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ABSTRACT 
 
 

 My dissertation focuses on mathematical explanation found in proofs looked at 

from a historical point of view, while stressing the importance of mathematical practices.  

Current philosophical theories on explanatory proofs emphasize the structure and 

content of proofs without any regard to external factors that influence a proof‘s 

explanatory power.  As a result, the major philosophical views have been shown to be 

inadequate in capturing general aspects of explanation.  I argue that, in addition to form 

and content, a proof‘s explanatory power depends on its targeted audience.  History is 

useful here, because from it, we are able to follow the transition from a first-generation 

proof, which is usually non-explanatory, into its explanatory version.  By tracking the 

similarities and differences between these proofs, we are able to gain a better 

understanding of what makes a proof explanatory according to mathematicians who 

have the relevant background to evaluate it as so.  

 My first chapter discusses why history is important for understanding 

mathematical practices.  I describe two kinds of history: one that presents a narrative of 

events, which influenced developments in mathematics both directly and indirectly, and 

another, typically used in mathematical research, which concentrates only on technical 

developments.  I contend that both versions of the past benefit the philosopher.  History 

used in research gives us an idea of what mathematicians desire or find to be important, 



 
 

iv 
 

while history written by historians shows us what effects these have on mathematical 

practices.   

 The next two chapters are about explanatory proofs.  My second chapter 

examines the main theories of mathematical explanation.  I argue that these theories are 

short-sighted as they only consider what appears in a proof without considering the 

proof‘s purported audience or background knowledge necessary to understand the proof.  

In the third chapter, I propose an alternative way of analyzing explanatory proofs.  Here, 

I suggest looking at a theorem‘s history, which includes its successive proofs, as well as 

the mathematicians who wrote them.  From this, we can better understand how and why 

mathematicians prove theorems in multiple ways, which depends on the purposes of 

these theorems. 

 The last chapter is a case study on the computer proof of the Four Color Theorem 

by Appel and Haken.  Here, I compare and contrast what philosophers and 

mathematicians have had to say about the proof.  I argue that the main philosophical 

worry regarding the theorem—its unsurveyability—did not make a strong impact on the 

mathematical community and would have hindered mathematical development in 

computer-assisted proofs.  By studying the history of the theorem, we learn that Appel 

and Haken relied on the strategy of Kempe‘s flawed proof from the 1800s (which, 

obviously, did not involve a computer).  Two later proofs, also aided by computer, were 

developed using similar methods.  None of these proofs are explanatory, but not because 

of their massive lengths.  Rather, the methods used in these proofs are a series of 

calculations that exhaust all possible configurations of maps. 
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INTRODUCTION  
 
 

 Much of contemporary philosophy of mathematics has been focused on the 

practices of mathematicians.  Contrasted to the traditional philosophies of mathematics 

of the early to mid-twentieth century, which concentrated on mathematical foundations, 

ontology, and truth of mathematical propositions, many philosophers now tackle 

questions concerning what mathematicians do and the historical development of 

mathematics.  This approach requires philosophers to depend on the history of 

mathematics, because it reflects on why and how mathematics has developed in the way 

it has.  Studying mathematical practices also benefits the philosopher, because the 

successes of mathematics demonstrate the overall correctness of its practices, thereby 

suggesting broader epistemological lessons to be learned. 

 There are still some ties to the traditional philosophical views.  For example, the 

Quine-Putnam Indispensability Argument formulated over forty years ago is still 

influential today.  According to the argument, we are justified in believing in the 

existence of the mathematical objects found in the parts of mathematics that are used in 

our best scientific theories.  The problem with this view is that it implies that the 

sciences determine what exists in mathematics.  The objects in the applied parts of 

mathematics exist, while the others have to wait until the sciences have a use for them.1  

                                                      
1 Mathematics is commonly divided into two parts: pure and applied.  On the surface, the 
differences between the two may seem clear—applied mathematics is used outside of 
mathematics, and pure mathematics is not.  However, there are branches of mathematics 
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However, there is much more to mathematics than its applicability, and most 

mathematicians are not concerned with how their work is used outside of their 

discipline.  Thus, the indispensability argument ignores mathematical practices.  In 

spite of this problem, philosophers who have written on mathematical practices such as 

Alan Baker, Mark Colyvan, and Christopher Pincock have their own versions of the 

indispensability argument to support their views on mathematical realism.   

 The history of mathematics provides us with a rich source on how 

mathematicians come to know their subjects and why mathematics has developed in the 

way it has.  When we take historical events into account, we can examine the changes 

that have occurred within mathematical practices to form a better understanding of 

what mathematicians do.  Philosophers José Ferreirós, Phillip Kitcher, and Penelope 

Maddy explain that there are different key factors that can change over time, 

contributing to the development of mathematics.  These factors include what language is 

used, which questions are important, and which methods of reasoning are most salient.  

Although these philosophers ascribe different degrees of importance to each component, 

and other factors are also considered, it is generally accepted by them that all three are 

highly dependent on the history of mathematics. 

 There are two types of history to consider when thinking about changes in these 

important factors.  The first type is the history that is written by historians.  Ideally, 

sequences of events are presented as accurately as possible, leaving little trace of the 

present in their narratives.  Details external to the technical details of mathematical 

                                                                                                                                                                           
that could belong to both.  For instance, harmonic analysis is based on methods from 
analysis (which tends to be thought of as pure mathematics) but has many applications in 
the sciences and engineering.  The famous number theorist, G. H. Hardy, praised his field as 
the purest branch of mathematics, but it has many applications in cryptology.   
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development are vital to understanding how a piece of mathematics came about.  Such 

details include the backgrounds of mathematicians, the locations where developments 

took place, as well as major concurrent events.  The second type of history is the one 

typically used in mathematical research.  It focuses more on the progress of a piece of 

mathematics.  The technical developments are key here, while there is no use for any 

external details.  This type of history tends to be Whiggish; only major developments are 

highlighted.  Developments are presented as if they are compatible with our present 

mathematics—no changes in language or methods are addressed.  Although history used 

for research purposes is not an accurate presentation of past events, it focuses on the 

relevant technical details the mathematician uses in her research. 

 The philosopher benefits from knowing both types of history.  The history used in 

mathematical research reflects the ―final products‖ of mathematical developments.  

These are papers found in journals, reference books, and other sources that represent 

polished versions of mathematics.  From these sources, philosophers can gain an 

understanding of what mathematicians consider important in their research.  History as 

told by historians provides the details of what actually occurred; it gives us a narrative of 

how mathematicians developed their discipline through the twists and turns of the past 

that are usually ignored in the history used in mathematical research.   

 Since it is a very difficult (if not impossible) task to write on mathematics and its 

history in general, I will focus on mathematical proof.  Specifically, I will investigate 

what makes a proof explanatory to mathematicians.  A proof is thought to be 

explanatory if it answers why its corresponding theorem is true, as opposed to only 

providing justification that it is true.  There has been recent philosophical discussion on 

explanatory proofs.  However, it has mostly concentrated on the contents and forms of 
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such proofs without much regard to history, although examples from the distant past 

are chosen above contemporary ones.  Unfortunately, assuming that explanation 

depends only on the form or content of a proof leaves out the proof‘s audience.  What 

may be explanatory to one audience may be confusing for another.  This can easily be 

imagined: a research mathematician may find a given proof to be explanatory though it 

remains very difficult to follow for a first-year undergraduate student.  Although 

philosophical theories on explanation are intended to reflect the practices of research 

mathematicians, philosophers have chosen case studies that are very simple to follow.  

This has the consequence of making it seem as if an explanatory proof is accessible to 

everyone, which is hardly the case.  

 A different strategy for understanding what makes a proof explanatory is to use 

the two types of history described above to explore what proofs mathematicians judge to 

be explanatory and why.  Looking at mathematics‘ past, we are able to determine what 

mathematicians favor in explanatory proofs.  However, this is not an easy task, because 

mathematicians seldom offer commentary on proofs.  I suggest that we study a 

theorem‘s multiple proofs starting from its first generation proof to either its textbook 

presentation or latest generation proof  (provided that it is explanatory).  By doing so, 

we are able to track the differences in language, method, and style of proof.  These 

differences are crucial to understanding how mathematicians improve on older proofs.  

Additionally, it is helpful to know about the mathematicians behind these proofs.  Their 

backgrounds and styles of proving aid us in recognizing what they used the 

corresponding theorems for and why they proved them in the way they did.  I believe 

that this strategy of looking at multiple proofs for one theorem will illuminate what 



 
 

5 
 

mathematicians mean when they say that a proof is explanatory and will be more in line 

with mathematical practices than current philosophical theories. 

 In line with recent trends, the goal of my dissertation is to emphasize the 

importance of history and mathematical practices for the philosophy of mathematics.  

Without these, philosophy of mathematics becomes disconnected with mathematics—

the very subject it addresses.  But despite increased attention to history and practice, 

recent work in the philosophy of mathematics sometimes still ignores history and 

practice in favor of viewing mathematics as a static discipline, especially when 

addressing specific issues such as explanations found in proofs.    

 The first chapter of my dissertation discusses the importance of the two types of 

history described above: history written by historians and history used in mathematical 

research.  While it is not possible to have a ―pure‖ history of mathematics, which is 

written without any trace of the present, we can still gain insight that is missed in the 

version of history used by mathematicians.  Here, I argue that philosophers should focus 

on both versions of the past.  History used in mathematical research shows what 

mathematicians desire or find to be important, while history written by historians shows 

us the evolution of mathematical practices.   

 Philosophical views that ignore history and mathematical practices have 

hindered mathematics itself.  For example, I present the case of the Axiom of Choice, 

which initially pitted the mathematical realists against the constructivists at the 

beginning of the twentieth century.2  While the realists accepted the axiom, the 

constructivists rejected it.  The main difference between the two was over the definition 

                                                      
2 The Axiom of Choice states that for any non-empty set, one can choose an object from 
each of its disjoint nonempty subsets.   



 
 

6 
 

of the ―existence‖ of a rule:  for the constructivist, a rule exists only if it can be uniquely 

described; whereas for the realist, the rule does not have to be explicitly stated.  The 

axiom‘s eventual acceptance was motivated by specific mathematical objectives; while 

its delay was due to the constructivists‘ worries over what counts as existence.  

 The second and third chapters cover explanatory proofs.  Chapter two is an 

overview of philosophical theories of explanations found in proofs and their connection 

to mathematical practices.  Here, I show that existing theories of explanation have 

centered more on form and content of proof rather than the communicative and 

pedagogical practices of mathematicians.  In addition to content and form, whether or 

not a proof is explanatory depends on its audience.  Received accounts do not address 

how such proofs are understood by a particular audience in possession of the required 

knowledge to appreciate their explanatory value, making it seem as though they provide 

explanations to everyone, regardless of mathematical ability. This problem arises 

because current philosophical theories of explanatory proofs are based on examples 

presented in elementary textbooks that usually target a level of explanation that is not 

necessary in research mathematics. 

 In the third chapter, in order to consider what qualifies as an explanatory proof 

for research mathematicians, I suggest studying the evolution of a theorem's successive 

proofs, starting from its first-generation proof—one that often lacks explanatory 

power—to its recent textbook presentation—one that fills in missing details of previous 

proofs and provides explanation.  Such accounts show how mathematicians were able to 

prove the theorem using results that were available at the time, keeping in mind that 

changes in terminology, which have been overlooked in the philosophical literature, also 

play a role in what is assumed in a proof.  I argue that in addition to the contents of the 
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proofs themselves, other factors such as the time period of each proof, the parts of 

mathematics they originated from, and the intentions of particular mathematicians lend 

insight to what makes a proof explanatory to a particular audience. The abilities of the 

audience also play a role in whether a proof is explanatory or not; a mathematician who 

does not specialize in a certain field may regard a proof from that field as non-

explanatory even if those who specialize in the field deem the proof explanatory.  As a 

case study, I use four proofs of Lewy‘s Theorem from harmonic mapping theory.  By 

tracking the changes and differences between the proofs of Lewy‘s Theorem, I observe 

how later proofs fill in the gaps of previous proofs, survey the different ways of showing 

particular steps of the proofs, and note how mathematicians use methods from different 

branches of mathematics—namely differential geometry, partial differential equations, 

and complex analysis—to prove the theorem.  

 The final chapter is a case study of the proof of the Four Color Theorem.  The 

Four Color Theorem was first proved in 1976 by Kenneth Appel and Wolfgang Haken.  

The significance of their proof is that it is the first major computer proof.  According to 

both mathematicians and philosophers, their proof lacks explanatory power.  However, 

they give different reasons for this assessment.  Here, I compare and contrast what 

philosophers and mathematicians have had to say about the proof.  I argue that the 

main philosophical worry regarding the theorem—its unsurveyability—did not make a 

strong impact on the mathematical community and would have hindered mathematical 

development in computer-assisted proofs.  By contrast, the main mathematical worry 

was that Appel and Haken‘s proof does not explain why four colors are sufficient for 

coloring maps, because it only demonstrates that out of all possible configurations, there 

are no maps that require at least five colors.  Mathematicians, who were familiar with 
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the proof, judged its explanatory power based on the methods used rather than asserted 

that explanatory power is affected by the proof‘s length.  This example illustrates the 

value of mathematical practices to the philosophical examination of explanatory proofs.  
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CHAPTER ONE: 

THE IMPORTANCE OF HISTORY 

   

 In order to understand mathematical practices, philosophers need to pay 

attention to the history of mathematics.  While contemporary philosophers do stress 

this need, it is a challenging task, because what counts as history varies depending on 

the purpose for which this history is used.  According to some historians, the goal of 

history is ideally to show how the past is different from the present.  The historian starts 

from a point in time and moves forward to explain what occurred in the past, avoiding 

any trace of the present.  Events that impact mathematics both directly and indirectly 

are referenced.   However, writing history from the point of view of the past is only an 

ideal, because the historian is only able to view the past from the standpoint of her 

present.  By contrast, history specifically geared toward mathematical research aims to 

show how similar the past is to the present.  This type of history tends to focus on 

mathematical developments while omitting external factors that do not have a direct 

impact on mathematics.  Here, modern concepts are used to help explain what 

mathematicians have developed in the past, as anachronisms here are acceptable and 

encouraged.  Although these historiographical methods are at odds with each other, 

both of them are important for philosophers: accounts of actual past events shed light 

on how mathematics has developed, and history that is more useful for mathematical 



 
 

10 
 

research helps the philosopher understand the reasoning behind how and why 

mathematicians use past results in the way they do.  

 In this chapter, I will investigate how these two methods of historiography differ 

from one another and their importance to historians and mathematicians alike.  Next, I 

will argue that most philosophers use one approach to history—the approach to history 

used in mathematical research—while ignoring the other and that doing so misses 

certain aspects of mathematical practices.  I illustrate this point using the case of the 

axiom of choice as an example.  Last, I will highlight the benefit of considering both to 

gain a better understanding of mathematical practices.  In general, since these different 

types of history do not fully coincide with each other, it is helpful to use the history used 

in mathematical research to understand what mathematicians desire out of their work; 

while using history that goes beyond the technical details of the past to compare actual 

development with how mathematicians view their discipline.   

 

I. History as Understood by Historians 

 Although historians disagree on specific details, they have compared and 

contrasted, in general, two ways of writing the history of mathematics.3  The first way is 

to describe past events as accurately as possible through the perspective of the people of 

the time period.  Here, later periods and the present play no role in the explanation of 

earlier events, because this type of history emphasizes that the present is different from 

its past.  Anachronisms are to be avoided because they work present concepts into past 

events.  These anachronisms would not have made much sense to anyone in the past, so 

                                                      
3 This is not to claim that there is only one difference, but it is how many historians have divided types of 
historiography.   
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they have no purpose here.  History written in this way is the study of how a concept 

developed through time, including both successes and failures, periods of stagnation, 

and repeated results.  Additionally, cultural and social details play a role to help explain 

the development of mathematics outside of the technical details.   

 In contrast to this way of writing history, the second version of history is written 

from the point of view of the present, which is regarded as superior to its past.  As such, 

anachronisms are encouraged, because modern ideas are written into the past to 

highlight how they came about.  External factors outside of mathematical research are 

excluded, because they are tangential to the technical details found in mathematical 

research.  Similarly, events that do not contribute towards successes tend to get left out, 

because they get in the way of the overall narrative of progress, which only allows for 

successful developments and improvements.  Usually, the mathematics here is polished.  

For instance, a mature version of a theorem‘s proof—one that is best suited to the 

purposes of mathematical research—will be presented while other versions are ignored.  

This type of history is commonly described as being ―Whiggish‖ or ―present-centered,‖ 

and has been criticized for presenting inaccurate accounts of the past.    

 Grattan-Guinness sums up these two methods of historiography neatly.  

According to him, the first type of history provides the answer to ―what happened in the 

past?‖ and describes the past as a chronological sequence of events without assuming 

anything from the present.4  The second type, which he calls ―heritage,‖ ―addresses the 

question ‗how did we get here?‘‖5  These are two very different questions, but are related 

through their reference to past events.  History and heritage, for Grattan-Guinness, are 

                                                      
4 Grattan-Guinness, Ivor.  "The Mathematics of the Past: Distinguishing Its History from Our Heritage." 
Historia Mathematica. 31 (2004): 16, 164. 
5 Ibid., 165. 
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equally acceptable projects.6  While historians accept their discipline, he acknowledges 

that heritage is useful for research mathematicians, whose work depends on a 

condensed version of major developments that directly have an impact on research.  

Grattan-Guinness warns that the two must not be conflated, because they produce 

different interpretations of a notion.7  Mistaking heritage for history, he points out, 

creates a misleading narrative of past events of a notion.  For example, we would be led 

to believe that the sequence of events was determinate, and every event happened 

specifically for the present notion to come about.8  Instead, Grattan-Guinness 

emphasizes that things could have been different—mathematicians in the past could not 

have anticipated how their work would transform into current notions.  Using history as 

heritage is also problematic.  Although Grattan-Guinness does not address this, we can 

recognize that what should be important through a heritage point of view may be taken 

as insignificant if historical facts muddle its value.9  History runs the risk of being too 

detailed—it is possible to understate major developments as mere events in a sequence 

of productions. 

 In describing the differences between these two type of history, Grattan-Guinness 

and other historians, such as Andrew Cunningham claim that history that attempts to 

                                                      
6 Not every historian would agree with Grattan-Guinness.  There are many who believe that heritage is to 
be avoided at all costs.  Herbert Butterfield and Andrew Cunningham, for instance, both dismiss it as 
being inaccurate and harmful to the practice of history.  See Butterfield, Herbert. The Whig 
Interpretation of History. London: G. Bell and Sons, 1959.  Cunningham, Andrew. "Getting the Game 
Right: Some Plain Words on the Identity and Invention of Science."  Studies in History and Philosophy of 
Science Part A 19.3 (1988): 365-389. 
7 Grattan-Guinness uses ‗notion‘ as a blanket term for a theory, definition, notation, method, or a branch 
of mathematics (164). 
8 Grattan-Guinness, 171.   
9 For instance, the negative reception immediately following the publication of Gottlob Frege‘s 
Begriffsschrift in 1879 would make it seem as if his work was not influential; however, this is certainly not 
the case.  For a close examination of the reaction to the Begriffsschrift, see Vilkko, Risto. "The Reception 
of Frege's Begriffsschrift." Historia Mathematica. 25 (1998): 412-422.  Risto argues that despite the poor 
reviews Frege received immediately after the publication of the Begriffsschrift, they were "poorly 
motivated" rather than "unfair and hostile" (415). 
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accurately recreate the past attends to both successes and failures in mathematics and 

the sciences; while history that is strictly used in mathematical and scientific research 

focuses solely on successes, because they believe that failures only hinder the narrative 

of progress.10  This may be true for Whig history which Butterfield describes as one that 

―praise[s] revolutions provided they have been successful, to emphasize certain 

principles of progress in the past and to produce a story which is the ratification if not 

the glorification of the present.‖11  However, addressing failures does benefit 

mathematicians and scientists, because they contribute toward developments in ways 

that successes do not.  For instance, in mathematical research, it can help the 

mathematician understand the limitations and restrictions of her results, or in extreme 

cases, overturn a theory completely.12     

 While the differences between history as written from a past point of view and 

one written from a present point of view are laid out neatly, some historians have 

challenged the claim that history can be written as if the historian lives in the past.  For 

example, Adrian Wilson and T. G. Ashplant argue that history in general is ―constrained 

by the perceptual and conceptual categories of the present, bound within the framework 

of the present, deploying a perceptual ‗set‘ derived from the present.‖13  The historian 

                                                      
10 Grattan-Guinness , 168.  Cunningham, 368.  Fried, Michael N.  "The Discipline of History and the 
‗Modern Consensus in the Historiography of Mathematics‘.  Journal of Humanistic Mathematics 4.2 
(2014): 127.   
11 Butterfield, v. 
12  For example, in the first half of the nineteenth century, mathematicians, such as André-Marie Ampère, 
Augustin-Louis Cauchy, and Sylvestre Lacroix, believed that a continuous function is always differentiable.  
It was not until 1872 that this was proven to be false by Karl Weierstrass.  The problem was that there was 
no general definition of function at the time.  Weierstrass and some of his contemporary mathematicians 
aimed to make analysis more rigorous to avoid similar mistakes made by their predecessors.  See Gray, 
Jeremy.  The Real and the Complex: a History of Analysis in the 19th Century.  Cham, Heidelberg, New 
York, Dordrecht, London: Springer (2015). 
13 Wilson, Adrian, and T. G. Ashplant.  "Whig History and Present-Centred History."  The Historical 
Journal 31.01 (1988): 11. 
Wilson and Ashplant call sources and evidence ‗relics‘.  
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must interpret her finding based on a presupposed framework, which ―involves the 

making of assumptions, the using of words, the posing of questions.‖14  Wilson and 

Ashplant point out that the challenge for the historian is to ensure that her framework is 

indeed appropriate to her research, because it is important for the historian to 

accurately understand how notional relics were used by their original creators.  

Additionally, the historian is present-centered even with her choice of relics and while 

she determines how they fit into her framework.  If the historian misinterprets her relics, 

then she will give an inaccurate representation of the past: either she will try to force her 

finding to fit into her framework, or if she cannot find anything that agrees with this 

framework, she will make it seem as if this absence was as important in the past as it is 

for the contemporary historian.15  This can also be applied to the omitting of certain 

details of the past if they are believed to be irrelevant to the historian.  It is up to the 

historian to determine what and why certain relics are important, but these decisions 

are made from her viewpoint, which is inevitably in the present.  Thus, as Wilson and 

Ashplant explain, there is no escaping present-centeredness as a result. 

 Nick Jardine agrees with Wilson and Ashplant, but he sets up his argument 

differently.  Taking from anthropology and linguistics, he distinguishes emics from etics.  

According to Jardine, emics applied to history is described as understanding the past 

without any influence from the historian.  Here, the past is seen through an ―insider‖ 

                                                      
14 Ibid. 
A. Rupert Hall similarly argues that it is impossible to write history in the way that Grattan-Guinness 
describes.  According to Hall, the historian has to have a structure that helps her determine what is 
relevant to the particular topic she is writing on; otherwise, she would only have a collection of random 
data, because being able to piece together her findings into a coherent structure requires hindsight.  See 
Hall, A. Rupert. "On Whiggism."  History of Science 21.1 (1983): 52.  
15 Wilson and Ashplant., 15.   
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point of view in which the historian places herself in the past.16  He describes etics as 

viewing the past as an observer who lives in the present and is able to know what 

happens in the time between the time period she is researching and the present.17  

Jardine argues that history should be written using a combination of emics and etics.  

Emics without etics ignores present knowledge, which could help explain why or how 

something occurred in the past; while etics without emics risks misinterpreting the 

historical figures involved.18  The extreme case of this is Whig history, in which only 

events that contribute to the narrative of progress are studied.  Additionally, Jardine 

argues that the historian has a different cultural background and language, so when 

explaining the past, she uses present language and is able to point out cultural 

differences to communicate her findings.19  Siding with Jardine, David Alvargonzalez 

points out, ―[A]ny informed analyst cannot honestly ignore the zero or decimal notation 

when tackling Greek numerals.  Conic equations come part and parcel with any modern 

understanding of Apollonius...‖20  Therefore, in agreement with Wilson and Ashplant, 

present-centeredness is unavoidable when writing history.   

 Historians also convey the past to a contemporary (or future) audience.  Much 

like for the historian to understand her findings, this requires that she uses a language 

that her audience can also understand, which does not always coincide with the 

language of the past.  As an example, the Ancient Greeks did not have zero-placeholders 

for numbers such as 10, 100, and 1,000.  Thus, performing arithmetic operations on 

                                                      
16 Jardine, Nick.  "Etics and Emics (not to Mention Anemics and Emetics) in the History of the 
Sciences."  History of Science 42.3 (2004): 268. 
17 Ibid., 270. 
18 Ibid., 275. 
19 Ibid., 273. 
20 Alvargonzález, David. "Is the History of Science Essentially Whiggish?"  History of Science 51.1 (2013): 
89.   
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Greek numerals was a lot more involved than decimal arithmetic today.  However, it is 

the responsibility of the historian to disclose that the language she uses is not the same 

as the past, but is used so that her audience can understand the mathematics of the past.  

Otherwise, she misleads her audience into thinking that the mathematics of the present 

is the same as it was in the past.21      

  Although a ―pure‖ history of mathematics—one that has no trace of the present— 

is unattainable, historians can and do strive to write history as accurately as possible.  

However, in addition to living in the present, they are also writing for an audience who 

also live in the present.  In order to make sense of the past, it must be intelligible to us in 

the present.  This goes for both the historians and their audiences.  Even claiming that 

the historian‘s goal is to show that the past is different from the present requires the 

historian to understand the past from her present point of view to make the comparison.   

 

II. History Used in Mathematical Research 

 There are mathematicians who believe that there is no need to understand their 

work through a historian‘s point of view.  This does not mean that mathematicians do 

not pay any attention to historical details,22 but they do not find much value in 

considering, say, social or cultural factors that have helped guide past developments in 

mathematics.  This way of thinking has had the unfortunate consequence of 

mathematicians ignoring the work of historians.   

For example, the mathematician André Weil, one of the major figures of the 

Bourbaki group, believes that a genuine historical account of mathematical development 

                                                      
21 Doing so comes with the consequence of making mathematics seem static and permanent.  
22 It is not possible to completely avoid the past while doing research in mathematics.   
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is not necessary for mathematical progress, but finds it useful for merely breathing life 

into mathematical notions through non-mathematical aspects revealed by examining 

the social and cultural atmosphere of the period.  Otherwise, Weil favors an 

anachronistic version of history, because he finds that this type of history helps 

mathematicians understand the past in terms of present mathematical language.  For 

example, when he describes Euclid‘s work as geometric algebra:  

[W]hen quadratic equations, solved algebraically in cuneiform texts, 

surface again in Euclid, dressed up in geometric garb without any 

geometric motivation at all, the mathematician will find it appropriate to 

describe the latter treatment as 'geometric algebra' and will be inclined to 

assume some connection with Babylon, even in the absence of any 

concrete 'historical' evidence. 23 

Here, Weil explains that Euclid was able to solve quadratic equations first posed by the 

Babylonians using geometric methods, and he forces a connection with the Babylonians 

without regard to how actual events played out.24 

 In a similar vein, Richard Askey believes that all history of mathematics should 

be written for mathematicians.25  According to him, historians of mathematics need to 

                                                      
23 Weil, André.  "History of Mathematics: Why and How."  O. Lehto (Ed.), Proc. International Congress of 
Mathematicians, Helsinki 1978, vol. 1, Academia Scientarum Fennica, Helsinki (1980): 204.  
24 This is historically inaccurate for multiple reasons.  First of all, there were no ‗equations‘ during the 
Babylonian time period.  Instead, Babylonian mathematicians developed an algorithm that would later 
give rise to the quadratic equation.  Second, there was no such thing as 'algebra' for the Babylonians 
either; algebra did not exist until Diophantus hit the scene, which was after Euclid's death.  So, it is not 
possible that Euclid was able to disguise his work as geometry as Weil claims.  See Unguru, Sabetai. "On 
the Need to Rewrite the History of Greek Mathematics." Archive for History of Exact Sciences 15.1 (1975): 
67-114.     
Even though Weil read Unguru‘s essay, he did not consider these facts to be important for 
mathematicians.  Instead, he argues that knowing modern mathematics is needed to understand Euclid‘s 
Elements, because the purpose is to understand the mathematics in the Elements, which does not require 
someone to understand it in the same way as Euclid presents it.  See Weil, Andre.  ―Who Betrayed Euclid? 
(Extract from a letter to the Editor)." Archive for History of Exact Sciences. 19.2 (1978): 91-93. 
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have an understanding of mathematics which is on par with professional 

mathematicians, or else developments that are important to mathematicians may be 

downplayed or overlooked.  Askey uses Morris Kline‘s work as an example of history 

skipping over important details.  He criticizes Kline for glossing over important 

mathematical developments in differential equations and uses it to accuse historians of 

only concentrating on well-known results instead of essential ones that would later 

further mathematical progress.26  Another example Askey gives is his own experience.  

He wrote a short paper on the developments that came out of a specific hypergeometric 

identity27 and tried to publish it in Historia Mathematica, but was rejected because it 

was not history by the editor‘s standards; this paper reads more like a bibliography 

ordered by date rather than a narrative of events.  This is the type of work Askey says 

should be included as history of mathematics, because, he claims, it is what 

mathematicians are interested in.28  However, it is doubtful that any historian would 

consider it to be history, because it is just a listing of facts. 

 For mathematicians, history of mathematics emphasizes the development of 

mathematical notions that are internal to mathematics while ignoring external factors, 

such as cultural influences.  These past notions are explained in terms of present notions 

in order to explain what they were and how they were used.  The goal is to show how 

modern notions came about from the past, so it is acceptable to use anachronisms, 

especially so that the audience of these types of narratives can understand the concepts 

                                                                                                                                                                           
25 Askey, Richard. "How can Mathematicians and Mathematical Historians Help Each Other." History 
and Philosophy of modern mathematics (W. Aspray and P. Kitcher, eds.), University of Minnesota 
Press (1988): 203. 
26 It is unfortunate of Askey to choose Kline‘s work as an example, because Kline is a mathematician.   
27 Askey, Richard.  ―A Note of the History of Series.‖  Mathematical Research Center Technical Report. 
1532.  University of Wisconsin, Madison, 1975. 
28 Askey, ―How can Mathematicians and Mathematical Historians Help Each Other,‖ 214. 
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in terms of what we have today.  This type of historiography is useful for mathematical 

research, because it gives a condensed version of the past for a notion, so that the 

mathematician is able to understand the past evolution for it.  

 

III. How Philosophers Can Use History 

 The questions of what should count as history and for what purpose thus remain 

contentious.  While modern-day historians deal with past events to understand the 

sequence of developments that were made to produce the mathematics we have today, 

mathematicians favor a more technical point of view, focusing on polished versions of 

major results, to help with their research.  This greatly affects philosophy of 

mathematics.  On the one hand, history that documents events chronologically while 

avoiding anachronisms as much as possible is important, because it provides a narrative 

of developments that were influenced by mathematical research, the mathematicians 

themselves, and by external factors outside of mathematics.  Without knowing about 

past events, certain developments would seem mysterious or out of place.29  For 

example, taking the view that mathematics is timeless ignores the changes in 

terminology and failures that have occurred throughout the history of mathematics and 

makes it seem as if every mathematical result accepted in the past is still accepted 

today.30  This is clearly not the case, though without knowledge of the past, this fact is 

easily overlooked.  On the other hand, philosophers must also have a grasp of the history 

                                                      
29 For example, Thomas Tymoczko argues that the proof of the Four Color Theorem is the first empirical 
mathematical proof, because it was generated by a computer, which produced lengthy results that are too 
long to be checked by a human mathematician.  There are two problems with Tymoczko's claim.  First a 
historical one: there have been previous computer proofs dating a decade before the Four Color proof.  
Second, although a computer was used for the proof, mathematicians have used other tools in the past to 
aid with calculations, diagrams, and so on.  See Tymoczko, Thomas. "The Four-Color Problem and its 
Philosophical Significance." The Journal of Philosophy 76.2 (1979): 57-83.    
30 If this were so, then non-Euclidean geometry would not exist.  
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mathematicians use for research, because, generally, this is what mathematicians deem 

as important for their work.  If it were not for mathematicians producing results based 

on a more technical point of view, mathematics would not develop in the way it has.  So, 

when philosophers investigate mathematical practices, they must recognize that the 

actual development of theories, concepts and so on do not always match up with the 

history that guides mathematical research.  Grattan-Guinness points out that history is 

made up of successive heritages:31 ―[t]he historian records developments and events 

where normally an historical figure inherited knowledge from the past in order to make 

his own contributions heritage style.‖32  Here, the ―historical figure‖ can either be a 

mathematician or historian who uses a heritage point of view to express past events.  It 

is vital for the philosopher to be aware that heritages have guided mathematicians 

throughout history, and thus are also part of history as well, even though they may not 

match up to actual events.   

 Throughout the history of philosophy of mathematics, there have been different 

levels of importance placed on mathematical developments, ranging from placing no 

importance on past events to considering the mathematical details found in the type of 

history mathematicians prefer.  History that goes beyond what is used in mathematical 

research, however, is rarely used in philosophical discussions of mathematical practices.  

An extreme instance are the logical positivists, who in the first half of the twentieth 

century has stripped mathematics of its past, and instead argued that mathematics must 

be considered atemporally as a set of axioms and deductive rules of inference.  This 

became a widely prevalent view, which has vestiges that are still influential to 

                                                      
31 Recall that heritage is the label that Grattan-Guinness gives to research-oriented history.  
32 Grattan-Guinness, 168. 
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philosophers and mathematicians today.33  Short episodes of history have been used to 

put forth philosophical views, but they are usually used as examples to bolster an 

argument while ignoring other contradicting occurrences in mathematics.34  When the 

past is used in this way, it can be manipulated to fit with the expounded philosophical 

position.  There has been an increased interest in mathematical practices, which looks 

into why mathematics has developed in the way it has.35  So far, this has involved mostly 

a research-oriented history that mathematicians rely on rather than the kind of history 

recommended by historians.  This runs the risk of presenting a superficial view of 

mathematical practices as it skips over some of the salient features of mathematical 

development.  What I would like to argue is that we must be able to consider both the 

history written by historians and the history used in mathematical research of a notion 

to see how it fits into mathematical practices.  When we compare these two histories, we 

are able to see that certain views stemming from the history used in mathematical 

research are influenced by philosophical positions; while history that includes more 

than the technical details of mathematical development shows us the effects of these 

positions.  Ideally, philosophy should concentrate on the history used in mathematical 

research, but at the same time, compare it to actual events, because these events reflect 

mathematical practices, which are influenced by the history used in mathematical 

research. 

                                                      
33 For example, Christopher Pincock investigates the different roles mathematics has to the sciences.  To 
bolster his arguments, he relies on basic examples, while completely ignoring both the history and 
heritage of mathematical research.  As a result, he argues that mathematics, much like any tool of the 
scientist, contributes toward the successes of the sciences as if all of the mathematics we have today was at 
the disposal of the scientists who developed the theories Pincock refers to.  See Pincock, 
Christopher.  Mathematics and Scientific Representation.  Oxford University Press, 2011. 
34 In discussing what makes a mathematical proof explanatory, Mark Steiner chooses specific examples 
that support his theory.  However, his theory also allows mathematical inductive proofs, which are 
considered by the mathematical community to be non-explanatory.  See Steiner, Mark.  "Mathematical 
Explanation."  Philosophical Studies 34.2 (1978): 135-151.   
35 These are philosophers such as Mancosu, Ferreiros, Lange, etc. 
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IV: Example—The Axiom of Choice 

      An interesting example in which philosophically-minded mathematicians 

failed to recognize the importance of either type of history is the case of the axiom of 

choice, which states that for any non-empty set, one can choose an object from each of 

its nonempty subsets.  The history of this axiom, which spans almost sixty years from its 

initial formulation to its general acceptance, shows that acceptance did not come very 

easily.  This, in part, has to do with mathematicians‘ failure to recognize its importance 

in past mathematical works prior to Ernst Zermelo‘s explicit formulation of the choice 

principle (which later becomes the axiom of choice in 1908) in his 1904 paper, ―Proof 

that Every Set Can be Well-Ordered.‖  In this paper, Zermelo states his controversial 

principle: ―[W]ith every subset M' [of a set M], there is associated an arbitrary element 

  
  that occurs in M' itself; let   

  be called the ‗distinguished‘ element of M‘.‖36  He uses 

this to claim the existence of a function γ: S → M, such that γ(M‘) is the distinguished 

element of M‘, and S contains all non-empty subsets M‘ of M.  This function is now 

known as the ―choice function,‖ but, at the time, Zermelo called it a ―covering.‖  At the 

end of this paper, anticipating objections to this principle, he writes, ―[t]his logical 

principle cannot, to be sure, be reduced to a still simpler one, but it is applied without 

hesitation everywhere in mathematical deduction.‖37    

 The central objection to the choice principle was put forth in a series of five 

letters between René Baire, Émile Borel, Henri Lebesgue, and Jacques Hadamard.  

Baire, Borel, and Lebesgue believed that in order to make use of Zermelo‘s choice 

function, it must be defined by a rule.  Lebesgue writes that ―it is impossible to 
                                                      
36 Zermelo, Ernst.  ―Proof that Every Set Can Be Well-Ordered.‖  Ernst Zermelo: Collected Works = 
Gesammelte Werke.  Edited by Heinz-Dieter Ebbinghaus and Akihiro Kanamori.  Berlin: Springer-Verlag 
(2010): 115, 117. 
37 Ibid., 119.  
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demonstrate the existence of an object without defining it.‖38  Although when the set M 

is finite, it is obvious that an element from each of its subsets can be selected, when M is 

infinite, however, they argue that the choice function must be defined by a rule.  For 

example, Lebesgue writes that since it is not possible to know the distinguished element 

m‘ of M‘, we cannot be sure that we are able to choose each m‘ without a rule.39  

Specifically, he is worried that we have no way of knowing that the same choice function 

is always used for each M‘.  For Lebesgue, as well as Borel and Baire, choosing the 

distinguished elements is the same as being able to name them.40  For sets of infinity, 

this is impossible.  Thus, a rule is necessary to define each of the elements.      

 However, all three mathematicians have relied on the existence of functions 

without uniquely defining them in their own work.  In a letter from Jacques Hadamard 

to Borel written after Borel wrote an article rejecting Zermelo‘s proof, Hadamard points 

out that he only proved existence for functions without uniquely defining them in his 

work on analytic continuation.  Baire was also guilty of using the choice principle 

implicitly in his work on categorizing real functions (which is now known as the Baire 

Category Theorem).  Lebesgue used the principle indirectly multiple times in his work 

on measure theory.41  So, on the one hand, these three mathematicians rejected 

Zermelo‘s choice principle because it did not define a rule, but on the other hand, they 

were unaware that they relied on it in their own research.   

                                                      
38 Moore, 314.  
39 Ibid., 316. 
40 Ibid., 315. 
41 Baire, Borel, and Lebesgue continued to unknowingly rely on the choice axiom in their work after 
Zermelo‘s 1904 paper.  For a detailed summary of their implicit uses of the axiom, see Moore, Gregory H.  
"Lebesgue's Measure Problem and Zermelo's Axiom of Choice: The Mathematical Effects of a 
Philosophical Dispute."  Annals of the New York Academy of Sciences 412.1 (1983): 129-154.  



 
 

24 
 

   In defense of the principle, Jacques Hadamard maintains that it is not necessary 

to define a rule to show that it exists.  According to him, the requirement for a rule is not 

a mathematical one, but is psychological instead.42  Existence for Hadamard ―is a fact 

like any other, or else it does not occur.‖43  He also brings up Lebesgue‘s question about 

whether any set can be well-ordered.  According to Hadamard, what Lebesgue, Baire, 

and Borel mean by this question is ―Can one well-order a set?‖44  However, Hadamard 

regards the question as merely asking whether it is possible.  Asking if one is able to 

well-order a set Hadamard dismisses as subjective, because it would depend on who the 

―one‖ refers to. 

 Zermelo and other supporters of the Axiom of Choice went to great lengths to 

show that it is a necessary tool in mathematics.  In response to his critics, in 1908, 

Zermelo emphasized that it is not possible to prove his principle, because it is logically 

independent of other given axioms.45  Furthermore, he argued that it has always been 

used in past mathematical proofs, and that no one had ever showed that it leads to 

contradictions.46  Zermelo explains that prior to his choice principle, mathematicians 

have either always relied on it although they unknowingly used it, or he knew of no 

                                                      
42 It should be noted that before Zermelo‘s paper, a variation of the choice principle was recognized by 
Guiseppe Peano and Rodolfo Bettazzi.  In 1890, Peano wrote a paper on differential equations in which he 
mentions that it is not permissible to use an arbitrary rule an infinite number of times to choose one 
element each from many classes.  In order to avoid making arbitrary choices in this paper, he states a 
definite rule to solve this problem.  Rodolfo Bettazzi, in a paper from 1892 on discontinuous functions, 
also rejected infinitely arbitrarily many choices.  He claimed that choosing infinitely many objects 
arbitrarily is the same as defining them one by one, which is impossible.  Bettazzi went on to say that one 
can do this for the finite case as long as there is a rule which picks out the objects.   
Later on in 1906, Peano replied to Zermelo's paper objecting to his use of the choice principle for the same 
reasons, which also are in line with the rejection from Baire, Borel and Lebesgue.  Although Peano 
acknowledged that sometimes the choice principle is necessary to produce correct mathematical results, 
he rejected it based on its lack of rule.   
43 Ibid., 317. 
44 Ibid., 318. 
45 Zermelo, Ernst.  ―A New Proof of the Possibility of Well-Ordering.‖  Ernst Zermelo: Collected Works = 
Gesammelte Werke.  Edited by Heinz-Dieter Ebbinghaus and Akihiro Kanamori.  Berlin: Springer-Verlag 
(2010): 129, 131. 
46 Ibid., 131. 
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other proof that did not use it implicitly.  He presents seven examples that are previous, 

well-known results found in set theory and analysis dating from the 1880s through the 

1900s that implicitly uses the choice principle.    

 One of these examples, the proof of a theorem of Dedekind‘s, which states that ―a 

set not equivalent to any segment of his ‗number sequence‘ must have a component 

equivalent to the entire number sequence,‖47 requires the choice principle.  This 

theorem is found in Dedekind‘s 1888 book, What are Numbers and What Should They 

Be?, which was dedicated to the theory of finite sets.  It is in this book that the 

differences between finite and infinite sets are brought to light.  Generally, Dedekind 

required that arbitrary choices from subsets of infinite sets be chosen to show that every 

infinite set that is equivalent to one of its proper subsets has a denumerable subset.  

 Another example Zermelo offers is what we now call the Partition Principle: ―If a 

set M can be decomposed into disjoint parts, A, B, C..., the set of these parts is 

equivalent to a subset of M, or, in other words, the set of summands always has a 

cardinality lower than, or the same as, that of the sum.‖48  In order to prove this, 

Zermelo points out that ―we must mentally associate with each of these parts one of its 

elements.‖49  He attributes this principle to Beppo Levi, who states it in a paper 

critiquing a theorem of Felix Bernstein.  Although Zermelo pushes the fact that this 

involves the choice principle, it turns out that Levi rejected having to choose arbitrary 

elements from an infinite number of sets. 

 Although there was hesitation to accept the axiom of choice, it was still used by 

many mathematicians to produce further mathematical results.  In addition to set 

                                                      
47 Zermelo, 133 
48 Zermelo, 131. 
49 Ibid. 
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theory, analysis, and algebra, the axiom was also used in other branches of 

mathematics.50  For example, important theorems on compactness and convergence in 

topology relied on the axiom.  As one of its consequences, Tychonoff‘s Compactness 

Theorem was shown in 1950 to be equivalent to the Axiom of Choice by John Kelley.  It 

was not until 1937 when Kurt Gödel proved that the axiom of choice is consistent within 

the common system of axioms (now the Zermelo-Fraenkel axioms) in set theory that the 

opposition backed down.  Later in 1963, Paul Cohen proved that the axiom is 

independent of Zermelo-Fraenkel set theory.  These important results helped secure 

Zermelo‘s axiom of choice and his Well-Ordering Theorem.   

 Mathematicians who rejected the axiom of choice avoided it as much as possible 

in their future work.  However, they were not always successful in their avoidance, as 

the axiom continued to be crucial for their results.  As more and more mathematicians 

relied on the axiom of choice, it gradually became accepted as a standard axiom in set 

theory, and over time, mathematicians working in various branches of mathematics 

found the axiom to be an indispensible tool.  As Zermelo explained in his 1908 paper, 

the axiom is necessary for results in various branches of mathematics, which is why we 

must accept it.  Although some mathematicians still rejected the axiom of choice after 

his paper, it turns out that Zermelo‘s position was correct.   

 It took almost sixty years from when the axiom of choice was formulated until it 

was generally accepted by mathematicians.  In hindsight, one could say that the 

mathematicians‘ indifference to history played a part in its delayed acceptance: despite 

the efforts of Zermelo showing that the axiom is necessary by referring to past 

                                                      
50 For a survey of propositions from various parts of mathematics that are equivalent to the axiom of 
choice, see Rubin, Herman, and Jean E. Rubin.  Equivalents of the Axiom of Choice, II.  Vol. 116. Elsevier, 
1985.  
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mathematical results throughout history, his opponents rejected it based on what they 

believed was the ―correct‖ way of doing mathematics: construction of a rule is the only 

way to demonstrate the existence of a mathematical object.51  It is clear that the 

objections from Baire, Borel, and Lebesgue do not match up with actual mathematical 

practices.  Instead, if mathematics was developed based on their constructivist view that 

existence of a rule is obtained through description, then much of mathematics would 

have to be discarded.  Their disregard for historical evidence blinded them to the 

importance of the axiom of choice.  Furthermore, they were also guilty of implicitly 

using the axiom in the own research.   

 The example of the history of the axiom of choice illustrates the troubles that can 

occur when there is no regard to history or even mathematical practices.  Although the 

supporters of the axiom tried to persuade their opponents that the choice axiom is 

necessary using past mathematical results, rejection based on the nonconstructive 

nature of it remained.  In the cases of Borel and Lebesgue, they were unable to realize 

that even they themselves were using the axiom for their work.52 

 Recall that according to Grattan-Guinness, the aim of history is to show how 

different the past is from the present.  In arguing for the necessity of the choice principle, 

Zermelo points out various cases in the past of when the principle was used implicitly.  

Until the choice principle was stated by Zermelo, mathematicians unknowingly relied on 

the principle for their work.  The difference between the cases Zermelo writes about in 

his 1908 paper and during his time is that mathematicians were now cautious and 

reluctant to use it.  Zermelo‘s efforts are indeed counted as history used for 

                                                      
51 Ernst Steinitz and Wacław Sierpiński also echoed Zermelo‘s insistence that the axiom of choice is 
necessary for mathematical developments; however, they avoided it as much as possible.  See Moore, 171-
175, 197-208. 
52 Moore, 98, 103. 
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mathematical research, as his work calls attention to the many implicit uses in past 

mathematical results.  It is through hindsight that Zermelo is able to recognize that 

there have been implicit uses of his axiom.53  However, through history, we recognize 

that this was not enough for certain mathematicians to accept the axiom.   

 Based on their views, Baire, Borel, and Lebesgue argue that Zermelo‘s choice 

principle must be rejected based on their belief that one must be able to explicitly state a 

rule for the choice function to show its existence.  However, when we consider the 

history of their work, they are guilty of implicitly using the principle, both before and 

after Zermelo‘s 1904 paper.     

 What philosophers can learn from this example is the importance of the history 

of what mathematicians have done and the history mathematicians rely upon in 

determining how a philosophical view meshes with mathematical practice.  On the one 

hand, Zermelo uses a condensed version of history to support his claim that the axiom of 

choice is necessary.  The axiom is used implicitly and repeatedly in previously accepted 

mathematical results, and it is needed for various branches of mathematics.  However, 

when we consider the history of the axiom of choice, we find that Zermelo‘s efforts were 

insufficient to persuade other mathematicians.  On the other hand, the constructivism of 

Baire, Borel, and Lebesgue hindered them and other mathematicians from accepting the 

axiom, even though they were concerned with how mathematics should be done while 

ignoring how mathematics was done.  From our point of view today, we are able to 

understand what impact this had on mathematics.  The fact that the axiom of choice 

                                                      
53 It could be argued that much like Zermelo, who had a particular heritage view of past uses of the axiom 
of choice, his opponents also held their own heritage view of how mathematics should be done.   
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could not be proved delayed the acceptance of it.  Existence of a choice function was 

inadequate, because its description could not be explicitly stated.   

 If philosophers paid attention to only one side of the controversy (and hence only 

one version of its history), then the delayed acceptance of the axiom of choice would 

seem confusing: either it would be strange that it took a long time based on Zermelo‘s 

presentation of how mathematicians have always implicitly relied on it, or it could be 

seen as mysterious that it was even accepted based on the objections of Baire, Borel, and 

Lebesgue.  However, the axiom‘s history tells us why it took mathematicians a long time 

to accept the choice principle.  Zermelo describes past uses of the choice principle and 

its contemporary uses to show that it is necessary for mathematical results; however, 

since some mathematicians required an explicit instance of a choice function, Zermelo‘s 

efforts did not amount to much at the time, because he (and his supporters) accepted 

that existence alone is adequate.   

 This example shows the importance of both versions of history.  Understanding 

the mathematicians‘ view of history does not mirror actual events that took place.  We 

observe this from the criticism against Zermelo‘s work and his reasons for the 

importance of the axiom of choice as necessary.  Although Zermelo relied on the 

previous usages of the axiom, the history behind these uses shows that mathematicians 

were not aware that they were using the axiom.  Thus, it is clear that the two types of 

history in this case do not coincide.  It is also insufficient to follow the history of the 

axiom of choice while ignoring mathematicians‘ idea of its history.  The axiom of choice 

took a very long time for mathematicians to accept.  While it is important to understand 

the reasons as to why it took so long, we also need to consider the reasons why 

mathematicians who supported the axiom remained loyal, even while the opposition 
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was great.  Lastly, ignoring history altogether is problematic, because doing so runs the 

risk of going against mathematical practices.  The constructivist stance of Baire, Borel, 

and Lebesgue did not rely much on history even though these mathematicians rejected 

the axiom based on how they believed mathematics should be done.  

 

V: Conclusion  

 In conclusion, when we look back at the past from the present, it is difficult to 

separate ourselves out fully from how we understand what occurred in the past.  

Although historians have compared and contrasted a ―pure‖ history written from the 

point of view of the past and one that is written from the present point of view, history 

that avoids any trace of the present is not possible, precisely because we (from the 

present) are looking back at a different time period.  Nonetheless, as historians have 

pointed out, there is an extreme version of history that is told from the present point of 

view, which presents an inaccurate and selective version of the past as only a series of 

successes.   

 Again, it is not possible to write history without any reliance on the present.  This 

is because the historian, who lives in the present, writes about the past from a different 

point of view than the figures she is writing about or how notions were understood in 

the past.  Hans-Georg Gadamer argues this very point when he discusses his idea that 

understanding is a ―fusion of horizons.‖54  Gadamer describes a horizon as ―the range of 

vision that includes everything that can be seen from a particular vantage point.‖55  If we 

                                                      
54 Gadamer, Hans-Georg.  Truth and Method.  Trans.  Weinsheimer, Joel and Donald G. 
Marshall.  London: Continuum (2004): 305.  
55 Ibid., 301. 
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try to understand the past while ignoring that we live in the present, then we would not 

be able to make sense of the past, because we would be closed off from it:    

We think we understand when we see the past from a historical standpoint—i.e., 

transpose ourselves into the historical situation and try to reconstruct the 

historical horizon.  In fact, however, we have given up the claim to find in the past 

any truth that is valid and intelligible for ourselves.56 

Instead, when we understand the past, Gadamer explains, it is because our present 

horizon is fused with the historical horizon; these horizons are not separated from each 

other to begin with but are constantly in motion together as one great horizon.  When 

we understand the past, it is from our vantage point within our own horizon.  Thus, 

history divorced from the present is not possible to write. 

 The purposes of referring to the past vary among historians, mathematicians, and 

philosophers, and so the ways in which history is written and used will vary.  However, if 

philosophers desire to mirror their theories based on mathematical practices, history 

from the point of view of mathematicians and a study of past events that is not heavily 

influenced by the present are both necessary tools to formulate philosophical theories of 

mathematical practices.  The former shows what mathematicians desire or find to be 

important, while the latter shows us the effects it has on mathematical practices.  

 Unfortunately, compared to the sciences, there is a lack of history written on 

certain parts of mathematics.57  Philosophers of mathematics oftentimes have had to 

develop short histories by themselves.  This usually amounts to the philosopher relying 

only on past mathematical texts, much like the mathematician who uses the same 

                                                      
56 Ibid., 302-3. 
57 Although there are many versions of history written on Greek mathematics, for instance, there is not 
much written on other parts of mathematics such as, say, functional analysis. 
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materials for research purposes.  One should have a good grasp of the mathematics one 

is writing a history on, but also it is important to know how to write history.  From the 

discussion above about the ways history can be written and for different purposes, this is 

a difficult task for the philosopher who is not trained in writing history.  By referring 

only to mathematical texts, philosophers run the risk of overlooking the fact that 

mathematics is an activity and not a discipline that develops on its own.  Formulating 

philosophical theories especially about mathematical practices from this type of history 

runs into problems, because mathematical texts, such as journal papers, are usually 

devoid of mathematicians‘ motivations, inspirations, and conceptions—we lose the 

human aspect of mathematics.  While we may at times be unable to write the history of 

mathematics that goes beyond mathematical texts, we are still able to find out whether 

our theories match up to practice by comparing them to present practices.   

 Similar to Jardine‘s use of etics and emics in history, perhaps we can also apply it 

to the philosophy of mathematical practices.  The etic point of view corresponds to 

observing what mathematicians do and formulating philosophical accounts from these 

observations.  This includes knowing what mathematicians consider as history that is 

useful for their research.  The emic point of view corresponds to understanding 

mathematical texts and understanding why and how they are helpful or contribute to 

further mathematical developments.  Emics is described as ―going native,‖58 but the 

philosopher does not need to be a mathematician.  She should, however, be able to 

understand the perspective of mathematicians, because it will help her develop her 

philosophical views on mathematical practices.  Both etics and emics are beneficial, and, 

just like for history, there cannot be one without the other.  Etics alone misses out on the 

                                                      
58 Jardine, 268. 
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point of view of the mathematicians.  Since mathematical practices depend on 

mathematicians, ignoring emics risks developing a philosophical theory that does not 

match up with what mathematicians do.  Emics without etics prevents the philosopher 

from developing a theory, because she loses the role of being an observer.  Thus, both 

etics and emics work together to help develop a philosophical account of mathematical 

practices that meshes with what mathematicians do.    
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CHAPTER TWO: 

MATHEMATICAL EXPLANATION REVISITED 

 

In the previous chapter, I have emphasized the value of history when developing 

philosophical theories based on mathematical practices.  By looking through history, we 

can observe what mathematicians consider to be important to their discipline and how 

they show this importance through their work.  However, the philosopher should not 

just study the history used by mathematicians for their research, but also history that 

goes beyond the technical details of mathematical development.  The former shows how 

mathematicians develop their work; while the latter reflects mathematical practices that 

tend to get excluded from the polished version of history that aids in research.  

Another strategy, in addition to looking at history, is to consider current 

mathematical practices.  This is important because mathematics—the discipline, its 

practices, and so on—changes over time.  It would be faulty for philosophers to focus on 

mathematics of the past to aid in describing what mathematicians currently do.  In this 

chapter, current mathematical practices of researchers are considered.  Specifically, 

philosophical theories of mathematical explanation for proofs are compared to what 

current mathematicians deem as explanatory proofs.            

 Mathematical explanation has recently been highlighted as a major concern for 

philosophers of mathematics.  For the most part, there is agreement that explanations 

exist in mathematics, but there is wide disagreement over what qualifies as an 



 
 

35 
 

explanation.  Some philosophers of mathematics develop theories of explanation based 

solely on mathematical practices.  For explanations found in proofs, they consider ones 

that mathematicians deem to be explanatory and try to find patterns and features in 

these proofs that contribute to explanation.  Other philosophers apply theories of 

scientific explanation to mathematical explanations believing that the two are generally 

compatible while modifying their theories to agree with mathematical practices.59  Even 

though there is an emphasis on mathematical practices for theories of mathematical 

explanation found in proofs, these theories are focused more on either the form or 

pattern of the explanation or its contents without much consideration for how 

explanations are understood by or targeted at a particular audience.  This is problematic 

because a heavy concentration on the form and content of proofs emphasizes a polished 

and static version of mathematics that ignores the fact that mathematics develops 

gradually not only through new discoveries, but also modifications and various 

improvements over time. 

 The focus of this chapter is on mathematical explanations found within proofs.60  

I will first give an overview of the two main accounts of mathematical explanation for 

proofs, one by Mark Steiner and the other by Philip Kitcher.  Next, I will consider 

arguments against the existence of mathematical explanations and point out why these 

arguments are inadequate.  Last, I will argue that current theories of mathematical 

explanation should focus more on mathematical practices—what mathematicians 

actually do—in addition to the content and form of proofs—to develop a more 

                                                      
59 While there have been discussions of mathematical explanations in the sciences.  Most of these are in 
support of mathematical realism and the indispensability arguments.  They do not contribute much to 
explanations within mathematics.  
60 Mathematical explanations go beyond proofs.  Diagrams, tables, theories, and so on can be used to 
explain various mathematical results.  
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compatible account that helps explain how and why mathematicians consider certain 

proofs explanatory.  

 

I. Explanatory Proofs 

The discussion over explanatory proofs has been concentrated on how certain 

proofs show why their corresponding theorems are true.  They go beyond proofs that 

only show that their theorems are true.  Although proofs that only verify their theorems 

are acceptable, mathematicians favor explanatory proofs more because they aid in 

understanding.  There have been two main philosophical camps regarding mathematical 

explanation.  The first consists of philosophers who want to develop a theory based on 

mathematics without appealing to theories of scientific explanation.  According to this 

group, because of the differences between mathematics and the sciences, mathematical 

and scientific explanations are fundamentally dissimilar.  The strategy here is to build a 

theory of mathematical explanation based on proofs that are regarded as explanatory by 

mathematicians.  The second group believes that a theory of mathematical explanation 

can be developed out of existing theories of scientific explanation.  Although there are 

obvious differences—for example, the fact that there are no causal relations in 

mathematics as there are in the sciences—the general outlines of theories of scientific 

explanation are thought to be compatible with explanations found in mathematics.  

Most contemporary philosophers favor a combination of the two—they side with the 

first group when it comes to focusing on the details of specific proofs; however, when 

they consider mathematical explanation in broader terms, they also side with the second 

group. 
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 Mark Steiner is perhaps the first analytic philosopher who sets the stage for an 

autonomous theory of mathematical explanation.61  He does not rely on any past 

theories of scientific explanation, but instead proposes a theory for mathematical 

explanation based on the inner-workings of a proof.  For Steiner, there are two criteria 

which proofs must satisfy in order to be explanations.  First, within a proof there must 

be a reference to an entity‘s or structure‘s ―characterizing property,‖ which he describes 

as ―a property unique to a given entity or structure within a family or domain of such 

entities or structures.‖62  He leaves ―family‖ as undefined, but insists that it be taken as 

broadly as possible.63  Moreover, he requires that ―an explanatory proof makes reference 

to a characterizing property of an entity or structure mentioned in the theorem, such 

that from the proof it is evident that the result depends on the property."64  Second, he 

requires a generalizability criterion, by which he means that if we choose different 

characterizing properties of some object and through a series of ―deformations‖ of the 

original proof, but using the same ―proof idea‖ or method, we are able to come up with 

multiple related proofs.65  Unfortunately, we are left in the dark by what Steiner means 

by ―deformations,‖ except that they involve more than just substitutions of 

characterizing properties.66   

 It seems as though Steiner requires an explanatory proof to be malleable enough 

to generate other proofs by exchanging the properties found in the original proof for 

                                                      
61 Steiner, Mark. "Mathematical Explanation."  Philosophical Studies 34.2 (1978): 135-151.   
62 Ibid., 143.   
63 In an attempt to show what he means by ―characterizing property,‖ Steiner gives an example of an 
entity with two different characterizing properties: he describes the number 18 as i) the successor of 17, 
and ii) as the product of 2 ∙ 32 (143).   
64 Ibid. 
65 Ibid., 143, 146.  
66 Ibid., 147.  He acknowledges that the terms he describe are vague, but insists that his examples will 
offer clarification. 
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ones that belong to a different family or structure.  It is not enough to require that new 

properties take the place of old ones using substitutions, but that a proof is able to be 

modified into a more general one while retaining much of the same method as the 

original proof.  This is the generalizability requirement, though it is difficult to say how 

much modification is acceptable to stay within the boundaries of a proof‘s ―proof idea,‖ 

which is taken to be the structure of a proof.    

 Steiner uses the well-known Pythagorean proof of the irrationality of the square 

root of two as an example of an explanatory proof.67  This proof starts off by assuming a 

contradiction—supposing that 2 has a rational square root.  We can represent this as 

    
 

 
  , such that   and   are coprime.68  By multiplying both sides of the equation by 

  , we obtain       .  From this, we observe that    is even, which means that   is 

even too.  This also implies that     .  Since        , we also have      , and this 

reduces to     , which shows that   is even as well.  However, because we assumed that 

        are coprime, we reach a contradiction, because         are both divisible by 2; 

therefore, it is false that the square root of two is rational.   

 According to Steiner, this proof satisfies his two criteria for a proof to count as 

one that explains.  First of all, since         are coprime, the characterizing property that 

this proof relies on is the unique prime power factorization of        .69  Steiner‘s 

second requirement is that the proof is generalizable.  This is indeed the case, because 

we can extend this method to show for any positive integer  , √  is either rational or 

                                                      
67 Ibid., 137-8.  
68 Recall that two integers are coprime if their greatest common divisor is 1. 
69 This is known as the Fundamental Theorem of Arithmetic.  
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irrational.  It is further possible to generalize to mth roots of n.  Thus, through Steiner‘s 

account, the proof of the irrationality of √  is explanatory.70      

 Steiner‘s account of mathematical explanation has been heavily criticized.  The 

main reason for these criticisms is because Steiner is too vague with his terms.  In his 

essay, he purposefully leaves ―family,‖ ―deformation,‖ and ―proof idea‖ undefined, and 

relies on his examples to describe them.  However, in each example, these terms are 

used in different contexts making it difficult to understand what he would include or 

exclude in his account.  For instance, he believes that mathematical induction is non-

explanatory because it is not a property of any entity that occurs in a given theorem: 

―Induction, it is true, characterizes that set of all natural numbers; but this set is not 

mentioned in the theorem.‖71  However, Hafner and Mancosu argue that induction does 

fall under Steiner‘s view of explanation, mainly because induction is a property of the 

number system being used—regardless of being explicitly mentioned in the theorem or 

not.72  Nonetheless, Steiner‘s account of mathematical explanation paved the way for 

philosophers to investigate the various modes of explanation found in proofs.   

 Philip Kitcher emphasizes the value of unification found within both 

mathematics and the sciences.73 According to him, explanations, which are deductive 

arguments, unify parts of mathematics (and science) together through their forms.  

                                                      
70 However, this goes against the argument that proofs by contradiction are non-explanatory, because 
these proofs only show that using a false assumption leads to an impossibility.  Reactions against proofs 
by contradiction have existed for centuries.  Although mathematicians generally do not question the 
validity of such proofs (besides intuitionists, who reject the Law of the Excluded Middle), they regard 
them as lacking explanation.  See Mancosu, Paolo.  "On the Status of Proofs by Contradiction in the 
Seventeenth Century."  Synthese 88.1 (1991): 15-41.  For more recent criticisms against proofs by 
contradiction, see Novaes, Catarina Dutilh. "Reductio ad absurdum from a Dialogical Perspective."  
Philosophical Studies 173.10 (2016): 2605-2628.    
71 Ibid., 145. 
72 See Hafner, J. and P. Mancosu.  ―The Varieties of Mathematical Explanation‖, in P. Mancosu et al. 
(eds.), Visualization, Explanation and Reasoning Styles in Mathematics, Berlin: Springer, 2005: 234-237. 
73 Kitcher, Philip.  "Explanatory Unification and the Causal Structure of the World."  Scientific 
Explanation. Eds. P. Kitcher and W. Salmon.  Minneapolis: University of Minnesota Press, 1989: 410-505. 



 
 

40 
 

Kitcher holds that the degree of unification depends on the number of deductive 

arguments that are made using the least number of premises that generate the most 

number of conclusions: ―Science advances our understanding of nature by showing us 

how to derive descriptions of many phenomena, using the same patterns of derivation 

again and again, and, in demonstrating this, it teaches us how to reduce the number of 

facts we have to accept as ultimate (or brute)."74  The same goes for mathematics.  The 

optimal set of arguments that satisfy this requirement is what he calls the ―explanatory 

store,‖ which is ―the set of derivations that best unifies K,‖75 where, K is ―the set of 

statements endorsed by the [mathematical] community.‖76  In order for an argument to 

count as an explanation, it must be included in the explanatory store.  By using the same 

argument forms repeatedly, Kitcher argues, we are able to increase our understanding, 

because we would be able to derive different things using these schemes and become 

aware of different connections and patterns found within a theory or between theories.  

Contrasted to Steiner‘s theory of mathematical explanation, which focuses on the 

contents of individual proofs, Kitcher provides us with a global view of explanation as he 

considers multiple proofs found in the explanatory store: an argument counts as an 

explanation if it is contained in a set of arguments that contribute towards unification.     

 Kitcher is mostly concerned with scientific explanation, but he claims that his 

theory is compatible with mathematical explanation.  The mathematical explanatory 

store is made up of proofs.  The basic premises or brute facts contained in the proofs are 

the axioms; however, Kitcher does not require that every explanatory proof start from 

axioms, but that the axioms are included in the explanatory store as facts that do not 

                                                      
74 Ibid., 432. 
75 Ibid., 431. 
76 Ibid.   
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require justification.  This turns out to be a problem for Kitcher, because his theory does 

not line up with mathematical practices.  Mathematicians coming up with various 

independent proofs for one theorem becomes a mystery under Kitcher‘s account—

especially when a theorem is proved multiple times using different axiom systems or 

using concepts from different branches of mathematics.77  Additionally, producing 

multiple proofs for one theorem goes against Kitcher‘s claim that unification depends on 

the number of proofs.  Furthermore, his theory of explanation, being a global theory, 

does not explain why a proof is explanatory independently from the theory (or theories) 

it comes out of.  Oftentimes, a proof is created from different branches of mathematics.  

However, for Kitcher, if the proof is included in the explanatory store, it contributes to 

unification. 

 According to Hafner and Mancosu, there are two approaches to formulating a 

theory of explanation: one is called ―top-down‖ and the other is ―bottom-up.‖  Both 

Steiner and Kitcher developed their theories of explanation first and then compared 

them to various examples found.  Hafner and Mancosu call this the ―top-down‖ 

approach.78  The strategy is to come up with a theory and then pick out examples that 

support it.  This method runs the risk of having an account that is not in line with 

mathematical practices.  Although Steiner believes that mathematical induction is non-

explanatory, through his account, it sneaks in as being explanatory; while for Kitcher, 

placing emphasis on the quantity of arguments to qualify as explanatory ignores the fact 

that mathematicians seek out multiple proofs for one theorem.  Contrasted to this is the 

―bottom-up‖ approach, which Hafner and Mancosu believe will do better justice to 

                                                      
77 This is not to say that the desire for explanation is the only reason mathematicians seek out multiple 
proofs.  There are a variety of reasons why they prove theorems in more than one way including, for 
instance, seeking out new methods and showing a connection between different parts of mathematics.  
78 Hafner and Mancosu, 221. 
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mathematical practices.  This involves observing what mathematicians do and then 

formulating a theory based on these observations.  They favor this strategy, because they 

think that it avoids the pitfalls of Steiner‘s and Kitcher‘s accounts of not matching up to 

mathematical practices.   

 While it is clear that the top-down approach is used by Steiner and Kitcher, a 

purely bottom-up approach is only an ideal situation.  Hafner and Mancosu do not 

supply their own theory of explanation, but they examine examples that go against 

existing theories of explanation.  They hope that by doing so, philosophers will gain a 

better understanding of explanations in mathematics, but at the same time, they want to 

continue looking at other proofs that have been deemed explanatory by mathematicians 

before coming up with an account that covers these cases.  However, this is the same as 

taking the top-down approach, because in order to come up with a theory, they need to 

either generalize or find similarities from their observations that they consider to count 

as explanation from the start.  All this means is that the bottom-up approach is not 

enough to create a theory of explanation, but both approaches are necessary.  The 

bottom-up approach is useful for gathering up examples of what mathematicians deem 

as explanatory proofs; however, creating a theory of mathematical explanation utilizes 

the top-down approach, because this theory is based on these examples.  It is difficult to 

determine what connects these examples together, but a bottom-up approach is helpful 

in testing theories against other examples much in the way Hafner and Mancosu have 

done.   

 Using both the top-down and bottom-up strategies, Marc Lange develops a 

theory of mathematical explanation by incorporating the views of Steiner and Kitcher, 

as well as considering some characteristics he observes in proofs that mathematicians 
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believe are explanatory.  According to him, generally, explanatory proofs exploit specific 

features—symmetry, simplicity, or unification—that stand out in their corresponding 

theorems.79   Lange does not give detailed descriptions of these characteristics, but tries 

to describe them through a handful of examples.  Symmetry contributes to explanation 

if there is some sort of similarity between a theorem (problem) and its proof (its result).  

Symmetry is established on a case by case basis—there does not seem to be a fixed group 

of properties that turn out to be symmetric, but if there is a ―striking‖ symmetry—that is, 

a symmetry that seems to play a heavy role in illuminating the reasons why a theorem 

holds, then this symmetry is said to be explanatory.  Similarly, Lange holds that 

simplicity counts as explanation when a theorem is simple, and its proof exploits this 

simplicity and is equally simple (as opposed to including many steps or making use of 

complicated mathematics that go beyond what is stated in the proof).  Lastly, unification 

is similar to how Kitcher describes it; however, a proof counts as explanation if there is a 

striking feature of it that contributes to unification.80 

 Lange‘s account of mathematical explanation is similar to Steiner‘s and Kitcher‘s 

as they are focused on the content and methods of proofs, but, additionally, Lange pays 

attention to what mathematicians say about particular proofs beyond their form and 

content.  He gives examples of proof—comparing ones that are considered by 

mathematicians to be non-explanatory to their explanatory counterparts by highlighting 

the differences and pointing out how the latter contain explanations. 

 

 

                                                      
79 Lange, Marc.  Because without Cause: Non-causal Explanations in Science and Mathematics. New 
York: Oxford UP (2017): 232-3. 
80 Ibid., 309.  
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II. Against Explanatory Proofs 

  In opposition to all such accounts of mathematical explanation, there has been 

opposition to the claim that mathematical explanations exist in the first place.  Michael 

Resnik and David Kushner deny that there are explanatory proofs mainly for two 

reasons.81  First, they claim (without any justification) that explanatory proofs are not 

significant in mathematical practices; at the time of their writing, Steiner‘s essay was the 

only one that addressed mathematical explanation, so they believe that it would be 

difficult to test his account.82  They give two examples83 of proofs that they grant could 

qualify as explanatory, but they neither discuss why they seem to be explanatory nor 

why they ultimately fail to persuade them that there are explanatory proofs in 

mathematics.   

 Their second reason is that there is no clear-cut way of determining what 

qualifies as explanatory or non-explanatory proof, because this all depends on 

individual mathematicians, their mathematical communities, and their training.  This 

objection carries some weight against Steiner‘s, Kitcher‘s and Lange‘s accounts since 

whatever is to count as a characterizing property, what belongs in the explanatory store, 

or if a proof contains a striking feature depend on much more than what is contained in 

a proof, relying as it does on the reactions of individuals or groups of mathematicians.  

Resnik and Kushner write, ―Whether or not something is evident from a proof is relative 

to subgroups of the mathematical community, at best.‖84  While Lange is careful to 

include the mathematical community‘s considerations throughout most of his examples, 

                                                      
81 Resnik, Michael D., and David Kushner. "Explanation, Independence and Realism in Mathematics." 
The British Journal for the Philosophy of Science 38.2 (1987): 141-158. 
82 Ibid., 151 
83 These are a proof of the Intermediate Value Theorem and Henkin‘s proof for completeness of first order 
logic. 
84 Ibid., 146.  
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he is still in charge of deciding what the important feature is in each of his presented 

proofs.  In other words, he gives the content of proofs priority over mathematical 

practices to fit his theory of explanation. 

 For instance, to support his argument that differences between cases could be a 

salient feature of a proof, Lange presents a proof that, he believes, explains why the 

derivative of an infinite sum is not always equal to the infinite sum of derivatives.  He 

does this in three steps.  The first step consists of showing that the derivative of the sum 

of two functions is equal to the sum of its derivatives, i.e.,                      .  

Lange shows this by a direct calculation, relying on the definitions of the derivative and 

of the limit using  s and  s.  This routine calculation is what makes up the majority of 

the proof.   

In the second step, Lange generalizes to finite sums.  Finally, the last step is to show the 

infinite case, but Lange only provides us with the following: "[W]ith infinitely many 

functions and hence infinitely many   s, there is no guarantee that some positive 

number is less than or equal to every   .  Rather, the   s may approach arbitrarily near 

to 0.‖85  Lange then concludes with:  

This difference between finite and infinite sums is responsible for the difference 

between the two results.  Thus we can ―explain why it is that sometimes you can 

differentiate an infinite series by differentiating each term, and sometimes you 

cannot."86 

Here, Lange is quoting the mathematician David Bressoud, whose textbook Lange refers 

to for this example.    

                                                      
85 Lange, 264. 
86 Ibid. 
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 There are two problems with Lange‘s example.  First of all, it is difficult to see 

why this proof counts as being explanatory.  While I agree that the third step of this 

proof explains why we are not guaranteed a   smaller than any of the   s, most of the 

details for this proof lies in the calculation of the first step, which is then extended in the 

other two steps, making this proof more of a brute force effort than an explanatory one.  

A proof that uses brute force tests every possible case without connecting the cases 

together.  Here, three cases are used: the case of two functions, a finite number of 

functions, and infinitely many functions.  Lange acknowledges that brute force type 

proofs are regarded by mathematicians as non-explanatory;87 yet, he pushes this 

example as one that explains the difference between derivatives of finite and infinite 

sums.   

 Second, we are still left clueless as to why the finite and infinite cases are not 

always the same—the statement Lange attempts to prove.  Instead, Lange only proves 

that the cases could be different, but this merely depends on the   s, which we are 

unable to keep track of in the infinite case (because there are infinitely many of them).  

Lange even quotes Bressoud making it seem as if the proof really does explain why we 

can sometimes interchange summation with differentiation for infinite series.  However, 

this quote appears in the introduction of the chapter of Bressoud‘s textbook that 

contains the proof Lange uses and not as commentary on the proof.  Bressoud provides 

a different proof for what Lange was supposed to prove, which is a lot more involved 

than Lange‘s presentation.88   

                                                      
87 Ibid., 241, 309. 
88 Specifically, he proves that if the sum of the derivatives converge uniformly, then the two derivatives 
will be the same.  Lange relies only on point-wise convergence, which is insufficient, because, as he 
recognizes, there are an infinite number of   s. 
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 Mark Zelcer argues that there are no explanations in mathematics, mostly 

because there is nothing that is similar to explanations found in the sciences.89  His 

main argument comes from attempting to apply theories of explanation in the sciences 

to mathematics.  Nothing similar to what is (or has been) accepted as scientific 

explanation occurs in mathematics, because, according to him, mathematics contains no 

predictions, surprises, or, in agreement with Resnik and Kushner, any reason to desire 

explanations in general.90  Zelcer uses explanatory proof and explanation 

interchangeably, which suggests that he believes that nothing in mathematics could 

provide explanations. 

 Using Hempel‘s D-N model of explanation, Zelcer argues that there are no 

explanations in mathematics, because there are no predictions.  He writes that the only 

statements that could be predictions would be about mathematical facts, but the 

justifications of these predictions are adequate enough to be proofs of these facts, which 

turns any potential prediction into a mathematical fact.  Zelcer does not give any 

description of what a prediction is except that it is not merely a guess.  He acknowledges 

that mathematicians make guesses all the time in practice, but they never make any 

predictions.  However, it could be argued that there is something analogous to a 

prediction in mathematics, namely a conjecture, which is a mathematical statement 

which has yet to be proved.  Not all conjectures are true, but similar to predictions they 

can be later confirmed or disconfirmed.  Furthermore, even if they are speculations, 

many conjectures are based off of prior mathematical work, or, as in the case of the Four 

                                                                                                                                                                           
See Bressoud, David.  A Radical Approach to Real Analysis.  Mathematical Association of America 
(1994): 195-6. 
89 Zelcer, Mark. "Against Mathematical Explanation." Journal for General Philosophy of Science 44.1 
(2013): 173-192. 
90 He also includes the usual objections: math is non-causal, it‘s deductive, not about nature, but of 
something abstract.   
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Color Conjecture, there was a reasonable starting point to guide mathematicians in the 

right direction to prove it.   

 Zelcer goes on to say that ―the failure of a scientific prediction to be correct 

potentially has serious repercussions for the theory.  The discovery of a proof that 

contradicts a mathematical conjecture only speaks to the poor intuitions of the 

conjecturing mathematician, not to any mathematical theory.‖91  Zelcer makes it seem as 

if a mathematical theory is flawless, and any error that occurs is due to the fault of the 

mathematician.  This is because mathematical statements are necessary truths, and it is 

up to the mathematician to uncover these truths.  The way to get to these truths is 

through proof, which, according to Zelcer, only shows that a statement is true.      

 Zelcer seems to be under the impression that once a piece of mathematics is 

accepted, it will be accepted forever; there is no need for any modifications.  This is a 

rather naïve view of mathematics that is reminiscent of A. J. Ayer‘s view that 

mathematics is made up of tautologies, where the axioms are counted as definitions, and 

theorems are the logical consequences of these definitions.92  Ayer holds that 

mathematical statements are necessary truths that are independent of our experience.  

If there are changes in mathematics, it is only because, he believes, mathematicians are 

correcting mistakes they have made in the past.  For example, he mentions that past 

mathematicians were ―mistaken‖ in believing that geometry is the study of physical 

space, and became aware of this mistake through the creation of non-Euclidean 

geometries.93  Zelcer does not go as far as Ayer in claiming that mathematics consists of 

                                                      
91 Ibid., 181. 
92 Ayer, A. J. "The A Priori."  Philosophy of Mathematics: Selected Readings. Eds. Paul Benacerraf and 
Hilary Putnam.  Cambridge UP (1987): 315 - 328. 
93 Ibid., 324. 
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tautologies, but similar to Ayer, he believes that changes in mathematics are only due to 

errors made by mathematicians.   

 This view goes against actual development and history of mathematics.  Both 

Zelcer and Ayer do not realize that mathematical theories are developed by 

mathematicians themselves, and that theories can and do change over time, not only to 

fix past errors, but through changes in language, methods, types of questions, and so on.  

This is clear when we observe how definitions for terms such as ―line‖ and ―function‖ 

have changed over time and what their effects have had on mathematics throughout 

history.     

 In agreement with Resnik and Kushner, Zelcer claims that explanatory proofs are 

not important to mathematicians.  He believes that mathematicians are more focused 

on just being able to prove that a mathematical theorem is true rather than attempt to 

give an explanation as to why something is the case.  He further argues that nothing 

resembling explanation in mathematics exists, because mathematicians are satisfied by 

proofs that only show that the mathematical statement proved is true.  However, though 

it is not necessary to always provide explanatory proofs, mathematicians frequently 

desire explanations of certain theorems—especially ones that are proved through heavy 

calculations or by brute force.  For example, many mathematicians find the proof of the 

Four Color Theorem lacking an explanation and are holding out for a better proof, 

because its current computer proof tests every possible mapping by brute force methods.  

If Zelcer were correct that no mathematicians desire explanations, then the fact that 

some theorems have multiple proofs using different methods or coming out of different 
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branches of mathematics would seem mysterious, as it does on Kitcher‘s account.94  

There would be no reason why mathematicians would bother proving the same theorem 

multiple times when one proof that shows that the theorem is true does the job. 

 However, it is plausible that philosophers have placed too heavy an emphasis on 

explanatory proof.  Juan Pablo Mejia-Ramos and Matthew Inglis conducted a study on 

how often ―explain‖ words are found in papers from ArXiv, an online repository that 

holds preprints of scientific and mathematical papers.95  They used almost seven 

thousand mathematics papers and roughly fifteen thousand papers from the sciences in 

their study.  According to their results, there was a higher frequency of words such as 

―show,‖ ―solution,‖ and ―prove,‖ than ―explain‖ in the mathematical papers.  There was 

far more use of ―explain‖ words in the science papers compared to the mathematical 

papers.  The authors conclude that their ―analysis of 'explanatory' talk in a large sample 

of mathematics papers does not offer support for a claim made in the philosophy of 

mathematics: that this type of talk is prevalent in mathematical discourse."96  Instead, 

according to them, mathematicians are more interested in explanations that answer 

how-questions rather than why-questions.  As a result, the authors believe that 

philosophers of mathematics have exaggerated what is desired in mathematical 

practices.97  However, they acknowledge that their findings may not reflect 

mathematical proofs in general considering that they only looked at papers through 

ArXiv searching for words that contain the string ―explain,‖ such as ―explain,‖ ―explains,‖ 

                                                      
94 Again, there are more reasons than just lacking explanation that motivates mathematicians to seek out 
multiple proofs for a theorem.   
95 Mejia-Ramos, J. P., and M. Inglis.  ‗Explanatory‘ Talk in Mathematics Research Papers. Proceedings of 
the 20th Conference for Research in Undergraduate Mathematics Education (2017): 1-7. 
96 Ibid., 6. 
97Ibid. 
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and ―explained,‖ while it is possible that mathematicians use different words that are 

related to explanation.98     

 

III. Explanation and Understanding 

 Philosophers should look beyond the form and content of mathematical proofs to 

have a better grasp of how proofs contribute to understanding.  This is important for a 

theory of mathematical explanation, because to understand what makes a proof 

explanatory depends on a community of mathematicians and not solely on a collection 

of mathematical proofs.  It is difficult to find patterns in proofs that will always 

guarantee an explanation in the ways Kitcher, Steiner, and Lange desire.  Hafner and 

Mancosu suggest that philosophers must test their theories on the activities of 

mathematicians, and so far, they have found that the major theories are inadequate.  

Additionally, what is explanatory in one mathematical community might not explain 

anything in another community; it is dependent on the specific community addressed.  

For instance, it is not difficult to imagine that a proof might be considered explanatory 

to a group of trained mathematicians but may not explain anything to a group of 

mathematics students.  The level of knowledge and experience are different between the 

two.  Research mathematicians have a better understanding of the terminology, what 

methods are used, and so on compared to students who are still learning these things.  

 Contrary to Steiner, Kitcher and Lange, it is not enough to consider just either the 

form or content of a proof.  The form of a proof is merely the steps required to get from 

the hypotheses to its conclusion; it contains no context of what the proof is about.  There 

is no reason to believe that a proof is explanatory simply because it follows a specific 

                                                      
98 Ibid., 5. 
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pattern of reasoning, because then anything that followed the same pattern would be 

thought of as explanatory regardless of what the proof is about.  This is a problem for 

Kitcher, because he favors only the quantity of arguments in his ―explanatory store‖ to 

supply explanations.  If we evaluate the explanatory power of a proof based on its 

contents, then we end up judging that a proof is explanatory just because it contains 

something specific.  Lange and Steiner, for instance, claims that as long as a proof 

contains and exploits the same salient feature in its theorem, then the proof is 

explanatory.  The problem with this is that what counts as a salient feature could be 

anything as long as it is also used in a proof.99  For Lange and Steiner, how a feature is 

used in a proof is not as important as its existence within a theorem and its proof.100  If 

something is not mentioned in theorem, its use in a proof will not contribute toward 

explanation.  This goes against what mathematicians expect out of a proof.  The vast 

majority of theorems and proofs do not contain every single possible detail; otherwise, 

they will be needlessly lengthy, and, in many instances, unsurveyable.  Certain details 

are omitted because they are obvious to the proof‘s purported audience, or they can be 

easily obtained.  It is also doubtful that what one mathematician or community deems 

as a striking feature of a theorem will be the ultimate feature that constitutes 

explanation tout court, independent of audience.  Multiple proofs for one theorem may 

exploit different features and still be counted as explanatory, but their explanatory 

power will vary among different mathematicians.  Again, there is no reason to assume 

that a proof that is considered to be explanatory by one community will be explanatory 

for all mathematicians.    

                                                      
99 Additionally, a theorem could be worded in a way where the salient feature is not explicitly mentioned.  
100This is not all that Lange requires, but he emphasizes that these features must be in the proof without 
stating why they are important for explanation besides being able to avoid coincidences and exploiting 
some sort of symmetry between a theorem and its proof.   
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 Perhaps the reason why it may seem to philosophers that once a proof is judged 

as explanatory, then it will be explanatory for all communities of mathematicians is in 

part because of the various case studies philosophers have been using.  Although it is 

helpful to use simple and short examples, they are misleading because either they are 

too simple to cover general cases or they come from elementary textbooks that attempt 

to make the material as clear as possible, which often includes explanation.  

Explanations that occur in the classroom setting with these types of sources are 

important for the training of mathematicians to understand the material, but in 

mathematical research, there is less focus placed on explanation of why something is the 

case and more on methods of how a result is obtained, which is not part of some fixed 

set of patterns.  In addition, using easy examples gives off the impression that if a proof 

is considered to be explanatory, it is explanatory for all mathematicians.  However, at 

the research level, not every mathematician is capable of following every proof in 

mathematics—especially parts of mathematics that are outside of a mathematician‘s 

expertise.  As William Thurston observed during a topology workshop, what may be 

clear to mathematicians from one branch may be difficult for another:  

It became dramatically clear how much proofs depend on the audience. We prove 

things in a social context and address them to a certain audience. Parts of this 

proof I could communicate in two minutes to the topologists, but the analysts 

would need an hour lecture before they would begin to understand it. Similarly, 

there were some things that could be said in two minutes to the analysts that 

would take an hour before the topologists would begin to get it.101 

                                                      
101 Thurston, William.  "On Proof and Progress in Mathematics."  Bulletin of the American 
Mathematical Society 30.2 (1994): 175. 
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So, even though the case studies presented by philosophers match up with their theories, 

it does not guarantee that these theories will describe explanatory proofs covering every 

branch of mathematics.   

 If we regard explanations as being generated through a specific pattern reserved 

for explanatory proofs, then it would seem plausible that mathematicians would use 

these patterns for the purpose of making their proofs explanatory.  Unfortunately, this is 

not how mathematicians go about their work.  They may mimic a method found in a 

previous proof if the method is relevant to their work, but it is uncertain that they would 

use the same method with the hopes to create an explanatory proof.  In other words, it is 

doubtful that mathematicians would use the accounts of philosophers to create 

explanatory proofs.  This is not to say that philosophers‘ theories should be used in this 

way, but these theories suggest that if a pattern is followed or if a property is tweaked, 

then another proof can be produced, which will also be explanatory.  Unfortunately, this 

just does not conform to mathematical practices.   

 To regard a proof as explanatory, one has to understand it first.  How a 

mathematician understands a proof depends on her training.  Although the form and 

content of a proof contribute toward explanation in proofs, the present philosophical 

theories exclude any mention of the role understanding plays or anything beyond what 

is already present in a proof.  These theories only rely on what is stated in the proof, 

disregarding any required background information or omitted steps—what you see is all 

you get and nothing more.   

 For example, although Steiner rejects mathematical induction as explanatory, his 

reason is inadequate.  He claims that mathematical induction is not a property of any 

entity that appears in a theorem—specifically, the fact that a proof is performing 
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induction over the integers does not appear in the theorem, so Steiner reasons that there 

is no entity with a characterizing property.  This is unsatisfactory, because any 

mathematician who understands how mathematical induction works will know that it is 

over the integers without needing it to be stated in the theorem or proof.  In fact, 

centuries before its logical formulation (and coinage) by Augustus De Morgan in 1838, 

Gersonides is credited to be the first mathematician to use induction and to recognize it 

as a general method in his Maasei Hoshev written in 1321.102  The way he uses induction 

is similar as we do today—using a base case (1 possesses property P) and an induction 

case (n +1 possesses P, assuming n has P) to prove that any natural number n has 

property P.  However, he called this method ―Hadraga,‖ which Rabinovitch translates as 

―rising step-by-step‖ and he used different notation than what we use now. 103  

Obviously, Gersonides, as well as other mathematicians predating the nineteenth 

century who used induction in their work, did not know about the properties of the 

integers as how we know them today or considered induction as an axiom104—

Gersonides was alive centuries before these mathematical developments.   

 If every detail of a proof must be explicit, we run into the problem of having 

lengthy proofs that end up being too detailed to follow.  Steiner does not require this, 

but if mathematicians are supposed to pick out the characterizing property of the 

relevant entity in a theorem, then all the details and steps of the explanatory proof must 

be stated, because what may be considered as a characterizing property for one 

mathematician may not be for another who may judge a different property to be the 

characterizing one instead.  Theorems and proofs do not contain only one entity with the 

                                                      
102 See Rabinovitch, Nachum L.  ―Rabbi Levi Ben Gershon and the Origins of Mathematical 
Induction.‖  Archive for History of Exact Sciences, 6.3, (1970): 237–248. 
103 Ibid., 245. 
104 Mathematical induction is Peano‘s fifth axiom.  
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essential characterizing property.  Mathematicians prove theorems in multiple ways 

relying on different parts of the theorem and using multiple methods from different 

branches of mathematics.  One example of this is the proofs for the Fundamental 

Theorem of Algebra, which can be proved using methods in algebra, topology, complex 

analysis, and others.   

 When we focus on just form and content of a proof, we risk falling into 

formalism: mathematical proofs are just deductive arguments that prove their theorems 

true; they may or may not be explanatory, but that just depends on logic and how their 

contents are manipulated.  Even on an intuitive level, it is easy to see that this has 

nothing to do with how mathematicians come to understand the proofs to claim that 

they are explanatory.  If form and content were really all that is needed, then proofs 

such as the Four Color Theorem ought to count as being explanatory: every deductive 

step is included in its proof, every case is considered, and it could be argued that the 

symmetry of the different mappings is the salient feature that helps explain why the 

theorem is true.  Nonetheless, the proof of the Four Color Theorem is notorious for 

being non-explanatory.  This is due to its massive length, such that no human being is 

capable of surveying it.  Also, the proof is regarded by most mathematicians as using 

brute force methods, which are viewed as non-explanatory, because the majority of the 

proof is made up of calculations performed by the computer.   

 In response to criticism that their proof to the Four Color Theorem is non-

explanatory, Kenneth Appel and Wolfgang Haken hold that their work explains how 

only four colors are needed to color a planar map.  Their proof structure is easy to follow, 

and the code written for the computer program is also straight-forward.  However, they 

agree that their proof does not explain why four colors is the minimum.   
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 In support for formalism in connection to lengthy computer proofs, John 

Harrison argues that if a proof contained every one of its deductive steps, it will aid in 

the theorem‘s explanation.105  This is because—as long as the proof is logically correct—

starting from the axioms, and working its way to show that the conclusion holds, all of 

the details are included.  This cuts down on errors—at least compared to informal proofs 

made by human beings, because there are no skipped steps.106  If it is too lengthy for a 

human to look over, Harrison suggests that the level of detail can be controlled, which is 

determined by the mathematician‘s needs.  He clearly favors a theory of explanation that 

focuses on form and content.  However, even if all the details are included in a proof, it 

may still lack explanatory power to answer why-questions.  Perhaps Harrison is more 

interested in how proofs can answer how-questions, and computer proofs are capable of 

showing this.   

 

IV: Conclusion 

 In conclusion, although philosophers have presented convincing theories of 

mathematical explanation, they are still focused on the internal parts of a proof without 

giving much thought to the targeted audience of these proofs: the mathematicians.  By 

ignoring how mathematicians regard their work, philosophers create theories that do 

not match up to mathematical practice.  It does not seem possible to only rely on the 

―bottom-up‖ approach, where philosophers formulate their explanatory accounts 

according to mathematical practices, because what counts as explanatory will ultimately 

depend on the philosopher‘s conception of explanation.  When they only look over 

                                                      
105 Harrison, John.  "Formal Proof—Theory and Practice."  Notices of the AMS 55.11 (2008): 1400. 
106 Ibid., 1399. 
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simple proofs or proofs found in textbooks, philosophers base their theories on the ideal 

situation where mathematicians always desire explanatory proofs, because these proofs 

are intended to train the mathematician and do not necessarily reflect what happens at 

the level of research.  As a result, philosophical accounts of explanation will 

continuously be criticized because they fail to represent actual mathematical practices.  

However, if philosophers look beyond these proofs and inquire about why 

mathematicians consider certain proofs explanatory while continuing to pay attention to 

their non-explanatory counterparts, then it is possible to come up with a general theory 

of mathematical explanation.  
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CHAPTER THREE: 

A HISTORICAL APPROACH TO MATHEMATICAL EXPLANATION 

 

 There is no doubt that proofs contribute towards mathematical understanding.  

After all, they are used to show that a mathematical proposition is true.  However, as 

discussed in chapter two, this does not mean that all proofs are guaranteed to provide 

understanding.  It depends on the contents of a proof, as well as the proof‘s audience.  

Some proofs only verify that a proposition is true.  For example, the proof of the Four 

Color Theorem is said to only show that the theorem is true using brute force.  In 

addition to verification, there are proofs that also offer explanation or introduce 

methods that could aid in generating further results.  It is this latter kind of proof that 

philosophers have been focused on when discussing explanatory proofs; however, they 

stop short of exploring how they contribute to mathematical understanding.   

 Explanatory proofs play an important role in mathematical understanding.  Not 

only does one convince the reader that a theorem is true, but also why or how it is 

true.107  In the previous chapter, I have argued that although philosophers have 

formulated theories of explanation for mathematical proof, they do not match up with 

mathematical practices.  Either philosophers selectively ignore instances in which 

mathematicians consider a proof explanatory, or they include proofs that are not 

                                                      
107 Philosophers have concentrated on proofs that demonstrate why a theorem is true, while ignoring 
proofs that show how a theorem is true.  Roughly, a proof that explains why a theorem is true presents 
reasons and purposes for the theorem to hold; whereas a proof the explains how a theorem is true focus 
on the methods involved and the conditions needed for the theorem to be true.    
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considered explanatory by mathematicians.  The reason for this is that philosophers 

have based their theories on a small sample of basic proofs.  This is not necessarily a bad 

strategy to start with; however, basing a theory on examples from elementary textbooks 

only represents the material that is used for the training of the mathematician, which for 

its part fails to represent research practices. 

 History also plays an important role for mathematical explanation.  Mathematics 

goes through a number of changes over time.  This includes its language, methods, 

questions, and so on.  We need to be aware of these changes so that we avoid dangerous 

anachronisms—such as assuming that a definition of a mathematical term used in the 

past is the same as its present one—and it will give us an idea of how and why 

mathematicians developed their work in the way they have.   

 In this chapter, my goal is to highlight the importance of history, which was 

discussed in chapter one, remaining focused on explanatory proofs for mathematical 

researchers, which are different from proofs found in textbooks.  I will first discuss the 

importance of distinguishing between the training of a mathematician and research 

done outside the classroom setting with regards to mathematical proof.  Because of 

these differences, theories of mathematical explanation or understanding developed 

from material found in the classroom do not extend to how a research mathematician 

comes to understand a proof.  As an alternative to looking at basic mathematical proofs 

found in textbooks, I suggest that we should look at a series of proofs for one theorem, 

starting with the earliest proof and ending with what is now considered to be the 

standard proof.  My example will be Lewy‘s Theorem and four of its proofs that were 

written in different time periods, spanning a total of seventy-eight years.  After that, I 

will consider what we can gain through looking at proofs in this way.  Specifically, I will 
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argue that the history of a theorem and its successive proofs give us an idea of how 

mathematicians prove theorems in multiple ways, which depends on the purposes of 

these theorems.  With this, we are able to recognize that explanations in proofs depend 

not only on their form and content, but also on their audience.   

 

I. Proofs in Training and Research 

 A general difference between proofs that are studied in the classroom and those 

used in research is that there is more emphasis on explanatory proofs in the classroom 

setting.  Proofs found in textbooks are written with details that help students 

understand why a theorem is true while making clear the methods and definitions used.  

Additionally, textbooks are written with the aim of presenting the material clearly to 

guide the reader.  Compared to a theorem‘s first generation proof, which tends to 

depend on calculations and limited insight, proofs of later generations are more 

polished and can rely on generalizations or abstractions that can contribute to their 

explanatory power.  Textbooks contain these later generation proofs, while journals 

present first generation proofs.  

 In an effort to distinguish the differences in purpose between proofs used in 

training and research, the mathematician Reuben Hersh writes, ―[T]he purpose of proof 

[in the classroom] is understanding‖ 108 while for research, the purpose is to convince its 

audience that its corresponding theorem holds.109  He believes that the main goal of a 

mathematics course is to explain new concepts to students; the teacher is to provide full 

explanation when necessary with the help of proofs to aid the students in grasping the 

                                                      
108 Hersh, Reuben.  ―Proving is Convincing and Explaining.‖  Educational Studies in Mathematics 24.4 
(1993): 398. 
109 Ibid., 396.   



 
 

62 
 

material.110  The proofs found in research, however, Hersh claims, are mostly to verify a 

mathematical result and do not focus on explanation as much as in textbooks.111  He 

believes that the goal for proofs in research mathematics is to be able to convince other 

mathematicians that a result is correct.112  

 The difference between training and research practice is important when 

formulating a theory of mathematical explanation as well as understanding.  Although 

whether or not a proof is explanatory or just convincing is partially dependent upon its 

audience, we are able to extract certain details from proofs to determine how they fit 

within the overall scheme of mathematical practice.  However, this variation takes some 

careful analysis because there are a variety of ways proofs are created.  This detail is 

overlooked by philosophers, but it is important when developing a general theory that 

attempts to mesh with mathematical practices.  Most philosophers who have introduced 

theories of mathematical explanation, for example, claim that they apply to research 

practices, but then rely on material for students.113  Perhaps this is to keep their 

examples simple for their audience, but it comes with the disadvantage of mistaking 

training material for what is found in research, largely ignoring the transformation that 

takes place between primary mathematical research and the textbook presentation of 

results.  The process of how results were obtained through research is very different 

                                                      
110 Ibid., 397. 
111 This is not to say that there are no explanatory proofs in mathematical research, but only that they are 
not emphasized as much.  
112 Ibid., 391. 
113 Mark Steiner consults Hardy and Wright‘s well-known An Introduction to the Theory of Numbers as 
well as George Pólya‘s Induction and Analogy in Mathematics, which is written for students as a guide to 
mathematical reasoning (beyond deductive reasoning).  In response to Steiner‘s essay, Resnik and 
Kushner depend on What is Mathematics (a reference book of basic mathematics) and Rudin‘s Principles 
of Mathematical Analysis, an undergraduate textbook.  More recently, Christopher Pincock relies heavily 
on Galois Theory, by Ian Stewart, an undergraduate textbook.  Marc Lange presents a problem given at a 
high school mathematics event as one of his main examples.   
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from how they are given in textbooks, which provide the reader with polished and often 

anachronistic versions of developments while ignoring their historical development.  

 

II. Genealogy of a Theorem 

 Instead of developing theories according to simple examples from various 

branches of mathematics, a different strategy is to look at the evolution of one proof 

from its origins to its recent standard presentation to have a better grasp of what 

mathematicians look for in proofs.  This would shed some light also onto how a proof 

aids in understanding.  At the same time, we need to look beyond just the proofs 

themselves and consider how and why they came about, as well as the intention behind 

each iteration.  The backgrounds of the mathematicians who have worked on these 

proofs and the time and place at which they were written will also give us a better 

understanding of why a theorem‘s proofs developed in the ways they have.  

  Some mathematicians have explained that proofs are improved over time, 

becoming clearer and easier to understand.  For instance, endorsing the stance that 

simplicity is tied to understanding, Gian-Carlo Rota writes,  

The first proof of a great many theorems is needlessly complicated...  It takes a 

long time, ranging from a few decades to entire centuries, before the facts that are 

hidden in the first proof are understood, as mathematicians informally say.  This 

gradual bringing out of the significance of a new discovery takes the appearance 

of a succession of proofs, each one simpler than the preceding.  New and simpler 

versions of a theorem will stop appearing when the facts are finally understood.114  

Similarly, from Michael Aschbacher:  

                                                      
114 Rota, Gian-Carlo.  "The Phenomenology of Mathematical Proof."  Synthese 111.2 (1997): 192-3. 
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The first proof of a theorem is usually relatively complicated and unpleasant.  But 

if the result is sufficiently important, new approaches replace and refine the 

original proof, usually by embedding it in a more sophisticated conceptual 

context, until the theorem eventually comes to be viewed as an obvious corollary 

of a larger theoretical construct.  Thus proofs are a means for establishing what is 

real and what is not, but also a vehicle for arriving at a deeper understanding of 

mathematical reality.115 

This highlights the fact that even if a proof is available for a theorem, mathematicians 

still look for other proofs if they find it confusing, lacking explanation, or it does not lead 

to further developments.116    

 By surveying the evolution of successive proofs, we are able to track 

developments through changes in language, method, and context.  What contemporary 

philosophers tend to forget when developing their theories is that mathematics is not a 

static discipline; mathematics changes over time.  According to some philosophers,117 

the explanatory value of a proof depends only on what is presented in that proof; 

anything external (such as prior mathematical knowledge that helps mathematicians 

understand a proof, omitted steps, and the impact it may have on existing and future 

results) does not contribute to explanatory value.  Simply put, there is no more to a 

mathematical proof than what appears in print.  It is my contention that, looking 

                                                      
115 Aschbacher, Michael.  "Highly Complex Proofs and Implications of Such Proofs."  Philosophical 
Transactions of the Royal Society of London A: Mathematical, Physical and Engineering 
Sciences 363.1835 (2005): 2403. 
116 The mathematician, Paul Erdös, believed that mathematicians should strive to write a proof that 
belongs in ―The Book,‖ which is filled with the best proofs for theorems. 
117 Here, I am referring to Mark Steiner and Philip Kitcher, who developed the main accounts of 
mathematical explanation. 
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beyond a single proof of a theorem, we can come to a better understanding of what 

mathematicians desire from proofs.   

 Tracking the changes made through several proofs has the added advantage of 

highlighting that a piece of mathematics is neither static nor permanent.  Because of this, 

we are able to observe that mathematics is historically situated—the desires of 

mathematicians change over time due to further developments in techniques, 

terminology, and so on.  This can help us determine what types of questions 

mathematicians seek to answer and what was acceptable for them in a particular time 

period and place.  What was relevant in one period and place may not be so relevant in 

another.  For instance, during the second half of the nineteenth century, there was a 

growing emphasis on mathematical rigor in proofs in Germany to avoid the ambiguities 

found in older methods of mathematical reasoning; however, in France, the focus was 

on the applications of mathematics as a tool, but after 1880, the French also embraced 

the style of German mathematics.118  Nowadays, the amount of rigor required in a proof 

has lessened in both countries (and in general).  

 Mathematicians are aware of some of the history of their specific fields and are 

familiar with the changes that take place over time.119  This helps them understand the 

common methods, main theorems, and concepts that have helped shape their fields and 

open the door to further developments.  Knowing the background of their fields also 

helps the mathematician avoid past errors and confusions made by other 

mathematicians, as well as aid in clarifying certain components of the field.  

                                                      
118 Schubring, Gert.  Conflicts between Generalization, Rigor, and Intuition: Number Concepts 
Underlying the Development of Analysis in 17-19th Century France and Germany.  New York, NY: 
Springer Science+Business Media, Inc. (2005): 606-9.  
119 Their version of history, however, may differ from an accurate sequence of historical events 
emphasizing major developments.  
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Philosophers should also be aware of the history behind theorems and proofs when 

developing theories of mathematical explanation.  This would help their theories match 

up with the practices of mathematicians instead of solely relying on the contents of 

individual proofs.  Knowing the history of a theorem and its multiple proofs will add to 

the philosopher‘s understanding of why a theorem was proved in these different ways.  

Additionally, it would provide an idea of what mathematicians desire out of proofs.  

 

III. Example: Lewy’s Theorem 

 I will now turn to an example to highlight what can be gained from following the 

developments made through a series of proofs for a theorem.120  Here, Lewy‘s Theorem 

and four of its proofs will be presented.  Today, mathematicians consider this theorem 

as one of the basic theorems of harmonic mappings.  Harmonic mapping theory is the 

study of complex-valued harmonic functions.  It is a branch of mathematics that 

developed out of the study of minimal surfaces in the 1920s and gained interest among 

complex analysts later on in the 1980s through a famous paper by James Clunie and 

Terence Sheil-Small that presents some similarities between univalent harmonic 

mappings and conformal mappings, which are univalent, holomorphic functions. 121  

This work and other developments suggest that harmonic mappings are generalizations 

of conformal mappings.   

 Although Lewy‘s Theorem is named after Hans Lewy from his work in ―On the 

Non-Vanishing of the Jacobian on Certain One-to-One Mappings‖ from 1936, the result 

can be traced back to a problem posed by Tibor Radó in the German Mathematical 

                                                      
120 Readers may skim over this and the next four sections without missing relevant information. 
121 One difference between the two is that while a conformal function‘s real and imaginary parts are 
harmonic conjugates, the components of a harmonic mapping need not be.  All conformal mappings are 
harmonic, but the converse is false.  
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Society‘s annual report of 1926—a decade before Lewy‘s paper—regarding the continuity 

of a harmonic mapping inside a convex curve and answered by Hellmuth Kneser, who 

offered a general sketch of a proof.  Part of Kneser‘s solution relies on the same result 

that Lewy proves.  Later on in 1951, in his paper, ―Isolated Singularities of Minimal 

Surfaces,‖ Lipman Bers came up with a more simplified and clearer proof than Lewy‘s 

and is based on Kneser‘s work.  The last proof that will be presented is by Peter Duren.  

This proof appears in his reference book titled, Harmonic Mappings in the Plane.  The 

level of detail in his proof is the standard that usually appears in other texts.122   

 Before jumping into the theorem and its proofs, a few technical details are in 

order.  A real harmonic function        is one that satisfies Laplace‘s equation: 

    
   

     
   

     . 

A complex harmonic mapping   is made up of two harmonic functions   and   with the 

form 

                     .123 

Using complex notation, we have for      , where       ,                .  

Here,       .   

 Lastly, the Jacobian of a function is the determinant of its partial derivatives.  It 

is calculated as 

    ||

  

  

  

  
  

  

  

  

||   
  

  

  

  
  

  

  

  

  
  

                                                      
122 See for example Dierkes, Ulrich, Stefan Hildebrandt, Friedrich Sauvigny, and Anthony Tromba. 
Minimal Surfaces. Heidelberg: Springer (2010): 78-79. 
123 The main difference between a harmonic mapping and a holomorphic mapping is that a holomorphic 
mapping must satisfy the Cauchy-Riemann equations (       and        ). 
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If      at some point       , the function   is sense-preserving, and if      , the 

function is sense-reversing.  

 Lewy‘s theorem states that the Jacobian determinant of a complex harmonic 

function in a neighborhood of        is never equal to zero.  In other words, either this 

function‘s orientation is sense-preserving or sense-reversing at    depending on whether 

its Jacobian determinant results in a positive or negative quantity.  This is a well-known 

result for holomorphic functions, which are sense-preserving.124  Lewy‘s Theorem 

extends this result to the harmonic case.   

 

 III.a. Kneser’s Proof of Lewy’s Theorem 

 In 1926, Tibor Radó posed a problem in the German Mathematical Society‘s 

annual report, a collection of mathematical works, reviews, and a section devoted to a 

listing of problems presented by mathematicians with their solutions written by other 

mathematicians.125  Radó set up the problem as follows.  Let B =    be a simple and 

closed curve in the xy-plane and C =    be another simple and closed curve in the uv-

plane.126  Suppose that the harmonic mapping               is a continuous mapping 

from   onto  .  If C is convex, then, the mapping is also univalent and continuous from 

D onto  .  This is now known as the Radó-Kneser-Choquet Theorem and is a well-

known theorem in harmonic mapping theory.127  This theorem is connected to Lewy‘s 

                                                      
124 See Ahlfors, Lars V.  Complex Analysis: an Introduction to the Theory of Analytic Functions of One 
Complex Variable.  New York: McGraw-Hill (1953): 71. 
125 Kneser, Hellmuth. Loesung der Aufgabe 41., Jahresbericht der Deutschen Mathematiker-Vereinigung.  
35 (1926): 123-4. 
Radó, Tibor. Aufgabe 41., Jahresbericht der Deutschen Mathematiker-Vereinigung.  35 (1926): 49. 
126 Simple and closed curves are known as Jordan curves, which are homeomorphic to the unit circle. 
127 Gustave Choquet‘s name is included in this theorem, because he proved a similar result twenty years 
after Kneser.  It is likely that he did not know of Kneser‘s proof.  The first part of his proof (showing that 
the mapping is locally univalent) is similar as Kneser‘s, so it is omitted here.  Choquet‘s version of the 
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Theorem, because to prove part of it requires showing that the mapping is locally 

univalent in a neighborhood in  .  This involves showing that the Jacobian in this 

neighborhood does not vanish, which is precisely Lewy‘s Theorem.    

 There are two steps in Kneser‘s proof.  The first step is to show that the mapping 

is locally univalent in D.  Although Kneser does not mention that this is done by showing 

that the Jacobian determinant is never zero, this is what he essentially shows.  The 

second step involves using Cauchy‘s Argument Principle modified for harmonic 

functions to show that the mapping is globally univalent and maps D onto  .  The first 

part of the proof is the main result and is relevant for our purposes.   

 Kneser proves the first step by contradiction.  He first supposes that          

         , where c is a constant.  The points       in    that satisfy the level curve 

                  are, according to him, points with different tangents.  Thus, he 

observes that the level curve is made up of simple closed curves and lines ending on  , 

which can only occur in at most two points whose images are in the intersections of   

with the level curve.  Since this can occur for at most two such lines on  , on  , it is 

constant, which, Kneser concludes, is a contradiction, because of the convexity of  .   

 Without knowing what level sets have to do with univalence or the Jacobian 

determinant, it is difficult to understand how this proof proves the result.  There are 

many details left out, and there is even no mention of the Jacobian in the theorem or in 

this part of the proof.  As a first proof that shows that harmonic mappings are locally 

univalent, it is difficult to follow without unpacking the details from the beginning of the 

proof.   

                                                                                                                                                                           
theorem only requires that the function is a homeomorphism and not a harmonic mapping.  His result 
involves the Poisson integral, which is used to extend the homeomorphism into a harmonic function.  
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 III.b. Lewy’s Proof 

 A decade after Kneser‘s result, Hans Lewy published his version of the theorem, 

which now bears his name.  He states his theorem as: 

If        and        are harmonic,                , and if there exists a 

neighborhood    of the origin of the xy-plane and a neighborhood     of the 

origin of the uv-plane such that        and        establish a mapping of    onto 

   which is one-to-one both ways, then the Jacobian             ⁄  does not 

vanish at the origin. 128  

 His proof is a bit more involved and very different from Kneser‘s.  First, Lewy 

converts   and   to polar coordinates.  He is able to do this because univalent harmonic 

functions are invariant under linear transformations:129   

   ∑    
             

         
   ,   where   

     
    , 

   ∑    
             

         
   ,   where   

     
    . 

 Lewy then considers two situations: when      and when     .130  He first 

tackles the case when     .  He makes two assumptions.  The first one is that      

       ,131 and second, because of the invariance of these functions, he assumes that   

                    . 

Applying these restrictions, he obtains 

 ̅               and    ̅             . 

                                                      
128 Lewy, Hans. "On the Non-vanishing of the Jacobian in Certain One-to-One Mappings." Bulletin of the 
American Mathematical Society.  42.10 (1936): 689-692.   
By ―one-to-one both ways,‖ Lewy means that the functions and their inverses are univalent.   
129 See Ahlfors, 175. 
130 There is no need to look at the case when    , because it is the same as    .  
131 Lewy is able to make this assumption, because otherwise  ̅ and  ̅ below would not be univalent. 
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Lewy adds these to the rest of the series resuming with    , with        : 

     ̅    ∑    
             

        

 

   

  

     ̅    ∑    
             

        

 

   

  

The winding number is the same for     ) and        , and is either   ,  because the 

mapping is univalent.132  Lewy concludes that from this,      , and the theorem is 

proved for this case.  

 Next, for    , Lewy calculates the Jacobian determinant,  

       
      

      
 

      

      
  |

          
          

| 

of the first term of the mapping to obtain  

      [(          )    (      )                          ]  

From this, Lewy observes that the Jacobian determinant is either positive or negative.  

This is a contradiction, because the value must either be 1 everywhere or -1 everywhere 

(and not both) for a univalent mapping.  Therefore, he concludes that it is not the case 

that      

 It is clear that Lewy uses a different method to prove the theorem from Kneser.  

While Kneser uses level sets, Lewy‘s proof depends on the coefficients of the series 

representations for the harmonic functions.  In the second part of Lewy‘s proof, he 

makes use of the Jacobian determinant, which was not referenced in Kneser‘s proof at 

all.  

                                                      
132 This follows from the Argument Principle.  The positive or negative value depends on orientation.  See 
Markushevich, A. I.  Theory of Functions of a Complex Variable: Pts. II & III.  Trans. Richard Silverman.  
(Providence: AMS Chelsea, 2005): Pt. 2, 48.     
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 III.c. Bers’ Proof 

 Next, we will look over Lipman Bers‘ 1951 proof of Lewy‘s theorem. 133  His proof 

is based on Kneser‘s proof as it also involves level sets.  Bers‘ version of Lewy‘s Theorem 

depends on the holomorphicity of two complex functions.  He creates a harmonic 

mapping from the real parts of two holomorphic functions,    and    :  

                                         . 

Bers proves that if the harmonic mapping       is univalent in a neighborhood of   , 

then the Jacobian determinant of the mapping       is never zero.  This is different 

from Kneser‘s and Lewy‘s versions, because neither of them made use of holomorphic 

functions.  In Radó‘s formulation of his problem answered by Kneser, he brings up 

univalent holomorphic functions; however it is to separate them from the harmonic case.  

 Bers proves Lewy‘s Theorem by contradiction.  He sets    as the origin, and 

supposes that the Jacobian determinant of the mapping is zero there.  He then separates 

the problem into three cases: when   
              

      , and setting      

     and    
 

 
          in the neighborhood of the origin, with         , 

        0, and    .  For the first case, since   
      , there are at least two lines 

           that go through     , but the mapping was assumed to be univalent, so 

we reach a contradiction.  Lewy observes that the same goes for the second case of 

  
      .  Lastly, to show that the last case fails to be univalent, he sets              

       and                    .  Then                             .  Since 

  
       and        , the mapping (       is not univalent.   

 

                                                      
133 Bers, Lipman. "Isolated Singularities of Minimal Surfaces." Annals of Mathematics (1951): 369-370. 
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 III.d. Duren’s Proof 

 The final proof appears in Peter Duren‘s book on harmonic mappings from 

2004.134  His proof is based on Bers‘ proof (and Kneser‘s), but he fills in details and 

breaks down the steps.  Unlike the proofs above, Duren‘s proof appears in a book that is 

used as a reference to the theory of harmonic mappings.  What makes his proof the 

easiest to follow is that the material in his book before Lewy‘s theorem appears prepares 

the reader with the basics of harmonic functions, important theorems, and definitions.  

For Duren, Lewy‘s Theorem is a stepping stone to the Radó-Kneser-Choquet Theorem, 

and thereby makes the latter theorem easy to understand as well, even though the Radó-

Kneser-Choquet Theorem came chronologically before Lewy‘s Theorem.     

 Before Duren presents Lewy‘s Theorem, he supplies an additional theorem about 

the level set of a harmonic function that goes through a critical point.  According to this 

theorem, there are at least two arcs that emanate through this point at equal angles.135  

This theorem is used later in the proof of Lewy‘s Theorem.   

 Lewy‘s Theorem in Duren‘s book is straight-forward: If a harmonic function   is 

locally univalent in a domain    , then its Jacobian determinant never vanishes for 

every    .136   

 Duren begins his proof with assuming that the Jacobian determinant is equal to 

zero.  This is the same strategy that Kneser and Bers use.  Here, Duren fills in the details.  

He sets       .  Since he assumes that the Jacobian determinant is zero at   , i.e., 

                ,  

                                                      
134 Duren, Peter.  Harmonic Mappings in the Plane.  Cambridge Tracts in Math. 156, Cambridge UP, 
Cambridge (2004): 20. 
135 Ibid., 19. 
136 Ibid., 20. 
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{
          
          

 

is a system of linear equations where         are not both zero, which means that    is a 

critical point of      .  Without loss of generality, Duren assumes that         and 

near   , he considers the level set               }.  From the theorem stated above, 

through   , there are at least two arcs that cross each other with equal angles.  Duren 

applies    to this level set and observes that these arcs are mapped into       

   which is linear.  He reaches a contradiction because of the hypothesis that   is locally 

univalent.  Therefore, the Jacobian determinant is non-zero, and the theorem is proved.  

 

IV. Recapitulation and Analysis 

 As we can observe, formulations of Lewy‘s Theorem and its various proofs have 

changed over time.  The theorem‘s first version comes from a result needed to answer 

Radó's problem, which Kneser provides in a short sketch of a proof.  Instead of being its 

own theorem, the local univalence of a harmonic mapping is needed to prove a further 

result, which later becomes an important theorem in harmonic mappings.137  Showing 

local univalence amounts to showing that the Jacobian determinant of a harmonic 

mapping does not vanish.  Kneser proves this by contradiction by assuming that there is 

a critical point, which implies that the Jacobian determinant is zero at this point.  Lewy, 

ten years later, proves that if a harmonic mapping is a homeomorphism, then its 

Jacobian determinant does not vanish.  Lewy proves this very differently from Kneser, 

using the properties of the harmonic functions‘ trigonometric series representation.  

Bers and Duren follow Kneser in their proofs, proving the theorem by contradiction by 

                                                      
137 This is the Radó-Kneser-Choquet Theorem. 
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assuming that a level set exists for their mappings.  Bers describes the theorem 

differently from Kneser and Lewy, because he uses methods from complex analysis, 

which was how he approached much of his work.  Duren‘s proof spells out the missing 

details of Kneser‘s and Bers‘ proofs. 138   

 The purpose of the theorem varies among these mathematicians.  Radó uses the 

result in his work on minimal surfaces.  At the time, he was at the University of Szeged.  

His advisor was Frigyes Riesz, who made significant contributions to functional analysis.  

With the guidance of Riesz, Radó mostly concentrated on complex analysis and was 

interested in topics such as boundary problems for analytic functions and subharmonic 

functions.139  Four years into his studies, around 1925, he switched gears and turned to 

the study of minimal surfaces investigating their analytic properties.140  In 1930, he 

published his famous solution to the Plateau Problem which includes Kneser‘s proof to 

aid in solving a boundary value problem to determine a minimal surface bounded by an 

analytic curve.   

 Lewy used his theorem for his work on the Monge-Ampère equations from partial 

differential equations.  In 1936, the year his theorem was published, he was a professor 

at the University of California.  By then, he had already started working on analytic 

solutions to the Monge-Ampère equations and the Minkowski Problem.   

 Bers briefly references this theorem in his well-known paper on isolated 

singularities found on minimal surfaces.  He presents Lewy‘s Theorem in the beginning 

                                                      
138 Interestingly, the method of using level sets to prove Lewy‘s Theorem fails for dimensions of   greater 
than two.  See Szulkin, Andrzej. "An Example Concerning the Topological Character of the Zero-Set of a 
Harmonic Function."  Mathematica Scandinavica 43.1 (1979): 60-62. 
139 Kreyszig, Erwin.   Remarks on the Mathematical Work of Tibor Radó.                             
                                       .  Ed. Themistocles Rassias.  River Edge: World Scientific 
Publishing (1992): 21-2. 
140 Ibid., 23. 
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of his section on harmonic mappings to use in a proof of a lemma.  His paper was 

praised for using techniques from complex analysis.141  Even in his proof of Lewy‘s 

Theorem, he makes use of holomorphic functions.    

 Lastly, as mentioned above, Duren presents his proof in his reference book on 

harmonic mappings.  Duren is an analyst who has done work in harmonic mappings, 

function theory, as well as other areas of analysis.  Since he aims to show the similarities 

between harmonic mappings and conformal mappings, many of the results he presents 

in the beginning of his book uses tools from complex analysis.  

 Lewy‘s proof stands out as being very different from the proofs of Kneser, Bers, 

and Duren.  He was apparently unaware of Radó‘s and Kneser‘s work.  The paper in 

which his theorem appears only contains two theorems and their corresponding proofs 

without any sort of explanation as to why he presented these results.  However, when we 

look beyond his paper and consider what he needed these results for, we find that 

Lewy‘s  main focus at the time (and throughout his career) was on partial differential 

equations.  This explains the style of his proof; to prove his theorem, he manipulates the 

coefficients of the series representations that make up the mapping (    .  Looking at 

his published papers a few years before and after the paper in which he proves his 

theorem, it is clear that he was working on analytic solutions to the Monge-Ampère 

equations used in differential geometry as well as an analytic solution to the Weyl and 

Minkowski problem, which is closely connected to the Monge-Ampère equations.142  A 

vital step for both of these results is his theorem on the univalence of harmonic 

                                                      
141 Abikoff, W., C. Corillon, I. Kra, T. Weinstein and J. Gilman.   ―Remembering Lipman Bers.‖  Notices of 
the American Mathematical Society.  42 (1995), 11. 
142 See Lewy, Hans. "A Priori Limitations for Solutions of Monge-Ampère Equations. II." Transactions of 
the American Mathematical Society 41.3 (1937): 365-374. 
Lewy, Hans. "On the Existence of a Closed Convex Surface Realizing a Given Riemannian Metric." 
Proceedings of the National Academy of Sciences 24.2 (1938): 104-106. 
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mappings, which he uses to prove a compactness theorem, which is one of his main 

contributions to the study of Monge-Ampère equations.143     

 Kneser‘s style of proof comes from topology.  At the time of his proof, the study of 

topology was largely dependent on the properties of homeomorphisms, which, 

unfortunately, were not yet fully developed.  What was considered as a homeomorphism 

varied among mathematicians.  Either it was considered what mathematicians now call 

a diffeomorphism,144 a univalent continuous function, or a continuous bijection with a 

continuous inverse, which is the modern definition.145  It was not until the 1930s that 

the modern definition of it became the standard.146  This is relevant for our case because 

Radó poses his question originally in German.  His description of the mapping in 

German is ―eine umkehrbar eindeutige Abbildung,‖ which at the time mathematicians 

regarded as a univalent mapping, and not a unique, invertible mapping (which would be 

a modern-day homeomorphism as long as the mapping is continuous).147  In a paper 

from 1930, ―The Problem of the Least Area and the Problem of Plateau,‖ where Radó 

mention's Kneser's proof, he only requires that the mapping is univalent on the 

boundary.148  Even if Radó required that the mapping be a modern-day 

homeomorphism, then Kneser‘s proof will still work, because it does not depend on the 

invertibility of the mapping.     

                                                      
143 Heinz, Erhard. "Commentary on Lewy's Papers." Hans Lewy Selecta. Vol 1. Ed. David Kinderlehrer. 
Boston: Birkhauser (2002): xxxvi. 
144 This is a differentiable bijective map with a differentiable inverse.  Henri Poincaré originally coined the 
term homeomorphism to refer to these types of maps in 1895.  See Moore, Gregory.  "The Evolution of the 
Concept of Homeomorphism."  Historia Mathematica. 34 (2007): 335 
145 Ibid., 333-4. 
146 Ibid., 342. 
147 Ibid., 336n4. 
148 Radó, Tibor. "The Problem of the Least Area and the Problem of Plateau." Mathematische Zeitschrift 
32.1 (1930): 796. 
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 Bers and Duren based their proofs on Kneser‘s proof.  In his paper that contains 

the proof, Bers mentions only Lewy when he presents the theorem; however, elsewhere 

in his paper, he refers to Radó‘s book on the Plateau Problem, which contains Kneser‘s 

proof.  It is clear that Bers knew about Kneser‘s 1926 proof as his proof is very similar.  

His proof is more straight-forward, but also contains  a section covering how minimal 

surfaces relates to harmonic mappings, so there is a little background information about 

the properties of the holomorphic functions that are used in the theorem.  In general, 

although Bers‘ paper is on minimal surfaces and partial differential equations, his work 

is in the style of complex analysis, using properties of holomorphic functions, which are 

made up of real harmonic functions.  After he proves Lewy‘s Theorem in his paper, Bers 

notes that ―Lewy‘s [Theorem] implies that a one-to-one mapping by harmonic functions 

is a homeomorphism, and that the inverse mapping is analytic.‖149  He is the only 

mathematician of the four who notices this, because the rest are interested on the 

properties of real harmonic functions and not their corresponding holomorphic 

extensions.  

 Duren expands on Bers‘ proof by filling in more details, specifically on how the 

level sets play a role in the beginning of the proof.  Unlike Bers, he does not assume 

holomorphicity anywhere in his proof.  In the theorem he gives, he only assumes that a 

function is complex and harmonic.  Other than that, he only uses its harmonic parts in 

the proof.  He avoids using holomorphic functions in the way Bers uses them, because 

                                                      
149 Bers, 370.  Analytic here can be taken to mean holomorphic.  
In fact, we can take it further: by the Inverse Mapping Theorem, the mapping is a diffeomorphism—a 
homeomorphism which is differentiable and also has a differentiable inverse.  However, it would not be 
until 1956 that John Milnor coins the term ―diffeomorphism.‖  Some papers present Lewy‘s Theorem as 
referring to a diffeomorphism.  See, for example Martin, Gaven.  "Harmonic Degree 1 Maps are 
Diffeomorphisms: Lewy‘s theorem for Curved Metrics."  Transactions of the American Mathematical 
Society 368.1 (2016): 647.  
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he defines a harmonic mapping to be a univalent complex-valued function, which he 

compares and contrasts to conformal mappings throughout his book.  This is different 

from how the other mathematicians above use ―mappings.‖   

 

V. From Demonstration to Explanation 

 Lewy‘s Theorem and the different versions of its proof demonstrate what Rota 

and Ashenbacher explained about the evolution of successive proofs: the first proof 

usually lacks explanation and is difficult to follow; while later proofs are easier to follow.  

In our example, Kneser‘s proof is part of another proof in which many of the details are 

left out.  His result was in response to Radó‘s problem, which is also brief.  It is not easy 

to recognize that Kneser‘s proof is related to Lewy‘s Theorem as Lewy, Bers, and Duren 

formulate it.  For example, there is no mention of the Jacobian determinant in the first 

part of the proof.  Additionally, the proofs of Kneser and Lewy are very different from 

each other.  These two proofs come from different branches of mathematics—minimal 

surfaces and partial differential equations.  Kneser mostly focuses on the properties of 

the level sets of univalent mappings.  Lewy‘s proof is full of calculations and rarely 

makes use of the harmonic properties of the functions he is using.  The paper in which 

Lewy proves his theorem consists only of two theorems and their proofs, so it is difficult 

to understand why Lewy proves his theorem in the way that he does unless we look at 

his other papers where he uses his theorem.  The same goes for Radó‘s problem 

presented in the Jahresberichte.  We have to look at other sources written a few years 

later to find out that he used Kneser‘s result to solve the Plateau Problem.   

 Returning to the style of Kneser‘s proof, Bers supplies some of the missing details 

and uses the properties of holomorphic functions.  Although these properties do not 
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play much of a role in the theorem or proof, they are important for the rest of his paper.  

However, having these properties pointed out, we are able to recognize the different 

connections between holomorphic functions and harmonic functions.  Leading up to the 

theorem, in Bers‘ paper, we are also able to see how harmonic mappings are tied to 

minimal surfaces.  We also get a glimpse of how Bers uses methods from complex 

analysis to tackle problems in partial differential equations and harmonic mappings.  

This is important, because complex analysts now work on problems in harmonic 

mapping theory.       

 Supplying even more details is Duren, who proves Lewy‘s Theorem in the same 

way as Bers and Kneser.  Unlike Bers, Duren states the theorem in much the same way 

Lewy presents it.  In his book, he comments that he chose Bers‘ proof over Lewy‘s 

because it is ―simpler,‖150 and it is closer to how mathematicians now study harmonic 

mappings, which is by using tools from analysis.  Duren spells out many details that are 

left out of Bers‘ proof.  Again, he begins the proof with the Jacobian determinant and 

showing how having a critical point implies that the determinant is zero.  From Duren‘s 

proof, we are able to understand why the Jacobian does not vanish for harmonic 

mappings.  He does not only prove that the result is correct, but he also gives a more 

intuitive understanding about why it is correct.     

 Unless Lewy‘s paper is cited, a variation of Duren‘s proof is presented in papers 

and books.  Lewy‘s Theorem is now thought to be a basic result in harmonic mappings.  

The theorem is often presented before the Radó-Kneser-Choquet Theorem even though 

Lewy‘s proof came a decade after it.  Perhaps this is because it is seen as part of the 

Radó-Kneser-Choquet Theorem due to its standard proof; however, the latter theorem is 

                                                      
150 Duren, 20. 
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often individually proved without using Lewy‘s Theorem.  For instance, both Bers and 

Duren present both theorems and their proofs.  Bers proves the Radó-Kneser-Choquet 

Theorem in much the same brief manner as Kneser after proving Lewy‘s Theorem; while 

Duren proves Lewy‘s Theorem and then goes on to repeat the same line of reasoning to 

prove the Radó-Kneser-Choquet Theorem, but his version of the theorem involves using 

the Poisson kernel, which comes from Choquet‘s result.   

 In agreement with Rota, mathematicians are not seeking more proofs to Lewy‘s 

Theorem.  This is because Duren‘s proof, or those similar to it, is very clear, because he 

fills in the gaps missing from previous versions of the proof.  Instead, mathematicians 

have moved on to finding other results that are related to the theorem.  Further 

developments after Lewy‘s Theorem took off in different directions.  In the theory of 

harmonic mappings, there have been attempts to generalize the theorem to higher 

dimensions.  In 1963, Lewy proved that if the Hessian of a real harmonic function in    

is zero at some point, then it will take positive and negative values in the neighborhood 

of this point.151  Stewart Gleason and Thomas Wolff show that this holds for    in 

general.  However, John Wood proved that Lewy‘s Theorem fails in dimensions greater 

than two.152  In the study of partial differential equations, Erhard Heinz and Friedmar 

Schulz prove Lewy‘s Theorem for nonanalytic functions.153    

 

 

                                                      
151 Lewy, Hans.  "On the Non-Vanishing of the Jacobian of a Homeomorphism by Harmonic 
Gradients."  Annals of Mathematics (1968): 518-529. 
152 Wood, John C.  "Lewy's Theorem Fails in Higher Dimensions."  Mathematica Scandinavica 69.2 
(1991): 166-166. 
153 Heinz, Erhard. "On Elliptic Monge-Ampere Equations and Weyl‘s Embedding Problem.  Journal 
 ’    y   M        q  7.1 (1959): 1-52. 
Schulz, Friedmar. Regularity theory for quasilinear elliptic systems and Monge-Ampere equations in 
two dimensions. Vol. 1445. Springer, 2006. 
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VI. What Can We Gain from Looking at Successive Proofs? 

 As we follow the evolution of a series of proofs for a theorem, we can observe a 

few things.  The most obvious is that mathematicians prove theorems multiple times.  

There are a variety of reasons for this,154 but as more proofs are presented, 

mathematicians are able to uncover details they have not noticed before or use them to 

connect different parts of mathematics together.  Over time, proofs are improved and 

become clearer and easier to understand because missing steps are filled in, complicated 

steps are simplified or broken further down into parts, the language is clearer, and so on.   

 By going through various proofs, we can track the differences between them.  For 

instance, we have to be aware of changes in language.  Often times, definitions are 

modified during the evolution of successive proofs.  Mathematicians apply these 

changes without warning, so we must be careful when analyzing a proof to know how a 

mathematical term is used.  It is not only the proofs that we must be careful of, but also 

their corresponding theorems.  It is challenging to determine whether or not different 

proofs belong to the same theorem if there is a long time period between proofs because 

of the changes in language.  However, knowing the background or research of the 

mathematician whose proof we are considering will give us some clues.  The same goes 

for the different methods used in multiple proofs.  The methods in which 

mathematicians prove theorems have partly to do with what they will use the theorems 

for.  Sometimes, the purpose is clear, but there are also times when only results are 

                                                      
154 For an interesting overview of why mathematicians prove theorems multiple times, see Dawson, John 
W.  "Why do Mathematicians Re-prove Theorems?"  Philosophia Mathematica 14.3 (2006): 269-286. 
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published without much explanation.155  We have to look beyond these theorems and 

proofs to compare the differences between them. 

 This is in contrast to what philosophers have done to form their accounts of 

mathematical explanation for proofs.  Using textbooks as a guide has the advantage of 

analyzing mathematical proofs that are clear and easy to follow without having to worry 

about differences in language, because textbooks are designed to be more or less self-

contained.  However, it has the disadvantage of ignoring how the proofs went through 

various changes.  It also misses the reasons why a mathematician would prove a 

theorem in a certain way, which in turn overlooks questions mathematicians ask to help 

with their research.  In short, using textbooks as a source to base an account of 

mathematical explanation is inadequate, because it ignores the practices of the research 

mathematician.   

 The methods mathematicians prove theorems with depend on what they need the 

theorem for.  The purposes of using a particular proof vary among mathematicians and 

the branch of mathematics they are working in.  In the example above, we have observed 

that Radó and Bers used the theorem for their work on minimal surfaces, while Lewy 

used it for his research in partial differential equations.  The styles of their proofs differ 

from each other according to their background and research.  As a consequence, each of 

their proofs reveals something different about the theorem.  The point is that one 

theorem will not always serve the same function.  Because of this, the proofs are also not 

restricted to one purpose.  When philosophers look at multiple proofs to compare their 

explanatory power, usually the proofs they use are within the same branch of 

                                                      
155 Lewy‘s paper that contains his theorem is an example of a paper that is devoid of commentary.  His 
paper consists only of two theorems with their proofs.  
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mathematics.  This gives off the impression that the only way to compare proofs is if 

they come from the same part of mathematics.  However, this is not always the case—

especially at the research level.  Parts of mathematics are not self-contained; instead, 

these parts blend together.  The research mathematician is free to use theorems outside 

her area of research if it is relevant for her work.  The mathematician‘s ability to 

recognize connections between different parts of mathematics and her insight of how 

they can be applied to her research area plays a role in a proof‘s explanatory power. 156  

This is neglected when we only pay attention to proofs without considering how they 

might impact a mathematician‘s understanding.  

 

VII. Conclusion 

 History plays an important role for understanding how mathematicians go about 

proving theorems and why some theorems are proved multiple times.  As we have 

observed, looking through a series of successive proofs, we are able to see the changes 

between them and contexts in which they were produced.  Mathematical language—like 

any language—is not static.  Mathematical terms used centuries ago—or even only 

decades ago—have different meanings than they do today, because definitions are 

modified and are dependent on mathematical development.  When we look at the 

history of proofs for a theorem, we come to recognize that whether or not a proof is 

                                                      
156 This goes against the view that proofs should be ―pure‖—as in the contents of proofs should not stray 
away from its theorem‘s content.  For example, a theorem of geometry should be proved using geometric 
methods and not, say, algebraic ones.  For many centuries, mathematicians have believed that 
mathematicians can gain a better understanding through pure proofs rather than impure ones.  Since the 
proofs of Lewy‘s Theorem come from different parts of mathematics, each proof is considered to be 
impure, because there is no ―correct‖ branch this theorem belongs to.  This is especially so, because 
although Lewy‘s Theorem is now regarded as part of harmonic mappings, before it was part of minimal 
surfaces and partial differential equations.  For an interesting analysis of purity in mathematics, see 
Detlefsen, Michael, and Andrew Arana.  "Purity of Methods." Philosopher's Imprint.  11.2 (2011): 1-20.      
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explanatory is dependent on its audience, and not just on its content or form.  For 

example, on the one hand, a student, say, learning about Lewy‘s Theorem for the first 

time may find Duren‘s proof much easier to understand than Kneser‘s proof, because 

Duren fills in missing steps and uses modern terminology.  On the other hand, a 

mathematician who is familiar with partial differential equations may prefer Lewy‘s 

proof.  Thus, philosophers must go beyond theorems and their proofs and consider the 

mathematicians who are, after all, the ones who are developing their discipline.  
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CHAPTER FOUR:   

CASE STUDY—THE FOUR COLOR THEOREM 

 

 So far, I have stressed the importance of history and current mathematical 

practices of explanatory proofs to better understand what mathematicians desire in 

their proofs of theorems.  Knowing the history of mathematics involves following both 

actual historical events as well as history used in mathematical research, which differs 

from an accurate view of the past as it concentrates more on technical developments.  

The past gives us a view of how mathematicians have developed their discipline based 

on their version of history.  Recognizing current mathematical practices helps 

philosophers formulate their theories that are in agreement with what mathematicians 

do.  Regarding mathematical explanation, we find that theories that focus only on form 

and content of proofs are inadequate, because they do not consider external factors such 

as a proof‘s purported audience.  The case studies that have been used for theories of 

mathematical explanation come from textbooks, which typically emphasize explanation.  

This gives off the impression that if a proof is considered to be explanatory, it will be 

explanatory for everyone, which is certainly not the case.       

 In this chapter, I will use the Four Color Theorem as a case study to investigate 

the differences between how philosophers and mathematicians have reacted to its proof.  

First I will briefly sketch the Four Color Theorem Proof.  I will then focus on what 

philosophers have said about the proof of the Four Color Theorem.  Next, I will turn to 
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the worries of mathematicians.  After that, I will consider the responses from 

philosophical and mathematical communities to each other‘s concerns.  I will argue that 

the main philosophical worry regarding the theorem did not make a strong impact on 

the mathematical community and would have hindered mathematical development in 

computer-assisted proofs.  Last, by looking at other proofs of the Four Color Theorem, I 

will highlight the differences between them and Appel and Haken‘s proof.  This will give 

us an idea of what mathematicians have improved from the original proof.   

 

I. A very brief sketch of the proof 

 In 1976, Kenneth Appel, Wolfgang Haken, and John Koch proved the Four Color 

Theorem.  The theorem states that no more than four colors are required to color a 

planar map such that adjacent countries are not the same colors.  The significance of the 

proof is that it is regarded as the first major proof that relies on the use of a computer.  

The computer was used for a lemma to generate and check 1,482 maps—an undertaking 

too large for any human mathematician to accomplish by hand.   

 The proof of the Four Color Theorem is quite lengthy due to the large number of 

different configurations that have been verified.  However, there are only a few steps for 

the proof.  Besides the numerous test cases, Appel and Haken use Kempe‘s results from 

1879.  Although flawed, it contained the general ideas of how to go about proving the 

theorem.  In this section, I will present a sketch of Appel and Haken‘s proof. 

 A few definitions will be helpful to understand the details of the proof.  A planar 

graph is a collection of vertices and edges that lie on one plane.  Vertices are points in 

the graph that are connected by non-intersecting lines, which are called edges.  We are 

able to transform a normal map into its corresponding graph, where each country is 



 
 

88 
 

represented by a vertex, and each edge shows which countries are adjacent.  A normal 

map is one that has no country surrounding another (so it is simply-connected) and has 

at most three countries meeting at a point157.  Transforming a normal map into its 

corresponding planar graph is called triangulation (since the faces that are formed by 

the vertices and edges are triangles).  The degree of a vertex is the number of edges that 

end at the vertex, and this represents the number of neighbors a country has.  Lastly, a 

map is maximal if it contains the highest possible number of non-intersecting edges.158  

The Four Color Theorem, using these terms, can be stated as ―In a maximal planar 

graph, we need only four colors to color each vertex such that every adjacent vertex is a 

different color.‖   

  Much of the theoretical ideas of the proof come from the work of Alfred Kempe 

and Heinrich Heesh.159  Although Kempe‘s proof is flawed, he was able to show that in a 

normal graph, each vertex can have no more than five edges.  From this fact, Appel and 

Haken were able to build up a set of unavoidable configurations.  This unavoidable set is 

a collection of graphs such that at least one of its graphs appears in every maximal 

planar graph of five degrees or lower.   

 In order to create this set, Appel and Haken use their ―discharging procedure.‖  

This method comes from the work of Heesch, who initially had the idea of assigning 

positive and negative charges to each vertex of the graph and redistributing them 

                                                      
157 For instance, Florida, Georgia, and Alabama share a point.  Two examples of what is not normal are 
Michigan, which consists of two separate regions, and the four states Utah, Colorado, Arizona and Mexico, 
which meet at a point.  Although these are states and not countries, the idea is still the same.        
158 Here, more edges are added as long as none of them intersect. For example, although California and 
Texas are not neighboring states, they can be connected with an edge that does not intersect any other 
edge.  Any planar graph is contained in a maximal planar graph.  
159 See Kempe, Alfred B. "On the Geographical Problem of the Four Colours." American Journal of 
Mathematics 2.3 (1879): 193-200, and Heesch, Heinrich. Untersuchungen zum Vierfarbenproblem. Vol. 
810. Bibliographisches Institut, 1969.  
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without changing the overall sum of charges.  Charges are assigned to each vertex using 

the formula:         .  From this, Appel and Haken then either discharge or 

overcharge some of the vertices in the graphs according to a list of 487 rules, which 

make up the discharging procedure, while keeping the sum total of charges constant.  

Since the total sum of charges is positive,160 there will always be vertices that are 

positive.  From these vertices with positive charges, they were able to generate a list of 

1,482 unavoidable configurations.    

 The second step to the proof is reducibility, which basically shows that a 

configuration in the unavoidable set cannot be part of a graph that can be colored with 

at least five colors.  Kempe correctly proved that this further implies that there are no 

graphs that require five colors.  So, once reducibility is shown, the proof is done.  This 

part of the proof relies heavily on a computer program made by John Koch, who tested 

reducibility on small ring sizes. 161  Appel was able to modify his program to work with up 

to 14 ring size.  This part of the proof took up approximately 1,200 hours of computer 

time.162   

 

II. Philosophical Issues with the Proof 

 The work of Appel, Haken and Koch gave rise to a discussion within the 

philosophy of mathematics.  The traditional idea of what counts as a mathematical proof 

                                                      
160 This result comes from Euler‘s polyhedral formula:        , where   is the number of verticies,   
is the number of edges, and   is the number of faces.  In this case, through triangulation of normal graphs, 
since for every edge, there are two faces and for every face, there are three edges, we obtain      .  

Summing over all vertices, we then have  ∑        
 
  = 12, where   is the maximum degree of the vertices.  

In other words, the sum of the charges is 12, which, of course, is positive.  
161 Ring size corresponds to the number of neighboring countries, or the number of neighboring vertices.  
Appel and Haken prove that at least a 14-ring size is necessary to check.  Thus, there is no need to check 
cases with larger ring sizes. See Appel, Kenneth, and Wolfgang Haken. "Every Planar Map is Four 
Colorable. Part I: Discharging." Illinois Journal of Mathematics 21.3 (1977):478.    
162 Appel, Kenneth and Wolfgang Haken. "The Solution of the Four-Color-Map Problem." Scientific 
American 237 (1977): 121. 
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was thought by some to be insufficient to cover cases such as the Four Color Theorem, 

and led some philosophers to question the a priori status of mathematics.  

Mathematicians also had some concerns about the Four Color Proof; however, they 

concentrated on its reliability and lack of explanatory power.  Although philosophers 

and mathematicians acknowledged each other‘s main concerns, there seems to be a 

disconnection between what philosophers have said versus what mathematicians have 

said about computer-assisted proofs in general.  

 In 1979, Thomas Tymoczko wrote ―The Four Color Problem and Its Philosophical 

Significance.‖163  This was the first major philosophical essay on Appel, Haken, and 

Koch‘s proof of the Four Color Theorem.  He set the stage for philosophers and 

mathematicians to consider whether or not the traditional concept of proof conflicted 

with mathematical practices.  In his essay, Tymockzo argues that the Four Color Proof is 

an empirical proof, because the work done by computer is unsurveyably long—no 

mathematician is able to check its results by hand.  Since the proof is unsurveyable, in 

order to verify the correctness of the proof, he argues that we must make sure that there 

are no computer hardware or software defects.  In other words, we have to consider the 

physical workings of the computer and confirm that the findings of the computer do not 

contain any errors.  Such empirical considerations lie outside of what Tymoczko believes 

to be traditional mathematical methods.  Thus, he claims that the proof of the Four 

Color Theorem is ―a traditional proof with a...gap, which is filled by the results of a well-

                                                      
163 Tymoczko, Thomas.  "The Four-Color Problem and its Philosophical Significance."  The Journal of 
Philosophy 76.2 (1979): 57-83. 
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thought-out experiment.‖164  From this view, mathematics is seen as an empirical 

science, contrary to the traditional belief that mathematics is an a priori discipline.   

 According to Tymoczko, a traditional mathematical proof is convincing, 

formalizable, and surveyable.  The reason he gives as to why proofs are convincing (to 

any mathematician) is that they are both formalizable and surveyable.  A proof is 

formalizable if it is possible to construct a formal deduction from the axioms to the 

conclusion.  Tymoczko defines a surveyable proof as ―a construction that can be looked 

over, reviewed, verified by a rational agent.‖165  Surveyability is important for 

mathematicians, because  

[t]he proof relates the mathematical known to the mathematical knower, 

and the surveyability of the proof enables it to be comprehended by the 

pure power of the intellect—surveyed by the mind‘s eye, as it were.‖166   

This means that there is nothing external to the proof that is needed for a 

mathematician to understand what is being proved.  Because of this, Tymoczko claims 

that we have a priori knowledge of (proved) mathematical propositions. 

 Many philosophers and mathematicians have written against Tymoczko‘s claim 

that the proof of the Four Color Theorem is empirical because it is unsurveyably long.  

Although they agree that presently no mathematician is capable of looking over the 

proof, they disagree that either lacking human surveyability renders the proof empirical, 

or it must be surveyed by a mathematician in order to count as a proof.  While some 

philosophers agree with Tymoczko that the proof is empirical, there are others who 

claim that it is a priori despite its reliance on a computer.  For them, the Four Color 

                                                      
164 Ibid., 58. 
165 Ibid., 59. 
166 Ibid., 60. 
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Proof is a traditional proof.  Here, I will present some of the main arguments against 

Tymoczko‘s views.  

 Since the Four Color Proof cannot be checked by a human being, Tymoczko states 

that we must look into how the computer works to ensure that there are no errors in the 

implemented computer program.  This requirement is what is supposed to make the 

Four Color Theorem novel: it is the first empirical proof.167  However, Michael Detlefsen 

and Mark Luker challenge this claim.168  Although they agree with Tymoczko that the 

Four Color Proof is empirical, they deny that its unsurveyability is the cause.  Instead, 

they argue that empirical methods in mathematics are common.  Like Tymoczko, they 

consider surveyability as part of a proof, and any kind of checking—by hand or by 

computer—is an empirical task.  If Tymoczko is correct to say that a proof ―needs 

nothing outside of itself to be convincing,‖169 then one must survey the proof as a whole 

to understand and be convinced by it—checking must be considered as part of the 

proof.170  For instance, when proofs contain computations, one must check that the 

computed results are correct.  Specifically, we need to make sure ―that the computing 

agent correctly executes the program,‖ and ―that the reported result was actually 

obtained.‖171  (Here, the computing agent can either be a mathematician or a computer.)  

                                                      
167 Tymoczko‘s claim that the Four Color Proof is the first computer-assisted proof is false.  The first 
known computer proof was in 1954 by Martin Davis, who proved that the sum of two even numbers is 
even.  In the same decade, mathematicians started to use computers to find Mersenne primes.  See 
O‘Leary, Daniel J.   Principia Mathematica and the Development of Automated Theorem 
Proving."  Perspectives on the History of Mathematical Logic. Birkhäuser Boston, 2008. 47-53.  
Robinson, Raphael.  "Mersenne and Fermat Numbers."  Proceedings of the American Mathematical 
Society 5.5 (1954): 842-846. 
168 Detlefsen, Michael, and Mark Luker.  "The Four-Color Theorem and Mathematical Proof."  The 
Journal of Philosophy 77.12 (1980): 803-20. 
169 Tymozcko, 59. 
170 Detlefsen and Luker, 810. 
171 Ibid., 808. 
Resnik is also on board with their view regarding the empirical status of the Four Color Theorem.  See 
Resnik, Michael D. "Computation and Mathematical Empiricism." Philosophical Topics 17.2 (1989): 130. 
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Therefore, Detlefsen and Luker conclude that traditional proofs rely on empirical 

considerations even though they are surveyable.   

 Some philosophers deny that surveyability by a mathematician is a requirement 

for proof.  There is no reason to require that only one mathematician surveys the proof. 

Margarita Levin suggests that since all proofs have a finite number of steps, a lengthy 

one could be divided up into parts and distributed among a group of mathematicians.172  

However, for a proof such as the Four Color Proof, it seems highly unlikely that a group 

of mathematicians would be willing to spend its time checking the proof by hand.  

According to Appel, the computer report for the reducibility lemma consists of 30,000 

pages.173   

 Instead of relying on a mathematician to hand-check unsurveyable proofs, 

computers can and are used to check for errors.  The computer program can be run 

multiple times and on different computers to compare the findings of each instance.  

Different programs can also be written to test against the results.  Since Appel, Haken, 

and Koch wrote their program in assembly language, they were not able to use computer 

verification methods.  To check their work, they compared the computer reducibility 

results of other mathematicians,174 who wrote their own programs on different 

computers, yielding the same results. 

 According to Paul Teller and Mark McEvoy, surveyability has no bearing on 

whether or not something is a proof.  Teller writes, ―Surveyability is needed, not because 

without it a proof is in any sense not a proof (or only a proof in some new sense), but 

                                                      
172 Levin, Margarita R.  "On Tymoczko's Argument for Mathematical Empiricism." Philosophical 
Studies 39.1 (1981): 84   
173 Appel, Kenneth.  ―The Use of the Computer in the Proof of the Four Color Theorem.‖  Proceedings of 
the American Philosophical Society 128.1 (1984): 39. 
174 Frank Allaire, E. R. Swart, Heinrich Heesch and Karl Durre.  Ibid., 39. 
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because without surveyability we seem not to be able to verify that a proof is correct.  So 

surveyability is not part of what it is to be a proof in our accustomed sense.‖ (798).175  

McEvoy, in agreement with Teller, writes that if we are unable to survey a proof, then it 

is because ―we are [unable] to tell whether a proof is error-free...‖ [emphasis in the 

original].176  Instead of being part of the proof, surveyability then only applies to the 

checking process, which is independent of the proof itself.  Teller points out that the 

ability to review a proof is not an all-or-nothing proposition—there is a sliding scale of 

surveyability: while there are proofs that anyone can follow, there are also proofs that 

only a few mathematicians can understand.  It is then no large jump to say that there are 

proofs that are beyond the understanding of the best mathematicians.  Mathematicians 

use tools like pencil and paper and calculators to check a proof.  Teller writes that these 

tools are important, because ―the limits of any one mathematician‘s powers of surveying 

depend among other things on which tools he or she uses.‖177  He and James Fetzer 

explain that the computer extends the way that we are able to perform and check 

calculations much in the same way a microscope extends our vision capabilities.178  If 

pencil and paper are acceptable to use under Tymoczko‘s requirements, then, Teller 

                                                      
175 Teller, Paul.  "Computer Proof."  Journal of Philosophy 77 (1980): 798. 
Arkoudas and Bringsjord also point out the difference between a proof and proof-checking.  See 
Arkoudas, Konstantine, and Selmer Bringsjord. "Computers, Justification, and Mathematical 
Knowledge." Minds and Machines: Journal for Artificial Intelligence, Philosophy, and Cognitive 
Science 17.2 (2007): 189. 
176 McEvoy, Mark.  "The Epistemological Status of Computer-Assisted Proofs."  Philosophia 
Mathematica 16.3 (2008): 381.    
177 Ibid. 
178 Teller focuses on the testing of the computer as a machine, while Fetzer claims that this holds for 
general programing in mathematics.  However, this is strictly concerning calculations and not using a 
computer for diagramming and visualization purposes. 
See Teller, 86 and Fetzer, James H.  "Program Verification: the Very Idea." Communications of the 
ACM 31.9 (1988): 1062.    
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concludes, a computer should also be permissible, because the method of checking—as 

long as it is reliable—has nothing to do with the contents of the proof.179   

 Levin considers that Tymoczko is not bothered by the lack of surveyability as 

much as the disconnection between the computer and mathematician.  According to 

Tymoczko, no human being is able to understand how the computer generated its 

results for the Four Color Theorem.  However, this is false.  Mathematicians—

specifically Appel and Koch—wrote the computer program used in the reducibility 

lemma.  They obviously had an idea of what the computer was expected to do in 

executing their program.  Computers are often used to quickly perform difficult or 

numerous calculations.  While there is a difference in the quantity of calculations, Levin 

concludes that there is no qualitative difference between using a pencil and paper and 

using a computer.  Edward Swart adds that the same rules of logic are used for both 

work done by pencil and paper and by computer.180  Thus, the computer should be seen 

as a tool, much like pencil and paper.  Consistent with Teller‘s stance that any reliable 

tool may be used to check a proof, the tools used in proofs are independent from the 

proofs themselves.   

 In order to combat the claim that the use of computers is just a shortcut for 

obtaining results, Tymoczko likens this appeal to computer to a situation in which a 

                                                      
179 He does not distinguish between using computer results within a proof and using the results for 
checking purposes.  However, he mentions that the proof was dependent on the computer survey of 
different combinations. 
180 Swart, Edward R. "The Philosophical Implications of the Four-Color Problem." The American 
Mathematical Monthly 87.9 (1980): 703.   
Arkoudas and Bringsjord also hold that the choice of tool is irrelevant: ―Indeed, the particular hardware 
platform on which an algorithm is implemented is entirely immaterial, as long as we have good reason 
to believe that the underlying physical mechanism is reliable‖ (193).  
Van Theemat agrees that the choice of tools has nothing to do with the proof itself.  See Van Themaat, W. 
A. Verloren. "The Own Character of Mathematics Discussed with Consideration of the Proof of the Four-
Color Theorem." Zeitschrift für allgemeine Wissenschaftstheorie 20.2 (1989): 347.    
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Martian society relies on a method called ―Simon says,‖ which is an appeal to authority.  

Simon is a mathematically-inclined alien who is able to produce mathematical results.  

The Martians, believing that Simon is always correct, would justify his results based only 

on his authority.  They even use ―Simon says‖ for results that Simon did not offer.    

 According to Tymoczko, appeal to Simon is the same as appeal to computer:  

mathematicians are unable to hand-check lengthy computer generated results, but these 

results are used anyway.  So, Tymoczko says that either mathematicians accept the 

computer‘s output much like the Martians‘ ―Simon says‖ method, or they must provide 

evidence for the reliability of the computer's work in their proofs.  Clearly, it would be 

bizarre for mathematicians to blindly accept a computer's results, so concerns about the 

reliability of the computer must be addressed.  Such empirical considerations, 

Tymoczko says, introduces a new method to mathematics that is external to the 

traditional concept of mathematical proof.      

 It is easy to see that Tymoczko‘s analogy does not match up with what 

mathematicians do; there is just no equivalent in mathematics to ―Simon says,‖ because 

the utility of computers does not introduce a new method into mathematics, let alone an 

appeal to authority.181  Since the computer is a machine that has been made by human 

beings based on the mathematics that we have developed, we are able to find out how it 

obtained its results.  Whereas Simon‘s inner workings remain mysterious, we are able to 

understand why the computer generates the output it does.  Teller writes that ―the 

theory, practical execution, and reliability of the known methods of computation 

                                                      
181 One mathematician agrees with this analogy.  In describing computer-assisted proofs, Joseph 
Auslander says that since testing a program does not always reveal errors, ―[a]t some point in the proof, a 
result is true because the computer ‗said so.‘‖  See Auslander, Joseph.   On the Roles of Proof in 
Mathematics."  In B. Gold & R. A. Simons (Eds.), Proof and Other Dilemmas: Mathematics and 
Philosophy.  Washington: Mathematical Association of America (2008): 70. 
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executed by the computer are all open for inspection in as much detail as desired by 

anyone who cares to investigate.‖182  He emphasizes that what is more important than 

results calculated by the computer are the methods involved in obtaining these findings.  

The mathematician William Thurston brings up this same point:  

[I]t is common for people first starting to grapple with computers to make 

large-scale computations of things they might have done on a smaller scale 

by hand.  They might print out a table of the first 10,000 primes, only to 

find that their printout isn't something they really wanted after all.  They 

discover by this kind of experience that what they really want is usually not 

some collection of 'answers'—what they want is understanding [emphasis 

in the original].183   

Instead of the unsurveyability of the computer results, the focus should be placed on the 

mathematical reasoning that produced these results.   

 While philosophers and mathematicians in general believe that the Four Color 

Proof is either a traditional or empirical proof, Stuart Shanker argues that it is not a 

proof at all.  He believes that the worries Tymoczko raises and the objections which 

followed are irrelevant to what counts as a proof.  Shanker agrees with Tymoczko that 

the reducibility lemma is unsurveyable, but his idea of surveyability differs from 

Tymoczko‘s.  Following Wittgenstein, Shanker holds that surveyability applies to the 

laws that are used in composing the proof and not the large quantity of calculations 

done by the computer.  In other words, the proof‘s form is what is important for 

surveyability and not its content.  Thus Tymoczko‘s argument that because the 

                                                      
182 Teller, 799. 
183 Thurston, William.  "On Proof and Progress in Mathematics."  Bulletin of the American 
Mathematical Society 30.2 (1994): 162. 
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reducibility lemma is too long to be looked over by any mathematician has nothing to do 

with the question of whether or not Appel, Haken and Koch‘s work counts as a 

traditional or empirical proof.184   

 Against Teller and agreeing with Tymoczko, Shanker claims that surveyability 

must be part of a proof.  In order to understand a proposition, he argues, we must be 

able to survey it, but the point is not ―how a proof is checked, but rather how a 

proposition is used.‖185  Without knowing how a proposition is used, according to 

Wittgenstein, we are unable to understand what is being proved; hence, there would be 

no proof without surveyability in this Wittgensteinean sense.   

 The problem with the Four Color Proof, as Shanker sees it, is that we are unable 

to understand how the computer is able to generate the unavoidable set of reducible 

configurations.186  The distinction between experimentation and mathematical proof, 

according to him, is blurred.187  While a proof is supposed to be perspicuous, we have to 

rely on a computer for the unavoidable set without being provided any rule for how the 

computer generated its results.  Shanker points out that Appel and Haken were 

sometimes amazed at the computer‘s findings.  Two years into working on their results 

with a computer, they were surprised that the computer  

would work out compound strategies based on all the tricks it had been 

‗taught‘ and often the approaches were far more clever than those we 

would have tried.  Thus it began to teach us things about how to proceed 

                                                      
184 Empirical proofs are not proofs under Shanker and Wittenstein‘s views. 
185 Shanker, Stuart.  Wittgenstein and the Turning Point in the Philosophy of Mathematics. Albany: State 
University of New York Press, (1987): 142. 
186 This is the set of normal maps such that every triangulation of a sufficiently large map contains at least 
one of these configurations.   
187 Shanker, 143. 
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that we never expected.  In a sense it had surpassed its creators in some 

aspects of the ‗intellectual‘ as well as the mechanical parts of the task.188 

Since there is no rule provided on how to create the unavoidable set, the rule that was 

used remains a mystery.  As a result, Shanker claims, ―I cannot understand a 

mathematical construction as a lemma unless I understand the proof underlying it.‖189  

Since the computer only provides a description of the unavoidable set, the lemma is 

more of an experiment than a proof.  So, Shanker concludes that Appel, Haken, and 

Koch‘s work is an experiment and not a mathematical proof.  

 It is too strict of a requirement to need to know the rule used in the lemma‘s 

proof.  Shanker (and Tymoczko) makes it seem as if the computer created the 

unavoidable set on its own without any assistance from Appel, Haken, and Koch.  

However, they wrote the code to be used by the computer.  In other words, they gave it a 

set of instructions to follow in order to generate the set.  Although the program is 

lengthy, it is still surveyable—its creators looked over the code.  They may not have been 

able to come up with the same results by hand, but the rule used by the computer is no 

different from the one that would be used if the unavoidable set had to be generated by 

hand.  Despite the fact that the specific rule for the proof of the lemma cannot be 

grasped, Appel, Haken, and Koch are still able to describe what restrictions they 

imposed on the computer.   

 This means that mathematicians have to settle for a sketch of a proof to 

understand it at all.  In regard to the reducibility lemma for the Four Color Theorem, 

Haken observes, ―Our proof is logically quite simple but combinatorially complicated 

                                                      
188 Appel, Kenneth and Wolfgang Haken. "The Solution of the Four-Color-Map Problem," 117. 
189 Shanker, 153. 
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through a very large number of case-distinctions.‖190  So, on the one hand, the methods 

used for the proof are surveyable, but on the other hand, the physical output of the 

computer results make the proof impossible to directly follow.  O. Bradley Bassler says 

that there are two types of surveyability going on here: global and local.191  He defines 

global surveyability as requiring ―the surveying of the entire proof as a comprehensible 

whole; while local surveyability ―requires the surveying of each of the individual steps in 

a proof in some order.‖192  He argues that philosophers conflate global surveyability with 

local surveyability.  Tymoczko is clearly guilty of doing this.  He believes that a 

mathematical proof must be surveyable at the local level in order to understand the 

theorem.  However, this is not always the case.  There are instances in which one can 

follow each step of a proof but not be able to know how it is connected to its theorem.  

The reason Tymoczko focuses on local surveyability is because for him proofs must also 

be formalizable—the conclusion of a proof is obtained through use of deductive rules 

and a set of axioms.  In other words, we must be able to construct a proof without 

missing any logical steps.  This implies that we survey each step of the proof.  

Undoubtedly, this cannot be done with the Four Color Proof. 

 Yet, it is easy to follow Appel, Haken, and Koch‘s proof.  We are able to 

understand the reasoning behind their reducibility lemma.  If we consider the 

computer‘s work as routine calculations, combined with the fact that the computer is 

just a tool—no different from pencil and paper—then we can survey the proof.  This 

shows that it is possible to have global surveyability without requiring local surveyability.  

                                                      
190 Haken, Wolfgang. "An Attempt to Understand the Four Color Problem." Journal of Graph 
Theory 1.3 (1977): 193. 
191 Bassler, O. Bradley.  "The Surveyability of Mathematical Proof: A Historical Perspective." Synthese 
148.1 (2006): 99-133. 
192 Ibid., 100. 
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Haken‘s assertion that the proof is easy to understand yet difficult to do line by line 

reflects this reasoning.   

 The Four Color Theorem is an example of a proof that is globally surveyable, 

while being locally unsurveyable.  On the surface, it seems as though we can easily 

separate the two.  Bassler believes that we can, but also says that global surveyability 

comes in different degrees.  We can compare Appel and Haken‘s published proof in the 

Illinois Journal of Mathematics with their discussion about it in an article in Scientific 

American.  Their proof in the journal is technical and difficult to follow without a 

background in graph theory.  The article, however, caters to a general audience—much 

of the technical detail is suppressed, but Appel and Haken outline the entire proof in a 

way that can be easily followed.  Bassler would say that the journal publication has a 

―finer level of grain‖ than the popular article, but it is still only a global survey of the 

proof.193    

 Local surveyability demands that each line of a proof be surveyed.  In order to do 

this, the proof must be rigorously formalized.  This is to show that there are no slips in 

logic and that the proof is a valid one.  Further, a formalized proof is transparent 

because every deductive step is explicitly stated.  Tymoczko says that formalizability 

contributes to the convincingness of a proof—the mathematician is certain that the 

proof‘s theorem is true (or at least follows deductively from the axioms).  However, in 

practice, most mathematicians do not bother with formalizing their proofs.  Some of 

them point out that doing so makes them longer and harder to understand, because they 

                                                      
193 Ibid., 125. 
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become cluttered with details that are usually left out of informal proofs.194  Formalizing 

a proof is not an easy process either—especially because no details can be left out.  Many 

theorems are built from previous mathematical development and not straight from the 

axioms, making their formalized proofs extremely long and tedious.  It would be very 

easy to get lost in the details of such proofs, preventing one from being convinced that a 

proof is correct.  Thus, traditional proofs are not usually formalized.  So it seems that 

Bassler‘s local surveyability does not apply to most traditional proofs.  Instead, the vast 

majority of traditional proofs can only be surveyed globally.   

 Tymoczko believes that traditional proofs are more reliable than computer-

assisted proofs, because they can be checked by hand: ―The reliability of the Four Color 

Theorem...is not of the same degree as that guaranteed by traditional proofs, for this 

reliability rests on the assessment of a complex set of empirical factors.‖195  However, a 

proof that has been surveyed by a mathematician or even a group of them is not 

guaranteed to be correct; mathematicians are fallible.196  Mathematicians who have 

worked with computer-assisted proofs believe that the computer is at least as reliable—if 

not more reliable—than a human being.   

 

 

                                                      
194 For example, Robinson says that "too much detail causes difficulty in viewing the big picture: one 
cannot discern the forest for the trees."  See Robinson, J. A.  "Proof = Guarantee + Explanation," in S. 
Holldobler (ed.), Intellectics and Computational Logic: Papers in Honor of Wolfgang Bibel. Kluwer 
Academic Publishers, Dordrect and Boston (2000): 279. 
DeMillo, Lipton, and Perlis write, ―We often use ‗Let us assume, without loss of generality...‘ or ‗Therefore, 
by renumbering if necessary... to replace enormous amounts of formal detail.  To insist on the formal 
detail would be a silly waste of resources.‖  See De Millo, Richard A., Richard J. Lipton, and Alan J. Perlis.  
"Social Processes and Proofs of Theorems and Programs."  Communications of the ACM 22.5 (1979): 278. 
195 Tymoczko, 74. 
196 Even the history of the Four Color Proof shows that mistakes can go undetected through hand -
checking for a long period of time.  In 1879, Alfred Kempe presented a ―proof‖ of the Four Color 
Theorem, which was accepted until 1890, when it was shown to be incorrect. 
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III. Mathematicians’ Concerns with the Proof 

Ten years before Tymoczko‘s essay, and seven before the publication of Appel, 

Haken, and Koch‘s proof, Elsie Cerutti and P. J. Davis raised the same worry as 

Tymoczko regarding the reliability of their own computer-assisted proof of Pappus‘ 

Theorem.197  They acknowledge that there may be errors in proofs using computers, but 

traditional proofs may also contain errors.  ―Human processing is subject to such things 

a fatigue, limited knowledge or memory, and to the psychological desire to force a 

particular result to ‗come out.‘‖198  To highlight his point that mathematicians often 

make errors, Davis, in another essay, presents a long list of published materials from 

1860 through 1970 all of which contain mathematical mistakes.199  In the discussion of 

their Four Color Proof, Appel and Haken note that  

even when hand-checking is possible, if proofs are long and highly 

computational, it is hard to believe that hand-checking will exhaust all the 

possibilities of error.  Furthermore, when computations are sufficiently 

routine, as they are in our proof, it is probably more efficient to check 

machine programs than to check hand computations.200   

Lastly, in response to Tymoczko‘s essay, Swart, who has himself worked with computer-

assisted proofs, maintains that computers are more reliable than human beings.  

Compared to human beings, ―[c]omputers do not get tired and almost never introduce 

                                                      
197 Cerutti, Elsie, and Philip J. Davis.  "Formac Meets Pappus: Some Observations on Elementary 
Analytic Geometry by Computer."  The American Mathematical Monthly 76.8 (1969): 895-905. 
198 Ibid., 903. 
199 Davis, Philip J.  "Fidelity in Mathematical Discourse: Is One and One Really Two?"  The American 
Mathematical Monthly 79.3 (1972): 260-3.    
Also see: Frans, Joachim, and Laszlo Kosolosky.  "Mathematical Proofs in Practice: Revisiting the 
Reliability of Published Mathematical Proofs."  Theoria: An International Journal for Theory, History 
and Foundations of Science (2014): 345-360. 

 200 Appel, Kenneth and Wolfgang Haken, 121.  
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errors into a valid implementation of a logically impeccable algorithm.‖201  He believes 

that Appel, Haken and Koch‘s reducibility lemma proved by computer is more reliable 

than their discharging procedure, which was all done by hand.202  However, he points 

out that Frank Allaire independently proved the Four Color Theorem, also by computer, 

with the same results as Appel, Haken and Koch.  This gives further support to the claim 

that the Four Color Theorem is true.  From this, it is evident that the mathematicians 

who work with computer-assisted proofs believe that the computer is a reliable tool to 

do mathematics.203  

 Despite being (locally) unsurveyable by a mathematician, the Four Color Proof 

was accepted as a proof by the mathematical community without much hesitation.  

Different computers were used to confirm that the proof is correct, and there are now 

multiple proofs for the Four Color Theorem, which have all been done by computer.  

The latest was by Georges Gonthier and Benjamin Werner (2005), who produced a fully 

formalized proof, which was checked using a proof assistant called Coq.  It is evident 

that the Four Color Theorem is indeed true.     

 Mathematicians are not as worried about human surveyability of proofs as they 

are with reliability of computer results.  Tymoczko claims that since the Four Color 

Proof is not surveyable by a human being, we should not be confident that it is reliable 

either.  However, given that mathematicians believe that the computer is a reliable tool, 

surveyability by computers is sufficient (as well as necessary, since hand-checking is not 

currently possible).  In order to check results, programs are executed multiple times on 

                                                      
201 Swart, 700.    
202 Appel, Haken and their families hand-checked approximately 480 pages for errors.  
203 Robin Thomas, one of the mathematicians who worked on a later proof of the Four Color Theorem, 
also agrees that a computer is more reliable than a human—especially considering the enormous amount 
of checking involved with the Four Color Proof.  See Thomas, Robin.  "An Update on the Four-Color 
Theorem."  Notices of the AMS 45.7 (1998): 848-859. 
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multiple computers.  Also, different programs are written to compare results.  In fact, 

the referees of Appel, Haken, and Koch‘s work used their own computers and programs 

to check the results for the reducibility lemma.  While there are concerns about 

computer hardware and software defects, repeatability of programs increases 

confidence that the computer output is correct.   

 This seems to be a new method for checking mathematical proofs—but 

repeatability has been used in traditional mathematics as well.  Mathematicians do not 

often repeat a traditional proof multiple times to check if it is correct.  Instead, 

repeatability here refers to having different proofs for the same theorem.204  Usually one 

proof is enough to convince mathematicians that a theorem is true, but multiple proofs 

provide further ways to show why or how it is correct.  It may be argued that this kind of 

repeatability is different from repeatability for computer proofs.  On the one hand, the 

results of a computer proof are checked against a different program‘s output; these 

results are internal to the proof.  On the other hand, having multiple traditional proofs is 

an external ―check‖ for any one particular proof.  However, I am only concerned with 

confidence in reliability here.  The fact that mathematicians are able to replicate the 

results of a proof is the same in both cases. 

 The bigger issue for mathematicians is that lengthy computer-assisted proofs 

appear to lack explanatory power.  They cannot be humanly surveyed, at least not in the 

sense of Bassler‘s local surveyability, so it is obviously not possible to understand them 

directly as with traditional shorter proofs.  One of the ideal goals of a proof is to not only 

convince someone that its conclusion is true, but also to show why it is true.  A computer 

                                                      
204 For instance, there are hundreds of proofs for the Pythagorean Theorem.  Elisha Loomis gives 370 
different proofs.  See Loomis, Elisha S.  The Pythagorean Proposition: Its Demonstrations Analyzed 
and Classified and Bibliography of Sources for Data of the Four Kinds of "Proofs ."  Washington: 
National Council of Teachers of Mathematics. 1968.    
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proof tends to only provide an answer that a mathematical theorem is true, providing no 

explanation of why.  A ―good‖ traditional proof contains enough steps to guide the 

mathematician.  There are often gaps found in proofs for a variety of reason—to save 

space, because the gap can easily be filled without much effort, it was overlooked, and so 

on—and it is up to the mathematician to fill in these gaps.  A computer proof, which 

tends to be lengthy, can be considered as one large gap that is not easily filled in by 

mathematicians.  This leaves some of them unsatisfied with computer proofs.205   

  However, the proof of the Four Color Theorem in particular is not a 

completely computerized proof.  The first part of their proof, which collects the 

unavoidable configurations, was done by hand.  It is only the testing for reducibility that 

required a computer.  While it is true that the results of the computer do not explain 

why these configurations are reducible, the method used to generate the set of 

unavoidable configurations also lacks explanatory power, because the discharging 

process is based on a large set of rules that must be satisfied.  In other words, it is not 

that Appel and Haken's proof is nonexplanatory because it was done by computer but 

because of the methods involved in the proof.  The general two-step strategy of first 

finding an unavoidable set and then checking for reducibility came from Kempe's flawed 

proof from 1879.  Unlike Kempe's list of three major cases to consider, Appel and Haken 

found close to 1,500 cases. 

 Despite their massive lengths, computers proofs are still being written, in part 

because they have fewer errors than traditional proofs.  Now, some traditional proofs 

can be formalized, especially with current computer technology.  It is still a challenging 

task, but developments have been made to construct proofs using computer proof 

                                                      
205 However, they do not outright deny that these are not proofs.   
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assistants and proof checkers.  Coupled with the fact that computers are very reliable, 

mathematicians are able to successfully construct and check formal proofs in a 

reasonable amount of time.206  An advantage of computer proofs, according to John 

Harrison, is that there are fewer opportunities for error than in hand-checked proofs.  

The code for proof checking software is short enough that it is easy to discover and get 

rid of bugs.  Because of this, Harrison claims that since a proof is supposed to show that 

a theorem is true, as well as explain why it is true, we can focus on the explanation 

without being troubled by errors.  As for the length of these proofs, he says that ―a 

computer program can offer views of the same proof at different level of detail to the 

differing needs of readers.‖207  

 

IV. Two Later Proofs of the Theorem 

 Although there was much criticism against the computer proof of Appel and 

Haken, two more computer proofs of the Four Color Theorem have been created.  The 

second generation proof written in 1997 by Neil Robertson, Daniel Sanders, Paul 

Seymour and Robin Thomas is very similar to the one created by Appel and Haken.  

Specifically, it uses a reducible set of unavoidable configurations that were generated 

using a discharging procedure.  However, relying on 633 configurations, their set is 

much smaller than Appel and Haken‘s 1,482 configurations, and the number of rules for 

discharging has decreased from 487 to 32.208  According to Robertson, Sanders, 

                                                      
206 It took Gonthier and Werner five years to create a fully formal proof for the Four Color Theorem.  
207 Harrison, John.  "Formal Proof—Theory and Practice."  Notices of the AMS 55.11 (2008): 1400. 
Thomas Hales agrees with Harrison that the number of errors found in formal computer proofs is 
smaller than in traditional roofs, but adds that they are much harder to follow.  See Hales, Thomas.  
"Formal Proof."  Notices of the AMS 55 (2008): 1371. 
208 Robertson, N., Sanders, D., Seymour, P., and Thomas, R.  "The Four-Color Theorem."  Journal of 
Combinatorial Theory, Series B 70.1 (1997): 2-44. 
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Seymour, and Thomas, their proof is much simpler and easier to check than that of 

Appel and Haken.  While Appel and Haken requires hand-checking the unavoidable sets, 

the second-generation proof formalizes these sets so that they may be checked quickly 

with a computer.209  The third proof is by Georges Gonthier with the aid of Benjamin 

Werner in 2005.210  What sets his proof apart from the other two is that it is a formal 

proof.  In the first two proofs, the theoretical parts were not formalized, and only the 

cases were tested by computer.  Gonthier‘s entire proof is able to be checked by the 

proof checker software, Coq—there is no need to check any part of the proof by hand.  

His work relies on Robertson et al., but his proof does not use planar graphs, because 

Coq is unable to ―read‖ diagrams.  Instead, Gonthier ―translates‖ the topological 

definition of planar graph into one from combinatorics called a hypergraph, which is 

compatible with Euler‘s formula, but uses permutations.  By using these hypergraphs, 

he is able to formalize the unavoidable set of the second proof.           

 These two later computer proofs did not face the same criticisms as Appel and 

Haken‘s proof.  Instead, according the community of mathematicians, they provide 

further justification that the Four Color Theorem is true.  According to Thomas Hales, 

―[a]s a result of Gonthier‘s formalization, the proof of the four-color theorem has 

become one of the most meticulously verified proofs in history.‖211  This is despite the 

fact that Gonthier‘s computer proof is checked by computer; however, due to its 

formalization, there are no missing steps.  Even though the computer does much of the 

heavy lifting in these proofs Gonthier and John Harrison (a computer scientist) believe 

that formal proofs provide explanation to answer why a theorem is true, because every 

                                                      
209 Ibid., 4. 
210 See Gonthier, George.  A Computer-Checked Proof of the Four Colour Theorem.  Technical Report, 
Microsoft Research Cambridge (2005): 1–57. 
211 Hales, 1372. 
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step of the proof is stated.212  This makes proofs much longer than necessary and could 

even be unsurveyably long.   

 The two groups of mathematicians who have proved the Four Color Theorem 

after Appel and Haken acknowledge that their proofs are different from traditional 

proofs, because they rely on the computer.  They do not seem bothered by the 

unsurveyability aspect of their proofs as they do on their reliance.  Robin Thomas 

stresses that the parts of the proof that utilized the computer have been independently 

checked at least twice.213  He gives two suggestions to help persuade the reader of the 

proof that it is correct: the first is to write a computer program to check it against their 

work, and the second option is to download the programs and supplemental documents 

to verify that they work correctly.214  As for the fact that their work is not humanly 

surveyable and could contain errors, Thomas argues that   

[T]he chance of a computer error that appears consistently in exactly the same 

way on all runs of our programs on all the compilers under all the operating 

systems that our programs run on is infinitesimally small compared to the 

likelihood of a human error during the same amount of case checking.215   

Thus, the fact that part of the proof is not able to be checked by a human being is not a 

huge issue for Thomas, because the proofs‘ results have been checked independently 

and have been able to be reproduced through multiple runs.  Gonthier also addresses 

computer error, but is confident that the proof checker is reliable.  The original purpose 

of his proof was to test how advanced Coq was, using the data from Robertson et al. as 

                                                      
212 See Gonthier, Georges.  "Formal Proof–The Four-Color Theorem." Notices of the AMS 55.11 (2008): 
1382-1393.  Harrison, John.  "Formal Proof—Theory and Practice."  Notices of the AMS 55.11 (2008): 
1395-1406. 
213 Thomas, Robin. "An Update on the Four-Color Theorem." Notices of the AMS 45.7 (1998): 852-3. 
214 Ibid., 853. 
215 Ibid. 
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much as possible.  Since his results matched with the results of the second generation 

proof, he believes that his proof is reliable.    

 

V. Conclusion 

 Tymoczko‘s claim that the Four Color Proof is a traditional proof with a gap 

because of its lack of surveyability received many responses from philosophers and 

mathematicians.  His requirement that a human being be able to look over a proof has 

been rejected, due to the general agreement that computers are reliable machines that 

are no different from tools such as pencil and paper.  If we were to imagine that a proof 

must indeed be surveyable by a human being, the Four Color Theorem would still be a 

conjecture; even today, mathematicians are unable to create the unavoidable set of 

reducible configurations by hand.  This is because, as Shanker rightly stresses, there is 

no rule that is known to generate this set.  Additionally, there would be no further 

developments in computer-assisted proofs, because proofs would be all done by hand.   

 The other two characteristics Tymoczko claims to be tied to a proof are 

convincingness and formalizability.  For him, in order to be convincing, a proof must be 

both formalizable and surveyable.  Considering that Appel, Haken, and Koch‘s proof are 

neither of these, on Tymoczko‘s view it is difficult to understand why mathematicians 

found it to be convincing.216  Given that the proof is accepted by mathematicians, these 

three characteristics are not necessary conditions for proof.  This is made evident by the 

fact that after Appel, Haken, and Koch‘s proof, other mathematicians have come up with 

different proofs which all rely on computers.  If surveyablility were a requirement that 

                                                      
216 Tymoczko says that the Four Color Proof is formalizable, but at the same time, he says that there is an 
unsurveyable gap in the proof.  According to him, the proof is convincing simply because he knows of no 
mathematician who rejects the proof (59).  
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mathematicians took seriously, no one would have bothered to come up with different 

computer proofs of the Four Color Theorem or any other computer-assisted proof.  

 Mathematicians who work on computer-assisted proofs do not seem to be 

bothered by the claim that their work can be regarded as experimental.  Cerutti, Davis, 

Appel and Haken have themselves compared their work to experiments.  Perhaps this is 

not the consensus view of mathematicians, but it did not hinder them from continuing 

their work.  This is in contrast to the philosophers who maintain either that computer-

assisted proofs fall under traditional standards, or, as Tymoczko, see them as a threat to 

tradition. 

 This is not to say that Tymoczko‘s worries are irrelevant to mathematical practice.  

The issues he raised did make it clear to mathematicians and philosophers that the 

concept of proof is not static, and must match up with current mathematical practices, 

which now include computer use.  As Shanker and Wittgenstein argue, the rule of a 

proposition is what is essential and not each deductive step of its proof nor its content; 

however, they further hold that we must be able to survey the form of the proof in order 

to understand the proposition.   

 Both philosophers and mathematicians have had much to say about the proof of 

the Four Color Theorem.  Starting with Tymoczko, philosophers focused on the issue of 

the proof‘s surveyability.  The proof is globally, but not locally, surveyable.  We can only 

understand an informal sketch of the proof, without the details of the computer‘s work.  

However, this distinction between global and local surveyability is not very useful.  Most 

mathematicians provide only informal proofs, while avoiding writing out fully formal 

versions.  So, with the exception of Gonthier‘s proof, the Four Color Theorem is much 

like a traditional theorem.  Mathematicians do not seem to be bothered by the fact that 
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they are unable to look over the proof, but accept Appel, Haken, and Koch‘s work.  This 

could be for either one of two reasons.  First, the theorem is not a very interesting one.  

Although it is connected to other theorems in graph theory, it is not a deep theorem.  

Second, mathematicians believed that the Four Color Conjecture was true for a long 

time before 1976.  Since the proof was done using brute force methods, the proof is not 

interesting either.  At best, the significance of the Four Color Theorem is that it paved 

the way for other computer proofs.   

 Computer proofs in general lack some of the explanatory power, but the 

advantage is that they have fewer errors than traditional proofs.  Although having fewer 

errors is a positive, mathematicians are more concerned with understanding the 

reasoning in a proof.  Gonthier and Harrison claim that a computer proof can provide 

the reader with an explanation of why a theorem holds; however, as I have argued in the 

second chapter, a formal proof will not guarantee an explanation.  Explanatory power 

depends on the proof‘s audience.  While the proofs of the Four Color Theorem are not 

explanatory to a number of mathematicians because of their massive lengths as it is easy 

to get lost in the details, the mathematicians and computer scientists who are familiar 

with the proofs and their histories have been successful in developing proofs that 

explain how a result is obtained.  It may seem as if these computer proofs are novel, but 

the strategies and details come from the late nineteenth and early twentieth centuries.   
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CONCLUSION 

 

 My dissertation has examined the role of history and mathematical practices for 

explanatory proofs.  I began by considering two types of history: one that attempts to 

show that the past is different from the present and another that shows how similar the 

past is.  The former version is what typically is written by historians.  The latter is used 

by mathematicians for their research.  I argued that both versions of history benefit the 

philosopher: history used in research reflects what mathematicians desire out of their 

work; while the version of history written by historians shows the effects of using history 

for research on mathematical practices.   

 In the second chapter, I surveyed theories of explanatory proof and compared 

them to mathematical practices.  I argued that philosophers need to consider more than 

what appears in a proof, because factors such as the proof‘s audience play a role in 

determining the explanatory power of a proof.  The current theories of explanation make 

it seem as if explanatory proofs are explanatory to everyone regardless of mathematical 

ability.  Clearly, this is false, but without looking further than what is stated in a proof, it 

is difficult to determine the explanatory power of a proof.   

 I suggested an alternative method of evaluating a proof‘s explanatory power in 

chapter three: looking at the evolution of successive proofs of a theorem can help us 

determine how its explanatory version came to be for a particular audience.  Here, I 
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used the two versions of history I described in chapter two to explain the changes and 

developments found in four proofs of Lewy‘s Theorem.       

 The contents of chapter four is a case study of the Four Color Theorem Proof, 

which is the first major computer proof.  The proof does not explain why only four 

colors are needed to color a map.  Instead, through a number of cases, the proof 

exhausts the all possible reducible configurations in the unavoidable set.  In addition to 

furnishing an example that lacks explanatory power, the discussion surrounding the 

proof between philosophers and mathematicians was of interest, showing the concerns 

of philosophers were different from those of mathematicians.  While philosophers 

worried over the proof‘s unsurveyability, mathematicians were skeptical about the 

computer‘s reliability and the proof‘s lack of explanatory power.  These concerns are 

related to each other, but mathematicians dismissed the philosophers‘ issues with the 

proof as they focused more on the methods used in the proof rather than its massive 

length and the use of computer.  From this case study, I showed how philosophers can 

benefit from understanding what mathematicians consider to be some factors that 

contribute to explanatory proofs.      

 As more philosophers of mathematics continue to regard understanding 

mathematical practices as vital to the philosophy of mathematics, the more it will be in 

sync with what mathematicians care about.  The same goes with recognizing how 

important history is to formulating these philosophical theories.  Presently, there is 

research being done on topics such as mathematical depth and purity of methods.  

These two characteristics of proofs highly depend upon their audience.  The 

philosophers who have done work in these areas have noted the difficulty of 

determining what mathematicians mean when they use these terms.  Like mathematical 
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explanation, depth and purity may mean different things in different branches of 

mathematics.  I think that it would be interesting to compare the differences from these 

branches, because there is no one-size-fits-all when it comes to proof, even though 

current theories make it seem that way.   

 Further research should also be done on contemporary mathematics.  Presently, 

philosophers have been using simple mathematical examples found mostly in 

undergraduate textbooks to advance their theories of explanation.  For the purpose of 

training, the level of explanation and detail found in textbooks tends to be higher than in 

research.  It would be beneficial to look at more recent mathematics, because the proofs 

that are currently analyzed in the philosophical literature are very old.  Contemporary 

mathematics reflects the mathematical practices we have today, so we should try to look 

into present mathematical research.   
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