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Abstract

Routing and designing are essential for transportation networks. With effective rout-

ing and designing policies, transportation networks can work safely and efficiently. There

are two transportation problems: hazardous materials (hazmat) transportation and ware-

house logistics. This dissertation addresses the routing of networks for both problems.

For hazmat transportation, the routing can be regulated via network design. Due to

catastrophic consequences of potential accidents in hazmat transportation, a risk-averse

approach for routing is necessary. In this dissertation, we consider spectral risk measures,

for risk-averse hazmat routing. In addition, we introduce a network design problem to se-

lect a set of closed road segments for hazmat traffic with conditional value-at-risk (CVaR)

to regulate hazmat routing. In warehouses, the routing of electric forklifts with suffi-

cient battery levels is for material handling. The optimization model of dynamic wire-

less charging lane location is proposed under the workflow congestion in parallel-aisle

warehouses. Considering the uncertainty of demands, the wireless charging lane loca-

tion problem is formulated as a two-stage stochastic programming model. We confirm

the efficiency of the proposed algorithms in solving these problems and the key advan-

tages of use the proposed routing and designing policies via case studies.

vii



1 General Introduction

With transportation networks, vehicle routing aims at finding an optimal route that

achieves the minimum cost, the minimum risk of transporting commodities or other

goals. The users of transportation networks respond differently to different network de-

signs with various considerations. Therefore, routing is essential for transportation net-

works. With effective routing and designing policies, transportation networks can work

safely and efficiently. Routing and designing the policies are of great interests for two

transportation problems — hazardous materials transportation and warehouse logistics.

This dissertation addresses the routing and designing of networks for both problems. In

hazmat transportation, the routing of hazmat carriers focuses on minimizing the risk.

Hazmat network design which is regulated by government or transportation agencies in-

cludes toll-pricing and road banning. Compared to toll-pricing for hazmat cargos, road

banning is easier to be implemented and modified without additional toll-collection facil-

ities. In this dissertation, the hazmat network design is selecting a set of road segments to

be closed. For warehouse logistics, the forklift routing addresses the minimum travel time

and congestion alleviation in order to achieve high operation efficiency while ensuring

the safety of operation. With dynamic wireless charging technologies, we can determine

the locations of wireless charging lanes to support the routing of electric forklifts.

The U.S. Occupational Safety and Health Administration (2017) defines hazardous

materials (hazmat) as “chemical hazards and toxic substances which pose a wide range

of health hazards such as irritation, sensitization, and carcinogenicity and physical haz-

ards such as flammability, corrosion, and explosibility.” Widely used for hazmat trans-

portation are cargo tank trucks. Cargo tank trucks transporting with road networks can
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bring potential risks for the public. According to incident statistics from Pipeline and

Hazardous Materials Safety Administration (2017), there were 3,391 highway transit in-

cidents involving hazmat, causing $32,806,352 of damages in 2017. The average cost for

hazmat accident on nation’s highways is about $414,000 per accident, while non-hazmat

cargo accidents are averaged about $340,000 per accident (Federal Motor Carrier Safety

Administration, 2001). When hazmat is released at the accident, the average cost increases

to $536,000. Furthermore, if a fire or an explosion is involved, the average cost of hazmat

accidents increases to $1,150,000 and $2,070,000, respectively. In order to protect the road

network from severe hazmat accidents, risk and regulatory analyses have been conducted

to provide effective solutions for operations and management in hazmat transportation.

In this dissertation, we consider a hazmat routing problem to determine a safe path

between an origin-destination (OD) pair. As a risk-averse approach, CVaR is used in

hazmat routing (Kwon, 2011; Toumazis and Kwon, 2013). CVaR is defined as the “av-

erage of the α100% worst cases in the long tail.” While CVaR exhibits several desirable

properties such as coherency in the sense of Artzner et al. (1999a), it has a couple of lim-

itations. First, CVaR completely ignores what happens in the dominating (1− α)100%

cases, by only considering the α100% worst cases in the long tail; hence, CVaR cannot

distinguish random risk variables when their CVaR values are identical. Second, CVaR

places a uniform weight in the long tail for the consequences that pass the “cutoff” and,

therefore, may fail to provide risk-averseness against extremely large consequences with

very small probabilities. Due to these two properties, decision-making based solely on

CVaR can lead to less desirable outcomes. As a way to overcome these limitations, it is

natural to consider weighted average of all possible consequences, called the spectral risk

measure (SRM) (Acerbi, 2002) of the underlying probabilistic risk distribution. The weight

function is referred as the spectrum function. Any admissible spectrum function is re-

quired to be nonnegative, non-decreasing, and normalized for the spectral risk measure

to be coherent. In connection with expected utility theory, some literatures (Dowd et al.,
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2008; Brandtner, 2016) suggested some legitimate spectrum functions for constructing

spectral risk measures. Spectral risk measures have been studied for financial portfo-

lio optimization problems Acerbi and Tasche (2002); Acerbi (2004); Acerbi and Simonetti

(2008); Dowd and Blake (2006) and some researchers (Dowd et al., 2008; Brandtner, 2016)

gave guidances on the choice of spectrum functions. In hazmat routing, SRM as a more

general and risk-averse approach is applied in this dissertation.

Despite that regulating policies of routing are given based on risk models, hazmat

routing is ultimately performed by hazmat carriers. According to a hazmat routing sur-

vey (Battelle, 2006), hazmat carriers consider various factors such as tunnels, bridges, the

population exposure, the state of regulations, and the directness of route, among others, to

determine the route. This indicates that there would be factors that are unobserved by the

government or a central authority. Even when multiple factors are modeled, the weights

among various factors are difficult to determine. To design hazmat network which de-

termines a set of road segments to be closed aiming at minimizing the risk level of haz-

mat transportation in the network, predicting the carriers’ routes of transporting hazmat

from origin-destination (OD) pairs is essential. With Random Utility Model (RUM), we

can directly relates the probability of a route choice with the its utility and model the

stochasticity of hazmat carriers. By introducing CVaR as a risk-averse measure of a haz-

mat network, we model both probabilistic behavior of hazmat carriers and probabilistic

consequences from hazmat accidents.

Different from hazmat transportation which involves risks and uncertainties in rout-

ing, warehouse logistics can be guided by the centralized decision system. As a special

type of electric vehicles (EVs), battery-based forklifts in warehouses are utilized for order-

picking and item transactions. Realistic practices can be found in Utah State University

and Korea Advanced Institute of Science and Technology (KAIST) where the dynamic

wireless charging for their electric buses is implemented. The pioneer of wireless charg-

ing, WiTricity announced the acquisition from Qualcomm of the wireless charging plat-

3



form for EVs in 2019. With extensive increasing of EV applications, there is a great poten-

tial market for dynamic wireless charging technologies that enable vehicle charging while

moving. Warehouse logistics focus on working efficiently when the safety of people and

properties are ensured. The congestion that lead to damaged properties, injured workers

(Tompkins et al., 2010) and inefficient operations (Heath et al., 2013) brings negative im-

pacts on both efficiency and safety. Therefore, it is necessary to alleviate congestions in

warehouses. With dynamic wireless charging, electric forklifts can work more efficiently

without changing batteries and take advantage of unavoidable congestions as charging

opportunities.

The dissertation can be summarized as follows. Chapter 2 proposes a SRM mini-

mization model for a safe path and develop an efficient algorithm to solve the problem.

Chapter 3 presents a CVaR minimization problem for hazmat network design and devel-

ops an efficient algorithm that combines line search with Benders decomposition to solve

the problem. Chapter 4 introduces a two-stage stochastic programming model for opti-

mal deployment of dynamic wireless charging lanes for electric forklifts in a congested

warehouse. Chapter 5 concludes the dissertation with discussions of proposed models

and directions for future research.
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2 Spectral Risk Measure Minimization in Hazardous Materials Transportation

2.1 Introduction

To assess the risk of hazmat transportation, Erkut et al. (2007) identified three key

steps including hazard and exposed receptor identification, frequency analysis and con-

sequence modeling and risk calculation. Hazard and exposed receptor identification in-

volves identifying the potentional sources, the types, and the quantities of compounds

that impact the health and safety on the surrounding environment based on Oggero et al.

(2006); Yang et al. (2010). In frequency analysis, the probability of an undesirable event,

the level of potential receptor exposure and the severity of consequence are considered by

Woodruff (2005); Marhavilas et al. (2011); Rayas and Serrato (2017). To calculate the risk,

Tomasoni et al. (2010); Van Raemdonck et al. (2013); Torretta et al. (2017) proposed that

all the data related to the relevant area can be collected using GIS. Various models of risk

measures for hazmat transport risk are considered in the literature. Most notably, the no-

tion of conditional value-at-risk (CVaR) has been proposed as a risk measure (Toumazis

et al., 2013; Toumazis and Kwon, 2016) to provide a flexible routing tool that can incorpo-

rate the decision maker’s risk preference. By varying the probability threshold value in

the CVaR framework, we can provide routing solutions adequate for risk-neutral to risk-

averse decision makers. In addition, Hosseini and Verma (2018) proposed an optimiza-

tion model for train configuration and routing of rail hazmat shipments with conditional

value-at-risk (CVaR).

For the first time, we introduce SRM as a more general and risk-averse approach in

transportation problems, particularly, hazmat routing. We note that some existing hazmat
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risk measures including CVaR are special cases of SRMs and demonstrate that a weighted

sum of those existing hazmat risk measures can be represented as an SRM. Hence, we

emphasize that the theory and algorithm developed for SRM minimization can provide a

unified framework for hazmat routing in various settings. We also show that SRMs with

a special class of discrete spectrum functions can be formulated as the weighted sum of

CVaR measures. We devise efficient algorithms for both special and general classes of

spectrum functions to find the minimal SRM paths for hazmat routing. We confirm the

efficiency of the algorithms and the key advantages of SRM via case studies.

In Section 2.2 we review various risk measures for hazmat routing and illustrate limi-

tations of the existing CVaR-based approach. After we define the SRM in Section 2.3, we

study a special class of SRMs and propose an efficient algorithm to solve the SRM mini-

mization model in Section 2.4. For general spectral risk measures, we propose an approx-

imation scheme to simplify the problem in Section 2.5. Case studies of road networks

are conducted and comparisons for different hazmat routing models are introduced in

Section 2.6. Section 2.7 provides concluding remarks for this chapter.

2.2 Review of Risk Measures for Hazmat Routing

For a graph G(N ,A), we denote the accident probability and the accident conse-

quence in arc (i, j) ∈ A by pij and cij, respectively. To transport a commodity, the ap-

proximated risk distribution along path l can be written as Jin and Batta (1997):

Pr[Rl = x] ≈


1− ∑

(i,j)∈Al

pij if x = 0

pij if x = cij for some (i, j) ∈ Al

(2.1)

Note that the approximation is from the fact that pij � 1 for hazmat accidents, and there-

fore, pij pi′ j′ ≈ 0 for any (i, j), (i′, j′) ∈ A. Kang et al. (2014a) presented the accident

6
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Figure 2.1: The pmf and cdf for the accident consequence of a path

consequence (loss) in path l:

Rl =



0, w.p. 1−∑|A
l |

i=1 pl
(i)

cl
(1), w.p. pl

(1)

...

cl
(|Al |), w.p. pl

(|Al |)

(2.2)

whereAl is the set of arcs contained in path l, cl
(i) is the i-th smallest in the set {cij : (i, j) ∈

Al}, and pl
(i) is the probability corresponding to cl

(i). The probability mass function (pmf)

and cumulative distribution function (cdf) for Rl of a path in the Ravenna network1 is

shown in Figure 2.1. Note that the accident probabilities are as small as 10−5.

For the random risk variable Rl, several measures of risk have been proposed in the

literature, as summarized in Table 2.1. Let us consider two risk measures that are popular

in the literature: the traditional risk (TR) and the maximum risk (MM). The TR is the

expected consequence along a path, and the MM is the maximum arc consequence in

1The path is 106 → 1 → 2 → 7 → 17 → 19 → 28 → 34 → 39 → 47 → 55 → 52 → 53 → 48 →
51 → 63 → 67 → 71, and the details about the Ravenna network in Bonvicini and Spadoni (2008); Erkut
and Gzara (2008) are presented by Section 2.6.
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Table 2.1: Measures of hazmat transport risk along path l. E[Rl] and VAR[Rl] denote the
expected value and the variance of random risk Rl in path l, respectively. Note that q, k,
p, and α are some model-specific scalars.

Model Risk Measure

Expected Risk 1 TRl = E[Rl] ≈ ∑
(i,j)∈Al

pijcij

Population Exposure 2 PEl = ∑
(i,j)∈Al

cij

Incident Probability 3 IPl = Pr[Rl > 0] ≈ ∑
(i,j)∈Al

pij

Perceived Risk 4 PRl = E[(Rl)q] ≈ ∑
(i,j)∈Al

pij(cij)
q

Maximum Risk 5 MMl = sup Rl = max
(i,j)∈Al

cij

Mean-Variance 5 MVl = E[Rl] + kVAR[Rl] ≈ ∑
(i,j)∈Al

(pijcij + kpij(cij)
2)

Disutility 5 DUl = E[exp(kRl)] ≈ ∑
(i,j)∈Al

pij[exp(kcij)− 1]

Conditional Risk 6 CRl = E[Rl|Rl > 0] ≈
(

∑
(i,j)∈Al

pijcij

)/(
∑

(i,j)∈Al

pij

)
Value-at-Risk 7 VaRl

p = inf{x : Pr[Rl ≤ x] ≥ p}

Conditional VaR 8 CVaRl
α =

1
1− α

∫ 1

α
VaRl

p dp ≈ min
r

(
r +

1
1− α ∑

(i,j)∈Al

pij[cij − r]+
)

1 Alp (1995); 2 ReVelle et al. (1991); 3 Saccomanno and Chan (1985); 4 Abkowitz et al. (1992a); 5 Erkut and Ingolfsson
(2000a); 6 Sivakumar et al. (1993); 7 Kang et al. (2014b); 8 Toumazis et al. (2013)

a path. Both measures invoke some problems in hazmat transportation. First, the TR

measure considers the expected value, which is risk-neutral. In hazmat transportation, it

is recommended to use risk-averse approaches to avoid catastrophic consequences. On

the other hand, the MM measure, although risk-averse, often leads to a circuitous path

based on Erkut and Ingolfsson (2005).

2.2.1 VaR and CVaR Defined

As a flexible alternative that covers risk attitudes between the attitudes of TR and

MM, the notion of value-at-risk (VaR) and conditional value-at-risk (CVaR) have been

proposed. VaR and CVaR are defined as follows:

8



Definition 1 (VaR Measure). The value-at-risk (VaR) along path l is defined as follows:

VaRl
p = inf{x : Pr[Rl ≤ x] ≥ p} (2.3)

where p ∈ (0, 1) is a threshold probability.

Definition 2 (CVaR Measure). The conditional value-at-risk (CVaR) along path l is defined as

follows:

CVaRl
α =

1
1− α

∫ 1

α
VaRl

p dp (2.4)

for a threshold probability α ∈ (0, 1).

In the context of hazmat transportation, VaR and CVaR, with a threshold probability α,

become identical to TR when α is sufficiently small, and identical to MM when α is suffi-

ciently large in Toumazis et al. (2013). Therefore, VaR and CVaR in hazmat transportation

provide risk measures that are more general than both the TR and MM measures.

Artzner et al. (1999a) propose the four axioms for any risk measure ξ, which maps a

random loss X to a real number, to be coherent:

• Translation Invariance: for any real number m, ξ(X + m) = ξ(X) + m.

• Subadditivity: for all X1 and X2, ξ(X1 + X2) ≤ ξ(X1) + ξ(X2).

• Positive homogeneity: for all λ ≥ 0, ξ(λX) = λξ(X).

• Monotonicity: for all X1 and X2 with X1 ≤ X2 a.s., ξ(X1) ≤ ξ(X2).

Not all risk measures in Table 2.1 are coherent. Most notably, VaR is not a coherent risk

measure, while CVaR is coherent from Rockafellar and Uryasev (2002a).

2.2.2 Limitation of CVaR: an Illustrative Example

While CVaR provides a flexible and coherent risk measure for hazmat routing to avoid

high consequence events, it has a limitation. For the demonstration purpose, let us con-
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sider the following three discrete random variables:

R1 =



0 w.p. 0.900

5 w.p. 0.090

10 w.p. 0.008

50 w.p. 0.002

, R2 =


0 w.p. 0.900

5 w.p. 0.090

18 w.p. 0.010

, R3 =


0 w.p. 0.900

10 w.p. 0.090

18 w.p. 0.010

. (2.5)

CVaR measures for the above three random (loss) variables with various probability

threshold values can be computed as Rockafellar and Uryasev (2002a); Pflug (2000):

CVaRi
α = min

r

{
r +

1
1− α

E[Ri − r]+
}

for each i = 1, 2, 3 where [x]+ = max{0, x}. We obtain the following values.

α CVaR1
α CVaR2

α CVaR3
α

0.900 6.3 6.3 10.8

0.990 18.0 18.0 18.0

0.998 50.0 18.0 18.0

From the above, it is obvious that R2 is the most desirable, since it is a non-dominated

solution for all probability thresholds. It is, however, not straightforward to make R2

outstanding using CVaR. When R1, R2, and R3 are compared at α = 0.990, both have

the identical CVaR value, and hence CVaR-based decision making is indifferent among

the three random variables. We note, however, that R1 has a significant loss of 50 with

probability 0.002, which should be avoided. To distinguish R1 from R2, increasing α to

0.998 does not help, because it will still remain indifferent between R2 and R3. Although

R3 exhibits the same long-tail behavior as R2 does, R3 certainly has a higher CVaR value

than R2 when α = 0.900; hence R2 should be preferred to R3. As a remedy, one can
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consider a weighted sum as follows:

WSl = w1CVaR
l
0.900 + w2CVaR

l
0.990 + w3CVaR

l
0.998,

which surely confirms R2 as the least risky choice for any positive weight parameters

w1, w2, and w3. For risk-aversion, it is desirable to have w1 < w2 < w3. Note that WSl

may or may not be a coherent risk measure depending on how the weight parameters

are chosen. This motivates us to consider another class of coherent risk measures that are

more general than CVaR.

2.3 Defining the Spectral Risk Measure

To extend and generalize the notion of CVaR, we define the spectral risk measure—a

coherent risk measure first introduced by Acerbi (2002).

Definition 3 (Spectral Risk Measure). The spectral risk measure (SRM) for hazmat routing

risk along path l is defined as follows:

SRMl
φ =

∫ 1

0
φ(p)VaRl

p dp (2.6)

where φ : [0, 1]→ R+ is a nonnegative and non-decreasing function such that

∫ 1

0
φ(p)dp = 1. (2.7)

Note that (2.7) is necessary for the translational invariance condition (Acerbi, 2004).

We can easily see that CVaR is a special case of spectral risk measures, by noting that

φ(p) =


1/(1− α) if p > α

0 if p ≤ α

11
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Figure 2.2: Example spectrum functions
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Figure 2.3: An example of the spectral risk measure (2.8) with n = 4

for a certain probability α ∈ (0, 1). Since TR and MM are the same as CVaR when α is

very small and large, respectively (Toumazis et al., 2013; Toumazis and Kwon, 2016), TR

and MM are also special cases of spectral risk measures. The comparisons can be seen in

Figure 2.2. It is illustrated that TR covers full probability spectrum [0, 1] uniformly, while

CVaR covers only [α, 1] uniformly. A general spectrum function φ(p) may be defined to

cover the full probability spectrum [0, 1], but non-uniformly.

2.4 A Class of Spectral Risk Measures Applied in Hazmat Transportation

In this section, we consider a special class of spectrum functions; namely, nondecreas-

ing step functions. We show that the spectral risk measure defined by such spectrum

functions can be represented as a weighted sum of CVaR measures.

12



Let us consider a spectrum function φ that is a non-decreasing, step function. In par-

ticular, we consider

φ(p) =



φ1, ∀p ∈ (α1, α2]

φ1 + φ2, ∀p ∈ (α2, α3]

φ1 + φ2 + φ3, ∀p ∈ (α3, α4]

...

φ1 + φ2 + . . . + φn, ∀p ∈ (αn, 1)

(2.8)

where the values of φk are nonnegative constants and α1 ≥ 0. An example of such φ is

provided in Figure 2.3 when n = 4.

Lemma 1 (Normalization). For a step function (2.8), the values of φk must satisfy ∑n
k=1 φk(1−

αk) = 1.

When the spectrum function of the form (2.8) is used, the spectral risk measure can be

simplified as a weighted sum of CVaR measures.

Theorem 1. With (2.8), the spectral risk measure for path l with spectrum function φ can be

written as follows:

SRMl
φ =

n

∑
k=1

φk(1− αk)CVaR
l
αk

(2.9)

where

CVaRl
αk

= min
rk

[
rk +

1
1− αk

∑
(i,j)∈Al

pij[cij − rk]
+

]
(2.10)

for all k = 1, . . . , n.

As a corollary, Theorem 2 demonstrates how to construct a weighted sum of TR, CVaR,

and MM, while maintaining coherency, as a special case of SRM.
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Theorem 2. Consider a weighted sum of TR, CVaR with α, and MM for path l ∈ P as follows:

Σl = w1TR
l + w2CVaR

l
α + w3MMl (2.11)

where w1, w2, w3 ≥ 0 and α ∈ (0, 1). Let pl be a constant such that Pr[Rl = max(i,j)∈Al cij] <

pl < 1 and α < pl. If w1 + w2(1− α) + w3(1− pl) = 1, then the weighted sum Σl itself is an

SRM.

2.4.1 Spectral Risk Measure Minimization

The routing problem based on the spectral risk measure is to choose a path l ∈ P that

minimizes the spectral risk measure from an origin to a destination; that is,

min
l∈P

SRMl
φ. (2.12)

Note that (2.12) is a path-based formulation for hazmat transportation, which requires

path enumeration. Instead of the path-based formulation, we present an arc-based formu-

lation that can represent all feasible paths implicitly using flow conservation constraints.

Let us define:

Ω ≡
{

x : ∑
(i,j)∈A

xij − ∑
(j,i)∈A

xji = bi ∀i ∈ N , and xij ∈ {0, 1} ∀(i, j) ∈ A
}

where the parameter bi has the following values.

bi =


1 if i =origin

−1 if i =destination

0 otherwise

We obtain the following results.
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Theorem 3. The hazmat routing problem with SRM (2.12) is equivalent to:

min
l∈P

SRMl
φ = min

r

[ n

∑
k=1

φk(1− αk)rk + z(r)
]

(2.13)

where z(r) is obtained by a shortest path problem

z(r) = min
x∈Ω

∑
(i,j)∈A

{ n

∑
k=1

φk pij[cij − rk]
+
}

xij (2.14)

and r = [r1, . . . , rn]> ∈ Rn.

With Theorem 3, we can solve the routing problem (2.12) by searching the space of

r. With each search of r, we can obtain the path and its spectral risk measure value by

solving a shortest-path problem (2.14). It is, however, inefficient to search r within Rn

when the dimension n is large. We provide useful results to reduce the searching efforts

for r.

Lemma 2 (Kang et al. 2014a). For any α ∈ (0, 1), we have VaRl
α ∈ {0} ∪ {cij : (i, j) ∈ A}.

Lemma 3. For all 0 < α1 < α2 < 1, there exist minimizers rα1 = VaRl
α1

and rα2 = VaRl
α2

of

Fl
α2
(r) and Fl

α2
(r), respectively, such that rα1 ≤ rα2 where

Fl
α(r) = r +

1
1− α ∑

(i,j)∈Al

pij[cij − r]+

Therefore we only need to search for r ∈ {0} ∪ {cij : (i, j) ∈ A} to obtain CVaRl
α.

For solving the SRM minimization problem (2.13), Lemma 2 says that it is sufficient to

search the mesh determined by 0 and cij only, and the number of searches is (|A|+ 1)n.

In addition, Lemma 3 indicates that there is no need to search any r such that rk > rk+1

for any k.

The computational method inspired by Lemmas 2 and 3 searches all valid combina-

tions thus guaranteeing an exact optimal solution. In addition, we can also consider a
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mixed integer linear programming (MILP) reformulation of (2.13) after linearization, and

use an optimization solver for a solution.

2.4.2 MILP Reformulation

The SRM minimization model (2.13) can be reformulated as a mixed integer linear

programming (MILP) problem. We introduce new continuous variables yijk. When xij are

binary, we observe

yijk = [cij − rk]
+xij = max{cij − rk, 0}xij = max{cijxij − rk, 0}.

Therefore, we obtain the following equivalent formulation:

min
l∈P

SRMl
φ = min

r,x,y

[ n

∑
k=1

φk(1− αk)rk + ∑
(i,j)∈A

n

∑
k=1

φk pijyijk

]
(2.15)

subject to

x ∈ Ω

xij ∈ {0, 1} ∀(i, j) ∈ A

yijk ≥ cijxij − rk ∀(i, j) ∈ A, k = 1, . . . , n

yijk ≥ 0 ∀(i, j) ∈ A, k = 1, . . . , n.

The computational time for both approaches—the exact search method based on Lem-

mas 2 and 3 and any exact algorithms for solving the MILP problem (2.15)—increases

exponentially as n increases.

2.4.3 A Multi-dimensional Cyclic Coordinate Search Method with Mapping

We propose a heuristic search algorithm to find a quality solution more efficiently. The

algorithm still utilizes the results from Lemmas 2 and 3 but we only need to evaluate a

very limited number of combinations of {0} ∪ {cij : (i, j) ∈ A} values in ascending order
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of r. It is a modification of the multi-dimensional cyclic coordinate search algorithm by

mapping the infeasible points to the feasible region. For each dimension, we use a line

search method. The algorithm is summarized in Algorithm 1.

The definition of z(r) is provided in (2.14) and the function value can be obtained by

solving a shortest path problem for any given r value. To find the minimum on each

dimension in Step 2, we solve the shortest path problem only when the first component

of the objective ∑n
k=1 φk(1− αk)rt

k is smaller than the current best minimum. Furthermore,

we can utilize a line search algorithm such as golden section search on all the values in

{0} ∪ {cij : (i, j) ∈ A} to speed up the solution process. The above algorithm obtains the

minimum value by searching each dimension sequentially, while enforcing the ascending

order of r. This is realized by mapping a search point to the diagonal direction when it

surpasses the diagonal line. Since this algorithm does not guarantee the global optimality,

we may begin with multiple initial points to ensure the quality of the final solution.

Algorithm 1 A Multi-dimensional Cyclic Coordinate Search Method with Mapping for A
Class of SRM Hazmat Routing Problems

1: Let Z = +∞. Sample an initial solution r0 uniformly from {0} ∪ {cij : (i, j) ∈ A}. Sort
the elements of r0 in ascending order. Let rc = r0, rl = r0.

2: Let k = 1 and go to Step 3.
3: Find the value λk ∈ {0} ∪ {cij : (i, j) ∈ A} such that the objective value z(rt) is

minimized where

rt
m =

{
rc

m, if rc
m < λk, m < k or rc

m > λk, m > k
λk, otherwise,

∀m = 1, . . . , n.

Let rc = rt and go to Step 4.
4: If k < n, let k = k + 1 and go to Step 3; otherwise go to Step 5.

5: If rc equals rl, then let Z =
n
∑

k=1
φk(1 − αk)rc

k + z(rc) and terminate. Otherwise, let

rl = rc and go to Step 2.

Examples of the search process for OD pair (1,84) in the Buffalo network (Toumazis

and Kwon, 2016) with two dimensions are shown in Figure 2.4. In this example, we

used n = 3, α2 = 0.999970, α3 = 0.999985, and φ1 = 0, φ2 = 22222.22, φ3 = 22222.22.
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Figure 2.4: Search processes

Figure 2.4a shows the algorithm process without hitting the diagonal line while Figure

2.4b demonstrates one with searching the direction on the diagonal line. For the same

starting point as in Figure 2.4b, Figure 2.4c shows the search process with a traditional

multi-dimensional cyclic search without enforcing the ascending order of r. By compar-

ing Figures 2.4b and 2.4c, we can see how the points that surpass the diagonal line are

mapped. While both algorithms reach the same optimal solution in this example, we also

have found some examples that can obtain worse solutions in higher dimensions without

enforcing an ascending order of r . In general, enforcing an ascending order of r helps

finding an optimal solution.
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2.5 General Spectral Risk Measures Applied in Hazmat Transportation

In this section, we consider the spectral risk measures with any general spectrum func-

tion. For any integrable, non-decreasing spectrum function φ(·) that satisfies the normal-

ization condition (2.7), we can define the general spectral risk measure of path l based

on Definition 3. While the general spectrum function can be continuous, the underlying

random risk variable in hazmat transportation is still discrete as shown in (2.2).

The general SRM minimization model in hazmat transportation is represented as fol-

lows:

min
l∈P

SRMl
φ =

∫ 1

0
φ(p)VaRl

p dp

=
|Al |

∑
k=0

∫ πl
(k+1)

πl
(k)

φ(p)cl
(k) dp

=
|Al |

∑
k=0

φl
(k)c

l
(k) (2.16)

where

πl
(k) =


0, if k = 0

1−∑|A
l |

i=k p(i) if k = 1, 2, . . . , |A|

1, if k = |A|+ 1

φl
(k) =

∫ πl
(k+1)

πl
(k)

φ(p)dp

and cl
(0) = 0. Different from the case with step spectrum functions, the general SRM

minimization problem does not allow a transformation into an arc-based formulation.

2.5.1 Exponential and Power Spectral Risk Measures

We introduce possible choices for the spectrum function φ(·). Inspired by popular

utility functions from expected utility theory, Dowd et al. (2008) proposed the following
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Figure 2.5: Exponential spectrum functions

spectrum functions:

φ(p) =
σe−σ(1−p)

1− e−σ
, σ > 0 (2.17)

φ(p) = κpκ−1, κ ≥ 1 (2.18)

Equation (2.17) is the exponential function while Equation (2.18) is the power function.

In fact, Dowd et al. (2008) proposed another class of power functions, which creates some

inconsistencies between the risk measure value and the risk-aversion level of decision

makers. Hence, we only consider (2.17) and (2.18). Figures 2.5 and 2.6 show the expo-

nential and power spectrum functions with some parameters. Power functions exhibit

similar properties as exponential functions if parameters are large.

Wächter and Mazzoni (2013) concluded that the inconsistencies found in Dowd et al.

(2008) arise because of an inappropriate construction of the link between utility functions

and the risk spectrum. Recently, Brandtner and Kürsten (2017) proposed procedures to

develop spectrum functions with which spectral risk and expected utility users can have

the same decisions. The linking procedure to produce spectrum functions, however, re-

quires knowledge of the risk distribution beforehand. In this chapter, the risk distribution
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Figure 2.6: Power spectrum functions

is dependent on the path choice of hazmat transportation. Therefore, the linking approach

cannot be applied to our work.

In hazmat transportation, the distribution of risk is highly skewed to the right due

to extremely small probabilities for accidents. If we use small σ and κ in spectral risk

measures, it addresses very limited weights for catastrophic accident consequences thus

having similar results to TR. To develop appropriate spectral risk measures reflecting

a risk-averse attitude towards hazmat transportation, large parameters for exponential

functions and power functions are used.

2.5.2 Computational Methods for the General Cases

The general SRM minimization problem (2.16) cannot be transformed into an arc-

based formulation. While we can solve the problem directly based on the path-based

formulation in (2.16), the path-based formulation requires path enumeration beforehand.

Once we prepare a set of feasible paths, the spectral risk measure SRMl
φ in (2.16) can be

computed for each path l from the set. While full path enumeration guarantees optimality

of the solution obtained, it costs enormous computational effort as the number of avail-
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Figure 2.7: Approximating a general spectrum function by a step function

able paths between an OD pair increases exponentially. A possible method in such a case

is to limit the problem to a set of geographically dissimilar paths (Akgün et al., 2000; Kang

et al., 2014a) and choose a path from those dissimilar paths.

Another approach is to approximate the general spectrum function φ(·) by a step

function of the form in (2.8) and solve the corresponding SRM minimization problem

as discussed in Section 2.4. Figure 2.7 demonstrates an example. We can use Algorithm

1 in Section 2.4.3 to solve such approximated problems. To approximate φ(·) accurately,

however, we require a large number of steps. Such an approximation is inefficient for

large-scale problems, since the dimension of the search space increases exponentially and

we need to solve many shortest-path problems.

We can also combine the two ideas. The approximation based on a step function de-

termines probability breakpoints αk for k = 1, . . . , n and corresponding CVaR measures

CVaRl
αk

for path l. For each k, we can find the minimal CVaR path, which can be done

by solving a series of shortest-path problems. For the solution procedure for finding the

minimal CVaR path, see Toumazis et al. (2013); it is a single-dimensional special case of

Algorithm 1. By collecting the minimal CVaR paths, we can form a set of paths for the

given OD pair. The spectral risk measure (2.16) can be computed for each path in the

set, thus determining the minimal SRM path. We summarize the two methods based on

approximation in Algorithms 2 and 3.
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Algorithm 2 A Multi-dimensional Cyclic Coordinate Search Method with Mapping for
General SRM Hazmat Routing Problems

1: Approximate the given spectrum function φ(·) using a step function and obtain
α1, . . . , αn and φ1, . . . , φn.

2: Solve the corresponding minimization problem using Algorithm 1.

Algorithm 3 A CVaR Path Generation Method for General SRM Hazmat Routing Prob-
lems

1: Approximate the given spectrum function φ(·) using a step function and obtain
α1, . . . , αn and φ1, . . . , φn.

2: For each k = 1, . . . , n, solve
min
l∈P

CVaRαk

using the method in Toumazis et al. (2013), and call the obtained path lk.
3: Compute SRM

lk
φ in Equation (2.16) for each k = 1, . . . , n. Choose the path with the

minimal value.

Although we consider a limited number of paths, Algorithm 3 is expected to produce

optimal or near-optimal solutions, since minimal CVaR paths can be regarded as safe

paths already and hence are good candidates for the minimal SRM path. Furthermore,

the value of n in Algorithm 3 can be made much larger than in Algorithm 2. While the

computational complexity in Algorithm 1 used by Algorithm 2 increases exponentially as

n increases, it increases linearly in Algorithm 3.

2.5.3 Optimal Approximation by Step Functions

We propose an optimization procedure to approximate the general spectrum function

by a step function. Suppose we use n number of probability breakpoints α1, . . . , αn. In

each interval [αk−1, αk], we approximate φ(·) by a constant hk, as shown in Figure 2.8. To

minimize the approximation error, we formulate an optimization problem as follows:

min E(α, h) =
n

∑
k=1

∫ αk

αk−1

(φ(p)− hk)
2 dp (2.19)

s.t.
n

∑
k=1

hk(αk − αk−1) = 1 (2.20)

23



p
αk−1 αk

hk

φ(p)

Figure 2.8: Approximating φ(p) by hk in the interval of [αk−1, αk].

αk−1 ≤ αk, k = 1, · · · n. (2.21)

where α0 is set to zero. To make it consistent with the notation in Section 2.4, we can let

hk = ∑k
s=1 φs or hk− hk−1 = φk with α0 = 0 and αn = 1. Problem (2.19) minimizes the sum

of the squared approximation errors, while enforcing the normalization condition (2.7)

in constraint (2.20). As done similarly in Maybee et al. (1979), we obtain the following

results.

Theorem 4. The optimal approximation problem (2.19) is equivalent to the following uncon-

strained optimization problem:

min J(α) = −
n

∑
k=1

[Φ(αk)−Φ(αk−1)]
2

αk − αk−1
(2.22)

where Φ(αk) =
∫ αk

0 φ(p)dp. Once optimal αk values are determined, we can determine

hk =
Φ(αk)−Φ(αk−1)

αk − αk−1
(2.23)

for all k = 1, . . . , n.

To minimize J(α), a gradient projection algorithm is implemented. Note that ∂Φ(αk)
∂αk

=

φ(αk) and the derivative of J(α) with respect to α is
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∂J(α)
∂αk

=
[Φ(αk)−Φ(αk−1)]

2

(αk − αk−1)2 − 2
Φ(αk)−Φ(αk−1)

αk − αk−1
φ(αk)

− [Φ(αk+1)−Φ(αk)]
2

(αk+1 − αk)2 + 2
Φ(αk+1)−Φ(αk)

αk+1 − αk
φ(αk) (2.24)

for all k = 1, . . . , n. The algorithm is summarized in Algorithm 4.

Algorithm 4 Optimization for Approximating General Spectrum Functions

1: Initialize α with α0 = 0, αn = 1 and αk ≤ αk+1 for all k = 1, . . . , n− 1. Set t← 1.
2: Compute the gradient ∂J(αt)

∂αk
using (2.24).

3: Let αt+1
k = αt

k − θt ∂J(α)
∂αt

k
and αt+1

(k) be the k-th smallest in set {αt+1
k : k = 1, 2, . . . , n}.

Set αt+1
k ← αt+1

(k) for all k and t← t + 1. Repeat Step 2 until ||αt − αt−1|| ≤ ε.

Step 3 guarantees αk−1 ≤ αk by sorting {αk : i = 1, 2, . . . , n} in ascending order in

each iteration. Note that ε is a small positive constant and θt is the step size at iteration t.

We use the diminishing step size rule for θt. When α is obtained, h can be calculated by

(2.23) and φ in the optimal step function will be given accordingly. Figure 2.9 shows an

arbitrary step function and the optimal solution to approximate an exponential function

with σ = 104 using 3 steps.
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Figure 2.9: Different approximations for a spectral risk function
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2.6 Numerical Experiments

In this section, applications of the proposed model are shown. We conduct the numer-

ical experiments on the Ravenna (Bonvicini and Spadoni, 2008; Erkut and Gzara, 2008),

the Albany (Kang et al., 2014b), the Buffalo (Toumazis and Kwon, 2016) and the Barcelona

(Transportation Networks for Research Core Team, 2018) networks. Ravenna is a small

town located in Italy where large amounts of hazardous materials are processed annu-

ally. In the Ravenna network, there are 105 nodes and 134 undirected arcs. The data set

includes the length, the population that hazmat would influence and the probability of

accidents for each arc. The size of Albany and Buffalo networks are similar to Ravenna

network. The Barcelona network is large and complicated with 1020 nodes and 2522 di-

rected arcs. For the Barcelona network, accident probabilities and accident consequences

are randomly generated.

All computational schemes introduced in this chapter are coded in Python. The Gurobi

solver version 6.5.1 is used. The experiments are implemented on a 2.2 GHz Xeon proces-

sor and 32 GB of RAM.

2.6.1 Comparisons for Algorithms

To show the performances of the proposed algorithms, the computation time and op-

timality gap are provided in Table 2.2. MILP reformulation introduced in Section 2.4.2

is directly solved by Gurobi while k shortest path approach generates 10,000 candidates

to obtain minimal SRM path. With the optimal step function obtained by Algorithm 4,

we implement MILP reformulation, Algorithms 2 and 3 for finding a safe path in hazmat

transportation. In Table 2.2, Algorithms 2 and 3 are always more efficient than the k short-

est path approach. For small networks such as Buffalo, Ravenna and Albany, Algorithm 2

can still solve the SRM hazmat routing problem efficiently with extremely small or none

optimality gaps although MILP reformulation usually performs best in such cases. Algo-
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Table 2.2: Comparisons of different algorithms

Computation time in seconds (optimality gap)
Network OD pair σ MILP reformulation k shortest path Algorithm 2 Algorithm 3

Buffalo (1,15)
104 0.427 (0%) 441.890 (0%) 5.049 (0%) 175.464 (0%)
105 0.633 (0%) 438.998 (0%) 9.960 (0%) 166.252 (0%)
106 4.609 (0%) 439.000 (0%) 22.601 (2.63%) 179.742 (0%)

Ravenna (106,71)
104 21.550 (0%) 402.870 (0%) 16.161 (0%) 186.103 (0%)
105 2.920 (0%) 402.789 (0%) 10.401 (0%) 184.690 (0%)
106 1.135 (0%) 407.712 (0%) 10.451 (3.34%) 200.474 (0%)

Albany (1,15)
104 0.431 (0%) 318.061 (0%) 5.064 (0%) 150.950 (0%)
105 1.057 (0%) 318.057 (0%) 16.100 (0%) 147.464 (0%)
106 0.956 (0%) 318.038 (0%) 10.380 (0%) 158.821 (0%)

Barcelona (3,600)
104 107.204 (0%) 7988.353 (2.18%) 57.266 (0%) 2469.816 (0%)
105 39321.988 (0%) 7985.875 (6.88%) 184.726 (0%) 2567.690 (0%)
106 872.329 (0%) 7984.812 (0.98%) 237.256 (0%) 2546.374 (0%)

rithms 2 and 3 can be both effective and efficient for the Barcelona network while MILP

reformulation and k shortest path are inefficient. Figure 2.10 shows the computation time

for the Barcelona network with various OD pairs. For this large and complicated net-

work, we can see that Algorithm 2 is the most efficient. Algorithm 3 also performs well

in most cases.

Detailed comparisons for Algorithms 2 and 3 are conducted on the Ravenna network.

The results show that exponential functions and power functions share the same optimal

step function approximations when σ = κ under the three alternatives. Using node 106

as an origin and node 71 as a destination, the results for the minimal SRM path in hazmat

routing are shown in Figures 2.11, 2.12, and 2.13.

Two algorithms can have different performances for different spectral risk measures.

In Figure 2.11, it can be seen that Algorithms 2 and 3 have the same optimal solution

when σ = κ = 104. With σ = κ = 105, Algorithm 2 yields the optimal solution while

Algorithm 3 does not. Algorithm 3 provides the optimal solution while Algorithm 2 does

not yield the optimal solution if σ = κ = 106. A local optimal solution may be found by

Algorithm 2 despite a full path set based on the arc-based formulation. On the other hand,

Algorithm 3 cannot guarantee the optimal solution because the optimal is chosen from a
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Figure 2.10: Computation time for various OD pairs with the Barcelona network when
σ = 105

limited number of path candidates. While there exist some differences in the optimal path

solutions, both algorithms obtain similar SRM values.

Both algorithms have their advantages and limitations. If the number of steps for

approximation is very small, Algorithm 2 is recommended. Although losing accuracy

in the objective function, the arc-based formulation in Algorithm 2 explores all feasible

paths while CVaR path generation in Algorithm 3 produces only a few dissimilar paths

when n is small. Algorithm 2 is inefficient if the spectrum function involves a large n. In

addition, it can terminate at some local optimal solutions by Algorithm 1 given too many

steps of φ(·). Algorithm 3 is recommended with a large number of steps due to its linear

computation complexity in n. Both algorithms can be implemented when a reasonable

number of steps is chosen to approximate the general φ(·).
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(a) min
l∈P

SRMl
φ = 1791.507 by Algorithm

2

(b) min
l∈P

SRMl
φ = 1791.507 by Algo-

rithm 3

Figure 2.11: Comparisons for Algorithm 2 and Algorithm 3 when σ = κ = 104

(a) min
l∈P

SRMl
φ = 2555.770 by Algorithm

2

(b) min
l∈P

SRMl
φ = 2555.783 by Algo-

rithm 3

Figure 2.12: Comparisons for Algorithm 2 and Algorithm 3 when σ = κ = 105
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(a) min
l∈P

SRMl
φ = 2688.431 by Algorithm

2

(b) min
l∈P

SRMl
φ = 2601.665 by Algo-

rithm 3

Figure 2.13: Comparisons for Algorithm 2 and Algorithm 3 when σ = κ = 106

Table 2.3: Comparisons of paths for different models in the Ravenna network. Optimal
path names are arbitrarily given for convenient explanation.

Model Optimal Path

TR lTR 106→ 1→ 2→ 7→ 17→ 19→ 28→ 34→ 39→ 47→ 55→ 52→ 53→ 48→ 51→ 63→ 67→ 71
MM lMM 106→ 1→ 2→ 4→ 17→ 19→ 23→ 40→ 59→ 64→ 61→ 102→ 82→ 84→ 103→ 81→ 71

CVaR
0.9999 l1 106→ 1→ 2→ 7→ 5→ 10→ 20→ 24→ 26→ 30→ 36→ 43→ 46→ 56→ 69→ 76→ 75→ 77→ 80→ 73→ 71
0.99999 l2 106→ 1→ 2→ 4→ 17→ 7→ 5→ 3→ 6→ 11→ 14→ 98→ 31→ 45→ 54→ 62→ 78→ 74→ 76→ 75→ 77→ 80→ 73→ 71
0.999999 l3 106→ 1→ 2→ 7→ 17→ 4→ 13→ 19→ 23→ 40→ 59→ 64→ 61→ 102→ 82→ 84→ 103→ 81→ 71

SRM
104 l4 106→ 1→ 2→ 7→ 9→ 10→ 20→ 24→ 26→ 30→ 36→ 43→ 46→ 56→ 69→ 76→ 75→ 77→ 80→ 73→ 71
105 l5 106→ 1→ 2→ 7→ 5→ 3→ 6→ 11→ 14→ 98→ 31→ 45→ 54→ 62→ 78→ 74→ 76→ 75→ 77→ 80→ 73→ 71
106 l6 = l3 106→ 1→ 2→ 7→ 17→ 4→ 13→ 19→ 23→ 40→ 59→ 64→ 61→ 102→ 82→ 84→ 103→ 81→ 71

2.6.2 Comparisons of Risk Measures and Limitation of CVaR

In the existing literature for hazmat transportation, there are various risk measures in-

cluding TR, MM and CVaR. Table 2.3 shows a comparison of paths produced by different

models in the Ravenna network. We can find that only the CVaR model with confidence

level of 0.999999 and the SRM minimization model with σ = 106 generate the same path;

i.e., l3 = l6. The CVaR model with extremely high confidence levels and the SRM model

with very large parameters are equivalent because they only consider MM. Here, the MM

path is different from CVaR and SRM paths with extremely large parameters due to mul-

tiple optimal solutions aiming at MM.

For the Ravenna network, Table 2.4 compares TR, MM, CVaR and SRM models with

respect to various risk measures, the number of arcs and the length of the path. We can

30



Table 2.4: Various risk measures for different models in the Ravenna network

Model Optimal
TRl MMl CVaRl

α SRMl
σ # of arcs length

Path l (×10−4) 0.9999 0.99999 0.999999 104 105 106

TR lTR 4.07 5.23 2.32 3.85 5.23 1.95 3.60 5.19 17 24.33
MM lMM 6.28 2.60 2.22 2.60 2.60 2.05 2.56 2.60 16 39.36

CVaR
0.9999 l1 4.30 3.47 2.07 3.47 3.47 1.81 3.15 3.47 20 30.15
0.99999 l2 5.58 2.69 2.23 2.59 2.69 1.92 2.56 2.69 23 45.68
0.999999 l3 7.62 2.60 2.27 2.60 2.60 2.14 2.56 2.60 18 45.58

SRM
104 l4 4.10 3.47 2.07 3.47 3.47 1.79 3.15 3.47 20 28.64
105 l5 4.93 2.69 2.23 2.59 2.69 1.89 2.56 2.69 21 37.32
106 l6 = l3 7.62 2.60 2.27 2.60 2.60 2.14 2.56 2.60 18 45.58

Table 2.5: The differences of links between l1 and l4

(7,5) (5,10) (7,9) (9,10)

pij(×10−5) 1.23 1.42 0.61 0.54
cij 1.13 1.42 1.54 0.87

re-confirm the limitation of CVaR, observed in the small example in Section 2.2.2, from

the results in Table 2.4.

For the minimization problem with CVaR0.9999, path l1 is chosen by algorithm, al-

though l4 also is an optimal solution for the same problem. Path l4, however, has not

only a smaller TR measure value, but also a shorter length than l1. When SRM model

with σ = 104 is used, l4 is chosen. Similarly, we can also compare l2 and l5. While both l2

and l5 have the same CVaR0.99999 value, path l5 has smaller TR measure value and shorter

length.

When l1 and l4 are compared, the only difference is that l1 utilizes link 7 → 5 → 10,

while l4 uses link 7 → 9 → 10. In these two subpaths, the accident probability and the

accident consequence in each link are shown in Table 2.5. Note that in both l1 and l4,

we have VaR0.9999 = 1.57. In the evaluation fo CVaR0.9999, any link consequence that is

smaller than VaR0.9999 is cut off, or ignored, as we can see from Theorem 5. Therefore, all

four above links have no impact on CVaR0.9999. However, we should note that the risk

in 7 → 9 → 10 has the smaller expected value than in 7 → 5 → 10; hence l4 should be

preferred to l1.
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Table 2.6: The differences of links between l2 and l5

(2,4) (4,17) (17,7)

pij(×10−5) 3.68 3.65 3.70
cij 0.58 1.88 0.69

Table 2.7: Multiple optimal paths for CVaR0.999995 in the Barcelona network for OD pair
(3, 600). Optimal path names are arbitrarily given for convenient explanation.

Model Optimal Path l TRl VaRl
0.999995 CVaRl

0.999995 # of arcs

CVaR

lB
1 0.0312 1.7473 3.4831 60

lB
2 0.0310 1.7473 3.4831 61

lB
3 0.0311 1.7473 3.4831 60

lB
4 0.0309 1.7473 3.4831 61

lB
5 0.0309 1.7473 3.4831 61

lB
6 0.0312 1.7473 3.4831 60

lB
7 0.0299 1.7473 3.4831 64

SRM lB
8 0.0297 1.7473 3.4831 65

Similarly, when l2 and l5 are compared, the only difference is that l2 utilizes link

2 → 4 → 17 → 7, while l5 directly moves 2 → 7. The probabilities and consequences

respectively are shown in Table 2.6. Since VaR0.99999 = 2.46 in path l2, all above three links

are cut off in computing CVaR0.99999. Hence, in the shortest-path sub-problem to com-

pute CVaR0.99999, these three links are regarded as links with zero link costs. It is evident,

however, that l5 must be preferred to l2.

We find multiple optimal CVaR0.999995 paths while SRM model can directly find lB
8 with

a two-step spectrum function for α2 = 0.999995 and some 0 < φ1 < 1, φ2 = 2 · 105(1−φ1).

Note that the SRM model is equivalent to CVaR model when φ1 = 0. Given φ1 > 0,

the SRM model here considers the minimum weight average of TR and CVaR. The eight

CVaR paths have significant differences in TR values among which the minimum TR

path is obtained by SRM model. For large-scale networks like Barcelona, it is possible

that there exsit multiple optimal CVaR paths. CVaR model, however, cannot distiguish

those paths in terms of other measures of interest. With proper SRM parameters, we can
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use the proposed model to find the path with both minimal CVaR value and minimal TR

value.

As it is demonstrated in the above cases, SRM is obviously a better decision model

than CVaR, although CVaR provides a flexible tool for risk-averse hazmat routing.

2.7 Concluding Remarks

To make risk-averse decisions, we consider spectral risk measures, which are coherent

and more general than other well-known risk measures such as conditional value-at-risk.

In the context of hazmat transportation, we apply spectral risk measures to the routing

problem. We propose the SRM minimization model for a safe path and develop an effi-

cient algorithm for a special class of spectral risk measures. For the general spectral risk

measures, it is difficult to transform the path-based formulation to an arc-based formu-

lation. Hence, we propose two algorithms for general spectral risk routing problems. In

addition, various spectrum functions are discussed to provide some guidance for gener-

ating safe paths in hazmat transportation. The performance of algorithms are compared

for various networks to show the effectiveness and efficiency of the proposed methods.

The two algorithms to obtain the general minimal SRM path are also compared in differ-

ent cases. In some situations, there exist differences in the optimal routing between the

two algorithms, however their spectral risk measures are very close.

Through numerical examples, we have demonstrated the cases when CVaR minimiza-

tion provides less desirable solutions. Often there are multiple least CVaR paths, since

CVaR cuts off links whose accident consequences are smaller than VaR. In such case,

CVaR minimization algorithms can find a path with greater expected risk values, which

must be avoided. We demonstrated that SRM can be a solution for such cases.

Although SRM demonstrate desirable properties, there still exists a limitation. In

most cases, it is unclear how the spectrum function or parameters in a spectrum function

should be determined. As in Theorem 2, we can define a special SRM as a weighted av-
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erage of three popular risk measures, namely, TR, CVaR, and MM. When a proper choice

of the spectrum function is vague, such a weighted average can serve a practical way of

determining a safe route for hazmat transportation.
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3 Risk-Averse Network Design with Behavioral Conditional Value-at-Risk for

Hazardous Materials Transportation

3.1 Introduction

Hazardous materials (hazmat) are defined as materials that can pose an unreasonable

threat to the public and the environment (Occupational Safety and Health Administra-

tion, 2017) and about 1 million shipments of hazmat crisscross the United States every

day. While the average nature of hazmat accidents on highways is not very different from

non-hazmat cargo accidents, hazmat accidents can bring in catastrophic consequences.

An extreme example is an hazmat accident in 2017 causing damages of $4,273,606 at High-

way 410, Detroit, TX (Pipeline and Hazardous Materials Safety Administration, 2017).

Hazmat accidents exhibit the characteristics of the low probability and high consequence

events. Reducing the impact of hazmat accidents via risk-averse approaches is important

for the public safety and the environment protection.

On account of the large amount of hazmat transported and high accident consequences

of hazmat trucks via roads, the government and transportation agencies often consider

road-ban policies to protect the public and the environment from severe accident conse-

quences of hazmat. In a road-ban policy for hazmat transportation, the government can

close certain road segments for hazmat traffic. The decision-making problem of determin-

ing which road segments to close is called a hazmat network design problem (Verter and

Kara, 2008; Sun et al., 2016). In addition, the government can design toll policies to regu-

late hazmat transportation (Marcotte et al., 2009; Esfandeh et al., 2016). While toll pricing

can provide more flexible regulatory methods, it is easier to implement and modify road-
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ban policies without needs of additional toll-collection facilities. The current registry of

hazmat route restriction on the U.S. highways is provided by the Federal Motor Carrier

Safety Administration (2018).

For hazmat network design problems, modeling and predicting route choices of car-

riers is essential to determine the risk associated with transporting hazmat. Typically,

hazmat network design problems for road-ban are formulated as bi-level optimization

problems (Kara and Verter, 2004; Erkut and Gzara, 2008; Gzara, 2013; Fontaine and Min-

ner, 2018; Sun et al., 2016, 2018). The upper level selects a set of road segments to be

closed aiming at minimizing the risk level of hazmat transportation in the network. The

lower level predicts the carriers’ routes of transporting hazmat from origin-destination

(OD) pairs. Most existing studies on hazmat transportation utilize the shortest path prob-

lem to model the route choices (Kara and Verter, 2004; Erkut and Gzara, 2008; Gzara,

2013; Fan et al., 2015; Esfandeh et al., 2017; Fontaine and Minner, 2018). In the lower-

level shortest-path problem, the cost of carriers can be the travel time or a combination of

the travel time and risk (List et al., 1991; Taslimi et al., 2017). There are, however, other

factors that hazmat carriers consider for route choices. There exist factors that are unob-

served by the government or a central authority. Even when multiple factors are modeled,

the weights among various factors are difficult to determine thus bringing challenges in

predicting hazmat routing.

Probabilistic approaches for modeling unobservable factors in route choice decision-

making are abundant. The most popular model is arguably the Random Utility Model

(RUM), which directly relates the probability of a route choice with the its utility. Mc-

Fadden (1975) first proposed RUM to model general choice behaviors. In RUM, it is as-

sumed that users’ utility depends on both a fixed effect and a random observation error.

Williams (1977) proposed the Multinomial Logit (MNL) model by assuming that the ob-

servation errors are from Gumbel distribution as a system evaluation criterion. To model

route choices of drivers in urban road networks, Daganzo and Sheffi (1977) presented the
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Table 3.1: The data for an illustrative example to show the difference between SPP and
probabilistic route choice model in road banning for hazmat transportation

Arc Travel Cost Hazmat Risk

1 10 1.0
2 5 1.1
3 11 50.0

Multinomial Probit (MNP) model assuming that the observation errors are normally dis-

tributed. MNP model introduces a lack of tractability for researchers to perform further

analysis, because it cannot provide an explicit formula which relates choice probabilities

and known factors. The simple explicit form of MNL makes it incorporable with further

analysis while describing users’ stochastic behavior. By using MNL in transportation,

the route choice probabilities can directly relate to route costs. For general freight move-

ments, RUM and its variants have been used to model route choices using GPS tracking

data (Quattrone and Vitetta, 2011; Hess et al., 2015).

Despite the popularity and effectiveness of RUM in modeling the probabilistic route

choices of drivers, RUM has not been used in the hazmat transportation problems, in

particular hazmat network design problems. To take account of unobservable factors in

drivers’ route choices, Sun et al. (2018) proposed a suboptimal decision-making model

based on satisficing and robust optimization for hazmat network design problems. This

chapter provides the first hazmat network design model considering probabilistic route

choices.

We illustrate the importance of considering probabilistic route choices via a simple

example with three arcs. We need to transport hazmat from node 1 to node 2. The data

of travel cost and risk for three arcs are in Table 3.1. Assume that we can close only one

arc. The results of road-ban with the shortest-path problem (SPP) and probabilistic route

choice are shown in Figure 3.1. Arc 1 is the only minimum risk arc (path) and the travel

cost of arc 1 is higher than arc 2. With SPP to predict the hazmat routing, the optimal

solution is to close arc 2. It assumes that hazmat carriers will only follow arc 1, because it
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Figure 3.1: Road banning with SPP and probabilistic route choice models

provides the shortest path after closing arc 2. Note that the travel costs of arc 3 and arc 1

are very close, while arc 3 has a large risk of 50. In reality, hazmat carriers can choose arc 3

escalating the estimated risk that SPP captures. Under probabilistic route choice models,

hazmat carriers are assumed to choose paths with some probabilities based on utilities,

which can be represented by travel cost or other observed and unobserved factors. The

optimal solution with probabilistic route choice is to close arc 3. Since the risk of arc 2

is 1.1 and the risk of arc 1 is 1, the risk for this network is still around 1 considering all

available paths. Illustrated by this example, the road-ban solution with probabilistic route

choice can be more preferable than SPP, which motivates this work.

The property of low probabilities but extreme accident consequences for hazmat trans-

portation motivates researchers to consider an averse risk measure when quantifying

the risk to avoid catastrophic consequences (Erkut and Ingolfsson, 2000b). Most haz-

mat transportation network designs consider simple risk measures such as the expecta-

tion of accident consequences. In risk management, value-at-risk (VaR), also known as

α-quantile, once was commonly used to measure risk ignoring the left tail of loss dis-

tribution. Its lack of subadditivity and convexity, as discussed by Artzner et al. (1997,

1999b), however, leads researchers’ attention to a coherent measure: conditional value-at-

risk (CVaR). While both VaR (Duffie and Pan, 1997) and CVaR (Rockafellar and Uryasev,

2000) have been popularly used in financial portfolio optimization problems, they have
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Figure 3.2: VaR and CVaR for a network only including a path (Su et al., 2017)

also been applied to hazmat routing (Kang et al., 2014b; Toumazis et al., 2013; Toumazis

and Kwon, 2013, 2016; Hosseini and Verma, 2018).

Figure 3.2 shows the mean value, VaR, CVaR, and the maximum loss value for the ran-

dom risk of a typical path in a hazmat transportation network. While VaR only captures a

quantile, CVaR considers the expected risk (ER) beyond VaR; hence CVaR provides more

risk-averse approach for mitigating tail risks. Both VaR and CVaR can be flexibly deter-

mined between the mean value and the maximum loss, depending on the probability

threshold value α.

Our main contribution is that we introduce a risk-averse CVaR measure to both proba-

bilistic behavior of hazmat carriers and probabilistic consequences from hazmat accidents in

hazmat network design problems. To the best of our knowledge, this work is the first

attempt to mitigate both factors via an averse risk measure. While RUM is used in some

urban network design problems (Davis, 1994; Liu and Wang, 2015), this is the first time to

incorporate RUM in hazmat transportation network design problems. CVaR is an averse

risk measure that focuses on high consequences. While CVaR has been used in hazmat

routing, this is the first time for the hazmat network design problem. The CVaR measure

captures high consequences stemming from probabilistic route choices of hazmat carriers

as well as the nature of hazmat accidents.
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Table 3.2: Risk-averse approaches in hazmat transportation problems. RO represents ro-
bust optimization. The ‘Data’ column represents uncertainty or inaccuracy in data for
hazmat accident probability and consequence in each road segment.

Source of Uncertainty

Paper Route-Choice Accident Consequence Data Context

Erkut and Ingolfsson (2000b) - Max Loss - Routing
Kang et al. (2014b) - VaR - Routing
Toumazis et al. (2013) - VaR/CVaR - Routing
Kwon et al. (2013) - - RO Routing
Toumazis and Kwon (2016) - CVaR RO Routing

Sun et al. (2016) - - RO Network Design
Sun et al. (2018) RO - - Network Design
This Work CVaR CVaR - Network Design

Table 3.2 further highlights our main contribution and shows the differences between

our work and other available risk-averse approaches in the literature. Risk-averse ap-

proaches focus on three sources of uncertainty in the literature: route-choice, accident

consequence, and data. For uncertain route choices of hazmat carriers, Sun et al. (2018)

considered their worst-case behavior using the notion of bounded rationality to derive a

robust network design, while the ER as a risk-neutral measure was used to evaluate the

risk from hazmat accidents. To overcome the limitation in the risk-neutral ER measure

of accident consequences, however, VaR and CVaR have been used for hazmat routing

(Toumazis et al., 2013; Toumazis and Kwon, 2016). In this chapter, using CVaR, we con-

sider both sources of uncertainty in route choices and accident consequences under the

network design setting for the first time.

Most operations research approaches for hazmat routing assume the availability of

two critical data: accident probability and accident consequence. In practice, those data

are rough estimates, usually computed from the national average, if not unavailable. To

manage risk from such data uncertainty, robust optimization approaches have been used

(Kwon et al., 2013; Toumazis and Kwon, 2016; Sun et al., 2016). In this chapter, however,

we assume that hazmat accident probabilities and consequences at each road segment are

available. Considering all three sources of uncertainty will clearly be a next step.
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We analyze the proposed CVaR minimization problem for hazmat network design

theoretically and develop an efficient algorithm that combines line search with Benders

decomposition to solve the problem. In addition, we provide case studies on realistic

road networks to confirm the validity of CVaR concept incorporating probabilistic-route

choices and the practicability of the proposed algorithms.

3.2 A Deterministic Model for Hazmat Network Design

In this section, we review a deterministic model for hazmat transportation network

design. Later, we extend the deterministic model to consider CVaR and uncertain route

choices.

Let us consider a transportation network G = (N ,A) whereN is the set of nodes and

A is the set of arcs. In a multi-commodity transportation network, let S denote the set

of shipments. In practice, S specifies the OD pair, and the type of hazmat. Let Ns be the

demand of shipment s ∈ S that represents the number of trucks carrying hazmat. Each

arc (i, j) is known with the travel cost tij, the accident probability pij, and the accident

consequence cs
ij for each shipment s ∈ S . Accidents caused by various kinds of hazmat

can have different influences on a road network making it possible that different ship-

ments can have different accident consequences. Let Ks be the set of available paths for

shipment s ∈ S .

To transport shipment s ∈ S , the approximated risk distribution for a single demand

(truck) along path k ∈ Ks can be written as follows (Jin and Batta, 1997):

Pr{Rsk = x} ≈


1− ∑

(i,j)∈Ak

pij if x = 0

pij if x = cs
ij for some (i, j) ∈ Ak

(3.1)

where Ak is the set of arcs for path k.
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One of the most common approaches that regulators use to measure the risk is ex-

pected value of consequences for potential hazmat truck accidents. It is a common as-

sumption that hazmat carriers travel along the shortest path. We also assume that hazmat

carriers only follow the shortest path in the deterministic model for hazmat transporta-

tion network design. Erkut and Gzara (2008) solved a bi-level hazmat transport network

design problem based on an arc-based formulation. Verter and Kara (2008) proposed a

path-based approach for hazmat transport network design by simplifying the shortest

path problem with the closest assignment constraints. Similarly, the deterministic path-

based hazmat transportation network design is formulated as follows:

min
y,z ∑

s∈S
∑

k∈Ks

∑
(i,j)∈A

Ns pijδ
sk
ij cs

ijγ
sk (3.2)

s.t. zsk ≥ ∑
(i,j)∈A

δsk
ij yij − ∑

(i,j)∈A
δsk

ij + 1, ∀s ∈ S , ∀k ∈ Ks (3.3)

zsk ≤ yij − δsk
ij + 1, ∀s ∈ S , ∀k ∈ Ks, ∀(i, j) ∈ A (3.4)

∑
k∈Ks

zsk ≥ 1, ∀s ∈ S (3.5)

γsk ≤ zsk, ∀s ∈ S , k ∈ Ks (3.6)

γsk ≥ zsk −
k−1

∑
j=1

zsj, ∀s ∈ S , k ∈ Ks (3.7)

∑
(i,j)∈A

(1− yij) ≤ N (3.8)

γsk, zsk binary , ∀s ∈ S , ∀k ∈ Ks (3.9)

yij binary , ∀(i, j) ∈ A (3.10)

where y is the design variable, z is the path availability variable and γ is the route-choice

variable. If arc (i, j) is open for transportation of hazmat, yij = 1; otherwise, yij = 0.

If path k is available for transportation of shipment s ∈ S , zsk = 1; otherwise, zsk = 0.

If path k is chosen for transportation of shipment s ∈ S , γsk = 1; otherwise, γsk = 0. In
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addition, δsk
ij is the parameter to define a path. If δsk

ij = 1, arc (i, j) is on path k for shipment

s; otherwise, δsk
ij = 0.

In the single-level problem by a path-based formulation, the objective minimizes the

ER as (3.2) shows. Path-based network design constraints are defined by (3.3)–(3.10).

Constraints (3.3) and (3.4) define path availability for shipments. A path is available only

when all arcs on the path are open. If there exist closed arcs on a path, the path is out of

service. In addition, at least one path for a shipment is available to ensure transportation

as (3.5) shows. Constraints (3.6) state that the chosen path for shipments must come

from available paths. All paths for a shipment are sorted from 1 to k by lengths meaning

that the length of path 1 for any shipment has shortest length among all possible paths.

Constraints (3.7) guarantee that the available path with the smallest index is used for each

shipment. Because of the sorted path data, (3.7) is equivalent to the shortest path problem

in a path-based context. Due to the cost associated with closing arcs, (3.8) restricts the

number of closed arcs. Constraints (3.9) and (3.10) are binaries for decision variables.

The path-based hazmat transportation network design problem is a mixed-integer linear

programming (MILP) problem.

3.3 Hazmat Risk Modeling with Probabilistic Route Choices

There are works that model the risk distribution for a hazmat transportation network

by using shortest path problems. The route choice behavior of hazmat carriers, however,

is not only resulted from known factors such as travel cost (Ben-Akiva et al., 1984) thus

making it possible that the shortest path problem (SPP) and other hazmat routing opti-

mization may fail to predict the routing decision. To consider the uncertainty of route

choices, probabilistic route choice models are used. In probabilistic route choice mod-

els, hazmat carriers choose an available path with a probability. The risk distribution

for a hazmat transportation network is redefined to incorporate with probabilistic route
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choices. In this section, probabilistic route choice models are reviewed and utilized in risk

distribution for hazmat transportation network.

3.3.1 Random Utility and Probabilistic Route Choice Models

RUM assumes that the utility of a choice that decision makers perceive comes from

two sources: a deterministic (observable) component and a random (unobservable) com-

ponent (Dial, 1971). In the context of route choices, the utility Usk of path k for shipment

s ∈ S is defined by:

Usk = −θstsk + ξsk (3.11)

where tsk is the generalized cost of observable attributes, θs is a positive parameter, and

ξsk is a random variable for unobservable attributes. To consider both travel cost and risk

in hazmat routing, the utility can also be formulated as:

Usk = −θs(tsk + β · risksk) + ξsk (3.12)

Usually, tsk is travel time. It is assumed to be additive with respect to arc costs.

tsk = ∑
(i,j)∈A

tijδ
sk
ij (3.13)

where tij is the generalized travel cost associated with arc (i, j), and δsk
ij = 1 if arc (i, j) is

on path k for shipment s ∈ S and 0 otherwise. Note that risksk can be the expected risk of

path k for shipment s ∈ S or any other risk measure depending on their attitudes towards

risk.

Different distributions for random components ξsk result in various forms of proba-

bilities πsk of choosing path k ∈ Ks for shipment s ∈ S . By assuming that the random

component ξsk are independently and identically from Gumbel distribution, the MNL
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model can be obtained as follows (Ben-Akiva et al., 1985):

πsk =
ρsk

∑l∈Ks ρsl (3.14)

ρsk = e−θs(tsk+β·risksk) (3.15)

for all s ∈ S , k ∈ Ks.

There exist other logit-type models with different formulations of ρsk (Cascetta et al.,

1996; Ben-Akiva and Bierlaire, 1999; Ramming, 2001; Prashker and Bekhor, 2004). In C-

logit model, for example, a commonality factor is introduced while a path size is defined

in path-size logit model. Path size is calculated based on the length of arcs within a path

and the relative lengths of paths that share an arc. Both the commonality factor and the

path size are used to measure the similarity among paths. They are used to adjust the

utilities of paths and address issues caused by overlapping arcs. To obtain the common-

ality factor and the path size, however, we need to know the path set Ks for shipment

s ∈ S beforehand. Therefore, C-logit model and path-size model are computationally

expensive to be applied in the hazmat network design problem. We use MNL of the form

(3.14)–(3.15) to model the probabilistic route choices.

3.3.2 The Risk Distribution for Hazmat Transportation

In this section, the risk distribution for hazmat transportation is defined based on the

probabilistic route choice model. Various shipments s ∈ S can have different accident

consequences. Let Ak denote the set of arcs for path k ∈ Ks to transport shipment s ∈

S . It is assumed that hazmat carriers operate independently. Among Ns demands of

hazmat for shipment s ∈ S , demand (truck) 1 and demand (truck) 2 have the same risk

distribution along path k ∈ Ks. Choosing path k ∈ Ks to transport shipment s ∈ S , the
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risk distribution for n-th truck can be approximated as follows (Jin and Batta, 1997):

Rsk
n =


0 with probability 1− ∑

(i,j)∈Ak

pij

cs
ij with probability pij for (i, j) ∈ Ak

(3.16)

When there are multiple paths available for each truck to transport shipment s ∈ S ,

we assume that a path is chosen with the probability described by the probabilistic route

choice model introduced in Section 3.3.1. Let Rs
n be the random risk variable for n-th truck

to transport s ∈ S , distributed among all available paths in Ks. Under the consideration

of available paths, the probability of taking risk x of shipment s ∈ S by n-th truck is:

Pr
[

Rs
n = x

]
= ∑

k∈Ks

Pr
[

Rs
n = x | path k chosen

]
Pr
[

path k chosen for shipment s
]

(3.17)

= ∑
k∈Ks

Pr
[

Rsk
n = x

]
πsk (3.18)

where πsk is given in (3.14). Hence, Rs
n is distributed as follows:

Rs
n =


0 with probability 1− ∑

k∈Ks

∑
(i,j)∈Ak

πsk pij

cs
ij with probability pij ∑

k∈Ks

πskδsk
ij for (i, j) ∈

⋃
k∈Ks

Ak
(3.19)

where δsk
ij is the incidence parameter for s ∈ S , k ∈ Ks, (i, j) ∈ A. If δsk

ij = 1, arc (i, j) is on

path k for shipment s; if δsk
ij = 0, arc (i, j) is not on path k for shipment s. The risk for a

given transportation network comes from all demands among all shipments. Therefore,

the risk for a transportation network is:

R = ∑
s∈S

Ns

∑
n=1

Rs
n (3.20)
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Since different trucks are operated separately transporting multiple units of hazmat, we

can assume that the risks for multiple units of hazmat among all shipments are inde-

pendently distributed. According to the North America data on hazmat transportation

accident statistics, the probabilities of an accident to take place are very small ranging

from 10−8 to 10−6 (Abkowitz et al., 1992b). Utilizing

pij pi′ j′ ≈ 0 (3.21)

for all (i, j), (i′, j′) ∈ A, we can obtain the probability that the risk variable becomes 0 as

follows:

Pr
[

R = 0
]
= ∏

s∈S

Ns

∏
n=1

Pr
[

Rs
n = 0

]

= ∏
s∈S

Ns

∏
n=1

(
1− ∑

k∈Ks

∑
(i,j)∈Ak

πsk pij

)

≈ ∏
s∈S

(
1− Ns ∑

k∈Ks

∑
(i,j)∈Ak

πsk pij

)
= 1− ∑

s∈S
∑

k∈Ks

∑
(i,j)∈Ak

Nsπsk pij (3.22)

and for each cs
ij : s ∈ S , (i, j) ∈ A:

Pr
[

R = cs
ij

]
= Pr

[
∑
s∈S

Ns

∑
n=1

Rs
n = cs

ij

]

≈
Ns

∑
n=1

Pr
[

Rs
n = cs

ij

]
=

Ns

∑
n=1

pij ∑
k∈Ks

πskδsk
ij (3.23)

= ∑
k∈Ks

Nsπsk pijδ
sk
ij (3.24)
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Therefore, the approximated risk distribution for hazmat transportation network is

R =


0 with probability 1− ∑

s∈S
∑

k∈Ks

∑
(i,j)∈Ak

Nsπsk pij

cs
ij with probability ∑

k∈Ks

Nsπsk pijδ
sk
ij for (i, j) ∈ A, s ∈ S .

(3.25)

3.4 The CVaR Minimization Model for Hazmat Network Design

In this section, a CVaR minimization network design model considering drivers’ prob-

abilistic route choices is proposed. It is well-known that CVaR is a general, coherent and

risk-averse measure (Rockafellar and Uryasev, 2002b). For any random loss X, the VaR

and CVaR are introduced in Definitions 4 and 5, respectively. CVaR can also be redefined

as an optimization problem as Theorem 5 shows.

Definition 4 (VaR Measure). The value-at-risk (VaR) is defined as follows:

VaRp(X) = inf{x : Pr[X ≤ x] ≥ p} (3.26)

where p ∈ (0, 1) is a threshold probability.

Definition 5 (CVaR Measure). The conditional value-at-risk (CVaR) is defined as follows:

CVaRα(X) =
1

1− α

∫ 1

α
VaRp(X)dp (3.27)

for a threshold probability α ∈ (0, 1) where VaRp(X) is shown in Definition 4.

Theorem 5 (Rockafellar and Uryasev, 2002b). For r ∈ R, let us define

Φα(r; X) = r +
1

1− α
E[X− r]+,
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where [x]+ = max(x, 0). Then the CVaR measure is equivalent to:

CVaRα(X) = min
r∈R

Φα(r; X) (3.28)

3.4.1 Route-Choice Probabilities Depending on Network Design

To introduce the CVaR measure for hazmat transportation, the route-choice probabil-

ities depending on network design are clarified. Let y be the path-based network design

variables and z be the path availability variables here. If arc (i, j) is open for transporta-

tion of hazmat, yij = 1; otherwise, yij = 0. If path k is available for transportation of

shipment s ∈ S , zsk = 1; otherwise, zsk = 0. The route-choice probabilities are formulated

as follows:

zsk ≥ ∑
(i,j)∈A

δsk
ij yij − ∑

(i,j)∈A
δsk

ij + 1, ∀s ∈ S , ∀k ∈ Ks (3.29)

zsk ≤ yij − δsk
ij + 1, ∀s ∈ S , ∀k ∈ Ks, ∀(i, j) ∈ A (3.30)

∑
k∈Ks

zsk ≥ 1, ∀s ∈ S (3.31)

∑
(i,j)∈A

(1− yij) ≤ N (3.32)

πsk =
ρskzsk

∑l∈Ks ρslzsl , ∀s ∈ S , ∀k ∈ Ks (3.33)

zsk binary , ∀s ∈ S , ∀k ∈ Ks (3.34)

yij binary , ∀(i, j) ∈ A (3.35)

Equations (3.29) and (3.30) determine the path availabilities, similarly as in Section 4.4.

Equation (3.31) constrains that there exists at least one path for shipment s ∈ S . Equation

(3.32) states that at most N arcs can be closed in the network.

Hazmat carriers, however, do not necessarily choose the shortest path or follow the

optimal path of multi-objectives which are still within SPP in all cases. To model the
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uncertainty of driver behaviors, probabilistic route choice model is introduced. In the

proposed model, we assume that carriers choose paths among all available paths by es-

timating their utilities. Then, we use RUM to model carriers’ probabilistic behavior and

MNL to further simplify the stochastic route-choice. Equation (3.33) shows the route-

choice probabilities among all available paths. If path k ∈ Ks is unavailable for shipment

s ∈ S , namely zsk = 0, its route-choice probability is 0; otherwise, the route-choice proba-

bility can be given by (3.14) and (3.15).

3.4.2 The CVaR Minimization Model

This section shows the CVaR minimization model for hazmat network design. The

distribution of risk introduced in Section 3.3.2 and the route-choice probabilities in Section

3.4.1 can model the CVaR minimization network design problem. Let

Φα(r; π) = r +
1

1− α
E [R− r]+ (3.36)

≈ r +
1

1− α

{(
1− ∑

s∈S
∑

k∈Ks

∑
(i,j)∈Ak

Nsπsk pij

)
[0− r]+

+ ∑
(i,j)∈A

∑
s∈S

∑
k∈Ks

Nsπsk pijδ
sk
ij

[
cs

ij − r
]+ }

(3.37)

≈ r +
1

1− α ∑
(i,j)∈A

∑
s∈S

∑
k∈Ks

Nsπsk pijδ
sk
ij

[
cs

ij − r
]+

(3.38)

We use the optimization of CVaR in Theorem 5 to define the CVaR measure in hazmat

transportation network,

CVaRα = min
r∈R+

Φα(r; π) ≈ min
r∈R+

[
r +

1
1− α ∑

(i,j)∈A
∑
s∈S

∑
k∈Ks

Nsπsk pijδ
sk
ij

[
cs

ij − r
]+ ]

. (3.39)

Therefore, the CVaR minimization model is,

min
π∈Ω

CVaRα = min
π∈Ω,r∈R+

Φα(r; π) (3.40)
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≈ min
π∈Ω,r∈R+

[
r +

1
1− α ∑

(i,j)∈A
∑
s∈S

∑
k∈Ks

Nsπsk pijδ
sk
ij

[
cs

ij − r
]+ ]

(3.41)

where Ω can be defined by

Ω = {π : ∃y, z such that (3.29)–(3.35) hold}. (3.42)

3.4.3 The Model Analysis

The CVaR minimization model for hazmat transportation network design (3.41) is a

mixed integer nonlinear programming problem. If a network is complicated with a large

demand of shipments, it becomes very difficult to solve the problem. In the proposed

model, variable r only has an impact on the objective function and does not exist in con-

straints. Because the objective function is linear with r within each interval between two

consecutive cs
ij values, the optimal r value lies in Θ = {0} ∪ {cs

ij : ∀(i, j) ∈ A, s ∈ S}

(Toumazis et al., 2013). The CVaR minimization model (3.41) is reformulated as:

min
r∈Θ

fα(r) (3.43)

where

fα(r) = min
π∈Ω

Φα(r; π).

Given a large network with various kinds of hazmat, set Θ becomes large. To obtain

the optimal solution of the proposed model, we should solve a large number of fα(r). If

some r values can be eliminated without solving optimization problems, the computation

can be more efficient. Analysis is conducted to explore which r values can be eliminated

from being optimal solutions for the proposed model. Let

0 = r0 ≤ r1 ≤ r2 ≤ ... ≤ rq−1 ≤ rq ≤ rq+1 ≤ ... ≤ rMA (3.44)
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where rq is the q-th smallest value in {cs
ij : ∀(i, j) ∈ A, s ∈ S} and MA is the number of

unique values in {cs
ij : ∀(i, j) ∈ A, s ∈ S}. For each q = 0, 1, · · · , MA − 1, we have

Φα(rq+1; π)−Φα(rq; π) = rq+1 +
1

1− α ∑
(i,j)∈A

∑
s∈S

∑
k∈Ks

Nsπsk pijδ
sk
ij

[
cs

ij − rq+1

]+
− rq −

1
1− α ∑

(i,j)∈A
∑
s∈S

∑
k∈Ks

Nsπsk pijδ
sk
ij

[
cs

ij − rq

]+
= rq+1 − rq

− 1
1− α ∑

(i,j)∈A
∑
s∈S

∑
k∈Ks

cs
ij≥rq+1

Nsπsk pijδ
sk
ij (rq+1 − rq)

= (rq+1 − rq)

(
1− 1

1− α ∑
(i,j)∈A

∑
s∈S

∑
k∈Ks

cs
ij≥rq+1

Nsπsk pijδ
sk
ij

)
. (3.45)

Theorem 6. Consider an index q ∈ {0, 1, . . . , MA} such that the following condition holds:

1
1− α ∑

(i,j)∈A
∑
s∈S

∑
k∈Ks

cs
ij≥rq+1

Ns pijδ
sk
ij ≤ 1 (3.46)

Then we can show that

Φα(rq; π) ≤ Φα(rq+1; π) (3.47)

for all π ∈ Ω. Further

fα(rq) ≤ fα(rq+1) ≤ · · · ≤ fα(rMA) (3.48)

Proof of Theorem 6. Given condition (3.46), we have

1
1− α ∑

(i,j)∈A
∑
s∈S

∑
k∈Ks

cs
ij≥rq+1

Nsπsk pijδ
sk
ij ≤ 1
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for any π, since πsk ∈ [0, 1] is the probability associated with path k ∈ Ks for shipment

s ∈ S . Based on (3.45), for any route-choice probabilities π ∈ Ω

Φα(rq; π) ≤ Φα(rq+1; π). (3.49)

Note that

1
1− α ∑

(i,j)∈A
∑
s∈S

∑
k∈Ks

cs
ij≥rMA

Nsπsk pijδ
sk
ij ≤ · · · ≤

1
1− α ∑

(i,j)∈A
∑
s∈S

∑
k∈Ks

cs
ij≥rq+2

Nsπsk pijδ
sk
ij

≤ 1
1− α ∑

(i,j)∈A
∑
s∈S

∑
k∈Ks

cs
ij≥rq+1

Ns pijδ
sk
ij ≤ 1. (3.50)

Consequently, we obtain

Φα(rq; π) ≤ Φα(rq+1; π) ≤ · · · ≤ Φα(rMA ; π). (3.51)

Let πq be an optimal solution for fα(rq) = minπ∈Ω Φα(rq; π); that is fα(rq) = Φα(rq; πq).

Then, we have

fα(rq) = Φα(rq; πq) ≤ Φα(rq; πq+1) ≤ Φα(rq+1; πq+1) = fα(rq+1). (3.52)

Similarly,

fα(rq) ≤ fα(rq+1) ≤ · · · ≤ fα(rMA). (3.53)

This completes the proof.

Instead of considering all r values in Θ, we can narrow the searching range for r if there

exist r values satisfying (3.46). Let q̂ be the smallest index to satisfy (3.46). By Theorem 6,

it is proved that fα(rq̂) ≤ fα(rq̂+1) ≤ · · · ≤ fα(rMA); thus excluding r ∈ {q̂ + 1, · · · , rMA}
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to search the minimal fα(r). The CVaR minimization model (3.43) can be rewritten as:

min
r∈{r0,r1,··· ,rq̂}

fα(r) (3.54)

If (3.46) is not satisfied for any q, every r ∈ Θ should be considered.

3.5 A Computational Scheme for the CVaR Minimization Model

In this section, an efficient computational scheme to solve the CVaR minimization

model for hazmat transportation network design is proposed. The proposed CVaR min-

imization model for network design is a nonlinear optimization model. Based on (3.43),

the proposed network design model can be decomposed into two stages. At the first

stage, we search r within a finite set. At the second stage, fα(r) is solved to yield the

network design solution.

fα(r) =

{
min
π,y,z

[
r +

1
1− α ∑

(i,j)∈A
∑
s∈S

∑
k∈Ks

Nsπsk pijδ
sk
ij

[
cs

ij − r
]+ ]

subject to (3.29)–(3.35).

}
(3.55)

Because of the nonlinearity to link the route-choice probabilities and path availabilities in

(3.33), we linearize as follows:

∑
l∈Ks

ρslφskl = ρskzsk, ∀s ∈ S , ∀k ∈ Ks (3.56)

φskl ≤ zsl, ∀s ∈ S , ∀k ∈ Ks, ∀l ∈ Ks (3.57)

φskl ≥ −(1− zsl) + πsk, ∀s ∈ S , ∀k ∈ Ks, ∀l ∈ Ks (3.58)

0 ≤ φskl ≤ πsk, ∀s ∈ S , ∀k ∈ Ks, ∀l ∈ Ks. (3.59)

The parameter ρ can be computed with (3.15). Then, fα(r) is reformulated as a MILP

problem.
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Despite the fact that we may use Theorem 6 to reduce the searching set for r variable,

it is still time-consuming to compute fα(r) given all potential r values if the scale of a net-

work is large. Finding the optimal r can be accelerated by developing an efficient search

scheme which depends on fα(r). Besides, solving fα(r) is very difficult when many path

alternatives are considered for a complicated network. Sometimes, it is even impractical

to obtain a good feasible solution for fα(r).

We propose a line search with mapping to obtain optimal r as shown in Section 3.5.1

and show that Benders decomposition can generate upper and lower bounds of MILPs

for given r values thus solving the fα(r) problem in Section 3.5.2. Generating useful lower

bounds by Benders decomposition, however, costs large computation efforts while good

upper bounds can be obtained after a certain number of iterations. In this case, we ter-

minate the algorithm by some criteria and gain the best feasible solutions from upper

bounds.

3.5.1 A Line Search with Mapping

To search the optimal r value for the proposed network design model, we only con-

sider a narrowed range of values checked by Theorem 6. Initially, we can think of ob-

taining an optimal solution for network design problem by visiting every value in Θ.

If Θ involves a large number of values, the computation for the problem can be time-

consuming because we need to solve a large number of MILPs. A searching mechanism

for r based on line search methods are proposed in order to solve the problem efficiently.

We use the Golden Section method. When it is applied to a strictly quasiconvex function,

the Golden Section method can find a global minimal solution. The essence of the Golden

Section method is to reuse one searching point in previous iteration and compare with an

updated point derived by the golden ratio to reduce computations. Note that the golden

ratio is 0.618.
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We use the same idea to develop a discrete version of the Golden Section method,

which only evaluates a limited number of r values in Θ. Usually, a line section method

minimizes a nonlinear optimization problem over the interval [a0, b0]. The optimal r value

lies in Θ, so a0 = 0 and b0 would be the smallest r value satisfying (3.46) by Theorem 6.

A line search algorithm usually copes with a continuous variable from a certain inter-

val. In the proposed model, optimal r value is from a finite set. We map the updated point

in iterations to value in the finite set using a simple mechanism. The simple mechanism

can guarantee the correctness of searching interval. The procedures for searching optimal

r for the proposed model are shown in Algorithm 5.

3.5.2 Benders Decomposition for fα(r)

The line search for r highly depends on obtaining optimal objective values for MILPs.

As the size of the network increases, the computation time for solving fα(r) given r goes

up exponentially. When we solved fα(r) given r with CPLEX solver of version 12.6 for

the Ravenna network (Bonvicini and Spadoni, 2008; Erkut and Gzara, 2008), which has

105 nodes, 134 undirected arcs, 31 OD pairs, and 50 available paths for each OD pair, the

optimality gap is 99.9% after 24 hours. This motivates us to develop an efficient algorithm

solving fα(r) given r. We can benefit from generating upper and lower bounds for fα(r)

and solving the problem iteratively rather than directly solves a large MILP with CPLEX.

Seen from the structure of the MILPs, it is found that fα(r) can be decomposed into: (1)

optimizing network design (2) analyzing probabilities assigned for paths.

Benders decomposition is a popular algorithm framework to deal with complicating

variables and large-scale optimization problems in which variables and constraints are

decomposed into a master problem and subproblems. The algorithm employs cutting-

planes procedures for the master problem based on subproblems until it converges. There

are two categories of cuts in Benders composition. When a subproblem reaches an opti-

mal solution but its optimal objective value is not consistent with the master problem’s,
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Algorithm 5 A line search with mapping

1: Initialization: Check the largest q (q∗) which satisfies (3.46). Let k ← 0 and ak ←
0, bk ← rq∗ . λk = ak + (1 − ϕ)(bk − ak) and µk = ak + ϕ(bk − ak). Find the left-
closest value to λk (λleft) and the right-closest value to µk (µright) among Θ. Let λk =
λleft, µk = µright and

fα(λk) = minπ∈Ω Φα(λk; π)

fα(µk) = minπ∈Ω Φα(µk; π)

2: Convergence check: If ak = rq and bk = rq or rq+1 for any q = 0, 1, · · · , (q∗ − 1), go
to Step 6; otherwise, continue estimating fα(λk) and fα(µk). If fα(λk) > fα(µk), go to
Step 3; if fα(λk) ≤ fα(µk), go to Step 4.

3: Reuse µk: Find the right-closest value to λk in Θ (λright) and let ak+1 = λright and
bk+1 = bk.
If µk − ak+1 ≤ bk+1 − µk, let

λk+1 = µk, fα(λk+1) = fα(µk)

µk+1 =
µk+bk+1

2 .
Find the right-closest value to µk+1 in Θ (µright) and let µk+1 = µright. Evaluate
fα(µk+1).
If µk − ak+1 > bk+1 − µk, let

µk+1 = µk, fα(µk+1) = fα(µk)

λk+1 =
ak+1+µk

2 .
Find the left-closest value to λk+1 in Θ (λleft) and let λk+1 = λleft. Evaluate fα(λk+1)
and go to Step 5.

4: Reuse λk: Find the left-closest value to µk in Θ (µleft) and let ak+1 = ak and bk+1 = µleft.
If λk − ak+1 ≤ bk+1 − λk, let

λk+1 = λk, fα(λk+1) = fα(λk)

µk+1 =
λk+bk+1

2 .
Find the right-closest value to µk+1 in Θ (µright) and let µk+1 = µright. Evaluate
fα(µk+1).
If λk − ak+1 > bk+1 − λk, let

µk+1 = λk, fα(µk+1) = fα(λk)

λk+1 =
ak+1+λk

2 .
Find the left-closest value to λk+1 in Θ (λleft) and let λk+1 = λleft. Evaluate fα(λk+1).
Go to Step 5.

5: Iteration update: k← k + 1 and go to Step 2.
6: Determine optimal solution: Evaluate for fα(ak) and fα(bk). If fα(ak) ≤ fα(bk), r∗ =

ak; otherwise, r∗ = bk. Stop.

57



an optimality cut based on dual of a subproblem is generated. On the other hand, a feasi-

bility cut can be generated if a subproblem is infeasible. Taking advantage of the extreme

ray for the dual of a infeasible subproblem can help to generate a feasibility cut. Theories

and applications for Benders decomposition are developed widely. Geoffrion (1972) gen-

eralized Benders’ approach to a broader class of programs in which subproblems are not

restricted to linear programs. Stochastic programming problems, which is well known

as its stage structure can be solved efficiently by Benders decomposition (Santoso et al.,

2005).

We implement Benders decomposition to solve MILPs and obtain fα(r). The network

design y and path availability z are master problem variables while the probabilities re-

lated variables including π and φ are in subproblems.

With Benders decomposition, we present the master problem as follows:

(master) min
g,y,z ∑

s∈S
∑

k∈Ks

gsk (3.60)

s.t. (3.29)–(3.32), (3.34)–(3.35)

gstkt ≥ ρstkt zstkt λt + ∑
l∈Kst

zstlµl
t + ∑

l∈Kst

(−1 + zstl)vl
t, ∀t = 1, 2, · · · (3.61)

where t denotes the number of cuts generated by the t-th iteration of Benders decompo-

sition. Constraints (3.61) are further explained by subproblem duals later.

The subproblems which analyze the route-choice probabilities (3.33) are decomposed

by s ∈ S , k ∈ Ks with dual variables (λ, µl, vl, ωl) as follows:

min
πsk

∑
(i,j)∈A

Nsπsk pijδ
sk
ij

[
cs

ij − r
]+

(3.62)

s.t. ∑
l∈Ks

ρslφskl = ρskzsk (λ) (3.63)

φskl ≤ zsl, ∀l ∈ Ks (µl ≤ 0) (3.64)

φskl ≥ −(1− zsl) + πsk, ∀l ∈ Ks (vl ≥ 0) (3.65)
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φskl ≤ πsk, ∀l ∈ Ks (ωl ≤ 0) (3.66)

πsk free, (3.67)

φskl ≥ 0, ∀l ∈ Ks (3.68)

Feed with master problem variables, route-choice probabilities can be estimated from

subproblems. Therefore, subproblems are feasible making it only necessary to generate

optimality cuts from subproblem duals. The subproblem dual is defined as follows:

(SDsk) ĝsk = max
λ,µ,v,ω

ρskzskλ + ∑
l∈Ks

zslµl + ∑
l∈Ks

(−1 + zsl)vl (3.69)

s.t. − ∑
l∈Ks

µl − ∑
l∈Ks

vl = ∑
(i,j)∈A

Ns pijδ
sk
ij

[
cs

ij − r
]+

(3.70)

ρslλ + µl + vl + ωl ≤ 0, ∀l ∈ Ks. (3.71)

In subproblem duals, we can obtain a (st, kt) with the objective value ĝstkt and the solution

(λt, µl
t, vl

t, ωl
t) accordingly. Let g̃stkt be an optimal solution for the master problem. If

ĝstkt is greater than g̃stkt , an optimality cut can be generated as (3.61) using (3.69). The

algorithm is summarized in Algorithm 6. In Algorithm 6, ε is a small positive parameter.

Algorithm 6 Benders decomposition for fα(r)

1: Initialization: Set t = 0, upper bound UB = ∞ and lower bound LB = 0. Go to Step
2.

2: Solve master problem: Solve the master problem and obtain the optimal solution
(g̃, ỹ, z̃). Let LB = ∑s∈S ∑k∈Ks g̃sk and I = 0. Go to Step 3.

3: Solve subproblem: For (s, k), solve SDsk problem based on z̃ and obtain optimal solu-
tion (λ̂, µ̂l, v̂l, ω̂l). The optimal objective value for the subproblem is ĝsk. If all (s, k)
are visited, go to Step 5; otherwise, go to Step 4.

4: Generate an optimality cut: If I = 1 go to Step 2; otherwise, compare g̃sk and ĝsk. If
ĝsk − g̃sk ≥ ε, update I ← 1, t ← t + 1, st ← s, kt ← k, λt ← λ̃, µt ← µ̃, vt ← ṽ and an
optimality cut is generated; otherwise, update (s, k) and go to Step 3.

5: Convergence check: If UB > ∑s∈S ∑k∈Ks ĝsk, set UB = ∑s∈S ∑k∈Ks ĝsk. If UB− LB ≤ ε,
terminate; otherwise go to Step 1.

Besides, I is used to indicate whether an optimality cut is generated. Based on an optimal
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solution for the master problem, we can generate multiple optimality cuts from different

subproblems. The master problem becomes very difficult to solve if too many cuts are

added at a time, which makes hard to obtain an upper bound. In order to produce upper

bounds effectively, we only add one optimality cut after solving the master problem until

the algorithm terminates.

We implement Benders decomposition on the Ravenna network in (Bonvicini and

Spadoni, 2008; Erkut and Gzara, 2008) with 105 nodes and 134 undirected arcs. Four

kinds of hazardous materials are considered including methanol, chlorine, gasoline and

LPG. There are 31 shipments and each shipment defines a certain demand of a hazmat

transported from an OD pair. For each shipment, we generate 50 paths using k-shortest

path approach to test the performance of the proposed framework. The computation pro-

cess for solving f0.95(0.454) is shown in Figure 3.3. We terminate the algorithm when the

optimality gap is less than 5%. In this example, we can see that a good feasible solu-

tion is achieved within a small number of iterations. The improvement of lower bound,

however, is very slow. Besides, it becomes more difficult to solve the master problem as

iteration proceeds. It indicates that the time spent on the iteration close to the optimal

solution can be far more than early iterations. An optimal solution is obtained when the

upper bound and the lower bound are close.

Since we can obtain feasible solutions and useful upper bounds before reaching the

convergence of Benders decomposition, a close optimal solution generated by a set of

feasible solutions is used. When the upper bound does not improve, we terminate the

algorithm. Different stopping criteria such as the total time limit of algorithm, the total

number of iterations and the number of iterations that upper bound does not improve can

be set. The local optimality can be guaranteed for the best feasible solution thus providing

a practical approach. Besides, the effectiveness to terminate at a good feasible solution for

fα(r) accelerates the solving process.
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Figure 3.3: Lower bounds and upper bounds for a MILP given r = 0.454 and α = 0.95 by
Benders decomposition for the Ravenna network.

3.5.3 Performance of Algorithm 5 Depending on Algorithm 6

This section discusses the performance of Algorithm 5 depending on Algorithm 6.

The Ravenna network with 20 paths for each shipment are used for experiments in this

section. Let α = 0.95 and the maximum number of closed arcs N = 10. To solve the pro-

posed CVaR minimization model for hazmat network design, we incorporate the search-

ing scheme for r in Section 3.5.1 with evaluations of fα(r) using Algorithm 6. We can

either use the optimal or the best feasible solution obtained from Algorithm 6 to proceed

the searching of r in Algorithm 5. The searching process of r is shown in Figure 3.4.

It can be seen that an optimal network design is achieved when solving MILP with

r = 0.687 and the minimum risk equals to 0.732. In Figure 3.4, it is found that the optimal

r value is 0.699 and the approximated minimum risk is 0.742 by the best feasible solution

of fα(r). Accordingly, the network design results are shown in Figure 3.5. The number of

closed arcs in both cases is 10 with 8 of which are the same. It indicates that both network

designs are similar. Given the best feasible design, the CVaR is the minimum value for

Φ(r; π) through all r values. Hence, the risk for best feasible network design is less than or
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Figure 3.4: Searching of r based on the optimal and the best feasible solution by Algorithm
6

equal to 0.742. The best feasible solution by Algorithm 6 yields a network design with the

objective function value no greater than 1.35% of the optimal solution. This shows that

the line search for r with a best feasible solution for fα(r) is close to the optimal solution.

In addition, it costs 3 hours to compute an optimal hazmat network design depending

on the exact value of fα(r), while the best feasible design is obtained in 1 hour and 33

minutes. To improve the computation efficiency while ensuring the solution quality, we

incorporate the line search for r with a best feasible solution for fα(r) in Section 3.6.

3.6 Numerical Experiments

In this section, applications of the proposed model are shown. All numerical exper-

iments in this section are conducted using the Ravenna (Bonvicini and Spadoni, 2008;

Erkut and Gzara, 2008) network. Four kinds of hazardous materials are considered:

methanol, chlorine, gasoline and LPG. There are 31 shipments transported through the

networks. The data set includes the length of each arc, the population that each kind of
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(a) An optimal solution (b) The best feasible solution

Figure 3.5: Network designs based on the optimal and the best feasible solution by Algo-
rithm 6

hazmat can influence on each arc, the OD pairs for each kind of hazmat and the demand

of hazmat accordingly.

3.6.1 Data Analysis

For a transportation network, we can obtain the network structure and related data

including arc length lij and the population density τij. For each arc (i, j), the accident

probability pij and the accident consequence cs
ij to transport hazmat s should also be pro-

vided. To specify the accident probability pij, we can use

pij = 3.19922× 10−7 × lij (3.72)

where 3.19922× 10−7 is the hazmat accident rate per mile/vehicle (Federal Motor Carrier

Safety Administration, 2001). The accident consequence for an arc is quantified by the

population exposure impacted if that accident happens. We use the following formula to
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estimate cs
ij (Toumazis and Kwon, 2016)

cs
ij = 3.14159× d2

s × τij (3.73)

where 3.14159 is the ratio of a circle’s circumference to its diameter. For different kinds

of hazmat, the impacted radius of an accident is different. The impacted radius ds is

selected based on the recommendations of the Emergency Response Guidebook (2012)

for the length of the evacuation radius in the case of an accident involving hazmat, which

ranges between 0.5 and 1 mile depending on the type of the hazmat of shipment s. τij is

the population density along arc (i, j).

Our proposed model is a path-based hazmat network design model which requires

specified path alternatives by hazmat carriers. The k shortest path algorithm of Yen (1971)

is used to generate path sets. Despite the modifications or improvements of k shortest

path algorithm, this approach rarely emphasizes on accident consequences of arcs. If the

set of path alternatives obtained by k shortest path algorithm is very small, for example,

only five paths for each shipment, some important arcs with high chosen probabilities and

high risks can be left out. On the other hand, it is nearly impossible to solve our proposed

model enumerating all paths for all shipments due to the tremendous model size. For

example, there are more than 30,000 variables and 100,000 constraints for a network with

100 arcs, 3 shipments and 100 paths available for each shipment. Hazmat carriers can be

restricted to some roads due to massive weights, large heights and long lengths for trucks.

Usually, hazmat carriers select a route within a limited number of path alternatives. We

use k shortest path algorithm to enumerate a list of paths that includes the shortest 50

paths for each shipment.
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3.6.2 Computation Performance

The computational scheme in Section 3.5 is coded in the Julia Language with the

JuMP.jl package (Dunning et al., 2017) and CPLEX solver of version 12.6 is used. The

experiments are implemented on a computer with 8GB of RAM and a 2.7GHz processor.

Table 3.3 shows the computation time and objective values using Algorithm 2 and Al-

gorithm 3. To accelerate the computation, Algorithm 3 is terminated when the solution is

not improved within the next fifty iterations. With the proposed algorithms, the average

computation time to solve CVaR minimization problem of Ravenna network is 3 hours

for different probability threshold values. The exact algorithm that uses CPLEX solver

of version 12.6 to solve fα(r) for every r is inadequate to solve the problem, because the

optimality gap solving fα(r) with CPLEX is 99.9% after 24 hours.

For the Ravenna network, the road-ban decisions with different probability thresh-

old values can be seen in Figure 3.6. For example, when α = 0.900 and α = 0.950, the

optimal network designs are the same. Regulators for hazmat transportation have dif-

ferent attitudes towards risks but may end up with the same optimal network design.

Theoretically, the higher the probability threshold α is, the more we focus on severe acci-

dence consequences. With the increasing of the probability threshold value, the optimal

network design for the proposed model can vary a lot. The optimal network design of

α = 0.990 only has two common closed arc – arc (78, 74) and (106, 105) with α = 0.900

and α = 0.950. For example, closing arc (3, 6) plays a significant role in reducing risk

with α = 0.990 but not in α = 0.900 and α = 0.950 cases. If we close arc (3, 6), the large

accident consequences by hazmat within 1% chance to happen can be avoided while it

may not be effective to reduce the risk brought by 10% potential hazmat truck accidents.

3.6.3 Comparisons for Algorithms

To solve the CVaR minimization network design model, Algorithms 2 and 3 are pro-

posed. Algorithm 2 and the CPLEX solver can also be used to solve the problem. Al-
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Table 3.3: Numerical results for different probability threshold value α in the Ravenna
network

α Computation time Closed arcs

0.900 2hr 53min (17, 19), (22, 38), (9, 10), (78, 74), (105, 106),
(20, 10), (38, 22), (74, 78), (10, 5), (106, 105)

0.910 3hr 20min (17, 19), (22, 38), (9, 10), (78, 74), (105, 106),
(20, 10), (38, 22), (74, 78), (10, 5), (106, 105)

0.920 3hr 22min (17, 19), (22, 38), (9, 10), (78, 74), (105, 106),
(20, 10), (38, 22), (74, 78), (10, 5), (106, 105)

0.930 3hr 26min (17, 19), (22, 38), (9, 10), (78, 74), (105, 106),
(20, 10), (38, 22), (74, 78), (10, 5), (106, 105)

0.940 3hr 17min (17, 19), (22, 38), (9, 10), (78, 74), (105, 106),
(20, 10), (38, 22), (74, 78), (10, 5), (106, 105)

0.950 3hr 22min (17, 19), (22, 38), (9, 10), (78, 74), (105, 106),
(20, 10), (38, 22), (74, 78), (10, 5), (106, 105)

0.960 3hr 26min (17, 19), (22, 38), (9, 10), (78, 74), (105, 106),
(20, 10), (38, 22), (74, 78), (10, 5), (106, 105)

0.970 3hr 52min (2, 7), (4, 17), (22, 38), (62, 54), (74, 69),
(74, 76), (105, 106), (38, 22), (74, 78), (106, 105)

0.980 3hr 46min (3, 6), (6, 11), (62, 54), (83, 66), (60, 58),
(78, 74), (5, 10), (54, 62), (8, 11), (76, 74)

0.990 2hr 44min (15, 22), (74, 76), (75, 76), (6, 3), (54, 62),
(66, 83), (76, 75), (74, 78), (10, 5), (106, 105)

0.991 2hr 37min (15, 22), (74, 76), (75, 76), (6, 3), (54, 62),
(66, 83), (76, 75), (74, 78), (10, 5), (106, 105)

0.992 2hr 38min (15, 22), (74, 76), (75, 76), (6, 3), (54, 62),
(66, 83), (76, 75), (74, 78), (10, 5), (106, 105)

0.993 2hr 38min (15, 22), (74, 76), (75, 76), (6, 3), (54, 62),
(66, 83), (76, 75), (74, 78), (10, 5), (106, 105)

0.994 3hr 2min (15, 22), (74, 76), (75, 76), (6, 3), (54, 62),
(66, 83), (76, 75), (74, 78), (10, 5), (106, 105)

0.995 3hr 1min (15, 22), (74, 76), (75, 76), (6, 3), (54, 62),
(66, 83), (76, 75), (74, 78), (10, 5), (106, 105)

0.996 3hr 2min (15, 22), (74, 76), (75, 76), (6, 3), (54, 62),
(66, 83), (76, 75), (74, 78), (10, 5), (106, 105)

0.997 2hr 4min (8, 15), (69, 56), (83, 66), (78, 74), (105, 106),
(66, 83), (8, 11), (74, 78), (38, 54), (106, 105)

0.998 2hr 35min (8, 15), (69, 56), (83, 66), (78, 74), (105, 106),
(66, 83), (8, 11), (74, 78), (38, 54), (106, 105)

0.999 2hr 4min (8, 15), (69, 56), (83, 66), (78, 74), (105, 106),
(66, 83), (8, 11), (74, 78), (38, 54), (106, 105)
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(a) Determin. (b) α = 0.900

(c) α = 0.950 (d) α = 0.990 (e) α = 0.999

Figure 3.6: Ravenna road-ban with different probability threshold value α

gorithm 3 and the CPLEX solver are compared for the values of fα(r) obtained. CPLEX

may not return an optimal solution for fα(r) within limited time. We have restricted 30

minutes as time limit for both Algorithm 3 and CPLEX. Seen from (3.55), fα(r) can be

estimated by solving an MILP which only relates to r. Let fα(r) = r + 1
1−α h(r) and h(r)

denote the objective value of the MILP. Given r values, Table 3.4 shows the obtained h(r)

by using Algorithm 3 and CPLEX solver.

It can be seen that Algorithm 3 performs better than CPLEX in solving the MILPs and

obtaining fα(r). Algorithm 3 can provide acceptable solutions for fα(r) thus proceeding

Algorithm 2.

3.6.4 Comparisons of Models

To show the value of our model, we compare SPP and RUM route-choice models with

various CVaR measures in Table 3.5. Note that when α = 0, the CVaRα measure is equiv-
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Table 3.4: Comparisons of algorithms to obtain fα(r) for the Ravenna network. fα(r) =
r + 1

1−α h(r) and h(r) is a MILP.

r value (×103

population exposure)
h(r) h(r)CPLEX−h(r)Algorithm 3

h(r)Algorithm 3Algorithm 3 CPLEX

0.454 0.046 0.079 72.8 %
0.265 0.091 0.152 67.7 %
0.427 0.053 0.086 64.2 %
0.130 0.167 0.255 52.9 %
0.352 0.068 0.110 62.7 %
0.199 0.120 0.191 59.3 %
0.165 0.133 0.213 60.7 %
0.231 0.109 0.171 57.8 %
0.183 0.124 0.201 61.4 %
0.174 0.130 0.207 59.3 %
0.191 0.121 0.196 62.1 %
0.197 0.122 0.192 57.7 %
0.186 0.123 0.199 61.1 %
0.193 0.123 0.194 58.1 %
0.189 0.123 0.197 59.8 %
0.188 0.123 0.198 60.7 %

alent to the ER measure. When using the SPP model with α = 0, it is equivalent to the

deterministic model described in in Section 4.4. As the probability threshold value α in-

creases, it is preferred to close short arcs in SPP-CVaRα while there is no pattern for our

proposed model. In addition, our proposed RUM-CVaRα model tends to close higher risk

(population density) arc than SPP-CVaRα model does with the same probability threshold

value α.

To show the value of our proposed model using RUM and CVaR, we first define vari-

ous measures that are similar to the values of stochastic solutions (VSS) used to compare

the performance of stochastic solutions with the performance of the deterministic solu-

tions in stochastic environments (Birge, 1982). We define the Value of the RUM Solutions

(VRS) over SPP solutions. When ER is used as the risk measure, we define VRS as follows

VRS =
(RUM-ER measure of the SPP-ER solution)− (Optimal RUM-ER)

(Optimal RUM-ER)
(3.74)
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Table 3.5: Comparisons of SPP-CVaR and RUM-CVaR models for the Ravenna network

Model
Probability Risk Measure Values Closed Arcs (in average)
threshold SPP ER RUM ER SPP CVaRα RUM CVaRα

Length Population
α (mile) density (/mile2)

0 358.1 419.7 358.1 419.7 8.10 207.1
0.9 364.8 396.8 698.1 783.4 6.17 215.2
0.91 364.8 396.8 700.3 794.3 6.17 215.2
0.92 364.8 389.9 702.4 769.3 6.42 295.6
0.93 364.8 389.9 704.6 781.1 6.42 295.6
0.94 364.8 389.9 707.5 796.7 6.42 295.6
0.95 364.8 389.9 711.6 818.7 6.42 295.6
0.96 364.8 389.9 717.8 851.6 6.42 295.6
0.97 364.8 389.9 728.0 906.5 6.42 295.6

SPP 0.98 364.8 389.9 748.5 1016.2 6.42 295.6
CVaRα 0.99 374.2 424.9 808.5 1456.9 6.11 215.2

0.991 374.2 424.9 820.2 1494.6 6.11 215.2
0.992 397.5 474.8 832.4 1660.2 4.62 244.6
0.993 397.5 474.8 839.9 1711.0 4.62 244.6
0.994 397.5 474.8 849.8 1778.9 4.62 244.6
0.995 397.5 474.8 863.8 1849.6 4.62 244.6
0.996 397.4 459.8 884.2 1935.7 4.17 229.3
0.997 397.4 459.8 911.7 2032.4 4.17 229.3
0.998 398.1 423.4 965.9 2113.0 3.55 184.5
0.999 398.1 423.4 1113.8 2434.2 3.55 184.5

0 363.5 376.4 363.5 376.4 6.78 324.8
0.9 372.1 405.4 718.7 762.4 7.83 345.9
0.91 372.1 405.4 723.0 767.1 7.83 345.9
0.92 372.1 405.4 727.5 768.1 7.83 345.9
0.93 372.1 405.4 733.3 769.5 7.83 345.9
0.94 372.1 405.4 741.0 812.7 7.83 345.9
0.95 372.1 405.4 751.8 837.9 7.83 345.9
0.96 372.1 405.4 768.0 875.6 7.83 345.9
0.97 385.1 408.2 771.3 890.1 8.88 376.4

RUM 0.98 402.4 423.4 846.4 970.0 4.59 181.5
CVaRα 0.99 402.2 444.3 833.7 1165.4 5.08 298.9

0.991 402.2 444.3 839.7 1205.8 5.08 298.9
0.992 402.2 444.3 847.1 1255.0 5.08 298.9
0.993 402.2 444.3 856.7 1315.1 5.08 298.9
0.994 402.2 444.3 869.5 1388.1 5.08 298.9
0.995 402.2 444.3 887.4 1442.6 5.08 298.9
0.996 402.2 444.3 913.2 1450.3 5.08 298.9
0.997 389.2 435.7 1239.2 1459.6 5.80 247.4
0.998 389.2 435.7 1272.9 1463.4 5.80 247.4
0.999 389.2 435.7 1373.7 1487.0 5.80 247.4
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Figure 3.7: The value of RUM solutions over SPP solutions

and when CVaRα is used as the risk measure,

VRS =
(RUM-CVaRα of the SPP-CVaRα solution)− (Optimal RUM-CVaRα)

(Optimal RUM-CVaRα)
(3.75)

VRS measures how much we gain by considering RUM compared to SPP. Figure 3.7

presents VRS with various α values. We observe that as α increases VRS tends to in-

crease. This shows that the value of probabilistic modeling becomes significant, when we

are interested in low-probability high-consequence outcomes and more risk averse. On

the other hand, for mid-range α values, VRS is not significant. Note that for some α val-

ues, VRS value becomes negative, which happens since our algorithm finds a suboptimal

solution in general.

Similarly, we define the Value of the CVaRα Solutions (VCSα) over ER solutions. When

SPP is used for route-choice modeling, we define VCSα as follows:

VCSα =
(SPP-CVaRα of the SPP-ER solution)− (Optimal SPP-CVaRα)

(Optimal SPP-CVaRα)
(3.76)
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Figure 3.8: The value of CVaRα solutions over ER solutions with SPP and RUM for route-
choice modeling

When RUM is used for route-choice modeling,

VCSα =
(RUM-CVaRα of the RUM-ER solution)− (Optimal RUM-CVaRα)

(Optimal RUM-CVaRα)
(3.77)

VCS measures how much we gain by considering CVaRα compared to ER. Figure 3.8

shows VCS with various α values for both cases with SPP and RUM for route-choice mod-

eling. We observe that VCS increases significantly as α increases. In all α values, the value

of CVaR solutions becomes more apparent when RUM is used for route-choice modeling.

Finally, we also define the Value of the RUM-CVaRα Solutions (VRCSα), over SPP-ER

solutions:

VRCSα =
(RUM-CVaRα of the SPP-ER solution)− (Optimal RUM-CVaRα)

(Optimal RUM-CVaRα)
(3.78)

Figure 3.9 shows VRCS with various α values. For lower α values, while the overall value

of RUM-CVaRα solution is marginal in the range of 4.9% to 8.6%, it clearly gives advan-

tages if compared with VCS in Figure 3.7. For higher α values, however, we find VRCS in

the range of 16.7% to 64.1%. By using both RUM and CVaRα in decision-making, we con-
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Figure 3.9: The value of RUM-CVaRα solutions over SPP-ER solutions

clude that risk-averse hazmat network designers can obtain clear merits for all probability

threshold values, especially for higher values.

In the Ravenna network, the optimal network designs by the proposed model and

the deterministic model yield different available paths for shipments with which lead to

different risks. The comparisons of available paths for transporting methanol from node

110 to node 105 by both models are shown in Table 3.6. For each path, the length, the ER

to transport methanol and the probability to be chosen by hazmat carriers are given. It

is found that two of the available paths are the same while the rest of them are different

either in length or ER for both models. The lowest ER path in both models is Path 1. It

can be seen that Path 1 has 24.6% chance to be traveled in SPP-ER model while it has the

probability of 34.5% to be traveled in the proposed model. The proposed model assigns

larger probabilities for low risk paths than SPP-ER model does.

3.7 Concluding Remarks

In this chapter, we formulate a road-ban problem in hazardous hazmat transportation

considering the uncertainty of routing behavior and a risk-averse measure for hazmat ac-
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Table 3.6: Comparisons of available paths for transporting methanol from node 110 to
node 105 between RUM-CVaR and the deterministic (SPP-ER) model for the Ravenna
network

Model Path Length ER Prob

RUM-CVaR0.99

1: 110→ 104→ 83→ 78→ 62→ 54→ 45→ 31 18.24 0.0149 0.345
→ 98→ 14→ 11→ 6→ 3→ 5→ 105

14 : 110→ 104→ 83→ 78→ 62→ 54→ 45→ 43 26.04 0.0169 0.158
→ 36→ 30→ 26→ 24→ 20→ 10→ 5→ 105

19 : 110→ 104→ 83→ 78→ 62→ 54→ 56→ 46 26.87 0.0168 0.146
→ 43→ 36→ 30→ 26→ 24→ 20→ 10→ 5→ 105

26 : 110→ 104→ 83→ 78→ 62→ 54→ 45→ 43 28.17 0.0172 0.128
→ 36→ 30→ 26→ 24→ 20→ 10→ 9→ 7→ 5→ 105

34 : 110→ 104→ 83→ 78→ 62→ 54→ 56→ 46 29.00 0.0172 0.118
→ 43→ 36→ 30→ 26→ 24→ 20→ 10→ 9→ 7→ 5→ 105

44 : 110→ 104→ 83→ 78→ 62→ 54→ 56→ 46 30.18 0.0171 0.105
→ 43→ 45→ 31→ 98→ 14→ 11→ 6→ 3→ 5→ 105

SPP-ER

1 : 110→ 104→ 83→ 78→ 62→ 54→ 45→ 31 18.24 0.0149 0.246
→ 98→ 14→ 11→ 6→ 3→ 5→ 105

3 : 110→ 104→ 83→ 78→ 62→ 57→ 58→ 38 19.93 0.0169 0.207
→ 54→ 45→ 31→ 98→ 14→ 11→ 6→ 3→ 5→ 105

5 : 110→ 104→ 83→ 78→ 74→ 76→ 69→ 56 23.26 0.0157 0.149
→ 54→ 45→ 31→ 98→ 14→ 11→ 6→ 3→ 5→ 105

8 : 110→ 104→ 83→ 78→ 74→ 69→ 56→ 54 24.77 0.0160 0.128
→ 45→ 31→ 98→ 14→ 11→ 6→ 3→ 5→ 105

18 : 110→ 104→ 83→ 78→ 74→ 76→ 69→ 56 26.69 0.0164 0.106
→ 46→ 43→ 45→ 31→ 98→ 14→ 11→ 6→ 3→ 5→ 105

27 : 110→ 104→ 83→ 78→ 74→ 69→ 56→ 46 28.20 0.0167 0.091
→ 43→ 45→ 31→ 98→ 14→ 11→ 6→ 3→ 5→ 105

44 : 110→ 104→ 83→ 78→ 62→ 54→ 56→ 46 30.18 0.0171 0.073
→ 43→ 45→ 31→ 98→ 14→ 11→ 6→ 3→ 5→ 105
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cident consequences. With the probabilistic route choice, the risk distribution for hazmat

transportation incorporates with not only the road accident probability but also the car-

riers routing behavior. Following Toumazis et al. (2013), we introduce conditional value-

at-risk (CVaR) as a general, coherent, and risk-averse approach. We present a CVaR min-

imization model for hazmat network design problems. The proposed model is a mixed-

integer nonlinear program, which can be decomposed into two stages: (1) searching the

optimal solution for a nonnegative variable; (2) solving MILPs given the nonnegative

variable. We develop a line search with mapping based on Benders decomposition for

solving MILP sub-problems and obtain quality network design solutions.

We present case studies in the real road network of Ravenna. The comparisons of al-

gorithms show that the proposed methods can solve the CVaR minimization network de-

sign problem efficiently and generate quality network design solutions. To highlight the

value of our model, comparisons of the deterministic model and the proposed model are

conducted. When the confidence level of CVaR is small, it indicates that decision makers

and regulators for the transportation network pay limited attention on sever accidents.

With the proposed algorithms, the average computation time to solve CVaR minimiza-

tion problem of a 105-node and 268-arc network was 3 hours for different probability

threshold α values. The exact algorithm that uses CPLEX solver of version 12.6 was not

inadequate to solve even a linear subproblem, because the optimality gap solving fα(r)

with CPLEX was 99.9% after 24 hours.

While the proposed algorithm was shown to be effective, for large-scale urban net-

works, we will need a faster algorithm. Since the proposed algorithm relies on solutions

of multiple MILP problems, it is not suitable for large-scale networks. Developing a fast

heuristic algorithm is a potential future research direction.

74



4 Optimal Deployment of Dynamic Wireless Charging Lanes for Electric Forklifts in

Congested Warehouses

4.1 Introduction

Dynamic wireless charging infrastructures are in the early stage of commercialization.

As the growing number of EVs, there is a great potential market for dynamic wireless

charging technologies that allow charging when vehicles are moving. As a special type

of EVs, battery-based forklifts are used for order picking and item transaction in ware-

houses. In such applications, dynamic wireless charging systems can be considered as a

suitable option because it can improve the operation efficiency of forklifts, enhance the

safety of charging batteries and prolong the lifetime of batteries with power tracks.

With some wireless charging lanes, forklifts perform routing which considers the dy-

namic battery level under unavoidable congestions to pick up orders. The wireless charg-

ing lane location optimization provides the optimal wireless infrastructure layout ad-

dressing order pick-ups and wireless charging needs. In the presence of wireless charging

lanes and dynamic routing for orders, the traffic patterns within the warehouse change

significantly. To address such changes, a congestion model for variable travel time is

needed. In addition, the orders from a warehouse are pre-batched for a single trip to gen-

erate a reasonable case. A typical number of orders in a warehouse can range between 500

and 2000 per hour (Ruben and Jacobs, 1999; II, 2000; Gong and De Koster, 2008). Multiple

forklifts pick up these orders with multiple trips. This chapter considers a small number

of orders that a single trip can pick up with multiple forklifts. Prorated the wireless charg-

ing lane costs into short-term basis, it can be seen as a short-term operation optimization
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of a warehouse. To consider the uncertainty of orders for short-term operation, different

scenarios of order demand and location are sampled to formulate a two-stage stochastic

programming problem.

The contributions of this chapter can be summarized as follows. To the best of our

knowledge, this is the first chapter that develops a dynamic wireless charging lane loca-

tion optimization model for warehouses. In addition, the chapter considers the conges-

tions of electric forklifts in narrow aisles. Instead of simply avoiding congestions, fork-

lifts can take advantage of congestions to charge batteries. To consider the uncertainty of

orders, a two-stage stochastic programming model for optimal deployment of dynamic

wireless charging lanes for electric forklifts in a congested warehouse is formulated. We

introduce symmetry breaking constraints and devise a scenario decomposition algorithm

to solve the stochastic programming model efficiently. We confirm the efficiency of the

algorithms and the key advantages of dynamic wireless charging lanes via case studies.

4.2 Literature Review

4.2.1 Warehouse Congestion Management and Forklift Routing

Congestions in warehouses can lead to problems such as damaged properties, in-

jured workers (Tompkins et al., 2010) and inefficient operations (Heath et al., 2013) at-

tracting attentions over the decades. Queuing models are addressed by researchers to

give some hints of facility designs with warehouse congestions. Srinivasan and Bozer

(1992) presented a simulation model that identified the queuing congestion in a job shop

with machines and the material handling system. In the work by Smith and Li (2001),

the warehouse congestion is modeled with a M/G/C/C queue to incorporate with the

department assignments minimizing the expected number of customers. The work-in-

process (WIP) can demonstrate the warehouse congestion in many job shops. Since it has

been questioned for years that how the warehouse layout affects the congestions, Benjaa-

far (2002) developed a quadratic assignment model to explore the optimal facility layout
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which can achieve the minimum expected WIP. This chapter also employed queuing the-

ory to analyze the expected WIPs.

Not only designing the facility layouts and material handling systems but also proper

utilization of the equipments can contribute to congestion alleviation. Typically, the ma-

terial handling system that represents the movements of items within warehouses are

studied. The dispatching rules and routing for those vehicles are addressed in decades

for efficient warehouse operations. Egbelu and Tanchoco (1984) presented five vehicle

assignment rules for AGVs in work center initiated task assignment and seven rules in

vehicle initiated task assignment to show how vehicle dispatching rule can influence a

job shop. Broadbent et al. (1985) solved the conflict-free shortest time vehicle routing in

the context of job shop with a branch and bound algorithm. Considering multiple objec-

tives and constraints in vehicle routing within a facility, Rajotia et al. (1998) proposed a

dynamic routing which allows the trade-offs between short and safe routes to resolve the

conflicts and congestions. Maza and Castagna (2005) focused on the dynamic routing for

AGV system to find the shortest routes while avoiding conflicts and deadlocks. Differ-

ent from analytical approaches for vehicle routing in the facilities, reinforced learning can

help to estimate the travel time and other route performance factors without explaining

the mechanisms. Driven by the reinforced learning, Lim et al. (2002) constructed routes

that have the minimal expected total travel time. The work above emphasizes on avoid-

ing conflicts in vehicle routing. Neither of them studied congestion alleviations by design

the facility and vehicle routing.

In addition to using queuing theories and vehicle conflicts to reflect congestions, the

congestion measures have been established in many papers. Maxwell and Muckstadt

(1982) used vehicle blocking time to quantify congestions. Vosniakos and Davies (1989)

defined a vehicle inference activity in the simulation model and used the segment utiliza-

tion which is the percentage of the simulation time that an AGV has been occupying and

the blockage time to demonstrate congestions. Lee et al. (1990) evaluated several factors
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including total wait time, wait time at the intersections, and the utilization of AGVs to

design an efficient AGV system. Among those factors, the wait time at the intersections

can clearly demonstrate the vehicle congestions. Kim and Tanchoco (1993) minimized

the total travel cost of vehicles considering vehicle operations such as lane restrictions to

consider the workflow inferences. The works reviewed are either not analytically based

due to their implementations of simulation or not clearly defined for the congestion ef-

fects. Unlike warehouse congestions, traffic congestions have been well studied with the

explicit relationship between system travel time and traffic volume.

4.2.2 Wireless Charging Optimization

The recent progress in wireless charging techniques and development of commercial

products have enabled safe and convenient transfer of energy. This section reviews the

wireless charging techniques and their recent advances in applications for the potential

use of warehouse operations. For discussion of forklift applications, the near-field wire-

less charging which requires close distance between chargers and devices can be used.

Besides, the dynamic wireless charging for forklifts can provide power transfer while ve-

hicles are moving. The near-field dynamic charging applications can be realized with

inductive coupling and magnetic resonance coupling (Kurs et al., 2007). The major appli-

cations of near-field dynamic wireless charging include robot manipulation (Gao, 2007;

Kawamura et al., 1996), people-mover systems (Jufer, 2008), high speed trains (Kim et al.,

2015) and energization for the battery of electric vehicles (Severns et al., 1996; Kisacikoglu

et al., 2015).

For warehouse operations, wireless charging can be applied to vehicles with batteries.

The near-field charging enables charging vehicles both statically and dynamically (Lukic

and Pantic, 2013). Despite that there are limited wireless charging studies for warehouse

vehicles, many papers can be found discussing the installation of charging stations for

EVs. Flow-capturing location model (Hodgson, 1990) is widely used to determine the
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service locations such as convenience stores, gasoline stations and banking machines.

The EV charging location problems can be formulated as flow-capturing models which

considers the charging availability and charging access. Frade et al. (2011) proposed an

optimization model to achieve the maximum demand coverage differentiating daytime

and nighttime demands. The model presented by Chen et al. (2013) minimized the EV

users’ station access costs while penalizing unmet demand. Riemann et al. (2015) pro-

posed a facility location model for EV stations to capture the maximum traffic flow on a

network. The stochastic user equilibrium is used to analyze EV drivers’ routing choice

behavior and describe the interaction between traffic flow patterns and the location of

the charging facilities. The works above do not consider the battery consumption of EVs

in charging due to lack of data. In warehouse operations, the battery levels of vehicles

can be obtained. Therefore, the charging strategy can also be considered with regard to

battery lifetime, time-in-use prices and other factors. Cao et al. (2012) determined the bat-

tery charging time and charging levels by minimizing the energy cost. Jeong et al. (2015)

economically allocated the power tracks and determined the battery size with the con-

straints of battery levels. These literatures can provide a solid foundation for the wireless

charging optimization in warehouses to develop a safe, efficient and economic production

system.

4.3 Problem Statement

In this section, we introduce the problem of deployment of dynamic wireless charging

lanes for electric forklifts in a congested warehouse. The installation of wireless charging

infrastructure in warehouses supports the order-picking by electric forklifts via necessary

charging. Electric forklifts are routing to pick up the assigned order batches with suffi-

cient battery levels.

The warehouse settings are similar to II (2000), Gong and De Koster (2008) and Hong

et al. (2012). A typical warehouse layout is shown in Figure 4.1. In such warehouses,
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Figure 4.1: The order-picking in warehouses with electric forklifts

forklifts pick orders which are stored in bins along narrow aisles. Usually, the time spent

in these narrow aisles is far more than the travel time in open space of a warehouse due

to necessary loading/unloading and potential congestions in aisles. Hence, it is assumed

that the travel time in open space of the warehouse is ignored. To prevent forklifts from

being blocked in an aisle by pickers approaching from the opposite direction and reduce

the chance of collisions of forklifts, a common approach is labeling aisles with single

directions. Although large warehouses can have some bidirectional aisles, a bidirectional

aisle can be considered as two separate aisles with opposite directions. These parallel

aisles in warehouses can provide a simple network structure. Instead of using the node-

arc representation for a network, we can simply use aisles to demonstrate the network

of a warehouse. Namely, a route in a warehouse is represented by the sequence of aisles

that forklifts can traverse. Due to the limited number of aisles with directions, all routes
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in a warehouse can be enumerated. The properties of warehouse networks motivate us

modeling the routing of electric forklifts with a route-based approach.

Different from the congestion of urban transportation, warehouse congestion involves

a small number of vehicles. Congestion often happens because of the conflicts of forklift

movements. For example, forklift 1 needs to pick up an order in an aisle while forklift 2 is

loading an item and blocking the way for forklift 1. Forklift 1 should decelerate, stop and

wait until forklift 2 completes the pick-up. Such events can be referred as interruptions

along aisles. The more interruptions for forklifts on an aisle, the more likely to have long

travel time. Interruption in warehouse is a common phenomenon which motivates the

modeling of congestion dependent travel time in this chapter.

There can be thousands of orders that need to be processed in a warehouse every day.

A warehouse can operate ranging from 8 hours to 24 hours in which multiple forklifts

finish multiple trips to pick up all orders. Although existing literatures (Hong et al., 2012;

Clarke and Wright, 1964; De Koster et al., 1999) considered batching for hundreds of or-

ders in parallel-aisle warehouses, an order-batching problem can be directly formulated

as MILPs. In addition to order-batching for forklifts, this work models the warehouse con-

gestion and involves the battery level constraints which lead to great challenges in com-

putations. Meanwhile, the modeling of warehouse congestions and battery level tracking

introduces a large number of constraints with big-M parameter showed in Section 4.4.

Therefore, the deployment of dynamic wireless charging problem for electric forklifts

does not consider a large number of orders. This chapter considers a small number of

orders that a single trip can pick up with multiple forklifts. It can be seen as a short-term

operation problem of warehouse. A deterministic model for short-term deployment of

dynamic wireless charging lanes for electric forklifts in a congested warehouse is devel-

oped. To consider the uncertainty of orders for short-term operation, different scenarios

of order demand and location are sampled to formulate a two-stage stochastic program-
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ming problem. To prepare for the model formulation, Section 4.3.1 and 4.3.2 are presented

first.

4.3.1 Congestion Dependent Travel Time

It is assumed that congestions only happen in narrow aisles. Forklifts slow down

when there are congestions thus increasing the travel time. There are various types of

models for analyzing the congestions. Here, we use the interruption model of vehicles to

link congestions and travel time. Zhang et al. (2009) proposed an optimization model of

flow routing to alleviate the congestions by incorporating interruption events as Poisson

process. The analytical approach in this work provides a framework for further study in

warehouse management. We model the number of interruptions as space Poisson process

in aisle a ∈ A and calculate the travel time with the following formula

ta =
∞

∑
n=0

Pn(ra)Tna (4.1)

where Pn(ra) is the probability that n interruptions occur with interruption rate ra and Tna

is the travel time with n interruptions. Pn(ra) is expressed as

Pn(ra) = (rada)
n e−rada

n!
(4.2)

where da is the length for aisle a ∈ A. To calculate the travel time with n interruptions

Tna, we assume that the interruptions are uniformly distributed along aisle a. Given the

locations of interruptions, the detailed steps of computing Tna can be referred (Zhang

et al., 2008). The model for effect of traffic flow on congestion used in this chapter is as

follows (Zhang et al., 2009).

ra = 0.61d−0.8722
a e0.000918 fa . (4.3)
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Figure 4.2: Piecewise step linearization for interruption rate of aisle a ∈ A with |L| = 3

fa is the number of vehicles traveling through the aisle accordingly.

Let L be the set of congestion level and |L| be the number of pieces of the step function

for linearization of interruption rate. An example of linearization for a interruption model

is shown in Figure 4.2. Given the value of traffic flow ual at congestion level l ∈ L for aisle

a ∈ A, Equation (4.1) and (4.2) can be used to estimate the travel time tal. In the following

sections, the congestion effect for optimal deployment of dynamic wireless charging lanes

for forklifts is modeled with congestion level, the traffic flow at each congestion level and

the travel time accordingly. Note that the concrete model formulation of interruption rate

does not matter in further model development with discrete congestion levels.

4.3.2 Routes of Order Pick-Up in Parallel-Aisle Warehouses

As the increase of aisles, the number of routes increases exponentially. Given a ware-

house with single directional aisles, the number of routes are 1, 4, 12, 33, 88 and 231 when

the number of aisles are 2, 4, 6, 8, 10 and 12. Due to the difficulty of capture routing for or-

der pick-up in a large warehouse, the optimal deployment of dynamic wireless charging

lanes can be even harder. With multiple orders, order-batching and routing for forklifts

are considered simultaneously. If we have 10 orders stored in the same aisle and the ca-

pacity of each forklift is 5 orders, we can aggregate these 10 small orders into 2 orders

with larger demand size. The aggregated order set can help to reduce the problem size

of order-batching and routing for forklifts thus providing benefits for further computa-
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tions. In addition, some aisles are less preferred for order-picking. For example, if there

is only one order stored in aisle 10 shown by Figure 4.1. A forklift tends to travel along

the shortest route to pick up this order rather than pass the route that contains all aisles.

Therefore, we can focus on the preferred routes and construct route set. There are two

steps to generate the route set: (1) generating an elementary route set to cover each or-

der (2) expanding the elementary route set to a combined route set with order-batching.

Clarke and Wright (1964); De Koster et al. (1999) proposed the Clark and Wright II algo-

rithm to generate reasonable route set with order-batching. A modified Clark and Wright

II algorithm (Hong et al., 2012) is used to generate the combined route set.

The procedures to construct route set is summarized in Algorithm 7. The composite

level is the maximum number of elementary routes covered by a combined route. With

large value of composite level, the combine route set is likely to become large. A large

route set can result in accurate analysis for order-batching and routing while a small route

set can benefit the computation. Therefore, there is a trade-off in setting the composite

level. It is recommended to set a high composite level if the warehouse is large with a

large number of aisles.

4.4 The Deterministic Model

In this section, a deterministic model for optimal deployment of dynamic wireless

charging lanes for electric forklifts in a congested warehouse is introduced. Later, we

extend this deterministic model to a two-stage stochastic programming model.

The notation for the deterministic model is shown in Table 4.1. Here, we consider the

investment cost for dynamic wireless charging lanes and the operation costs for order-

picking in the objective function. Since the installation for dynamic wireless charging

lanes targets at a long-term planning, its cost is prorated on a hour-basis using the net
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Algorithm 7 Route Set Construction for Order Pick-Up in Parallel-Aisle Warehouses

1: Initialize order set Õ = O, elementary route set Re = ∅ and combined route set
Rc = ∅.

2: Aggregate order set O.
For order o ∈ O, do

Check if there exists order o′ ∈ Õ ∩ {1, 2, · · · , o− 1} such that it is stored in the
same aisles as order o.

If yes, let o′ = max{i : i ∈ Õ, i ∈ (1, 2, · · · , o− 1), θia = θoa, ∀a ∈ A}.
If aggregated demand qo′ + qo ≤ C, let qo′ = qo′ + qo and Õ = Õ\{o}.

Update O = Õ.
3: Construct elementary route setRe.

For order o ∈ O, do
If Re does not contain a route that passes order o, generate the shortest distance

route r, then letRe = Re ∪ r.
4: Construct elementary route setRc.

Set the composite level for combined route construction.
For ri, rj ∈ Re ∪Rc,

Calculate the difference sij between the distance of combined route for ri, rj
and distance of ri, rj.

Sort the difference of distance sij where ri, rj ∈ Re ∪Rc in decreasing order.
Select the route pair such that the combined route of ri, rj is less than the compos-

ite level with the maximum distance difference. Update Rc by adding the combined
route of ri, rj.

Repeat above until r ∈ Re are included inRc.
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Table 4.1: The notation for the deterministic model of deployment of dynamic wireless
charging lanes problem

Set
O the set of orders.
A the set of aisles in warehouse network.
K the set of vehicles.
R the set of routes.
Ωr the set of consecutive aisle pair for route r ∈ R.
L the set of congestion level.
Parameters
ca wireless charging lane cost for aisle a ∈ A.
da distance for aisle a ∈ A.
γ wireless charging device lifetime in years.
δ annual interest rate.
ρ coefficient to convert travel time to cost per minute.
ual flow amount threshold on aisle a for l-th level congestion.
Emax maximum battery size.
Emin minimum battery size.
qo demand for order o.
C capacity for a forklift.
ξra if ωra = 1, route r passes aisle a; 0 otherwise.
θoa if θoa = 1, order o is in aisle a; 0 otherwise.
φ number of hours in an annual year.
pdis the discharging rate of a forklift per minute.
pch the charging rate of a forklift per minute.
Variables
za if za = 1, a power track is installed on aisle a; 0 otherwise.
xkr if xkr = 1, aisle r is traveled by forklift k; 0 otherwise.
yok if yok = 1, order o is picked by forklift k; 0 otherwise.
ηk if ηk = 1, forklift k is used; 0 otherwise.
val if val = 1, flow on aisle a at congestion level l; 0 otherwise.
eka battery level for forklift k at aisle a.
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present value. The prorated coefficients are defined as follows:

W =
δ · (1 + δ)γ

(1 + δ)γ − 1
· 1

φ
. (4.4)

The operation cost for order-picking is calculated by the travel time of picking all orders

that arrive for a single trip and the labor cost ρ. If forklifts cannot pick up all orders arriv-

ing in one hour with a single trip, orders are pre-batched according to arriving sequence

to ensure that the order set O in the model does not exceed the maximum workloads for

a single trip. For example if all available forklifts can only finish picking orders arrived

within 20 minutes with a single trip, ρ needs to be prorated to three times of labor cost

per hour. Note that the prorate horizon for the cost of dynamic wireless charging lanes is

consistent with the arriving time of maximum orders that forklifts can pick with a single

trip. The model is formulated as follows.

min
z

W ∑
a∈A

caza + ρQ(z) (4.5)

s.t. za ∈ {0, 1}, ∀a ∈ A (4.6)

The objective (4.5) of wireless charging location problem is to minimize the investment

cost of wireless charging lanes and operation cost. Equations (4.6) are binaries to deter-

mine whether to install wireless charging lanes. Given the installation of wireless charg-

ing lanes, Q(z) is the travel time given demand qo and location data θoa for order o ∈ O.

The order batching and vehicle routing constraints in a warehouse can be referred (Hong

et al., 2012).

The order batching and vehicle routing model minimizes the travel costs considering

battery level and congestion constraints. Q(z) is defined as follows.

Q(z) = min
x,y,η,v,e ∑

k∈K
∑

r∈R
∑

a∈A
ξrataxkr (4.7)
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s.t. ∑
k∈K

yok = 1, ∀o ∈ O (4.8)

yok ≤ ηk, ∀k ∈ K, o ∈ O (4.9)

∑
r∈R

xkr = ηk, ∀k ∈ K (4.10)

∑
o∈O

qoyok ≤ C, ∀k ∈ K (4.11)

θoayok ≤ ∑
r∈R

ξraxkr, ∀o ∈ O, k ∈ K, a ∈ A (4.12)

era′ ≤ era − pdista + pchta

+ M(1− za) + M(1− xkr), ∀k ∈ K, r ∈ R, (a, a′) ∈ Ωr (4.13)

era′ ≤ era − pdista + Mza + M(1− xkr), ∀k ∈ K, r ∈ R, (a, a′) ∈ Ωr (4.14)

Emin ≤ era ≤ Emax, ∀r ∈ R, ∀a ∈ A (4.15)

∑
k∈K

∑
r∈R

xkrξra = ∑
l∈L

fal, ∀a ∈ A (4.16)

fal ≤ ualval, ∀a ∈ A, l ∈ L (4.17)

∑
l∈L

val = 1, ∀a ∈ A (4.18)

ta = ∑
l∈L

talval, ∀a ∈ A (4.19)

ηk, xkr, yok, val ∈ {0, 1}, ∀k ∈ K, r ∈ R, o ∈ O, a ∈ A, l ∈ L (4.20)

ta, fal, eka ≥ 0, ∀k ∈ K, a ∈ A, l ∈ L (4.21)

Equation (4.7) minimizes the total travel time to pick up all orders. Since the model

considers variable travel time due to congestions, the objective function involves nonlin-

earity. Let τkra = taxkr. Linearization can be performed with objective function (4.22)

min
x,y,η,v,e,τ ∑

k∈K
∑

r∈R
∑

a∈A
ξraτkra (4.22)
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where τ are constrained by Equation (4.23).

τkra ≤ ta, ∀k ∈ K, r ∈ R, a ∈ A (4.23a)

τkra ≤ Mxkr, ∀k ∈ K, r ∈ R, a ∈ A (4.23b)

τkra ≥ −M(1− xkr) + ta, ∀k ∈ K, r ∈ R, a ∈ A (4.23c)

Equations (4.8) enforce the pick-up of any orders by forklifts. Equations (4.11) constrain

that the forklifts do not exceed the capacity while picking up orders. With Equations (4.9),

it is ensured that a forklift is used if any order is picked by this forklift. When a forklift is

used, a route must be selected with Equations (4.10). Equations (4.12) state that if order

o ∈ O is assigned to forklift k ∈ K, forklift k must travel a route containing the aisle of or-

der o. Equations (4.13) and (4.14) are battery tracking constraints for forklifts k ∈ K with

and without wireless charging lane in aisles. Equations (4.15) are battery level limit con-

straints. Equations (4.17) – (4.19) are congestion constraints which are further explained

in Section 4.3.1. Equations (4.20) are binaries while Equations (4.21) are nonnegativities

for variables.

4.4.1 Symmetry Breaking Constraints

Since all forklifts are assumed to be the same, all parameters in the optimization model

related to forklifts are the same. Therefore, there can exist multiple optimal solutions for

order assignments to vehicles by switching order batching for any pair of vehicles in an

optimal solution. This symmetry for mixed integer programming (MIP) problems are

common in production planing problems (Jans, 2009), operation room scheduling (Den-

ton et al., 2010) and routing problems (Sherali et al., 2013; Coelho and Laporte, 2013)

where the resources such as machines and vehicles are identical. It is discussed that the

symmetry in MIPs can slow down branch-and-bound method by exploring symmetric

solutions (Sherali and Smith, 2001; Margot, 2003; Ostrowski et al., 2011). Given an op-
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timal order batching solution, there can be |K|! optimal forklift assignment solutions to

these batches where |K| is the number of forklifts. Despite finding an optimal solution,

branch-and-bound method can keep a large number of nodes which generate the sym-

metry solutions until solving them and proving them no better than the optimal.

To improve the efficiency of computation, we can introduce symmetry breaking con-

straints (SBC). The model first determines whether to use a forklift to pick up a batch of

orders. To eliminate the symmetry of using forklifts, Equation (4.24) is introduced (Sherali

and Smith, 2001) to enforce small-index forklifts are preferred first.

η1 ≥ η2 ≥ · · · ≥ η|K| (4.24)

It is assumed that the number of orders |O| is larger than the number of forklifts |K|.

We also introduce Equations (4.25) and (4.26) to break the symmetry of assigning orders

to forklifts (Denton et al., 2010).

y1′1 = 1

y2′1 + y2′2 = 1

... (4.25)

|K|

∑
k=1

y|K|′k = 1

For order o = 1, · · · , |K|, Equations (4.25) guarantee that forklifts with small indices are

preferred by a single order. For example, order 2′ can only be picked by forklift 1 or

forklift 2. It eliminates the situation that forklift 3 is used while forklift 2 is idle. In more

general cases, a forklift can pick multiple orders. If order 1 to order 4 are assigned to

forklift 1 and 2, then Equations (4.26) enforces forklift 3 is used to pick order 5.

yok ≤
o−1

∑
s=k−1

ys,k−1 (4.26)
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Table 4.2: Numerical experiments with and without SBC

Num. of fork. Demand scen. Num. of aisles Num. of routes Time in sec. (Opt. gap)
With SBC W.O. SBC

5

1 8 33 25.03 34.87
2 8 33 24.10 112.05
3 8 33 18.04 11.72
1 10 88 180.54 403.62
2 10 88 607.99 3600 (31.57%)
3 10 88 551.95 1710.06

10

1 8 33 3600 (22.46%) 3600 (34.93%)
2 8 33 3600 (21.78%) 3600 (35.75%)
3 8 33 3600 (34.69%) 3600 (52.28%)
1 8 88 3600 (50.28%) 3600 (84.93%)
2 8 88 3600 (45.37%) 3600 (90.57%)
3 8 88 3600 (51.33%) 3600 (92.04%)

Symmetry constraints (4.24) – (4.26) can be added together to the deterministic model.

Note that the computation time can increase if we only add Equations (4.24) or other

single symmetry breaking constraints. Without SBC, there are multiple optimal solutions

making it easy to find the optimal solution via branch and bound method. Although

SBC cuts off some feasible regions that do not influence the optimality, it can slow down

finding the optimal solution while it is not strong enough to cut off most of the symmetric

optimal solutions. It is recommended to add different types of SBC together to ensure that

the computation saved from proving symmetric optimal solutions is larger than finding

an optimal with SBC.

Table 4.2 shows the numerical experiments with and without SBC using CPLEX solver.

SBC significantly reduces the computation time when the number of forklifts is 5. For

large cases with 10 forklifts, the model with SBC can have smaller optimality gap than

that without SBC in 1 hour.
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4.5 The Two-Stage Stochastic Model

To consider the uncertainty of orders, a two-stage stochastic programming model is

developed as follows.

min
z

W ∑
a∈A

caza + ρE [Q(z; q(ω), θ(ω))] (4.27)

s.t. za ∈ {0, 1}, ∀a ∈ A (4.28)

The objective (4.27) of wireless charging location problem is to minimize the investment

cost of wireless charging lanes and the expected operation cost. E [Q(z; q(ω), θ(ω))] is

the expected travel time among all order demand scenarios of q(ω) and order location

scenarios of θ(ω). Q(z; q(ω), θ(ω)) is the recourse function of the first-stage variable z

for a given scenario ω.

4.5.1 Monte Carlo Simulation for Scenario Generation

In the two-stage stochastic model, the objective function considers the expected oper-

ation cost for the uncertain amount of demand and demand location in warehouses. As-

suming that orders arrive independently, we have 3 scenarios of demand amount which

is 1, 2 and 3 for each order. A unit of order demand amount corresponds to an item stored

in a single aisle. For example, a forklift needs to travel 2 random aisles to pick up an or-

der if the demand of this order is 2. It is assumed that we have 20 orders in a 10-aisle

warehouse and each order needs pick-up among random aisles. The number of demand

location scenarios can reach [(10
1 )+(

10
2 )+(

10
3 )]

20. Although we can enumerate all demand

scenarios if the sources of uncertainty in a two-stage stochastic programming model are

discrete, the model can be difficult to solve with these many scenarios. In addition, sce-

narios cannot be listed if the order demand is from a continuous distribution representing

the physical volume of items.
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Instead of considering all scenarios in this model, we use Monte Carlo simulation

to sample a limited number of demand scenarios to feed the stochastic model which is

known as sample average approximation (SAA) (Shapiro et al., 2009). Intuitively, the

more scenarios we sample, the more likely that we obtain accurate solutions. With a

sufficiently large number of scenarios, the objective value of SAA problem uniformly

converges to the true objective value in (4.27) on the feasible set (Shapiro and Homem-de

Mello, 1998).

4.5.2 Scenario Decomposition

Consider the two-stage stochastic programming problem as a MIP, the number of con-

straints increases significantly when the number of forklifts, the number of aisles and the

number of orders increase. For the instance with 5 forklifts, 8 aisles and 10 scenarios of

orders, the optimality gap of using CPLEX solver in 1 hour is 50%. In order to solve

the problem efficiently, a scenario decomposition algorithm for 0-1 stochastic programs

(Ahmed, 2013) is introduced.

With a finite number of scenarios generated in Section 4.5.1, we can rewrite Equation

(4.27) and (4.28) as

{
min

z
W ∑

a∈A
caza + ρ

1
S

S

∑
s=1

Q(z; q(ωs), θ(ωs)) : za ∈ {0, 1}, ∀a ∈ A
}

. (4.29)

In order to implement scenario decomposition method, we need to make copies of the

first-stage variables and reformulate Equation (4.29) as follows.

{
1
S

min
z

S

∑
s=1

[
W ∑

a∈A
cazs

a + ρQ(zs; q(ωs), θ(ωs))
]

: zs
a ∈ {0, 1}, zs

a = zs−1
a , ∀a ∈ A, s ∈ S

}
.

(4.30)

Let µs represent the variables for s ∈ S . The constraints at the second stages and binaries

for the copies of the first stage variables are represented by U s for all s ∈ S . We use
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S
∑

s=1
Asµ

s = 0 to represent the enforcement of z1
a = z2

a = · · · zS
a for all a ∈ A. Equation

(4.30) is equivalent to abstract formulation (4.31).

Z =

{
min

S

∑
s=1

h>µs : µs ∈ U s ∀s ∈ S ,
S

∑
s=1

Asµ
s = 0

}
(4.31)

For the convenience of explaining the algorithm, we use Equation (4.31) in the following

context.

The algorithm for solving the two-stage stochastic model can be summarized in Al-

gorithm 8. The details for estimating lower bounds and upper bounds are discussed in

Sections 4.5.2.1 and 4.5.2.2.

Algorithm 8 A Scenario Decomposition Method for Solving the Stochastic Wireless
Charging Lane Deployment Problem

1: Let UB = +∞, LB = −∞, and Z = ∅.
Initialize the Lagrangian multiplier λ, an extremely small positive step size ϕ and a
termination tolerance ε.

2: If UB− LB ≥ ε, go to Step 3; otherwise, terminate.
3: Solve

Ds(λ) =

{
min(h> + λ>As)µ

s : µs ∈ U s
}

for s ∈ S .

Obtain the optimal solution µ̂s for s ∈ S and compute L(λ) =
S
∑

s=1
Ds(λ) as LB. Go to

Step 4.
4: Update λ→ λ + ϕ∆(λ̂) where

∆(λ̂) =
S

∑
s=1

Asµ̂
s.

Go to Step 5.
5: Extract new wireless charging lane solutions from µ̂s for s ∈ S to Z and add cuts

(4.34) in U s. Go to Step 6.
6: Solve (4.30) by fixing the wireless charging lane solution z ∈ Z and update UB with

the minimum objective value. Go to Step 2.
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4.5.2.1 Lower Bounding

By dualizing the nonanticipativity constraints
S
∑

s=1
Asµ

s = 0, we can obtain a lower

bound for Equation (4.31). The Lagrangian dual is written as follows.

ZLD = max
λ

L(λ) (4.32)

where L(λ) =
S
∑

s=1
Ds(λ) and Ds(λ) is defined as

Ds(λ) =

{
min(h> + λ>As)µ

s : µs ∈ U s
}

(4.33)

Suppose µ̃ is an optimal solution for Problem (4.31), then µ̃s is a feasible solution for

Ds(λ), ∀s ∈ S and ZLD ≤ Z. L(λ) is a piecewise linear concave function. Let µ̂ is

an optimal solution for L(λ̂) given λ̂.Then, ∆(λ̂) is the subgradient of L(λ) at λ̂ where

∆(λ̂) =
S
∑

s=1
Asµ̂

s. Since the Lagrangian dual problem is concave and it is easy to find its

subgradient, subgradient searches can be applied to solving the Lagrangian dual problem

(4.32).

4.5.2.2 Upper Bounding

The lower bounding algorithm for (4.32) explores wireless charging lane solutions

from subproblems Ds(λ) given λ. The wireless charging lane solution zs are extracted

from subproblems as candidate primal feasible solutions to the original problem (4.29)

when solving the Lagrangian dual for lower bounds. To improve the upper bounds, the

explored solutions are then cut-off at later iterations of estimating Lagrangian dual (4.32).

Since the constraints for the first-stage variables in this problem are only binaries, we can
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add the integer cuts (4.34) to eliminate the explores first stage solutions

∑
a:ẑa=1

(1− zs
a) + ∑

a:ẑa=0
zs

a ≥ 1, ẑ ∈ Z , s ∈ S (4.34)

where Z is the set that contains all primal feasible solutions. Note that the cuts are ap-

plied to all scenario-based subproblems. The upper bounding in solving the two-stage

stochastic model is summarized at Step 5 in Algorithm 8.

4.6 Case Studies

In this section, case studies for the proposed model are shown. Computational results

and model analyses are discussed to obtain some useful guidance for installation of dy-

namic wireless charging infrastructure in parallel-aisle warehouses. Since the proposed

model considers the short-term operation cost with a number of demand scenarios in a

warehouse, the order set is not as large as the total number of items processed in a day. It

is assumed that the number of orders assigned to a single trip is five times of the number

of forklifts. If the demand data is available for warehouses, we can estimate the order

set more precisely. Each order randomly includes one or two items with a discrete uni-

form distribution. We also use the discrete uniform distribution to sample the scenarios

of demand locations. For example, if an order has one item, this order randomly passes

an aisle in the warehouse. Given the historical order-aisle data, statistical analyses can be

performed thus providing the distribution to sample demand locations. In this chapter,

we consider the pick-then-sort picking strategy. Therefore, the demand qo for order o ∈ O

is the number of items in this order. All case studies in this section are based on single di-

rectional warehouses. To implement Algorithm 8 and solve the stochastic programming

model, CPLEX solver of version 12.6 is used. The computational scheme is coded in the

Julia Language with the JuMP.jl package (Dunning et al., 2017).
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Table 4.3: Comparisons of computation time for 5-forklift 8-aisle instance with different
number of scenarios

|S| CPLEX Algorithm 8
Time (sec.) Time (sec.) Iterations Subproblems

2 59 205 3 4
3 447 467 3 9
4 2707 799 2 16
5 3600 922 2 25
6 3600 1201 2 36
7 3600 1435 2 49
8 3600 1964 2 64
9 3600 2242 2 81

10 3600 2341 2 100

4.6.1 Computation Performances

To show the computation performance of Algorithm 8, computation time with differ-

ent number of scenarios for a warehouse with 5 forklifts and 8 aisles is shown in Table

4.3 and Figure 4.3. Meanwhile, we directly use CPLEX to solve the stochastic program-

ming model as comparisons. We use 1 hour as time limit for both CPLEX and Algo-

rithm 8. CPLEX solver cannot solve the instances with more than 4 scenarios within 1

hour while Algorithm 8 shows an increasing computation time as the number of scenario

increases. Table 4.3 shows the computation time of CPLEX and Algorithm 8 with the

initial Lagrangian multiplier to be 0. Seen from Figure 4.3, the computation time of Al-

gorithm 8 tends to increase linearly as the number of scenarios grows. Instead of solving

the stochastic programming model with constraints for all scenarios, Algorithm 8 solves

scenario-based subproblems. When the number of scenarios increases, the number of

subproblems in Algorithm 8 increases but the problem size for each subproblem does not

change. Therefore, Algorithm 8 can perform well in the proposed model even with a large

number of scenarios.

In addition, the number of iterations for Algorithm 8 is sensitive to the value of La-

grangian multiplier λ. Figure 4.4 shows the lower bounds and upper bounds with ran-
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Figure 4.3: Computation time for 5-forklift 8-aisle instance with different number of sce-
narios with Cplex and Algorithm 8

dom generation of Lagrangian multiplier from (−1, 1) Uniform distribution. More than

25 iterations are needed with a random Lagrangian multiplier while Table 4.3 shows 2

iterations with zero value of Lagrangian multiplier. Therefore, it is recommended to set

the initial Lagrangian multiplier as zero.

For a fixed number of forklifts and scenarios, Table 4.4 shows the computation time

with CPLEX and Algorithm 8 for different scale of warehouses. Without using Algorithm

7 to constructed a reduced route set, we solve the instances with all feasible routes. Both

CPLEX and Algorithm 8 cannot solve the instance with |A| = 10 with 1 hour time limit

while Algorithm 8 with a reduced route set generated by Algorithm 7 can solve the in-

stance within 3 minutes. If the size of warehouses increases, the number of routes grows

dramatically. The deterministic model for a single scenario becomes challenging with a

large number of routes. Algorithm 8 cannot be performed when scenario-based subprob-

lems are hard. Hence, it is necessary to construct a reduced route set with Algorithm 7

for warehouses with more than 10 aisles.
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Figure 4.4: The value of upper bound and lower bound for 5-forklift 8-aisle and 5-scenario
instance with Algorithm 8 with random λ

Table 4.4: Comparisons of computation time for 5-forklift 3-scenario instance with differ-
ent number of aisles

|A| Computation time (sec.)
Cplex Algorithm 8 Algorithm 7&8

2 3 7 7
4 8 47 49
6 129 201 41
8 447 467 81

10 3600 3600 156
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4.6.2 The Value of Stochastic Solution

Given the size of a warehouse, the number of forklifts and the demand of orders for

sampled scenarios, we can solve the stochastic programming model and obtain the opti-

mal wireless charging lane solutions (ST) facing up to all demand scenarios.

The deterministic (DE) solution of wireless charging lane locations is estimated based

the average demand. For continuous random parameters, it is straightforward to estimate

the average scenario by weight averaging those parameters among all scenarios. The

discrete random parameters, however, need some assumptions. Here, steps to analyze the

average scenario data of demand are presented. First, we calculate the average demand

q̄o for each order o ∈ O among all scenario s ∈ S . Since we sample the demand from

(0,1) discrete uniform distribution, the demand for order q̂o is 1 if q̄o is less than 1.5 and

q̂o = 2 otherwise. Then, we rank the number of times of passing aisle a ∈ A for order

o ∈ O among all scenarios, we choose aisles for the order with top q̂o visits. Feeding all

scenarios with the DE solution, the operation cost of DE is computed.

We can also analyze the wait and see (WS) solution for wireless charging lanes. This

can be obtained by the first lower bound of Algorithm 8 if we set 0 as initial Lagrangian

multiplier.

We define the expected value of perfect information (EVPI) with Equation (4.35) and

the value of stochastic solution with Equation (4.36).

EVPI =
Operation cost with ST−Average operation cost with WS

Average operation cost with WS
(4.35)

VSS =
Operation cost with DE−Operation cost with ST

Operation cost with ST
(4.36)

With different costs of wireless charging lanes, the value of stochastic solution for a ware-

house with 5 forklifts and 8 aisles is Shown in Table 4.5. It is observed that the VSS de-

creases and EVPI increases as the costs of wireless charging lanes increases. In addition,
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Table 4.5: The value of stochastic solution with different wireless charging lane cost for a
5-forklift 8-aisles and 5-scenario instance

wireless cost($/m.) Operation cost EVPI (%) VSS (%)DE WS ST

100 23.76 17.42 17.85 2.43 33.15
120 23.80 17.51 17.96 2.54 32.53
140 23.84 17.60 18.07 2.66 31.92
160 23.87 17.69 18.18 2.77 31.32
180 23.91 17.78 18.29 2.88 30.73
200 23.95 17.87 18.40 2.99 30.14
220 23.98 17.96 18.51 3.10 29.56
240 24.02 18.04 18.62 3.21 28.99
260 24.06 18.13 18.73 3.31 28.42
280 24.10 18.22 18.85 3.42 27.86
300 24.13 18.31 18.96 3.52 27.31

the ST and WS solution can be very close even though ST provides a unique solution for

all scenarios and WS has wireless charging lanes in different aisles for different scenarios.

4.7 Concluding Remarks

To increase the operation efficiency of warehouse logistics, we propose a two-stage

stochastic programming model for optimal deployment of dynamic wireless charging for

electric forklifts. We consider the routing of forklifts to pick up orders arriving within a

short-term in congested warehouses. In this problem, the uncertainties of order demand

and order locations are addressed. A route set construction algorithm is introduced and

a scenario decomposition algorithm is proposed to solve the two-stage stochastic pro-

gramming model. The comparisons of computation time with CPLEX and the proposed

algorithm are presented to show the performance of the proposed algorithm. We also

demonstrate the value of stochastic solutions by comparing with deterministic solutions.

In numerical experiments, the value of stochastic solutions is significant ranging from

27% to 33% for a warehouse with 5 forklifts and 8 aisles.

101



Although the proposed model captures essential components in warehouse logistics

such as forklift routing, congestions and deployment of dynamic wireless charging, there

exist limitations. First, the warehouse network and forklift routing in the proposed model

is simplified with aisles. If a network is complicated, the forklift routing is challenging

with the consideration of congestions. Second, we consider orders arriving within a short-

term that can be picked up with a single trip. To pick up a large number of orders in a

warehouse, forklifts need multiple trips. Despite that the computation can be very chal-

lenging, the deployment of dynamic wireless charging can be estimated more preciously

via modeling forklifts routing with multiple trips.
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5 Conclusion

In this dissertation, three optimization models are proposed for hazmat routing, haz-

mat transportation network design and dynamic wireless charging lane deployment in a

congested warehouse.

We propose a few avenues for future research for hazmat routing. First, we can con-

sider the uncertainty of data associated with risk in hazmat routing. Since there exist

few accident statistics for hazmat transportation, we can incorporate data uncertainty

into spectral risk measures to obtain safe paths. Second, a network design problem ad-

dressing spectral risks can be developed. In this design problem, decision makers can

introduce a road banning policy or a road pricing policy to minimize the system-wide

spectral risk measure value by considering routing behavior of hazmat carriers via bilevel

optimization as in Stackelberg games. Third, we can apply SRM to other transportation

problems. Since CVaR or related concepts, such as mean-excess measures, have been ap-

plied in other areas of transportation (Chen and Zhou, 2010; Chen et al., 2006; Soleimani

and Govindan, 2014), it will be worth studying the shortcomings of CVaR in other appli-

cations and how SRM can be utilized.

For the hazmat network design model, the first limitation is that we did not consider

any uncertainty from data sources and hazmat travel demand. Considering these ad-

ditional sources of uncertainty will make the network design problem more challenging.

Second, the RUM used in this paper is not the most advanced random route-choice model.

More advanced RUM approaches are available, which may be incorporated within the

network design problem suggested in this paper, at the cost of computational time in-

creases. Third, we did not consider equity in the network design. Risk equity among
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zones and cost equity among hazmat carriers should be considered for fair management

of the road infrastructure. Addressing these limitations are promising future research di-

rections. Another interesting extension of the proposed method will be the consideration

of multiples modes of hazmat transportation as in multimodal or intermodal transporta-

tion. The discrete-choice model in RUM should be extended to consider mode choices

in multi-modal transportation. This will create a nested logit model, for example, which

adds significant computational and analytical complexity in the model.

In the dynamic wireless charging model, we consider a small number of orders that

need to be batched for forklifts. In fact, there can be thousands of orders arriving in one

hour. Therefore, developing an efficient algorithm for a large scale of orders is significant

in the future. In addition, an interesting research direction to incorporate congestion is

to construct a time-expanded network. Instead of capturing the congestion by the av-

erage workflows, a time-expanded network can cope with congestion more preciously.

Also, developing an efficient algorithm for a time-expanded network aiming at large scale

warehouses with a large number of orders can be a potential future research topic.

104



References

Abkowitz, M., Lepofsky, M., and Cheng, P. (1992a). Selecting criteria for designating

hazardous materials highway routes. Transportation Research Record, 1333:30–35.

Abkowitz, M. D., Lepofsky, M., and Cheng, P. (1992b). Selecting criteria for designating

hazardous materials highway routes. Transportation Research Record, (1333).

Acerbi, C. (2002). Spectral measures of risk: a coherent representation of subjective risk

aversion. Journal of Banking & Finance, 26(7):1505–1518.

Acerbi, C. (2004). Coherent representations of subjective risk-aversion. In Szeö, G., editor,

Risk Measures for the 21st Century, pages 147–207. New York: Wiley.

Acerbi, C. and Simonetti, P. (2008). Portfolio optimization with spectral measures of risk.

http://arxiv.org/abs/cond-mat/0203607.

Acerbi, C. and Tasche, D. (2002). On the coherence of expected shortfall. Journal of Banking

& Finance, 26(7):1487–1503.

Ahmed, S. (2013). A scenario decomposition algorithm for 0–1 stochastic programs. Op-

erations Research Letters, 41(6):565–569.

Akgün, V., Erkut, E., and Batta, R. (2000). On finding dissimilar paths. European Journal of

Operational Research, 121(2):232–246.

Alp, E. (1995). Risk-based transportation planning practice: overall methodology and a

case example. INFOR, 33(1):4–19.

105

http://arxiv.org/abs/cond-mat/0203607


Artzner, P., Delbaen, F., Eber, J., and Heath, D. (1999a). Coherent measures of risk. Math-

ematical Finance, 9(3):203–228.

Artzner, P., Delbaen, F., Eber, J. M., and Heath, D. (1997). Thinking coherently: generalised

scenarios rather than VaR should be used when calculating regulatory capital. Risk-

London-Risk Magazine Limited, 10:68–71.

Artzner, P., Delbaen, F., Eber, J. M., and Heath, D. (1999b). Coherent measures of risk.

Mathematical Finance, 9(3):203–228.

Battelle (2006). Hazardous materials routing survey analysis.

Ben-Akiva, M., Bergman, M., Daly, A. J., and Ramaswamy, R. (1984). Modeling inter-

urban route choice behaviour. In Proceedings of the 9th international symposium on trans-

portation and traffic theory, pages 299–330. VNU Science Press Utrecht, The Netherlands.

Ben-Akiva, M. and Bierlaire, M. (1999). Discrete choice methods and their applications to

short term travel decisions. In Handbook of Transportation Science, pages 5–33. Springer.

Ben-Akiva, M. E., Lerman, S. R., and Lerman, S. R. (1985). Discrete choice analysis: theory

and application to travel demand, volume 9. MIT press.

Benjaafar, S. (2002). Modeling and analysis of congestion in the design of facility layouts.

Management Science, 48(5):679–704.

Birge, J. R. (1982). The value of the stochastic solution in stochastic linear programs with

fixed recourse. Mathematical Programming, 24(1):314–325.

Bonvicini, S. and Spadoni, G. (2008). A hazmat multi-commodity routing model sat-

isfying risk criteria: a case study. Journal of Loss Prevention in the Process Industries,

21(4):345–358.

Brandtner, M. (2016). Spectral risk measures: Properties and limitations: comment on

Dowd, Cotter, and Sorwar. Journal of Financial Services Research, 49(1):121–131.

106



Brandtner, M. and Kürsten, W. (2017). Consistent modeling of risk averse behavior with

spectral risk measures: Wächter/Mazzoni revisited. European Journal of Operational Re-

search, 259(1):394–399.

Broadbent, A., Besant, C., Premi, S., and Walker, S. (1985). Free ranging agv systems:

promises, problems and pathways. In Proceeding of the 2nd international conference on

automated materials handling, pages 221–237.

Cao, Y., Tang, S., Li, C., Zhang, P., Tan, Y., Zhang, Z., and Li, J. (2012). An optimized ev

charging model considering tou price and soc curve. IEEE Transactions on Smart Grid,

3(1):388–393.

Cascetta, E., Nuzzolo, A., Russo, F., and Vitetta, A. (1996). A modified logit route choice

model overcoming path overlapping problems: specification and some calibration re-

sults for interurban networks. In Proceedings of the 13th International Symposium on Trans-

portation and Traffic Theory, pages 697–711. Pergamon Oxford, NY, USA.

Chen, A. and Zhou, Z. (2010). The α-reliable mean-excess traffic equilibrium model with

stochastic travel times. Transportation Research Part B, 44:493–513.

Chen, G., Daskin, M. S., Shen, Z. J. M., and Uryasev, S. (2006). The α-reliable mean-

excess regret model for stochastic facility location modeling. Wiley Periodicals, Inc. Naval

Research Logistics, 53:617–626.

Chen, T. D., Kockelman, K. M., Khan, M., et al. (2013). The electric vehicle charging station

location problem: a parking-based assignment method for seattle. In Transportation

Research Board 92nd Annual Meeting, volume 340, pages 13–1254.

Clarke, G. and Wright, J. W. (1964). Scheduling of vehicles from a central depot to a

number of delivery points. Operations research, 12(4):568–581.

107



Coelho, L. C. and Laporte, G. (2013). The exact solution of several classes of inventory-

routing problems. Computers & Operations Research, 40(2):558–565.

Daganzo, C. F. and Sheffi, Y. (1977). On stochastic models of traffic assignment. Trans-

portation Science, 11(3):253–274.

Davis, G. A. (1994). Exact local solution of the continuous network design problem via

stochastic user equilibrium assignment. Transportation Research Part B: Methodological,

28(1):61–75.

De Koster, M., Van der Poort, E. S., and Wolters, M. (1999). Efficient orderbatching meth-

ods in warehouses. International Journal of Production Research, 37(7):1479–1504.

Denton, B. T., Miller, A. J., Balasubramanian, H. J., and Huschka, T. R. (2010). Optimal

allocation of surgery blocks to operating rooms under uncertainty. Operations research,

58(4-part-1):802–816.

Dial, R. B. (1971). A probabilistic multipath traffic assignment model which obviates path

enumeration. Transportation Research, 5(2):83–111.

Dowd, K. and Blake, D. (2006). After VaR: the theory, estimation, and insurance applica-

tions of quantile-based risk measures. Journal of Risk and Insurance, 73(2):193–229.

Dowd, K., Cotter, J., and Sorwar, G. (2008). Spectral risk measures: properties and limita-

tions. Journal of Financial Services Research, 34(1):61–75.

Duffie, D. and Pan, J. (1997). An overview of value at risk. The Journal of Derivatives,

4(3):7–49.

Dunning, I., Huchette, J., and Lubin, M. (2017). JuMP: a modeling language for mathe-

matical optimization. SIAM Review, 59(2):295–320.

Egbelu, P. J. and Tanchoco, J. M. (1984). Characterization of automatic guided vehicle

dispatching rules. The International Journal of Production Research, 22(3):359–374.

108



Emergency Response Guidebook (2012). Emergency response guidebook : A guidebook

for first responders during the initial phase of a dangerous goods/hazardous materials

transportation incident.

Erkut, E. and Gzara, F. (2008). Solving the hazmat transport network design problem.

Computers & Operations Research, 35(7):2234–2247.

Erkut, E. and Ingolfsson, A. (2000a). Catastrophe avoidance models for hazardous mate-

rials route planning. Transportation Science, 34(2):165–179.

Erkut, E. and Ingolfsson, A. (2000b). Catastrophe avoidance models for hazardous mate-

rials route planning. Transportation Science, 34(2):165–179.

Erkut, E. and Ingolfsson, A. (2005). Transport risk models for hazardous materials: revis-

ited. Operations Research Letters, 33(1):81–89.

Erkut, E., Tjandra, S. A., and Verter, V. (2007). Hazardous materials transportation. Hand-

books in Operations Research & Management Science, 14:539–621.

Esfandeh, T., Batta, R., and Kwon, C. (2017). Time-dependent hazardous-materials net-

work design problem. Transportation Science, 52(2):454–473.

Esfandeh, T., Kwon, C., and Batta, R. (2016). Regulating hazardous materials transporta-

tion by dual toll pricing. Transportation Research Part B: Methodological, 83:20–35.

Fan, T., Chiang, W.-C., and Russell, R. (2015). Modeling urban hazmat transportation with

road closure consideration. Transportation Research Part D: Transport and Environment,

35:104–115.

Federal Motor Carrier Safety Administration (2001). Comparative risks of hazardous

materials and nonhazardous materials truck shipment accidents/incidents.

Federal Motor Carrier Safety Administration (2018). National hazardous materials route

registry.

109



Fontaine, P. and Minner, S. (2018). Benders decomposition for the hazmat transport net-

work design problem. European Journal of Operational Research, 267(3):996–1002.

Frade, I., Ribeiro, A., Gonçalves, G., and Antunes, A. (2011). Optimal location of charg-

ing stations for electric vehicles in a neighborhood in lisbon, portugal. Transportation

research record: journal of the transportation research board, (2252):91–98.

Gao, J. (2007). Traveling magnetic field for homogeneous wireless power transmission.

IEEE Transactions on Power Delivery, 22(1):507–514.

Geoffrion, A. M. (1972). Generalized benders decomposition. Journal of Optimization The-

ory and Applications, 10(4):237–260.

Gong, Y. and De Koster, R. (2008). A polling-based dynamic order picking system for

online retailers. IIE Transactions, 40(11):1070–1082.

Gzara, F. (2013). A cutting plane approach for bilevel hazardous material transport net-

work design. Operations Research Letters, 41(1):40–46.

Heath, B. L., Ciarallo, F. W., and Hill, R. R. (2013). An agent-based modeling approach to

analyze the impact of warehouse congestion on cost and performance. The International

Journal of Advanced Manufacturing Technology, pages 1–12.

Hess, S., Quddus, M., Rieser-Schüssler, N., and Daly, A. (2015). Developing advanced

route choice models for heavy goods vehicles using gps data. Transportation Research

Part E: Logistics and Transportation Review, 77:29–44.

Hodgson, M. J. (1990). A flow-capturing location-allocation model. Geographical Analysis,

22(3):270–279.

Hong, S., Johnson, A. L., and Peters, B. A. (2012). Large-scale order batching in parallel-

aisle picking systems. IIE Transactions, 44(2):88–106.

110



Hosseini, S. D. and Verma, M. (2018). Conditional value-at-risk (CVaR) methodology

to optimal train configuration and routing of rail hazmat shipments. Transportation

Research Part B: Methodological, 110:79–103.

II, C. G. P. (2000). An evaluation of order picking policies for mail order companies.

Production and operations management, 9(4):319–335.

Jans, R. (2009). Solving lot-sizing problems on parallel identical machines using

symmetry-breaking constraints. INFORMS Journal on Computing, 21(1):123–136.

Jeong, S., Jang, Y. J., and Kum, D. (2015). Economic analysis of the dynamic charging

electric vehicle. IEEE Transactions on Power Electronics, 30(11):6368–6377.

Jin, H. and Batta, R. (1997). Objectives derived form viewing hazmat shipments as a

sequence of independent bernoulli trials. Transportation Science, 31(3):252–261.

Jufer, M. (2008). Electric drive system for automatic guided vehicles using contact-free en-

ergy transmission. In Power Electronics and Motion Control Conference, 2008. EPE-PEMC

2008. 13th, pages 1–6. IEEE.

Kang, Y., Batta, R., and Kwon, C. (2014a). Generalized route planning model for haz-

ardous material transportation with VaR and equity considerations. Computers & Oper-

ations Research, 43:237–247.

Kang, Y., Batta, R., and Kwon, C. (2014b). Value-at-risk model for hazardous material

transportation. Annals of Operations Research, 222(1):361–387.

Kara, B. Y. and Verter, V. (2004). Designing a road network for hazardous materials trans-

portation. Transportation Science, 38(2):188–196.

Kawamura, A., Ishioka, K., and Hirai, J. (1996). Wireless transmission of power and in-

formation through one high-frequency resonant ac link inverter for robot manipulator

applications. IEEE Transactions on Industry Applications, 32(3):503–508.

111



Kim, J. H., Lee, B. S., Lee, J. H., Lee, S. H., Park, C. B., Jung, S. M., Lee, S. G., Yi, K. P., and

Baek, J. (2015). Development of 1-mw inductive power transfer system for a high-speed

train. IEEE Transactions on Industrial Electronics, 62(10):6242–6250.

Kim, K. H. and Tanchoco, J. (1993). Economical design of material flow paths. International

Journal of Production Research, 31(6):1387–1407.

Kisacikoglu, M. C., Kesler, M., and Tolbert, L. M. (2015). Single-phase on-board bidirec-

tional pev charger for v2g reactive power operation. IEEE Transactions on Smart Grid,

6(2):767–775.

Kurs, A., Karalis, A., Moffatt, R., Joannopoulos, J. D., Fisher, P., and Soljačić, M.
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