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Analyses of Unorthodox Overlapping Gene Segments In Oxytricha Trifallax

Shannon Stich

ABSTRACT

A ciliate is a phylum of protozoa that has two types of nuclei, macronuclei and micronuclei. There may be

more than one of each type of nucleus in the organism [1]. The macronucleus is the structure where pro-

tein synthesis and cell metabolism occur [1]. The micronucleus stores genetic information and is mobilized

during a sexual reproduction process called conjugation [1]. The somatic macronucleus (MAC) is devel-

oped from the germ-line micronucleus (MIC) through genome rearrangement during a sexual reproduction

process called conjugation [6, 8]. Segments of the MIC that form the MAC during conjugation are called

macronuclear destined sequences (MDSs) [8]. During sequencing each MDS is given coordinates where

the MDS sequences begin and end in the MIC. The orientation of a MDS in the MIC can be taken to be

positive or negative. If the direction of the MDS in the MIC agrees with the direction in the MAC then

the orientation is positive otherwise it is a negative orientation. In this thesis we analyze various aspects

of the gene assembly during the rearrangment process of the ciliate Oxytricha trifallax that were recently

sequenced [15]. Some of the properties analyzed include overlapping MDSs, orientation, MDSs starting

and ending position in the MIC and the gaps of overlapping MDS pairs. A gap of an overlapping MDS pair

is the order difference of two MDSs for a particular MAC contig that overlap in the MIC contig. We use

120 MAC contigs from [15] that have overlaps among their own MDSs. These 120 MAC contigs make up

the data set we call D4.

We explore the patterns of overlapping MDSs in the MIC in D4. To quantify such patterns, we associate

a vector V (An) to each MAC contig An, where V (An) = (v1(An), v2(An), v3(An)) is a vector in R3. The

first entry is the number of overlapping MDS pairs divided by the number of MDSs. The second entry is the

sum of gaps of overlapping MDS pairs divided by the sum of all possible gaps. The final entry is the total
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number of overlapping base pairs divided by the total length of the MAC contig. We computed the distance

matrix M = (dij) where dij is the Euclidean distance between V (Ai) and V (Aj). The MAC contig vectors

and M were computed using Python.

To analyze D4 we applied Topological Data Analysis (TDA). TDA uses topological constructs to assess

shapes in data [3, 12]. From the data entries of the distance matrix M = (dij) we applied a Vietoris-Rips

filtration to generate the barcodes of the persistent homology in dimensions 0, 1 and 2. The persistence

barcode of 0-dimensional homology illustrates clusters of the data while the 1-dimensional homology rep-

resents non-trivial loops in the simplicial complex [3, 13]. The application of TDA on the ciliate Oxytricha

trifallax identified ten MAC contig clusters at ε = 0.1 in D4 and several loops that were persistent for two

or three ε values. Other TDA methods can be applied to the Vietoris-Rips filtration to further identify which

MAC contigs appear in each cluster.
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Chapter 1

Introduction

A ciliate is a phylum of protozoa that has two types of nuclei, macronuclei and micronuclei. A specie

may have more than one of each type of nuclei [1]. The somatic macronucleus (MAC) is developed from the

germ-line micronucleus (MIC) through genome rearrangement during a sexual reproduction process called

conjugation [6, 8]. The macronucleus is the structure where protein synthesis and cell metabolism occur

[1]. The micronucleus stores genetic information [1]. Segments of the MIC that form the MAC during

conjugation are called macronuclear destined sequences (MDSs) [8]. Here we analyze specific subset of

the sequenced data in Chen et al. [15] by considering aspects of the gene assembly of the ciliate Oxytricha

trifallax such as orientation of MDSs and the overlapping MDSs in the MIC. A contig is an adjoining

length of a genomes sequence [5] and the sequenced data in Chen et al. [15] is given as a set of contigs.

A segment of the MIC contig that gets deleted and interrupts two MDSs during conjugation is called an

internally eliminated sequence or IES for short [7]. The positions of MDSs may appear scrambled and the

orientation may be reversed in the MIC. Rearrangements during conjugation include IES deletion from the

MIC and MDS unscrambling in the MAC [7]. They become unscrambled during the formation of the MAC

[7]. Macronuclear DNA generally are short chromosomes that most of the time encode for one gene [1].

The Oxytricha trifallax macronuclear genome is made up of about 16,000 nanochromosomes [1]. We refer

to the data used in [15] as D1. The analysis in that paper considered the MAC contigs and MIC loci of

the MAC gene segments that were scrambled, alternate processes of MDSs that produce multiple genes and

chromosomes [15]. In [8], patterns of scrambling of MDSs were studied using double occurrence words

and assembly graphs. In the previous analysis [8, 15], MAC contigs with unorthodox overlaps between

non-consecutive MDSs were excluded. In this thesis we focus on these MAC contigs with overlaps. We

constructed the data set D4 consisting of MAC contigs with non-consecutive MDSs that have overlaps in

the MIC which were present in D1.

We explore the patterns of overlapping MDSs in the MIC inD4. To quantify such patterns, we associate a
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Figure 1. Ciliate Oxytricha trifallax [16].

vector V (An) to each MAC contig An, where V (An) := (v1(An), v2(An), v3(An)) is a vector in R3. The

MAC contig vector V (An) consists of three entries. The first entry v1(An) is the number of overlapping

MDS pairs divided by the number of MDSs. The second entry v2(An) is the sum of gaps of overlapping

MDS pairs divided by the sum of all possible gaps. The final entry v3(An) is the total number of overlapping

base pairs divided by the total length of the MAC contigs. We computed a distance matrix M = (dij)

where dij is the Euclidean distance between V (Ai) and V (Aj). The MAC contig vectors and the distance

matrix M were computed using Python. We applied topological data analysis (TDA) to the distance matrix

M . The outputs of the TDA are persistence barcodes. The persistence barcodes were computed using an

online version of Ripser [20]. The persistence barcodes revealed that for the zero-dimensional homology

group, for example, we had connected components for ε = 0.1. The zero-dimensional homology group

for this particular value of ε geometrically corresponds to 10 MAC contig clusters. Most of the loops in

the simplicial complexes for the one-dimensional homology appeared in the range of ε = 0.04 to ε = 0.1.

There was one hollow void present for the two-dimensional homology group.

The organization of this thesis is as follows: in Chapter 2 we provide the background on the genome

rearrangements that occur in Oxytricha trifallax. In Chapter 3 we include various applications of TDA and

the important terminology relevant to our output and analysis. In the remaining sections we examine the

output of persistent homology on D4. We also include the Python script and the MAC contig vector entries

in Appendix A.
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Chapter 2

Biology: An Overview of Ciliates Gene Assembly

A ciliate is a phylum of protozoa that has two nuclei, macronuclei and micronuclei. Genomic rearrange-

ment through conjugation happens in a ciliate when it is not thriving in the current environment and at that

time a macronucleus is formed from a newly conjugated micronucleus. In this process a large segment of the

DNA is recombined [6]. Segments of the MIC that form the MAC during conjugation are called macronu-

clear destined sequences (MDSs) [8]. A segment of a MIC contig that gets deleted and interrupts two MDSs

in the MIC is called an internally eliminated sequence or IES for short [7]. Since MDSs may have different

orientations in the MIC with respect to their MAC orientation, we classify these as positive or negative. If

the direction of the MDS in the MAC agrees with the direction in the MIC then the orientation is positive,

otherwise it is a negative orientation.

Figure 2. Various rearrangement types [17].

Rearrangements of MDSs from the MIC to the MAC involve IES deletions, inversions and unscrambling.

Figure 2 above indicates that each of these rearrangements occurs on Actin I of Oxytricha Nova. All IESs are

removed from the MIC. An orientation of the MIC contig is specified to be from left to right. The orientation

of the start and end coordinate positions of MDS2 is of opposite orientation in the MAC. Therefore the

orientation of MDS2 is negative. A DNA inversion occurs in MDS2 during the rearrangement process.
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Lastly MDS9 and MDS8 undergo unscrambling when they form the MAC [17].

The segments that are the overlapping region of two consecutive MDSs in the MAC are called pointers.

It is considered that the pointers guide scrambling in the rearrangement process. Non-consecutive overlap-

ping MDSs are considered unorthodox since their rearrangements cannot be explain by pointer alignments.

Therefore in the previous analysis [8, 15], MAC contigs with overlaps between non-consecutive MDSs were

excluded. In this thesis we study the overlapping patterns of MAC contigs.

Four data sets arise from the overlapping MDS sequences of MAC contigs in the ciliate Oxytricha trifal-

lax. The first data set D1 consists of the set of contigs used in the analysis of MAC and MIC contigs in [15].

The second data set D2 consists of MAC contigs from D1 that do not have the following two conditions:

having MAC contigs with non-consecutive MDSs that overlap in a MIC contig or the MAC contig is an

alternative fragmentation of a longer MAC contig [8]. We created a third data set, D3, which consist of

MAC contigs in D1 that are excluded from D2. We have that D2 and D3 are disjoint and their union is

D1.The data set D3 consists of 409 MAC contigs. From these 409 MAC contigs there are 120 MAC contigs

that have overlaps among their own non consecutive MDSs. These 120 MAC contigs make up the data set

D4. Data sets D1 and D2 have already been analyzed in [7, 8, 10, 15].

In the original data set D1 in [15] each MAC contig segment is given a name. For instance,

Contig14925.0 MDS is a name of one particular MAC contig. Each MDS is given coordinates where

the sequences begin and end in the MIC. The orientation of a MDS in the MIC is indicated as positive or

negative. If the direction of the MDS in the MIC agrees with the direction of the MAC then the orientation

is positive, and otherwise it is a negative orientation. Further explanation of the data is presented in Chapter

4.
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Chapter 3

Topological Data Analysis

Section 3.1 provides various examples of Topological Data Analysis (TDA) and the usefulness of TDA.

The remaining three sections of this chapter include background information and definitions that are key in

describing the persistence barcode results.

3.1 Motivation and Applications of Topological Data Analysis

Topological Data Analysis (TDA) uses topological constructs such as persistent homology to assess

shapes in various types of data [3, 12]. From a data set in Euclidean space, a simplicial complex is con-

structed. Persistent homology demonstrates various changes in the overall shape of the data which depends

on simplicial complexes for the corresponding radii of neighborhoods around each data point in the data set

[]. An ε- neighborhood of x, also called a ball of radius ε denoted Bε(x) in Euclidean space Rn, is defined

as

Bε(x) = {y ∈ Rn | d(x, y) < ε} .

There are different dimensions for homology groups. Zero dimensional homology refers to clusters of data

points. One dimensional homology represents non-trivial loops and two dimensional homology represents

hollow voids in Euclidean space [3, 13].

Persistent homology can be applied to various types of data ranging anywhere from movie plot text to

sports statistics and biological data [2, 14, 11]. Persistent homology can be used to determine if a sports

team is successful. An analysis of hockey players who spent a long duration on ice and 12 statistics of

each player were recorded such as goals, assists, setup passes, primary points, etc. in order to determine

the success of a team. According to Daniel Goldfarb’s analysis of hockey teams via persistent homology,

he found that hockey teams with long time 0-dimensional persistent homology and short or non-existent

1-dimensional persistent homology were successful [2]. This is because 0-dimensional homology is related

to clusters meaning that the players are diverse [2]. Goldfard stated that short lived 1-dimensional persistent
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homology means that the team has uniform distribution of qualities. He used 1-dimensional persistence ho-

mology when 0-dimensional homology did not provide enough information to compare differences between

teams [2]. Persistent homology can also be applied to analyze non-numerical data such as movie genre

classification. The hit rate and Jaccard index are both attained via the barcode graphs of the persistent ho-

mology data [11]. Persistent homology is used to analyze breast cancer rates via Betti number comparisons

[14]. The Betti number for the zero dimensional homology group is the number connected components [14].

Persistent diagrams are also used to analyze the characteristics between different types of cancers [14].

3.2 Chain Complexes and Homology

Homology is from the Greek word homologia meaning agreement. Homology describes the geometric

properties or shape of the space such as clusters, loops or hollow voids in low dimensions that we can

visualize [3, 14]. The following definitions follow along with Munkres literature on Algebraic Topology

[9].

Definition 3.2.1. Let {x0, x1, . . . , xn} be a collection of n+ 1 points in Euclidean space Rm, such that the

vectors x1−x0, . . . , xn−x0 are linearly independent. Then an n-simplex σ spanned by {x0, x1, . . . , xn} is

defined by σ = {x ∈ Rm | x =
∑n

i=0 aixi,
∑n

i=0 ai = 1 and ai ≥ 0 for all i}. The points {x0, x1, . . . , xn}

are called the vertices of σ.

Definition 3.2.2. Let σ be an n-simplex spanned by {x0, x1, . . . , xn}. A simplex spanned by a subset of

{x0, x1, . . . , xn} is called a face of σ.

Example 1. A 0-simplex is a single point in Euclidean space, a 1-simplex is an edge, a 2-simplex is a

triangle with its interior filled in, and a 3-simplex is a tetrahedron (see Figure 3).
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Figure 3. 3-simplex from [18]

Definition 3.2.3. A simplicial complex K in Rm is a collection of simplices in Rm such that

1. Every face of a simplex of K is in K.

2. For two simplices A and B in K the intersection is a face of both A and B.

Definition 3.2.4. Let σ be an n-simplex spanned by {x0, x1, . . . , xn}. Two orderings of {x0, x1, . . . , xn}

are equivalent if they differ by an even permutation. The orderings consist of two equivalence classes that

are called the orientations of σ. An oriented n-simplex is an n-simplex with its orientation specified and is

denoted by [x0, x1, . . . , xn] with the orientation specified by this order.

Definition 3.2.5. Let K be a simplicial complex in Rm . The n-th chain group denoted by Cn(K) is the

free abelian group generated by oriented n-simplices of K. Elements of Cn(K) are called n-chains. For an

oriented n-simplex σ, the same simplex with opposite orientation is identified with −σ.

Definition 3.2.6. Let [x0, . . . , xn] be an oriented simplex of a simplicial complex K in Rm, regarded as an

element of Cn(K). Define ∂n[x0, . . . , xn] by
∑n

i=0(−1)i[x0, . . . , x̂i, . . . , xn] ∈ Cn−1(K), where x̂i means

that the point xi is deleted. By linearly extending this map we obtain a homomorphism ∂n : Cn(K) →

Cn−1(K) which we call a boundary operator. It follows from the definition that ∂n−1 ◦ ∂n = 0 for all n.

Definition 3.2.7. The kernel of the homomorphism ∂n : Cn(K) → Cn−1(K) is called the n-cycle group

Zn(K). The image of the mapping ∂n+1 : Cn+1(K) → Cn(K) is called the n-boundary group Bn(K).

Note that ∂n−1 ◦ ∂n = 0 implies that Bn(K) ⊂ Zn(K).

Definition 3.2.8. The n-dimensional homology group is defined as the quotient groupHn(K) = Ker(∂n)
Im(∂n+1)

=

Zn(K)
Bn(K) .

7



3.3 Filtrations

Let K be a simplicial complex in RN . A function f : K → R is called a monotonic function for two

simplices, ϑ and σ of K, when ϑ is a face of σ we have that f(ϑ) ≤ f(σ). A subcomplex is a subcollection

of simplices from a simplicial complex which also forms a simplicial complex [14]. A subcomplex Ka of

a simplicial complex K is called the sublevel set and is defined as Ka = f−1(−∞, a]. The sequence of

subcomplexes that are arranged in an increasing inclusion ∅ = Ka0 ⊆ Ka1 ⊆ · · · ⊆ Kan = K is called a

filtration of a monotonic function f defined on the simplicial complex K [4].

Let P be a set of data points in RN and let K be the complete simplicial complex of the data points P. For

ε ≥ 0, a subcollection σ ={xi0 , . . . , xik} ⊂ P forms a simplex of Kε in the Čech filtration if ∩Bε(xis) 6= ∅

for all s = 0, 1, 2, . . . , k. For the Čech filtration we define a function f : K → R such that for a k-simplex

σ in K formed by {xi0 , . . . , xik} we have that f(σ) = min{r ≥ 0 | there is a point x ∈ RN such that

d(x, xis) < r for s = 0, . . . , k }. The Čech filtration is the sublevelset filtration on f and we have the chain

of inclusion maps: Kε0 ⊆ Kε1 ⊆ · · · ⊆ Kεn [14].

In the Vietoris-Rips filtration, for ε ≥ 0, a subcollection σ ={xi0 , . . . , xik} ⊂ P forms a simplex of Kε if

Bε(xis)∩Bε(xij ) 6= ∅ for all pairs xis and xij in σ [14]. For the Vietoris-Rips filtration we define a function

f ′ : K → R such that for a k-simplex σ formed by {xi0 , . . . , xik} we have that f ′(σ) = maxxis ,yij∈σ

{d(xis , xij )} [14]. The Vietoris-Rips filtration is the sublevel set filtration of our function f ′ and we have

the chain of inclusion maps: Kε0 ⊆ Kε1 ⊆ · · · ⊆ Kεn [14].

In the images below the simplices are shown in blue and the neighborhoods are the shaded red circles. As

ε increases the neighborhoods gradually get connected. In the left figure, there are 6 connected components

including four 2-simplices, and 1 non-trivial loop at this particular ε value. In the right figure, all the points

encompass a single component, and which is a higher dimensional simplicial complex.
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Figure 4. This is an example of a Vietoris-Rips filtration of a data set from [14].

In Section 4 the Vietoris-Rips filtration of the MAC contig distance vectors are computed using Ripser.

When we apply the Vietoris-Rips filtration to D4 = {x0, . . . , xn} we set K = K{x0,...,xm}.

3.4 Persistent Homology

Define Ki ↪→ Kj with i ≤ j to be an inclusion map of simplicial complexes and let f i,jn be such that

f i,jn : Hn(Ki)→ Hn(Kj) is a homomorphism induced from this inclusion map. The n-persistent homology

groups are Im(f i,jn ) of the map above for 0 ≤ i ≤ j ≤ n [4]. The term persistent in persistent homology

refers to the long range from birth and death of the images of f i,jn [4]. Typical elements of Hn are y + Bn

where y is an element from Zn. A class is a coset of Hn with the operation of the group being addition [4].

Let y be a class in the Im(f i,in ). The class y is born at Ki if y is not in Im(f i−1,in ). If the class y is born at

Ki it dies entering Kj if f i,j−1n (y) is not in Im(f i−1,j−1n ) but f i,jn (y) is in Im(f i−1,jn ) [4]. The difference

between birth and death values of a class is called persistence [4]. If a class never dies it can have an infinite

value of persistence [4].

9



Chapter 4

Description of the Data Set

There are two data sets of the ciliate Oxytricha trifallax that have been analyzed in [15] and [8]. The first

data set D1 consists of those MAC and MIC contigs analyzed in [15]. The second data set D2 consists of

MAC contigs from D1 that do not have the following two conditions: MAC contigs with non-consecutive

MDSs that overlap in a MIC contig, or the MAC contigs that are alternative fragmentations of longer MAC

contigs [8]. We considered a third data set,D3, which consists of MAC contigs inD1 that are excluded from

D2. We have that D2 and D3 are disjoint and their union is D1. Figure 5 shows how D3 is organized. The

columns in the data frame that are relevant to our analysis start at the third column. The data in the third

column of the figure corresponds to the MAC contigs name. In columns four and five each MDS is given

coordinates where the sequences begin and end in the MIC, denoted by s(MDSi) and e(MDSi), respectively.

The orientation of a MDS in the MIC is positive or negative and is present in column seven. If the direction

of the MDS in the MAC agrees with the direction in the MIC then the orientation is positive otherwise it is a

negative orientation. The program starts with 409 MAC contigs in D3 and identifies 120 MAC contigs that

have overlaps among their own non-consecutive MDSs. The data D4 consists of these 120 MAC contigs.

10



Figure 5. Preview of D3.

4.1 The MAC Contig Vector

We define a MAC contig vector for each MAC contig inD4 as follows. LetAn be the n-th MAC contig in

D4 where n = 1, . . . , 120. First we will introduce some useful notation and the definitions of the numerical

properties used in the construction of the MAC contig vector V (An).

Let s(MDSi) denote the starting coordinate position of the i-th MDS within a MIC contig and e(MDSi)

be the ending coordinate position of the i-th MDS in the MIC contig. The starting and ending coordinates

of MDSs for each MAC contig are listed in columns 4 and 5 in D3. An overlap in the MIC between two

MDSs, MDSi and MDSj , within the same MAC contig is denoted by O(MDSi,MDSj) is defined as:

O(MDSi,MDSj) = |min{e(MDSi), e(MDSj)} −max{s(MDSi), s(MDSj)}|+ 1.

Two MDSs, MDSi and MDSj are said to be overlapping if O(MDSi,MDSj) > 0.

Let ℘(An) := {(MDSi,MDSj) | i < j, O(MDSi,MDSj) > 0} be defined as the set of overlapping

pairs and define P (An) = |℘(An)| to be the number of overlapping MDS pairs.Since we have that if MDSi

and MDSj are an overlapping MDS pair then so are MDSj and MDSi, this condition i < j guarantees that

11



overlapping MDS pairs are not double counted. Let

S(An) :=
∑

(MDSi,MDSj)∈℘(An)

(O(MDSi,MDSj))

be the sum of the lengths of the overlapping segments of the pairs in ℘(An).

For each MAC contig An, if An consists of MDSs {MDS1, . . . ,MDSk}, then define N(An) = k to be

the total number of MDSs that comprise that particular MAC contig An. For a distinct pair, MDSi and

MDSj , the gap of the MDSs, g(MDSi,MDSj), is defined as follows:

g(MDSi,MDSj) =


|i− j| − 1 if sign(MDSi) = sign(MDSj);

|i− j| if sign(MDSi) 6= sign(MDSj),

(4.1)

where sign(MDSi) represents the orientation of the MDSi in the MIC. We consider the gaps only for

overlapping pairs. The gap value between two MDSs counts the number of MDSs that have been skipped

over in the MAC contig. Let

G(An) :=
∑

(MDSi,MDSj)∈℘(An)

g(MDSi,MDSj)

where the sum is taken over all overlapping MDS pairs of the MAC contig An for i < j. Let

l(MDSi) := |s(MDSi)− e(MDSi)|+ 1

be the length of a particular MDS and define

L(An) :=
∑
i

(l(MDSi)).

This is an approximate length of the MAC contig. Gaps can take the values 1, 2, . . . ,m− 1. The sum of all

possible gaps is
i=m−1∑
i=1

i =
m(m− 1)

2
=

(
m

2

)

with m = N(An).
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Figure 6. The figure above corresponds to an example of one MAC contig consisting of four labeled with

MDSs [21]. There is an overlap between MDS2 and MDS4 in the MIC. The negative sign indicates an

opposite orientation of MDS4 in the MIC relative to the other MDSs. Using the formulas described above,

g(MDS2,MDS4) = 2. There is only one overlapping MDS pair for this particular MAC contig so we have

that G(An) = 2. The total number of MDSs is four so N(An) = 4 and
(
4
2

)
= 6. Therefore we have that

v2(An) =
2

6
.

A vector V (An) := (v1(An), v2(An), v3(An)) ∈ R3 is defined for each MAC contig An as the follows:

v1(An) :=
P (An)

N(An)
, v2(An) :=

G(An)(
m
2

) and v3(An) :=
S(An)

L(An)
.

4.2 The Vietoris-Rips Persistence Barcodes

From the data set D4 containing the 120 MAC contigs we computed the distance matrix M = (dij) that

consists of the distance between each pair of the 120 MAC contig vectors V (An). We used Ripser, a C++

based software to compute Vietoris-Rips persistence barcodes [20]. In the 0-dimensional case, starting from

the bottom of the barcode graph, we find that a particular MAC contig has the shortest lifespan. This means

that for small a ε, d(V (Ai), V (Aj)) < 2ε and the vectors V (Ai) and v(Aj) are regarded as being merged

to the same component. As ε increases we see that there is a progressive increase in the lifespan of the

MAC contig vectors. For ε = 0.1 there are 10 connected components. All of the components are connected

at ε ≥ 0.175. The 0-dimensional homology group geometrically corresponds to clusters of MAC contigs.

Most of the loops representing non-trivial elements in the 1-dimensional homology group appeared in the

range of ε = 0.04 to ε = 0.1. There are two loops appearing at ε = 0.15 and ε = 0.19 that persistent. There

is one hollow void representing a non-trivial element in the 2-dimensional homology group for ε = 0.059

with a short persistence.
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Figure 7. 3D vector plot of the 120 MAC Contig Vectors.
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Figure 8. Persistent intervals in dimension 0 [20].
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Figure 9. Persistent intervals in dimension 1 [20].

Figure 10. Persistent intervals in dimension 2 [20].
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Chapter 5

Conclusion

We analyzed patterns of unorthodox overlapping gene segments in Oxytricha trifallax using topological

data analysis (TDA). We obtained a data set D4 consisting of 120 MAC contigs that have overlapping

MDS pairs in the MIC contig. From the Vietoris-Rips barcode analysis of our 120 MAC contigs for the

0-dimensional homology group, for example, we found that there are 10 connected components for ε = 0.1.

The zero-dimensional homology group geometrically corresponds to MAC contig clusters. The number of

clusters reduces to 5 at ε = 0.12. Most of the loops in the simplicial complexes for the 1-dimensional

homology group appeared in the range of ε = 0.04 to ε = 0.1. There are two loops appearing at ε = 0.15

and ε = 0.19 that are persistent while all of the components in the 0-dimensional homology group are

merged after approximately ε = 0.175. There is one barcode for ε = 0.059 for the 2-dimensional homology

group that has a short persistence. The presence of non-trivial homology groups implies that the distribution

of V (An) is not uniform, which can be observed in Figure 8. Now other TDA methods such as dendogram

analysis can be applied to our Vietoris-Rips filtration to further identify how many and which MAC contigs

appear in each cluster, thus giving further insight into the patterns of unorthodox overlapping gene segments

in Oxytricha trifallax.
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Appendix A

In appendix A we have included the Python scripts used in the calculation of the 120 MAC con-

tig vectors V (An) and the distance matrix, consisting of the distances between each pair of the 120

MAC contig vectors V (An). The vector (v1(An), v2(An), v3(An)) are labeled as entry1, e2 and e3

respectively in the Python script.

This first block of code calculates vector entry1.

import pandas as pd

import numpy as np

df0=pd.read_csv("df0.csv", index_col=0)

d={}

d1={}

d2={}

d3={}

D=[]

Dprime=[]

GHI=[]

count={}

gap={}

for contig_num_MDS in df0["contig_num_MDS"]:

d[contig_num_MDS]=[]

#This is initiation of a empty dictionary.

for index, row in df0.iterrows():

if index != 0:
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d[row["contig_num_MDS"]].append

(int(row["name"].split("_")[2]))

#The code above is pulling

#the index values the "i"

#of a each MDS corresponding each MAC contig.

#For example, if there are three MDSs for

#one MAC contig it would pull numbers 1,2 and 3.

#and putting them into a list.

#d is a dict consist of mac contig names

#and list(i’s) value as the value of

#the dictionary d.

Rs2=[]

for name,highest_mds_num in d.items():

mds=[(name, max(highest_mds_num))]

v=list(mds)

Ts2=[]

for tups in v:

Ts2.append(tups)

Rs2.append(tups)

#Note this just gives a

#list of tuples consisting of

#( MAC contig name, highest

#index "i" )

#with respect to all of the

#indices for that

#MAC contig.

#print(Rs2)

#print(dict(Rs2)) #This is the

#number of MDSs per mac contig name

#which is the denominator of vector
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#entry 1.

bla=dict(Rs2)

for contig_num_MDS in df0["contig_num_MDS"]:

d1[contig_num_MDS]=[]

for index, row in df0.iterrows():

if index != 0:

d1[row["contig_num_MDS"]].append

((row["contig_num_MDS"],

int(row["col4start"]),

int(row["col5end"]),

index,

int(row["name"].split("_")[2]),

row["orientation"]))

#print(len(d1)) #Note that the length of d1 is #409

#since there are 409 unique mac contig names.

for contig_num_MDS in d1:

for mds_1 in d1[contig_num_MDS]:

for mds_2 in d1[contig_num_MDS]:

if mds_1 != mds_2:

if min(mds_1[2],mds_2[2])

-max(mds_1[1],mds_2[1])+1 > 0:

Printstuffred=mds_1[5] ==

mds_2[5]

and mds_1[4]-

mds_2[4] == 1

and mds_1[1] <

mds_2[1]

and

mds_1[5] =="-"

#mds_1 and mds_2 are
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#consecutive

#mds_1= i+1 starts

#before mds_2 = i

#both orient neg

Printstuffblue=

mds_1[5] == mds_2[5]

and mds_1[4]-

mds_2[4] == 1

and mds_1[1] >

mds_2[1]

and

mds_1[5] == "+"

#same orientation

#mds_1 and mds_2

#are consecutive

#mds_1= i+1 starts

#after mds_2 = i

#both orient pos

if not Printstuffred

and not Printstuffblue:

c=(mds_1,mds_2),

min(mds_1[2],mds_2[2])-

max(mds_1[1],mds_2[1])+1

#"contig_num_MDS length of overlap

#between mds pairs"

#print(mds_1,mds_2,

min(mds_1[2],mds_2[2])-

max(mds_1[1],mds_2[1])+1)

L=list(c)

B=[]
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C=[]

for element in L:

B.append(element)

C.append(element)

D.append(B)

#print(D)

#D is a list of list

#consisting of overlapping MDS pairs.

inpud={lst[0]:lst[1] for lst in D}

#print(inpud)

inpud2 = {v: k for k, v in inpud.items()}

#exchange keys, values

inpud = {v: k for k, v in inpud2.items()}

#exchange again

#print(inpud)

#Note that ipud now is a dictionary

#with distinct overlapping MDS pairs

#as keys and the overlapping values between

#the MDS pair as values of the dictionary.

#(Note the three different dictionary operations

#starting with inpud -> inpud2 -> inpud are

#absolutely necessary since

#we have double counting with MDS overlapping #pairs.So those

#three dictionary operations get rid of the #double counting.

#Now I need to get the number of

#overlapping pairs per name.

from collections import Counter

count=Counter(key[0][0] for key in inpud.keys())

#print(dict(count))

#This converts
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#Counter({’Contig8398.0_MDS’:3,

#’Contig18264.0_MDS’:1}) to just inside.

#dict(count) above counts the number

#of overlapping MDS pairs per MAC contig.

entry1={k: float(count[k])/bla[k] for k in count}

#This is number of overlapping MDS pairs / the #number of MDSs

#which is recorded for each of the 120 MAC contigs.

This second block of code demonstrates the calculation of the second vector entry.

#Now inpud has the overlapping MDS pairs as

#keys in the dictionary. Now to

#iterate over the pairs:

for key in inpud.keys():

list(key)

ABC=[]

DEF=[]

for element in list(key):

#This is taking the

#overlapping pairs #(lists)

#and putting them into a list of lists.

ABC.append(element)

DEF.append(element)

GHI.append(ABC)

#print(GHI) #GHI is a list

#of list of overlapping MDS pairs.

#Now I need to compute the

#absolute value of i minus j

#and subtract 1

#if the signs are equal.

#Otherwise if the signs

#differ then it’s just the
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#absolute value of i minus j.

#Then we take

#the sums of all computations.

#These computations above are computing the gaps #for each MAC contig.

#The i and the j correspond to the indices of the #overlapping MDS pair.

#This is done for each of the 120 MAC contigs.

U=[]

K=[]

#A Gap for a mac contig is

#computed by take sum of abs(i-j)-1.

#If the signs equal each other.

A=([[(x[0],x[4],x[5]) for x in el] for el in GHI])

#This is taking the

#(MAC contig name,i value,sign)from GHI

#print(A)

E=dict([(y,z) for y,z in A])

#E is a dictionary with the key

#and values as the overlapping MDS pairs.

#Each key and value is an overlapping MDS pair.

#print(E)

for tup1,tup2 in E.items():

if tup2[2]==tup1[2]:

#If the signs for mac contigs

#equal each other...

a=(tup1,tup2,abs(tup1[1]-tup2[1])-1)

#This is the pair of overlapping

#MDS pairs and computation.

list(a)

#This is a list of list

#of the pair of
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#overlapping MDS pairs

#and computation.

#print(list(a))

F=[]

G=[]

for element in list(a):

F.append(element)

G.append(element)

U.append(F)

#print(U)

for tup1,tup2 in E.items():

if tup2[2]!=tup1[2]:

#If the signs for mac contigs

#do not equal each other...

b=(tup1,tup2,abs(tup1[1]-tup2[1]))

#This is the pair of

#overlapping MDS pairs

#and computation.

list(b)

#This is a list of list of the

#pair of overlapping MDS pairs

#and computation.

#print(list(b))

H=[]

J=[]

for element in list(b):

H.append(element)

J.append(element)

K.append(H)

#print(K)
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W=K+U

#print(W)

q={listz[0]:listz[2] for listz in W}

#q is a dictionary consisting

#of a tuple and computation value

#including the mac contigs name.

#It didn’t matter

#which one we pulled from W

#we just needed it to be able to

#pull out the MAC contig name for the key.

#The value is from the computation.

#Note the computation does not

#include the sum of gaps yet!

#No Sum has been taken yet.

#print(q)

s={}

M=[]

for x,y in q.items():

s.setdefault(x[0],[]).append(y)

#print(s) #s is a dictionary

#combining all index values so that a sum

#can be taken over it if the MAC contig name

#has more than one index.

#Now we need to sum up the values.

#I.e. we need to sum up the value=lists

#here in s.

for k,v in s.items():

result=(k,sum(v))

#This is the sum of the gaps

#for the second coordinate entry of the vector.
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list(result)

Z=[]

V=[]

for element in list(result):

Z.append(element)

V.append(element)

M.append(Z)

#print(M)

#We have a list of list of sum

#of the gaps per MAC contig.

#print({listz[0]:listz[1] for listz in M})

#This code takes list of lists

#and converts the inner list

#into direct dictionary entries

#to make a dictionary.

#This is entry2 the result

#for the second entry of our vector

#it is the sum of the gaps per MAC contig name.

entry2={listz[0]:listz[1] for listz in M}

#This is the dictionary that is the

#sum of the gaps.

print(entry2)

#NOW we need sum of gaps/(n*(n-1)/2)

#where n is the number of MDSs per MAC contig #name.

#This modification is as of feb 1st.

en=({k: (v*(v-1))/2 for k,v in bla.items()})

#This is the denomiator v*(v-1)/2 for v

#being the number of MDSs.

print(en)

print({k: float(entry2[k])/en[k] for
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k in entry2})

entry22=print({k: float(entry2[k])/en[k]

for k in entry2})

#This is the sum of the

#gaps/v*(v-1)/2 where v is the # MDSs.

#print bla=(dict(Rs2)) #This is the

#number of MDSs per MAC contig name the denominator of vector entry 1.

This last block of code computes the third vector entry and the distance matrix.

#Below involves the computation of vector entry 3.

#This is entry 3:

#total number overlapping MDS pairs/

#(total length of the MAC contig) which is approximately equal to

# =(sum(length of overlap between MDS pairs)/

# the sum of length of MDSs.

#Below is computing the sum of overlap between

#the MDS pairs.

#inpud is a dictionary consisting

#of overlapping MDS pair as the key

#and overlapping value of the pair as the value.

print(inpud)

#Now i need to get all overlaps

#together per MAC contig name in a list

#to be able to sum the length.

s2={}

M2=[]

for x,y in inpud.items():

s2.setdefault(x[0][0],[]).append(y)

print(s2)

#s2 is a dictionary consisting

#of MDS overlap pair mac contig name
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#and length of overlap per that MAC contig name

#and the sums of overlap per MAC contig name as

#the value in a list format now.

#We need to sum the list.

for k,v in s2.items():

result=(k,sum(v))

list(result)

Z2=[]

V2=[]

for element in list(result):

Z2.append(element)

V2.append(element)

M2.append(Z2)

print(M2)

print({listz[0]:listz[1] for listz in M2})

#This code takes list of lists and converts

#the inner list into direct dict entries to

#make a dict.

#This last print statement above is the

#numerator of entry3.

z={listz[0]:listz[1] for listz in M2}

#Now we need to compute the sum of the

#length of MDSs so below we do :

d3={}

for contig_num_MDS in df0["contig_num_MDS"]:

d3[contig_num_MDS]=[]

#This is initiation of a dictionary.

for index, row in df0.iterrows():

#This is taking rows from df0 and

#putting specific things into dictionary d3.
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if index != 0:

d3[row["contig_num_MDS"]].append

((row["contig_num_MDS"],

abs(int(row["col4start"])-

int(row["col5end"]))+1))

print(d3)

#Note d3 consist

#of abs(start-end)+1 per contig name

#(i.e for each row in df0).

#This code below compute the sum of

#all such rows per name.

v4=[]

for value in d3.values():

#print(value)

#print({value[0][0]:sum(num[1]

for num in value)} )

#is mac contig name

v1=[(value[0][0],

sum(num[1] for num in value))]

v2=list(v1)

print(v2)

v3=[]

for element in v2:

v3.append(element)

v4.append(element)

print(v4)

#v4 is just a list with mac contig names

#and the sum of length of MDS for that name.

y=dict(v4)

print(y)
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x={k: float(z[k])/y[k] for k in z}

#This is calculating sum of length

#of overlap between MDS pairs

#/sum of lengths of MDS.

print(x)

import pandas as pd

import numpy as np

G3=[]

G4=[]

entry1={k: float(count[k])/bla[k] for k in count}

e2={k: float(entry2[k])/en[k] for k in entry2}

e3={k: float(z[k])/y[k] for k in z}

df=pd.DataFrame.from_dict(entry1,

orient=’index’, dtype=None,

columns=["entry1"])

#df=pd.DataFrame.from_dict(entry1,

orient=’columns’, dtype=None,

columns=None) #

#print(df)

#b=pd.DataFrame.from_dict(entry2,

orient="index", columns=["entry2"])

df["entry2"]=pd.Series(e2)

#print(df)

df["entry3"]=pd.Series(e3)

print(df)

#Note the df below indicates

#the 3 different vector entries.

c1=[tuple(x) for x in df.to_records(index=True)]

#print(tup1[0])# tup1[0]= name, name1, name2,name3

for tup1 in c1:
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for tup2 in c1:

if tup1[0]!=tup2[0]:

#b=(((tup2[1]-tup1[1])*

(tup2[1]-tup1[1])+((tup2[2]-tup1[2])*

(tup2[2]-tup1[2]))+((tup2[3]-tup1[3])*

(tup2[3]-tup1[3])))**0.5)

#print(((tup1[0],tup2[0]),

((tup2[1]-tup1[1])*(tup2[1]-tup1[1])+

((tup2[2]-tup1[2])*(tup2[2]-tup1[2]))+

((tup2[3]-tup1[3])*

(tup2[3]-tup1[3])))**0.5))

a3=([tup1[0],tup2[0],

((tup2[1]-tup1[1])*(tup2[1]-tup1[1])+

((tup2[2]-tup1[2])*(tup2[2]-tup1[2]))+

((tup2[3]-tup1[3])*

(tup2[3]-tup1[3])))**0.5])

#This is a list of distance tuples.

#list(a3)

E4=[]

C14=[]

for element in list(a3):

#This can be used again to get

#the sum(of lengths of overlap between the pairs

#where list(a)=list(c) in our case we’re

#appending each overlap values to get

#the pair of lists of lists this

#is going to be new G.

E4.append(element)

C14.append(element)

G4.append(E4)
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print(G4)

#G4 is a list of list

#of distance tuples i.e.

#the distances between

#each MAC contig vector.

#Now I am putting G4 our list

#of list of distance tuples

#into a pandas df below:

#note d(name, name)=0 so in order to

#avoid duplicate info I set that

#to zero manually with fillna 0 line.

df = pd.DataFrame(G4, columns=["a","b","c"])

#print(df) #a is the mac contig name ,

#b is the mac contig name and c is the distance between them.

df.set_index("a",inplace=True)

df1=df.pivot_table(index=’a’, columns=’b’, values=’c’,

fill_value=’’)

#print(df1)

df1.replace(’’, np.nan, inplace=True)

#print(df1)

df1.fillna(0, inplace=True)

#print(df1)

points=df1.values

print(points)

#points is a 2D-array used for rips.

#distancematrix = pd.DataFrame(points)

distancematrix1 = pd.DataFrame(points)

#This coverts the 2D

#array into a pandas df in order

#to save to a csv to run in Rips.
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#print(distancematrix1)

distancematrix1.to_csv("distancematrix1.csv", header=None,

index=False)

Table 1: The MAC Contig Vector Entries

entry1 entry2 entry3

Contig7253.0 MDS 0.08333333333333333 0.030303030303030304 0.06265206812652069

Contig8398.0 MDS 0.2 0.2 0.25101214574898784

Contig9546.0 MDS 0.2 0.022222222222222223 0.020229265003371546

Contig6340.0 MDS 0.05263157894736842 0.09941520467836257 0.0003303600925008259

Contig20.1 MDS 0.47058823529411764 0.07352941176470588 0.1630960608154803

Contig732.0 MDS 0.05263157894736842 0.002844950213371266 0.02123705866737457

Contig3.1 MDS 0.1956521739130435 0.19710144927536233 0.27379606601853945

Contig225.0 MDS 0.0625 0.09166666666666666 0.06434599156118144

Contig346.0 MDS 0.25 0.0 0.022388059701492536

Contig2582.0 MDS 0.15 0.02631578947368421 0.09024211298606016

Contig3295.0 MDS 0.013513513513513514 0.0022213994816734544 0.020671834625323

Contig635.0 MDS 0.24324324324324326 0.16066066066066065 0.18451498071788786

Contig75.1 MDS 0.3111111111111111 0.22626262626262628 0.2871299707788083

Contig4777.0 MDS 0.3333333333333333 0.1503267973856209 0.10127931769722814

Contig12898.0 MDS 0.17647058823529413 0.0 0.008908685968819599

Contig12633.0 MDS 0.2 0.08888888888888889 0.15670684790972045

Contig1463.1 MDS 0.2222222222222222 0.27952480782669464 0.32639593908629444

Contig1113.1 MDS 0.3125 0.11666666666666667 0.21302285467874083

Contig3658.0 MDS 0.19230769230769232 0.11692307692307692 0.10903614457831326

Contig4797.0 MDS 0.030303030303030304 0.013257575757575758 0.004217432052483599

Contig10518.0 MDS 0.25 0.1 0.11644859813084112

Contig1807.0 MDS 0.012195121951219513 0.0 0.01132835445162373

36



Table 1 continued from previous page

Contig8270.0 MDS 0.0967741935483871 0.008602150537634409 0.0750164923192913

Contig1240.0.2 MDS 0.25 0.3 0.28554107305244014

Contig6856.0 MDS 0.0625 0.11666666666666667 0.00034782608695652176

Contig13850.0 MDS 0.2222222222222222 0.0 0.06818181818181818

Contig3653.0 MDS 0.3333333333333333 0.4 0.11528934924566539

Contig6202.0 MDS 0.3076923076923077 0.11538461538461539 0.2336740488358887

Contig11515.0.1 MDS 0.11764705882352941 0.058823529411764705 0.05289672544080604

Contig8494.0 MDS 0.2727272727272727 0.10909090909090909 0.29247515380974914

Contig8059.0 MDS 0.11764705882352941 0.10294117647058823 0.11974891356832448

Contig7210.0 MDS 0.4 0.08888888888888889 0.14128256513026052

Contig3631.0 MDS 0.125 0.03260869565217391 0.12411347517730496

Contig706.0 MDS 0.14285714285714285 0.19047619047619047 0.29656040268456374

Contig14704.0 MDS 0.25 0.0 0.021026072329688814

Contig1491.0 MDS 0.043478260869565216 0.003952569169960474 0.017398684489709316

Contig3550.0 MDS 0.125 0.06666666666666667 0.04030479246039703

Contig4620.0 MDS 0.1875 0.06666666666666667 0.07370892018779343

Contig10925.0 MDS 0.021739130434782608 0.007729468599033816 0.0352882703777336

Contig10119.0.1 MDS 0.3 0.08888888888888889 0.2594782608695652

Contig849.0 MDS 0.125 0.0 0.18954641033343347

Contig3400.0.0 MDS 0.125 0.0 0.0010506960861570791

Contig5949.0 MDS 0.125 0.03571428571428571 0.012171684817424727

Contig663.1 MDS 0.15 0.09473684210526316 0.15719144800777454

Contig15402.0 MDS 0.25 0.16666666666666666 0.07902439024390244

Contig4296.0 MDS 0.1875 0.016666666666666666 0.13539823008849558

Contig16750.0 MDS 0.21052631578947367 0.15789473684210525 0.11405759908753921

Contig4233.0 MDS 0.3333333333333333 0.10476190476190476 0.17520325203252032

Contig8394.0 MDS 0.13333333333333333 0.0761904761904762 0.08312400091345055

Contig334.0 MDS 0.1875 0.05 0.23861029170763684

Contig3972.0 MDS 0.06666666666666667 0.009195402298850575 0.0638682252922423
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Table 1 continued from previous page

Contig5277.0 MDS 0.046511627906976744 0.008859357696566999 0.0706896551724138

Contig10027.0 MDS 0.043478260869565216 0.003952569169960474 0.0535224153705398

Contig8403.0 MDS 0.14285714285714285 0.09523809523809523 0.2530541012216405

Contig8215.0 MDS 0.14285714285714285 0.08791208791208792 0.16754270696452037

Contig19703.0 MDS 0.16666666666666666 0.06666666666666667 0.028079132099553285

Contig1046.1 MDS 0.13043478260869565 0.04743083003952569 0.12485578771952313

Contig6626.0 MDS 0.5 0.5333333333333333 0.3277706461275139

Contig3060.0 MDS 0.15789473684210525 0.011695906432748537 0.10215154349859681

Contig1488.0 MDS 0.5 0.17857142857142858 0.12335746849021186

Contig10852.0 MDS 0.2 0.1111111111111111 0.11242093156986774

Contig4341.0 MDS 0.10526315789473684 0.023391812865497075 0.11378205128205128

Contig13923.0 MDS 0.2 0.17777777777777778 0.27200902934537247

Contig6242.0 MDS 0.1875 0.175 0.16586643387167177

Contig5986.0 MDS 0.2 0.08888888888888889 0.2262582056892779

Contig1089.0.5 MDS 0.2727272727272727 0.2857142857142857 0.2522338524380904

Contig1085.0 MDS 0.0625 0.025 0.08602639963586708

Contig6730.0 MDS 0.14285714285714285 0.10989010989010989 0.09653465346534654

Contig19574.0 MDS 0.09375 0.12701612903225806 0.15598290598290598

Contig11791.0 MDS 0.16666666666666666 0.06666666666666667 0.14636913767019666

Contig7358.0 MDS 0.3333333333333333 0.16666666666666666 0.23771790808240886

Contig7030.0 MDS 0.07692307692307693 0.01282051282051282 0.0599250936329588

Contig2948.0 MDS 0.5 0.4090909090909091 0.37209302325581395

Contig1137.0 MDS 0.07692307692307693 0.038461538461538464 0.08987752161383285

Contig11433.0 MDS 0.09090909090909091 0.0 0.005764796310530361

Contig6260.0 MDS 0.42857142857142855 0.42857142857142855 0.2944489139179405

Contig889.1 MDS 0.12 0.03 0.23060884070058382

Contig2133.0 MDS 0.07692307692307693 0.08974358974358974 0.10714285714285714

Contig3849.0 MDS 0.041666666666666664 0.013297872340425532 0.06024699599465955

Contig7365.0 MDS 0.18181818181818182 0.14545454545454545 0.2797266514806378
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Table 1 continued from previous page

Contig13810.0 MDS 0.25 0.21428571428571427 0.2501141031492469

Contig13175.0 MDS 0.1 0.06666666666666667 0.10916334661354582

Contig13330.0 MDS 0.125 0.07142857142857142 0.15952773201537618

Contig1822.0.0 MDS 0.18181818181818182 0.01818181818181818 0.05004389815627744

Contig597.0 MDS 0.125 0.17857142857142858 0.2746858168761221

Contig795.1 MDS 0.16666666666666666 0.06060606060606061 0.1655975291043003

Contig705.1 MDS 0.2857142857142857 0.26373626373626374 0.4111111111111111

Contig3929.0 MDS 0.03225806451612903 0.008602150537634409 0.04137097991846595

Contig11408.0 MDS 0.25 0.16666666666666666 0.23061786698150336

Contig118.0 MDS 0.16666666666666666 0.13333333333333333 0.43951367781155015

Contig20706.0 MDS 0.2 0.3 0.004182642035552457

Contig3281.0 MDS 0.05555555555555555 0.026143790849673203 0.06402353600448304

Contig7189.0 MDS 0.07692307692307693 0.01282051282051282 0.020007020007020006

Contig524.1 MDS 0.18181818181818182 0.2545454545454545 0.313953488372093

Contig2156.0.1 MDS 0.5 0.4 0.4615568862275449

Contig764.0 MDS 0.375 0.32142857142857145 0.4534842589317297

Contig649.0 MDS 0.05714285714285714 0.010084033613445379 0.0802675585284281

Contig2477.0 MDS 0.08695652173913043 0.06324110671936758 0.15359741309620048

Contig6256.0 MDS 0.09090909090909091 0.01818181818181818 0.12161115414407436

Contig6633.0 MDS 0.09090909090909091 0.03463203463203463 0.09093721002165171

Contig13154.0 MDS 0.2 0.2 0.43531694695989653

Contig3582.0 MDS 0.125 0.10714285714285714 0.1951861602106055

Contig15276.0 MDS 0.23076923076923078 0.19230769230769232 0.23752569613156418

Contig16535.0 MDS 0.125 0.07608695652173914 0.2006015733456733

Contig8451.0 MDS 0.2857142857142857 0.14285714285714285 0.06251662676243681

Contig2461.0 MDS 0.2 0.3 0.0650730411686587

Contig47.0 MDS 0.08333333333333333 0.06060606060606061 0.10613751730503

Contig7825.0 MDS 0.16666666666666666 0.13333333333333333 0.16865742952699475

Contig2213.0 MDS 0.04878048780487805 0.03414634146341464 0.10943667025475422
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Contig14316.0 MDS 0.18181818181818182 0.18181818181818182 0.15273095077545515

Contig4928.0 MDS 0.09523809523809523 0.06666666666666667 0.1147594278283485

Contig738.1 MDS 0.08333333333333333 0.045454545454545456 0.11706349206349206

Contig1827.0 MDS 0.18181818181818182 0.09090909090909091 0.23387703889585948

Contig1880.0 MDS 0.375 0.17857142857142858 0.25384122919334184

Contig20128.0 MDS 0.07692307692307693 0.01282051282051282 0.07802469135802469

Contig347.1 MDS 0.09523809523809523 0.009523809523809525 0.13762057877813505

Contig5740.0 MDS 0.09523809523809523 0.014285714285714285 0.11893369788106631

Contig4952.0 MDS 0.2857142857142857 0.38095238095238093 0.2961658841940532

Contig11320.0 MDS 0.25 0.07142857142857142 0.142518837459634

Contig14221.0 MDS 0.21428571428571427 0.06593406593406594 0.17099923220357574
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