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Abstract

The goal of this study is the recovery of functions and finite parametric distributions from their
spherical means over spheres and designing a general formula or algorithm for the reconstruction of
a function f via its spherical mean transform. The theoretical study is and supported with anumer-
ical implementation based on radar data. In this study we approach the reconstruction problem in
two different way. The first one is to show how the reconstruction problem could be converted to a
Prony-type system of equations. After solving this Prony-type system of equations, one can extract
the parameters that describe the corresponding functions or distributions efficiently. The second

way is to solve this problem via a backprojection procedure.



Chapter 1

The Inverse Transform Problem

1.1 Overview

Given a function i on RT = [0,00) and a fixed integer n > 0, the problem is to recover signals

f :R™ — R of the form

k
F) =Y a(ly — vil), i € R", 0 e R\{0}, 1<i<k, (1.1)

i=1

from the spherical mean transform. We also recover the signals f of the form

k
FW) = aidy,(y),vi € R",a; € R\{0}, 1<i<k, (1.2)
i=1

where 4y, is the delta function supported at y;. We also examine the case when the support of f consists
not only of points, but also hyperplanes.

Functions and measures of the types (1.1) and (1.2) are used in various scientific areas, such as com-
puterized tomography, bio-imaging, signal processing [6, 24, 25] and in a variety of mathematical areas
like integral geometry, inverse problems, and approximation theory [3, 7, 23, 28]. Specifically, the prob-
lem discussed here is finding a general formula or algorithm to reconstruct a function f on R", from its
spherical mean transform.

Since every sphere in R" is characterized by its center point s € R™ and radius 0 < r, the set of all
spheres in R" is n + 1 dimensional. Thus, the reconstruction problem from spherical means is overde-
termined, since R™ is n dimensional. Hence, a restriction of the domain of definition of the spherical
mean transform has to be implemented to arrive at a well-posed problem. Generally, the spherical mean
transform is restricted to a set of the form I' x R™, where I is a hypersurface in R™, as an assumption.

The reconstruction problem for a function from spherical mean transform (SMT) which is restricted to
such family of sets shows up in various useful areas such as hybrid imaging tomography (thermoacous-

tic and photoacoustic), radar imaging, integral geometry, inverse problem for PDE, and approximation



theory [1-3, 6, 9, 10, 15, 16, 31, 36]. During the last century, the problem of reconstructing a function
from its SMT was studied in different cases where I' is a quadratic hyper surface [2, 9, 10, 15, 16, 21],
a plane [5], or a cylinder [36]. In all of the above attained results, except for some smoothness and
support conditions, there is no assumption that these functions need to be recovered. However, as all the
functions considered are of the form (1.1), they can be indexed by a finite set of parameters. Therefore,

to gain a well-posed problem, we need to restrict the set I to a discrete subset [31].

REMARK 1 Since every function f of the form (1.1) depends on finite set of parameters, it should be
observed that the set T’ x RT is one dimensional,where T is discrete. It should also be observed that the
discrete set of radii could not be restricted. On the contrary, reconstruction procedure of the function f
may change based on the function h. Since the set of radii is discrete, it can be said that the sphere set
defined on spherical mean transform is at most countable. For this situation, choosing a small enough
function h whose support is close to the origin, and any of the spheres of the integration not intersecting

the support of f, it is impossible to reconstruct the function f [31].

The results of this study suggest that the reconstruction of a signal f of the form (1.1) or (1.2) is
possible if the set I' of centers of the spheres of integration comprises sufficiently many points. The
main point of these results is to convert the reconstruction problem to a nonlinear Prony’s type system of
equations. In order to solving the Prony’s system, it is assumed that the amplitudes of f at y1, ..., ys, are
mutually distinct. Thus, the solutions to the Prony’s system’s could be used to obtain information about
distances between the points in I' and the translations z1, ..., 25 [31, p.438]. Based on this information,
one can obtain the points ¥y, ..., ys and the amplitudes z1, ..., z, that describe the signal f.

In this study, we first give a brief description for spherical mean transform generally for distributions
and start to reconstruct signals of the form (1.2). Then we indicate how to modify the reconstruction
method for recovering signals of the form (1.1).Additionally, we will discuss how to reduce the spherical
mean transform to a regular Radon transform and then give a numerical implementation by using cap-
tured radar images. In the last chapter, we will discuss the Regional Attenuation Correction using Radon

transform and two reconstruction techniques.



Chapter 2

Integral Mean Transforms

2.1 Mathematical Background

Let R” be the n dimensional Eucledian space, S"~! is the unit sphere in R”, and R™ is the ray [0,00).

Let 82_2 be n — 2 dimensional great subsphere in S” ! that is perpendicular to ¢ where ¢ € S*~1:
-2 _ ~1. _
Sy ={yes" iy p=0}

where - is the usual scalar product on R".

Let j, be the normalized Bessel function, that is j, () = 0~“J,(#), where J,, is the Bessel function:

Jo =30 %(%)2”0‘ for every order o > 0

Let Cf; be the Gegenbauer polynomial of order § > 0 and non-negative degree m on [-1,1] :
C(s) = Tocicy Ttntamtiar (25"~
For 6§ = 0, this polynomial intersect with the Chebyshev polynomial denoted by 7, :
CY (5) = Tpn(s) := cos(m arccos(s)).
By [35] for every # > 0, {C?, _q 1s orthogonal with respect to the

< f,h>= [T F(s)h(s)(1 = %)~ 2ds on C[—1,1]

where f, h are continuous on [—1, 1], and the Gegenbauer Polynomial also satisfies the following rela-

tions :

S CO(s)C(s)(1 - 62)f"3ds =0, m#n

3



_1 1-20 .7 (m,
JLCE($)2(1 = 82)P"2ds = Zmr fads

Let C(R™) and C'(R™) be the sets of continuous real functions on R and R™ respectively with the

following inner products
< fih >re= [ga f(a)h(a)da
< foh >pe= fpr F(O)A(B)dD

where the integrals converge. For ag € R”, v € S* ! and 7 > 0, define the following distribution on

C(R™)
bao (f) = f(ao)

07,y () = J ey F(@)dim,

DEFINITION 2.1.1 [31] The spherical mean transform at a given point x € R™ can be defined as the

following

R, : C(R™) — C(R™")

Ro(f)(s) = 8" [y S+ sy)d.s 2 0
Say f € C(R™) and X\ € C(R™"), then
< Rof, A >gpi= [37 Ra(f)(s)M(s)ds = [~ "1 =1 f(z+ sy)dyA(s)ds
Take x + sy = y and dy = s"~'dryd(s), then
< Rof, A >pe= [gu fW)Mz = yl)dy =< f, M|z = yl) >gn
Hence, we define the dual spherical mean transform at x
R : C(R") — C(R")
Ry (M) (y) = Az — )

DEFINITION 2.1.2 [31] For a given point = € R™ and distribution T : C(R™) — R, the Spherical mean

transform R, of T is :



R,T:CR") —»R
(RO = T(RN) = TO\(Je — )
By Definition 2.2, if we take T = f € C(R"), then the spherical mean transform at z € R" is:
(B f)N) = Jgu f()A(|z — yl)dy, A € C(RT)

THEOREM 2.1 [31, p.442] Let f : C(R™) — R be a distribution of

[ =1 arde, i € R" a; € R{0} 1 < i < m where m is a positive integer such that ; # x;
and a; # a;,1 <i<j<m.

Suppose that spherical mean transform of f is given at %(n -m(m — 1) + 2n + 2) points such that
there is no hyperplane in R™. Then, the points 1, ..., x,, and the amplitudes a1, ..., a,, can be uniquely

recovered.

Proof. Let I' be the set of points on which the spherical mean transform of given f. For Vy € I" and
hy € C(RY), where hy(s) = s'(s € N|J0).

(Ryf)(h) = f(Byhi) = f(hu(ly = -[)). (by definition 2.2)
= 2 et @0 (u(ly — )
= Ykmr ar(hu(ly — zil))
= D akly — @'

Say 7, = (Ryf)(hi), 0> 1> 2m — 1 then we get,

1 1 1
ay 70
ly — 1] ly — x| .- |y — T
az T1 B
ly — 21]? ly—aol® |y —ap)? =l @ |=F @b
Am To2m—1
ly — 1Py — @ty — P

This system is of Prony’s type where z; = |y — z;| and a; # 0,7 = 1,2, ...,m can be solved as seen

below :

Define a polynomial



_1 _
p(z) = 2™ 4+ Y70 v F
and consider coefficient vector

m—lz[

p p07"'7pm71]T
This coefficients can be determined from 7. To finish this, form the matrix from p(™) is as follows:

Do Pm_1 1 e 0

0 Po o Pmet 1

From the definition of p(z), vg - 7 = 0 can be written as follows :

70 T - Tm-1 Tm
T1 T Tm Tm+1
m—1
pm-h = | ™ 2.2)
™Tm—1 Tm *°° T2m-2 T2m—1

Kmpm_l = _km
To solve this equation, we need to show that K, is invertible.

K, can be decomposed as K,,, = V;,diag(a,,)V,r, where V,, is the Vandermonde matrix

1 1 1
21 z2 Zm
2 2 2
21 Z3 Zm
m—1 m—1 m—1
2 E2 zm

By assumption, a; # 0,7 = 1,...,m, diag(a,,) is non-degenerate. Also, V,, is degenerate iff there are
two different indices 1 < 4, j < m such that |y — x;| = |y — x| which means y has same distance from
x; and ;.

Claim: There exists n + 1 points y1, ...,yn+1 € ' such that V 1 <1 < n + 1 the following condition
holds:



lyi — x| #ly — x| Vi, 5, 1 <i,5 <m,i#j (2.3)

Proof of Claim ¥V y € T satisfy |y, — z;| = |y — ;| for ¢ # j, if and only if y lies in the unique
hyperplane H; ; that divides up two equal parts and is orthogonal to z; — x; vector. By assumption, there
is no hyperplane in I' contains more than 7 points, and there are at most %(m — 1)m such hyperplanes,
then there are at least n 4 1 points in I" that any of them does not lie in any of these hyperplanes, since
I contains §(n - m(m — 1) + 2n + 2) distinct points.

Define I’ C I, = Y1, Y2, .-, Ynt1 such that Vy; € I satisfies (2.3).

Fory; € I'', build a system of equations same as (2.2).

Without loss of generality, assume p; = |y; — z;|. In equation (2.1), say y = ;. Since |y; — z;| =
w; and the roots u; are distinct, left hand side of the equation is non-degenerate, so ay, ..., a,, can be
extracted.

Now, we extract the points x1, ..., Z,,. For this, we need to solve system of equations (2.2) for V2 <

I < n + 1 and extract the coefficients of the polynomial whose roots are

:ul,la "'7Mm,l = ‘yl - .’L'l‘, ceey ‘yl - xm‘

Since it is not known which root 4, corresponds to each point z; for [ > 2, we need to check which
permutation of the root i1, ... i, solves equation(2.1). So, we need to use the following condition to
get unique solution: a; # aj,? # J.

Assume, there is a permutation of (i1, ... 1, Which is the identity, and another permutation x from

{1, ...,m} to itself, which solves the equation (2.1) and different from the identity

’

/
M1 = Baxqly ooy B = Mgl

If we substract these two equations , we get

M1l — Myl M2, — fhzy ] o Hmgl — Mgl ay 0
2 2 2 2 2 2
Hyg — Mgy Koy — Mgy e Hopn g = Mgl az 0
= 2.4)
2m—1 2m—1 2m—1 2m—1 2m—1 2m—1
HFip o = Mgy Hop = Mgy B S R SR | am 0



LEMMA 2.1 [31, p.448] Suppose for n. > 2,1, ..., v, are real numbers such that y; # v;,1 # j Suppose

x is a permutation from {1, ...,n} to itself,that is different from the identity. Define

Y= Y1) Y2 Vz@2) T In T Va(n)

2 2 2 2 2 2
M= Yzq) 72722 7 T Van) _ 4
M= ’Y;L(l) Vg — 7;(2) Yy — ’Y;L(n)

Then, if y = (Y1, .., Yn) € R" satisfy Ay’ = 0, then 3i, j,i # j such that y; = y;

Proof. [31, p.448] By induction on n > 2,since z is different from the identity, then for n = 2, 2(1) = 2
and z(2) = 1. Here, y = (1,1) is in the kernel of A and it has two equal components for different
indices.

Assume the induction hypothesis for every m, such that 2 < m < n — 1 and prove it for n > 3.
Assume x does not have any fixed point. Indeed, without loss of generality, suppose z:(n) = n then the

matrix A becomes the following form

M= Ve(1) Y2 Va@) 0 Yo~ Ya(n) O

H=Yewy BV 0 VaVaw O| _ (B0
: : : : * 0

W=7y B =V 0 Ve O

where B is the top left matrix of A which is (n-1)x(n-1).

If Ay" =0, then yy = (yo, *) where yo € R" ! is in the kernel of B. If # denotes the restriction of x
to the set {1,...,n — 1}, then z({1,...,n — 1}) = {1,...,n — 1} since x(n) = n.z" is also different from
the identity. Thus, applying the induction to the B, it follows that yg has at least two equal components

for different indices. Thus, it is also true for ;. O

By (2.3), iy # pjy if @ # j, and x is different from the identity. Then, all conditions of Lemma are
satisfied. Thus, any vector in the kernel of the matrix, which is the left hand side of (4.4) have to have

two equal components for different indices. Thus, a; = a; for i # j, contradiction.



Hence we have the all distances \; ; = lyr —zi],l = 1,...,n+1foreach 1 <i < m. So, since there is

no hyperplane in R* which contains the point y; . it can be uniquely recovered the points z; from

sYn+10

the data A; 1, ..., A\i nt1 O]

REMARK 2 For the distribution of the form (3.1), if the recovered amplitudes have the same value, the
procedure to extract f that is used in above theorem will not work anymore, since the proof of this
theorem uses only n + 1 points which have different distances from each of the nodes z;7 = 1,...,m. In

this case we cannot know which roots correspond to each nodes x;.
Example: Let f; and f> be distributions for n = m = 2
fi=d(x—r)+6(x—ra), fo =0 —s1)+ d(x — s2),
where
r1 = (0,1),r0 = (2,—1),51 = (0,—1),s9 = (2,1)

By Theorem (3.1), we can find n 4+ 1 = 3 points y;, y2, y3 on the different lines, and it is known that this
points have different distances from each nodes that to be wanted to extract, so we could suppose that
the spherical mean transform is only given at this points. In this situation, the information received from
the spherical mean transform can intersect for the these distributions.

Assume

Y1 = (070)73/2 = (2a0)ay3 = (17 1)

then, y1, y2, y3 are on the different lines and have different distances from 71,75 of fi and sy, s2 of fs.

Since,

ly1 — 71| = [y1 — s1], [y1 — ra| = |y1 — sa
ly2 — 1] = |y2 — 51/, [y2 — r2| = |y2 — 52|

\y3 - 7“1! = \y3 - 82\7 \93 —7"2\ = !y3 - 81!7

the spherical mean transform takes the same information from f; and f,. Thus they cannot be seperated.

THEOREM 2.2 [31, p.442] Let f : C(R™) — R be a distribution of



f = Z;anl a’ké(Qk,pk) Pi € (0,00),91' S Snilai € R\{O} 1<1<m

where m is a positive integer such that a; # a;, forl < i < j < m, and the hyperplanes < x,0; >=
D1y ey < X, 00y >= pmy are all distinct.

Suppose that spherical mean transform of f is given at n - m(m — 1) + 2n + 1 points such that
there is no hyperplane in R™ which contains more than n of these given points. Then, the parameters

a1, P1,01, s Qs Py O can be uniquely recovered.

Proof. Let I' be the set of points on which the spherical mean transform of given f. For Vy € I' and

hy € C(R*),where by = e'**(1 € N), we have
(Ryf)() = f(Ryh) = f(h(ly — 1))
= > i1 k09, o) (Mi(ly — 1))

= 21 O [y g5, (ully — 2]))dme

= Y an [epgynmy, ¢ W dmy
Take z = y + z,dmy = dm,, then
(Ryf)(a) =325 ak r=<x,0p>—<y,0k >=pp—<y,006> e U= dm.,
=50 g [ eI A2y L dzy
=3 ape M@ [ e TR g dz,
=(3)" 2" X agelpe—<ubi>l’

Now, say 7, = (%)%(Ryf)(hl), vp = e~ 1P=<ufe>" 1 < | < 2m then we can get as theorem 3.1

T1 T2 s Tm Tm+1
T2 T3 Tmal | Tm+2

== (2.5
Tm Tm+1 - T2m—-1 T2m

Kmpm_l = _km

K,, can be decomposed as K,,, = Vidiag(a,,)Va, where V7, V5 are the Vandermonde matrices,

10



Y Y2 o Tm

2 2 2
0 e
N R
7mnoe Tm
1 oy o At
1 ,YQ ,ymfl
. .2 2 :‘/2
Loy gt

Since V1, Vo are Vandermonde, and ~; # 0 for ¢ = 1,..., m, then V; or V5 are degenerate if and only if
there are two different indices ¢ # j such that |p;— < y,6; > | = |pj— < y,6; > |, which means y has
the same distance from < z,6; >= p; and < x,0; >= p,.

Claim: There exists 2n+ 1 points y1, ..., Yon+1 such that for V 1 <[ < 2n+1, the following condition
holds:

Proof of Claim Yy € T satisty |p;— < y,0; > | = |pj— < y,0; > | fori # j if and only if y lies on one
of the hyperplanes

<z, 0; +0; >=p; + pj

<x,0¢—0j >= p; — pPj

By assumption, there is no hyperplane in I' which contains more than n points, and there are at most
(m-1)m such hyperplanes, then there are at least 2n+1 points in I' that any of them does not lie in any of
these hyperplane, since I" contains n - m(m — 1) 4+ 2n + 1 distinct points.

As in theorem 3.1, define

I'ch,T' = Y1, Y2, ..., Yon+1 sSuch that Vy; € I satisfies (2.6).

For y; € I, build a corresponding polynomial with roots and system of equation similar as (2.2).

11



{1} =A{lpi— < 1,01 > |, o [pm— < y1,0m}

In order to determine amplitudes ay, ..., a,,, we assume
vi = |pi— < y,0; > |,and solve system of equations similar as (2.1), as we did in theorem 3.1.
Now we extract the parameters p1, 61, ..... , Pm,, Om .For this,we need to solve system of equations sim-

ilar as (2.2) for every 2 <[ < 2n + 1 and extract the coefficients of the polynomial whose roots are

it == <y, 00> |, lpm— < w1, 0m > |}
Thus, we can find the distances
pi— < Y1, 01 > |s ey [pm— < Y1, 0m > [forVy, € I',1 <1< 2n + 1.

Hence we get

lpim <y 0;>|,1=1,...2n+1,Vi,1 <i<m Q2.7)

Uniqueness of (2.7): Let H :< z,0; >= p; be a hyperplane. Suppose 3H " such that every point
vy, =1,...,2n 4+ 1 has same distance from H and H ". The set of points that have same distance from
such hyperplanes is the union of them. Thus, y; lies in H and H ', then at least one of them contains

n + 1 of these points, contradiction. g

THEOREM 2.3 [31, p.443] Let f : R™ — R be a function of

f(x) =>" aph(jx — zg]), z € R", a; € R\{0},1 < i < m where m is positive integer such that
z; # xjand a; # aj for 1 <i < j <m, his function on R . Suppose that spherical mean transform of
fis given at %(n -m(m — 1)+ 2n+ 2) points such that there is no hyperplane in R™ which contains more
than n of these given points. Then, the points x1, ..., Ty, and the amplitudes a, ..., an, can be uniquely

recovered.

LEMMA 2.2 [31, p.447] For a function f that is defined on R ,its radial extension belongs to the
Schwartz space S(R™). Then, f and its Hankel transform F are continuously differentiable and belong to

n—1

LY(RY r 7).

12



Proof. Let h’ and H' be the radial extensions of / and H, respectively. In spherical coordinates system

in R™, we have

n s no1
fl fsn 1h 7"9)7‘ T dOdr = (%) fl h(r)r—= dr

f\w|>1 ( )

Since radial extension of h belongs to the Schwartz space,then integral in the left hand side converges,
hence also integral in the right hand side converges. Since / is bounded on [0,1] (because R’ is bounded
n—1

on the unit disk), then A is in L}(R* 7 2 ).

Let h be the Fourier transform of h. Use the spherical coordinates,

(27r fRn e ISPy = ﬁ 1o Jono B (r0)e~ <20 dorn—1dr
Take ¢ = A¢ where A\ = |¢| and ¢ = ﬁ and use the identity,
fSnfl e~ it<g,0> — (27r)% .%fl(t)
Then,
= [ h () ldr = H(N)

Thus, h is the radial extension of H. Since h maps S(R™) onto itself and h € S(R™), then the same is
true for the radial extension of H. Thus, H belongs to L!(R*, r T ) from the same points that used for

handh'. OJ

Proof. [Theorem] Let H be the Hankel transform of A of order g —1.

H(\) = /oo h(r)jz_1(Ar)r"~tdr A >0 (2.8)
0

By above lemma, the radial extension of f is in S(R™), then f is continuously differentiable and belongs

to LY(R*, r"z ) Hence we can say that
h(r) = [5° H(/\)j%,l()\r))\"’ld)\, r>0
By equation (3.2),

f(z) = E?:l ag fooo H(A)j%,l()\]a: - $k|)/\"*1d)\
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Take the spherical mean transform of f at a point y, we get
(Ryf)(t) = Xkly ak Jo- HN)(Ry(jz—1 (A - —a])) () A" 1A
=yt ag fooo H()\) f|9\:1(j%—1()"y — xp + t0]))dON LA
Using the identity
f‘9|:1 jr_1(Alz +r])dd = (27T)%jg—1()\7“)jg—1()\|ﬂf|)
and we get

(Ryf)(t) = (2m)2 4L, ax fo° H(N)jz 1 (Aly — @x])din 1 (A"

Thus,
R m o . . n—
DO — Sy an 5 HON)G3-1(Ay = 2al)jg -1 (AN
Taking
F(A) = (ki ardz—1(Aly — zi])) H(A)
Then,

ReDO) [ s i
T ARG 29

Here, the right hand side of equation is Hankel transform for F'. It is needed to show that F' is
continuously differentiable and belongs to L' (R*, r%) to use inverse of the Hankel transform of F.
Since H is continuosly differentiable and belongs to L' (RT, frnT_l), then it is also valid for F'. Thus,

the inverse of Hankel transform of F' can be taken as following :

gt [, (R0 0000 = (S g 1Ol = i)Y @.10)

If we divide both sides with H (\) and take the derivative 2k times for A = 0,we get
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22](371(

FEID(Z4k 00 .
T Gty S Ry F)(D75 2 (M)

w\: »—-

m
> aply — wpl* (2.11)

By using same procedure in Theorem (3.1) and replacing points y in (2.11) for £k = 0, ...,2m — 1, we

can recover the z1, ..., Ty, A1, ..., Q. ]

2.2 Reducing Spherical Mean to Regular Radon Transform

Spherical Mean Transform operator R, (see definition 2.1) transfers all the known properties of the
function on R,,,which include the classical hyperplane Radon function and inversion formulas, to R,. In
ths circumstance, A-cosine transforms and Semyanisty’s fractional integrals [29, 30, 33] can be envoked
to apply this transition. The Radon transform is a particular case of these integrals [30].

CH = Va,)\R’\Ua,)\ where V,, \ and U,  are certain bijections.

2.2.1 The \-cosine Transform

Let the SMT of a continuous function f on S™ be

(Rf)(=

fs r e S"

In many cases, it is appropriate to consider the SMT as a member of the normalized cosine transform

(C)‘f)($) = Tn,x fSn f(;z)\:c,u\’\d*,u,

where dypp =9, Red>-1  A#0,2,4,.., 7=

2.2.2 Radon Transform

The Radon Transform of the function f(x,y)x,y € R is defined as following

g(p,0) = (Rf)(p,0 f f f(x,y)d(p — xcost — ysind)dxdy,
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where 4(+) is the Dirac Delta function.

The plot of the Radon transform is referred to as a sinogram from its sinusoid shape. The inverse
Radon transform is applied to the image to recover the image from sinogram. There are many inversion
formulas for the Radon transform.The filtered back projection is the most commonly used technique. It

is derived as follows
x = F(u,v e 2mi(urtvy) gy doy
f( ’y) f 00 (o)

and changing variables to polar coordinates
u = wecosh, v = wsinb, dudr = wdwdf

Then,
f(z,y) = 02Tr fooo wF (weosh, wsing)e2mwilzcosd+ysin) gy, g0
= o [0, [w|F(weosh, wsind)e —2mwi(xzcosd+ysind) 7,10
=0 [ lw| (72 ta(p)e?mirw)e2mwilzcosttysind) gy, g

The last equation above can be seperated as two steps. The following first part is filtering step in the

frequency domain
to(p) = [75 [wl([73, ta(p)e?™ ) e ™7 dw
and the rest is followed by projection step
g(p,0) = to(p)
= [y G(xcosh + ysind, 0)do
= o [0 a(p, 0)(p — zcosd — ysinh)dpdd

Here g(p, 0) is called filtered backprojection.

2.3 Numerical Implementation

In this section, a reconstructed Modified Shepp-Logan phantom and a reconstructed captured radar image
were given. The codes were built in MATLAB and given in the Appendix A. Reconstruction period was
around 10 seconds. Different discretization number were implemented and results showed that while

increasing the discretization number, image resolutions increase.
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Figure 1.: Reconstruction for Modified Shepp-Logan Image
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Figure 2.: Reconstruction for Captured Weather Radar Image
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Chapter 3

Regional Attenuation Correction

Correction of echo attenuation is challenging, since the variation of the raindrop size distribution affects
the accuracy of precipitation quantitative estimates. Since microwave links can accurately obtain total
path attenuation, regional attenuation can be corrected using a multipurpose-microwave-link network
based on tomographic reconstruction of attenuation coefficients [37]. The quantitative precipitation es-
timations from the radar depend on the intensity of echoes reflected by raindrops, but those from the
microwave link depend on rainfall attenuation along the path [18].

QPE from weather radar can be affected by many factors. One of the key factors is the rainfall atten-
uation on the propagation of electromagnetic waves. The rainfall attenuation also effects the radar echo
intensity by decreasing. At the long distances, actual values are higher than the reflectivity factors of
radar, so this factors do not reflect the actual precipitation distribution [37]. In this section attenuation of
radar echoes was corrected with tomographic correction method.

Describing the characterization of the microwave attenuation is really important to correct attenuation.
Due to developing the attenuation correction effect, attenuation along the propagation path was measured
by many scientists [37]. Lin and Lv [22] suggested to use microwave radiometer to acquire total path
attenuation.

The Surface Reference Technique (SRT) is widely preferred technique to measure total path attenu-
ation with space born radar configuration by comparing the acquired echo differences at the rainy and
non-rainy areas. In addition to that, Serrar et al [34] proposed to compare radar echo attenuation by
taking echo differences in between rainy and non-rainy days, which is called Mountain Reference Tech-
nique and clearly refers to SRT. Meneghini et al [26] stated that SRT could be have some restrictions,
since the attenuation and reflection of electromagnetic waves are different due to surface fluctuation and
humidity.

Determining the signal level of microwave links for the both transmitter and receiver is a way to

acquire microwave propagation attenuation. During precipitation period, the microwave attenuates while
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it passes through the rain area. Gao et al [11] proposed that to measure this attenuation level, it can be
compared the rainy and non-rainy days. This acquired data can be used to show precipitation intensity
and correct reflectivity factor of radar. In addition to that, Kramer et al [19] showed the methods to
correct radar reflectivity factors for X-band radars by using microwave link, and Kramer and Vervorn
[20] stated the algorithms to correct radar reflectivity factors for C-band radar by using microwave link,
as well.

In this part, we expanded the region of attenuation correction using multiple microwave links to de-
velop attenuation correction. To obtain the total radar attenuation, we derived the attenuation coefficients

of the grids. The method we used is called Computerized Tomography imaging method.

3.1 Theory of The Radar Attenuation Correction

Let P, be the average echo before attenuation, P, be the average echo after attenuation and K; be the

attenuation factor. Then attenuation characteristic can be written as follows

P, = P,y x K; 3.1
Derivation shows that,
dP, _
dTT = —2k(r) Pro (3.2)

where dP, is the attenuation value and k;(r) is the attenuation coefficient.

The average echo power is the integral solution of (3) from ranges O to R.

R
P. =P,y exp(—2/ ky(r)dr) 3.3)
0

By using the identity log;, X = 0.4343(In X ') and the determining the attenuation as k(r) = 4.343k(r)

in units of %, (4)becomes

R
In(—) = —2/0 ky(r)dr (3.4)



It is also derived as follows

Pr = P;O x 10792 foR ksdr (3.5)

Comparing (2) and (6), we get that

K, = 10702 kedr (3.6)

We can create the new equation similar in (2) by using radar reflectivity observation Z,,, instead of P,

and radar reflectivity of the target Z, instead of P.q. Then, we get following equation

7 = 7. x Ky = 7, x 107020 ksdr (3.7)

in which Kj is the attenuation factor, R is the distance between radar and the detection target and k;
is attenuation coefficient.

If we take the logarithms of both sides in (8), we get

R
log Z,, = log Z, X —0.2/ ksdr (3.8)
0

To correct attenuation we need to use radar reflectivity factor. At this point, we need to convert radar

reflectivity to radar reflectivity factor. To do this, the following equation can be used

z=10log Z 3.9

Then, we have

R
Zr = Zm + 2/ ksdr (3.10)
0

in which z, is the corrected radar reflectivity factor, z,, is the measured reflectivity factor of radar and

k 1s the attenuation coefficient.
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3.2 Radon Transform Modeling for Attenuation Coefficients

3.2.1 Reconstruction of Grid Attenuation

To correct attenuation the Computarized Tomography (CT) imaging technology can be used. This tech-

nique is based on ray scanning and the attenuation of ray power is acquired through the wave field [37].

The Radon transform and Fourier-Slice theorem are the theoretical basis of CT. We discussed the
mathematical theory of the Radon transform and its inverse in the previous parts. In addition to that, we
can determine the tomography as the Inverse Radon Transform. In the tomography theory, a function
f(z,y) which refers to an image is usually discretized to the pixel level to obtain mean value of f(z,y)
in each pixel [37].

Microwave links pass through the precipitation area in the weather radar monitoring field. In a mi-
crowave link transmitting end conducts the signal with the frequency, polarization and fixed power and

the receiving end acquires the power after attenuation [37].

M

M,

M:

M,

M;

Ms

M;

M;

M

Figure 3.: Diagram of Microwave link in the monitoring area.

Figure represents the attenuation coefficients tomography’s schematic diagram for a simulated region.
The region was divided into equal meshes M; (j = 1,2,...). Shown microwave link is an example in
which 7' is the transmitting end and R is the receiving end. The link passes through the grids at M7, M5

and M> with the lengths in the girds is denoted by [;7, [;5 and l;2, respectively.

The precipitation attenuation of the microwave link can be formulated as
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A = lijk; (3.11)

where [;; is the length of the ith microwave link in the jth mesh, [V is the discretized number of meshes
[37].

By the power law , it can also be expressed as

A; = a;RY; (3.12)

where R; is the average precipitation intensity on the ith link, [; is the length and a; and b; are the
conversion constants of the sth link [37].

By (3.12), the attenuation of the microwave links can be formulated as

A=LK (3.13)

where A = A; is the column vector of the total attenuation, L = [;; is the distance matrix asnd
K = k; is the column vector of the attenuation coefficients. Thus, the following system of equations can

be expressed where M is the number of microwave links [37].

li1k1 + ligko+ - - + linkny = Ay

3.14)

Iavkr + Lyokot+ - + lynkny = Ay

Tomographic model of the attenuation coefficients can be obtained by solving the above linear sys-
tem(3.14). Solution of the linear equations was explained in details in [12] to acquire the attenuation

coefficient [37].
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3.3 Numerical Implementation and Regional Attenuation Correction

To correct the regional attenuation, the process is the following

e Creating a joint observation microwave links network and weather radar data

e Matching the observational weather radar and the microwave attenuation data with time and space
e Discretization of the field

e Using reconstruction algorithms to acquire tomographic attenuation coefficients

o Calculating the path attenuation (PA) of the ith link between the radar and the mesh points with the

formula

M N
(PA)ij = kjd (3.15)

i=1 j=1

where d;; is the length of the ith link between radar and the mesh point through the jth mesh

e Calculating the corrected radar reflectivity factor z;; as follows

Zij = Zmy; + 2 X (PA) (3.16)

where z;,, . is the measured radar reflectivity factor [37].

To perform the accuracy of the algorithms and techniques, the numerical implementation was sim-
ulated. The total distribution of the monitoring area which was discretized with the CT principle was
24 x 24 km and the area was divided into 3 x 3 km square grids. In the simulation area there were 30
microwave links. The distances between transmitting and receiving ends were 3 km and the signal fre-
quency was 10 GHz with the vertical polarization.By the International Telecommunication Union (ITU)
rainfall model [38] attenuation coefficient £ = 0.00887R!' 264, As tomographic reconstruction models,
Simultaneously Iterative Reconstruction Technique and Filtered Backprojection Technique were used
and the results were compared.

To analyze the corrections, corellation coefficient, mean square error and mean deviaton were use to

define the correction effect
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where z, and z are uncorrected and corrected radar reflectivity factors, respectively and Z, and 2 are

average radar reflectivity factors, respectively.

Table 1: Comparison of the radar reflectivity

Technique | pyne | pcor | RMSEyn. | RMSEco, | €une | €Cor
SIRT 0.362 | 0.7149 12.2328 3.2144 0.2624 | 0.0144
FBP 0.4823 | 0.5625 17.65 8.4432 0.3976 | 0.2311
Table 2: Comparison of the rainfall intensity
Technique | pune | pcor | RMSEyn. | RMSEco, | €une | €Cor
SIRT 0.6847 | 0.9326 24.65 10.871 0.809 | 0.0467
FBP 0.7129 | 0.8425 31.283 16.09 0.9174 | 0.4326

Conclusion In this section, the provided algorithms were analyzed and two different reconstruction
techniques were compared. Both SIRT and FBP methods are efficient techniques to improve rainfall

attenuation correction. Moreover, results show that the SIRT technique is more effective technique as

tomographic correction.
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Appendix A
Matlab Codes

FBP and SIRT Codes with Weighted Matrix

function Reconstruction
%Load image here

figure , subplot (3,2,1),
imshow (Image)
subplot(2,3,1);

imagesc (Image) ;

title (’Original Image’);

% padding to the image with zeros to not to lose anything while

rotating .
[Length, Width] = size (Image);
Diag = sqrt(Length™2 + Width"2);
LengthPad = ceil (Diag — Length) + 2;
WidthPad = ceil (Diag — Width) + 2;
padlmage = zeros(Length+LengthPad, Width+WidthPad) ;
padlmage (ceil (LengthPad/2) :(ceil (LengthPad/2)+Length—1),
ceil (WidthPad/2) :(ceil (WidthPad/2)+Width—1)) = Image;
%
frequency= 0.5;
theta = 1:frequency:180;
subplot(2,3,2)

% Creating Sinogram
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2 Sinogram = radon(Image, theta);
3 imagesc(Sinogram);
4+ title (’Sinogram’)

s subplot(2,3,3)

7 % Backprojection Procedure

s PP = size(Sinogram,1) ;%Number of Parallel Projections

o AP = length(theta) ;%Number of Angular Projections

o theta = (pi/180)xtheta;

n BPI = zeros(PP,PP);%Setup backprojected image

2 MI = ceil (PP/2) ;%Middle index of projections

3 [x1,yl1] = meshgrid(ceil(—PP/2):ceil (PP/2—1));%new coordinates

5 % Filtering Procedure ’RamLak’
16 1f mod(PP,Z) ==

17 FS= 2xfloor (1 + PP);%filter size

13 else

19 FS = 2xfloor (PP);

2 end

21 filter = zeros(1l, FS);

2 filter (1:2: FS) = —1./([1:2: FS]."2 % pi“2);
2 filter = [fliplr(filter) 1/4 filter ];

24
5 % Projection loops

% for 1 = 1:AP

27 rotCoords = round(MI + xlxsin(theta (i)) + ylxcos(theta(i)));
28 indices = find ((rotCoords > 0) & (rotCoords <= PP));

29 newCoords = rotCoords (indices);

30 filteredProfile = conv(Sinogram(:,1),filter , same’);

3 BPI(indices) = BPI(indices) + filteredProfile (newCoords) ./AP;
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32

34

35

36

37

38

39

40

41

4

43

45

46

47

48

49

50

51

52

53

55

56

imagesc (BPI) ;
title (’BPI’);

drawnow

end

MI = floor(size (BPI,1)/2) + 1;%find the middle

projections

J%Pre—filter for the freq domain
[x1,y1] = meshgrid(1—MI:size (BPI,1)— MI);

ramp _filter = sqrt(x1.72 + yl1.72);

%Fourier transformation

Rec = fftshift (fft2 (BPI));

% Filtering for the freq domain

Rec = Rec.x ramp_filter;

% inverse fourier transformation

Rec = real (ifft2 (ifftshift(Rec)));

RI= mat2gray (Rec);
subplot(2,3,4);
imshow (RI) ;

title ("FBI’);

% Creating Sinogram
Sinogram = radon (Image, theta);

imagesc(Sinogram) ;

32

index of

the



4+ title (’Sinogram’)

s subplot(2,3,3)

7 % Backprojection Procedure

s PP = size(Sinogram,l) ;%Number of Parallel Projections

o AP = length(theta) ;%Number of Angular Projections

o theta = (pi/180)xtheta;

11 BPI = zeros (PP,PP);%Setup backprojected image

2 MI = ceil (PP/2) ;%Middle index of projections

3 [x1,yl] = meshgrid(ceil(—PP/2):ceil (PP/2—1)) ;%new coordinates

s % Filtering Procedure ’RamLak’
6 if mod(PP,2) == 0

17 FS= 2xfloor (1 + PP);%filter size

15 else

19 FS = 2xfloor (PP);

2 end

21 filter = zeros(1l, FS);

2 filter (1:2: FS) = —1./([1:2: FS].”"2 x pi~“2);
23 filter = [fliplr(filter) 1/4 filter];

24
5 % Projection loops

% for 1 = 1:AP

27 rotCoords = round (MI + xlxsin(theta (i)) + ylxcos(theta(i)));
28 indices = find ((rotCoords > 0) & (rotCoords <= PP));

29 newCoords = rotCoords (indices);

30 filteredProfile = conv(Sinogram(:,1),filter , same’);

31 BPI(indices) = BPI(indices) + filteredProfile (newCoords) ./AP;
32 imagesc (BPI) ;

3 title (’BPI’);
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drawnow

end

MI = floor(size(BPI,1)/2) + 1;%find the middle

projections

%Pre—filter for the freq domain
[x1,yl] = meshgrid(1—MI:size (BPI,1)— MI);

ramp_filter = sqrt(x1."2 + yl1.72);

%Fourier transformation

Rec = fftshift (fft2 (BPI));:

% Filtering for the freq domain

Rec = Rec.x ramp_filter;

% inverse fourier transformation

Rec = real (ifft2 (ifftshift(Rec)));

RI= mat2gray (Rec);
subplot(2,3,4);
imshow (RI) ;

title ("FBI’);

J%Pre—filter for the freq domain

[x1,yl1] = meshgrid(1—-MI:size (BPI,1)— MI);
ramp_filter = sqrt(x1.72 + yl1.72);
%Fourier transformation

Rec = fftshift (fft2 (BPI));
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6 % Filtering for the freq domain

7 Rec = Rec.x ramp_filter;

s % inverse fourier transformation

9 Rec = real (ifft2 (ifftshift(Rec)));
1o RI= mat2gray(Rec);

n subplot(2,3,4);

12 imshow (RI) ;

3 title ("FBI’);

14 end

1 %Weighted matrix codes

3 function W = Weight(x,y,z,t)

4+ x = [0:x—=1] — (x=1)/2;
sy = (=D*([0:y=1] = (y=1)/2);
¢ pixel = length(x);

7 theta = [0:t—1]"/t % pi;

s t = cos(theta) * x’ + sin(theta) x y’;
o t =t + (z+1)/2;
0w a = floor(t); % Find left bins of projected pixel centers.

n b =1 — (t—a); % left bins
2 rb = 1-1b; % right bins

3 n_.c = X % y; %number of column
4 ri = a + [0:t—1]"xzxones(l,pixel); % row_indices
5 ¢j = find(fn(:)) ’;

16 Cj cj(ones(l,t) ,:); % column indices

7 value=a(:) >= 1

s W = sparse(ri,cj), lb, zxt, n_c); %Sparse weighted matrix
19

20 % SIRT codes

21
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function I = sart(W,f,p,iteration)

I= zeros(f,1);

Wt = W’

C = sum(Wt);

R = sum(W) ;

for k = 1l:iteration
q = Wxf;

A = (p—q) ./R;

B = Wt x A;

f=f+ @B ./ C);

I = f;

end

I=reshape(I,n,n);

I=1";
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