMS analysis of all water samples collected aboard the R/V 

Weatherbird II oil response cruises at sites DSH08 and DSH10 in December 2010, February 

2011, and May 2011, as well as of all water samples collected at PCB06 in December 2010 
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and February 2011.  Also presented are depth profiles for selected fluorescence intensity 

peaks in those analyses as well as depth profiles of CTD data.   

 

DISCUSSION 

Among other findings, fluorescence intensity characteristic of oil was detected at all sites in 

surface samples (< 21 m) to at least some degree over the entire series; however, oil 

concentration (in ppb QSE) behaved somewhat differently over time at each site. 

 

December 2010 — DSH08, DSH10, and PCB06 

Results at all three sites showed a consistent pattern of the highest oil concentrations being 

present in the surface samples on this research cruise, with the single highest overall 

concentration measured (2.52 ppb QSE, 0.79 ppb dispersed oil) at DSH08 on this research 

cruise (Fig. 4.10)  Evidence of the presence of a deep sub-surface plume was also seen in 

December 2010 in slightly elevated fluorescence intensity at Ex/Em 275/324 nm in the 

sample from 955 m at DSH10 and from 1,000 m at DSH08; however, this phenomenon was 

not observed at PCB06. 

 

February 2011 — DSH08, DSH10, and PCB06 

In February 2010, a marked increase in fluorescence intensity indicating the presence of oil 

was observed both at or near the surface as well as at the maximum water sample depths at all 

sites (Fig. 4.11).  Oil-like fluorescence intensity at Ex/Em 275 nm/324 nm at DSH10, closest 

in proximity to the DWH wellhead, was highest at the surface (4.65 ppb QSE, or 1.47 ppb 

dispersed oil), while at DSH08 it was highest at 55 m (4.98 ppb QSE, or 1.57 ppb dispersed 

oil).  In fact, oil-like fluorescence intensity at Ex/Em 275 nm/324 nm in the surface sample at 

DSH10 was 2.3 times that observed at the surface in December 2010, and that seen in the 
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Figure 4.10.  Fluorescence intensity (ppb QSE) at Ex/Em 275 nm/324 nm, indicative of oil in the water column, 

at sites DSH08, DSH10, and PCB06 in December 2010. 

sample from 55 m at DSH08 was 3.2 times higher in February 2011 than in December 2010.  

In the sample from the surface at DSH10, secondary fluorescence intensity at Ex/Em 250 

nm/450 nm (Peak AC) and at 360 nm/450 nm (Peak C) are also of note, due to the presence of 

naturally occurring FDOM.  Note that in the sample from 75 m, the fluorescence signal is 

blue-shifted to Ex/Em 250 nm/400 nm (Peak AM) and 300 nm/400 nm (Peak M).  It is 

believed that FDOM in the marine environment fluoresces at this slightly lower wavelength 

range due to the fact that marine humics are less aromatic than those of terrestrial origin 

(Coble 2007).  The sample collected at 17 m at PCB06 in February 2011 was the highest oil-

type fluorescence observed at that site as well (3.35 ppb QSE, or 1.06 ppb dispersed oil), 

which was 1.78 times that seen in the surface sample in December 2010. 

 

Deep water samples collected at both DSH08 and DSH10 increased in oil-type fluorescence 

intensity in February 2010 as well.  Closest to the DWH wellhead, the greatest increase was 
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seen at 1,100 m (0.89 ppb QSE, or 0.28 ppb dispersed oil) at DSH10 on this cruise.  

Concentration increased only slightly at DSH08 in the sample from 1,000 m from that found 

at 1,100 m in December 2010 (0.64 to 0.69 ppb QSE, or 0.20 to 0.22 ppb dispersed oil).  

However, the samples from DSH08 at 750 m and 1,100 m in February 2011 had lower oil-

type fluorescence intensity than that at 1,000 m, indicating the continuing presence of a 

defined deepwater plume.  These results suggest that oil in the water column was still making 

its way to the surface a full seven months after the DWH wellhead was capped.  Only at 

PCB06 was a continuing decrease in oil fluorescence observed at maximum sample depth on 

this cruise, from 0.43 ppb QSE (0.14 ppb dispersed oil) at 965 m to 0.45 ppb QSE (0.14 ppb 

dispersed oil) at 750 m. 

 

May 2011 — DSH08 and DSH10 

In May 2011, significant oil-type fluorescence (3.96 ppb QSE, or 1.25 ppb dispersed oil) was 

still apparent in the water sample from 21 m collected at DSH10, and a slight increase was 

noted in the deep water samples collected from 1,000 m to 1,400 m as well (Fig. 4.12).  

Results at DSH08 were somewhat surprising, with the highest overall fluorescence intensity 

for that cruise seen in the sample from 1,000 m (1.77 ppb QSE, or 0.45 ppb dispersed oil); 

however elevated oil fluorescence was also seen at 50 m (1.64 ppb QSE, or 0.52 ppb 

dispersed oil).  Concentrations at all depths below 55 m were greater in May 2011 than in 

February 2011 at DSH08.  It is important to note that PCB06 was not visited in May 2011 so 

no observations of continuing oil fluorescence at that site are available. 

 

The highest overall oil-type fluorescence in the field samples collected in the Gulf of Mexico 

was found in the water sample collected aboard the R/V Nancy Foster in July 2010 at Station  
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Figure 4.11.  Fluorescence intensity (ppb QSE) at Ex/Em 275 nm/324 nm, indicative of oil in the water column, 

at sites DSH08, DSH10, and PCB06 in February 2011 at all depths (upper), and at depths up to 500 m (lower) in 

order to visually separate shallower samples. 
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Figure 4.12.  Fluorescence intensity (ppb QSE) at Ex/Em 275 nm/324 nm, indicative of oil in the water column, 

at sites DSH08 and DSH10  in May 2011 at all depths (upper), and at depths up to 500 m (lower) in order to 

visually separate shallower samples. 
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71 from 1,150 m (23.8 ppb QSE), equivalent to 7.51 ppb dispersed oil. Highest oil-related 

fluorescence in water samples collected on the R/V Weatherbird II in August 2010 were at 

DSH10 in the samples collected at 60 m (8.02 ppb QSE) and 400 m (8.71 ppb QSE), 

equivalent to 2.53 ppb and 2.75 ppb dispersed oil, respectively.  The highest concentration 

found in the three-cruise series aboard the Weatherbird II which encompassed December 

2010 to May 2011 was 4.98 ppb QSE in the water sample collected at 55 m at DSH08 in 

February 2011, equivalent to 1.57 ppb dispersed oil.   

 

For comparison with the wave tank experimental series, the concentration of oil-type 

fluorescence in Experiment #6 (weathered oil with dispersant) at t = 90 min. was 54.58 ppb 

QSE.  Using the standard created in the Coble Laboratory, this would be equivalent to 17.22 

ppb dispersed oil.  Chemical analysis by scientists at BIO of a separate water sample 

collected at that time point was 53 ng mL–1 (ppb) BTEX and 9.07 ng mL–1 (ppb) naphthalene 

and homologs.  The overall concentration of oil/dispersant in the wave tank was calculated to 

be ≤ 3 ppb (Conmy et al. 2014); however, the actual oil/dispersant concentration at the port 

from which the water samples was collected would certainly have varied.   

 

Schifter et al. (2017) found unexpected levels of fluorescence at depths of 1,100 m or greater 

at 19 of the 40 stations sampled throughout the southern Gulf of Mexico in October 2013 and 

proposed that this could potentially be due to the deepwater plume that traveled from the 

DWH to the southwest.  Hydrocarbonoclastic bacteria were present in the water samples 

collected at these locations, suggesting that the fluorescence may be at least partially due to 

their biological activity.  As these authors point out, the lack of research into deepwater 

FDOM in the Gulf of Mexico makes a more conclusive determination impossible. 
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Sediment Core Pore Water 

Pore water samples centrifuged from sediment cores collected on the Weatherbird II oil spill 

response cruise in February 2011 showed evidence of oil fluorescence as well.  At DSH10, 

the highest oil-like fluorescence intensity (12.8 ppb QSE) was found in the top three 

millimeters of the core (Fig. 4.13), which would be equivalent to 4.04 ppb dispersed oil.  

Although fluorescence intensity was higher (16.7 ppb QSE) in the top section of the sediment 

core at DSH08, it was more typical of proteins (Fig. 4.14) in that fluorescence at the deep UV 

Ex/Em 230 nm/325 nm was of lower intensity than at the higher Ex/Em of 275 nm/325 nm.  

Progressing down core, the intense fluorescence in the deep UV Ex/Em increased while the 

fluorescence at the higher Ex/Em pair lessened, characteristic of oil rather than proteins, 

indicating the highest concentration of oil was present in the top 5 mm of the sediment. 

 

Studies have shown that potentially up to 47% of the oil not recovered following the DWH 

oil spill was delivered to the sea floor in an approximate 110,000 km2 region surrounding the 

wellhead (Romero et al. 2017).  This likely took place both through impingement of the 

deepwater plume on the sediment surface and the large scale MOSSFA event (Romero et al. 

2015).  The resulting oil-enriched sediment layer which accumulated in the summer and fall 

of 2010 was ~1cm thick (Brooks et al. 2015).  Schifter et al. (2017) found PAH 

concentrations of 0.45 to 11.72 ng g –1, dominated by fluoranthrene, pyrene and 

acenaphthylene,  in surficial sediment samples collected by box corer in the southern Gulf of 

Mexico in October 2013.  Another study of PAHs in sediments in the Gulf of Mexico 

following the DWH oil spill found significant levels of naphthalenes, phenanthrenes and 

chrysenes in surface sediments, as well (Snyder et al. 2014). 
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Figure 4.13.  EEM of pore water extracted by centrifuge from the top 3 mm (top left), 3-6 mm (top right), 6-10 mm (bottom left), and 10-20 mm (bottom right) of a sediment core 

collected at DSH10 aboard R/V Weatherbird II in February 2011.  Sample was diluted 4:1 with Milli-Q water to avoid over-saturation of the fluorescence signal and analyzed on 

Fluoromax4.  Each EEM is normalized to peak fluorescence, and concentration in the oil-type fluorescence region at Ex/Em 275 nm/325 nm is noted on color bar. 
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Figure 4.14.  EEM of pore water extracted by centrifuge from the top 5 mm (top left), 5-8 mm (top right), 8-10 mm (bottom left), and 10-20 mm (bottom right) of a sediment core 

collected at DSH08 aboard R/V Weatherbird II in February 2011.  First three samples were diluted 4:1 with Milli-Q water, and the sample from 10-20 mm was diluted 10:1, to avoid 

over-saturation of the fluorescence signal.  Each EEM is normalized to peak fluorescence, and concentration in the oil-type fluorescence region at Ex/Em 275 nm/325 nm is noted on 

color bar.
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PARAFAC Analysis 

A number of studies have employed EEMS analysis of water samples to track petroleum in the 

Gulf of Mexico following the DWH oil spill, and have additionally employed the use of parallel 

factor analysis (PARAFAC) in an attempt to resolve the complex fluorescence signals into 

varying numbers of individual contributing factors (Zhou and Guo 2012; Mendoza et al. 2013; 

Zhou et al. 2013; Bianchi et al. 2014; Zhou et al. 2015; D'Sa et al. 2016).  Described as 

complementary to GC-FID analysis and useful for field identification of oil spills, Christensen et 

al. (2005) first used the combination of EEMS analysis and PARAFAC to fingerprint oiled water 

samples following a tanker spill off the coast of Denmark.   

 

The first study published after the DWH oil spill that utilized EEMs with PARAFAC identified 

four components in a dataset of 91 samples collected in October 2010 and October 2011 (Zhou 

and Guo 2012).  Their Components 1 through 3 identified oil-related fluorescence and the fourth 

was humic-like, based on excitation and emission peak locations.  These authors found only 

weak oil signatures in the samples collected in October 2011; however, it is possible that this 

was due to the use of Whatman GF/F filters on all of their water samples.  As found in our study, 

these authors also found strong presence of oil-related fluorescence in their deepwater samples in 

May 2010, October 2010, and October 2011 (Zhou and Guo 2012).  In collaboration with other 

researchers, these authors then examined 94 different samples collected in May and June 2010.  

In this study they found six components, three oil-related, one that combined terrestrial humics 

and dispersed oil signals, one protein-like, and one degradation product of terrestrial humics 

(Zhou et al. 2013).  It was pointed out that the protein-like component might be explained by the 

presence of oil-degrading bacteria, as we also hypothesize based on our results.   
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In their analysis of samples collected at ten stations within 8.67 to 49.74 km from the DWH 

wellhead, Mendoza et al. (2013) also utilized GC-MS analysis in an attempt to correlate total 

PAH with a single fluorescence Ex/Em maximum.  Unfortunately, they found this method 

significantly underestimated concentration.  In their PARAFAC analysis, seven components 

were identified and related to specific PAHs by Ex/Em maxima.  In addition to the oil-related 

Component 1, three components were identified as benzene/naphthalene-like, one was related to 

Corexit®, and one was humic-like.  Component 1 was found to be related to the Ex/Em 

maximum of MC252 source oil; however, only three of their seven components were well-

correlated with the Zhou et al. (2013) six-component model.  These authors noted a relationship 

between their Corexit®-related component, the humic-like component and a benzene-enriched 

component in their deepwater samples and called for future work to better understand the co-

variation of these components (Mendoza et al. 2013). 

 

D’Sa et al. (2016) collected and analyzed water samples from both 2009, before the DWH oil 

spill, during the spill in May 2010, and post-spill in April 2012 and April 2013.  PARAFAC 

analysis of the pre-spill samples resulted in three components: one humic-like, one marine 

humic-like, and one protein-like.  Analysis of the post-spill samples collected within 16 km of 

the wellhead resulted in four components: the aforementioned humic-like and marine humic-like, 

with the addition of two in the UV range.  Due to the excitation/emission peaks, these authors 

hypothesize that component 3 is Corexit®-like and component 4 is naphthalene-like; however, 

they note that the latter could be a blue-shifted form of tryptophan and point to oil plume-related 

bacterial activity as a complicating factor.  This study also employed the use of GC-MS in a 

diagnostic ratio analysis to correlate water samples with MC252 oil, but results were 
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inconclusive for all but one sample collected at the surface approximately 1 km from the 

wellhead (D'Sa et al. 2016).   

 

Bianchi et al. (2014) collected and analyzed water samples to the south of the DWH wellhead in 

July 2012 in order to assess the fate of the spilled petroleum.  These samples were combined 

with EEMs from Zhou et al. (2013) and remodeled, and it was determined that a four-component 

model best fit the combined dataset.  Component 1 was terrestrial humic-like, and Component 4 

was amino acid-like.  Components 2 and 3 were oil-related, the former similar to the Zhou et al. 

(2013) degraded oil component, and the latter matching crude oil components in the OpenFluor 

database (Murphy et al. 2014).  Table 4.2 presents the Ex/Em peak locations of components 

identified in each of these studies. 

 

It is important to note that both the D’Sa and Bianchi research groups used filtered water samples 

in their analyses, employing 0.2 µm nucleopore polycarbonate membrane filters and pre-

combusted 0.7 µm Whatman GF/F filters, respectively.  In our experience, filtering reduced the 

oil fluorescence signature in water samples, probably by adsorption of the more hydrophobic oil 

constituents.  Even so, D’Sa et al. (2016) as well as Bianchi et al. (2014) note the long-term 

change in the characteristics of the deepwater DOM pool in the Gulf of Mexico resulting in 

elevated protein-like and/or oil-like fluorescence were still present two to three years after the 

event which warrant further study and monitoring. 

 

With the assistance of Dr. Kathleen Murphy, our entire dataset of water samples collected in the 

Gulf of Mexico during the December 2010, February 2011 and May 2011 oil response cruises (n 
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= 555) were brought into the seven component PARAFAC model, which was developed for the 

BIO wave tank sample dataset presented in Chapter 2.  The result was the presence of only two 

distinct components, well-modeled with low residuals: Component 1 with peak at Ex/Em 280 

nm/336 nm, and Component 2 with peak at Ex/Em 265 nm/312 nm (Fig. 4.15).  Based on the 

Ex/Em peak locations, these two components appear to be naphthalene-like and BTEX-like, 

respectively, as were Component 1 and Component 2 in the wave tank experiments (Chapter 3).   

 

No correspondence was found between these two datasets for Components 3 – 6 in the wave tank 

experiments; however, that is not surprising since the source of the seawater in both sample sets 

was quite different.  The water used for the BIO wave tank experiments was sourced from 

Halifax Harbor, which is heavily influenced by terrestrial runoff, especially given the heavy 

precipitation event which occurred during the course of the wave tank experiments in May/June 

2011.  While the waters in the Gulf of Mexico to the east/northeast of the DWH wellhead could 

be influenced by outflow from the Mississippi River, impact would have likely been negligible, 

especially during the December 2010 and February 2011 cruises.  It is also possible that 

Corexit®-related components may only be present for a limited time following the application of 

chemical dispersants.  Perhaps this component could have been identified in samples collected in 

summer 2010, but the majority of our samples from the Gulf of Mexico were collected beginning 

five months after the cessation of all chemical dispersant applications. 
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Table 4.2. Samples collected in the year following the DWH oil spill included in PARAFAC 

analysis 

 
PARAFAC 
Component 

Excitation 
Wavelength 
(nm) 

Emission 
Wavelength 
(nm) 

 
 
Description 

 
 
Reference 

Component 1 224 328 Oil (Zhou and Guo 2012) 

Component 2 264 324 Oil  

Component 3 232 346 Oil  

Component 4 248 446 Humic-like  

C1 226 340 Oil-related, dominant 
component 

(Zhou et al. 2013) 

C2 236 350 Oil-related, degradation 
component 

 

C3 256, 340 460 Terrestrial humic 
substance and chemically 
dispersed oil 

 

C4 232, 275 324 Amino acids  

C5 224 290, 477 Photchemically degraded 
terrestrial organic matter 

 

C6 252 311 Oil-related, degradation 
product 

 

Comp 1 220 380 Oil mixture (Mendoza et al. 2013) 

Comp 2 220, 255, 270 330 Benzene/Arene-like 
enriched and 
Naphthalene-like 

 

Comp 3 250 440 Humic-like  

Comp 4 225, 270, 280 340 Naphthalene-like 
enriched 

 

Comp 5 235, 310 304, 415 Corexit®-related  

Comp6 225, 280 340 Naphthalene-like and 
Arene-like 

 

Comp 7 240 365 Phenanthrene-like  

C1 250, 365 480 Humic-like (D'Sa et al. 2016) 

C2 250, 305 405 Marine humic-like  

C3 265 310 Corexit®-containing  

C4 270 320 Oil-related, degraded and 
enriched naphthalene-like 

 

C1 240 400-436 Terrestrial humic-like (Bianchi et al. 2014) 

C2 220, 255 290 Degraded oil-like; PAH  

C3 225 338 Crude oil-like  

C4 230, 280 314 Amino acid-like  
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Figure 4.15.  Results of bringing entire Gulf of Mexico water sample dataset (n = 555) into the seven-component 

model created for the wave tank experiments held at BIO in May/June 2011. 

 

CONCLUSIONS 

Although naphthalene (along with its alkylated homologs) was the predominant PAH found in 

the analysis of MC252 reference oil provided to researchers by BP, it had decreased to 3 – 9 % in 

the weathered mousse collected from the sea surface and salt marshes and in sediments collected 

near the wellhead during the same time period as this research study (Liu et al. 2012).  It is quite 

possible that small PAH compounds were lost to biodegradation in the water column and/or to or 

evasion upon reaching the surface.  Therefore, it is reasonable to assume that naphthalene, and 

other small molecular weight PAHs would have been detected through spectrofluorometry, borne 

out by fluorescence intensity in these water samples at Ex/Em 275 nm/324 nm and 275 nm/330 

nm. 
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It is worth noting that fluorescence peaks for proteins, which are commonly found in the marine 

environment, have wavelengths in close proximity to the Ex/Em 275 nm/324 – 330 nm oil peak.  

Fluorescence characteristic of tyrosine at Ex/Em 275 nm/300 – 355 nm, also known as the B 

Peak, and that of tryptophan at Ex/Em 275 nm/340 – 350 nm, also known as the T Peak (Coble 

et al. 2014) is commonly found associated with FDOM in the marine environment.  Clearly, the 

fluorescence intensity that we have found to be characteristic of oil lies directly between these 

two peaks.  It might be possible to distinguish the oil peak from the B and T Peaks through the 

application of PARAFAC to enhance the separation of overlapping fluorescence intensity; 

however, the fluorescence intensity from fresh oil, with or without the addition of chemical 

dispersant, would likely overwhelm any protein signal.  As hydrocarbons travel through the 

water column, these protein peaks would likely increase due to the presence of natural oil-

degrading microorganisms, which have evolved to take advantage of the hydrocarbons present in 

the environment emanating from natural seeps in the Gulf of Mexico (Kleindienst et al. 2015).  

This may result in the transformation of the original focused, high intensity fluorescence peak 

due to oil to a broader peak spanning wider emission wavelengths due to the additional presence 

of proteins exuded in the process of biodegradation.  However, this phenomenon could certainly 

be complicated by a moving plume of oil and/or resuspension of oiled sediments. 

 

It is clear that spectrofluorometric analysis of water samples was successful in detecting the 

continued presence of oil in the water column through May 2011.  The evolving water column 

fluorescence detected during the year following the DWH blowout helps to illuminate a very 

small piece of the puzzle of how the oil traveled both horizontally and vertically as it moved to 

the east/northeast of the wellhead.  Evidence of the continuing presence of the deep sub-surface 
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plume first discovered by other scientists in the summer of 2010 was shown by elevated 

fluorescence at Ex/Em 275 nm/324 – 330 nm in samples from 1,100 m at DSH08 in December 

2010, where it was surprisingly renewed in May 2011.  However, evidence of the deep plume 

was greatest at DSH10 in February 2011.  This phenomenon could be due to resuspension of 

oiled sediments known to be present to the northeast of the wellhead (Brooks et al. 2015; 

Romero et al. 2017) or it may be due to continued leakage from the wellhead, as reported by 

Kolian et al. (2015).  Other researchers have also detected an altered deep-water DOM pool with 

elevated protein-like and/or oil-like fluorescence present for up to three years following the 

DWH oil spill (Bianchi et al. 2014; D'Sa et al. 2016) 
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GENERAL CONCLUSIONS 

 

Although the foregoing chapters progress from the smallest scale to largest, starting with 

experiments in baffled flasks in the Coble Laboratory, through the mid-level range in the wave 

tank series at BIO, to collection of water samples in the Gulf of Mexico, this research took place 

in reverse order in real time.  My introduction to the spectrofluorometric detection of petroleum 

in the marine environment after the DWH oil spill began as I was just getting acquainted with the 

nuances of aqueous CDOM fluorescence.  I came to understand that evidence of the petroleum 

spill in those water samples was truly just a special case of FDOM in the marine environment.  

Revisiting sample data from that first year of research and then performing a well-informed 

reanalysis of those fluorescence signals has resulted in a richer interpretation of my early 

research, which in turn informed the analyses of research performed in the interim in the baffle 

flask and wave tank experimental series. 

 

The first and most important question to be addressed is what led to this investigation into the 

presence of petroleum in the marine environment?  As I began my doctoral research in the 

months following the DWH Spill of National Significance, the entire scientific community’s 

attention was focused on understanding the continuing aftermath of this catastrophic event.  Not 

only the largest oil spill in United States history, it was the first to take place at an extreme depth 

(~1,500 m), and was complicated by the continuing flow of oil for 87 days despite multiple 

attempts to cap the well.  Further, the application of chemical dispersants both at the surface and, 
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for the first time, into the stream of oil and gas emitted at the wellhead added incredible 

complexity to the task of tracking the petroleum’s eventual fate (Bureau of Ocean Energy 

Management 2011; Kessler et al. 2011; Lubchenco et al. 2012; McNutt et al. 2012; Daly et al. 

2016).  Understanding the effects of physical weathering as well as the impact of Corexit® 

9500A on the fate and transport of the oil is critical to those seeking to understand all of the 

impacts to the natural ecosystem. 

 

Developed in the Triassic, the Gulf of Mexico is a small ocean basin, yet is a hydrocarbon mega-

province with many active hydrocarbon seeps (Galloway 2009; Joye 2016).  It is the largest U.S. 

source of offshore petroleum, as well as host to the country’s most extensively developed 

petroleum region off the coast of Louisiana (Thibodeaux et al. 2011).  An associated diverse and 

unique marine ecosystem has evolved in concert with this natural carbon source, especially in the 

area of the DWH wellhead; however, the sudden major spill event had the potential to quickly 

upset that delicate balance (Bergquist et al. 2003).  The impact from any oil spill can range from 

minimal to decimating, with effects ranging from physical smothering, to alteration of habitats, 

toxic effects at sub-lethal to fatal levels, shifts in the food web, and impacts to fisheries, tourism, 

and other industries (Baker 2001).   

 

Although intended to enhance biodegradation of the petroleum, the unprecedented use of 

dispersants was an added unknown in this spill event.  Some scientists have argued that the 

synergistic combination of oil and dispersants may pose an even greater risk than that based 

solely on either compound (National Research Council 1989).  Mesocosm studies on Sargassum 

found that the addition of Corexit® 9500A to MC252 oil compromised its natural buoyancy and 
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caused sinking within 48 hours of oiling (Stout et al. 2018).  Almeda et al. (2013) also found 

Corexit® to be more toxic to zooplankton than oil alone.  Just a few of the other casualties of the 

effects of the combination of MC252 oil and dispersants in the aftermath of the DWH oil spill 

include oysters (Vignier et al. 2016), deep-sea corals (Girard and Fisher 2018) and other benthic 

organisms (Prouty et al. 2016), bottlenose dolphins (Venn-Watson et al. 2015; Kellar et al. 

2017), and sea turtles (Putman et al. 2015).  Many studies note apparent ongoing effects almost a 

decade after the spill and voice the need for further long-term monitoring and assessment (Paul 

et al. 2013; Beyer et al. 2016). 

 

Certainly, more research into the pros and cons of using dispersants, especially at depth, is called 

for (Bejerano 2018).  Studies have shown that the oil flowing from the wellhead at high 

temperature and pressure would have resulted in small, neutrally buoyant droplets that formed a 

sub-surface plume without their use (Paris et al. 2012).  Others have found that chemical 

dispersants can suppress the ability of naturally-occurring microorganisms to decompose the oil 

(Kleindienst et al. 2015), and that DOSS became sequestered in subsurface oil plumes and 

resisted biodegradation for an extended period of time (Kujawinski et al. 2011). 

 

Along with alkanes and cycloalkanes, the most prevalent components of petroleum include the 

single benzene ring compounds in BTEX and multiple-ring PAHs (Tissot and Welty 1978).  

Moderately to highly toxic to aquatic life (Abdel-Shafy and Mansour 2016), and with significant 

potential for bioaccumulation, the lower molecular weight aromatic compounds are generally 

more soluble, more volatile, and often have greater toxicity than higher molecular weight PAHs 

(Cole et al. 1999).  Arising from the absorbance and re-emission of photons within the π orbitals 
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of C=C bonds in the molecular structure, the intrinsic property of petroleum fluorescence is due 

to the presence of these aromatic ring structures (Pradier et al. 1989).  Further, lower molecular 

weight results in fluorescence at shorter wavelengths, as well as of higher intensity, due to self-

quenching and/or intramolecular charge transfer resulting in the reabsorption of fluorescence 

within larger, more complex structures (Smith and Sinski 1999; del Vecchio and Blough 2004) .  

Therefore, petroleum fluorescence is directly related to the chemical composition of petroleum, 

and spectrofluorometry can be used to identify and quantify PAHs (Sinski and Exner 2007).  

Laboratory studies provided evidence for identification of individual PAHs by their unique 

absorption spectra in the 1950s (Jones and Taylor 1955), and fluorescence of individual PAHs 

was related to chemical concentration in laboratory studies in the 1970s (Schwarz and Wasik 

1976).   

 

Combined with the ease of use and capability for rapid analysis that the latest instrumentation 

possesses, spectrofluorometry holds great promise in the detection of the most toxic fraction of 

petroleum.  Using GC-MS, Diercks et al. (2010) found PAH concentrations of 189 mg L−1 (ppb), 

levels toxic to marine organisms, correlated with fluorescence at depths of > 800 m to the 

southwest of the DWH wellhead in May 2010 (R2 = 0.980, N = 8, p < 0.001).  The challenge lies 

in identifying the unique contribution of petroleum to the complex fluorescence spectra arising 

from natural proteins and dissolved organic matter in the marine environment.  Our broad 

spectrum EEMS analysis, coupled with statistical decomposition of the fluorescence spectra, 

advances the progress toward this goal. 
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Our bench-scale research into the fluorescence spectra of 25 types of oil, with and without the 

addition of chemical dispersant at three different DORs, gave evidence of common fluorescence 

maxima (Fmax) across all oil types.  The strongest fluorescence was located in the deep UV at 

Ex/Em 221-239 nm/335-344 em, which was paired with a broader, lower intensity peak at 

Ex/Em 269-291 nm/326-353 nm.  This is in itself somewhat surprising since the array of oil 

types examined ranged from the low density oils Arabian Light and MC252 (API 32.2° and 

35.2°, respectively) to high density Access Western Blend Dilbit and Belridge Heavy (API 21.3° 

and 13.6°, respectively) as well as Intermediate Fuel Oils (API 21.9° to 11.9°).  We also found 

these paired Fmax peaks, with higher intensity at the lower wavelength pair, in our water samples 

from the Gulf of Mexico in the year following the DWH oil spill.  These results point to the 

existence of characteristic fluorescence arising from low molecular weight PAHs in all oil types.   

 

The second important finding from the baffle flask experimental series was the effect of 

chemical dispersant on petroleum-related fluorescence, which was observed in a broad region 

(Fmax3) centered at Ex/Em 250 nm/450 nm.  This resulted in a distinction between two 

overarching types of oil; Type I exhibiting increasing fluorescence with increasing DOR, and 

Type II which did not.  These findings will inform future decisions on the application of 

dispersant to an oil spill.  As an example, based on the fluorescence profile discovered in this 

research, the use of dispersant on IFOs or dilbit is likely to be ineffective and therefore should be 

avoided.   

 

The third finding from this research is the relationship discovered through linear regression 

between fluorescence intensity in the Fmax1 region and 2-ring PAHs, as well as between 
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fluorescence intensity and 3-4 ring PAHs in the Fmax4 region for oil types without chemical 

dispersion.  While chemical analyses corresponding to our water samples from the Gulf of 

Mexico are not available, the correspondence between fluorescence and chemical concentration 

in the baffle flask series results point to the real possibility of using fluorescence to determine 

petroleum concentration in future spills.  We did find, however, that the addition of dispersants at 

highest DOR (1:20), resulted in a reduced relationship between fluorescence intensity and 

chemical concentration.  The effects of chemical dispersant on petroleum clearly need additional 

study with respect to the determination of chemical concentration. 

 

The research done in the wave tank experiments enabled both application of results from the 

bench-scale research and correspondence with data from our samples from the Gulf of Mexico.  

This research not only confirmed that a variety of in situ fluorometers used during the response 

to the DWH oil spill were in fact able to detect oil down to 300 ppb (Conmy et al. 2014), the 

results of my EEMS analyses showed that the transition from fluorescence typical of CDOM to 

the oil-like fluorescence of the Fmax4 region in the baffle flask experiments.  An interesting 

distinction was seen in the fluorescence behavior of oil with and without chemical dispersants 

over the course of each 90 minute experiment, with a blue shift beginning later in the time 

sequence and showing more variability until the end of the experiments with non-dispersed oil.  

This research confirmed the optimal Ex/Em of 270 nm/325 nm for the detection of MC252, both 

with and without dispersant, as noted in our samples from the Gulf of Mexico.  A relationship 

was also seen between chemical concentration of BTEX and fluorescence intensity at Ex/Em 270 

nm/325 nm, as well as a connection between PAHs and fluorescence intensity.  However, 

chemical analyses were only carried out for two experimental series, so further work is clearly 
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needed in order to determine whether a strong functional response between oil and fluorescence 

may be present.  The utility of taking the ratio between emission at two fluorescence 

wavelengths (Bugden et al. 2008) to determine DE was shown to be useful as well.  Taking the 

ratio of fluorescence emission collected at two wavelengths would also solve the perennial 

problem of intercalibration between fluorometers. 

 

In our analysis of the samples collected in the Gulf of Mexico, the effectiveness of taking a ratio 

of fluorescence collected at two emission wavelengths also was proven; however, the two 

wavelengths of interest were those typical of protein at Ex/Em 275 nm/305 nm (Peak B) and the 

oil-like fluorescence at Ex/Em 275 nm/324 nm.  This allowed the differentiation of samples 

showing oil from those with a more protein-like signature.  In the samples collected during the 

summer of 2010, the oil-like signature dominated, while the protein signature became stronger 

over time.  Differences are also seen in this transition from site to site, pointing to the complex 

recirculation and surfacing of petroleum in the Gulf of Mexico through at least May 2011.   

 

In the wave tank experiments, we were able to note the transition from humic-like fluorescence 

to oil-like fluorescence over the 90-minute duration of the experimental series; however, the 

evolution of fluorescence due to the interaction of oil-degrading microbes with petroleum and 

dispersants certainly could not be observed on such a short time scale.  The ratio of humic-like 

fluorescence and protein-like fluorescence to oil-like fluorescence seen in the depth profiles of 

water samples collected over the course of the year following the DWH oil spill clearly delineate 

that interaction.  EEMS analysis of pore water from sediment cores also points to the deposition 

of a significant portion of the sub-surface petroleum plumes to the ocean floor.  Future work to 
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investigate the direct correlation of those fluorescence signatures with chemical concentrations 

of oil would be useful. 

 

Our research into the fluorescence signature of petroleum and dispersant at a range of scales will 

enable better tracking potential future petroleum spills in the marine environment.  It also sheds 

light on the recovery of the Gulf of Mexico ecosystem through the evolution of the fluorescence 

signatures observed over the year following the DWH oil spill.  Also, as Coble (2007) noted, the 

study of CDOM in the marine environment is essential because of its critical role in carbon 

cycling.  In our EEMS analyses of water samples from the surface to extreme depths in the Gulf 

of Mexico following the DWH oil spill, we have seen, through the evolution of fluorescence at 

various wavelengths, that CDOM is clearly tied to the degradation and remineralization of 

petroleum.   

 

Clearly, spectrofluorometry can be a useful tool in the detection and monitoring of future spills, 

and the ability to collect fluorescence emission at multiple wavelengths has been shown.  The 

next generation of in situ instruments would ideally be designed to accomplish this, as evidenced 

by the data collected by the WETLABS SAFIre in the wave tank experimental series.  The 

scientific community as well as governmental agencies tasked with oil-response would benefit 

from this fast and nimble way to track subsurface oil plumes since they do not necessarily follow 

the same track as surface slicks.   

 

Confirmation of EEMS fluorescence associated with the presence of petroleum hydrocarbons has 

been reported by other researchers (Wade et al. 2011; Schifter et al. 2017). Others have noted 
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that the signal from dissolved organic matter in the deep water of the Gulf of Mexico was still 

anomalous up to three years after the DWH oil spill (Bianchi et al. 2014).  Many scientists have 

noted that there was a lack of pre-spill data to help with a determination of when the system 

returned to background levels, as well (Adhikari et al. 2015; D'Sa et al. 2016; Wade et al. 2016).  

There is also a dearth of information from the years following the Ixtoc I oil spill (Sun et al. 

2015).  Continuing to collect and analyze water samples in the Gulf of Mexico is critical in order 

to develop robust datasets (Daly et al. 2016).  Hydrocarbons have been detected in the Gulf of 

Mexico for decades, largely due to the widespread presence of natural hydrocarbon seeps and 

coastal industrial discharges (Schifter et al. 2017).  Continuing water sampling and analysis will 

enable us to better understand the true background level of naturally present hydrocarbons.  This 

in turn will help us to better understand how the marine ecosystem responds to and recovers from 

a major spill event, and to aid in the detection of chronic spills, such as the ongoing Taylor 

Energy spill.  It will also aid in the necessary regulation of exploration and drilling in the Gulf of 

Mexico, as well as inform response efforts to future spills. 

 

Anthropogenic input of hydrocarbons to the marine environment contributes an estimated 

668,000 tonnes per year worldwide, with the largest contribution related to consumption of 

petroleum products, especially from land-based runoff and riverine inputs (National Research 

Council 2003).  Future oil spills will undoubtedly occur resulting from transportation, deepwater 

drilling in the Gulf of Mexico and elsewhere, and potential exploration in the Arctic.  As climate 

change and a warming ocean also negatively impact marine ecosystems, care must be taken to 

safeguard marine organisms from the additional insult of oil spills; monitoring the state of the 

marine ecosystem through spectrofluorometry can enable this essential work.  
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Table A.  Oil characteristics 

 

Oil Types Origin

Sulfur 

(wt %) Ref.

Avg 

Sulfur

Avg API 

Gravity

Avg 

density

Access Western Blend Dilbit 3.91 e (5 yr avg) 3.91 21.6 ±0.9 e 21.25 0.9233 ±.0053 e 0.9243

   20.9 i 0.9253 i <-25 i 347 i

ANS 0.96 c 1.09 31.4 c 30.25 0.8686 c -19 c

   (1989) 1.04 d-API81 26.8 d-EETD89 0.8936 d-EETD89 0.8799 -8 d-EETD89 23 d-EETD89

   (2002) 1.11 d-ESTD02 30.89 d-ESTD02 0.8663 d-ESTD02 -32 d-ESTD02 11.5 d-ESTD02

31.9 t

   (Middle Pipeline) 1.16 d-ESD97 29.9 d-ESD96 0.8761 d-ESD96 -54 d-ESD96 16 d-ESD96

   (Northern Pipeline) 1.14 d-ESD97 30.6 d-ESD96 0.8719 d-ESD96 -55 d-ESD96 14 d-ESD96

   (SOCSEX) 1.11 d-OGJ99 25 d-ESD96 0.8814 d-ESD95 -18 d-OGJ99

27.5 d-OGJ99 0.8899 d-EGJ99

ANS - 10% Weathered (data for "2002") DFO 1.20 d 26.8 d-ESTD02 & calc 0.8940 d-ESTD02 -20 d-ESTD02 31.8 d-ESTD02

Arabian Light 1.77 d-OGJ99 1.85 33.4 d-OGJ99 32.30 0.8658 d-ESD92 0.8633 -28 d-ESD92 14 d-ESD92

31.8 d-ESD92 0.8581 d-OGJ99 -53 d-OGJ99

   (2000) 1.93 d-ESTD02 31.3 d-ESTD02 0.8660 d-ESTD02 -21 d-ESTD02 13 d-ESTD02

32.7 t

Belridge Heavy San Joaquin Valley, California, US1.03 d-ESD93 1.03 13.6 d-ESD92 13.6 0.9746 d-ESD92 2 d-ESD92 12610 ESD92

Brent 0.4 c 0.40 38.20 0.8351 a 0.8340 6 a

0.4 d-OGJ99 38.5 c 0.8324 c 0 c

38.3 d-OGJ99 0.8334 d-OGJ99 -42 d-OGJ99 6 d-ESD94

37.8 d-ESD94 0.8351 d-ESD94 -6 d-ESD95

37.9 t

Cold Lake Dilbit 3.77 c 4.03 19.71 c 21.42 0.9358 c 0.9199 -38 c

4.72 d-EETD88 22.6 d-EETD88 0.9172 d-EETD88 -45 d-EETD88 150 d-EETD88

3.6 d-OGJ92 22.6 d-OGJ92 0.9177 d-OGJ92 -46 d-OGJ92

21.0 i 0.9249 i <-25 i 285 i

21.2 t

Federated 0.29 d-ESD97 0.32 39.40 0.8293 a 0.8280 4 a

0.34 d-ESD99 39.9 ±0.9 e 0.8250 ±4.1 e

   (1998) 38.9 d-ESD99 0.8298 d-ESD99 -22 d-ESD99 5 d-ESD99

Gullfaks 0.18 c 0.31 37.8 c 33.63 0.8358 c 0.8530 -36 c

0.3 d-ESD97 29.3 d-OGJ99 0.8701 a, d-ESD93 -32 d-ESD93 13 a, d-ESD93

0.44 d-OGJ99 31 d-ESD93 <-30 d-Daling91

36.4 t -57 d-OGJ99

Heidrun 0.46 d-Statoil97 0.46 28.6 d-ESD97 28.60 0.8835 d-ESD97 0.8834 -45 d-ESD97 18 d-ESD97

28.6 d-Statoil97 0.8833 d-Statoil97 -48 d-Statoil97

25 t

East Shetland Basin, 

North Sea, UK (water 

depth 140 m)

North Sea, Norway 

(water depth 230 m)

Athabasca region, 

Alberta, Canada

Prudhoe Bay, Alaska 

North Slope, US

Saudi Arabia

NE Alberta, Canada

NW Alberta, Canada 

(Federated Co-op is 

located in Regina, 

Saskatchewan)

API Gravity (with ref.)

density* (g/cm3 or 

g/mL) (with ref.)

Pour Point (°C) 

(with ref.)

Dynamic viscosity* 

(mPa.s or cP)           

(with ref.)

Norwegian Sea (water 

depth 350 m)
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Table A (cont’d).  Oil characteristics 

 

Oil Types Origin

Sulfur 

(wt %) Ref.

Avg 

Sulfur

Avg API 

Gravity

Avg 

density

Hibernia 0.44 c 0.41 34.6 c 35.63 0.8519 c 0.8552 0 c

0.37 d-OGJ99 37.1 d-Mackay82a 0.8390 d-Mackay82a 6 d-Mackay82a 49 b

35 d-OGJ99 0.8500 d-SLRoss99a 2 d-OGJ99 49 d-Mackay82a

35.8 t -6 d-SLRoss99a 30 d-SLRoss99a

   (1999) 0.8504 d-ESD00 10 d-ESD00 13 d-ESD00

   (EPA 86) 28.3 d-EETD86 0.8849 d-EETD86 15 d-EETD86 44 d-EETD86

Hondo 4.3 d-ESD98 4.41 19.6 d-ESD91 19.53 0.9356 d-ESD91 0.9364 -15 d-ESD91 735 d-ESD91

   Blend 4.29 d-OGJ99 20.8 d-OGJ99 0.9288 d-OGJ99 -21 d-OGJ99

   Monterey 4.7 d-OGJ99 18.3 d-ESD98 0.9377 d-OGJ99 -23 d-OGJ99 1599 d-ESD98

4.34 d-ESD99 19.4 d-OGJ99 0.9435 d-ESD98 -9 d-ESD98

IFO-40 unknown 2.51 g 2.51 21.9 g 21.9 0.9286 g

IFO-120 unknown 2.89 g 2.89 18.4 g 18.4 0.9530 h

IFO-180 unknown 1.54 d-ESD97 1.54 14.7 d-ESD95 14.10 0.9778 d-ESD94 -10 d-ESD95 2324 d-ESD94

   12.9 i 0.9664 i 15 i 1920 i

   (SOCSEX) 14.7 d-ESD94 0.9670 d-ESD94 2324 d-ESD94

IFO-300 unknown 1.72 d-ESD97 1.72 <16 s 11.90 0.9859 a 0.9859 -6 d 14,470 a

11.90 d 0.9859 d 14,470 d

   (SOCSEX)

Lago Maracaibo Basin, Venezuela 0.3 d-ESD99 0.3 27.3 d-ESD93 27.3 0.8907 d-ESD93 0.8907 21 d-ESD93 153 d-ESD93

MC252--Discoverer Enterprise Louisiana, US (< 1500 m) <0.1 MSDS <0.1 37.2 l 37.2 0.8500 l

MC252--generic (MC194) Louisiana, US (< 1500 m) 0.21 d-ESD94 0.21 35.2 d-ESD94 35.2 0.8483 d-ESD94 -40 d-ESD94 7 d-ESD94

MESA (Medium South American) 0.85 j 0.87 30.5 j 30.25 -46 j

0.88 t 30 k, t

29.7 v

Santa Clara Ventura County, California, US2.85 d-ESD93 2.85 22.1 d-ESD91 22.1 0.9202 d-ESD91 -3 d-ESD91 304 d-ESD91

Scotian Shelf Condensate (Scotian Light) 0.03 d-EETD86 0.016 53.2 d-ESD99 51.4 0.7655 d-ESD99 0.7943 -22 d-ESD99 1 d-ESD99

Scotian Shelf (Sable Island) Condensate 0.002 c 39.9 d-SLRoss82 0.8230 d-SLRoss82 -22 d-SLRoss82 2 d-SLRoss82

61.1 c 3 d-Mackay82a 3 d-McKay82a

-51 d-EETD86

Sea Rose (White Rose) 0.53 c 0.53 29.8 t 29.8 0.8738 d-ESD00 0.8649 13 d-ESD00 30 d-ESD00

>31 m 0.8560 (20°C) m 16.3 (20°C) m

Terra Nova 0.43 33.2 c, t 33.78 0.8591 c 0.8558 12 c

33.7 d-EETD89 0.8560 d-EETD89 27 d-Buist89 22 b, d-EETD89

   (1994) 0.43 d-ESD97 35.7 d-ESD94 0.8457 d-ESD94 5 d-ESD95 11 d-ESD94

   (Petawawa) 0.43 d-ESD97 32.5 d-ESD93 0.8624 d-ESD93 15 d-ESD93 30 d-ESD93

   (SOCSEX) 11 d-ESD94

Vasconia 0.56 d-ESD99 0.56 26.3 d-ESD98 25.3 0.8958 d-ESD98 6 d-ESD98 72 d-ESD98

24.3 u

Orinoco Basin, 

Venezuela

Nova Scotia, Canada 

(water depth 12-20 m)

Newfoundland, Canada 

(water depth 100 m)

Newfoundland, Canada 

(water depth 90-100 m)

Colombia

API Gravity (with ref.)

density* (g/cm3 or 

g/mL) (with ref.)

Pour Point (°C) 

(with ref.)

Dynamic viscosity* 

(mPa.s or cP)           

(with ref.)

Newfoundland, Canada 

(water depth 80 m)

Santa Barbara Channel, 

California, US (water 

depth 260 m)
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*at 15°C (~60°F), unless otherwise noted.  Note: 1 centi-Stoke (cSt) = 1 mm2/s

**SOCSEX: The oil was used in the 1994/95 Subsurface Oil in Coarse Sediments Experiment (SOCSEX) (in reference d). 
aStoffyn-Egli & Lee,  Spill Science & Technology Bulletin, 2002
bBugden et al., Marine Pollution Bulletin, 2008
chttp://www.exxonmobil.com/crudeoil/about_crudes_api.aspx
dEnvironment Canada ETC database, 2001 (http://www.etc-cte.ec.gc.ca/databases/OilProperties/)
eCrude Quality Inc., 2014 (http://www.crudemonitor.ca/home.php)

s Bunker Specification on the Bunker Delivery Receipt from www.bunkering.co.kr/bunker_spec/30CST.htm (used solely as a way to estimate API for IFO 300)
t The Crude Oils and their Key Characteristics (http://www.energyintel.com/pages/eig_article.aspx?DocId=200017)
u http://www.ecopetrol.com.co/documentos/upload/Especificaciones_Crudo_Vasconia.pdf

mB.Robinsoon & T.King. 8 July 2014. personal communication
n Rhodes, Anne K. "Four California OCS crudes assayed." The Oil and Gas Journal 30 Mar. 1992: 67+. General OneFile. Web. 19 Oct. 2014.
o Corbett, Richard A. "Import Norwegian crude assays updated." The Oil and Gas Journal 12 Mar. 1990: 37+. General OneFile. Web. 19 Oct. 2014.
q Environment Canada, Emergencies Science Division Information Sheet--Marine Fuel Oils, December 1999 (www.env.gov.bc.ca/eemp/resources/pdf/info_sheet_on_marine_fuels.pdf)
r Pipeline Planning and Construction Field Manual by E. Shashi Menon (2011) Note:  Viscosity, cSt = (Viscosity, cP)/Sg where cSt = centistokes, cP = centipoise and Sg = specific gravity

hSLRoss Environmental Research Ltd., 2006. Dispersant Effectiveness Testing on Water-in-Oil Emulsions at OHMSETT for US Dept of the Interior Minerals Management
iCanadian Federal Government Technical Report, Properties, Composition and Marine Spill Behaviour, Fate and Transport of 2 Dilbit Products from the Canadian Oil Sands--November 2013.
jhttp://www.genesisny.net/Commodity/Oil/OSpecs.html#Mesa; also Caplinepipeline.com report accessed 15Feb2015
khttp://www.pdvsa.com/index.php?tpl=interface.en/design/salaprensa/readnew.tpl.html&newsid_obj_id=2214&newsid_temas=1
l http://www.uncw.edu/cms/documents/HazenPublic11152011.pdf

fPOLARIS Applied Science Inc., 2013 (http://www.crrc.unh.edu/sites/crrc.unh.edu/files/comparison_bitumen_other_oils_polaris_2014.pdf)
ghttp://www.bunkering.co.kr/bunker_spec/30CST.htm
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APPENDIX B 

COOGER METHODS FOR FLUORESCENCE ANALYSIS  

USING THE BAFFLED FLASK TEST 

 

Approximately 100-µL of oil was added to a 250-mL baffled flask containing 120-mL of 0.45-

µm filtered seawater from Bedford Basin, Nova Scotia (salinity 30-32 ppt), and placed, prior to 

the addition of the oil/dispersant, on an OS-500 orbital shaker with an orbital diameter of 2cm 

(0.75 in., manufactured for VWR International by Henry Troemner LLC, Thorofare, NJ) set to 

200 rpm..  Approximately 300-µL of oil was aspirated into a 1-mL turberculin syringe (Benton 

Dickinson, Franklin Lakes, NJ), and then pushing the plunger to the 100-µL mark to give about 

100 µL of oil.  The oil and syringe were then weighed, and then the contents of the syringe 

(approximately 100 µL of oil) carefully dispensed on to the surface of the seawater in the baffled 

flask.  The syringe was then re-weighed.  By using the density of the oil being tested, the exact 

volume of oil added was calculated, allowing for the proper amount of dispersant (Corexit 9500) 

to be dispensed to provide the required dispersant to oil ratio (DOR - 1:10, 1:20, or 1:40).  The 

Corexit was added with a 20-µL Pipet-Plus Pipetman (Gilson) as a drop to the surface of the oil, 

in much the same way as Soriel, et al. (2004).  The oil/dispersant/seawater was allowed to mix 

for ten minutes, after which approximately 3-mL of the dispersed oil/seawater mixture was 

dispensed into a 4.5-mL UV-grade quartz cuvette (10 mm light path – Hellma (Canada) Limited, 

Concord, Ontario) out through a spigot located near the bottom of the flask for ultra-violet 
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fluorescence spectroscopy (UVFS).  The cuvette was then placed in a Shimadzu 5301-PC UV-

fluorometer, and scans run as outlined in Bugden et al, 2008. 

 

About 30-mL (the exact volume was recorded) was then drawn into a 50-mL graduated cylinder 

fitted with a stopper, for Total Petroleum Hydrocarbon (TPH) analysis (Li et al, 2008a).  Care 

was taken to prevent the transfer of non-dispersed oil which was present in the spigot, though 

this was not always possible.  The sample was then transferred into a 100 mL amber bottle with a 

tin foil coated screw cap.  The graduated cylinder was rinsed three times with di-chloro-methane 

(DCM); two times with 10 mL and once with 20 mL.  The graduated cylinder was stoppered 

after each rinse, the contents shaken (with the stopper removed after every few shakes to release 

pressure which would build up in the cylinder), the contents transferred to an amber bottle which 

was then placed into a refrigerator at 4oC, allowing the DCM to settle for a minimum of 24 

hours.  After extraction, the oil/DCM extract was transferred to a 40 mL glass vial using a lime 

glass pipette and a glass syringe, and adjusted to a final volume of 10 mL with DCM.  The 

samples were scanned on a Genesys 20 spectrophotometer at 340, 370 and 400nm (Thermo 

Fisher Scientific Inc., Waltham, MA, U.S.A), using the same quartz cuvette as for the UVFS 

measurement.  Calibration curves were generated from stock solutions by putting 1 mL of oil by 

mass in a 10 mL volumetric flask with DCM.  Dispersant was added to achieve the appropriate 

DOR using a 20 μL Rainin pipet∙plus with a 20 μL tip.  For each DOR and oil, 5 standards were 

made up in a 10 mL volumetric flask with DCM with the following stock volumes; 10, 20, 40, 

100, 200, 400, and 500 μL (standard concentrations varied between oils).  The standards and 

samples were run on the same day, under the same conditions, to eliminate variation due to 

changes in bulb intensity over time.   Absorbance and percent transmission were recorded and 
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the data was entered into an excel spreadsheet to calculate sample concentration.  Some sample 

had to be diluted up to 100 mL because they were too concentrated to obtain a reading on the 

spectrophotometer.  The dispersant effectiveness was calculated by dividing the concentration of 

the oil extracted from the water column (dispersed fraction) by the total amount of oil that had 

been added to the flask.  The result was recorded as a percentage. 
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APPENDIX C 

COBLE LAB PROTOCOL FOR HORIBA AQUALOG 

 

Coble Lab Protocol for HORIBA Aqualog 
 
Daily Start-up Routine 
First, power up Aqualog (power switch is on left side near the back of the instrument) 
Second, start Aqualog 3.6 software 

 Must be done in this order 
 Turn off computer WiFi and do not open any other software while Aqualog is running 

Instrument must be allowed to warm up for at least 20 minutes to ensure lamp is at full intensity.  
While it’s warming up, cover workspace with a paper towel and gather equipment: 

 Quartz cuvettes (1x1x4 cm) 
 Nitrile gloves—do NOT ever touch cuvettes with bare hands! 
 Kimwipes 
 Ultrapure water (Milli-Q or similar) at room temperature 

Remove samples from refrigerator and shield from light while they come to room temperature 
Rinse cuvettes 20-30x with ultrapure water; rinse caps (if using). 
Note:  If samples are volatile, Teflon plug-type caps should be used; otherwise, use of caps is 
personal preference.  Try running with and without and compare results. 
 
Daily Tests 
Before running samples, three tests should be performed each day: 

1. Lamp Scan 
2. Water Raman SNR & Emission Calibration 
3. Raman Scattering Area Unit 

 
1. Lamp scan (to track lamp performance): 

Click  icon; instrument will initialize.  Select Spectra Absorbance, click ‘Next’. 
Change ‘Aqualog Experiment Setup (Absorbance)’ default settings to those shown below.   
First time, select ‘Save As’ Lamp Scan; thereafter, select ‘Load’ and select Lamp Scan file. 
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With no cuvette in the sample chamber, click ‘Run’. 
 
When resulting table appears, while holding down ‘Ctrl’ key click on column headings B(Y) and 
D(Y)—I and R—then select ‘Plot’, ‘Line’, ‘Line’. 

 
 

After the plot appears, click on  (Screen Reader) icon, then click to place screen reader on peak 
on black line (Abs Detector Raw).  X should be 467 (±1nm), Y should be ≥ 7.  If X value is more than 
1nm below or above 467nm, call HORIBA for service.  When intensity (Y value) falls below 7, lamp 
must be replaced.  Make a note of Y value in your daily log. 
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2. Water Raman SNR & Emission Calibration Test 
With gloves on, fill a cuvette about ¾ full with Milli-Q water.  Holding it near the top, wipe all sides 
with Kimwipe.  Check to be sure there are no bubbles in the cuvette.  Insert cuvette into sample 
holder.  Be sure that water level is above the optical window in the sides of the sample holder. 
 
From Aqualog dropdown menu, select ‘Collect’  ‘Aqualog Validation Tests’  ‘Water Raman SNR 
and Emission Calibration’.  Aqualog Experiment Setup box appears: 

Under ‘Comment:’ at top right change “Starna RM 3-Q 10 Water” to “Lab Milli-Q” and add TOC 
reading from the Milli-Q system. 
Leave all other settings as is.  Click ‘Run’. 
 
This test returns two results—location of water Raman peak and signal-to-noise ratio (SNR).  You 
should get a nice, smooth curve with peak at 397 nm (±1 nm) and SNR 20,000 similar to: 
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Enter Raman Peak wavelength and SNR in your daily log. 
Note:  for SNR <20000, call HORIBA for service; for Raman Peak >1nm below or above 397nm, peak 
must be recentered. 
 
To Recenter Raman Peak: 
Select ‘Collect’  Advanced Setup  Configuration.  System Configuration box appears: 

 
From ‘Device’ dropdown, choose ‘Fixed Spectrograph…’ Click ‘Configure’ 
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Adjust figure in ‘Center Wavelength’ box   by entering a slightly larger number if Raman Peak needs 
to be raised, or a slightly smaller number if it must be lowered.  Click ‘OK’, ‘OK’. 
 
Next re-run Water Raman SNR and Emission Calibration test. 
Repeat these instructions until test results show Raman Peak wavelength = 397nm. 
 
3. Raman Scattering Area Unit 
Leave cuvette filled with Milli-Q in the sample holder. 
From Aqualog dropdown menu, select ‘Collect’  ‘Aqualog Validation Tests’  ‘Raman Scattering 
Area Unit’.  Leave all settings as is. Click ‘Run’. 
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This test returns three results—location, height, and area of water Raman peak.  Peak location 
should agree with Water Raman SNR and Emission Calibration Test (± 0.5nm).  Record the position, 
height and area of peak in your daily log.  Area will also be used to translate raw fluorescence 
intensity counts into Raman Scattering Units for each day’s samples.  
Note:  This test may be re-run at the beginning of each new batch of samples so there is an RSUNIT 
file in each project. 
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Analyzing Blanks 
Next, analyze Milli-Q water in each of the cuvettes you’ll be using to ensure they are completely 

clean and there is no contamination in the Milli-Q water.  To do so click on  icon, then select 3D 
 EEM 3D CCD + Absorbance, click ‘Next’. 
Click ‘Load’ and select EEMandAbs_3x8pixel_medgain_4sec.xml file.  It should look like this: 

 

Click on  and rename blank (e.g., 05June2015cuvette1Test.blank), click ‘Open’.  With Milli-Q 

filled cuvette in the sample chamber, click ‘Run’.  When sample analysis is complete, click on 

(Inner Filter Effect correction) icon.  When processing is complete, click on (Rayleigh Masking 
Tool).  Select check boxes for both First and Second Order Rayleigh Masking, and change ‘SUM of 

slit widths’ from 10 to 12, click ‘OK’.  To analyze additional blanks, click on  (Previous 

Experiment Setup) icon to recall the settings, click on  to give the new blank a different name, 
click ‘Run’, and repeat the post-processing steps when each analysis is complete. 
 
Save Project 
At this point, select File  Save Project As… and name the project with the day’s date and ‘Tests’ 
(e.g., 05June2015_Tests.opj).   
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Running Samples 
Select File  New  Project to start running samples.  First, you’ll need to determine the optimal 
integration time for the samples, assuming they all have similar fluorophore concentration. 

Click on  Aqualog Main Experiment Window.  Select 3D  EEM 3D CCD + Absorbance, click 
‘Next’. 
Load template file “EEMandAbs_3x8pixel_medgain_onetenthsec”. 
Leave all settings on the left side of the Aqualog Experiment Setup box as is.  At the top right in the 
‘Data Description’ box enter an appropriate sample name.  Note:  this field is limited to 10 
characters so you’ll need to devise some kind of shorthand naming scheme such as ddmmyya, b, c, 
etc., and keep track of the full sample details in your daily log.   
In the ‘Comment’ box you can enter as much information about your sample as you’d like. 
In the ‘Blank/Sample Setup’ box, select ‘Sample and Blank’ and ‘Collect Blank from File’, then click 

on  and give your blank a name.  I’d suggest ddmmyyMQ.blank (or ddmmyySW.blank for 
seawater, etc.) 
Fill a cuvette with the appropriate solvent blank which you wish to subtract from the sample (MQ, 
artificial seawater, DCM, etc.).  This will help to eliminate Raman Scatter interference. 
Rinse the second cuvette 3x with sample (filling at least halfway), then fill approximately ¾ full. 
Holding each cuvette near the top, wipe all sides with a Kimwipe. 
Place cuvette containing the blank in the sample chamber and click ‘Run’.  (Software will prompt for 
blank insertion, click ‘OK’.)  When blank analysis is complete, software will prompt for sample 
insertion.  Remove blank and insert sample, click ‘Run’. 
When sample analysis is complete, the ‘Sample – Blank Waterfall Plot’ tab will be active.  Click on 

(Inner Filter Effect correction) icon.  When IFE processing is complete, click on (Rayleigh 
Masking Tool).  Select check boxes for both First and Second Order Rayleigh Masking, and change 
‘SUM of slit widths’ from 10 to 12, click ‘OK’. 
 
To determine whether 0.1 sec is an appropriate integration time to run the rest of your samples 
(assuming similar fluorophore concentration), refer to the table below.  The goal is fmax signal 
intensity between 30,000 and 65,000 counts.  After following post-processing directions (below) to 
determine true fmax intensity, re-run the blank and sample at a longer integration time, if necessary.  

Click  (Previous Experiment Setup) icon and change integration time, sample name, and blank 

name.  If 0.1 sec. is a good integration time, click  to recall the previous experiment and click 

‘Blank from File’.  Click  to navigate to reuse the information from the blank already collected.  
This speeds processing time and eliminates possible blank-to-blank variation. 
 
 

Signal intensity (counts) Estimated integration time (seconds) 

100 to 1000 4.0 

1001 to 5000 2.0 
5001 to 50 000 1.0 

50 001 to 65 535 0.1 

 
Note:  If 0.1 sec integration time results in intensity >65,535, check the absorbance of your sample 
to be sure it is not too concentrated.  See “An Important Caveat” below.  Also, I have run samples at 
integration times >4 sec, although I do not run samples at integration time >10 sec since water 
chemistry changes and temperature effects are a potential issue.  Since the Aqualog analyzes from 
high to low wavelengths, fluorescence of proteins and PAHs could be considerably altered at 
extended integration times.  
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Post-Processing of EEMs 
After IFE and Rayleigh Masking is complete, click on ‘Processed Contour: IFE_RM’ tab to make the 
full-color EEM contour plot active.  You may see something like the screen below, leading you to 
believe there’s no fluorescence in your sample.  Keep processing!  Double-click anywhere on the 
EEM contour plot to enable the image processing window.  Right click on the small, red square that 
has appeared at the upper left corner of EEM window   then select ‘Layer Properties’. 
 

  
 
The ‘Plot Details’ window appears: 
 

 
 
In ‘Plot Details’ box, first click on Size/Speed tab at right (above) then uncheck ‘Worksheet data, 
maximum points per curve’. Then, at the far left, click on ‘+’ to expand Layer1, then click on file 
name to bring up new tab selections at right (below). 
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Click on the ‘Color Map/Contours’ tab, then click on ‘Level’.  The ‘Set Levels’ box appears: 

 
The ‘From’ field will probably contain a negative 
number; change it to 0.  Then you’ll need to 
manipulate the ‘To’ field to determine the true 
maximum.  Begin by deleting the final 0, then choose 
‘OK’, then ‘Apply’.  Move the ‘Plot Details’ box to the 
right so you can continue changing the figure in the 
‘To’ field until the fluorescence peak appears in red, 
similar to the following figure. 
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I recommend changing EEM color configuration as follows:  Change ‘# Major Levels’ field to 36 and 
leave ‘# Minor Levels’ at 0, click ‘OK’.  Then click on ‘Fill’ heading;   ‘Fill’ box appears.  Click on ‘Blue’   
to bring up additional color choices, then click on ‘Navy’ square (first box in 2nd row). Click ‘OK’. 
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‘Plot Details’ now looks like this: 
  
Click on blue bar next to ‘<0’. 
 
In ‘Fill’ box, click on ‘Blue’, then select 
‘Black’ square (1st box, 1st row). 
Click ‘OK’. 
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‘Plot Details’ now looks like this: 
 
Click on blue bar next to ‘0’. 
 
In ‘Fill’ box, click on ‘Blue’, then select 
‘Black’ square (1st box, 1st row). 
Click ‘OK’. 
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Plot Details’ now looks like this: 

 

Click ‘OK’, ‘OK’ to get back to the main image processing window, which will now look like this: 

 

At this point, the zoom in  tool can be used to crop the contour plot for better resolution.   

The zoom out tool  can then be used to zoom out again to the previous view.  Repeat this 
process as many times as you’d like until you have the view you want to save. 
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While the image processing window is active, you can also click on the Screen Reader tool  and 
then anywhere in the active window to determine exact excitation/emission coordinates of any 
features of interest. 
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Finished EEM will look something like this: 

 
Note:  Since the emission correction is quite high at low excitation wavelengths (to compensate for 
low lamp intensity in this region), it may be necessary to disregard apparent high-level 
fluorescence which is in fact “noise,” especially in samples with low fluorophore concentration. 
 
When satisfied with processing, X out of the image processing window.    
 
IMPORTANT:  Once you close the image processing window, you CANNOT reopen and zoom back 
out to the full EEM contour plot.  You can, however, select the Sample – Blank Waterfall Plot tab and 
then reapply the IFE and Rayleigh Masking Tools.  This will re-create the original ‘Processed 
Contour:IFE_RM’ which you will then have to reprocess. 
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Save Project and Export .dat files after every 5-6 samples: 
From dropdown menu, select File  HJY Export. 
 
 

Click  to select files for export. 
 
 
 
 
 
 
  
 
 
 
Highlight each ‘Graph# - filename (01) – 
Processed Graph_IFE_RM’, then click >> to 
copy file to the right. 
Repeat for each sample in this file. 
Click ‘OK’. 
 
 
 
 
 
 
 
 
 
Be sure File Format ASCII is selected. 
Click ‘OK’. 
 
 
 
 
 
 
 
 
 
 
Select file location for exporting. Click ‘OK’. 
Close Script Window when export is complete. 
Close Project. 
 
Exported .dat files can then be imported directly into Solo software and/or MATLAB for PARAFAC 
modelling. 
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To report fluorescence max/CDOM concentration: 
For reporting in Raman Units (RU), double-click on the appropriate RSUNIT graph, either in the 
‘Test’ project for the day or within the appropriate sample project.  Click on the ‘RSU_Adjust’ tab.  In 
the ‘Integration Time’ column, replace ‘1’ in the first row with the integration time used for the 
sample of interest. Copy the resulting data which appears in the ‘RSU Adjust’ column, ‘Area’ row.  
This factor will be used to put sample results in RU.  You may choose to paste this data into an Excel 
spreadsheet to track RSU for each day and/or group of samples.   
 
To convert sample raw intensity counts to RU, open the project file open, double-click the 
appropriate sample file, then click on the ‘Processed Graph: IFE_RM’ tab.  From the menu bar 
choose ‘Analysis  Aqualog Analysis Tools  Simple Math Menu.’ Select ‘Math Function: Divide’ 
and ‘Operand:  Constant’.  Copy Raman Unit factor from the RSUNIT file (or from the Excel file) and 
paste into the ‘Constant’ box.  Be sure ‘Keep Source Graphs’ is checked, then click ‘OK.’  Processing 
will add 2 tabs to the project:  ‘Processed Graph: IFE_2’ and ‘Processed Data: IFE_2’; double-clicking 
each tab allows renaming (e.g., ‘Processed Graph: IFE_RM_RU’ and ‘Processed Data: IFE_M_RU’).  
Data can then be exported as a .dat file or copied and pasted into Excel.  Unfortunately, there’s no 
way to generate a new Processed Contour with RU in the Aqualog software, however. 
 
To export a processed EEM image: 
Click on File  Export  As Image File.  Choose appropriate image type from dropdown list (.jpg, 

.png, etc.) and click on  to the right of ‘File Name(s)’ dropdown box to choose a location and 
input file name.  Click ‘Save’, then ‘OK’.  X to close unnecessary ‘Script Window’ which appears. 
 
An Important Caveat 
Fluorescence results are valid only when absorbance is ≤0.6.  If 0.1 sec integration time results in 
>65,535 counts, absorbance may be too high.  Check the sample absorbance on ‘Abs Spectra Graphs’ 
tab.  If absorbance is >0.6, sample must be diluted and run again. 
 
And a Note on Clean-up 
Cuvettes should be cleaned with appropriate solvent(s) according to fluorophores present in the 
sample(s).  For samples containing petroleum, cuvettes should be rinsed 3x with DCM, then 3x with 
methanol.  For samples containing CDOM and/or proteins, rinsing 3x with methanol should be 
sufficient.  Cuvettes should then be allowed to air dry and rinsed thoroughly before reuse as solvent 
residue may affect fluorescence. 
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APPENDIX D 

EEM CONTOUR PLOTS 
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Figure D.1.  Light Oil Category – IFO-40 oil with dispersant EEMs.  Colored contours represent intensity, scaled to maximum fluorescence peak (red). 

 

DOR = 1:200 DOR = 0 

DOR = 1:100 DOR = 1:20 
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Figure D.2.  Light Oil Category – Arabian Light crude oil with dispersant EEMs.  Colored contours represent intensity, scaled to maximum fluorescence peak 

(red). 

DOR = 0 DOR = 1:200 

DOR = 1:100 DOR = 1:20 
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Figure D.3.  Light Oil Category – Brent crude oil with dispersant EEMs.  Colored contours represent intensity, scaled to maximum fluorescence peak (red). 

DOR = 0 DOR = 1:200 

DOR = 1:100 DOR = 1:20 
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Figure D.4.  Light Oil Category – Federated crude oil with dispersant EEMs.  Colored contours represent intensity, scaled to maximum fluorescence peak (red). 

  

DOR = 0 
DOR = 1:200 

DOR = 1:20 DOR = 1:100 
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Figure D.5.  Light Oil Category – Gullfaks crude oil with dispersant EEMs.  Colored contours represent intensity, scaled to maximum fluorescence peak (red). 
 

DOR = 1:200 

DOR = 1:100 DOR = 1:20 

DOR = 0 
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Figure D.6.  Light Oil Category – Hibernia crude oil with dispersant EEMs.  Colored contours represent intensity, scaled to maximum fluorescence peak (red). 

 

DOR = 1:20 DOR = 1:100 

DOR = 0 DOR = 1:200 
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Figure D.7.  Light Oil Category – MC252 (Discoverer Enterprise) crude oil with dispersant EEMs.  Colored contours represent intensity, scaled to maximum 

fluorescence peak (red). 

 

DOR = 1:200 DOR = 0 

DOR = 1:100 DOR = 1:20 
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Figure D.8.  Light Oil Category – MC252 (Generic) crude oil with dispersant EEMs.  Colored contours represent intensity, scaled to maximum fluorescence 

peak (red). 

 

 

DOR = 1:200 DOR = 0 

DOR = 1:100 DOR = 1:20 
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Figure D.9. Light Oil Category – Scotian Shelf Condensate crude oil with dispersant EEMs.  Colored contours represent intensity, scaled to maximum 

fluorescence peak (red). 
 
 

DOR = 1:20 

DOR = 0 

DOR = 1:100 

DOR = 1:200 
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Figure D.10.  Light Oil Category – Sea Rose crude oil with dispersant EEMs.  Colored contours represent intensity, scaled to maximum fluorescence peak (red). 

  

DOR = 1:200 DOR = 0 

DOR = 1:100 DOR = 1:20 
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Figure D.11.  Light Oil Category – Terra Nova crude oil with dispersant EEMs.  Colored contours represent intensity, scaled to maximum fluorescent peak (red). 
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Figure D.12.  Medium Oil Category – ANS (Alaskan North Slope) crude oil with dispersant EEMs.  Colored contours represent intensity, scaled to maximum 

fluorescence peak (red).  
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Figure D.13.  Medium Oil Category - 10% Weathered ANS (Alaskan North Slope) crude oil with dispersant EEMs.  Colored contours represent intensity, scaled 

to maximum fluorescence peak (red). 
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Figure D.14.  Medium Oil Category – Heavy IFO-120 oil with dispersant EEMs.  Colored contours represent intensity, scaled to maximum fluorescence peak 

(red). 
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Figure D.15.  Medium Oil Category - Heavy IFO-180 oil with dispersant EEMs.  Colored contours represent intensity, scaled to maximum fluorescence peak 

(red). 

 

DOR = 1:200 DOR = 0 

DOR = 1:100 DOR = 1:20 
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Figure D.16.  Medium Oil Category – Heidrun crude oil with dispersant EEMs.  Colored contours represent intensity, scaled to maximum fluorescence peak 

(red). 

 

DOR = 1:200 DOR = 0 

DOR = 1:100 DOR = 1:20 



204 
 

Figure D.17.  Medium Oil Category – Lago crude oil with dispersant EEMs.  Colored contours represent intensity, scaled to maximum fluorescence peak (red). 
 
 
 

DOR = 1:200 DOR = 0 

DOR = 1:100 DOR = 1:20 
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Figure D.18.  Medium Oil Category – Mesa crude oil with dispersant EEMs.  Colored contours represent intensity, scaled to maximum fluorescence peak 

(red). 

 
 

DOR = 1:200 DOR = 0 

DOR = 1:100 DOR = 1:20 
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Figure D.19.  Medium Oil Category – Santa Clara crude oil with dispersant EEMs.  Colored contours represent intensity, scaled to maximum fluorescence peak 

(red). 
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Figure D.20.  Medium Oil Category – Vasconia crude oil with dispersant EEMs.  Colored contours represent intensity, scaled to maximum fluorescence peak 

(red). 

DOR = 1:200 DOR = 0 

DOR = 1:100 DOR = 1:20 
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Figure D.21.  Heavy Oil Category – Belridge crude oil with dispersant EEMs.  Colored contours represent intensity, scaled to maximum fluorescence peak 

(red). 
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DOR = 1:20 DOR = 1:100 



209 
 

 

Figure D.22.  Heavy Oil Category – Hondo crude oil with dispersant EEMs.  Colored contours represent intensity, scaled to maximum fluorescence peak 

(red). 
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Figure D.23.  Heavy Oil Category – IFO-300 crude oil with dispersant EEMs.  Colored contours represent intensity, scaled to maximum fluorescence peak (red). 

DOR = 1:200 DOR = 0 

DOR = 1:100 DOR = 1:20 
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Figure D.24.  Dilbit Oil Category – Access Western Blend oil with dispersant EEMs.  Colored contours represent intensity, scaled to maximum fluorescence 

peak (red). 
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Figure D.25.  Dilbit Oil Category – Cold Lake oil with dispersant EEMs.  Colored contours represent intensity, scaled to maximum fluorescence peak (red). 
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APPENDIX E 

FIELD SAMPLE DEPTH PROFILES AND EEMS 
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Figure 

E.1.  Plot of fluorescence intensity at five selected excitation/emission pairs (top left) for all water samples collected aboard the R/V Weatherbird II at DSH10 on 10 August 

2010 and depth profile of CTD data for dissolved oxygen and salinity (top right).  EEMs of water samples collected at the surface, 400 m and 1,000 m (bottom, left to right). 
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Figure E.2.  Fluorescence intensity at selected Ex/Em wavelength pairs for all water samples at DSH08 in 

December 2010 (above) and depth profile for oxygen, temperature and salinity from CTD data (below).  In the 

fluorescence depth profile, both Ex/Em 275 nm/324 nm and 275 nm/330 nm track the presence of oil, while 

Ex/Em 300 nm/400 nm (Peak M) and Ex/Em 350 nm/460 nm (Peak C) track FDOM.   
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Figure E.3.  EEMs of water samples with highest oil-type fluorescence signatures at DSH08 in December 2010: 

at the surface (above) and at 50 m (below).  Maximum concentration in the oil-type fluorescence region (Ex/Em 

275 nm/325 nm) is indicated, as well as CDOM fluorescence (300 nm/400 nm), on color bars.   
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Figure E.4.  Fluorescence intensity at selected wavelength pairs for all water samples at DSH08 in February 

2011 (above) and oxygen, temperature and salinity (below) from CTD data.  In the depth profile, both Ex/Em 

275 nm/324 nm and 275 nm/330 nm track the presence of oil while Ex/Em 300 nm/400 nm (Peak M) and 

Ex/Em 350 nm/460 nm (Peak C) track FDOM.   
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Figure E.5.  EEMs of water samples at the surface (above) and at 55 m (below) at DSH08 in February 2011, 

both showing oil fluorescence signatures.  Maximum concentration in the oil-type fluorescence region (Ex/Em 

275 nm/325 nm) is indicated, as well as CDOM fluorescence (Ex/Em 300 nm/400 nm), on color bars. 
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Figure E.6.  Fluorescence intensity at selected wavelength pairs for all water samples at DSH08 in May 2011 

(upper) and oxygen, temperature and salinity (lower) from CTD data.  In the fluorescence depth profile, both 

Ex/Em 275 nm/324 nm and 275 nm/330 nm track the presence of oil, while Ex/Em 300 nm/400 nm (Peak M) 

and Ex/Em 350 nm/460 (Peak C) track FDOM.   
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Figure E.7.  EEMs of water samples at 50 m (top) and 1000 m (bottom) at DSH08 in May 2011 both show 

reduced oil signatures.  Maximum concentration in the oil-type fluorescence region (Ex/Em 275 nm/325 nm) is 

indicated, as well as CDOM fluorescence (Ex/Em 300 nm/400 nm), on color bars. 
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Figure E.8.  Fluorescence intensity at Ex/Em 275 nm/324 nm, indicative of the presence of oil in the water 

column, at DSH08 in December 2010, February 2011, and May 2011 for all depths (above) and for depths only 

to 400 m (below) in order to visually separate samples collected at shallower depths.   
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Figure E.9.  Fluorescence intensity at selected wavelength pairs for all water samples at DSH10 in December 

2010 (above) and oxygen, temperature and salinity (below) from CTD data.  In the fluorescence depth profile, 

both Ex/Em 275 nm/324 nm and 275 nm/330 nm track the presence of oil while Ex/Em 300 nm/400 nm (Peak 

M) and Ex/Em 350 nm/460 (Peak C) track FDOM. 
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Figure E.10.  EEMs of water samples at the surface (top) and 35 m (bottom) at DSH10 in December 2010.  

Maximum concentration in the oil-type fluorescence region (Ex/Em 275 nm/325 nm) is indicated, as well as 

CDOM fluorescence (Ex/Em 300 nm/400 nm), on color bars.   
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Figure E.11.  Fluorescence intensity at selected wavelength pairs for all water samples at DSH10 in February 

2011 (upper) and oxygen, temperature and salinity (lower) from CTD data.  In the depth profile, both Ex/Em 

275 nm/324 nm and 275/330 nm track the presence of oil while Ex/Em 300 nm/400 nm (Peak M) and Ex/Em 

350 nm/460 (Peak C) track FDOM.   
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Figure E.12.   EEMs of water samples (a) at the surface (b) 75 m (c) 1000 m and (d) 1200 m at DSH10 in February 2011. Maximum concentration in the oil-type fluorescence region 

(Ex/Em 275 nm/325 nm) is indicated, as well as CDOM fluorescence (Ex/Em 300 nm/400 nm), on color bars.  
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Figure E.13.  Fluorescence intensity at selected wavelength pairs for all water samples at DSH10 in May 2011 

(upper) and oxygen, temperature and salinity (lower) from CTD data.  In the fluorescence depth profile, both 

Ex/Em 275 nm/324 nm and 275 nm/330 nm track the presence of oil while Ex/Em 300 nm/400 nm (Peak M) 

and Ex/Em 350 nm/460 (Peak C) track FDOM.   
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Figure E.14.  EEMs of water sample at 21 m (top) and 75 m (bottom) at DSH10 in May 2011.  Maximum 

concentration in the oil-type fluorescence region (Ex/Em 275 nm/325 nm) is indicated, as well as CDOM 

fluorescence (Ex/Em 300 nm/400 nm), on color bars.   
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Figure E.15.  Fluorescence intensity at Ex/Em 275 nm/324 nm, indicative of the presence of oil in the water 

column, in December 2010, February 2011, and May 2011 at DSH10 for all depths (upper) and for depths only 

to 400 m (lower) in order to visually separate samples collected at shallower depths.   
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Figure E.16.  Fluorescence intensity at selected wavelength pairs for all water samples at PCB06 in December 

2010 (upper) and oxygen, temperature and salinity (lower) from CTD data.  In the fluorescence depth profile, 

both Ex/Em 275 nm/324 nm and 275 nm/330 nm track the presence of oil while Ex/Em 300 nm/400 nm (Peak 

M) and Ex/Em 350 nm/460 (Peak C) track FDOM. 

  



230 

 

 

 

 

 

 

 

Figure E.17.  EEMs of water samples at the surface (top left), 45 m (top right), and 60 m at PCB06 in 

December 2010.  Concentration at the oil-type fluorescence region of Ex/Em 275 nm/325 nm and at the CDOM 

fluorescence region of Ex/Em 300 nm/400 nm is indicated on the color bar (scale is the same in all three EEMs 
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Figure E.18.  Fluorescence intensity at selected wavelength pairs for all water samples at PCB06 in February 

2011 (upper) and oxygen, temperature and salinity (lower) from CTD data.  In the fluorescence depth profile, 

both Ex/Em 275 nm/324 nm and 275 nm/330 nm track the presence of oil while Ex/Em 300 nm/400 nm (Peak 

M) and Ex/Em 350 nm/460 (Peak C) track FDOM. 
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Figure E.19.  EEMs of water samples at the surface (top) and 17 m (bottom) at PCB06 in February 2011  

Maximum concentration in the oil-type fluorescence region (Ex/Em 275 nm/325 nm) is indicated, as well as 

CDOM fluorescence (Ex/Em 300 nm/400 nm), on color bars. 
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Figure E.20.  Fluorescence intensity at Ex/Em 275 nm/324 nm, indicative of the presence of oil in the water 

column, in December 2010 and February 2011 at PCB06 for all depths. 
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