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Abstract

Szemerédi’s Regularity Lemma [32, 33] is an important tool in combinatorics, with numerous appli-

cations in combinatorial number theory, discrete geometry, extremal graph theory, and theoretical

computer science.

The Regularity Lemma hinges on the following concepts. Let G = (V,E) be a graph and let

∅ 6= X, Y ⊂ V be a pair of disjoint vertex subsets. We define the density of the pair (X, Y ) by

dG(X, Y ) = |E[X, Y ]|/(|X||Y |) where E[X, Y ] denotes the set of edges {x, y} ∈ E with x ∈ X

and y ∈ Y . We say the pair (X, Y ) is ε-regular if all subsets X ′ ⊆ X and Y ′ ⊆ Y satisfying

|X ′| > ε|X| and |Y ′| > ε|Y | also satisfy |dG(X ′, Y ′)− dG(X, Y )| < ε.

The Regularity Lemma states that, for all ε > 0, all large n-vertex graphs G = (V,E) admit

a partition V = V1 ∪ · · · ∪ Vt, where t = t(ε) depends on ε but not on n, so that all but εt2

pairs (Vi, Vj), 1 ≤ i < j ≤ t, are ε-regular. While Szemerédi’s original proof demonstrates the

existence of such a partition, it gave no method for (efficiently) constructing such partitions. Alon,

Duke, Lefmann, Rödl, and Yuster [1, 2] showed that such partitions can be constructed in time

O(M(n)), where M(n) is the time needed to multiply two n×n {0, 1}-matrices over the integers.

Kohayakawa, Rödl, and Thoma [17, 18] improved this time to O(n2).

The Regularity Lemma can be extended to k-uniform hypergraphs, as can algorithmic for-

mulations thereof. The most straightforward of these extends the concepts above to k-uniform

hypergraphs H = (V,E) in a nearly verbatim way. Let ∅ 6= X1, . . . , Xk ⊂ V be pairwise

disjoint subsets, and let E[X1, . . . , Xk] denote the set of k-tuples {x1, . . . , xk} ∈ E satisfying

x1 ∈ X1, . . . , xk ∈ Xk. We define the density of (X1, . . . , Xk) as

iv



dH(X1, . . . , Xk) =
|E[X1, . . . , Xk]|
|X1| · · · |Xk|

.

We say that (X1, . . . , Xk) is ε-regular if all subsets X ′i ⊆ Xi, 1 ≤ i ≤ k, satisfying |X ′i| > ε|Xi|

also satisfy

|dH(X ′1, . . . , X
′
k)− dH(X1, . . . , Xk)| < ε.

With these concepts, Szemeredi’s original proof can be applied to give that, for all integers k ≥ 2

and for all ε > 0, all n-vertex k-uniform hypergraphs H = (V,E) admit a partition V = V1 ∪

· · · ∪ Vt, where t = t(k, ε) is independent of n, so that all but εtk many k-tuples (Vi1 , . . . , Vik) are

ε-regular, where 1 ≤ i1 < · · · < ik ≤ t. Czygrinow and Rödl [4] gave an algorithm for such a

regularity lemma, which in the context above, runs in time O(n2k−1 log5 n).

In this dissertation, we consider regularity lemmas for 3-uniform hypergraphs. In this setting,

our first main result improves the algorithm of Czygrinow and Rödl to run in time O(n3), which

is optimal in its order of magnitude. Our second main result shows that this algorithm gives a

stronger notion of regularity than what is described above, where this stronger notion is described

in the course of this dissertation. Finally, we discuss some ongoing applications of our constructive

regularity lemmas to some classical algorithmic hypergraph problems.
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Chapter 1

Introduction

Szemerédi’s Regularity Lemma [32, 33] is an important tool in combinatorics, with numerous ap-

plications in combinatorial number theory, discrete geometry, extremal graph theory, and theoret-

ical computer science. (While we describe a few such applications in this Introduction, we refer

the Reader to the well-cited surveys [19, 20], or the graduate texts [3, 5, 34], for more applica-

tions.) The regularity lemma, as well as the main results of this dissertation, belong to the use and

development of quasirandom techniques in combinatorics, pioneered by Endre Szemerédi, who

devised his regularity lemma in the course of establishing his celebrated Density Theorem, which

confirmed a long-standing conjecture of Erdős and Turán [7] from 1936.

Theorem 1.0.1 (Szemerédi Density Theorem). For all δ > 0 and integers k ∈ N, there exists an

integer n0 = n0(δ, k) ∈ N so that the following holds. Let n ≥ n0 and let A = An ⊆ [n] =

{1, . . . , n} be a subset with no arithmetic progression of length k. Then |A| ≤ δn.

Since this origin, the regularity lemma emerged to be an important tool for a wealth of combinato-

rial results, and for his work with the regularity lemma, Density Theorem, and many other career

accomplishments, Szemerédi was awarded the Abel Prize in 2012.

Roughly speaking, the regularity lemma guarantees that all large graphs G = (V,E) can be

partitioned into a constant number of ‘random-like’ bipartite subgraphs. To make these notions

precise, fix a graph G = (V,E), and fix disjoint subsets ∅ 6= X, Y ⊂ V . Let E[X, Y ] = EG[X, Y ]

denote the set of edges {x, y} ∈ E with x ∈ X and y ∈ Y , and letK[X, Y ] denote all pairs {x, y},

not necessarily in E, where x ∈ X and y ∈ Y . We define the density of (X, Y ) as

d(X, Y ) = dG(X, Y ) =
|E[X, Y ]|
|K[X, Y ]|

=
|E[X, Y ]|
|X||Y |

1



For ε > 0, the pair (X, Y ) is said to be ε-regular whenever, for all X ′ ⊆ X with |X ′| > ε|X| and

for all Y ′ ⊆ Y with |Y ′| > ε|Y |, we have

|d(X ′, Y ′)− d(X, Y )| < ε. (1.1)

Moreover, we say that (X, Y ) is (d, ε)-regular, for some d ≥ 0, if we can replace d(X, Y ) in (1.1)

by d. When (1.1) fails to hold for some pair of subsets X ′ ⊆ X with |X ′| > ε|X| and Y ′ ⊆ Y

with |Y ′| > ε|Y |, then we say that (X, Y ) is ε-irregular, and that (X ′, Y ′) is a witness to the

ε-irregularity of (X, Y ).

X

Y

Figure 1.: K̄[X, Y ] has density 0

and is ε-regular ∀ε > 0.

X

Y

Figure 2.: K[X, Y ] has density 1

and is ε-regular ∀ε > 0.

X

Y

Figure 3.: ∀ε > 0, w.h.p., as |X|, |Y | → ∞, G[X, Y ; 1
2
]

has density 1
2
± ε and is ε-regular.

Note that (1.1) ensures that the edges E[X, Y ] are evenly distributed in portions of density near

d = d(X, Y ) among all suitably large subsets X ′ ⊆ X and Y ′ ⊆ Y . Uniform edge-distribution

is a property shared by the binomial random bipartite graph G(X, Y ; d) of edge-density d, which

independently includes each pair {x, y} as an edge, for each x ∈ X and y ∈ Y , with probability

d. Indeed, elementary probability establishes that

E
[∣∣EG[X ′, Y ′]

∣∣] = d|X ′||Y ′|,

2



and so by the Chernoff inequality [16],

P
[∣∣EG[X ′, Y ′]

∣∣ 6= (1± ε)d|X ′||Y ′|
]
≤ 2 exp

{
− 1

3
ε2d|X ′||Y ′|

}
≤ 2 exp

{
− 1

3
ε5d|X||Y |

}
(1.2)

when |X ′| > ε|X| and |Y ′| > ε|Y |. Since there are at most 2|X|+|Y | subsets X ′ ⊆ X and Y ′ ⊆ Y ,

we conclude from (1.2) that with probability 1 − o(1), where o(1) → 0 as |X|, |Y | → ∞, all of

them satisfying |X ′| > ε|X| and |Y ′| > ε|Y | also satisfy |dG(X ′, Y ′)− d| < ε.

We now state the regularity lemma precisely.

Theorem 1.0.2 (Szemerédi’s regularity lemma). For all ε > 0 and integers t0 ∈ N, there exist

integers T0 = T0(ε, t0) and N0 = N0(ε, t0) so that every graph G = (V,E) on n = |V | > N0

many vertices admits a partition V = V1∪̇ . . . ∪̇Vt, with t0 ≤ t ≤ T0, satisfying that

(i) V = V1∪̇ . . . ∪̇Vt is t-equitable: |V1| ≤ · · · ≤ |Vt| ≤ |V1|+ 1;

(ii) V = V1∪̇ . . . ∪̇Vt is ε-regular: all but εt2 of its pairs (Vi, Vj), 1 ≤ i < j ≤ t, are ε-regular.

V1V1V2V2

V3V3

V4V4 V5V5

V6V6

Figure 4.: A ‘regular’ partition.

1.1 Applications of Theorem 1.0.2 and the Counting Lemma

Many applications of Theorem 1.0.2 invoke a companion Counting Lemma, which in the context

of Theorem 1.0.2 estimates the number of subgraphs of G which are partite-isomorphic to a given

3



graph of a fixed isomorphism type. For this, it suffices to establish such a result for cliques of fixed

size.

Lemma 1.1.1. For all integers ` ≥ 2 and d0, θ ∈ (0, 1], there exist ε = ε(`, d0, θ) ∈ (0, 1] and

m0 = m0(`, d0, θ) ∈ N so that the following holds. Let F = (U,E(F )) be an `-partite graph with

vertex `-partition U = U1∪̇ . . . ∪̇U` satisfying

(i) m ≤ |Ui| ≤ m+ 1 for all 1 ≤ i ≤ `, where m ≥ m0;

(ii) all pairs (Ui, Uj), 1 ≤ i < j ≤ `, are (dij, ε)-regular with dij ≥ d0.

Then, the number of copies of K` in F is within the interval (1± θ)m`
∏

1≤i<j≤` dij .

In the context of Lemma 1.1.1, note that the number of cliques K` in F coincides with the ex-

pected such number in the corresponding random `-partite environment. Indeed, with the partition

U1∪̇ . . . ∪̇U` of Lemma 1.1.1, consider the binomial random `-partite graph F = G[U1, . . . , U`; ~d ],

where ~d = (dij : 1 ≤ i < j ≤ `) is a sequence whereby for each 1 ≤ i < j ≤ `, F independently

includes each pair {ui, uj} as an edge, for each ui ∈ U and uj ∈ Uj , with probability dij ∈ (0, 1].

Let X` = X`(F) be the random variable counting the number of cliques K` in F. Elementary

probability establishes that

E
[
X` = #{K` ⊂ F}

]
= m`

∏
1≤i<j≤`

dij,

and (more tediously) that Var[X`] = O(m2`−1). The Chebyshev inequality [16] therefore ensures

that

P
[
X` 6= (1± θ)E[X`]

]
= O

(
Var[X`]

E2[X`]

)
= o(1)→ 0,

as m→∞, which Lemma 1.1.1 assimilates.

In the context of Theorem 1.0.2 and Lemma 1.1.1, the graph F would take the form of a subgraph

G[Vi1 , . . . , Vi` ] induced on the (sub)partition Vi1∪̇ . . . ∪̇Vi` , for some 1 ≤ i1 < · · · < i` ≤ t. Since

Theorem 1.0.2 guarantees that at most εt2 pairs (Vi, Vj), 1 ≤ i < j ≤ t, can be ε-irregular, simple

double-counting ensures that at most εt` many `-tuples (Vi1 , . . . , Vi`), 1 ≤ ii < · · · < i` ≤ t, can

host an ε-irregular pair (Vij , Vik), where i1 ≤ ij < ik ≤ i`. Consider the typical case when all

4



(
`
2

)
such pairs are ε-regular. When some pair (Vij , Vik), i1 ≤ ij < ik ≤ i`, has density below d0,

then F = G[Vi1 , . . . , Vi` ] hosts fewer than d0m
` cliques K`, which is negligible when d0 is small.

Otherwise, when all pairs (Vij , Vik), i1 ≤ ij < ik ≤ i`, have density above d0, Lemma 1.1.1 allows

us to closely estimate the number of cliques K` in F = G[Vi1 , . . . , Vi` ], which from the discussion

above assimilates the random case.

Applications of Theorem 1.0.2 with Lemma 1.1.1

While there are numerous applications of Theorem 1.0.2 with Lemma 1.1.1, we focus on the first

such, and perhaps the most striking, which is due to Ruzsa and Szemerédi [31].

Theorem 1.1.2 (Triangle removal lemma). For all δ > 0, there exist c = c(δ) > 0 and integer

n0 = n0(δ) ∈ N so that every graph G = (V,E) on |V | = n ≥ n0 many vertices which contains

at most cn3 triangles admits a triangle free subgraph H ⊆ G where |E \ E(H)| ≤ δn2.

Theorem 1.1.2 is easy to prove from Theorem 1.0.2 and Lemma 1.1.1.

Proof of Theorem 1.1.2 (Ruzsa and Szemerédi). Let δ > 0 be given. To define the promised con-

stant c = c(δ) > 0, we define several auxiliary constants in terms of Lemma 1.1.1 and Theo-

rem 1.0.2. To that end, set d0 = (1/6)δ and θ = 1/2. With ` = 3, let

εLem.1.1.1 = εLem.1.1.1(` = 3, d0 = (1/6)δ, θ = 1/2)

be the constant guaranteed by Lemma 1.1.1. Let t0 ∈ N be an integer satisfying

ε
def
=

1

t0
= min

{
1

6
δ, εLem.1.1.1

}
.

With ε = 1/t0 above, let T0 = T0(ε, t0) ∈ N be the integer constant guaranteed by Theorem 1.0.2.

Finally, we define c = d3
0/(4T0)3, which by the determinations above depends solely on the initial

constant δ > 0.

Let G = (V,E) be a large n-vertex graph hosting at most cn3 triangles K3. With ε and t0 above

(where ε = 1/t0), we apply Theorem 1.0.2 to G to obtain an ε-regular and t-equitable partition

5



V = V1 ∪ · · · ∪ Vt of G, where t0 ≤ t ≤ T0. Now, form the subgraph H ⊆ G by deleting all edges

of G which

(i) reside within any single Vi, 1 ≤ i ≤ t;

(ii) cross an ε-irregular pair (Vi, Vj), 1 ≤ i < j ≤ t;

(iii) cross a pair (Vi, Vj) of density below d0, 1 ≤ i < j ≤ t.

Then we have deleted at most

t

(
dn/te

2

)
+
(
εt2
) ⌈n

t

⌉2

+ t2

(
d0

⌈n
t

⌉2
)
≤ 1

t
n2 + 2εn2 + 2d0n

2

≤ 1

t0
n2 + 2εn2 + 2d0n

2 = 3εn2 + 2d0n
2 =

1

2
δn2 +

1

3
δn2 < δn2

many edges to form the resulting graph H .

We claim that H is triangle-free. Indeed, assume for contradiction that {x, y, z} is a triangle

remaining in H . By the construction of H , there exist 1 ≤ ix < iy < iz ≤ t so that x ∈ Vix , y ∈

Viy , and z ∈ Viz , where each pair (Vix , Viy), (Viy , Viz), and (Vix , Viz) is ε-regular with respective

density dixiy , diyiz , dixiz ≥ d0 > 0. By Lemma 1.1.1, the subgraph F = H[Vix , Viy , Viz ] admits at

least

(1− θ)dixiydiyizdixiz
⌊n
t

⌋3

≥ (1− θ)d3
0

⌊
n

T0

⌋3

>
d3

0

4T 3
0

n3 = cn3

many triangles, contradicting our hypothesis on G.

At first sight, Theorem 1.1.2 seems innocuous: If G contains few triangles, surely one could

delete few edges from G to destroy them all. Whatever its appearance, there is nothing elemen-

tary about the removal lemma, and no proof of it is known which does not in some way employ

regularity and counting lemmas, as sketched above. (A version of this argument using a slightly

weaker form of a regularity lemma was recently given by Fox [8], which appeared in Annals of

Mathematics.) Moreover, Ruzsa and Szemerédi [31] artfully observed that Theorem 1.1.2 (which

itself is not elementary) provides an elementary proof of a famous result of Roth [30] (which is the

k = 3 case of Theorem 1.0.1).

6



Theorem 1.1.3 (Roth, 1956). Every subset A = An ⊆ [n] = {1, . . . , n} containing no 3-term

arithmetic progression (AP3) satisfies |A| = o(n).

Proof of Theorem 1.1.3 (Ruzsa and Szemerédi). Indeed, let G = GA = (X∪̇Y ∪̇Z,E) be the 3-

partite graph whose vertex set V consists of the (formally) disjoint sets X = [n], Y = [2n], and

Z = [3n], and whose edge setE includes, for each x ∈ X and a ∈ A, all three edges of the triangle

x ∈ X , x + a ∈ Y , and x + 2a ∈ Z. Then these are the only triangles of G, for if x ∈ X , y ∈ Y ,

and z ∈ Z, span a triangle, then

(i) {x, y} ∈ E since y = x+ a for some a ∈ A;

(ii) {x, z} ∈ E since z = x+ 2a′ for some a′ ∈ A;

(iii) {y, z} ∈ E since y = x′ + a′′ and z = x′ + 2a′′ for some x′inX and a′′ ∈ A

so that a′ = a+a′′

2
, in which case a = a′ = a′′ and x = x′, lest (a, a′, a′′) form an AP3 in A. Now,

Theorem 1.1.2 eliminates all n|A| ≤ n2 = o(|V |3) triangles of G by removing o(n2) of its edges.

Since each removed edge eliminates a single triangle, G has n|A| = o(n2) many triangles, and so

|A| = o(n).

1.2 Algorithms for Theorem 1.0.2

Theorem 1.0.2 guarantees, for every graph G = (V,E), the existence of a regular partition

V = V1∪̇ . . . ∪̇Vt. It does not, however, say how one could go about efficiently constructing

such a partition. Moreover, the original proof of the regularity lemma was non-constructive. Since

many applications employing Theorem 1.0.2 would admit constructive counterparts if the regu-

larity lemma were also constructive, it became of interest to find a constructive proof of Theo-

rem 1.0.2. Some 20 years after the original proof of the regularity lemma, a constructive version

of it was established by Alon, Duke, Lefmann, Rödl, and Yuster [1, 2]. They proved that a regular

partition V = V1∪̇ . . . ∪̇Vt of an n-vertex graph G = (V,E) can be constructed in time O(M(n)),

where M(n) = O(n2.3727) is the time needed to multiply two n × n matrices with {0, 1}-entries

over the integers (see [35]). Kohayakawa, Rödl, and Thoma [17, 18] improved this time to the best

possible order of magnitude O(n2).
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Theorem 1.2.1 (Algorithmic Szemerédi Regularity Lemma, [17, 18]). There exists an algorithm

Areg which, for all ε > 0 and integers t0 ∈ N, determines an integer T0 = T0(ε, t0) and

constructs, for every given n-vertex graph G = (V,E), an ε-regular and t-equitable partition

V = V1∪̇ . . . ∪̇Vt, where t0 ≤ t ≤ T0, in time O(n2).

We next consider a straightforward application of Theorem 1.2.1 (with Lemma 1.1.1), taken

from [6].

An easy application of Theorem 1.2.1

Consider the problem of enumerating the cliques K` of a given n-vertex graph G = (V,E). For

example, take ` = 3, where we wish to enumerate the triangles K3 of a given n-vertex graph G =

(V,E). The naive algorithm would enumerate these in time O(n3), but fast-matrix multiplication

would do so much more quickly. Indeed, set A = [auv]u,v∈V to be the adjacency matrix of G,

and set B = [buv]u,v∈V = A2. Then G admits precisely (1/3)
∑
{u,v}∈E buv many triangles, where

B can be computed in time O(M(n)) = O(n2.3727) above. Nesětřil and Poljak [27] extended

this approach to enumerate copies of any fixed clique K` of a given n-vertex graph G = (V,E),

where for simplicity in what follows we consider ` = 99. They used fast-matrix multiplication to

enumerate the cliques K99 of an n-vertex graph G = (V,E) in time O((M(n)33). This running

time is not worse than O(n79), but not guaranteed to be much better. By using Theorem 1.2.1 and

Lemma 1.1.1, one can estimate the number of cliques K99 of G, up to an additive error of o(n99),

in optimal time O(n2). We shall sketch this approach by following the ideas of the proof given for

Theorem 1.1.2.

Let δ > 0 be fixed. Using similar choices to those given for Theorem 1.1.2, we select suitably

small constants

δ � d0, θ � ε =
1

t0
> 0, (1.3)

where t0 ∈ N. Let G = (V,E) be a large n-vertex graph. With ε > 0 and t0 ∈ N fixed

above, we apply Theorem 1.2.1 to construct, in time O(n2), an ε-regular and t-equitable partition

V = V1∪̇ . . . ∪̇Vt of G, where t0 ≤ t ≤ T0 = T0(ε, t0). Now, for each 1 ≤ i < j ≤ t, we greedily

compute the density dG(Vi, Vj) = |E[Vi, Vj]|/(|Vi||Vj|) in time O((n/t)2), and we do so over all
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(
t
2

)
many such pairs. We return the estimate

#
{
K99 ⊂ G} ≈

(n
t

)99 ∑
1≤i1<···<i99≤t

∏
1≤a<b≤99

dG(Via , Vib) (1.4)

for the number of cliques K99 in G, and we argue that (1.4) is within δn99 of being correct.

First, the estimate in (1.4) ignores copies of K99 having an edge entirely within a single Vi,

1 ≤ i ≤ t. However, the number of such copies is at most

t

(
dn/te

2

)
× n97 ≤ 2

t
n99 ≤ 2

t0
n99

(1.3)
� δn99, (1.5)

and so these contribute negligibly to the tolerated error. Second, the estimate in (1.4) likely mis-

counts copies of K99 crossing a 99-tuple (V11 , . . . , Vi99), 1 ≤ i1 < · · · < i99 ≤ t, where some pair

(Via , Vib), 1 ≤ a < b ≤ 99, is ε-irregular. However, an ε-regular partition admits at most εt99 such

99-tuples (V11 , . . . , Vi99), 1 ≤ i1 < · · · < i99 ≤ t, which in turn can host at most

εt99 ×
⌈n
t

⌉99

≤ ε(2n)99
(1.3)
� δn99 (1.6)

many such copies of K99, again contributing negligibly to the tolerated error. Third, the estimate

in (1.4) likely miscounts copies of K99 crossing a 99-tuple (V11 , . . . , Vi99), 1 ≤ i1 < · · · < i99 ≤ t,

where some pair (Via , Vib), 1 ≤ a < b ≤ 99, has density dG(Via , Vib) ≤ d0. By definition, each

such 99-tuple can host at most d0dn/te99 many crossing copies of K99, and so all such 99-tuples

can host at most

t99 × d0

⌈n
t

⌉99

≤ d0(2n)99
(1.3)
� δn99 (1.7)

many such copies of K99, again contributing negligibly to the tolerated error. Altogether, (1.5)–

(1.7) combine to say that all but some (δ/2)n99 many copies ofK99 cross 99-tuples (V11 , . . . , Vi99),

1 ≤ i1 < · · · < i99 ≤ t, where all pairs (Via , Vib), 1 ≤ a < b ≤ 99, are (dG(Via , Vib), ε)-regular.

These environments precisely match the hypothesis of Lemma 1.1.1, which guarantees that each

9



such 99-tuple (V11 , . . . , Vi99), 1 ≤ i1 < · · · < i99 ≤ t, hosts within

(1± θ)
(n
t

)99 ∏
1≤a<b≤99

dG(Via , Vib),

many copies of K99. These errors θ(n/t)99, over all such 99-tuples (V11 , . . . , Vi99), 1 ≤ i1 < · · · <

i99 ≤ t, total only

t99 × θ
(n
t

)99

≤ θn99
(1.3)
� δn99,

which completes the proof.

1.3 Hypergraphs and regularity

In light of the many applications of the Szemerédi Regularity Lemma, a natural question one may

ask is whether or not it extends to hypergraphs. For this, one would wish to prove a hypergraph

regularity lemma which would be strong enough to guarantee a corresponding counting lemma,

but still weak enough to apply to all (large) hypergraphs. This problem proved to be challenging.

A hypergraph H = (V,E) is an ordered pair where V is a (finite) set, and where E ⊆ 2V is a

collection of subsets from V . We say thatH is a k-uniform hypergraph, or k-graph for short, when

E ⊆
(
V
k

)
is a family of k-element subsets of V . (Thus, a graph G = (V,E) is a 2-graph.) One

may naturally extend the concepts of 2-graph density and regularity to the following notions for

k-graphs. For disjoint subsets ∅ 6= X1, . . . , Xk ⊂ V , we define E[X1, . . . , Xk] = EH[X1, . . . , Xk]

to be the set of k-tuples {x1, . . . , xk} ∈ E with xi ∈ Xi, for 1 ≤ i ≤ k and further define

K[X1, . . . , Xk] to be the set of all k-tuples x1, . . . , xk, not necessarily in E, where xi ∈ Xi for

1 ≤ i ≤ k. We write

dH(X1, . . . , Xk) =
|E[X1, . . . , Xk]|
|K[X1, . . . , Xk]|

=
|E[X1, . . . , Xk]|
|X1| · · · |Xk|

for the density of (X1, . . . , Xk). For ε > 0, we say that (X1, . . . , Xk) is ε-regular if, for all

X ′i ⊆ Xi with |X ′i| > ε|Xi|, 1 ≤ i ≤ k, we have

∣∣dH(X ′1, . . . , X ′k)− dH(X1, . . . , Xk)
∣∣ < ε. (1.8)
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We say that (X1, . . . , Xk) is (d, ε)-regular when, in (1.8), we can replace dH(X1, . . . , Xk) by d.

Using the original proof of Szemerédi for graphs nearly verbatim, one may prove an ε-regularity

lemma for k-uniform hypergraphs (see, e.g. [10]). However, ε-regularity for k-uniform hyper-

graphs, when k ≥ 3, is not strong enough to admit a corresponding counting lemma, as we now

sketch when k = 3.

Example 1 (Dense and regular but cliqueless hypergraphs, B. Nagle). Let ε > 0 be given, and let

ρ ≈ 0.68 . . . be the real root of f(x) = x3 + x− 1. Let n = |V | be a large integer divisible by 4,

and let V = V1∪̇V2∪̇V3∪̇V4 be an equipartition of V . There exists a 4-partite 3-uniform hypergraph

H = (V,E) with vertex partition V1∪̇V2∪̇V3∪̇V4 which satisfies

(i) for each 1 ≤ i < j < k ≤ 4, (Vi, Vj, Vk) is (ρ, ε)-regular;

(ii) H has no cliques K(3)
4 , i.e. complete 3-uniform sub-hypergraphs on four vertices.

Proof (sketch) of Example 1. Fix ε > 0 and let ρ, n, and V = V1∪̇V2∪̇V3∪̇V4 be given as in the hy-

pothesis of Example 1. The desired hypergraphH will be a suitable instance of the following ran-

domly constructed hypergraph H constructed as follows. For each 2 ≤ i < j ≤ 4, let G(Vi, Vj; ρ)

be the binomial random subgraph with edge-density ρ. For each (v1, vi, vj) ∈ V1×Vi×Vj , include

{v1, vi, vj} ∈ E(H) if, and only if, {vi, vj} ∈ E(G(Vi, Vj; ρ)). For each (v2, v3, v4) ∈ V2×V3×V4,

include {v2, v3, v4} ∈ E(H) if, and only if, {v2, v3, v4} is not a triangle (K3) of

G(V2, V3; ρ)∪̇G(V3, V4; ρ)∪̇G(V2, V4; ρ). (1.9)

With certainty, the hypergraph H so constructed admits no copies of the clique K(3)
4 (see Figure 5).

Extending the details of (1.2), the Chernoff inequality guarantees that, with probability 1−o(1),

where o(1) → 0 as n → ∞, each of (V1, V2, V3), (V1, V3, V4), and (V1, V2, V4) is (ρ, o(1))-regular,

and hence, is (ρ, ε)-regular. Similar details with Janson’s inequality show that with probability

1− o(1), all sizable subsets V ′2 ⊆ V2, V ′3 ⊆ V3, V ′4 ⊆ V4, span

(1± o(1))ρ3|V ′2 ||V ′3 ||V ′4 |

many triangles in (1.9). Thus, (V2, V3, V4) is (1−ρ3, o(1))-regular, where 1−ρ3 = ρ. Since all the
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v1 v2

v3v4

(a) {v2, v3, v4} ∈ H

v1 v2

v3v4

(b) {v2, v3, v4} ∈ H

v1 v2

v3v4

(c) {v2, v3, v4} ∈ H
v1 v2

v3v4

(d) {v2, v3, v4} 6∈ H

Figure 5.: H cannot have a K(3)
4

desired properties of Example 1 hold for H with high (and hence positive) probability, there exists

an instanceH of H as desired in Example 1.

Strong hypergraph regularity

In light of Example 1, ε-regularity for k-graphsH is often referred to as weak regularity, because it

does not admit a corresponding counting lemma. Over the years, strong hypergraph regularity and

counting lemmas were, nonetheless, established, although they are quite technical in nature and we

do not present them here. (Roughly speaking, these tools regularize, i.e. uniformly distribute, in a

sparse way, a k-graphH = (V,E) with respect to the underlying set of (k−1)-tuples
(
V
k−1

)
, which

are in turn regularized with respect to the underlying set of (k−2)-tuples
(
V
k−2

)
, and so on.) Frankl

and Rödl [9] pioneered these efforts for k = 3 by proving a strong 3-uniform hypergraph regularity

lemma, where Nagle and Rödl [23] proved a corresponding 3-uniform hypergraph counting lemma.

These tools were later extended to k-uniform hypergraphs, for k ≥ 3, by W.T. Gowers [11, 12] and

by Nagle, Rödl, Schacht, and Skokan [24, 29]. These works prove a hypergraph removal lemma

extending that of Theorem 1.1.2, and give quantitative proofs of the d-dimensional analogue of
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Szemerédi’s Density Theorem, among others. An algorithmic version of the strong hypergraph

regularity lemma was recently established by Nagle, Rödl, and Schacht [25, 26], whereby a strong

regular partition of an n-vertex k-graph H = (V,E) is constructed in time O(n3k) (see also [14,

15]).

1.4 Main results of this dissertation

While an ε-regularity lemma for k-uniform hypergraphs is straightforward to prove, it is not easy to

prove a constructive such version. Such an algorithm was established by Czygrinow and Rödl [4],

and serves to inspire much of the work of this dissertation.

Theorem 1.4.1 (algorithmic weak regularity lemma). There exists an algorithm Aweak which, for

all ε > 0, for all integers k ≥ 2, and for all integers t0 ≥ 1, determines an integer T0 = T0(ε, k, t0)

and constructs, for every given n-vertex k-graphH = (V,E), in time O(n2k−1 log2 n), a partition

V = V1∪̇ . . . ∪̇Vt, with t0 ≤ t ≤ T0, satisfying that

1. V = V1∪̇ . . . ∪̇Vt is t-equitable: |V1| ≤ · · · ≤ |Vt| ≤ |V1|+ 1;

2. V = V1∪̇ . . . ∪̇Vt is ε-regular: all but εtk many (Vi1 , . . . , Vik), 1 ≤ i1 < · · · < ik ≤ t, are

ε-regular.

Our first main result optimizes the running time of Theorem 1.4.1 in the case when k = 3.

Theorem 1.4.2 (Main Result I). There exists an algorithm A(3)
weak which, for all ε > 0 and for all

integers t0 ≥ 1, determines an integer T0 = T0(ε, t0) and constructs, for every given n-vertex

3-graphH = (V,E), in time O(n3), an ε-regular and t-equitable partition V = V1∪̇ . . . ∪̇Vt, with

t0 ≤ t ≤ T0.

To our knowledge, Theorem 1.4.2 is the first hypergraph regularity lemma which is guaranteed to

have runtime the best possible order of magnitude O(n3).

To prove Theorem 1.4.2, we actually prove a stronger result in upcoming Theorem 5.0.5, but

which is too technical to state in this introduction. To give a flavor of Theorem 5.0.5, we prove

a regularity lemma for 3-graphs H = (V,E) which provides a stronger notion of regularity than
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Theorems 1.4.1 and 1.4.2, and from which we derive Theorem 1.4.2 in a fairly standard way.

Recall that the result of Nagle, Rödl, and Schacht [25, 26] would give a strong regular partition of

a 3-graph H = (V,E) in time O(n9), which is too slow for our purposes. Our second main result

proves an algorithmic regularity lemma for 3-graphsH = (V,E) which is weaker but much faster

than that of Nagle, Rödl, and Schacht [25, 26], but stronger and faster than that of Czygrinow and

Rödl [4]. We therefore call this result the Medium Regularity Lemma, which we informally state

below.

Theorem 1.4.3 (Main Result II). There exists an algorithm A(3)
med which, for every given n-vertex

3-graphH = (V,E), constructs in time O(n3) a ‘mediumly-regular’ partition ofH.

For a precise statement of this result, see Theorem 5.0.5. We next turn to applications of our

work, which are in progress with T. Molla and B. Nagle.

Applications of our work

We consider two ongoing applications of the work in this dissertation, which are joint with T. Molla

and B. Nagle [22] Our first result is an application of Theorem 1.4.2, and our second result is an

application of Theorem 1.4.3.

Call a hypergraphH = (V,E) 2-colorable if there exists a partition V = A∪̇B where bothA and

B meet every edge ofH, and call such a partition V = A∪̇B a 2-coloring of H . Elementary graph

theory establishes that one may determine whether or not a graph G = (V,E) is 2-colorable in

time O(|V |), and when so, one may construct a 2-coloring V = A∪̇B in this same time. However,

as is well-known from the work of Lovász [21], the same problem for 3-graphs is NP-complete.

Moreover, Guruswami, Håstad and Sudan [13] showed that it is NP-hard to properly color a 2-

colorable 4-graph H = (V,E) with any constant number of colors. (A proper coloring of H =

(V,E) is a coloring of V leaving no edge ofH monochromatic.)

A recent work of Person and Schacht [28] shows that one may 2-color an n-vertex 2-colorable 3-

graphH = (V,E) in average running time O(n5 log2 n). An important part of their proof employs

Theorem 1.4.1. In our current work with T. Molla [22], we use Theorem 1.4.2 to optimize their

running time.
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Theorem 1.4.4 (Molla, Nagle, Theado (in progress)). There exists an algorithm Abip which, with

average running time O(n3), 2-colors an n-vertex 2-colorable 3-graphH = (V,E). In particular,

if Hn is a 2-colorable n-vertex 3-graph chosen uniformly at random among all 2-colorable 3-

graphs on vertex set {1, . . . , n}, then with probability 1 − o(1), where o(1) → 0 as n → ∞, the

algorithm Abip 2-colors Hn in time O(n3).

Recall the earlier application of Theorem 1.0.2, whereby one estimates the frequency of a fixed

clique K` in a given n-vertex graph G = (V,E) up to an additive error of o(n`) and in time O(n2).

Using the strong hypergraph regularity algorithm of Nagle, Rödl, and Schacht [25, 26], one may

extend this algorithm to estimate the frequency of a fixed clique K(k)
` in a given n-vertex k-graph

H = (V,E) up to an additive error of o(n`) and in time O(n3k). It would be of interest to know

whether such an algorithm could run in optimal time O(nk), but the work in [25, 26] doesn’t give

it. While Theorem 1.4.3 is not strong enough to make an improvement here, it does provide an

improvement on a weaker problem.

Consider the 3-graphK(3)
4 −e consisting of three triples on four points. We consider the problem

of estimating the frequency of K(3)
4 − e in a given n-vertex k-graphH = (V,E). If we could count

isomorphic copies of K(3)
4 − e in H = (V,E), or equivalently induced copies of K(3)

4 − e in H,

then we could also count copies of K(3)
4 in H, which Theorem 1.4.3 won’t give. However, if we

only seek not-necessarily induced copies of K(3)
4 − e in H (meaning we can’t distinguish when

such a copy corresponds to K(3)
4 − e or K(3)

4 ), then Theorem 1.4.3 can give this, which is ongoing

work with T. Molla and B. Nagle [22].

Theorem 1.4.5 (Molla, Nagle, Theado (in progress)). There exists an algorithm Afreq which, for

all δ > 0, estimates the not-necessarily induced frequency of K(3)
4 − e in a given n-vertex 3-graph

H = (V,E) up to an additive error of δn4 and in time O(n3).

1.5 Itinerary of Dissertation

In Chapter 2, we prove an algorithm, Asparse, for sparse bipartite graphs L, which efficiently con-

firms whether L is suitably regular in one sense, or efficiently constructs witnesses of a significant

irregularity in another sense. These notations will be made precise in Chapter 2 where Asparse
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provides important underpinnings for future considerations.

In Chapter 3, we define several important graph and 3-graph concepts, including that of triads,

H-triads, and links, which provide the bedrock for all results in this dissertation. We also describe

ways in which these objects can be regular and discuss witnesses of irregularity when they are not.

These concepts form an analogue of the ε-regular pair (Vi, Vj) from Szemerédi’s regularity lemma

(Theorem 1.0.2).

In Chapter 4, we prove an algorithm Alink which efficiently confirms when anH-triad is suitably

regular in one sense, or efficiently constructs witnesses of significant irregularity in another sense.

These notions will be made precise in Chapter 4, where Alink may be considered the center of this

dissertation.

In Chapter 5, we use the results of our previous chapters to prove the algorithm Amed referenced

in Theorem 1.4.3, which is one of our main results. We reference Amed more precisely therein as

Amed = Alinkreg.

In Chapter 6, we prove a transference lemma which allows us to infer the notion of regularity in

Theorem 1.4.2 from that of Theorem 1.4.3.

Finally, in Chapter 7, we use this lemma to prove Theorem 1.4.2.
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Chapter 2

Sparse graphs

The goal of this chapter is to prove an algorithm Asparse for sparse bipartite graphs (2-graphs) L

which efficiently confirms whether L is suitably regular in one sense, or efficiently constructs wit-

nesses of a significant irregularity in another sense. In particular, and in the context of Szemerédi’s

regularity lemma (Theorem 1.0.2), when (A′, B′) is a witness of irregularity for (A,B), it is a sin-

gle such witness. Singular witnesses were sufficient for Szemerédi’s proof of his regularity lemma.

In this dissertation, we work with graphs and hypergraphs which are exceedingly sparse. As such,

our witnesses will often need to be simultaneous systems of r ≥ 1 many objects. Frequently, r

will be a very large constant not depending on the size of the (hyper)graph. We now make these

notions precise.

To that purpose, let L = (A ∪̇B,E) be a bipartite graph with vertex bipartition V (L) = A ∪̇B.

For an integer r ∈ N, let ~A = (A1, . . . , Ar) be a sequence of subsetsA1, . . . , Ar ⊂ A. Then ~A is an

element of the r-fold Cartesian product 2A× . . .× 2A = (2A)r. Similarly, let ~B = (B1, . . . , Br) ∈

(2B)r. We define

E[ ~A, ~B] = E[A1, B1] ∪ . . . ∪ E[Ar, Br] =
r⋃
i=1

E[Ai, Bi]

to be the set of edges {a, b} ∈ E for which there exists 1 ≤ i ≤ r such that a ∈ Ai and b ∈ Bi.

Similarly, we define

K[ ~A, ~B] =
r⋃
i=1

K[Ai, Bi]

to be the set of all pairs {a, b} ∈ K[A,B] for which there exists 1 ≤ i ≤ r such that a ∈ Ai and

b ∈ Bi. We say that the pair ( ~A, ~B) is pair-disjoint if for 1 ≤ i < j ≤ r, the edge sets K[Ai, Bi],

K[Aj, Bj] are disjoint. Also, for c > 0 we say that ( ~A, ~B) is c-bounded if for each 1 ≤ i, j ≤ r
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where Ai, Bj 6= ∅ we have |Ai| ≥ c|A| and |Bj| ≥ c|B|. Finally, we define the r-density dL( ~A, ~B)

by

dL( ~A, ~B) =
|E[ ~A, ~B]|
|K[ ~A, ~B]|

=
|
⋃r
i=1 E[Ai, Bi]|

|
⋃r
i=1K[Ai, Bi]|

Definition 2.0.1. Let L = (A ∪̇B,E) be a bipartite graph, as above, and let d ∈ [0, 1], δ > 0

and r ∈ N be given. We say that L is (d, δ, r)-regular if for any ~A = (A1, . . . , Ar) ∈ (2A)r and

~B = (B1, . . . , Br) ∈ (2B)r satisfying

∣∣∣K[ ~A, ~B]
∣∣∣ ≥ δ|K[A,B]| = δ|A||B|, (2.1)

we have

d(1− δ) ≤ dL( ~A, ~B) ≤ d(1 + δ). (2.2)

Otherwise, we say that L is (d, δ, r)-irregular and any pair of sequences ( ~A, ~B) ∈ (2A)r × (2B)r

satisfying (2.1) but not (2.2) is called an r-witness of the (d, δ, r)-irregularity of L. Note that any

s-witness to the (d, δ, s)-irregularity of L for 1 ≤ s ≤ r serves as an r-witness to the (d, δ, r)-

irregularity of L as we may form an r-tuple from the s-tuple by adding empty sets and doing so

does not affect the density.

Lemma 2.0.2 (Asparse). There exists an algorithm Asparse so that for any δ > 0, Asparse determines

δ∗ > 0 so that for any D ∈ [0, 1], Asparse determines c > 0 and r = r(δ, δ∗, D) ∈ N so that

the following holds: Let L = (A ∪̇B,E) be a bipartite graph of density dL(A,B) = d ≥ D on

n = |A|+ |B| vertices where |A|, |B| = Θ(n). Then in time O(n2), Asparse either confirms that L is

(d, δ, 1)-regular, or it constructs a c-bounded and pair-disjoint r-witness ( ~A, ~B) ∈ (2A)r × (2B)r

of the (d, δ∗, r)-irregularity of L.

2.1 The Algorithm Asparse

Input: Let δ > 0 be given. For convenience in upcoming considerations, define an auxiliary

constant δ0 by

δ0 =
δ2

22
, and then define δ∗ =

δ0

4
=
δ2

88
. (2.3)
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Let D ∈ [0, 1] be given. To define the promised integer r, we first define an auxiliary constant

ε = Dδ0. (2.4)

With ε > 0 above and with t0 = 1, let

T0 = T0(ε) (2.5)

be the constant guaranteed by Theorem 1.2.1. Set

c =
1

2T0

and r = T 2
0 (2.6)

Let L be a bipartite graph of density dL(A,B) = d ≥ D on n = |A| + |B| vertices, where

|A|, |B| = Θ(n).

Procedure: The algorithm Asparse proceeds along the following steps.

Step 1. (Apply ASzem) With ε > 0 given in (2.4), and t0 = 1, apply the algorithm ASzem (see

Theorem 1.2.1) to the graph L to obtain in time O(n2), an ε-regular t-equitable partition

A = A0 ∪̇A1 ∪̇ . . . ∪̇At1 , B = B0 ∪̇B1 ∪̇ . . . ∪̇Bt2 ,

where t0 ≤ t = t1 + t2 ≤ T0.

Step 2. (Compute densities) For each (i, j) ∈ [t1]× [t2], (greedily) compute the density dL(Ai, Bj)

in time O(|Ai||Bj|). Repeating over all (i, j) ∈ [t1] × [t2], the set of all densities dL(Ai, Bj) is

recorded in time ∑
(i,j)∈[t1]×[t2]

O(|Ai||Bj|) = O(|A||B|) = O(n2).
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Step 3. (Check uniformity of densities) Define

∆− = {(i, j) ∈ [t1]× [t2] : dL(Ai, Bj) < d(1− δ0)}

∆+ = {(i, j) ∈ [t1]× [t2] : dL(Ai, Bj) > d(1 + δ0)}

∆ = ([t1]× [t2]) \ (∆− ∪∆+)

In time O(t1t2) = O(T0) = O(1), decide among the following cases:

Case 1: |∆| ≥ (1− 2δ0)t1t2,

Case 2: |∆−| ≥ δ0t1t2,

Case 3: |∆+| ≥ δ0t1t2,

While these cases are not necessarily mutually disjoint, at least one of the above cases holds since

|∆|+ |∆−|+ |∆+| = |∆ ∪̇∆− ∪̇∆+| = t1t2 = (1− 2δ0)t1t2 + δ0t1t2 + δ0t1t2.

Output: If Asparse determines that Case 1 holds, then the algorithm will return that L is (d, δ, 1)-

regular. Otherwise, Asparse will report that L is not (d, δ∗, r)-regular and return an r-witness ( ~A, ~B).

Since either Case 2 or Case 3 hold, respectively either write ∆− or ∆+ as {(i1, j1), . . . , (ip, jp)}

and then use ~A = (Ai1 , . . . , Aip) and ~B = (Bi1 , . . . , Bip) for the r-witness (recall (2.6)).

It is clear that Asparse terminates in time O(n2), where this time is achieved in steps 1 and 2. It

remains to verify that the output is indeed correct and we do so by examining each of the cases in

Step 3.

2.2 Proof of Correctness

To prove the correctness of the algorithm Asparse, we consider the cases determined in the above

procedure and verify that the corresponding output is indeed correct.
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2.2.1 Case 1

Assume that |∆| ≥ (1 − 2δ0)t1t2 and we show that L is (d, δ, 1)-regular. To that end, let ~A =

(A′) ∈ 2A and ~B = (B′) ∈ 2B satisfy

|K( ~A, ~B)| = |K[A′, B′]| = |A′||B′| ≥ δ|A||B| = δ|K[A,B]|.

We show

d(1− δ) ≤ dL( ~A, ~B) ≤ d(1 + δ), (2.7)

where

dL( ~A, ~B) =
|EL[ ~A, ~B]|
|K[ ~A, ~B]|

=
|EL[A′, B′]|
|K[A′, B′]|

=
|EL[A′, B′]|
|A′||B′|

.

In particular, the proofs of the lower and upper bounds in (2.7) are very similar. For simplicity in

what follows, we prove the lower bound only.

Let A′i = A′ ∩ Ai for 0 ≤ i ≤ t1 and B′j = B′ ∩Bj for 0 ≤ j ≤ t2. Define

∆reg = {(i, j) ∈ ∆ : (Ai, Bj) is ε-regular} ,

∆big =
{

(i, j) ∈ ∆ : |A′i| > ε|Ai| and |B′j| > ε|Bj|
}
,

∆good = ∆reg ∩∆big. (2.8)

Since ∆good ⊂ ∆ ⊂ [t1]× [t2] we have

|EL[A′, B′]| =

∣∣∣∣∣∣∣
⋃̇

0≤i≤t1
0≤j≤t2

EL[A′i, B
′
j]

∣∣∣∣∣∣∣ ≥
∑

(i,j)∈∆good

|EL[A′i, B
′
j]|. (2.9)

Fix (i, j) ∈ ∆good = ∆ ∩∆reg ∩∆big. Then the following hold:

(i) Since (i, j) ∈ ∆big, we have that |A′i| > ε|Ai| and |B′j| > ε|Bj|;

(ii) Since (i, j) ∈ ∆reg, we have that (Ai, Bj) is ε-regular;
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(iii) Since (i, j) ∈ ∆, we have that d(1− δ0) ≤ dL(Ai, Bj) ≤ d(1 + δ0).

From (ii) we get |dL(A′i, B
′
j)− dL(Ai, Bj)| < ε so that by (iii),

|EL[A′i, B
′
j]|

|A′i||B′j|
= dL(A′i, B

′
j) > dL(Ai, Bj)− ε ≥ d(1− δ0)− ε

and hence from this and (2.9),

|EL[A′, B′]| ≥ (d(1− δ0)− ε)
∑

(i,j)∈∆good

|A′i||B′j|. (2.10)

Now we look at |A′||B′|, observing that

|A′||B′| = |K[A′, B′]| =

∣∣∣∣∣∣∣
⋃̇

0≤i≤t1
0≤j≤t2

K[A′i, B
′
j]

∣∣∣∣∣∣∣ ≤ T0n+
∑

(i,j)∈[t1]×[t2]

|A′i||B′j|

follows from |A0 ∪ B0| = t ≤ T0 = O(1). Recalling the partition ∆ ∪̇∆− ∪̇∆+ (cf. Step 3), we

see

|A′||B′| ≤ O(n) +
∑

(i,j)∈∆−∪∆+

|A′i||B′i|+
∑

(i,j)∈∆

|A′i||B′i|

≤ O(n) +
∑

(i,j)∈∆−∪∆+

|Ai||Bi|+
∑

(i,j)∈∆

|A′i||B′i|

≤ O(n) +
∣∣∆− ∪∆+

∣∣ ⌊ |A|
t1

⌋⌊
|B|
t2

⌋
+
∑

(i,j)∈∆

|A′i||B′i|.

Since |∆| ≥ (1− 2δ0)t1t2, we have |∆− ∪∆+| ≤ 2δ0t1t2, and so

|A′||B′| ≤ O(n) + 2δ0|A||B|+
∑

(i,j)∈∆

|A′i||B′i|. (2.11)
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Now define

∆irreg = ∆ \∆reg = {(i, j) ∈ ∆ : (Ai, Bj) is ε-irregular} ,

∆small = ∆ \∆big =
{

(i, j) ∈ ∆ : |A′i| ≤ ε|Ai| and |B′j| ≤ ε|Bj|
}
,

∆bad = ∆ \∆good = ∆irreg ∪∆small.

We have

∑
(i,j)∈∆

|A′i||B′j| =
∑

(i,j)∈∆good

|A′i||B′j|+
∑

(i,j)∈∆bad

|A′i||B′j|

≤
∑

(i,j)∈∆good

|A′i||B′j|+
∑

(i,j)∈∆irreg

|A′i||B′j|+
∑

(i,j)∈∆small

|A′i||B′j|

≤ |∆irreg|
⌊
|A|
t1

⌋⌊
|B|
t2

⌋
+

∑
(i,j)∈∆small

|A′i||B′j|+
∑

(i,j)∈∆good

|A′i||B′j|

By the application of ASzem, we have that |∆irreg| ≤ εt1t2. Moreover, for each (i, j) ∈ ∆small it

follows (by definition of ∆small) that |A′i||B′j| ≤ ε|Ai||Bj| where |∆small| ≤ t1t2. Thus,

∑
(i,j)∈∆

|A′i||B′j| ≤ 2ε|A||B|+
∑

(i,j)∈∆good

|A′i||B′j|. (2.12)

Combining (2.11) and (2.12), we see

|A′||B′| ≤ O(n) + 2δ0|A||B|+ 2ε|A||B|+
∑

(i,j)∈∆good

|A′i||B′j|

≤ 5δ0|A||B|+
∑

(i,j)∈∆good

|A′i||B′j| (2.13)

where we used ε ≤ δ0 in (2.4) andO(n) = o(|A||B|) (since |A|+|B| = n, where |A|, |B| = Θ(n)).

Comparing (2.10) and (2.13), we see that

|EL[A′, B′]|
|A′||B′|

≥
(d(1− δ0)− ε)

∑
(i,j)∈∆good

|A′i||B′j|
5δ0|A||B|+

∑
(i,j)∈∆good

|A′i||B′j|
= (d(1− δ0)− ε) 1

1 + x
,
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where

x = 5δ0
|A||B|∑

(i,j)∈∆good
|A′i||B′j|

(2.13)
≤ 5δ0

|A||B|
|A′||B′| − 5δ0|A||B|

≤ 5δ0
|A||B|

δ|A||B| − 5δ0|A||B|

≤ 5δ0

δ − 5δ0

,

where we used the hypothesis that |A′||B′| ≥ δ|A||B|. Therefore,

EL[A′, B′]

|A′||B′|
≥ (d(1− δ0)− ε) 1

1 + 5δ0
δ−5δ0

≥ d
(

1− δ0 −
ε

D

)(
1− 5δ0

δ − 5δ0

)
(2.3)
(2.4)
≥ d(1− 2δ0)

(
1− 10δ0

δ

)
≥ d

(
1− 22

δ0

δ

)
(2.3)
≥ d(1− δ),

as desired.

2.2.2 Cases 2 and 3

The proofs of correctness for each of cases 2 and 3 are identical, so we focus only on Case 2. To

that end, assume

p = |∆−| ≥ δ0t1t2, (2.14)

where ∆− = {(i1, j1), . . . , (ip, jp)} and ~A = (Ai1 , . . . , Aip) and ~B = (Bi1 , . . . , Bip). Since

p ≤ t1t2 ≤ T 2
0 = r (cf. (2.6)), the sequences ~A and ~B can be viewed as r-tuples with possibly

empty coordinates. Clearly, ( ~A, ~B) is pair-disjoint. Moreover, ( ~A, ~B) is c-bounded as whenever

Ai, Bj are non-empty coordinates, Step 1 gives

|Ai| ≥
1

t
(|A| − t) ≥ 1

2T0

|A| = c|A|.

24



We show, in fact, that under the conditions of Case 2, the pair ( ~A, ~B) is an r-witness to the (d, δ∗, r)-

irregularity of L. For that, we show

∣∣∣K[ ~A, ~B]
∣∣∣ > δ∗ |K[A,B]| = δ∗|A||B| (2.15)

and

dL( ~A, ~B) < d(1− δ∗). (2.16)

Proof of (2.15). Recall that

K[ ~A, ~B] = K[Ai1 , Bj1 ] ∪̇ . . . ∪̇K[Aip , Bjp ] (2.17)

Thus,

∣∣∣K[ ~A, ~B]
∣∣∣ =

p∑
k=1

|K[Aik , Bjk ]| =
p∑

k=1

|Aik ||Bjk | (2.18)

= p

⌊
|A|
t1

⌋⌊
|B|
t2

⌋
(2.14)
≥ 1

4
δ0|A||B|

(2.3)
≥ δ∗|A||B|,

as desired.

Proof of (2.16). Recall that

dL( ~A, ~B) =
|EL[ ~A, ~B]|
|K[ ~A, ~B]|

,

where similarly to (2.17),

EL[ ~A, ~B] = EL[Ai1 , Bj1 ] ∪̇ . . . ∪̇EL[Aip , Bjp ]
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is a pairwise disjoint union. As such,

dL( ~A, ~B) =
|EL[ ~A, ~B]|
|K[ ~A, ~B]|

=

∑p
k=1 |EL[Aik , Bjk ]|
|K[ ~A, ~B]|

. (2.19)

By the definition of ∆−, each (ik, jk) ∈ ∆− satisfies

dL(Aik , Bik) =
|EL[Aik , Bik ]|
|Aik ||Bik |

< d(1− δ0).

Thus,

|EL[Aik , Bik ]| < d(1− δ0)|Aik ||Bik |.

Returning to (2.19), we see

dL( ~A, ~B) < d(1− δ0)

∑p
k=1 |Aik ||Bjk |
K[ ~A, ~B]

(2.17)
= d(1− δ0)

|K[ ~A, ~B]|
|K[ ~A, ~B]|

= d(1− δ0)

(2.3)
≤ d(1− δ∗),

as promised.
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Chapter 3

Triads, Links, and Regularity

The goal of this chapter is to precisely describe several important graph and 3-graph concepts

which appear throughout this dissertation. In particular, we define triads,H-triads, and links which

provide the foundation of all results herein. We also describe ways in which these objects can be

considered regular and discuss witnesses of irregularity when they are not. These concepts form

an analogue of the ε-regular pair (Vi, Vj) from Szemerédi’s regularity lemma (Theorem 1.0.2). We

now proceed with introducing these concepts.

3.1 Triads andH-triads

We begin by defining the concept of a triad.

Definition 3.1.1 (Triad). Let V = V1 ∪̇V2 ∪̇V3 be a set of vertices with the given 3-partition and

let P = P 12 ∪̇P 13 ∪̇P 23 be a 3-partite graph with the 3-partition V1 ∪̇V2 ∪̇V3, where for each 1 ≤

i < j ≤ 3, we have P ij = P [Vi, Vj]. We call (P, V ) a triad. Moreover, for d12, d13, d23, ε ∈ (0, 1],

set ~d = (d12, d13, d23). We say that (P, V ) is (~d, ε)-regular if for each 1 ≤ i < j ≤ 3, we have that

P ij is (dij, ε)-regular.

Triads (P, V ), as above, will be the building blocks of the hypergraphs we consider in this

section. To explain, we consider the following notation. Define

K3(P ) =

{
{v1, v2, v3} ∈

(
V

3

)
: {v1, v2}, {v1, v3}, {v2, v3} ∈ P,

}

to be the triangles of the graph P . Now let H ⊆
(
V
3

)
be a 3-uniform hypergraph also defined on

V . We say that P underliesH ifH ⊆ K3(P ). The following definition extends the triad (P, V ) to

includeH, which we therefore call anH-triad.
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Definition 3.1.2 (H-triad). We call a triple (H, P, V ) anH-triad if

(i) (P, V ) is a triad, where K3(P ) 6= ∅;

(ii) H ⊆ K3(P ) has underlying graph P .

V1

V2 V3

P12

P23

P13

Figure 6.: AnH-triad. Members ofH must be triangles of the triad (P, V ).

Remark. Let (H, P, V ) be an H-triad, where V = V1 ∪̇V2 ∪̇V3 and P = P 12 ∪̇P 13 ∪̇P 23 are

as in Definition 3.1.1. Since P is a 3-partitite graph, with 3-partition V1 ∪̇V2 ∪̇V3, and since

H ⊆ K3(P ), the hypergraphH is also 3-partitite, with the same 3-partition V1 ∪̇V2 ∪̇V3.

3.2 Density and Regularity ofH-triads

Definition 3.2.1 (Density). Let (H, P, V ) be an H-triad. We define the density of H with respect

to P as

dH(P ) =
|H|
|K3(P )|

.

More generally, let Q ⊆ P be a subgraph of P for which K3(Q) 6= ∅. We define the density of H

with respect to Q as

dH(Q) =
|H(Q)|
|K3(Q)|

,

whereH(Q) = H ∩K3(Q) is the sub-hypergraph ofH induced by K3(Q).
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We will also require an iterated version of the concept of density.

Definition 3.2.2 (r-density). Let (H, P, V ) be an H-triad and let r ∈ N be a positive integer. Let

~Q = (Q1, . . . , Qr) be a sequence of subgraphs Q1, . . . , Qr ⊆ P . We write

K3( ~Q) =
r⋃
i=1

K3(Qi)

for the famility of triangles of ~Q. When K3( ~Q) 6= ∅ we define the density of H with respect to ~Q

by

dH( ~Q) =
|H( ~Q)|
|K3( ~Q)|

,

whereH( ~Q) = H ∩K3( ~Q) is the sub-hypergraph ofH induced by K3( ~Q).

Remark. In Definition 3.2.2, the order of the sequence ~Q is immaterial, and overlap or even

repetition of coordinates is allowed.

We now define a concept of regularity forH-triads (H, P, V ).

Definition 3.2.3 ((δ, r)-regular). Let (H, P, V ) be anH-triad and let δ > 0 and r ∈ N be given. We

say that H is (δ, r)-regular with respect to P if for any sequence ~Q = (Q1, . . . , Qr) of subgraphs

of P for which

|K3( ~Q)| > δ|K3(P )|, (3.1)

we have that ~Q satisfies

|dH( ~Q)− dH(P )| < δ. (3.2)

WhenH is not (δ, r)-regular with respect to P , then we sayH is (δ, r)-irregular with respect to P

and any sequence ~Q = (Q1, . . . , Qr) satisfying 3.1 but failing 3.2 is said to be an r-witness to the

(δ, r)-irregularity ofH with respect to P .
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3.3 Links and Link-regularity

We now describe when anH-triad (H, P, V ) enjoys a different regularity condition, which will be

framed in terms of the following so-called link graphs Lv ofH, where v ∈ V .

Definition 3.3.1 (Link Graph). Let (H, P, V ) be anH-triad. For a vertex x ∈ V , we define

Lx =
{
{y, z} ∈ P : {x, y, z} ∈ H

}
to be the link graph of x.

Remark. In the definition above, suppose that P = P 12 ∪̇P 13 ∪̇P 23 is a 3 partite graph with vertex

partition V = V1 ∪̇V2 ∪̇V3 as in Definition 3.1.1. If x ∈ V1, then Lx is the bipartite subgraph of

P 23 whose vertex partition is given by NP 12(x) ∪̇NP 13(x) where NP 12(x) = NP (x) ∩ V2 and

NP 13(x) = NP (x) ∩ V3 are the P12 and P13 neighborhoods of x in V2 and V3 respectively.

For an H-triad (H, P, V ), we would like the link graphs Lx of most vertices x ∈ V to be

(dx, δ, 1)-regular in the sense of Definition 2.0.1 where dx is an appropriate average given in terms

ofH and P . To describe this average, we impose the following further hypotheses on (H, P, V ).

Definition 3.3.2 ((α, ~d, ε)-triad). Let α, d12, d13, d23, ε > 0 be given, and write ~d = (d12, d13, d23).

We say that an H-triad (H, P, V ) on n vertices is an (α, ~d, ε)-triad if it satisfies the following

properties:

(i) V = V1 ∪̇V2 ∪̇V3 is a partition satisfying

|V1|, |V2|, |V3| = Θ(n)

in which case all cardinalities |V1|, |V2|, |V3| are comparable;

(ii) (P, V ) is a (~d, ε)-triad, i.e. P = P 12 ∪̇P 13 ∪̇P 23 has each bipartite graph P ij , 1 ≤ i < j ≤ 3,

being (dij, ε)-regular;

(iii) H ⊆ K3(P ) satisfies

dH(P ) =
|H|
|K3(P )|

=
|H(P )|
|K3(P )|

= α.
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Now, for an (α, ~d, ε)-triad (H, P, V ), we would like the link graphs Lx of most x ∈ V1 to be

(dx, δ, 1)-regular, and we would like, moreover, for dx to be typically given by

dx = αd23. (3.3)

To justify this expression, we invoke two well-known facts from the literature on ε-regularity.

Fact 3.3.3 (Neighborhood lemma, [19]). Let (P, V ) be a (~d, ε)-triad (as in Definition 3.3.2 (ii)).

Then all but 2ε|V1| vertices v ∈ V1 satisfy

(d1j − ε)|Vj| ≤ |NP 1j(v)| ≤ (d1j + ε)|Vj|

for both j = 2 and j = 3.

Fact 3.3.4 (Triangle counting lemma, [19]). For all d0, γ > 0, there exists ε > 0 so that the

following holds. Let (P, V ) be a (~d, ε)-triad (as in Definition 3.3.2), where ~d = (d12, d13, d23)

satisfies d12, d13, d23 > d0, and V = V1 ∪̇V2 ∪̇V3 has each |V1|, |V2|, |V3| sufficiently large. Then

|K3(P )| = (1± γ)d12d13d23|V1||V2||V3|.

We now informally justify (3.3). On one hand, for an appropriately given (α, ~d, ε)-triad

(H, P, V ), we have

∑
x∈V1

|Lx| = |H| = α|K3(P )|
Fact 3.3.4
≈ αd12d13d23|V1||V2||V3|.

On the other hand, for each x ∈ V we have |Lx| = dx|NP 12(x)||NP 13(x)|, where dx =

dLx(NP 12(x), NP 13(x)) is the density of Lx. Typically, these neighborhoods are governed by Fact

3.3.3, and so

d12d13|V2||V3|
∑
x∈V1

dx ≈
∑
x∈V1

|Lx| ≈ αd12d13d23|V1||V2||V3|,
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so that the average density satisfies

Ex∈V1 [dx] =
1

|V1|
∑
x∈V1

dx ≈ αd23,

as sought in (3.3).

To make the concepts above precise, we introduce the following definition.

Definition 3.3.5 (δ-link regular). Let (H, P, V ) be an (α, ~d, ε)-triad. For δ > 0, we say that

(H, P, V ) is δ-link regular if for all but δ|V1| vertices x ∈ V1, the link graph Lx is (αd23, δ, 1)-

regular.
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Chapter 4

The Link Algorithm

The goal of this chapter is to demonstrate an algorithm Alink which efficiently confirms whether

an (α, ~d, ε)-triad (H, P, V ) is δ-link regular (see Definition 3.3.5), or efficiently constructs an r-

witness of the (δ#, r)-irregularity of (H, P, V ) (see Definition 3.2.3), where here, 0 < δ# � δ is

suitably smaller than δ. In practice, (P, V ) will be class of a partition (see Definition 5.0.3), where

H will be a sub-hypergraph of a larger hypergraph G, induced by the triangles K3(P ) of P . The

job of Alink will be to determine if these classes are regular or provide a witness so that the partition

may be refined in the case that too many classes are irregular. We now proceed to the promised

algorithm Alink.

4.1 The Algorithm Alink

Lemma 4.1.1 (Algorithm Alink). There exists an algorithm Alink so that, for all α0, δ > 0, Alink

determines δ# = δ#(α0, δ) so that, for all d0 > 0, Alink determines ε = ε(α0, δ, δ#, d0) > 0 and

an integer r = r(α0, δ, δ#, d0) ∈ N so that the following holds:

Let (H, P, V ) be a given (α, ~d, ε)-triad on n vertices, where α and ~d = (d12, d13, d23) satisfy

α ≥ α0 and d12, d13, d23 ≥ d0. Then, in time O(n3), Alink either confirms that (H, P, V ) is δ-

link regular, or confirms that (H, P, V ) is (δ#, r)-irregular with respect to P , and constructs a

corresponding r-witness ~Q to this effect.

To describe the algorithm Alink, we begin by discussing its input.

Input: Let α0, δ > 0 be given. To define the promised constant δ# > 0, we consider some

auxiliary constants. First, set

δ1 =
δ

3
. (4.1)
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Second, with δ1 > 0 given above, Lemma 2.0.2 determines the constant

δ∗ = δ∗(δ1) > 0 (4.2)

to be appropriate for an application of Asparse. We set

δ# =
1

16
δ1δ

6
∗. (4.3)

Let δ0 be given. To determine the promised constants ε = ε(α0, δ, δ#, d0) > 0 and r =

r(α0, δ, δ#, d0) ∈ N, we again consider several auxiliary constants. First, set

D =
1

2
α0d0. (4.4)

Now, Lemma 2.0.2 determines constants

c = c(δ1, δ∗, D) and r = r(δ1, δ∗, D) ∈ N (4.5)

to be appropriate for an application of Asparse. We define the promised constant r = r(α0, δ, δ#, d0)

to be

r = r(δ1, δ∗, D). (4.6)

Second, for defining the promised constant ε = ε(α0, δ, δ#, d0), let

ε1 = εFact 3.3.4(d0, γ = 1) (4.7)

be the constant guaranteed by the Triangle Counting Lemma (Fact 3.3.4). Set

ε =
1

2
δ3
∗ ·min{ε1, c, d0}. (4.8)

This concludes our definitions of the promised constants.
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Let (H, P, V ) be a given (α, ~d, ε)-triad on n vertices, where α and ~d = (d12, d13, d23) satisfy

α ≥ α0 and d12, d13, d23 ≥ d0, for α0 > 0 and d0 > 0 given above. We describe the algorithm Alink,

which either confirms that (H, P, V ) is δ-link regular, with δ > 0 given above, or confirms that

H is (δ#, r)-irregular with respect to P , where δ# and r are given in (4.3) and (4.6) respectively.

Moreover, in this case, Alink will construct an r-witness to this effect.

Procedure: The algorithm Alink proceeds along the following steps.

Step 1. (Identify good vertices) Fix v ∈ V1, and j ∈ {2, 3}. Compute |NP 1j(v)| in time O(|Vj|) =

O(n). By Fact 3.3.3, all but 4ε|V1| vertices v ∈ V1 satisfy that for both j = 2 and j = 3,

(d1j − ε)|Vj| ≤ |NP 1j(v)| ≤ (d1j + ε)|Vj|.

We call such vertices good, and denote the set of good vertices v ∈ V1 by V good
1 . Repeating over

all v ∈ V1, we identify V good
1 in time O(|V1||V2|+ |V1||V3|) = O(n2).

Step 2. (Compute link densities) Fix x ∈ V good
1 . Construct Lx in time O(|P 23|) = O(|V1||V2|) =

O(n2). Equivalently, we have computed dx = dLx(NP 12(x), NP 13(x)). We say a vertex v ∈ V good
1

is nice if

αd23(1− δ∗) ≤ dx ≤ αd23(1 + δ∗),

and we denote the set of nice vertices x ∈ V1 by V nice
1 ⊆ V good

1 ⊆ V1. Repeating over all x ∈ V good
1 ,

we identify V nice
1 in time O(|V1|n2) = O(n3).

Now, using V nice
1 and V good

1 , the principal part of our final step will invoke the algorithm Asparse,

and make other related constructions.

Step 3. (Alink and other constructions) In all that follows, set X = V good
1 \ V nice

1 . Prior to applying

Asparse, we consider the following sets

X+ = {x ∈ X : dx > αd23(1 + δ∗)}

X− = {x ∈ X : dx < αd23(1 + δ∗)}

Note that X = X+ ∪̇X− is a partition. If either X+ or X− is large, we would be able to avoid

invoking Asparse, and it would suffice to consider the following easy constructions. For X+, we
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construct the following 1-tuple ~Q+ = (Q+) of subgraphs Q+ ⊆ P = P12 ∪̇P13 ∪̇P23:

Q12
+ = P 12[X+, V2], Q13

+ = P 13[X+, V3],

Q23
+ = P 23, and Q+ = Q12

+ ∪̇Q13
+ ∪̇Q23

+ .

Clearly, Q+ is constructed in time O(|P 12|+ |P 13|+ |P 23|) = O(n2). Similarly, in time O(n2) we

construct the 1-tuple ~Q− = (Q−) of subgraphs Q− ⊆ P = P12 ∪̇P13 ∪̇P23:

Q12
− = P 12[X−, V2], Q13

− = P 13[X−, V3],

Q23
− = P 23, and Q− = Q12

− ∪̇Q13
− ∪̇Q23

− .

Now set Y = V nice
1 . For each y ∈ Y , we run the algorithm Asparse (see Lemma 2.0.2) on the link

graph Ly. (For a proof that Asparse applies to Ly, see the next subsection.) With y ∈ Y = V nice
1

fixed, Asparse yields in time O(n2) one of the following two outputs:

(I) Asparse confirms that Ly is (dy, δ1, 1)-regular;

(II) Asparse detects that Ly is (dy, δ∗, r)-irregular and constructs pair-disjoint, c-bounded r-

witness ( ~Ay, ~By) to that effect, where ~Ay = (Ay1, . . . , A
y
r) and ~By = (By

1 , . . . , B
y
r ) with

Ay1, . . . , A
y
r ⊆ NP 12(y) and By

1 , . . . , B
y
r ⊆ NP 13(y). In particular, either

(a) dLy( ~Ay, ~By) < dy(1− δ∗), or

(b) dLy( ~Ay, ~By) > dy(1 + δ∗).

Repeating over all y ∈ Y = V nice
1 , we distinguish, in time O(|Y |n2) = O(n3), between (I) and (II)

for every y ∈ Y = V nice
1 . Continuing, define the following sets:

Yreg = {y ∈ Y = V nice
1 : (I) holds};

Yirreg = {y ∈ Y = V nice
1 : (II) holds};

Y −irreg = {y ∈ Y = V nice
1 : (II) and (a) hold};

Y +
irreg = {y ∈ Y = V nice

1 : (II) and (b) hold}.
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Clearly, Y = Yreg ∪̇Yirreg and Yirreg = Y −irreg ∪̇Y
+

irreg are partitions. For Y −irreg, we construct the

following r-tuple ~Q− = (Q−1 , . . . , Q
−
r ) of subgraphs Q−i ⊆ P :

Q12
i,− = P 12

[
Y −irreg,

⋃
y∈Y −irreg

Ayi

]
, Q13

i,− = P 13
[
Y −irreg,

⋃
y∈Y −irreg

By
i

]
,

Q23
i,− = P 23, and Q−i = Q12

i,− ∪̇Q13
i,− ∪̇Q23

i,−.

Since r = o(1) is contstant, we have that ~Q− is constructed in time O (|P 12|+ |P 13|+ |P 23|) =

O(n2). Similarly, for Y +
irreg, we construct in time O(n2) the following r-tuple ~Q+ = (Q+

1 , . . . , Q
+
r )

of subgraphs Q+
i ⊆ P :

Q12
i,+ = P 12

[
Y +

irreg,
⋃
y∈Y +

irreg
Ayi

]
, Q13

i,+ = P 13
[
Y +

irreg,
⋃
y∈Y +

irreg
By
i

]
,

Q23
i,+ = P 23, and Q+

i = Q12
i,+ ∪̇Q13

i,+ ∪̇Q23
i,+.

This concludes Step 3.

Output:

1) For X = V good
1 \ V nice

1 = X+ ∪̇X−,

if |X+| ≥ δ1|V1| or |X−| ≥ δ1|V1|,

returnH is (δ#, 1)-irregular and return either qualifying 1-tuple ~Q+ or ~Q−
respectively.

2) else |X| = |V good
1 \ V nice

1 | < 2δ1|V1|,

and so

|Y | = |V nice
1 | = |V1| − |V1 \ V good

1 | − |V good
1 | \ V nice

1 |

≥ (1− 4ε− 2δ1)|V1|,

where Y = Yreg ∪̇Yirreg = Yreg ∪̇Y +
irreg ∪̇Y

−
irreg.

if |Y +
irreg| ≥ δ1|V1| or |Y −irreg| ≥ δ1|V1|

returnH is (δ#, r)-irregular and return the r-tuple ~Q+ or ~Q− respectively.

3) else |Yreg| = |Y | − |Yirreg+ ∪̇Y −irreg| ≥ (1− 4ε− 2δ1)|V1|

and so

return (H, P, V ) is δ-link regular.

This concludes the descriptions of the algorithm Alink. It now remains to prove its correctness.
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4.2 Proof of Lemma 4.1.1

It is clear that the algorithm Alink runs in time O(n2), which is achieved in steps 2 and 3. We must

show the correctness of its output. We examine cases 1)-3) in the output of Alink in the order of

increasing technicality.

4.2.1 Output Case 3

The algorithm is correct by definition. Indeed,

|Yreg| ≥ (1− 4ε− 2δ1)|V1|
(4.8)
≥ (1− 3δ1)|V1| ≥ (1− δ)|V1|.

The link graph Ly of every vertex y ∈ Yreg ⊆ Y = V nice
1 is (dy, δ1, 1)-regular, where αd23(1−δ∗) ≤

dy ≤ αd23(1 + δ∗). From Definition 2.0.1, this means that for any sequence ~Ay = (A1, . . . , Ar) of

subsets from NP 12(y) and for any sequence ~By = (B1, . . . , Br) of subsets from NP 13(y), we have

that
∣∣∣K( ~Ay, ~By)

∣∣∣ > δ1|NP 12(y)||NP 13(y)| implies

αd23(1− δ∗)(1− δ1) ≤ dy(1− δ1) ≤ dLy( ~Ay, ~By) ≤ dy(1 + δ1) ≤ αd23(1 + δ∗)(1 + δ1)

=⇒ αd23(1− δ1)2 ≤ dLy( ~Ay, ~By) ≤ αd23(1 + δ1)2

where we use that δ∗ ≤ δ1 from (4.2). Moreover, since (1 + δ1)2 ≤ 1 + 3δ1

(4.1)
≤ 1 + δ and

(1− δ1)2 ≥ 1− 2δ1

(4.1)
≥ 1− δ, the set Yreg verifies that Definition 3.3.5 is satisfied.

4.2.2 Output Case 1

Whether Alink constructs the 1-tuple ~Q+ or ~Q− in its output, the arguments for its correctness are

entirely symmetric. We verify only the outcome ~Q−. To that end, recall that ~Q− = (Q−) is the

1-tuple constructed with the set

X− =
{
x ∈ X = V good

1 \ V nice
1 : dx < αd23(1− δ∗)

}
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where |X−| ≥ δ1|V1|, given by

Q12
− = P 12[X−, V2], Q13

− = P 13[X−, V3],

Q23
− = P 23, and Q− = Q12

− ∪̇Q13
− ∪̇Q23

− .

To see that ~Q− is a 1-witness of the (δ#, 1)-irregularity of H with respect to P , we note the

following easy identities:

|K3(Q−)| =
∑
x∈X−

∣∣P 23[NP 12(x), NP 13(x)]
∣∣ ,

|H ∩ K3(Q−)| =
∑
x∈X−

|Lx|.

To bound the quantities, fix x ∈ X− ⊂ V good
1 . Then, with ε < 1

2
min{d12, d13} we have

|NP 12(x)| ≥ (d12 − ε)|V2| ≥ ε|V2| and |NP 13(x)| ≥ (d13 − ε)|V3| ≥ ε|V3|. (4.9)

By the (d23, ε)-regularity of P 23, we infer

|K3(Q−)| =
∑
x∈X−

∣∣P 23[NP 12(x), NP 13(x)]
∣∣

≥ (d23 − ε)
∑
x∈X−

|NP 12(x)||NP 13(x)|

≥ (d22 − ε)(d12 − ε)|V2|(d13 − ε)|V3||X−|

≥ 1

8
δ1d12d13d23|V1||V2||V3|, (4.10)

where we used ε < 1
2

min{d12, d13, d23}, |X−| ≥ δ1|V1|, and that every vertex x ∈ X− ⊂ V good
1 \

V nice
1 is a good vertex. By our choice of ε in 4.7 and 4.8, the triangle counting lemma applies to P

to say

|K3(P )| ≤ 2d12d13d23|V1||V2||V3|, (4.11)
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and so comparing (4.10) and (4.11) renders

|K3(Q−)| ≥ 1

16
δ1|K3(P )|

(4.3)
> δ#|K3(P )|,

as desired. By definition of X−,

|H ∩ K3(Q−)| =
∑
x∈X−

|Lx|

< (1− δ∗)α
∑
x∈X−

d23|NP 12(x)||NP 13(x)|

= (1− δ∗)α
δ23

δ23 − ε
∑
x∈X−

(d23 − ε)|NP 12(x)||NP 13(x)|

(4.10)
≤ (1− δ∗)α

1

1− εd−1
23

|K3(Q−)|

≤ (1− δ∗)α(1 + εd−1
23 )|K3(Q−)|

≤ (1− δ∗)(1 + δ∗)α|K3(Q−)|,

where the last inequalities hold with ε < δ∗d23/2. As such,

dH(Q−) =
|H ∩ K3(Q−)|
|K3(Q−)|

≤ (1− δ∗)(1 + δ∗)α

= (1− δ2
∗)α ≤ α− δ2

∗
(4.3)
≤ α− δ#,

as desired.

4.2.3 Output Case 2

To prove the correctness of output Case 2, we should first verify that its key contributor, the

algorithm Asparse of Lemma 2.0.2, applies to the setting of the link graph Ly of a fixed vertex

y ∈ Y = V nice
1 . For that, recall that we chose δ1 > 0 in (4.1), and determined δ∗ = δ∗(δ1) in (4.2)

to be appropriate for an application of Asparse. We set D = α0d0/2 in (4.4), which is a lower bound

on

dLy (NP 12(y), NP 13(y)) ≥ αd23(1− δ∗) ≥
α0d0

2
= D,
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as required by an application of Asparse. Moreover, we chose r = r(D) in (4.6) to also be appropri-

ate for an application of Asparse. Finally, since y ∈ Y = V nice
1 ⊆ V good

1 is a good vertex, the vertex

bipartition NP 12(y) ∪̇NP 13(y) of Ly satisfies

|NP 12(y)| = (d12 ± ε)|V2| = Ω(n) and |NP 13(y)| = (d13 ± ε)|V3| = Ω(n)

as required by Asparse. Thus, Asparse may be applied to the link graph Ly whenever y ∈ V nice
1 .

Whether Alink constructs the r-tuple ~Q+ or ~Q− in its output, the arguments for its correctness

are entirely symmetric. Moreover, these arguments are essentially similar to output Case 1, just

with added symbolic technicality. We verify only the outcome ~Q−. To that end, recall that ~Q− =

(Q−1 , . . . , Q
−
r ) is the r-tuple of subgraphs Q−i ⊆ P constructed with the set Y = V nice

1 and with the

r-witnesses ( ~Ay, ~By) over y ∈ Y −irreg, as follows: For each 1 ≤ i ≤ r,

Q12
i,− = P 12

[
Y −irreg,

⋃
y∈Y −irreg

Ayi

]
, Q13

i,− = P 13
[
Y −irreg,

⋃
y∈Y −irreg

By
i

]
,

Q23
i,− = P 23, and Q−i = Q12

i,− ∪̇Q13
i,− ∪̇Q23

i,−.

To see that ~Q− = (Q−1 , . . . , Q
−
r ) is an r-witness of the (δ#, r)-irregularity ofH with respect to P ,

we first note the following identities. First,

|K3( ~Q−)| =
∑
y∈Y −irreg

∣∣∣EP 23

[
~Ay, ~By

]∣∣∣
=
∑
y∈Y −irreg

r∑
i=1

∣∣P 23 [Ayi , B
y
i ]
∣∣ (4.12)

follows from the pair-disjointness of each ( ~Ay, ~By), y ∈ Y −irreg. Second, we have

|H ∩ K3( ~Q−)| =
∑
y∈Y −irreg

∣∣∣ELy

[
~Ay, ~By

]∣∣∣ . (4.13)

To bound these quantities, fix y ∈ Y −irreg. Since ( ~Ay, ~By) is a c-bounded r-witness, we have

|Ayi | ≥ |NP 12(y)| and |By
i | ≥ |NP 13(y)| for all 1 ≤ i ≤ r. Since ε < c in (4.8), we thus
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have |P 23[Ayi , B
y
i ]| = (d23 ± ε)|Ayi ||B

y
i | for all 1 ≤ i ≤ r, and therefore in (4.12),

|K3( ~Q−)| =
∑
y∈Y −irreg

r∑
i=1

∣∣P 23 [Ayi , B
y
i ]
∣∣

≥ (d23 − ε)
∑
y∈Y −irreg

r∑
i=1

|Ayi ||B
y
i |

= (d23 − ε)
∑
y∈Y −irreg

|K( ~Ay, ~By)|, (4.14)

where the last identity follows from the pair-disjointness of ( ~Ay, ~By) for y ∈ Y −irreg. Since ( ~Ay, ~By)

is an r-witness of the (dy, δ∗, r)-irregularity of Ly, we have that (see Definition 2.0.1) that for each

y ∈ Y −irreg,

|K( ~Ay, ~By)| > δ∗|NP 12(y)||NP 13(y)|

≥ δ∗(d12 − ε)|V2|(d13 − ε)|V3|,

where the last inequality follows from the fact that y ∈ Y −irreg ⊆ V nice
1 ⊆ V good

1 is a good vertex.

Thus, returning to (4.14), we have

|K3( ~Q−)| = (d23 − ε)
∑
y∈Y −irreg

|K( ~Ay, ~By)|

≥ δ∗(d12 − ε)(d13 − ε)(d23 − ε)|Y −irreg||V2||V3|

≥ δ∗δ1(d12 − ε)(d13 − ε)(d23 − ε)|V1||V2||V3|
(4.8)
≥ 1

8
δ∗δ1d12d13d23|V1||V2||V3|, (4.15)

where we used the assumption that |Y −irreg| ≥ δ1|V1| from Output Case 2. Recalling (4.11), we

therefore conclude

|K3( ~Q−)| ≥ 1

16
δ∗δ1|K3(P )|

(4.3)
> δ#|K3(P )|,
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as desired.

Returning to (4.13), the r-witness ( ~Ay, ~By) for y ∈ Y −irreg, ensures (recall (4.10)) that

dLy( ~Ay, ~By) < dy(1− δ∗), or equivalently

|ELy [ ~Ay, ~By]|
|K[ ~Ay, ~By]|

< dy(1− δ∗) ≤ αd23(1 + δ∗)(1− δ∗)

= αd23(1− δ2
∗),

where we used that y ∈ Y −irreg ⊆ V nice
1 is a nice vertex. Thus, from (4.13), we have

|H ∩ K3( ~Q−)| =
∑
y∈Y −irreg

∣∣∣ELy

[
~Ay, ~By]

]∣∣∣
< αd23(1− δ2

∗)
∑
y∈Y −irreg

∣∣∣K[ ~Ay, ~By]
∣∣∣

= α
d23

d23 − ε
(1− δ2

∗)
∑
y∈Y −irreg

(d23 − ε)
∣∣∣K[ ~Ay, ~By

∣∣∣
(4.15)
≤ α

1− δ2
∗

1− εd−1
23

|K3( ~Q−)|

≤ α(1− δ2
∗)(1 + 2εd−1

23 )|K3( ~Q−)|
(4.8)
≤ α(1− δ3

∗)(1 + δ3
∗)|K3( ~Q−)|,

where the last inequalities hold with ε < δ3
∗d23/2. As such,

dH( ~Q−) =
|H ∩ K3( ~Q−)|
|K3( ~Q−)|

≤ α(1− δ3
∗)(1 + δ3

∗)

= α(1− δ6
∗) ≤ α− δ6

∗
(4.3)
≤ α− δ#,

as desired. This concludes our proof of correctness for the algorithm Alink.
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Chapter 5

The Algorithmic Link-Regularity Lemma

In this chapter, we prove Theorem 1.4.3 in a precise sense. However, this requires some investment

in nomenclature and auxiliary concepts that we will introduce first.

For a 3-graph G, the algorithmic link-regularity lemma will partition both the vertices V = V (G)

and the pairs
(
V
2

)
. The basic structure of these partitions is described in the following definition.

Definition 5.0.1 ((`, t)-partition). Let `, t ∈ N be positive integers. For a set of vertices V , an

(`, t)-partition of V is a pair of partitions Π = (Π(1),Π(2)) so that

(i) Π(1) : V = V0 ∪̇V1 ∪̇ . . . ∪̇Vt is a partition of V ,

(ii) Π(2) is an edge partition of K[V1, . . . , Vt] with classes given by, for each 1 ≤ i < j ≤ t,

bipartite subgraphs

K[Vi, Vj] = P ij
0 ∪̇P

ij
1 ∪̇ . . . ∪̇P

ij
`ij

where 0 ≤ `ij ≤ ` is an integer depending on i, j.

Remark. Pairs {u, v} ∈
(
V
2

)
not belonging to any class P ij

a , where 1 ≤ i < j ≤ t and 0 ≤ a ≤ `ij ,

constitute their own class which we disregard in application.

Observe that an (`, t)-partition Π = (Π(1),Π(2)) of V defines a family of triads

P ijk
abc := P ij

a ∪ P
jk
b ∪ P

ik
c ,

where P ij
a , P

jk
b , P

ik
c ∈ Π(2) are classes of Π(2) for some 1 ≤ i < j < k ≤ t. We define the

following notation.
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Definition 5.0.2 (Triad(Π)). Let Π = (Π(1),Π(2)) be an (`, t)-partition of V . Define

Triad(Π) =

{
P = P ijk

abc : {i, j, k} ∈
(

[t]

3

)
, (a, b, c) ∈ [0, `ij]× [0, `jk]× [0, `ik]

}

to be the family of all

∑
{i,j,k}∈([t]

3 )

(`ij + 1)(`jk + 1)(`ik + 1) ≤
(
t

3

)
(1 + `)3 ≤ 2`3t3 (5.1)

many triads of Π.

We establish some related notation. Since

⋃
P∈Triad(Π)

K3(P ) ⊂
(
V

3

)

is a disjoint union, every {x, y, z} ∈
(
V
3

)
admits at most one triad P = P ijk

abc ∈ Triad(Π) so that

{x, y, z} ∈ K3(P ) = K3(P ij
a ∪ P

jk
b ∪ P

ik
c ).

For simplicity of notation, we denote this triad by P = Pxyz and say that x, y, z belongs to the triad

Pxyz.

In context, we will want (`, t)-partitions Π = (Π(1),Π(2)) to be equitable and regular, in the

following sense (see Figure 7).

Definition 5.0.3 ((`, t, γ, ε)-partition). Let V have (`, t)-partition Π = (Π(1),Π(2)) and let ε, γ > 0

be given. We say that Π is an (`, t, γ, ε)-partition if the following conditions are satisfied:

(i) Π(1) : V = V0 ∪̇V1 ∪̇ . . . ∪̇Vt is t-equitable, i.e., |V0| < t and |V1| = . . . = |Vt|;

(ii) Π(2) is (`, γ)-equitable, meaning that for all but γ
(
t
2

)
pairs 1 ≤ i < j ≤ t, we have |P ij

0 | <

γ|Vi||Vj| and for all 1 ≤ a ≤ `ij ≤ `, we have

(
1

`
− ε
)
|Vi||Vj| ≤ |P ij

a | ≤
(

1

`
+ ε

)
|Vi||Vj|;
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(iii) All but γ|V |2 pairs {x, y} ∈
(
V
2

)
belong to a class P ij

a ∈ Π(2), where P ij
a is ε-regular.

V1V1V2V2

V3V3

V4V4 V5V5

V6V6

Figure 7.: An (`, t, γ, ε)-partition where t = 6 and ` = 3 is the number of colors (red, blue, green),

and where γ, ε > 0 are some positive constants.

We continue with some related terminology. For an (`, t, γ, ε)-partition Π = (Π(1),Π(2)) of V ,

we shall say a triad P = P ijk
abc ∈ Triad(Π) is (1

`
, ε)-typical if 0 6∈ {a, b, c}, each of P ij

a , P jk
b , P ik

c is

ε-regular and if

1

`
− ε ≤ dP ij

a
(Vi, Vj), dP jk

b
(Vj, Vk), dP ik

c
(Vi, Vk) ≤

1

`
+ ε.

In other words, P ijk
abc = P ij

a ∪ P
jk
b ∪ P ik

c is (1
`
, ε)-typical if and only if 0 6∈ {a, b, c} and the pair

(P ijk
abc , Vi ∪ Vj ∪ Vk) is (~d, ε)-regular where ~d = (dij, djk, dik) satisfies dij = djk = dik = 1

`
. For an

(`, t, γ, ε)-partition Π of V , we write

Triadtyp(Π) =

{
P ∈ Triad(Π) : P is

(
1

`
, ε

)
-typical

}
(5.2)

for the family of all (1
`
, ε)-typical triads P ∈ Triad(Π).

The set V above will be the vertex set of a 3-uniform hypergraph G. In context, we will want the

(`, t, γ, ε)-partition Π of V to be ‘link-regular’ with respect to G, in the sense of Definition 3.3.5.

In the following definition, we describe this condition precisely.
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Definition 5.0.4 (δ-link regular partition). Let G be a 3-uniform hypergraph with vertex set V =

V (G), and let Π = (Π(1),Π(2)) be an (`, t, γ, ε)-partition of V . For α0, δ > 0, we say that G

is (α0, δ)-link regular with respect to Π if all but δ|V |3 many triples {x, y, z} ∈ G satisfy the

following property: If {x, y, z} belongs to a triad Pxyz = P ijk
abc ∈ Triad(Π) where

(i) Pxyz ∈ Triadtyp(Π) is (1
`
, ε)-typical, and

(ii) Hxyz = G ∩ K3(Pxyz) has density αxyz = dHxyz(Pxyz) ≥ α0,

then (Hxyz, Pxyz, Vi ∪ Vj ∪ Vk) is δ-link regular. In other words, whenever the Hxyz-

triad (Hxyz, Pxyz, Vi ∪ Vj ∪ Vk) is an (αxyz, ~d, ε)-triad where ~d = (1
`
, 1
`
, 1
`
), then

(Hxyz, Pxyz, Vi ∪ Vj ∪ Vk) is δ-link regular.

We now proceed to the promised theorem.

Theorem 5.0.5 (ALGORITHM Alinkreg: LINK-REGULARITY LEMMA). There exists an algorithm

Alinkreg which, for all α0, δ, γ > 0, for all integers `0, t0 ≥ 1, and for all functions ε : N→ (0, 1),

determines positive integers L0 = L0(α0, δ, γ, `0, t0, ε), T0 = T0(α0, δ, γ, `0, t0, ε), and N0 =

N0(α0, δ, γ, `0, t0, ε) so that the following holds.

Let G be a 3-uniform hypergraph with vertex set V , where |V | = N ≥ N0. Then, in time

O(N3), the algorithm Alinkreg constructs an (`, t, γ, ε(`))-partition Π = (Π(1),Π(2)) of V , where

`0 ≤ ` ≤ L0, t0 ≤ t ≤ T0, and where G is (α0, δ)-link regular with respect to Π.

5.1 Proof of Theorem 5.0.5

We first collect some more notation and terminology that we use in our proof.

5.1.1 Notation and terminology

For a fixed P ∈ Triad(Π), recall that GP = G ∩ K3(P ) has density dGP (P ) = |GP |/|K3(P )|

(which could be zero). For α0 > 0, we define

Triadtyp(α0,Π) = {P ∈ Triadtyp(Π) : dGP (P ) ≥ α0} (5.3)
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to denote those triads P ∈ Triadtyp(Π) which are (1/`, ε)-typical and which also have ‘non-trivial’

density dGP (P ) ≥ α0.

Continuing, we define the index of Π with respect to G by

ind(Π) =
1

N3

∑
P∈Triad(Π)

d2
GP (P )

∣∣K3(P )
∣∣. (5.4)

It is easy to see that ind(Π) ≤ 1 never exceeds one. Indeed, the densities dGP (P ) ≤ 1 never

exceed one for all P ∈ Triad(Π), and
∑

P∈Triad(Π) |K3(P )| ≤
(|V |

3

)
< N3.

Finally, we now define some important classes of triads P ∈ Triad(Π) of an (`, t, γ, ε)-partition

Π of V . To begin, for δ > 0 and an integer r ≥ 1, define

Triad(δ,r)-irr(Π) =
{
P ∈ Triad(Π) : GP = G ∩ K(2)

3 (P ) is (δ, r)-irregular w.r.t. P
}
. (5.5)

In the definition above, the triads P ∈ Triad(δ,r)-irr(Π) need not be (1/`, ε)-typical.

5.1.2 An outline of the proof of Theorem 5.0.5

The proof of Theorem 5.0.5 follows the well-known lines of Szemerédi [33] and Alon et al. [1].

The proof uses Lemma 4.1.1 above, and the upcoming Lemma 5.1.1 below, which was originally

due to Frankl and Rödl [9] (but which had roots in Szemerédi [33], and which is taken here from

Haxell, Nagle, and Rödl [15]). Since this lemma is somewhat technical in appearance, we wish

to motivate it by showing how we will use it within a sketch of the proof of Theorem 5.0.5. In

this sketch, we will assume (for convenience) that all constants have been chosen suitably. Later,

when we give all real details of the argument, we will describe precisely how such constants are

determined.

For an N -vertex 3-uniform hypergraph G, let Π = (Π(1),Π(2)) be an (`, t, γ, ε)-partition of

V = V (G), where n = bN/tc = |V1| = · · · = |Vt|. For a fixed triad P = P ijk
abc ∈ Triadtyp(α0,Π),

we apply Lemma 4.1.1 to (GP , P, Vi ∪ Vj ∪ Vk), where in time O(n3),

(i) either Alinkreg confirms that (GP , P, Vi ∪ Vj ∪ Vk) is δ-link regular,

(ii) or Alinkreg constructs a witness ~QP = ~Qr,P of the (δ#, r)-irregularity of GP w.r.t. P .
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In the former case, we have confirmed that P ∈ Triadtyp(α0,Π) is at least one triad which would

be desirable in the conclusion of Theorem 5.0.5. In the latter case, we learn that GP is not (δ#, r)-

regular with respect to P , and Alinkreg builds a witness ~QP to this effect. In the latter case, we

record this witness ~QP , and we maintain ~QP with P . We now repeat the procedure above for

every P ∈ Triadtyp(α0,Π), of which there are at most 2`3t3 many (cf. (5.1)). Since ` and t will be

constants not depending on N , Lemma 4.1.1 determines the outcome of (i) or (ii) above for every

P ∈ Triadtyp(α0,Π) in time O(N3).

Continuing, we count how many triples {x, y, z} ∈
(
V
3

)
belong to triads P ∈ Triadtyp(α0,Π)

where (i) occurred. If (i) occurred for nearly all {x, y, z} ∈
(
V
3

)
, then Π will be the partition

sought in Theorem 5.0.5. However, if some non-negligible portion of triples {x, y, z} ∈
(
V
3

)
belong to triads P ∈ Triadtyp(α0,Π) where (ii) occurred, then Π will not be the partition sought

in Theorem 5.0.5. In this case, we will replace Π with a new partition Π′ of V , which we build

from Π and the collection of witnesses ~QP constructed in (ii). The mechanism for building Π′ is

precisely due to Lemma 5.1.1 below.

Lemma 5.1.1 (ALGORITHM Aindex: INDEX-PUMPING). There exists an algorithm Aindex which,

for all constants δ# and γ, integers `old and told, and functions ε : N+ → (0, 1) and r : N+ → N+,

determines integer constants L0 = L0(δ#, γ, ε, r, `old, told), T0 = T0(δ#, γ, ε, r, `old, told), and

N0 = N0(δ#, γ, ε, r, `old, told) so that the following holds:

Let G be a given 3-graph on N > N0 vertices with given (`old, told, γ, ε(`old))-partition Πold

of V = V (G). Let T# ⊆ Triad(δ#,r(`old))-irr(Πold) be a given subfamily of the collection of all

(δ#, r(`old))-irregular triads, which satisfies the following properties:

(i) each triad P ∈ T# is equipped with a given witness ~Qr(`old),P of the (δ#, r(`old))-irregularity

of GP = G ∩ K3(P ) with respect to P ;

(ii) ∑
P∈T#

|K3(P )| ≥ δ#N
3.

Then, in time O(N2), the algorithm Aindex constructs (from Πold and the given collection of wit-
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nesses { ~Qr(`old),P : P ∈ T#}) an equitable (`new, tnew, γ, ε(`new))-partition Πnew of V for which

ind(Πnew) ≥ ind(Πold) + (δ4
#/2),

for some integers `old ≤ `new ≤ L0 and told ≤ tnew ≤ T0.

We now conclude our outline of the proof of Theorem 5.0.5. Set T# to be the collection of triads

P ∈ Triadtyp(α0,Π) for which the algorithm Alinkreg of Lemma 4.1.1 constructed a witness ~Qr,P
of the (δ#, r)-irregularity of GP with respect to P . If T# claims many triples {x, y, z} ∈

(
V
3

)
,

meaning
∑

P∈T# |K3(P )| ≥ δ#N
3, then we submit Π (as Πold), T#, and { ~Qr,P : P ∈ T#} to

Lemma 5.1.1, all of which we have in hand. Algorithm Aindex constructs, in time O(N2), the new

partition Πnew, where ind(Πnew) ≥ ind(Πold) + (δ4
#/2). We now repeat all the steps above from

this subsection on Πnew. However, this procedure can be repeated at most 2/δ4
# many (constantly

many) times, since the index function never exceeds one. Thus, some iteration of this procedure

arrives at a partition Π as desired in Theorem 5.0.5.

5.1.3 Formal proof of Theorem 5.0.5

It remains only to fill in a few formal details of the outline above. We begin with a precise descrip-

tion of all parameters used above in the argument.

Constants of Theorem 5.0.5

Let α0, δ, γ > 0 be given as well as function ε : N → (0, 1). Let integers `0, t0 ≥ 1 be given,

where for simplicity we take `0 = 1. We now consider several auxiliary constants. For α0 and δ

given above, let

δ# = δ#,Lem.4.1.1(α0, δ) (5.6)

be the constant guaranteed by Lemma 4.1.1. It follows from the proof of Lemma 4.1.1 that

δ# ≤ δ. (5.7)
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Let ` ∈ N be an integer variable. In the context of Lemma 4.1.1, set d0 = d0(`) = 1/` and let

εLem.4.1.1(1/`) = εLem. 4.1.1(α0, δ, δ#, 1/`) and r(`) = rLem.4.1.1(α0, δ, δ#, 1/`) (5.8)

be the functions (of the variable d0 = 1/`) guaranteed by Lemma 4.1.1. We may assume, without

loss of generality, that the given function ε satisfies, for every integer ` ∈ N,

ε(`) ≤ εLem.4.1.1(1/`). (5.9)

Theorem 5.0.5 promises integer constants L0, T0 and N0, which we now formally describe (but

which will be more easily understood in context). With γ > 0 given above, δ# given in (5.6),

functions ε(`) and r(`) given in (5.8) and (5.9), and for arbitrary integer variables `old, told ≥ 1,

Lemma 5.1.1 guarantees integer functions (of the variables `old, told)

L0(`old, told) = L0(γ, δ#, ε, r, `old, told), T0(`old, told) = T0(γ, δ#, ε, r, `old, told),

and N0(`old, told) = N0(γ, δ#, ε, r, `old, told). (5.10)

We successively define constants L(i)
0 , T (i)

0 andN (i)
0 , for each 0 ≤ i ≤ 2/δ4

#, as follows: with given

integers `0 = 1 and t0, let

L
(0)
0 = L0(`0 = 1, t0), T

(0)
0 = T0(`0 = 1, t0), N

(0)
0 = N0(`0 = 1, t0)

be given by the functions in (5.10). For 1 ≤ i ≤ 2/δ4
#, let

L
(i)
0 = L0(L

(i−1)
0 , T

(i−1)
0 ), T

(i)
0 = T0(L

(i−1)
0 , T

(i−1)
0 ), N

(i)
0 = N0(L

(i−1)
0 , T

(i−1)
0 ) (5.11)

be given by the functions in (5.10). Then, the constants L0, T0 and N0 of Theorem 5.0.5 are given

by

L0 = L
(i∗)
0 , T0 = T

(i∗)
0 , N0 = N

(i∗)
0 , where i∗ =

⌊
2/δ4

#

⌋
. (5.12)

This concludes our discussion of the constants.
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The argument

With the constants chosen above, we continue to fill in a few further details of the earlier outline.

Let G be an N -vertex 3-graph with vertex set V = V (G), where in all that follows, we assume that

N ≥ N0 (from (5.12)), and more generally thatN is sufficiently large whenever needed. (Thus, L0

and T0 from (5.12) are constants which are independent of N .) We will construct, in time O(N3),

an (`, t, γ, ε(`)) partition Π = (Π(1),Π(2)) of V with respect to which G is (α0, δ)-link regular,

where 1 = `0 ≤ ` ≤ L0 and t0 ≤ t ≤ T0 (cf. (5.12)).

We start by taking Π
(1)
1 to be any vertex partition V = V0 ∪ V1 ∪ · · · ∪ Vt0 satisfying |V0| < t0

and |V1| = · · · = |Vt0|. Let Π
(2)
1 be the partition of K[V1, . . . , Vt0 ] where, for each 1 ≤ i < j ≤ t0,

K[Vi, Vj] is its own class, i.e., `ij = 1 and P ij
1 = K[Vi, Vj]. Then, Π1 = (Π

(1)
1 ,Π

(2)
1 ) is an equitable

(`0 = 1, t0, γ, ε(`0))-partition because complete bipartite graphs K[X, Y ] are always o(1)-regular

with density 1.

For an integer 1 ≤ s < 2/δ4
#, assume Π1, . . . ,Πs are inductively constructed, where Πs is an

equitable (`s, ts, γ, ε(`s))-partition of V , and where

1 = `0 ≤ `s ≤ L
(s−1)
0 and t0 ≤ ts ≤ T

(s−1)
0 (5.13)

for the constants L(s−1)
0 and T (s−1)

0 defined in (5.11). Now, for each P ijk
abc ∈ Triadtyp(α0,Πs), we

apply algorithm Alinkreg of Lemma 4.1.1 to (GP , P, Vi ∪ Vj ∪ Vk), where ns = bN/tsc = |Vi| =

|Vj| = |Vk|. In time O(n3
s),

(i) either Alinkreg confirms that (GP , P, Vi ∪ Vj ∪ Vk) is δ-link regular,

(ii) or Alinkreg constructs a witness ~Qr(`s),P of the (δ#, r(`s))-irregularity of GP w.r.t. P .

We repeat algorithm Alinkreg over all triads P ∈ Triadtyp(α0,Πs), which takes time O(N3), since

by (5.1), (5.11) and (5.12) there are ≤ 2`3
st

3
s ≤ 2(L

(s−1)
0 T

(s−1)
0 )3 ≤ 2(L0T0)3 = O(1) many

such triads. Now, let T# = T#(s) be the collection of those triads P ∈ Triadtyp(α0,Πs) for

which Alinkreg reports outcome (ii), where we also collect the corresponding system of constructed
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witnesses { ~Qr(`s),P : P ∈ T#}. Finally, in time O(N3), we greedily compute

∑
P∈T#

|K3(P )|.

We now consider two cases. On the one hand, if

∑
P∈T#

|K3(P )| ≤ δN3,

then Πs is the desired partition. Indeed, the inequality above says that all but δN3 triples

{x, y, z} ∈
(
V
3

)
belong to triads Pxyz = P ijk

abc ∈ Triadtyp(α0,Πs) which are (1/`s, ε(`s))-typical,

which have density dGPxyz
(Pxyz) ≥ α0, and for which (GPxyz , Pxyz, Vi ∪ Vj ∪ Vk) is δ-link regu-

lar. By Definition 5.0.4, this precisely means that G is (α0, δ)-link regular with respect to Πs, as

desired. On the other hand, if

∑
P∈T#

|K3(P )| > δN3, then by (5.7) we also have
∑
P∈T#

|K3(P )| > δ#N
3. (5.14)

Now, the constructed collections T# and { ~Qr(`s),P : P ∈ T#} and the condition in (5.14) precisely

meet the hypothesis of Lemma 5.1.1. As such, Aindex constructs, in time O(N2), an equitable

(`s+1, ts+1, γ, ε(`s+1))-partition Πs+1 of V for which

ind(Πs+1) ≥ ind(Πs) + (δ4
#/2), (5.15)

and for which

`s+1 ≤ L0(`s, ts)
(5.13)
≤ L0(L

(s−1)
0 , T

(s−1)
0 )

(5.11)
= L

(s)
0

and t0 ≤ ts+1 ≤ T0(`s, ts)
(5.13)
≤ T0(L

(s−1)
0 , T

(s−1)
0 )

(5.11)
= T

(s)
0 .

Thus, we have completed an inductive construction for partition Πs+1, which by (5.15), can only

be done at most 2/δ4
# many times. Thus, on some iteration, we must construct an equitable
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(`, t, γ, ε(`))-partition Π = (Π(1),Π(2)) with respect to which G is (α0, δ)-link regular, where

`0 ≤ ` ≤ L0 and t0 ≤ t ≤ T0 (cf. (5.12)).
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Chapter 6

A Transference of Regularity

The goal of this chapter is to prove a transference lemma which allows us to infer the notion of

regularity of Theorem 1.4.2 from that of Theorem 1.4.3.

Suppose (H, P, V ) is a δ-link regular (α, ~d, ε)-triad, where ~d = (d12, d13, d23), V =

V1 ∪̇V2 ∪̇V3, and P = P12 ∪̇P13 ∪̇P23. Our transference lemma says that when ‘large’ subsets

Ui ⊆ Vi, 1 ≤ i ≤ 3, are given, they must induce close to the ‘expected number’ of triples fromH.

Lemma 6.0.1 (Transference Lemma). For all ω0 > 0, there exists δ > 0 so that, for all d0 > 0,

there exists ε > 0 so that the following holds. Let (H, P, V ) be a δ-link regular, (α, ~d, ε)-triad,

where α ≥ 0 is arbitrary, ~d = (d12, d13, d23) has d12, d13, d23 ≥ d0, V = V1 ∪̇V2 ∪̇V3 has each

|V1|, |V2|, |V3| sufficiently large, and P = P12 ∪̇P13 ∪̇P23. Let subsets Ui ⊆ Vi, 1 ≤ i ≤ 3, be

given satisfying |Ui| > ω0|Vi|, 1 ≤ i ≤ 3. Then U1 ∪̇U2 ∪̇U3 induce

|H[U1, U2, U3]| = (1± ω0)αd12d13d23|U1||U2||U3|

many triples fromH.

Remark. Note that the lemma above is trivial when α = 0. Moreover, when α = 0, the conclusion

holds with no hypothesis on P = P12 ∪̇P13 ∪̇P23.

Proof. Let ω0 > 0 be given. Set

δ =
ω2

0

144
. (6.1)

Let d0 > 0 be given. Set

ε = min

{
1

2
d0,

1

8
δ

}
. (6.2)
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Now, let (H, P, V ) be a δ-link regular, (α, ~d, ε)-triad, where α ≥ 0 is arbitrary, ~d = (d12, d13, d23)

has d12, d13, d23 ≥ d0, V = V1 ∪̇V2 ∪̇V3 has each |V1|, |V2|, |V3| sufficiently large, and P =

P12 ∪̇P13 ∪̇P23. Let Ui ⊆ Vi be subsets, 1 ≤ i ≤ 3, satisfying |Ui| > ω0|Vi|. For simplicity, we

show the lower bound only:

|H[U1, U2, U3]| ≥ (1− ω0)αd12d13d23|U1||U2||U3|. (6.3)

(In most applications, only the lower bound is needed.) The proof of the corresponding upper

bound follows from symmetric arguments. Now, the main idea for proving (6.3) is not difficult.

First, we use the identity

|H[U1, U2, U3]| =
∑
u∈U1

|Lu [NP 12(u) ∩ U2, NP 13(u) ∩ U3]| . (6.4)

Second, we use the hypothesis that all but δ|V1|many vertices u ∈ U1 satisfy that Lu is (αd23, δ, 1)-

regular. We denote these vertices by UL
1 , where

|UL
1 | ≥ |U1| − δ|V1|. (6.5)

Then,

|H[U1, U2, U3]| ≥
∑
u∈UL

1

|Lu [NP 12(u) ∩ U2, NP 13(u) ∩ U3]| .

Third, to use the (αd23, δ, 1)-regularity of each link Lu, where u ∈ UL
1 , we use the following

standard properties of the (~d, ε)-triad P : All but

• 2ε|V1| vertices u ∈ U1 satisfy |NP 12(u) ∩ U2| = (d12 ± ε)|U2|;

• 2ε|V1| vertices u ∈ U1 satisfy |NP 12(u)| = (d12 ± ε)|V2|;

• 2ε|V1| vertices u ∈ U1 satisfy |NP 13(u) ∩ U3| = (d13 ± ε)|U3|;

• 2ε|V1| vertices u ∈ U1 satisfy |NP 13(u)| = (d13 ± ε)|V3|.
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Thus, all but 8ε|V1| vertices u ∈ U1 satisfy

|NP 12(u) ∩ U2|
|NP 12(u)|

≥ d12 − ε
d12 + ε

· |U2|
|V2|
≥ 1− ε/d0

1 + ε/d0

· ω0 ≥
1− 1/2

1 + 1/2
· ω0 ≥

ω0

4
(6.6)

and similarly, |NP 13(u) ∩ U3| ≥ (ω0/4)|NP 13(u)|. (In the calculations above, we used d12 ≥ d0 ≥

2ε from (6.2) and |U2| ≥ ω0|V2|.) We denote these vertices u ∈ U1 by UP
1 , where we have

|UP
1 | ≥ |U1| − 8ε|V1|. (6.7)

and we set UL,P
1 = UL

1 ∩ UP
1 , where (6.5) and (6.7) give

|UL,P
1 | ≥ |U1| − δ|V1| − 8ε|V1|. (6.8)

Now,

|H[U1, U2, U3]| ≥
∑

u∈UL,P
1

|Lu [NP 12(u) ∩ U2, NP 13(u) ∩ U3]| . (6.9)

where the properties of UL,P
1 will allow us to bound each term above. Fix u ∈ UL,P

1 . In (6.6) we

saw

|NP 12(u) ∩ U2| ≥
ω0

4
|NP 12(u)|

and

|NP 13(u) ∩ U3| ≥
ω0

4
|NP 13(u)|

In the setting of Definition 2.0.1, set

A′ = NP 12(u) ∩ U2, A = NP 12(u),

B′ = NP 13(u) ∩ U3, B = NP 13(u).

Then, the properties above imply that

|K(A′, B′) ≥ ω2
0

16
|A||B|,
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so the (αd23, δ, 1)-regularity of Lu implies that

αd23(1− δ) ≤ dLu(A′, B′) ≤ αd23(1 + δ),

or equivalently

|Lu[NP 12(u) ∩ U2, NP 13(u) ∩ U3]| = αd23(1± δ)|NP 12(u) ∩ U2||NP 13(u) ∩ U3|.

Thus, we conclude from (6.9) that

|H[U1, U2, U3]| ≥ αd23(1− δ)
∑

u∈UL,P
1

|NP 12(u) ∩ U2||NP 13(u) ∩ U3|

≥ αd12d13d23(1− δ)(1− ε)3
∣∣∣UL,P

1

∣∣∣ |U2||U3|,

where we used the properties defined by UP
1 . Recalling (6.8), we further conclude

|H[U1, U2, U3]| ≥ αd12d13d23(1− δ)(1− ε)3

(
1− δ |V1|

|U1|
− 8ε

|V1|
|U1|

)
|U1||U2||U3|.

Then |U1| > ω0|V1| ensures

|H[U1, U2, U3]| ≥ αd12d13d23(1− δ)(1− ε)3

(
1− δ

ω0

− 8ε

ω0

)
|U1||U2||U3|

≥ αd12d13d23

(
1− 2δ

ω0

)5

|U1||U2||U3|,

where we used 8ε ≤ δ from (6.2). Since δ ≤ ω0/144 from (6.1), we have

(
1− 2δ

ω0

)5

≥ 1− 10
δ

ω0

− 80
δ3

ω3
0

− 32
δ5

ω5
0

≥ 1− 122
δ

ω0

≥ 1− ω0,

which proves (6.3).
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Chapter 7

Proof of Theorem 1.4.2

In this chapter, we prove Theorem 1.4.2, which will give the algorithm Amain for constructing, in

time O(n3), an ω-weakly regular and t-equitable vertex partition Π(1) : V = V0 ∪̇ . . . ∪̇Vt of an

n-vertex 3-uniform hypergraph G. The algorithm Amain is precisely given by Alinkreg of Theorem

5.0.5, which provides the stronger partition Π =
(
Π(1),Π(2)

)
described in Chapter 5. It will be

easy to show that the vertex partition Π(1) of Π is, in fact, ω-weakly regular. We proceed to the

details, and begin by discussing the constants involved.

7.1 Constants

Let ω > 0 and integer t0 ≥ 1 be given. We define a collection of auxiliary constants as follows:

µ = ω8

32
, α0 = ω0 = γ = δ1 = µ

6
, t′0 = t0

⌈
12
µ

⌉
. (7.1)

Now, with ω0 > 0 above, let

δtransf = δtransf(ω0) (7.2)

be the constant guaranteed by Lemma 6.0.1. Set

δ = min{δ1, δtransf}. (7.3)

For an integer variable ` ∈ N, set

d0(`) =
1

2`
and define ε(`) = εtransf(d0(`)) (7.4)
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to be the function (of ` ∈ N) guaranteed by Lemma 6.0.1. Now, with the integer t′0 ≥ t0 from

(7.1) and `0 = 1, with constants α0, γ > 0 from (7.1) and δ > 0 from (7.3) and with the function

ε : N→ (0, 1) from (7.4), let

L0 = L0(α0, γ, δ, t
′
0, `0 = 1, ε),

T0 = T0(α0, γ, δ, t
′
0, `0 = 1, ε),

N0 = N0(α0, γ, δ, t
′
0, `0 = 1, ε) (7.5)

be the positive integer constants guaranteed by Theorem 5.0.5.

7.2 The Algorithm Amain = Alinkreg

Let G be a given 3-uniform hypergraph on N vertices, where whenever needed, we assume N

is sufficiently large. (In particular, we assume N ≥ N0 from (7.5).) The algorithm Amain is the

algorithm Alinkreg of Theorem 5.0.5. In particular, and in time O(N3), an (`, t, γ, ε(`))-partition

Π =
(
Π(1),Π(2)

)
of the vertex set V = V (G), for some integers 1 = `0 ≤ ` = `G ≤ L0 and

t′0 ≤ t = tG ≤ T0, where G is (α0, δ)-link regular with respect to Π, we claim that the vertex

partition Π(1) : V = V1 ∪̇ . . . ∪̇Vt is ω-weakly regular, and the remainder of this chapter is devoted

to these details. In particular, the remainder of this section is devoted to proving the following

proposition.

Proposition 7.2.1. With the constants µ, ω > 0 in (7.1), there exists a subhypergraph G0 ⊆ G of

size |G0| ≥ |G| − µN3 with the property that, for every 1 ≤ i < j < k ≤ t, G0 is (2ω0)-weakly

regular with respect to (Vi, Vj, Vk).

Observe that Proposition 7.2.1 implies Theorem 1.4.2. Indeed, we infer from Proposition 7.2.1

that

∑
1≤i<j<k≤t

|(G \ G0) [Vi, Vj, Vk]| ≤ |G \ G0| < µN3. (7.6)
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Thus, all but
√

8µt3 triples of indices 1 ≤ i < j < j ≤ t have

|(G \ G0) [Vi, Vj, Vk]| ≤
√

8µ|Vi||Vj|Vk| =
√

8µ
⌊N
t

⌋3

, (7.7)

since otherwise we would have

|G \ G0| ≥
∑

1≤i<j<k≤t

|(G \ G0) [Vi, Vj, Vk]| ≥
√

8ut3 ·
√

8u
⌊N
t

⌋3

≥ 8µt3(N/(2t))3 = µN3,

contradicting (7.6). Now, we shall say that {i, j, k} ∈
(

[t]
3

)
is G-loyal if (7.7) holds, and we denote

by
(

[t]
3

)
loyal the set of all G-loyal triples of indices 1 ≤ i < j < k ≤ t. Theorem 1.4.2 is now

concluded by the following fact.

Fact 7.2.2. For each {i, j, k} ∈
(

[t]
3

)
loyal we have that G is ω-weakly regular with respect to

(Vi, Vj, Vk). Consequently, since all but
√

8µt3 < ωt3 (cf. (7.1)) elements i, j, k ∈
(

[t]
3

)
are G-

loyal, we have that V = V0 ∪̇V1 ∪̇ . . . ∪̇Vt is an ω-weakly regular partition of G.

Proof of Fact 7.2.2. Fix {i, j, k} ∈
(

[t]
3

)
loyal and fix V ′i ⊆ Vi, V ′j ⊆ Vj , and V ′k ⊆ Vk where

|V ′i | > ω|Vi|
(7.1)
> 2ω0|Vi|, |V ′j | > ω|Vj|

(7.1)
> 2ω0|Vj|, and |V ′k| > ω|Vk|

(7.1)
> 2ω0|Vk|. Since

|G[Vi, Vj, Vk]| = |G0[Vi, Vj, Vk]|+ |(G \ G0) [Vi, Vj, Vk]|

and similarly ∣∣G[V ′i , V
′
j , V

′
k ]
∣∣ =

∣∣G0[V ′i , V
′
j , V

′
k ]
∣∣+
∣∣(G \ G0) [V ′i , V

′
j , V

′
k ]
∣∣ ,

we infer

dG(Vi, Vj, Vk) = dG0(Vi, Vj, Vk) + dG\G0(Vi, Vj, Vk)

and

dG(V
′
i , V

′
j , V

′
k) = dG0(V

′
i , V

′
j , V

′
k) + dG\G0(V

′
i , V

′
j , V

′
k).
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Subtracting, we obtain

dG(Vi, Vj, Vk)− dG(V ′i , V ′j , V ′k)

=
[
dG0(Vi, Vj, Vk)− dG0(V ′i , V ′j , V ′k)

]
+
[
dG\G0(Vi, Vj, Vk)− dG\G0(V ′i , V ′j , V ′k)

]
.

Thus, the triangle inequality gives

|dG(Vi, Vj, Vk)− dG(V ′i , V ′j , V ′k)|

=
∣∣dG0(Vi, Vj, Vk)− dG0(V ′i , V ′j , V ′k)∣∣+

∣∣dG\G0(Vi, Vj, Vk)− dG\G0(V ′i , V ′j , V ′k)∣∣
< 2ω0 + max

{
dG\G0(Vi, Vj, Vk), dG\G0(V

′
i , V

′
j , V

′
k)
}

< 2ω0 + max
{
µ, dG\G0(V

′
i , V

′
j , V

′
k)
}
, (7.8)

where we first use the (2ω0)-weak regularity of G0 with respect to (Vi, Vj, Vk), and second, used

the G-loyalty of {i, j, k} ∈
(

[t]
3

)
loyal. Moreover, again using the G-loyalty of {i, j, k} ∈

(
[t]
3

)
loyal, we

see ∣∣(G \ G0) [V ′i , V
′
j , V

′
k ]
∣∣ ≤ |(G \ G0) [Vi, Vj, Vk]| ≤

√
8µ|Vi||Vj|Vk|,

and so

dG\G0(V
′
i , V

′
j , V

′
k) <

√
8µ
|Vi||Vj|Vk|
|V ′i ||V ′j |V ′k|

<

√
8µ

ω3
.

Returning to (7.8) we conclude

|dG(Vi, Vj, Vk)− dG(V ′i , V ′j , V ′k)| < 2ω0 +

√
8µ

ω3
< ω,

as desired.

It only remains to prove Proposition 7.2.1

Proof of Proposition 7.2.1. The subhypergraph G0 ⊆ G is obtained from G by deleting triples

{x, y, z} ∈ G which meet any of the following conditions (which will be enumerated in a moment):

(i) {x, y, z} ∩ V0 6= ∅ or |{x, y, z} ∩ Vi| ≥ 2 for some 1 ≤ i ≤ t;
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(ii) At least one of {x, y}, {y, z}, or {x, z} belongs to a class P ij
0 ∈ Π(2);

(iii) At least one of {x, y}, {y, z}, or {x, z}, e.g. {x, y} satisfies x ∈ Vi and y ∈ Vj where the

indices 1 ≤ i < j ≤ t fail to satisfy |P ij
0 | < γ|Vi||Vj| and |P ij

a | =
(

1
`
± ε
)
|Vi||Vj| for all

1 ≤ a ≤ `ij;

(iv) At least one of {x, y}, {y, z}, or {x, z} belongs to a class P ij
a ∈ Π(2) which is not ε(`)-

regular;

(v) {x, y, z} ∈ K3(Pxyz) for a triad Pxyz = P ijk
abc = P ij

a ∪̇P
jk
b ∪̇P ik

c ∈ Triad(Π) for which

Gxyz = G ∩ K3(Pxyz) satisfies |Gxyz| < α0|K3(Pxyz)|;

(vi) {x, y, z} ∈ K3(Pxyz) for a
(

1
`
, ε
)
-typical triad Pxyz = P ijk

abc ∈ Triadtyp(Π) (recall (5.2)) with

density dGxyz(Pxyz) ≥ α0, but where (Gxyz, Pxyz, Vi ∪̇Vj ∪̇Vk) is not δ-link regular.

Conditions (i)-(vi) define the family G \ G0 of triples that we delete to produce the desired subhy-

pergraph G0 ⊆ G. Now, it is easy to bound the number |G \G0| of triples that were deleted. Indeed,

by Definition 5.0.3, condition (i) deletes fewer than

|V0|N2 + t
⌊N
t

⌋2

N ≤ tN2 +
N3

t
≤ T0N

2 +
1

t′0
N3 ≤ 2

t′0
N3

(7.1)
≤ µ

6
N3

triples. By the same definition, condition (ii) deletes fewer than

γ

(
t

2

)⌊N
t

⌋2

N +

(
t

2

)
γ
⌊N
t

⌋2

≤ γN3
(7.1)
≤ µ

6
N3

more triples. Again using Definition 5.0.3, condition (iii) similarly deletes fewer than

γ

(
t

2

)⌊N
t

⌋2

N ≤ γ

2
N3

(7.1)
≤ µ

6
N3

additional triples. Using the same definition a final time, condition (iv) deletes fewer than

γN2N
(7.1)
≤ µ

6
N3
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more triples. Now, trivially, condition (v) deletes

∑
P∈Triad(Π)

|{{x, y, z} ∈ GP : GP = G ∩ K3(P ) has |GP | < α0|K3(P )|}|

< α0

∑
P∈Triad(Π)

|K3(P )| ≤ α0N
3

(7.1)
≤ µ

6
N3

more triples. Finally, by Definition 5.0.4, condition (vi) deletes fewer than

δN3
(7.1)
≤ µ

6
N3

additional triples. Thus, conditions i)-vi) deleted a total of |G \ G0| ≤ 6 · (µ/6)N3 = µN3 triples

from G so that the remaining subhypergraph G \ G0 has the desired size |G0| ≥ |G| − µN3.

It remains to show that G0 ⊂ G, defined above, satisfies that, for every fixed 1 ≤ i < j < k ≤ t,

the triple (Vi, Vj, Vk) from Π(1) is (2ω0)-weakly regular with respect to G0. For that, we note the

basic identity

|G0[Vi, Vj, Vk]| =
`ij∑
a=0

`jk∑
b=0

`ik∑
c=0

∣∣∣G0 ∩ K3

(
P ij
a ∪̇P

jk
b ∪̇P

ik
c

)∣∣∣ . (7.9)

However, by conditions i)-vi) above, non-zero terms in the sum occur only when their indices

(a, b, c) satisfy 0 6∈ {a, b, c}, and when P ijk
abc , and when P ijk

abc is
(

1
`
, ε
)
-typical (because each of P ij

a ,

P jk
b , P ik

c is
(

1
`
, ε
)
-regular), and when

(
G0

(
P ijk
abc

)
= G0 ∩ K3

(
P ijk
abc

)
, P ijk

abc , Vi ∪̇Vj ∪̇Vk
)

is an
(
αijkabc,

~d, ε
)

-triad which is δ-link regular, where αijkabc = dG0(P ijk
abc )

(
P ijk
abc

)
≥ α0 and ~d =(

1
`
, 1
`
, 1
`

)
. For simplicity of terminology and notation, we refer to such indices (a, b, c) ∈ [`ij] ×

[`jk]× [`ik] as the G0 [Vi, Vj, Vk]-support and denote the set of them by

suppG0 ({i, j, k}) =
{

(a, b, c) ∈ [`ij]× [`jk]× [`ik] : G0

(
P ijk
abc

)
6= ∅
}
.
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Thus, (7.9) reduces to

|G0 [Vi, Vj, Vk]| =
∑

(a,b,c)∈suppG0 ({i,j,k})

∣∣∣G0

(
P ijk
abc

)∣∣∣ (7.10)

Moreover, since G0

(
P ijk
abc

)
= ∅ on every (a, b, c) 6∈ suppG0 ({i, j, k}), the analogous identity

∣∣G0

[
V ′i , V

′
j , V

′
k

]∣∣ =
∑

(a,b,c)∈suppG0 ({i,j,k})

∣∣∣G0

(
P ijk
abc

)
[Vi, Vj, Vk]

∣∣∣ (7.11)

holds for all subsets V ′i ⊆ Vi, V ′j ⊆ Vj , V ′k ⊆ Vk. By the definition of suppG0 ({i, j, k}), and

by our choice of constants (see (7.1)-(7.4)) we may apply Lemma 6.0.1 to each term (a, b, c) ∈

suppG0 ({i, j, k}) whenever |V ′i | > ω0|Vi|, |V ′j | > ω0|Vj|, and |V ′k| > ω0|Vk|. Doing precisely this

to (7.10) (with |V ′i | = |Vi|, |V ′j | = |Vj|, and |V ′k| = |Vk|) yields

|G0 [Vi, Vj, Vk]| = (1± ω0)
|Vi||Vj||Vk|

`3

∑
(a,b,c)∈suppG0 ({i,j,k})

αijkabc, (7.12)

while doing this to 7.11 with fixed subsets V ′i ⊆ Vi, V ′j ⊆ Vj , V ′k ⊆ Vk with |V ′i | > ω0|Vi|,

|V ′j | > ω0|Vj|, and |V ′k| > ω0|Vk| yields

∣∣G0

[
V ′i , V

′
j , V

′
k

]∣∣ = (1± ω0)
|V ′i ||V ′j ||V ′k|

`3

∑
(a,b,c)∈suppG0 ({i,j,k})

αijkabc. (7.13)

We infer from (7.12) and (7.13) that

`3dG0(Vi, Vj, Vk) = (1± ω0)
∑

(a,b,c)∈suppG0 ({i,j,k})

αijkabc,

and

`3dG0(V
′
i , V

′
j , V

′
k) = (1± ω0)

∑
(a,b,c)∈suppG0 ({i,j,k})

αijkabc.
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Subtracting and using the triangle inequality gives

`3
∣∣dG0(V ′i , V ′j , V ′k)− dG0(Vi, Vj, Vk)∣∣ ≤ 2ω0

∑
(a,b,c)∈suppG0 ({i,j,k})

αijkabc. (7.14)

However, every αijkabc ≤ 1 over all
∣∣suppG0 ({i, j, k})

∣∣ ≤ `ij`jk`ik ≤ `3 terms (a, b, c) ∈

suppG0 ({i, j, k}), and so (7.14) implies

∣∣dG0(V ′i , V ′j , V ′k)− dG0(Vi, Vj, Vk)∣∣ ≤ 2ω0

as desired.

66



Chapter 8

Conclusion and Future Work

The techniques in this dissertation prompt several interesting questions which we shall consider in

the near future. Since it is not clear whether or not the following questions admit positive answers,

we shall refrain from discussing potential applications of these problems. (Applications would

ensue any confirmations below.)

The most natural question concerns whether or not Theorem 1.4.2 can be extended to k-uniform

hypergraphs, for an arbitrary uniformity k ≥ 2.

Question 8.0.1. Does there exist an algorithm which, for an arbitrary integer k ≥ 2, a real ε > 0,

and a given n-vertex k-uniform hypergraph H(k) = (V,E), constructs in time O(nk) an ε-regular

partition V = V1 ∪ · · · ∪ Vt for some integer t = t(k, ε) depending on k and ε but not on n?

Similarly to our approach with Theorem 1.4.3, we believe confirming Question 8.0.1 may involve

proving an algorithm for a stronger notion of hypergraph regularity. This theme prompts our

remaining questions.

Recall from the Introduction that we discussed the existence of strong hypergraph regularity and

counting lemmas, which were established among the works [9, 11, 12, 23, 24, 25, 26]. In particular,

Nagle, Rödl, and Schacht [25, 26] established an algorithmic strong hypergraph regularity lemma

which, for a given n-vertex k-uniform hypergraph H(k) = (V,E), constructs in time O(n3k) a

‘strongly regular’ partition of H(k). It is likely that their running time O(n3k) can be improved, at

least some. Perhaps it can even be reduced to an optimal order of magnitude O(nk).

Question 8.0.2. Does there exist an algorithm which, for an arbitrary integer k ≥ 2 and a given

n-vertex k-uniform hypergraph H(k) = (V,E), constructs in time O(nk) a ‘strongly regular’ par-

tition ofH(k)?
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The proofs in [25, 26] are lengthy and very technical, so a positive answer to Question 9.2 is

far from clear. It would be of significant interest to determine the outcome of Question 8.0.2 even

when k = 3.

Question 8.0.3. Does there exist an algorithm which, for a given n-vertex 3-uniform hypergraph

H(3) = (V,E), constructs in time O(n3) a ‘strongly regular’ partition ofH(3)?

We mention that our Theorem 1.4.3 is a step in the direction of Question 8.0.3.
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[2] Alon, N., Duke, R., Lefmann, H., Rödl, V., Yuster, R., “The algorithmic aspects of the Reg-

ularity Lemma (extended abstract)”, Proceedings of the IEEE Symposium on Foundations of

Computer Science, pp. 473–481, 1992

[3] Bollobás, B. (1998), Modern Graph Theory, Springer Science & Business Media, Graduate

Texts in Mathematics, Volume 184, 394pp.
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[9] Frankl, P., Rödl, V. (2002), Extremal problems on set systems, Random Structures Algo-

rithms 20, no. 2, 131-164.

69
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