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Chapter 1

The Inverse Transform Problem

1.1 Overview

Given a function h on R+ = [0,1) and a fixed integer n > 0, the problem is to recover signals

f : Rn ! R of the form

f(y) =
kX

i=1

aih(|y � yi|), yi 2 Rn
, ai 2 R\{0}, 1  i  k, (1.1)

from the spherical mean transform. We also recover the signals f of the form

f(y) =
kX

i=1

ai�yi(y), yi 2 Rn
, ai 2 R\{0}, 1  i  k, (1.2)

where �yi is the delta function supported at yi. We also examine the case when the support of f consists

not only of points, but also hyperplanes.

Functions and measures of the types (1.1) and (1.2) are used in various scientific areas, such as com-

puterized tomography, bio-imaging, signal processing [6, 24, 25] and in a variety of mathematical areas

like integral geometry, inverse problems, and approximation theory [3, 7, 23, 28]. Specifically, the prob-

lem discussed here is finding a general formula or algorithm to reconstruct a function f on Rn, from its

spherical mean transform.

Since every sphere in Rn is characterized by its center point s 2 Rn and radius 0  r , the set of all

spheres in Rn is n + 1 dimensional. Thus, the reconstruction problem from spherical means is overde-

termined, since Rn is n dimensional. Hence, a restriction of the domain of definition of the spherical

mean transform has to be implemented to arrive at a well-posed problem. Generally, the spherical mean

transform is restricted to a set of the form �⇥ R+
, where � is a hypersurface in Rn, as an assumption.

The reconstruction problem for a function from spherical mean transform (SMT) which is restricted to

such family of sets shows up in various useful areas such as hybrid imaging tomography (thermoacous-

tic and photoacoustic), radar imaging, integral geometry, inverse problem for PDE, and approximation
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theory [1–3, 6, 9, 10, 15, 16, 31, 36]. During the last century, the problem of reconstructing a function

from its SMT was studied in different cases where � is a quadratic hyper surface [2, 9, 10, 15, 16, 21],

a plane [5], or a cylinder [36]. In all of the above attained results, except for some smoothness and

support conditions, there is no assumption that these functions need to be recovered. However, as all the

functions considered are of the form (1.1), they can be indexed by a finite set of parameters. Therefore,

to gain a well-posed problem, we need to restrict the set � to a discrete subset [31].

REMARK 1 Since every function f of the form (1.1) depends on finite set of parameters, it should be

observed that the set �⇥ R+ is one dimensional,where � is discrete. It should also be observed that the

discrete set of radii could not be restricted. On the contrary, reconstruction procedure of the function f

may change based on the function h. Since the set of radii is discrete, it can be said that the sphere set

defined on spherical mean transform is at most countable. For this situation, choosing a small enough

function h whose support is close to the origin, and any of the spheres of the integration not intersecting

the support of f , it is impossible to reconstruct the function f [31].

The results of this study suggest that the reconstruction of a signal f of the form (1.1) or (1.2) is

possible if the set � of centers of the spheres of integration comprises sufficiently many points. The

main point of these results is to convert the reconstruction problem to a nonlinear Prony’s type system of

equations. In order to solving the Prony’s system, it is assumed that the amplitudes of f at y1, ..., ys, are

mutually distinct. Thus, the solutions to the Prony’s system’s could be used to obtain information about

distances between the points in � and the translations z1, ..., zs [31, p.438]. Based on this information,

one can obtain the points y1, ..., ys and the amplitudes z1, ..., zs that describe the signal f .

In this study, we first give a brief description for spherical mean transform generally for distributions

and start to reconstruct signals of the form (1.2). Then we indicate how to modify the reconstruction

method for recovering signals of the form (1.1).Additionally, we will discuss how to reduce the spherical

mean transform to a regular Radon transform and then give a numerical implementation by using cap-

tured radar images. In the last chapter, we will discuss the Regional Attenuation Correction using Radon

transform and two reconstruction techniques.
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Chapter 2

Integral Mean Transforms

2.1 Mathematical Background

Let Rn be the n dimensional Eucledian space, Sn�1 is the unit sphere in Rn, and R+ is the ray [0,1).

Let Sn�2
' be n� 2 dimensional great subsphere in Sn�1 that is perpendicular to ' where ' 2 Sn�1:

Sn�2
' = {� 2 Sn�1 : � · ' = 0}

where · is the usual scalar product on Rn.

Let j↵ be the normalized Bessel function, that is j↵(✓) = ✓
�↵

J↵(✓), where J↵ is the Bessel function:

J↵ =
P1

i=0
(�1)i

i!�(i+↵+1)(
s

2)
2i+↵ for every order ↵ � 0

Let C✓
m be the Gegenbauer polynomial of order ✓ > 0 and non-negative degree m on [-1,1] :

C
✓
m(s) =

P
0im

2

(�1)i�(✓+m�i)
i!(m�2i)!�(✓) (2s)m�2i.

For ✓ = 0, this polynomial intersect with the Chebyshev polynomial denoted by Tm :

C
0
m(s) = Tm(s) := cos(m arccos(s)).

By [35] for every ✓ � 0, {C✓
m}1

m=0 is orthogonal with respect to the

< f, h >=
R 1
�1 f(s)h(s)(1� s

2)✓�
1
2ds on C[�1, 1]

where f, h are continuous on [�1, 1], and the Gegenbauer Polynomial also satisfies the following rela-

tions :

R 1
�1C

✓
m(s)C✓

n(s)(1� s
2)✓�

1
2ds = 0, m 6= n
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R 1
�1(C

✓
m(s))2(1� s

2)✓�
1
2ds = 21�2✓

⇡�(m+2✓)
m!(✓+m)(�(✓))2

Let C(Rn) and C(R+) be the sets of continuous real functions on Rn and R+ respectively with the

following inner products

< f, h >Rn=
R
Rn f(a)h(a)da

< f, h >R+=
R
R+ f(b)h(b)db

where the integrals converge. For a0 2 Rn
, � 2 Sn�1 and ⌧ > 0, define the following distribution on

C(Rn)

�a0(f) = f(a0)

�(�,⌧)(f) =
R
a·�=⌧

f(a)dma

DEFINITION 2.1.1 [31] The spherical mean transform at a given point x 2 Rn can be defined as the

following

Rx : C(Rn) ! C(R+)

Rx(f)(s) = s
n�1

R
|�|=1 f(x+ s�)d�, s � 0

Say f 2 C(Rn) and � 2 C(R+), then

< Rxf,� >R+=
R1
0 Rx(f)(s)�(s)ds =

R1
0 s

n�1
R
|�|=1 f(x+ s�)d��(s)ds

Take x+ s� = y and dy = s
n�1

d�d(s), then

< Rxf,� >R+=
R
Rn f(y)�(|x� y|)dy =< f,�(|x� y|) >Rn

Hence, we define the dual spherical mean transform at x

R
⇤
x : C(R+) ! C(Rn)

R
⇤
x(�)(y) = �(|x� y|)

DEFINITION 2.1.2 [31] For a given point x 2 Rn and distribution T : C(Rn) ! R, the Spherical mean

transform Rx of T is :
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RxT : C(R+) ! R

(RxT )(�) = T (R⇤
x�) = T (�(|x� ·|))

By Definition 2.2, if we take T = f 2 C(Rn), then the spherical mean transform at x 2 Rn is:

(Rxf)(�) =
R
Rn f(y)�(|x� y|)dy,� 2 C(R+)

THEOREM 2.1 [31, p.442] Let f : C(Rn) ! R be a distribution of

f =
P

m

k=1 ak�xk xi 2 Rn
, ai 2 R{0} 1  i  m where m is a positive integer such that xi 6= xj

and ai 6= aj , 1  i < j  m.

Suppose that spherical mean transform of f is given at 1
2(n · m(m � 1) + 2n + 2) points such that

there is no hyperplane in Rn. Then, the points x1, ..., xm and the amplitudes a1, ..., am can be uniquely

recovered.

Proof. Let � be the set of points on which the spherical mean transform of given f . For 8y 2 � and

hl 2 C(R+), where hl(s) = s
l(s 2 N

S
0).

(Ryf)(hl) = f(R⇤
yhl) = f(hl(|y � ·|)). (by definition 2.2)

=
P

m

k=1 ak�xk(hl(|y � ·|))

=
P

m

k=1 ak(hl(|y � xk|))

=
P

m

k=1 ak|y � xk|l

Say ⌧l = (Ryf)(hl), 0 � l � 2m� 1 then we get,

0

BBBBBBBBB@

1 1 · · · 1

|y � x1| |y � x2| · · · |y � xm|

|y � x1|2 |y � x2|2 · · · |y � xm|2
...

... · · ·
...

|y � x1|2m�1 |y � x2|2m�1 · · · |y � xm|2m�1

1

CCCCCCCCCA

0

BBBBBB@

a1

a2

...

am

1

CCCCCCA
=

0

BBBBBB@

⌧0

⌧1

...

⌧2m�1

1

CCCCCCA
= ⌧̄ (2.1)

This system is of Prony’s type where zi = |y � xi| and ai 6= 0, i = 1, 2, ...,m can be solved as seen

below :

Define a polynomial
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p(z) = z
m+1 +

P
m�1
k=0 vkz

m�k

and consider coefficient vector

p
m�1 = [p0, ..., pm�1]T .

This coefficients can be determined from ⌧̄ . To finish this, form the matrix from p
(m) is as follows:

0

BBB@

p0 · · · pm�1 1 · · · 0
. . . . . . . . .

0 p0 · · · pm�1 1

1

CCCA

From the definition of p(z), vk · ⌧̄ = 0 can be written as follows :

0

BBBBBB@

⌧0 ⌧1 · · · ⌧m�1

⌧1 ⌧2 · · · ⌧m

...
...

...

⌧m�1 ⌧m · · · ⌧2m�2

1

CCCCCCA
p
(m�1) = �

0

BBBBBB@

⌧m

⌧m+1

...

⌧2m�1

1

CCCCCCA
(2.2)

Kmp
m�1 = �km

To solve this equation, we need to show that Km is invertible.

Km can be decomposed as Km = Vmdiag(am)V T
m , where Vm is the Vandermonde matrix

0

BBBBBBBBB@

1 1 · · · 1

z1 z2 · · · zm

z
2
1 z

2
2 · · · z

2
m

...
... · · ·

...

z
m�1
1 z

m�1
2 · · · z

m�1
m

1

CCCCCCCCCA

By assumption, ai 6= 0, i = 1, ...,m, diag(am) is non-degenerate. Also, Vm is degenerate iff there are

two different indices 1  i, j  m such that |y � xi| = |y � xj | which means y has same distance from

xi and xj .

Claim: There exists n+ 1 points y1, ..., yn+1 2 � such that 8 1  l  n+ 1 the following condition

holds:
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|yl � xi| 6= |yl � xj | 8 i, j, 1  i, j  m, i 6= j (2.3)

Proof of Claim 8 y 2 � satisfy |yl � xi| = |yl � xj | for i 6= j, if and only if y lies in the unique

hyperplane Hi,j that divides up two equal parts and is orthogonal to xi�xj vector. By assumption, there

is no hyperplane in � contains more than n points, and there are at most 1
2(m � 1)m such hyperplanes,

then there are at least n + 1 points in � that any of them does not lie in any of these hyperplanes, since

� contains 1
2(n ·m(m� 1) + 2n+ 2) distinct points.

Define �
0 ⇢ �,�

0
= y1, y2, ..., yn+1 such that 8yi 2 �

0 satisfies (2.3).

For y1 2 �
0 , build a system of equations same as (2.2).

Without loss of generality, assume µi = |y1 � xi|. In equation (2.1), say y = y1. Since |y1 � xi| =

µi and the roots µi are distinct, left hand side of the equation is non-degenerate, so a1, ..., am can be

extracted.

Now, we extract the points x1, ..., xm. For this, we need to solve system of equations (2.2) for 82 

l  n+ 1 and extract the coefficients of the polynomial whose roots are

µ1,l, ..., µm,l = |yl � x1|, ..., |yl � xm|.

Since it is not known which root µj,l corresponds to each point xi for l � 2, we need to check which

permutation of the root µ1,l, ...µm,l solves equation(2.1). So, we need to use the following condition to

get unique solution: ai 6= aj , i 6= j.

Assume, there is a permutation of µ1,l, ...µm,l which is the identity, and another permutation x from

{1, ...,m} to itself, which solves the equation (2.1) and different from the identity

µ
0
1 = µx1,l, ..., µ

0
m = µxm,l

If we substract these two equations , we get

0

BBBBBB@

µ1,l � µx1,l µ2,l � µx2,l · · · µm,l � µxm,l

µ
2
1,l � µ

2
x1,l

µ
2
2,l � µ

2
x2,l

· · · µ
2
m,l

� µ
2
xm,l

...
... · · ·

...

µ
2m�1
1,l � µ

2m�1
x1,l

µ
2m�1
2,l � µ

2m�1
x2,l

· · · µ
2m�1
m,l

� µ
2m�1
xm,l

1

CCCCCCA

0

BBBBBB@

a1

a2

...

am

1

CCCCCCA
=

0

BBBBBB@

0

0
...

0

1

CCCCCCA
(2.4)
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LEMMA 2.1 [31, p.448] Suppose for n � 2, �1, ..., �n are real numbers such that �i 6= �j , i 6= j Suppose

x is a permutation from {1, ..., n} to itself,that is different from the identity. Define

0

BBBBBB@

�1 � �x(1) �2 � �x(2) · · · �n � �x(n)

�
2
1 � �

2
x(1) �

2
2 � �

2
x(2) · · · �

2
n � �

2
x(n)

...
... · · ·

...

�
n

1 � �
n

x(1) �
n

2 � �
n

x(2) · · · �
n
n � �

n

x(n)

1

CCCCCCA
= A

Then, if y = (y1, ..., yn) 2 Rn satisfy Ay
T = 0, then 9i, j, i 6= j such that yi = yj

Proof. [31, p.448] By induction on n � 2,since x is different from the identity, then for n = 2, x(1) = 2

and x(2) = 1. Here, y = (1, 1) is in the kernel of A and it has two equal components for different

indices.

Assume the induction hypothesis for every m, such that 2  m  n � 1 and prove it for n � 3.

Assume x does not have any fixed point. Indeed, without loss of generality, suppose x(n) = n then the

matrix A becomes the following form

0

BBBBBB@

�1 � �x(1) �2 � �x(2) · · · �n � �x(n) 0

�
2
1 � �

2
x(1) �

2
2 � �

2
x(2) · · · �

2
n � �

2
x(n) 0

...
... · · ·

...
...

�
n

1 � �
n

x(1) �
n

2 � �
n

x(2) · · · �
n
n � �

n

x(n) 0

1

CCCCCCA
=

0

@B 0̄

⇤ 0

1

A

where B is the top left matrix of A which is (n-1)x(n-1).

If AyT = 0, then y = (y0, ⇤) where y0 2 Rn�1 is in the kernel of B. If x0 denotes the restriction of x

to the set {1, ..., n� 1}, then x({1, ..., n� 1}) = {1, ..., n� 1} since x(n) = n.x0 is also different from

the identity. Thus, applying the induction to the B, it follows that y0 has at least two equal components

for different indices. Thus, it is also true for y1. ⇤

By (2.3), µi,l 6= µj,l if i 6= j, and x is different from the identity. Then, all conditions of Lemma are

satisfied. Thus, any vector in the kernel of the matrix, which is the left hand side of (4.4) have to have

two equal components for different indices. Thus, ai = aj for i 6= j, contradiction.
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Hence we have the all distances �i,l = |yl�xi|, l = 1, ..., n+1 for each 1  i  m. So, since there is

no hyperplane in Rn which contains the point y1,...,yn+1 , it can be uniquely recovered the points xi from

the data �i,1, ...,�i,n+1 ⇤

REMARK 2 For the distribution of the form (3.1), if the recovered amplitudes have the same value, the

procedure to extract f that is used in above theorem will not work anymore, since the proof of this

theorem uses only n + 1 points which have different distances from each of the nodes xii = 1, ...,m. In

this case we cannot know which roots correspond to each nodes xi.

Example: Let f1 and f2 be distributions for n = m = 2

f1 = �(x� r1) + �(x� r2), f2 = �(x� s1) + �(x� s2),

where

r1 = (0, 1), r2 = (2,�1), s1 = (0,�1), s2 = (2, 1)

By Theorem (3.1), we can find n+1 = 3 points y1, y2, y3 on the different lines, and it is known that this

points have different distances from each nodes that to be wanted to extract, so we could suppose that

the spherical mean transform is only given at this points. In this situation, the information received from

the spherical mean transform can intersect for the these distributions.

Assume

y1 = (0, 0), y2 = (2, 0), y3 = (1, 1)

then, y1, y2, y3 are on the different lines and have different distances from r1, r2 of f1 and s1, s2 of f2.

Since,

|y1 � r1| = |y1 � s1|, |y1 � r2| = |y1 � s2|

|y2 � r1| = |y2 � s1|, |y2 � r2| = |y2 � s2|

|y3 � r1| = |y3 � s2|, |y3 � r2| = |y3 � s1|,

the spherical mean transform takes the same information from f1 and f2. Thus they cannot be seperated.

THEOREM 2.2 [31, p.442] Let f : C(Rn) ! R be a distribution of

9



f =
P

m

k=1 ak�(✓k,⇢k) ⇢i 2 (0,1), ✓i 2 Sn�1
ai 2 R\{0} 1  i  m

where m is a positive integer such that ai 6= aj , for1  i < j  m, and the hyperplanes < x, ✓1 >=

⇢1, ..., < x, ✓m >= ⇢m are all distinct.

Suppose that spherical mean transform of f is given at n · m(m � 1) + 2n + 1 points such that

there is no hyperplane in Rn which contains more than n of these given points. Then, the parameters

a1, ⇢1, ✓1, ..., am, ⇢m, ✓m can be uniquely recovered.

Proof. Let � be the set of points on which the spherical mean transform of given f . For 8y 2 � and

hl 2 C(R+),where hl = e
�lt

2
(l 2 N), we have

(Ryf)(hl) = f(R⇤
yhl) = f(hl(|y � ·|)).

=
P

m

k=1 ak�(✓k,⇢k)(hl(|y � ·|))

=
P

m

k=1 ak
R
<x,✓k>=⇢k

(hl(|y � x|))dmx

=
P

m

k=1 ak
R
<x,✓k>=⇢k

e
�l|y�x|2

dmx

Take x = y + z, dmx = dmz , then

(Ryf)(hl) =
P

m

k=1 ak
R
z=<x,✓k>�<y,✓k>=⇢k�<y,✓k>

e
�l|z|2

dmz

=
P

m

k=1 ak
R
Rn e

�l(z21+...+z
2
n)dz1...dzn

=
P

m

k=1 ake
�l(z)2

R
Rn�1 e

�l(z21+...+z
2
n�1)dz1...dzn�1

=(⇡
l
)
1�n
2

P
m

k=1 ake
�l|⇢k�<y,✓k>|2

Now, say ⌧l = (⇡
l
)
1�n
2 (Ryf)(hl), �k = e

�|⇢k�<y,✓k>|2
, 1  l  2m then we can get as theorem 3.1

0

BBBBBB@

⌧1 ⌧2 · · · ⌧m

⌧2 ⌧3 · · · ⌧m+1

...
...

...

⌧m ⌧m+1 · · · ⌧2m��1

1

CCCCCCA
p
(m�1) = �

0

BBBBBB@

⌧m+1

⌧m+2

...

⌧2m

1

CCCCCCA
(2.5)

Kmp
m�1 = �km

Km can be decomposed as Km = V1diag(am)V2, where V1, V2 are the Vandermonde matrices,
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0

BBBBBB@

�1 �2 · · · �m

�
2
1 �

2
2 · · · �

2
m

...
... · · ·

...

�
m

1 �
m

2 · · · �
m
m

1

CCCCCCA
= V1

0

BBBBBB@

1 �1 · · · �
m�1
1

1 �
2
2 · · · �

m�1
2

...
... · · ·

...

1 �
m
m · · · �

m�1
m

1

CCCCCCA
= V2

Since V1, V2 are Vandermonde, and �i 6= 0 for i = 1, ...,m, then V1 or V2 are degenerate if and only if

there are two different indices i 6= j such that |⇢i� < y, ✓i > | = |⇢j� < y, ✓j > |, which means y has

the same distance from < x, ✓i >= ⇢i and < x, ✓j >= ⇢j .

Claim: There exists 2n+1 points y1, ..., y2n+1 such that for 8 1  l  2n+1, the following condition

holds:

|⇢i� < yl, ✓i > | 6= |⇢j� < yl, ✓j > |, 8i, j1  i, j  m, i 6= j (2.6)

Proof of Claim 8y 2 � satisfy |⇢i� < y, ✓i > | = |⇢j� < y, ✓j > | for i 6= j if and only if y lies on one

of the hyperplanes

< x, ✓i + ✓j >= ⇢i + ⇢j

< x, ✓i � ✓j >= ⇢i � ⇢j

By assumption, there is no hyperplane in � which contains more than n points, and there are at most

(m-1)m such hyperplanes, then there are at least 2n+1 points in � that any of them does not lie in any of

these hyperplane, since � contains n ·m(m� 1) + 2n+ 1 distinct points.

As in theorem 3.1, define

�
0 ⇢ �,�

0
= y1, y2, ..., y2n+1 such that 8yi 2 �

0 satisfies (2.6).

For y1 2 �
0 , build a corresponding polynomial with roots and system of equation similar as (2.2).
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{�1, ...�m} = {|⇢1� < y1, ✓1 > |, ..., |⇢m� < y1, ✓m|}

In order to determine amplitudes a1, ..., am, we assume

�i = |⇢i� < y, ✓i > |,and solve system of equations similar as (2.1), as we did in theorem 3.1.

Now we extract the parameters ⇢1, ✓1, ....., ⇢m, ✓m.For this,we need to solve system of equations sim-

ilar as (2.2) for every 2  l  2n+ 1 and extract the coefficients of the polynomial whose roots are

{�1,l, ...�m,l} = {|⇢1� < yl, ✓1 > |, ..., |⇢m� < yl, ✓m > |}.

Thus, we can find the distances

|⇢i� < yl, ✓1 > |, ..., |⇢m� < yl, ✓m > | for 8yl 2 �
0
, 1  l  2n+ 1.

Hence we get

|⇢i� < yl, ✓i > |, l = 1, ..., 2n+ 1, 8i, 1  i  m (2.7)

Uniqueness of (2.7): Let H :< x, ✓i >= ⇢i be a hyperplane. Suppose 9H 0 such that every point

yl, l = 1, ..., 2n + 1 has same distance from H and H
0 . The set of points that have same distance from

such hyperplanes is the union of them. Thus, yl lies in H and H
0 , then at least one of them contains

n+ 1 of these points, contradiction. ⇤

THEOREM 2.3 [31, p.443] Let f : Rn ! R be a function of

f(x) =
P

m

k=1 akh(|x� xk|), xi 2 Rn
, ai 2 R\{0}, 1  i  m where m is positive integer such that

xi 6= xj and ai 6= aj for 1  i < j  m, h is function on R+
. Suppose that spherical mean transform of

f is given at 1
2(n ·m(m�1)+2n+2) points such that there is no hyperplane in Rn which contains more

than n of these given points. Then, the points x1, ..., xm and the amplitudes a1, ..., am can be uniquely

recovered.

LEMMA 2.2 [31, p.447] For a function f that is defined on R+,its radial extension belongs to the

Schwartz space S(Rn). Then, f and its Hankel transform F are continuously differentiable and belong to

L
1(R+

, r
n�1
2 ).

12



Proof. Let h0 and H
0 be the radial extensions of h and H , respectively. In spherical coordinates system

in Rn
, we have

R
|x|>1 h

0
(x)|x|

�n�1
2 dx =

R1
1

R
Sn�1 h

0
(r✓)r

n�1
2 d✓dr = 2⇡

n
2

�(n2 )

R1
1 h(r)r

n�1
2 dr

Since radial extension of h belongs to the Schwartz space,then integral in the left hand side converges,

hence also integral in the right hand side converges. Since h is bounded on [0,1] (because h
0 is bounded

on the unit disk), then h is in L
1(R+

, r
n�1
2 ).

Let h̄ be the Fourier transform of h. Use the spherical coordinates,

h̄(') = 1

(2⇡)
n
2

R
Rn h

0
(x)e�i<',x>

dx = 1

2⇡
n
2

R1
0

R
Sn�1 h

0
(r✓)e�ir<',✓>

d✓r
n�1

dr

Take ' = �� where � = |'| and � = '

|'| and use the identity,

R
Sn�1 e

�it<�,✓> = (2⇡)
n
2 jn

2�1(t)

Then,

h̄(��) =
R1
0 h(r)jn

2�1(�r)r
n�1

dr = H(�)

Thus, h̄ is the radial extension of H . Since h̄ maps S(Rn) onto itself and h̄ 2 S(Rn), then the same is

true for the radial extension of H . Thus, H belongs to L
1(R+

, r
n�1
2 ) from the same points that used for

h and h
0 . ⇤

Proof. [Theorem] Let H be the Hankel transform of h of order n

2 � 1.

H(�) =

Z 1

0
h(r)jn

2�1(�r)r
n�1

dr � � 0 (2.8)

By above lemma, the radial extension of f is in S(Rn), then f is continuously differentiable and belongs

to L
1(R+

, r
n�1
2 ). Hence we can say that

h(r) =
R1
0 H(�)jn

2�1(�r)�
n�1

d�, r � 0

By equation (3.2),

f(x) =
P

m

k=1 ak
R1
0 H(�)jn

2�1(�|x� xk|)�n�1
d�

13



Take the spherical mean transform of f at a point y, we get

(Ryf)(t) =
P

m

k=1 ak
R1
0 H(�)(Ry(jn

2�1(�| ·�xk|))(t)�n�1
d�

=
P

m

k=1 ak
R1
0 H(�)

R
|✓|=1(jn

2�1(�|y � xk + t✓|))d✓�n�1
d�t

n�1

Using the identity

R
|✓|=1 j

n
2�1(�|x+ r✓|)d✓ = (2⇡)

n
2 jn

2�1(�r)jn
2�1(�|x|)

and we get

(Ryf)(t) = (2⇡)
n
2
P

m

k=1 ak
R1
0 H(�)jn

2�1(�|y � xk|)jn
2�1(�t)�

n�1
d�t

n�1

Thus,

(Ryf)(t))

tn�1(2⇡)
n
2
=

P
m

k=1 ak
R1
0 H(�)jn

2�1(�|y � xk|)jn
2�1(�t)�

n�1
d�

Taking

F (�) = (
P

m

k=1 akj
n
2�1(�|y � xk|))H(�)

Then,

(Ryf)(t))

tn�1(2⇡)
n
2
=

Z 1

0
F (�)jn

2�1(�t)�
n�1

d� (2.9)

Here, the right hand side of equation is Hankel transform for F . It is needed to show that F is

continuously differentiable and belongs to L
1(R+

, r
n�1
2 ) to use inverse of the Hankel transform of F.

Since H is continuosly differentiable and belongs to L
1(R+

, r
n�1
2 ), then it is also valid for F . Thus,

the inverse of Hankel transform of F can be taken as following :

1

(2⇡)
n
2

Z 1

0
(Ryf)(t)jn

2�1(�t)dt = (
mX

k=1

akjn
2�1(�|y � xk|))H(�) (2.10)

If we divide both sides with H(�) and take the derivative 2k times for � = 0,we get

14



22k�1(�1)kk!�(n2+k)

⇡
n
2 (2k)!

( 1
H(�)

R1
0 (Ryf)(t)jn

2�1(�t)dt)
(2k)|�=0

mX

k=1

ak|y � xk|2k (2.11)

By using same procedure in Theorem (3.1) and replacing points y in (2.11) for k = 0, ..., 2m � 1, we

can recover the x1, ..., xm, a1, ..., am. ⇤

2.2 Reducing Spherical Mean to Regular Radon Transform

Spherical Mean Transform operator Rx (see definition 2.1) transfers all the known properties of the

function on Rn,which include the classical hyperplane Radon function and inversion formulas, to Rx. In

ths circumstance, �-cosine transforms and Semyanisty’s fractional integrals [29, 30, 33] can be envoked

to apply this transition. The Radon transform is a particular case of these integrals [30].

C
� = Va,�R

�
Ua,� where Va,� and Ua,� are certain bijections.

2.2.1 The �-cosine Transform

Let the SMT of a continuous function f on S
n be

(Rf)(x) = 1
tn�1

R
n

S
f(µ)dxµ x 2 S

n

In many cases, it is appropriate to consider the SMT as a member of the normalized cosine transform

(C�
f)(x) = ⌧n,x

R
Sn f(µ)|xµ|�d⇤µ,

where d⇤µ = dµ

tn
, Re� > �1 � 6= 0, 2, 4, ..., ⌧n,� =

⇡
1
2�(��

2 )

�(n+1
2 )� (1+�)

2

2.2.2 Radon Transform

The Radon Transform of the function f(x, y)x, y 2 R is defined as following

g(⇢, ✓) = (Rf)(⇢, ✓) =
R1
�1

R1
�1 f(x, y)�(⇢� xcos✓ � ysin✓)dxdy,

15



where �(·) is the Dirac Delta function.

The plot of the Radon transform is referred to as a sinogram from its sinusoid shape. The inverse

Radon transform is applied to the image to recover the image from sinogram. There are many inversion

formulas for the Radon transform.The filtered back projection is the most commonly used technique. It

is derived as follows

f(x, y) =
R1
�1

R1
�1 F (u, v)e�2⇡i(ux+vy)

dudv

and changing variables to polar coordinates

u = wcos✓, v = wsin✓, dudx = wdwd✓

Then,

f(x, y) =
R 2⇡
0

R1
0 wF (wcos✓, wsin✓)e�2⇡wi(xcos✓+ysin✓)

dwd✓

=
R
⇡

0

R1
�1 |w|F (wcos✓, wsin✓)e�2⇡wi(xcos✓+ysin✓)

dwd✓

=
R
⇡

0

R1
�1 |w|(

R1
�1 t✓(⇢)e2⇡i⇢w)e�2⇡wi(xcos✓+ysin✓)

dwd✓

The last equation above can be seperated as two steps. The following first part is filtering step in the

frequency domain

t̂✓(⇢) =
R1
�1 |w|(

R1
�1 t✓(⇢)e2⇡i⇢w)e�2⇡⇢wi

dw

and the rest is followed by projection step

ĝ(⇢, ✓) = t̂✓(⇢)

f(x, y) =
R
⇡

0 ĝ(xcos✓ + ysin✓, ✓)d✓

=
R
⇡

0

R1
�1 ĝ(⇢, ✓)�(⇢� xcos✓ � ysin✓)d⇢d✓

Here ĝ(⇢, ✓) is called filtered backprojection.

2.3 Numerical Implementation

In this section, a reconstructed Modified Shepp-Logan phantom and a reconstructed captured radar image

were given. The codes were built in MATLAB and given in the Appendix A. Reconstruction period was

around 10 seconds. Different discretization number were implemented and results showed that while

increasing the discretization number, image resolutions increase.
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Figure 1.: Reconstruction for Modified Shepp-Logan Image
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Figure 2.: Reconstruction for Captured Weather Radar Image
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Chapter 3

Regional Attenuation Correction

Correction of echo attenuation is challenging, since the variation of the raindrop size distribution affects

the accuracy of precipitation quantitative estimates. Since microwave links can accurately obtain total

path attenuation, regional attenuation can be corrected using a multipurpose-microwave-link network

based on tomographic reconstruction of attenuation coefficients [37]. The quantitative precipitation es-

timations from the radar depend on the intensity of echoes reflected by raindrops, but those from the

microwave link depend on rainfall attenuation along the path [18].

QPE from weather radar can be affected by many factors. One of the key factors is the rainfall atten-

uation on the propagation of electromagnetic waves. The rainfall attenuation also effects the radar echo

intensity by decreasing. At the long distances, actual values are higher than the reflectivity factors of

radar, so this factors do not reflect the actual precipitation distribution [37]. In this section attenuation of

radar echoes was corrected with tomographic correction method.

Describing the characterization of the microwave attenuation is really important to correct attenuation.

Due to developing the attenuation correction effect, attenuation along the propagation path was measured

by many scientists [37]. Lin and Lv [22] suggested to use microwave radiometer to acquire total path

attenuation.

The Surface Reference Technique (SRT) is widely preferred technique to measure total path attenu-

ation with space born radar configuration by comparing the acquired echo differences at the rainy and

non-rainy areas. In addition to that, Serrar et al [34] proposed to compare radar echo attenuation by

taking echo differences in between rainy and non-rainy days, which is called Mountain Reference Tech-

nique and clearly refers to SRT. Meneghini et al [26] stated that SRT could be have some restrictions,

since the attenuation and reflection of electromagnetic waves are different due to surface fluctuation and

humidity.

Determining the signal level of microwave links for the both transmitter and receiver is a way to

acquire microwave propagation attenuation. During precipitation period, the microwave attenuates while

19



it passes through the rain area. Gao et al [11] proposed that to measure this attenuation level, it can be

compared the rainy and non-rainy days. This acquired data can be used to show precipitation intensity

and correct reflectivity factor of radar. In addition to that, Kramer et al [19] showed the methods to

correct radar reflectivity factors for X-band radars by using microwave link, and Kramer and Vervorn

[20] stated the algorithms to correct radar reflectivity factors for C-band radar by using microwave link,

as well.

In this part, we expanded the region of attenuation correction using multiple microwave links to de-

velop attenuation correction. To obtain the total radar attenuation, we derived the attenuation coefficients

of the grids. The method we used is called Computerized Tomography imaging method.

3.1 Theory of The Radar Attenuation Correction

Let P̄r0 be the average echo before attenuation, P̄r be the average echo after attenuation and Kt be the

attenuation factor. Then attenuation characteristic can be written as follows

P̄r = P̄r0 ⇥Kt (3.1)

Derivation shows that,

dP̄r

dr
= �2kt(r)P̄r0 (3.2)

where dP̄r is the attenuation value and kt(r) is the attenuation coefficient.

The average echo power is the integral solution of (3) from ranges 0 to R.

P̄r = P̄r0 exp(�2

Z
R

0
kt(r)dr) (3.3)

By using the identity log10X = 0.4343(lnX) and the determining the attenuation as k(r) = 4.343kt(r)

in units of dB

km
, (4)becomes

ln(
P̄r

P̄r0
) = �2

Z
R

0
kt(r)dr (3.4)
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It is also derived as follows

P̄r = P̄r0 ⇥ 10�0.2
RR
0 ksdr (3.5)

Comparing (2) and (6), we get that

Kt = 10�0.2
RR
0 ksdr (3.6)

We can create the new equation similar in (2) by using radar reflectivity observation Zm instead of P̄r

and radar reflectivity of the target Zr instead of P̄r0. Then, we get following equation

Zm = Zr ⇥Kt = Zr ⇥ 10�0.2
RR
0 ksdr (3.7)

in which Kt is the attenuation factor, R is the distance between radar and the detection target and ks

is attenuation coefficient.

If we take the logarithms of both sides in (8), we get

logZm = logZr ⇥�0.2

Z
R

0
ksdr (3.8)

To correct attenuation we need to use radar reflectivity factor. At this point, we need to convert radar

reflectivity to radar reflectivity factor. To do this, the following equation can be used

z = 10 logZ (3.9)

Then, we have

zr = zm + 2

Z
R

0
ksdr (3.10)

in which zr is the corrected radar reflectivity factor, zm is the measured reflectivity factor of radar and

ks is the attenuation coefficient.
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3.2 Radon Transform Modeling for Attenuation Coefficients

3.2.1 Reconstruction of Grid Attenuation

To correct attenuation the Computarized Tomography (CT) imaging technology can be used. This tech-

nique is based on ray scanning and the attenuation of ray power is acquired through the wave field [37].

The Radon transform and Fourier-Slice theorem are the theoretical basis of CT. We discussed the

mathematical theory of the Radon transform and its inverse in the previous parts. In addition to that, we

can determine the tomography as the Inverse Radon Transform. In the tomography theory, a function

f(x, y) which refers to an image is usually discretized to the pixel level to obtain mean value of f(x, y)

in each pixel [37].

Microwave links pass through the precipitation area in the weather radar monitoring field. In a mi-

crowave link transmitting end conducts the signal with the frequency, polarization and fixed power and

the receiving end acquires the power after attenuation [37].

Figure 3.: Diagram of Microwave link in the monitoring area.

Figure represents the attenuation coefficients tomography’s schematic diagram for a simulated region.

The region was divided into equal meshes Mj (j = 1, 2, ...). Shown microwave link is an example in

which T is the transmitting end and R is the receiving end. The link passes through the grids at M7, M5

and M2 with the lengths in the girds is denoted by li7, li5 and li2, respectively.

The precipitation attenuation of the microwave link can be formulated as
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Ai =
NX

j=1

lijkj (3.11)

where lij is the length of the ith microwave link in the jth mesh, N is the discretized number of meshes

[37].

By the power law , it can also be expressed as

Ai = aiR
bi
i
li (3.12)

where Ri is the average precipitation intensity on the ith link, li is the length and ai and bi are the

conversion constants of the ith link [37].

By (3.12), the attenuation of the microwave links can be formulated as

A = LK (3.13)

where A = Ai is the column vector of the total attenuation, L = lij is the distance matrix asnd

K = kj is the column vector of the attenuation coefficients. Thus, the following system of equations can

be expressed where M is the number of microwave links [37].

l11k1 + l12k2+ · · ·+ l1NkN = A1

l21k1 + l22k2+ · · ·+ l2NkN = A2

...

lM1k1 + lM2k2+ · · ·+ lMNkN = AM

(3.14)

Tomographic model of the attenuation coefficients can be obtained by solving the above linear sys-

tem(3.14). Solution of the linear equations was explained in details in [12] to acquire the attenuation

coefficient [37].
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3.3 Numerical Implementation and Regional Attenuation Correction

To correct the regional attenuation, the process is the following

• Creating a joint observation microwave links network and weather radar data

• Matching the observational weather radar and the microwave attenuation data with time and space

• Discretization of the field

• Using reconstruction algorithms to acquire tomographic attenuation coefficients

• Calculating the path attenuation (PA) of the ith link between the radar and the mesh points with the

formula

(PA)ij =
MX

i=1

NX

j=1

kjdij (3.15)

where dij is the length of the ith link between radar and the mesh point through the jth mesh

• Calculating the corrected radar reflectivity factor zij as follows

zij = zmij + 2⇥ (PA) (3.16)

where zmij is the measured radar reflectivity factor [37].

To perform the accuracy of the algorithms and techniques, the numerical implementation was sim-

ulated. The total distribution of the monitoring area which was discretized with the CT principle was

24 ⇥ 24 km and the area was divided into 3 ⇥ 3 km square grids. In the simulation area there were 30

microwave links. The distances between transmitting and receiving ends were 3 km and the signal fre-

quency was 10 GHz with the vertical polarization.By the International Telecommunication Union (ITU)

rainfall model [38] attenuation coefficient k = 0.00887R1.264. As tomographic reconstruction models,

Simultaneously Iterative Reconstruction Technique and Filtered Backprojection Technique were used

and the results were compared.

To analyze the corrections, corellation coefficient, mean square error and mean deviaton were use to

define the correction effect
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⇢ =

P
N

i=1(zri � ẑi)(zi � ẑ)qP
N

i=1(zri � ẑi)2
P

N

i=1(zi � ẑ)2

RMSE =

vuut 1

N

NX

i=1

(zri � zi)2

e =

P
N

i=1(zi � zri)P
N

i=1 zri

(3.17)

where zr and z are uncorrected and corrected radar reflectivity factors, respectively and ẑr and ẑ are

average radar reflectivity factors, respectively.

Table 1: Comparison of the radar reflectivity

Technique ⇢Unc ⇢Cor RMSEUnc RMSECor eUnc eCor

SIRT 0.362 0.7149 12.2328 3.2144 0.2624 0.0144

FBP 0.4823 0.5625 17.65 8.4432 0.3976 0.2311

Table 2: Comparison of the rainfall intensity

Technique ⇢Unc ⇢Cor RMSEUnc RMSECor eUnc eCor

SIRT 0.6847 0.9326 24.65 10.871 0.809 0.0467

FBP 0.7129 0.8425 31.283 16.09 0.9174 0.4326

Conclusion In this section, the provided algorithms were analyzed and two different reconstruction

techniques were compared. Both SIRT and FBP methods are efficient techniques to improve rainfall

attenuation correction. Moreover, results show that the SIRT technique is more effective technique as

tomographic correction.
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Appendix A

Matlab Codes

FBP and SIRT Codes with Weighted Matrix

1 f u n c t i o n R e c o n s t r u c t i o n

2 %Load image h e r e

3 f i g u r e , s u b p l o t ( 3 , 2 , 1 ) ,

4 imshow ( Image )

5 s u b p l o t ( 2 , 3 , 1 ) ;

6 imagesc ( Image ) ;

7 t i t l e ( ’ O r i g i n a l Image ’ ) ;

8

9 % padd ing t o t h e image wi th z e r o s t o n o t t o l o s e a n y t h i n g w h i l e

r o t a t i n g .

10 [ Length , Width ] = s i z e ( Image ) ;

11 Diag = s q r t ( Length ˆ2 + Width ˆ 2 ) ;

12 LengthPad = c e i l ( Diag � Length ) + 2 ;

13 WidthPad = c e i l ( Diag � Width ) + 2 ;

14 padImage = z e r o s ( Length +LengthPad , Width+WidthPad ) ;

15 padImage ( c e i l ( LengthPad / 2 ) : ( c e i l ( LengthPad / 2 ) +Length �1) , . . .

16 c e i l ( WidthPad / 2 ) : ( c e i l ( WidthPad / 2 ) +Width �1) ) = Image ;

17 %

18 f r e q u e n c y = 0 . 5 ;

19 t h e t a = 1 : f r e q u e n c y : 1 8 0 ;

20 s u b p l o t ( 2 , 3 , 2 )

1 % C r e a t i n g Sinogram
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2 Sinogram = radon ( Image , t h e t a ) ;

3 imagesc ( Sinogram ) ;

4 t i t l e ( ’ Sinogram ’ )

5 s u b p l o t ( 2 , 3 , 3 )

6

7 % B a c k p r o j e c t i o n P r o c e d u r e

8 PP = s i z e ( Sinogram , 1 ) ;%Number o f P a r a l l e l P r o j e c t i o n s

9 AP = l e n g t h ( t h e t a ) ;%Number o f Angula r P r o j e c t i o n s

10 t h e t a = ( p i / 1 8 0 ) ⇤ t h e t a ;

11 BPI = z e r o s ( PP , PP ) ;%Se tup b a c k p r o j e c t e d image

12 MI = c e i l ( PP / 2 ) ;%Middle i n d e x of p r o j e c t i o n s

13 [ x1 , y1 ] = meshgr id ( c e i l (�PP / 2 ) : c e i l ( PP /2�1) ) ;%new c o o r d i n a t e s

14

15 % F i l t e r i n g P r o c e d u r e ’RamLak ’

16 i f mod ( PP , 2 ) == 0

17 FS= 2⇤ f l o o r (1 + PP ) ;%f i l t e r s i z e

18 e l s e

19 FS = 2⇤ f l o o r ( PP ) ;

20 end

21 f i l t e r = z e r o s ( 1 , FS ) ;

22 f i l t e r ( 1 : 2 : FS ) = � 1 . / ( [ 1 : 2 : FS ] . ˆ 2 ⇤ p i ˆ 2 ) ;

23 f i l t e r = [ f l i p l r ( f i l t e r ) 1 / 4 f i l t e r ] ;

24

25 % P r o j e c t i o n l o o p s

26 f o r i = 1 :AP

27 r o t C o o r d s = round ( MI + x1⇤ s i n ( t h e t a ( i ) ) + y1⇤ cos ( t h e t a ( i ) ) ) ;

28 i n d i c e s = f i n d ( ( r o t C o o r d s > 0) & ( r o t C o o r d s <= PP ) ) ;

29 newCoords = r o t C o o r d s ( i n d i c e s ) ;

30 f i l t e r e d P r o f i l e = conv ( Sinogram ( : , i ) , f i l t e r , ’ same ’ ) ;

31 BPI ( i n d i c e s ) = BPI ( i n d i c e s ) + f i l t e r e d P r o f i l e ( newCoords ) . / AP ;
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32 imagesc ( BPI ) ;

33 t i t l e ( ’ BPI ’ ) ;

34 drawnow

35

36 end

37

38 MI = f l o o r ( s i z e ( BPI , 1 ) / 2 ) + 1 ;%f i n d t h e midd le i n d e x of t h e

p r o j e c t i o n s

39

40

41 %Pre� f i l t e r f o r t h e f r e q domain

42 [ x1 , y1 ] = meshgr id (1�MI : s i z e ( BPI , 1 )� MI ) ;

43 r a m p f i l t e r = s q r t ( x1 . ˆ 2 + y1 . ˆ 2 ) ;

44

45 %F o u r i e r t r a n s f o r m a t i o n

46 Rec = f f t s h i f t ( f f t 2 ( BPI ) ) ;

47

48 % F i l t e r i n g f o r t h e f r e q domain

49 Rec = Rec .⇤ r a m p f i l t e r ;

50

51 % i n v e r s e f o u r i e r t r a n s f o r m a t i o n

52 Rec = r e a l ( i f f t 2 ( i f f t s h i f t ( Rec ) ) ) ;

53

54 RI= mat2gray ( Rec ) ;

55 s u b p l o t ( 2 , 3 , 4 ) ;

56 imshow ( RI ) ;

57 t i t l e ( ’ FBI ’ ) ;

1 % C r e a t i n g Sinogram

2 Sinogram = radon ( Image , t h e t a ) ;

3 imagesc ( Sinogram ) ;
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4 t i t l e ( ’ Sinogram ’ )

5 s u b p l o t ( 2 , 3 , 3 )

6

7 % B a c k p r o j e c t i o n P r o c e d u r e

8 PP = s i z e ( Sinogram , 1 ) ;%Number o f P a r a l l e l P r o j e c t i o n s

9 AP = l e n g t h ( t h e t a ) ;%Number o f Angula r P r o j e c t i o n s

10 t h e t a = ( p i / 1 8 0 ) ⇤ t h e t a ;

11 BPI = z e r o s ( PP , PP ) ;%Se tup b a c k p r o j e c t e d image

12 MI = c e i l ( PP / 2 ) ;%Middle i n d e x of p r o j e c t i o n s

13 [ x1 , y1 ] = meshgr id ( c e i l (�PP / 2 ) : c e i l ( PP /2�1) ) ;%new c o o r d i n a t e s

14

15 % F i l t e r i n g P r o c e d u r e ’RamLak ’

16 i f mod ( PP , 2 ) == 0

17 FS= 2⇤ f l o o r (1 + PP ) ;%f i l t e r s i z e

18 e l s e

19 FS = 2⇤ f l o o r ( PP ) ;

20 end

21 f i l t e r = z e r o s ( 1 , FS ) ;

22 f i l t e r ( 1 : 2 : FS ) = � 1 . / ( [ 1 : 2 : FS ] . ˆ 2 ⇤ p i ˆ 2 ) ;

23 f i l t e r = [ f l i p l r ( f i l t e r ) 1 / 4 f i l t e r ] ;

24

25 % P r o j e c t i o n l o o p s

26 f o r i = 1 :AP

27 r o t C o o r d s = round ( MI + x1⇤ s i n ( t h e t a ( i ) ) + y1⇤ cos ( t h e t a ( i ) ) ) ;

28 i n d i c e s = f i n d ( ( r o t C o o r d s > 0) & ( r o t C o o r d s <= PP ) ) ;

29 newCoords = r o t C o o r d s ( i n d i c e s ) ;

30 f i l t e r e d P r o f i l e = conv ( Sinogram ( : , i ) , f i l t e r , ’ same ’ ) ;

31 BPI ( i n d i c e s ) = BPI ( i n d i c e s ) + f i l t e r e d P r o f i l e ( newCoords ) . / AP ;

32 imagesc ( BPI ) ;

33 t i t l e ( ’ BPI ’ ) ;
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34 drawnow

35

36 end

37

38 MI = f l o o r ( s i z e ( BPI , 1 ) / 2 ) + 1 ;%f i n d t h e midd le i n d e x of t h e

p r o j e c t i o n s

39

40

41 %Pre� f i l t e r f o r t h e f r e q domain

42 [ x1 , y1 ] = meshgr id (1�MI : s i z e ( BPI , 1 )� MI ) ;

43 r a m p f i l t e r = s q r t ( x1 . ˆ 2 + y1 . ˆ 2 ) ;

44

45 %F o u r i e r t r a n s f o r m a t i o n

46 Rec = f f t s h i f t ( f f t 2 ( BPI ) ) ;

47

48 % F i l t e r i n g f o r t h e f r e q domain

49 Rec = Rec .⇤ r a m p f i l t e r ;

50

51 % i n v e r s e f o u r i e r t r a n s f o r m a t i o n

52 Rec = r e a l ( i f f t 2 ( i f f t s h i f t ( Rec ) ) ) ;

53

54 RI= mat2gray ( Rec ) ;

55 s u b p l o t ( 2 , 3 , 4 ) ;

56 imshow ( RI ) ;

57 t i t l e ( ’ FBI ’ ) ;

1 %Pre� f i l t e r f o r t h e f r e q domain

2 [ x1 , y1 ] = meshgr id (1�MI : s i z e ( BPI , 1 )� MI ) ;

3 r a m p f i l t e r = s q r t ( x1 . ˆ 2 + y1 . ˆ 2 ) ;

4 %F o u r i e r t r a n s f o r m a t i o n

5 Rec = f f t s h i f t ( f f t 2 ( BPI ) ) ;
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6 % F i l t e r i n g f o r t h e f r e q domain

7 Rec = Rec .⇤ r a m p f i l t e r ;

8 % i n v e r s e f o u r i e r t r a n s f o r m a t i o n

9 Rec = r e a l ( i f f t 2 ( i f f t s h i f t ( Rec ) ) ) ;

10 RI= mat2gray ( Rec ) ;

11 s u b p l o t ( 2 , 3 , 4 ) ;

12 imshow ( RI ) ;

13 t i t l e ( ’ FBI ’ ) ;

14 end

1 %Weighted m a t r i x codes

2

3 f u n c t i o n W = Weight ( x , y , z , t )

4 x = [ 0 : x�1] � ( x�1) / 2 ;

5 y = (�1) ⇤ ( [ 0 : y�1] � ( y�1) / 2 ) ;

6 p i x e l = l e n g t h ( x ) ;

7 t h e t a = [ 0 : t �1] ’ / t ⇤ p i ;

8 t = cos ( t h e t a ) ⇤ x ’ + s i n ( t h e t a ) ⇤ y ’ ;

9 t = t + ( z +1) / 2 ;

10 a = f l o o r ( t ) ; % Find l e f t b i n s o f p r o j e c t e d p i x e l c e n t e r s .

11 l b = 1 � ( t�a ) ; % l e f t b i n s

12 rb = 1� l b ; % r i g h t b i n s

13 n c = x ⇤ y ; %number o f column

14 r i = a + [ 0 : t �1] ’⇤ z⇤ ones ( 1 , p i x e l ) ; % r o w i n d i c e s

15 c j = f i n d ( fn ( : ) ) ’ ;

16 c j = c j ( ones ( 1 , t ) , : ) ; % column i n d i c e s

17 v a l u e =a ( : ) >= 1

18 W = s p a r s e ( r i , c j ) , lb , z⇤ t , n c ) ; %S p a r s e w e i g h t e d m a t r i x

19

20 % SIRT codes

21
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22 f u n c t i o n I = s a r t (W, f , p , i t e r a t i o n )

23 I = z e r o s ( f , 1 ) ;

24 Wt = W’ ;

25 C = sum ( Wt ) ;

26 R = sum (W) ;

27 f o r k = 1 : i t e r a t i o n

28 q = W⇤ f ;

29 A = ( p�q ) . / R ;

30 B = Wt ⇤ A;

31 f = f + (B . / C) ;

32 I = f ;

33 end

34 I = r e s h a p e ( I , n , n ) ;

35 I =I ’ ;

36


	Reconstruction of Radar Images by Using Spherical Mean and Regular Radon Transforms
	Scholar Commons Citation

	tmp.1574272083.pdf.5cpgN

