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ABSTRACT 
 

While assessing emotions, behaviors or performance of preschoolers and young children, 

scores from adults such as parent psychiatrist and teacher ratings are used rather scores from 

children themselves. Data from parent and teacher ratings are often nested such as students are 

within teachers and a child is within their parents. This popular nested feature of data in social, 

behavioral and health sciences makes measurement invariance (MI) testing across informants of 

children methodologically challenging. There was lack of studies that take into account the 

nested structure of data in MI testing for multiple adult informants, especially no simulation 

study that examines the performance of different models used to test MI across different raters. 

This dissertation focused on two specific nesting data types in testing MI between adult 

raters of children: paired and partial nesting. For the paired data, the independence assumption of 

regular MI testing is often violated because the two informants (e.g., father and mother) rate the 

same child and their scores are anticipated to be related or dependent. Thus, in case of teacher 

and parent ratings of the same children, data are repeated measures and also partially nested. I 

proposed and evaluated the performance of the two statistical models that can handle repeated 

measures and partial nesting with several simulated research scenarios in addition to one 

commonly used and one potentially appropriate statistical model across several research 

scenarios. Results of the two simulation studies in this dissertation showed that for the paired 

data, both repeated measure confirmatory factor analysis (CFA) and multiple-group CFA models 

(Model 1 and Model 2, respectively) were able to detect scalar invariance most of the time using 

Δχ2 test and ΔCFI with higher rates for multiple-group CFA model. For configural invariance 
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and metric invariance conditions for the paired data, Model 1 had higher detection rates than 

Model 2 in almost research scenarios examined in Study 1. Particularly while Model 1 could 

detect noninvariance (either in intercepts only or in both intercepts and factor loadings) than 

Model 2 for paired data most of the time, Model 2 could rarely catch it if using suggested cut-off 

of 0.01 for RMSEA difference. For the paired data, Model 1 might be favored if researchers are 

more interested in detecting noninvariance due to its overall high detection rates for configural 

and metric levels of MI and Model 2 could be a good choice if the focus is on testing scalar 

invariance. For scalar invariance with partially nested data, both multilevel repeated measure 

CFA (Model 3) and design-based multilevel CFA (Model 5) could detect invariance in many 

conditions (from 81% to 100% of examined cases) with slightly higher detection rate for the 

former model than the later. Multiple-group CFA model (Model 4) could hardly detect scalar 

invariance except when ICC was small. The detection rates for configural invariance using Δχ2 

test or Satorra-Bentler likelihood ratio test were also highest for Model 3 (82% to 100% except 

only two conditions with detection rates of 61%), following by Model 5 and the lowest was 

Model 4. Models 4 and 5 could reach these rates only with the largest sample sizes (i.e., large 

number of cluster or large cluster size or large in both factors) when the magnitude of 

noninvariance was small. Unlike scalar and configural invariance, the ability to detect metric 

invariance was highest for Model 4, following by Model 5 and lowest for Model 3 across many 

conditions using all of the three performance criteria. As higher detection rates for all configural 

and scalar invariance, and moderate detection rates for many metric invariance conditions 

(except cases of small number of clusters combined with large intraclass correlation, ICC), 

Model 3 could be a good candidate to test measurement invariance with partially nested data 

when having sufficient number of clusters or if having small number of clusters with small ICC. 
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Model 5 might be also a reasonable option for this type of data if both the number of clusters and 

cluster size were large (i.e., 80 and 20, respectively), or either one of these two factors was large 

coupled with small ICC. If ICC is not small, it is recommended to have a large number of 

clusters or combination of large number of clusters and large cluster size to ensure high detection 

rates of measurement invariance for partially nested data. As multiple group CFA had better and 

reasonable detection rates than the design-based and multilevel repeated measure CFA models 

with the conditions of small cluster size (10) coupled with small ICC (0.13) across configural, 

metric and scalar invariance levels, researchers can consider using this model to test 

measurement invariance when they can only collect 10 participants within a cluster (e.g. students 

within a classroom) and the degree of data dependency is small (e.g. small variance between 

clusters).  
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CHAPTER ONE: INTRODUCTION 

1. Problem Statement 

Children’s emotions, behaviors, cognitions, or performance is often assessed using scores 

from multi-item scales or surveys on latent constructs. Scores from multiple informants (e.g., 

parents and teachers, mothers and fathers, patients and doctors) are widely used in research in 

education, psychology, and health sciences for many research purposes such as construct 

validation, theory development, or predicting outcomes. For example, McCarthy’s dissertation 

(2015) used T-scores of parent and teacher behavioral and emotional assessments via ratings on 

the BASC-2 Behavioral and Emotional Screening System (BESS) instrument developed by 

Kamphaus and Raynolds (2007) to predict students’ math achievement. In another study, Kenny, 

Veldhuijzen, Van Der Weijden, LeBlanc, Lockyer, Légaré, and Campbell (2010) compared the 

degree of agreement between doctors and patients as well as among patients of the same doctors 

on doctor communication skills using the same Matched-Pair Instrument. According to Kraemer, 

Measelle, Ablow, Essex, Boyce, and Kupfer (2003) and De Los Reyes and colleagues (2015), 

multiple informant assessment is one of the most widely used approaches to evaluate contextual 

variations in mental health. Ratings from informants based on their observations of patients’ 

behavior in specific contexts (e.g., home vs. school vs. peer interactions) can provide information 

on how consistently or inconsistently concerns about patients’ behavior are presented across 

those settings (Dirks, Reyes, Briggs-Gowan, Cella, & Wakschlag, 2012; De Los Reyes et al., 

2015).  
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When using ratings of children or patients from multiple informants, it is of concern 

whether or not the scores from these reporters can be compared and interpreted in the same way 

within and across studies, which brings up the issues of measurement invariance (MI), also 

called measurement equivalence. For example, is the dimensionality of children’s emotional and 

behavioral problems (e.g., internalizing concerns, externalizing concerns, personal problems) 

investigated with parent ratings in one study comparable to that investigated with teacher ratings 

in another study? Or do mother and father responses to items about child aggression mean the 

same thing? These questions about the invariance of a test between different informants of 

children are far-reaching because the test scores are often used for intervention choice or 

placement of children in a certain treatment program. Therefore before using scores of different 

resources such as parent and teacher ratings of a certain assessment, it is necessary to examine 

whether these parents and teachers perceive the underlying constructs in that instrument in the 

same manner. Similarly, in order to compare scores of doctors and patients or use these scores to 

predict an outcome, one needs to make sure these groups of informants interpret the items in the 

assessment equally, or MI of the instrument is achieved. As a result of MI, the same construct is 

measured across informants and comparisons between informants are meaningful. In other 

words, any observed differences between informants can be attributed solely to the measure of 

interest rather than artifact effects.  

The importance of establishing MI when using scale scores among multiple groups is 

emphasized in the Standards (AERA, APA, & NCME, 2014). However, issues of MI among 

different informants using the same assessment have not received much attention in the 

literature. Among applied studies that performed MI across raters (e.g., Konold, Walthall, & 

Pianta, 2004; Woehr, Sheehan, & Bennett, 2005; Burns, Servera, del Mar Bernard, Carrillo, & 
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Geiser, 2013), most of them used multiple-group confirmatory factor analysis (CFA) to compare 

the measurement models between those informants. Studies by Burns, de Moura, Walsh, 

Desmul, Silpakit, and Sommers-Flanagan (2008), Burns, Walsh, Servera, Lorenzo-Seva, Cardo, 

and Rodríguez-Fornells (2013), Clark, Listro, Durbin, Donnellan, and Neppl (2016), as well as 

Piskernik, Supper, and Ahnert (2018), were the few that used a CFA approach with the inclusion 

of correlations between informant factors as well as errors between identical items from these 

two factors while examining MI across informants. The current study advocates testing MI 

between multiple informants of children or participants as a standard procedure before the use of 

scale scores from these reporters.  

While assessing emotions, behaviors, or performance of preschoolers and young children, 

scores from adults such as parent, psychiatrist, and teacher ratings are used rather than scores 

from the children themselves. Data from parent ratings or from parents and teachers are often 

nested such as students are within teachers and a child is within their parents. This popular 

nested feature of data in educational, social and behavioral sciences makes MI testing across 

informants of children methodologically challenging. While the importance of MI has long been 

addressed and recommended for general assessment (e.g., Borsboom, 2006; Meredith & Teresi, 

2006;  Meade & Bauer, 2007; Yoon & Millsap, 2007; Fan & Sivo, 2009) as well as in multilevel 

setting (e.g., Kim, Kwok, &Yoon, 2012; Jak, Oort, & Dolan, 2013; Ryu, 2014), there have been 

a lack of studies that take into account the nested structure of data in MI testing for multiple adult 

informants. Especially, there has been no simulation study that has examined the performance of 

different models used to test MI across different raters. 

The two simulation studies in this dissertation focus on two specific data types in testing 

MI between adult raters of children: paired and partial nesting. For the paired data, the 



4 
 

independence assumption of regular MI testing is often violated because the two informants 

(e.g., father and mother) rate the same child and their scores are anticipated to be related or 

dependent. I refer to this type of data dependency as repeated measures. The partial nesting data 

refers to the research situation where teacher and parent ratings are compared. In this scenario, it 

is common that each parent has only one child to rate while each teacher has multiple children in 

their classroom. In other words, children are nested within teachers but children are singletons 

for parents. Thus, in the case of teacher and parent ratings of the same children, data are repeated 

measures and also partially nested. Because of these unique features of data, MI testing between 

adult informants of children requires statistical models that take into account different types of 

data dependency. I used and evaluated the performance of the two statistical models that can 

handle repeated measures and partial nesting with several simulated research scenarios. When 

data are dependent due to repeated measures (father rating and mother rating of the same child), 

repeated measures CFA can be used for MI testing between informants; when data are partially 

nested in addition to repeated measures (parent rating and teacher rating of the same child), a 

model with specific model specification for partially nested data using multilevel repeated 

measures CFA can be employed. As multiple-group CFA is frequently used to examine MI 

across adult informants and the design-based multilevel CFA approach is potentially appropriate 

for the partial nesting characteristics of parent and teacher ratings, I was also interested in 

evaluating the performance of these two approaches with the paired and partially nested data 

described above.  

2. Purposes of the Dissertation 

This dissertation has two goals: (1) propose two statistical models to test measurement 

invariance between adult informants of children (e.g., father vs. mother, parent vs. teacher, etc.) 
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for ed and partially nested data, (2) examine the adequacy of the proposed models in comparison 

with the existing multiple-group CFA model used in the literature and the potential design-based 

multilevel CFA model through two Monte Carlo simulation studies.  

There was a lack of studies that examine MI testing with paired and partially nested data 

in various research circumstances. In this dissertation, I conducted two simulation studies to 

investigate the two proposed MI models along with the commonly used multiple-group CFA 

model for paired and partially nested data as well as the design-based multilevel CFA model for 

partially nested data. To illustrate the theoretical framework for the two proposed models and 

other models examined in this dissertation, I present an example of the emotional construct 

(factor) of Inattention/Hyperactivity (in BESS, Kamphaus & Raynolds, 2007) with five items as 

the factor model that was used to conduct MI testing for each study.  

3. Study 1: Repeated measures confirmatory factor analysis (CFA) for testing MI with 

paired data 

The research setting for Study 1 was based on paired data. For this type of data, each 

informant (i.e., mother or father) assesses only one child or participant and both informants 

assess the same child or participant.  

3.1. Model 1: Repeated Measures CFA (the Proposed Model) 

For paired data, although children or participants are independent of each other, each of 

them has two sets of scores that are not independent.  As both the mother and father give scores 

on the same child, the data can be considered as repeated measures although there is no time 

point (Olsen & Kenny, 2006). For this reason, I proposed the repeated measures CFA approach 

to testing the longitudinal MI as illustrated in Figure 1 for testing MI with paired data.  
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As presented in Figure 1, this CFA model consists of two factors with two identical sets 

of five items for each factor. In this model, because the scores from informants are often 

correlated to each other, the correlation or covariance between the two factors (i.e., mother and 

father factors of the child’s emotional construct) is freely estimated. Importantly, the errors of 

each equivalent item from two informants are allowed to be correlated to reflect the data 

dependency between two scores from the two informants. The idea of incorporating correlation 

between mother and father factors as well as between unique factors of identical items was 

already mentioned in the CFA model for interchangeable dyads in Olsen and Kenny (2006, see 

their Figure 2 on page 131). However the purpose of their model was to perform SEM analysis 

rather than conduct MI testing for paired data to ensure the scores from the dyad are comparable 

or valid to use for other statistical analyses. In addition, their CFA model only applies to the 

measures where MI holds because in that model, factor loadings, intercepts, and error variances 

and item intraclass error covariances between mother and father factors were equal.  

 

Figure 1. Repeated measures confirmatory analysis for mother (M) and father (F) factors of 
children’s Inattention/Hyperactivity (IH) behaviors. For simplicity, the intercept of each item is 
not shown. 
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Similar to the general CFA model introduced in Kaplan (2009), the relationship between 

the two common factor scores (ηm for mother factor and ηf for father factor) and the continuous 

observed scores (ym1 to ym5 and yf1 to yf5) in this structural equation model can be specified in a 

matrix format as follows:  

	܇ ൌ 	ૌ	  	િ	  	ઽ   (1)  

where Y is a vector of observed variables, ૌ is a vector of intercepts, Λ is matrix of factor 

loadings, η is a vector of two common factors (ηm and ηf), and ε is a vector of unique variables 

(εm1- εm5 and εf1- εf5).  

Equation (1.1) can be written as matrix forms with details as below: 

ym1   τm1  λm1  0    εm1 

ym2   τm2  λm2 0    εm2 

ym3   τm3  λm3 0    εm3 

ym4   τm4  λm4 0  ηm  εm4 

 ym5        =  τm5    + λm5 0     x  ηf + εm5 

yf1   τf1  0 λf1    εf1  

yf2   τf2  0 λf2    εf2 

yf3    τf3  0 λf3    εf3 

yf4   τf4  0 λf4    εf4 

yf5   τf5  0 λf5    εf5 

Based on the assumption that common factors and unique factors are uncorrelated, the 

covariance structure can be specified as: 

 ൌ 			’	  	દઽ   (2) 
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where Σ is a population covariance matrix, Φ is a variance covariance matrix for common 

factors (latent variables), and દઽ is a variance covariance matrix for the unique factors. Because 

this model (Model 1) allows the unique factors for identical items between mother and father 

factors to be correlated, the variance covariance matrix of the unique factors ሺદઽሻ is different 

from that of regular CFA models where the unique factor correlations are all assumed to be zero.  

The common factor variance covariance matrix is shown below: 

Φ =  Φm  

  Φfm Φf 

It should be noted that in the common factor variance covariance matrix for Model 1, the 

variances of mother factor (Φm) and father factor 2 (Φf) are similar to those factor variances in 

multiple-group CFA models. However, the factor covariance between father and mother factors 

(Φfm) does not exist in multiple-group CFA approach for testing MI because the mother and 

father factors are estimated separately in mother and father data sets and there is no correlation 

between these two factors. 

 In the variance covariance matrix for unique factors below, the non-diagonal elements 

(i.e., covariances of two unique factors) are all zero in multiple-group CFA models. However, as 

the unique factors of identical items are allowed to be correlated in Model 1, these covariances of 

unique factors are expected to be non-zero as shown in the Θε matrix above. For simplicity, only 

the covariances of paired, identical items between mother and father ratings are shown and the 

upper part above the diagonal is identical with the lower part in this Θε matrix.  
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Based on another assumption that the expected value of a unique variable is zero, E(ε) = 

0, and the fact that expected value of a common factor is denoted as E(η) = κ, the mean structure 

of a general CFA model from Equation 1.1 can be  as below: 

ሺܻሻࡱ ൌ ࣎  (3) ࡷ 

where E(Y) is a vector for expected values of observed variables, ࣎ is a vector of intercepts, Λ is 

the matrix for factor loadings, and K is a vector of factor means.  

 

 

 

 

 

Θε= 

var(εm1)          

 var(εm2)         

  var(εm3)        

   var(εm4)       

    var(εm5)      

cov(εm1, 

εf1)  

    var(εf1)     

 cov(εm2, 

εf2) 

    var(εf2)    

  cov(εm3, 

εf3) 

    var(εf3)   

   cov(εm4, 

εf4) 

    var(εf4)  

    cov(ε5, 

ε10) 

    var(εf5) 
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For MI testing, the following three steps were applied to run statistical analyses with the 

whole combined dataset of mother and father responses:  

(1) configural invariance: a CFA model with two factors is constructed: one factor based on 

father responses and the second factor based on mother responses. The factor loadings and 

intercepts of all items (except the reference item where loading is fixed to 1 for identification 

purpose) in the two factors are freely estimated;  

(2) metric invariance can be tested by holding factor loadings of items between father and 

mother factors equally;  

(3) scalar invariance can be further tested by holding intercepts between fathers and mothers, in 

addition to factor loadings, for all items equally.  

3.2. Model 2: Multiple Group CFA  

As stated by Geiser, Burns, and Servera (2014), measurement structures across raters 

using the same instrument have not gained much attention in the literature. Among studies that 

tested MI between mother and father raters (e.g., Konold et al., 2004; Mayfield et al., 2018), 

multiple-group CFA approach was often used to perform MI testing between these informants. 

Thus I also include a model that employed a multiple-group CFA approach to test MI in addition 

to the two proposed models for paired data in Study 1 and partially nested data in Study 2.  

For the multiple-group CFA approach, the one factor model of Inattention/Hyperactivity 

with five items (BESS, Kamphaus & Raynolds, 2007) is specified for mother group and father 

group, separately (see Figure 2). For simplicity, the intercept and error of each item are not 

shown in this figure. The one factor CFA model for mother and father is tested separately so 

mother and father factors as well as the similar item pair (e.g. item 1, ym1, in the mother model 
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and item 1, yf1, in the father model) are not correlated to each other, which is different from 

Model 1 in this study.  

Derived from the general structural equation models defined in Equations 1 through 3, 

the multiple group CFA model can be specified by incorporating a group indicator: 

Yg = τg + λgηg + εg       (4) 

Σg = λgΦgλ’g + Θgε       (5) 

E(Yg) = τg + λgKg       (6) 

where subscript g is a group indicator (g=m for mother and g=p for father in Study 1 or g = 1, 2, 

…, G for general multiple-group CFA testing) and others are as defined in the previous section. 

When observed scores are assumed normally distributed, “factorial invariance holds if the 

conditional mean and variance covariance of observed scores given factor scores are independent 

of group membership (g)” (Kim, 2011).  

Mother        Father         

 

Figure 2. Multiple-group confirmatory analysis for mother (M) and father (F) factors of 
children’s Inattention/Hyperactivity (IH) behaviors (BESS, Kamphaus & Raynolds, 2007) 

The MI testing procedure for multiple-group CFA for this model also consists of three 

steps as in Model 1, i.e., from configural invariance, metric (or weak) invariance, and scalar (or 

strong) invariance. However the statistical model is the one factor with five items that is 

IH IH 

ym1 ym2 ym3 ym5ym4 yf1 yf2 yf5yf4 yf3 
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constructed separately for mother and father as shown in Figure 2, which is different from the 

CFA model with two correlated factors as illustrated in Figure 1. Also, the data in this model 

(Model 2) are stacked up of mother and father responses and therefore the total sample size is 

doubled the number of children. The MI testing procedure for the one-factor CFA model is run 

separately for mother responses and father responses of children’s assessments. 

3.3. Research Questions for Study 1 

To accomplish the study goals, I propose the following research questions:  

1. How well does each model for the paired data detect the level of measurement invariance 

(configural, metric, or scalar invariance) under different research conditions?  

2. What simulation design factors (e.g., factor correlations, degree of data dependency) are 

related to the performance of the proposed model as well as the comparative model for the paired 

data?  

4. Study 2: Multilevel Repeated Measures CFA for Partially Nested Data 

The research setting for Study 2 is based on partially nested data where one group of 

informants assesses only one child while the other group of informants assesses multiple 

children. Specifically, parents evaluate only their own child while the teachers evaluate multiple 

students in their classrooms. I propose a particular model (Model 3) for this type of data and also 

include the commonly used multiple-group CFA model (Model 4) and potentially appropriate 

design-based multilevel CFA model (Model 5) in Study 2.  

4.1. Model 3: Multilevel Repeated Measures CFA (the Proposed Model) 

For the partially nested data, alongside the repeated measure feature between parent and 

teacher ratings of the child, the data dependency also occurs in partial nesting where the child is 

nested within the teacher. The approaches for partially nested data using a structural equation 
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modeling framework suggested by Sterba et al. (2014) (e.g., a treatment group is multilevel, but 

a control group is single-level) may not be an optimal choice for this research scenario 

considering it does not take into account the additional data dependency (i.e., repeated 

measures).  The commonly used multiple-group CFA in applied studies for testing MI with this 

type of partial nesting data will also not be appropriate because it does not consider the nested as 

well as repeated characteristics of the data. 

In order to examine MI for this partially nested data, e.g., whether parents and teachers 

rate children in the similar manner, I propose the multilevel repeated measure CFA model. The 

statistical model is illustrated in Figure 3.  

 

Figure 3. Multilevel repeated measures confirmatory factor analysis with partial nesting for 
Parent (IHp) and Teacher (IHt) factors of children’s Inattention/Hyperactivity (IH) behaviors. 

In this figure, the filled dots indicate random intercepts. At the between level, the 

variance and covariance of items yp1 through yp5 are all zeros while yt1 through yt5 are all 

correlated to each other (only some drawn in the figure for simplicity). The intercept for each 

variable that is estimated at level 2 is also not shown for simplicity. 
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In this model, for within level, the unique factors and common factors between teachers 

and parents are correlated to reflect the data dependency from repeated measures, which is 

similar to Model 1. The variance covariance matrix for common factors (Φ) and unique factors 

(Θε) are presented respectively as follows: 

 

Φ =  

Φp   

Φtp  Φt  

 

 var(εp1)          

  var(εp2)         

   var(εp3)        

    var(εp4)       

     var(εp5)      

Θε = cov(εp1, 
εt1) 

    var(εt1)     

  cov(εp2, 
εt2) 

    var(εt2)    

   cov(εp3, 
εt3) 

    var(εt3)   

    cov(εp4, 
εt4) 

    var(εt4)  

     cov(εp5, 
εt5) 

    var(εt5) 

As shown in these matrices, unlike the multiple-group CFA approach where the non-

diagonal elements in the variance covariance matrices of the unique factors and common factors 

are all zero or not available, the covariances of unique factors for each pair of identical items 

(e.g. cov(εp1, εt1)) as well as the covariance between the two common factors (Φtp) are estimated 

in Model 3. 

  



15 
 

For the data dependency due to students nested within teachers, a multilevel modeling 

approach is adopted where students are at level 1 and teachers are at level 2. In order to take into 

account the partial nesting feature where parents are not nested within teachers, the variance 

covariance of parent scores are all constrained to be zero at the between level (level 2) while the 

variance-covariances of teacher scores are freely estimated at level 2. The constraint of zero for 

variance-covariances (analogous to intraclass correlation or ICC= 0) for parent scores illustrates 

no nesting feature for these variables.  

 For the within level in Study 2, the relationship between the observed scores of 

individuals (e.g., students) from ratings of their parents and teachers can be expressed by 

equations (7) and (8): 

For the parent factor: ypi = τp + λp ηpi + εpi   (7) 

where ypi is the observed score for each item for student i from his/her parent, τp is the parent 

item intercept, λp is the factor loading of the parent item, ηpi  is the parent common factor score 

for student i, and εpi is the unique factor of the parent item for student i.  

For the teacher factor: ytij = τtj + λtj ηtij + εtij  (8) 

where ytij is the observed score for each item for student i from his/her teacher at a class j, τtj is 

the intercept and λtj is the factor loading of the teacher item at a class j, ηtij is the teacher common 

factor score for a student i at a class j, and εtij is the unique factor of the teacher item for a student 

i at a class j. It is assumed that factor loadings are invariant across classrooms in this study: λtj = 

λt. 

It should be noted that τp and τtj are set equal to 0 in the within level because an individual score 

is its deviation from the group mean (Heck & Thomas, 2009; Kim & Cao, 2015).  
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In the between level in Study 2, there are only equations for intercepts for the parent and 

teacher factors because parents and teachers do not rate themselves and there are no factor 

structures at the between level. Because each parent rates only one child while one teacher often 

rates multiple children in his/her classroom, there are only variances in the teacher intercepts (τtj) 

but not in the parent intercepts (τp) at level 2 as shown in equations (9) and (10): 

   τp = μp      (9) 

where τp is the intercept of parent item and μp is the grand mean of intercepts from parent ratings 

for that item;  

   τtj =  μt + εj     (10) 

where τtj is the intercept of the teacher item for class j, μt is the grand mean of the teacher item, εj 

is residual variance of teacher item for class j.  

The MI procedure for this model is similar to the proposed Model 1 in Study 1. 

Specifically, first, configural invariance is tested using a CFA model with two factors of five 

items: one factor based on father responses and the second factor based on mother responses 

with no equality constraints of factor loadings and intercepts between the two factors. Then 

metric invariance can be tested by imposing equalities of factor loadings between parents and 

teachers. Third, scalar invariance testing is conducted by holding both factor loadings and 

intercepts equally between parents and teachers’ scores. 

4.2. Model 4: Multiple-group CFA  

In their studies, Konold et al. (2004) as well as Waschbusch and Willoughby (2008) 

applied multiple-group CFA framework to examine the measurement equivalence between 

different informants in different settings (i.e., parents vs. teachers). Thus a single level multiple-

group CFA approach is included in Study 2 as a comparative model with the proposed model. 
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This approach does not take into account the data dependency of parent and teacher ratings as 

well as the nested feature of students within teachers. The theoretical framework as well as MI 

testing sequence for this model are identical for those in Model 2 in Study 1 (see Figure 2). 

4.3. Model 5: Design-based Multilevel CFA 

For Study 2, because factors are not modeled at the between level, the design-based 

multilevel CFA approach (i.e., using the command TYPE = COMPLEX in Mplus program) can 

be an option used to address the data dependency although this approach might not be optimal 

for the partially nested data. The design-based multilevel CFA utilizes a single-level approach 

but takes into account the nested feature of data by adjusting the standard errors of the parameter 

estimates and the overall chi-square value (Muthén & Muthén, 1998–2010; Kim et al., 2012). 

Specifically, the one single-level model is specified with adjusted standard errors for sampling 

complexity instead of decomposing the covariance matrix into within and between components 

as in the regular multilevel CFA. Of note is that the adjusted standard errors are applied not only 

to teachers but also parents who have a single participating child. The common factors (parent 

and teacher factors) and the unique factors of identical items between the two common factors 

are correlated as in the within level (or level 1) of Model 3 (see Figure 3). As a result, variance 

covariance matrices of the common factors as well as unique factors of Model 5 are identical 

with those matrices for the within level of Model 3. The sequence of MI testing (i.e., from 

configural to scalar invariance) is the same as those hierarchical steps in Model 1 and Model 3. 

4.4. Research Questions for Study 2 

In order to accomplish the study goals, I examined the following research questions:  

1. How well does each model detect the level of measurement invariance (configural, metric, or 

scalar invariance) under different research conditions for partially nested data?  
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2. What simulation design factors (e.g., sample size, degree of data dependency) are related to 

the performance of the proposed model as well as the comparative models for partially nested 

data?  

5. Significance of the Research 

Research about affect, cognition, and behaviors of children, especially preschoolers and 

young children, rely on data collected from different adult informants of children. As reported by 

Konold and Pianta (2007), “informant-based methods of behavioral assessment” are widely used 

and 90% of referrals for behavior problems of children in schools and medical settings are from 

behavior checklists in psychological assessments. However, studies about score alignment or 

agreement among multiple informants often focuses on evaluating how close or correlated the 

observed scores of these informants are. Little attention is paid to the question of whether or not 

different informants interpret and respond to survey items in the same manner and subsequently 

whether their scores can be comparable within and across studies. By investigating the score 

agreement from psychometric perspectives, this study emphasizes the importance of establishing 

MI before comparing observed scores of raters.  This study also offers a means for educational 

and psychological researchers to investigate possible differences between raters in their 

perceptions, norms, and interpretations of children’s affect, cognition, and behaviors as well as 

their response tendency or response styles. 

Paired and partially nested data are common in educational, psychological and health 

sciences. Although multilevel modeling (Raudenbush & Bryk, 2002) that handles nested data 

and cross-classified data has been discussed and used extensively with the availability of 

numerous software programs, there has been a lack of studies about testing MI for paired and 

partially nested data. The two statistical models proposed and evaluated in this dissertation will 
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add to the MI literature a possible way to model data dependency with these special types of 

data. Results from the simulation studies provided practical guidelines for researchers in doing 

MI for their research. Moreover, the current study is expected to initiate further discussions on 

MI testing with other types of more complex data structures that possibly occur in educational, 

psychological and health sciences research.  
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CHAPTER TWO: LITERATURE REVIEW 

This chapter reviews literature on studies about measurement invariance testing of 

psychological assessments using multiple informants. First, I discuss the issues on rater 

agreement of scores from multiple rating sources. Second I review applied studies conducting MI 

testing with multiple informants including inter-parental ratings and cross adult ratings. The 

methodological issues such as definition, levels and hierarchical procedures pertaining to 

measurement invariance testing will be introduced last.  

1. Rater Agreement 

Rater agreement is typically measured by comparing the means, evaluating the 

differences, or estimating the correlation between observed scores from multiple informants. 

Issues of such agreement or alignment among raters on children’s attributes have been studied 

for decades. While information about the latent means is also often of interest, studies about 

multiple informant rating agreements usually focus on correlations between these ratings (Geiser 

et al., 2014). This correlation indicates “the degree of association between two variables scored 

for sets of variables (e.g. ASEBA, Achenbach System of Empirically Based Assessment, 

problem item scores) obtained from two individuals” (Achenbach & Rescorla, 2001, p. 34). 

Meta-analytic studies about adult rater agreements on children’s problems have been conducted 

to examine the correlations between multisource ratings of psychological assessments. 

Achenbach, McConaughy, and Howell (1987) reviewed Pearson correlations between ratings of 

parents, teachers, and other informants from 269 samples in 119 studies. The agreement between 

mother and father ratings (r = 0.6) is reported to be higher than the agreement between parents 
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and teachers (r = .28) with higher discrepancies in the latter. These discrepancies between raters 

could possibly be due to parents and teachers observe children in different settings (e.g., Harvey, 

Fischer, Weieneth, Hurwitz, & Sayer, 2013). In subsequent meta-analytic studies, Duhig, Renk, 

Epstein, and Phares (2000) as well as De Los Reyes et al. (2015) also found that agreement 

between parental ratings was low to moderate. Specifically, Duhig et al. (2000) reported the 

average weighted correlations for maternal and paternal ratings of .45 for internalizing problems, 

.63 for externalizing problems and .70 for total behavior problems. De Los Reyes and colleagues 

(2015) reviewed cross-informant correspondences from 341 studies published between 1989 and 

2014 that provided estimates of adult cross-informant correlations. Similar to results from 

Achenbach et al. (1987), the average correlations of cross-informants were found 0.25 for 

internalizing, 0.30 for externalizing and 0.28 for overall scale.  

In addition to reporting correlations, studies about rater alignment also compare the latent 

means or assess the differences between observed scores from multiple informants. For example, 

Mayfield et al. (2018) evaluated the ratings equivalence of mother and father through examining 

the factor structure, means and correlations of the Diagnostic and Statistical Manual of Mental 

Disorders – Fourth Edition (DSM-IV) Attention Deficit and Hyperactivity Disorder (ADHD) 

Symptom Rating Scale. This instrument is used to assess different cognitive clusters in children 

diagnosed with ADHD symptoms. In their study, Mayfield and colleagues used intra-class 

correlation coefficient for absolute agreement to examine agreement between mother and father 

ratings for each of the three scales. They examined CFA models of mother and father, separately 

in terms of model fit (e.g. chi-square test, CFI, RMSEA, AIC). These authors also compared the 

means of constructs in the instrument between mother and father ratings to evaluate the 

equivalence of these ratings. However the MI across these informants was not conducted before 
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comparing the mean differences between mother and father scores. While the CFA models of 

mother and father ratings for this scale in Mayfield et al. (2018)’s study showed good fit for the 

three-factor model, it does not guarantee the MI between mother and father ratings satisfied.  

 Allegedly, literature about using multisource ratings of children’s psychological 

assessments provides evidences for substantial misalignment of observed scores from different 

informants. However, there were few studies that examined the comparability of scores from 

multiple adult raters under psychometric perspectives in which the underlying construct of a 

measure rather than observed scores and differences in raters’ perceptions, interpretations, and 

response styles of items are examined.  

2. Review of Applied Studies that Examined Measurement Invariance across 

Informants 

Although examining MI is considered as novel aspect for meaningful comparison across 

raters as well as providing significant information on the interpretation of mean rater effects 

(Geiser et al., 2014), there were only some studies that formally performed MI testing across 

multiple adult informant ratings.  

Konold et al. (2004) examined possible explanation for discrepancies between multiple 

informants' ratings of the same child using the Child Behavior Checklist for Ages 4-18 

(CBCL/4-18) and the Teacher Response Form (TRF) developed by Achenbach and Rescorla 

(2001). The CBCL/4-18 comprises 118 behavior problem items of which 85 items combine to 

form the eight narrow-band scales: Withdrawn, Somatic Complaints, Anxious/Depressed, Social 

Problems, Thought Problems, Attention Problems, Delinquent Behavior, and Aggressive 

Behavior and 93 items have counterparts on the TRF. Furthermore, five out of these eight 

narrow-band scales formed the two frequently used overarching broad-band scales: Internalizing 
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with combination of Withdrawn, Somatic Complaints, and Anxious/Depressed and Externalizing 

with Delinquent Behavior and Aggressive Behavior. The authors used multiple-group CFA to 

compare the two measurement models across informants (i.e. mothers vs. fathers with N=710 

children, and parents vs. teachers with N=562): a configural model with no constraints of 

parameters (loadings, intercepts, variances) and a model that constrained equal factor loadings, 

equal error variances and equal factor correlations. The comparison of intercept parameter across 

raters, however, was not conducted in this study. Thus, strong MI was not fully examined to 

ensure scales are comparable across informants. In addition, as the multiple-group CFA method 

was used for MI testing, the data dependency between multiple raters was ignored. 

More recently, some other studies also adopted multiple-group CFA and investigated full 

MI with multiple groups. Waschbusch and Willoughby (2008) examined the informant 

equivalence between mother and teacher ratings of the IOWA Conners Rating Scale on 711 

elementary students in Canada. The scale includes ten items that covers two subscales: five items 

measured inattentive-impulsive-overactive behaviors factor and five items for oppositional 

defiant behaviors factor. This study employed CFA approach to investigate whether individual 

IOWA items were loaded to their corresponding latent factors similarly between mothers and 

teachers. As a result of statistically significant difference between metric and configural 

invariance models of these informants, a partial MI with only a constraint of equal loading of one 

item per factor was established. Subsequently, latent correlations were used to examine the 

cross-informant correspondence for the subscales in that study.  

The following studies also employed CFA approach to conduct MI testing across 

informants. However these studies did a further step than the studies reviewed in previous 

section by taking into account the data dependency among scores of the raters.    
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Burns, de Moura, Walsh, Desmul, Silpakit, and Sommers-Flanagan (2008) tested the 

invariance of mother and father ratings of the Child and Adolescent Disruptive Behavior 

Inventory (Burns, Taylor, & Rusby, 2001a, 2001b) with 894 Brazilian, 2075 Thai and 817 

American children. This study included the correlation between mother and father ratings by 

letting mother and father factors as well as errors of same items between these two factors be 

correlated.  

In a following study, Burns and colleagues (2013) used mother, father, and teacher 

ratings with equivalent questionnaires to assess symptoms of hyperactivity, impulsivity, 

inattention and academic impairment of Thai and Spanish children. In this study, the Child and 

Adolescent Disruptive Behavior Inventory was administered to 872 Thai 7th - 12th graders and the 

ADHD Rating Scale-IV and ODD scales of the Disruptive Behavior Inventory were distributed 

to 1,749 Spanish children (1th - 4th graders). For the invariance analyses between mothers/fathers 

and teachers, the authors compared the baseline model with equivalent factor structure and no 

constraint in any parameters (i.e. configural invariance) versus the model with constraints of 

equal factor loadings and thresholds. While the correlations of factors of like-symptoms between 

parent and teacher ratings were taken into account, the dependency of students within the 

teachers was not considered. In addition, the residuals of same symptoms were only correlated 

between mother and father ratings but not for parent ratings and teacher ratings. 

Clark et al. (2016) tested measurement equivalence of 93 questions that are similar across 

the student, teacher and parent forms of the Child Behavior Questionnaire (CBQ; Rothbart, 

Ahadi, Hershey, & Fisher, 2001). The MI testing procedure from configural to metric invariance 

was performed between mother and father ratings of 605 children in the ages of three to seven 
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years old in several cities of the United States. In this study, the CFA approach with inclusion of 

correlated errors for same items and correlated mother and father factors was also adopted.  

Geiser et al. (2014) emphasized that investigation of MI across raters provide incremental 

information about rater effects that cannot be achieved from purely correlational multitrait-

multimethod (MTMM) analyses. However the focus of literature was often on interpreting the 

MTMM correlation matrix and not much attention was paid for the examination of MI across 

raters to ensure valid interpretation of mean rater effects. The authors proposed a modeling 

framework to test MI across informants in the first step of CFA-MTMM analysis by evaluating 

the role of MI in the context of three multiple-indicator CFA-MTMM models for structurally 

different informants and one model for interchangeable informants. They also illustrated the 

model with a demonstration data of mother, father, and teacher ratings of two ADHD subscales 

from the Child and Adolescent Disruptive Behavior Inventory (CADBI, Burns & Lee, 2010a, b) 

on 709 first grade children from the island of Majorca in the Balearic Islands and Madrid 

(Spain). The full MI analyses were examined for both subscales across raters and partial MI was 

performed when a strong or strict MI did not hold. Burns et al. (2013) suggested MI testing for 

the model for interchangeable methods (i.e. raters) to make a decision of whether raters are truly 

interchangeable or not. 

Lately, study of Piskernik et al. (2018) was among not many studies that used CFA 

approach and took into account the data dependency to examine MI between mother and father 

ratings. The German version of the Parenting Stress Index (Tröster, 2011) with 48 of the 101 

original items was used to measure parental stress of 214 Austrian couples with their young 

children (12 to 32 months). MI models for both parents from configural to strict invariance were 

conducted simultaneously with correlated errors for similar items between mothers and fathers.  
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MI testing will help answer the questions whether an instrument works well similarly 

across different informants and valid mean comparisons of informant ratings can be made. 

Within this framework, researchers examine the differences in informants’ perceptions, 

interpretations, and response styles of survey items about their children, which means 

investigating the underlying construct of a measure rather than the observed scores. While some 

applied studies attempted to investigate MI across informant ratings, few of them considered the 

dependency of data between mother and father or parent and teacher ratings. Moreover, no 

simulation study has yet examined the performance of MI models for these types of data under 

different research scenario. 

3. Measurement Invariance 

Borsboom (2006), and Meredith and Teresi (2006) emphasized that thorough 

psychometric analyses play an essential role for fair and equitable selection procedures. 

Furthermore, based on the growing interest and practices of MI testing in literature (Schmitt & 

Kuljanin, 2008), Kim, Kwok, and Yoon (2012) suggested examining MI as a prerequisite before 

using an instrument in social studies. 

As defined in (Mellenbergh, 1989; Meredith, 1993), the random variable y is considered 

as measurement invariant as regards to selection on group variable g given the latent variable η, 

if and only if  

F(y|η, g) = F(y|η)  (9) 

where F(y|η, g) is the distribution of observed scores for variable y given g and η, and F(y|η) is 

the distribution of observed scores for variable y given η. Mellenbergh (1989) emphasized that 

this definition implies the distribution of observed scores (or item responses) is dependent on the 
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values of the latent variable but not on the combination of both values of the latent variable and 

group variable. 

MI was also defined in terms of probability in Yoon and Millsap (2007) as the 

conditional probability of random variable y given underlying latent variable η is not dependent 

of group membership (i.e. group variable g).  

P(y|η, g) = P(y|η) (10) 

where y is the observed variable that is used to measure the latent construct η, and g denotes 

group membership.  

MI testing is commonly conducted to examine several measurement conditions about the 

extent to which an instrument is being perceived and interpreted in the similar way across 

different groups (often subpopulation groups), over different time points or over various methods 

of measurement (Vandenberg & Lance, 2000; Meade & Bauer, 2007; Kim, 2011). The 

traditional subpopulation groups are ethnicity, gender, and age and recently include countries or 

cultural groups (Kim, 2011). For longitudinal studies using the same measure over different time 

points, it is also essential to ensure the measure is invariant over the time. In studies where the 

mediums of a measurement vary such as the pencil-and-paper vs. online forms or original vs. 

translated versions of a test, the equivalence of this measure across these mediums is often of 

concern.  

4. Sequence of Measurement Invariance Testing 

As emphasized in Kim’s dissertation (2011), the full invariance of a factor model (i.e. the 

equivalence of variance covariance matrices of observed variables) across groups is “not easily 

attainable in reality, but also it is not necessary in practice”. Therefore the typical MI analysis is 

a hierarchical procedure including the testing of several nested invariance models from 
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configural, metric, scalar to strict invariance (i.e. forward procedure, Kim et al., 2011) or in the 

opposite order (i.e. backward procedure, Kim et al., 2011). The forward MI testing procedure 

includes the steps below: 

 Step 1: the configural invariance with an identical factor structure (i.e. same number of 

factors and pattern of loadings) across groups of raters. In configural invariance testing, there 

are no equality constraints on factor loadings, intercepts or residual variances except the 

minimal constraints for identification purpose. Configural invariance model is considered as 

a baseline for following MI tests and these following MI tests can be performed only if 

configural invariance is achieved. The configural invariance is violated due to the absence of 

invariant factor structures among groups (Kim, 2011).  

 Step 2: the metric invariance level (also called weak invariance in Meredith, 1993 or pattern 

invariance in Gregorich, 2006). Assuming configural invariance is satisfied, the metric 

invariance model is achieved if corresponding factor loadings are equal across groups.  As a 

pattern regression coefficient, a factor loading presents relationship between an observed 

variable and a common factor. Equal factor loadings across groups would indicate that 

corresponding common factors have identical meanings among these groups. The variances 

covariances of common factors can be only identified by achievement of metric invariance 

and also are not influenced by the rescaling of latent variables once the metric variance holds 

(Kim, 2011). The attainment of metric invariance level is also necessary for a defensible 

comparison of estimated factor variances and covariances (Gregorich, 2006). However, this 

author also noted that group discrepancies in common factor variation and covariation might 

not be a reflection of group differences in observed variation and covariation when metric 

invariance is established but strict invariance does not hold.  
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 Step 3: the scalar invariance (or also called as strong invariance in Meredith, 1993) implies 

the equivalence of item intercepts across methods. Differences in intercepts often reflect 

“differential additive response bias”, which might systematically result in the differences in 

valued item response between subpopulations. These sources of bias such as different 

cultural norms or procedural differences in taking weight measurements are not related to the 

common factors and have impact on observed means rather than response variation 

(Gregorich, 2006). Establishment of invariant factor loadings and item intercepts provides 

evidence for a defensible comparison of factors and observed means (Gregorich, 2006). 

Scalar invariance is tested with constraints of equalities of factor structure, factor loadings, 

and intercepts for corresponding items across methods. While CFA models of only 

covariance structure is sufficient to test metric invariance, it is required to fit CFA models of 

both covariance and mean structures to test scalar invariance.  

 Step 4: the strict invariance refers to the equality of unique factor variances (or residual 

variances) across groups. This level of MI is required for “defensible comparisons of both 

observed mean and variance estimates across population groups” (Gregorich, 2006). 

However, as noted by Gregorich, in reality, researchers are more interested in group mean 

comparisons than observed variance estimates so it is not practical to test strict invariance. 

The strict invariance model includes equality constraints on factor structure, factor loadings, 

item intercepts, and unique factor variances for corresponding items across methods.  

As highlighted by Geiser et al. (2014), MI testing for multiple informants that use 

equivalent questionnaires not only provides useful information on the rater effects but also 

ensure if comparison of latent means across informants is meaningful. They also stated that 

similar to comparing latent means across groups in multiple-group CFA and across different time 
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points in longitudinal analyses, comparisons of raters’ means require a certain MI level among 

them. Specifically, Geiser et al. (2014) suggested at least scalar MI (i.e. equal loadings and 

intercepts) being held to make a meaningful comparison across raters because scalar MI 

guaranteed similar origins and units of measurements among different informant ratings. Other 

studies also mentioned that scalar invariance is a sufficient condition for a meaningful 

comparison between group means (e.g. Meredith, 1993; Gregorich, 2006; Kim, Cao, Wang, & 

Nguyen, 2017). Therefore, in this dissertation, I applied forward MI testing procedure as 

described above but did not include strict invariance with constraints of equal residual variances 

for MI testing in Study 1 and Study 2.  

5. Intraclass Correlation (ICC): Item ICC and Factor ICC 

The intraclass correlation coefficient (ICC) in the multilevel (also called hierarchical) 

modeling context is used to measure the level of statistical dependency in the data. It is generally 

calculated by the ratio of between variance (or group-level error variance) over total error 

variance and ranges from 0 to 1. For example, an ICC for a two-level hierarchical model is 

calculated as:  

ICC=σ2
between/ (σ

2
between + σ2

within) 

where σ2
between is the variance of the level-2 residuals and σ2

within is the variance of the level-1 

residuals (“Multilevel Modeling Tutorial”, 2015) 

The ICC would be zero or near zero when there is no statistical dependency in the data, 

indicating total variance would come from individuals (or level 1 variable). The ICC closer to 1 

implies highly dependent data where the majority of variance would be from groups (or clusters, 

i.e. level 2 variables). 
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There are two kinds of ICC often used in multilevel CFA modeling: latent factor ICC and 

item (or observed variable) ICC (Hsu, Lin, Kwok, Acosta, & Willson, 2017). The latent factor 

ICC in a multilevel CFA model is calculated as:  

Latent factor ICC=B/ (B+W) 

where B = the latent factor variance at the between-level, W = the latent factor variance at the 

within-level. 

Because the identical model structure assumption (i.e. equal model structures for both 

between - level and within - level models) is not met for the partially nested data in Study 2, 

latent factor ICC is not used in this study. Rather, the observed variable ICC for teacher rating 

items is used in Study 2 to take into consideration the data dependency between teachers and 

students. According to Hsu et al. (2017), item ICC is the proportion of variance of an observed 

variable coming from between-group variation and is calculated as the ratio of between-level 

variance to the total variance of that observed variable (Hsu et al., 2017; Raudenbush & Bryk, 

2002; Snijders & Bosker, 2012):  

Observed variable ICC= b/ (b +w)  

where b = (between-level factor loading)2 x between-level factor variance + between-level 

residual variance, and w = (within-level factor loading)2 x within-level factor variance + within-

level residual variance. 

The use of multiple informants with similar questions (e.g. identical questions across 

parent form, teacher form and student form) is a common design (Geiser et al., 2014).  However, 

as described earlier in this chapter, many studies in the current literature on MI testing across 

multiple rating resources often do not take into account the repeated characteristics of parental 

ratings or the partial nesting characteristics of parent and teacher scores. Furthermore, there is no 
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simulation study that investigates the performance of different approaches to test MI with 

multiple informants at various research scenarios, especially the methods that take into account 

the repeated or partially nested features of the data. In this dissertation, my focus is testing MI of 

equivalent assessments (e.g. surveys) with similar questions across raters (e.g. mothers and 

fathers for inter-parental, parents and teachers for cross adult informants). Although in many 

psychological assessments, some items can be different across various forms, only identical 

questions across those forms are used to conduct MI testing. In addition, although investigating 

MI includes both qualitative evaluation of item meaning and quantitative investigation of 

invariance levels of factors and items (Meredith & Teresi, 2006), this dissertation concentrates 

on the quantitative aspect of MI testing, i.e. statistical assessment on an instrument. It includes 

two simulation studies that examine the two proposed models along with other comparative 

models for repeated measure and partially nested data. The details of the simulation design and 

answers to each research question will be described in Chapter three.  
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CHAPTER THREE: METHOD 

This dissertation attempts to investigate the statistical performance of the two proposed 

models, the repeated CFA model for paired data and the multilevel repeated CFA for partially 

nested data, as well as the commonly used multiple-group CFA model for both types of data and 

the potential design-based multilevel CFA for the partially nested type. Two simulation studies 

are included in the dissertation: Study 1 for paired data and Study 2 for partially nested data. This 

chapter describes the design of each simulation study with details of simulation factors as well as 

the plan to analyze the simulation outcomes.   

1. Simulation Design for the Two Studies 

The two studies are Monte Carlo simulations with a partial crossed-factorial design. 

There are six simulation factors (number of items, location of measurement noninvariance, 

magnitude of noninvariance, magnitude of correlation between two informant scores, magnitude 

of correlation between two unique factors, and sample size) for Study 1 and eight factors 

(number of items, location of measurement noninvariance, magnitude of noninvariance, 

magnitude of correlation between two informant scores, magnitude of correlation between two 

unique factors, number of level-2 units, number of level-1 units per level-2 unit, and partial ICC 

for nested items) for Study 2. Details of these simulation factors will be described below. The 

selection of values for these simulation factors are based on data from applied studies using 

common emotional and behavioral instruments with multiple informants, meta-analyses about 

MI across adult raters as well as simulation studies about MI using multiple-group or multilevel 

CFA. For both Studies 1 and 2, factor loadings of all items were generated within the range of 
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.40 and .90, following the average of minimum factor loadings of 0.41 and the average of 

maximum loadings of 0.83 for level 1 and 0.47-0.94 for level 2 in Kim et al. (2016). This range 

for factor loadings is also similar to the simulation study of Kim et al. (2012). The intercepts of 

these items are simulated within the range of -2.0 and 2.0 (based on Kim et al., 2012). 

Data generation and fitted models were conducted using Mplus 7. The Statistical 

Analysis System (SAS) package version 9.4 was used to analyze the impact of simulation factors 

on the outcomes as well as to call and run the fitted models with all replications for each 

condition in each simulation study. The number of replications for each simulation study is 1,000 

to reach a maximum standard error of an observed proportion of .007, and a 95% confidence 

interval no larger than ± .0137 (Robey & Barcikowski, 1992). 

1.1. Study 1: Data Generation and Simulation Factors for the Paired Data 

A simple CFA model with one latent factor measured by a set of continuous items is used 

to generate data for Study 1. Two sets of scores using the same CFA model were generated to 

illustrate rating scores from two different informants (e.g., mother and father) of the same child 

or participant. As the two informants assess the same participant, the scores for each item from 

these two sets are manipulated to be correlated to each other. In order to run the multiple-group 

CFA model for the mother and father groups, the originally generated data for Study 1 was 

reorganized and stacked up with double numbers of children from the combined mother and 

father scores. Specifically, a group membership variable was created (with two levels of either 

mother or father) and the two sets of identical items for mother and father ratings were combined 

into one set. For example for the simulation condition of five items, the generated model had 10 

items with two factors (one with five mother items and one with five father items) and included 

no group membership variable. But in the stacked up dataset there were only one factor with five 
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items and one group membership and each set of five items belonged to either mother or father 

group. 

Factor variance and item variance for mother and father factors in Study 1 were fixed at 

1. With this factor standardization strategy, because factor variance was 1, the factor correlation 

was equal to the factor covariance. 

The following simulation factors were included in Study 1 to examine the adequacy of 

the two models: 

1) Number of items: 5 as short and 10 as long. The “short” condition of five items per factor 

in simulation factor (1) was based on Kim, Dedrick, Cao and Ferron’s (2016) meta-analytic 

study from which the average of minimum number of items per factor was 3.86 (range 1-10, 

SD=2.09). Furthermore, this value is realistic given the fact that at least three items per factor is 

required for a factor model to be identified and also a condition to have good reliability. The 

upper value (i.e., number of items = 10) was chosen based on the report from Kim et al. (2016) 

for maximum number of indicators per factor in level-1 as well as the typical values of nine or 10 

items for subscales with longer number of items in many emotional and behavioral instruments 

(e.g., Internalizing Problems factor in the BESS Student Form, Inattention Symptoms in the 

DSM-IV ADHD Symptom Rating Scale, Patient Health Questionnaire scale that measures 

depression).  

2) Magnitude of noninvariance: zero, small, large. Specifically, zero value is when there is 

MI (i.e., equal factor loadings and intercepts across mother and father factors). The small 

noninvariance condition is when differences are 0.2 for factor loadings and 0.3 for intercepts 

between two informant factors. The large noninvariance condition is when the differences are 0.4 

for factor loadings and 0.6 for intercepts between two informant factors. For the noninvariance 



36 
 

conditions (small or large), only one item has a difference in loadings and/or intercepts between 

two informant factors for the simulation condition when total number of items is five (i.e., short) 

and two items have a difference in loadings and/or intercepts when the total number of items is 

10 (i.e., long). The remaining items will have identical factor loadings and intercepts across the 

two factors.  

3) Location of measurement noninvariance: there will have two levels of measurement 

nonequivalence including measurement noninvariance for both factor loading and intercept, and 

at intercept only. When measurement noninvariance is located at both factor loading and 

intercept, one item (for number of items =5) or two items (for number of items =10) in each 

informant factor will have both factor loading and intercept being different which made the 

contamination rate or noninvariance degree of 20%. This noninvariance level is similar to other 

simulation studies about MI testing such as Kim (2011), Kim et al. (2017). For the measurement 

noninvariance at intercept only, there is only difference in the intercept of one pair equivalent 

items (for number of items = 5) or two pairs of equivalent items (for number of items =10) 

across two factors and the factor loadings of all equivalent items are the same. The condition of 

zero noninvariance implies the strong MI holds with both factor loadings and intercepts for 

equivalent items across two informants equal.  

4) Magnitude of correlation between two informant common factors (i.e., correlation 

between mother and father ratings): .4 as moderate and .7 as high. These values were selected 

from reviewing meta-analytic studies about correlations/agreements of parental ratings including 

Achenbach et al. (1987), Duhig et al. (2000), and Renk and Phares (2004) as well as other recent 

applied studies that conducted MI testing with multiple informant ratings. Specifically, the 

average of correlations for mother and father ratings was .6 in Achenbach and colleagues, .45 in 
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Renk and Phares, and that correlation in Duhig et al. (2000) was .46 for internalizing problems, 

.66 for externalizing problems, and .61 for total problems. The parental correlations for different 

subscales in some applied studies of emotional and behavioral problems ranged from .68 to .85 

in Burns et al. (2008), .16 - .44 in Konold and Pianta (2007), and .36 - .93 in Waschbusch and 

Willoughby (2008).  

5) Magnitude of unique factor (or error) correlation between identical items: 0.3 and 0.6 

considering the factor loadings ranged from 0.4 to 0.8 and item variance and factor variance are 

fixed at 1. These error correlation values are also in line with the range of error correlation of 

between 0.2 and 0.65 from 22 studies reviewed in Kim et al. (2016). 

6) Sample size (e.g. number of children): (100, 500, 1000). As there was no simulation study 

about MI with paired data and sample size was not reported in several meta-analyses about 

parental correlation for emotional and behavioral instruments, sample size selection for Study 1 

is based on the applied studies that examine MI testing for mother and father ratings as well as 

simulation studies about MI testing using multiple group CFA or MIMIC modeling. Specifically, 

a review of applied studies that performed MI for parental ratings also found sample sizes within 

the selected range such as: 894 Brazilian, 2,075 Thai, and 817 American children in Burns et al. 

(2008); 605 children in Clark et al. (2016); 566 in Makransky and Bilenburg (2014); 337 in 

Mayfield et al. (2018); 214 in Piskernik et al. (2018); 562 in Konold and Pianta (2007); 711 in 

Waschbusch and Willoughby (2008). Furthermore, the selected sample sizes were used in Kim 

and Yoon’s (2011) simulation study about testing MI with multiple-group CFA and item 

response theory approaches. The rationale for the use of small sample condition (i.e., 100) was 

based on reasonable results from previous simulation studies of Muthén and Asparouhov (2002) 

and Yoon (2008) about multiple group analysis. The similar sample sizes were also used in Kim 
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(2011) with the reason that the group sample size of 100 or larger is required to have a good 

power to detect measurement noninvariance in multiple-indicators multiple-causes (MIMIC) 

modeling (Woods, 2009).  

There were 120 simulation conditions examined in Study 1. 

1.2. Study 1: Fitted Models 

The proposed Model 1 (the repeated measures CFA model) and Model 2 (multiple-group 

CFA) were fitted to the data generated in Study 1.  

Table 1. Summary of 5-item models used for data generation and data analysis for Study 1 

Model Model 1 Model 2  

Data 
generation 

Single-level Repeated measure CFA 

 

Data 
analysis 

Single-level Repeated measure 
CFA 

Single-level multiple-group CFA 

 

 

 

 

For simplicity, Table 1 presents the simulated research scenario with five items. The 

generated and analysis models for the other simulated cases with ten items are similar. It should 
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be noted that as described in the data generation section, the stacked up dataset was used to fit 

the multiple-group CFA model. 

1.3. Study 2: Data Generation and Simulation Factors for the Partially Nested Data 

The similar CFA model to Study 1, i.e. one-factor model with a set of continuous items 

was used to generate data for Study 2. Additionally, in order to reflect the partially nested feature 

for Model 2 where one set of scores are nested within informants (e.g. scores of students nested 

within teachers) while the another set of scores are independent (e.g., scores of students from the 

parents), a multilevel modeling framework was used for this study. In this framework, ICCs for 

teacher items were simulated at different magnitudes (small, large) while ICCs for parent items 

were constrained at zero to create the partial nesting feature of Model 2. Similar to Study 1, the 

generated data for Study 2 were also stacked up with addition of group membership variable to 

indicate a certain set of items belong to parent or teacher group. 

Factor variance and item variance for within-level factors in Study 2 were fixed at 1. Due 

to this factor standardization strategy (factor variance equals to 1), factor correlation is equal to 

factor covariance. The between-level item variances in the teacher factor in Study 2 vary from 

0.15 to 0.5, coupling with different levels of factor loadings and residual variances to create 

different levels of item ICC (i.e. about 0.13, and 0.33) for the teacher items. The between-level 

item variances in the parent factor in Study 2 were all zeros to reflect the partial nested structure 

of the data in Study 2 as described in Chapter 1. 

In addition to the simulation factors from (1) to (5) in Study 1, three additional factors 

were included in Study 2: (6) number of level-2 units (e.g., teachers), (7) number of level-1 units 

per level-2 unit (e.g., children per teacher), and (8) partial ICC (small, large) for the nested items. 

Total number of conditions simulated for Study 2 is 320. Specifically: 
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1) Number of items: 5 as short and 10 as long. Similar to Study 1, these values of number of 

items are based on Kim et al. (2016) and several existing psychological assessments such as 

BESS and Patient Health Questionnaire. 

2) Magnitude of noninvariance: zero, small, large.  

+ Zero noninvariance: equal factor loadings and intercepts across parent and teacher 

factors for all items. 

+ Small noninvariance: 0.2 for factor loading difference and 0.3 for intercept differences. 

Similar to Study 1, only one item (when number of items is five) and two items (when 

number of items is ten) have difference in loading/or intercept between two informant 

factors.  

+ Large noninvariance: similar to Study 1, i.e. 0.4 for factor loading difference and 0.6 

for intercept differences.  

3) Location of measurement noninvariance: similar to Study 1, measurement 

nonequivalence is located at two levels (conditions): differences in both factor loadings and 

intercepts, and difference at intercepts only between parent and teacher factors.  

4) Magnitude of factor correlation between two informants (i.e. correlation between 

parent and teacher ratings): 0.3 as moderate and 0.5 as high. Selection of these levels is based on 

the average of correlation for parent and teacher ratings (r) from meta-analytic studies including: 

in Achenbach et al. (1987): r = 0.28; De Los Reyes et al. (2015): r = 0.21 for internalizing 

problems, 0.28 for externalizing problems; Meyer et al. (2001): r = 0.29 for summed behavioral 

and emotional problems. Narad and colleagues (2015) also reported the range of parent-teacher 

correlations on Attention Deficit/Hyperactivity Disorder (ADHD) symptoms’ ratings across 

several studies was 0.09 - 0.43. Examples from other applied studies about emotional and 
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behavioral ratings include: r = 0.06 - 0.27 for father-teacher correlation and 0.10 - 0.31 for 

mother-teacher correlation in Konold and Pianta (2007); and r = 0.45 - 0.62 for parent-teacher 

correlation in Waschbusch and Willoughby (2008).  

5) Magnitude of error correlation between two identical items: Given the range of 

selected values for factor loadings (0.4 to 0.9) as well as item variance and factor variance for the 

within level are fixed at 1 in the simulation, the unique factor (or error) correlation between two 

identical items of two factors are simulated at 0.3 and 0.6. In the multilevel CFA studies that 

Kim et al. (2016) reviewed, the error correlations ranged from .20 to .65 (n = 22) with an outlier 

(.08).  

6) Number of level-1 units per level-2 unit (e.g., children per teacher): 10 and 20. These 

values are popular for classroom size in the United States, especially for younger children 

classrooms. These are also recommended in Hox (1998) as popular cluster size in multilevel 

research and have been used in other simulation studies about testing MI using multilevel CFA 

framework (e.g. Kim et al., 2012; Kim and Cao, 2015). 

7) Number of level-2 units (i.e., number of teachers): 30 and 80. The cluster size or number 

of level-2 units is often not reported in meta-analytic as well as applied studies about cross 

informant ratings. Thus selection of cluster sizes is based on the simulation study of Kim et al., 

2012 as well as from a few applied studies about MI testing across multiple informants that listed 

number of teachers completed the ratings (e.g. Waschbusch & Willoughby, 2008 with cluster 

size of 66 teachers; Gresham, Elliott, Cook, Vance, Kettler, 2010 with 54 teachers; and Burns et 

al., 2013 with 80 teachers). Combining with the sample size of level 1 condition, the total sample 

size for the current study will range from 300 (10*30) to 1,600 (20*80) children. 
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8) Partial item ICC: approximately 0.13 and 0.33 for the nested items (i.e. items in the 

teacher factor). These values of item ICC fall within the average values of minimum item ICC 

(0.13) and maximum (0.34) from multilevel CFA studies reported in the meta-analytic paper of 

Kim et al., 2016. They are also similar to the levels of item ICC in Im, Kim, Kwok, Yoon, & 

Willson (2016): 0.08-0.13 for small, 0.13-0.25 for medium, and 0.20–0.46 for large ICC. 

1.4. Study 2: Fitted Models 

The proposed repeated measure multilevel model (Model 3), the multiple-group CFA (Model 4) 

and the design-based multilevel CFA model (Model 5) were used to fit to the data generated in 

Study 2. For the multiple-group CFA model, generated data for Study 2 were stacked up of 

parent and teacher ratings to run the MI testing for both groups separately. The summary of five-

item models used for data generation and data analysis for this study is presented in Table 2.  

2. Model Evaluation for Study 1 and Study 2:  

MI testing for both simulation studies was conducted using likelihood ratio (LRT, also 

called Chi-square difference or Δχ2 test and the three terms are used interchangeably in this 

dissertation), CFI difference (ΔCFI,) and RMSEA difference (ΔRMSEA) tests between a 

baseline model and a sequentially more constrained model.  

Chi-square difference test is one of the most frequently used tests to examine global 

model fit (Van de Schoot, Lugtig & Hox, 2012). The default estimation method for multilevel 

CFA in Mplus is the maximum likelihood estimation with robust standard errors (MLR). This 

estimation method is adjusted for data dependency and data nonnormality from complex 

sampling. 
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Table 2. Summary of 5-item models used for data generation and data analysis for Study 2 

Model Model 3 Model 4  Model 5 

Data 
generation 

Multilevel Repeated measure CFA 

 

 

Data 
analysis 

Multilevel Repeated measure CFA Single-level multiple-group CFA Design-based multilevel CFA 

 

 

 

 

  

The generated and fitted models with ten-item are similar to these five-item models.
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Satorra–Bentler scaled likelihood ratio test (SB LRT) is suggested for model comparison 

using the MLR estimator (Satorra & Bentler, 1994). However this test was reported to produce 

negative values that involve additional correction (Asparouhov & Muthén, 2012; Satorra & 

Bentler, 2010). Both the regular likelihood ratio test and the SB LRT were used for the present 

simulation studies. The regular LRT was conducted with all five models but the SB LRT was 

only performed for the two models that used MLR estimation methods (i.e. Model 3 and Model 

5). 

As the only use of Chi-square difference test to evaluate model fit may result in over-

rejection of measurement invariance tests when the total sample size was large (Putnick & 

Bornstein, 2016), CFI difference and RMSEA difference tests were also used to evaluate the 

performance of each model in this dissertation. The suggested cutoff values of 0.01 for ΔCFI 

(Cheung & Rensvold, 2002) and 0.015 for ΔRMSEA (Chen, 2007) for MI testing were employed 

to compare the two sequential models. 

Specifically, to test metric invariance (i.e. equal factor loadings between two informant 

groups), a configural invariance model (i.e. a model with freely estimated factor loadings and 

intercepts or baseline model) was created and compared to a metric invariance model (i.e. a 

model with factor loadings constrained to be equal for two groups). When the null hypothesis of 

no difference between two models (i.e. the baseline model and the more restricted model) is 

failed to reject at nominal alpha of .05, the more restricted (or constrained) invariance model 

holds. For example, for comparison of metric vs. configural models, the p value > .05, or the 

ΔCFI ≤ .010, or ΔRMSEA ≤ .015 implies the metric invariance holds under study. Conversely, 

the less restricted invariance model (i.e. configural invariance) holds when the null hypothesis is 
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rejected (i.e. p ≤.05 or ΔCFI>0.010, or ΔRMSEA > .015), providing an evidence of (a) 

noninvariant factor loading (s). 

If the null hypothesis of no differences between two models (metric vs. configural) is 

rejected, the metric invariance does not hold and there was no need to proceed to the next step, 

i.e. testing the scalar invariance vs. metric invariance. However if the null hypothesis was failed 

to reject (p > .05, ΔCFI ≤ .010, or ΔRMSEA ≤ .015) implying metric invariance was satisfied, a 

scalar invariance model with both factor loadings and intercepts imposed equally between two 

informant groups was compared to the metric variance model. If the result favors the more 

restricted model (p > .05), the scalar invariance holds under study. If the result indicates rejecting 

the null hypothesis (p ≤ .0.5), the scalar invariance does not hold. 

3. Answer to Research Question 1 

The adequacy of each model in detecting MI will be evaluated based on the correct 

detection rates of the level of MI (i.e. configural, metric or scalar) for each model.  

In order to compare and select a better fitting model, I consider using the likelihood ratio 

test and calculating the correct detection rate for each simulated condition. The correct detection 

rate is the proportion of cases where the level of invariance is correctly detected by the series of 

Δχ2, ΔCFI, and ΔRMSEA tests among all 1000 simulation replications. For example, when 

metric invariance was generated in the population and if the series of MI testing supports metric 

invariance, this case is considered as correct detection.  

The determination of correct detection for each type of invariance model is described as 

following (also see Table 3 for summary): 

 For configural invariance conditions (i.e. noninvariance in both intercepts and factor 

loadings), if the result of testing between metric vs. configural invariance models favors 
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the configural model (i.e. the null hypothesis of no difference between two models is 

rejected with p ≤ .05 or ΔCFI>0.010, or ΔRMSEA > .015), the noninvariance is 

successfully detected by the Δχ2, ΔCFI, or ΔRMSEA test. There is no need to test the 

metric invariance vs. scalar invariance for these conditions because neither metric 

invariance nor scalar invariance holds in the population. 

 For metric invariance conditions (i.e. only noninvariance in intercepts but loadings are 

equal between two informant factors): First the likelihood ratio test for metric invariance 

vs. configural invariance models is conducted. If the null hypothesis of no difference 

between the two models is rejected (p ≤ .05, or ΔCFI>0.010, or ΔRMSEA > .015) then 

the configural invariance holds, indicating noninvariance is falsely detected. Because 

metric invariance is (falsely) rejected, no further test is conducted and this case is 

considered as incorrect detection (configural invariance is supported when metric 

invariance is true). If the null hypothesis is failed to reject (p > .05, ΔCFI ≤ .010, or 

ΔRMSEA ≤ .015), it is necessary to continue performing the likelihood ratio, ΔCFI, and 

ΔRMSEA tests for scalar invariance vs. metric invariance models to determine if the 

metric invariance really holds under study. If the result of this test shows that the metric 

invariance model is favored (p ≤ .05, or ΔCFI>0.010, or ΔRMSEA > .015), the 

noninvariance is correctly detected (metric invariance is supported when metric 

invariance is true). If p >.05, ΔCFI ≤ .010, or ΔRMSEA ≤ .015 for the Δχ2, ΔCFI and 

ΔRMSEA tests between metric invariance vs. scalar invariance models, the scalar 

invariance holds and this case is counted as incorrect detection (scalar invariance is 

supported when metric invariance is true).  
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 For scalar invariance conditions (i.e., equalities in both intercepts and factor loadings 

between two informant factors): First, the likelihood ratio test for configural invariance 

vs. metric invariance models is carried on. If the configural invariance holds (p ≤ .05, or 

ΔCFI >0.010, or ΔRMSEA >.015), this case is counted as incorrect detection without 

further testing. If the null hypothesis is failed to reject (p >.05, ΔCFI ≤ .010, or ΔRMSEA 

≤ .015), it is necessary to continue performing the likelihood ratio test for metric 

invariance vs. scalar invariance models to determine if the scalar invariance holds under 

study. If the result of this test shows that the metric invariance model is favored (p ≤ .05, 

or ΔCFI>0.010, or ΔRMSEA > .015), the detected level of MI is incorrect. If p >.05, 

ΔCFI ≤ .010, or ΔRMSEA ≤ .015 for the Δχ2, ΔCFI, and ΔRMSEA tests, respectively 

between metric invariance vs. scalar invariance models, the scalar invariance holds and 

the level of MI is correctly detected.  

Table 3. Calculation of detection rate for likelihood ratio testing 

                                       Δχ2 
Testing 
simulated conditions 

Metric invariance vs. 
configural invariance 

Scalar invariance vs. metric 
invariance 

p ≤ .05 p > .05 p ≤ .05 p > .05 

Configural (NI in both loadings 
and intercepts) correct = 1 correct = 0 

Not 
conducted 

Not 
conducted 

Metric (NI in intercepts only, 
equal loadings) correct = 0 

Not yet 
counted correct = 1 correct = 0 

Scalar (equal factor loadings and 
intercepts correct = 0 

Not yet 
counted correct = 0 correct = 1 

 
Note: p = p values of each Δχ2 test for two competing models, correct = correct detection rate, NI = 
noninvariance. 
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Table 4. Calculation of detection rate for CFI difference and RMSEA difference testing 

                 ΔCFI/ΔRMSEA 
 
Simulated conditions 

Metric invariance vs. configural 
invariance 

Scalar invariance vs. metric 
invariance 

ΔCFI ≤ .01 ΔCFI > .01 ΔCFI ≤ .01 ΔCFI > .01 

 ΔRMSEA ≤.015 ΔRMSEA>.015 ΔRMSEA ≤.015 ΔRMSEA>.015 

Configural (NI in both loadings 
and intercepts) correct = 1 correct = 0 Not conducted Not conducted 

Metric (NI in intercepts only, 
equal loadings) correct = 0 Not yet counted correct = 1 correct = 0 

Scalar (equal factor loadings 
and intercepts) correct = 0 Not yet counted correct = 0 correct = 1 
 
Note: NI = noninvariance 
 

4. Answer to Research Question 2 

The relationships between simulation factors and the performance of each model using 

one of three criteria (Δχ2, ΔCFI, ΔRMSEA) for Models 1, 2 and 4 and using one of four criteria 

(Δχ2, Satorra-Bentler likelihood ration, ΔCFI, ΔRMSEA) for Models 3 and 5 were examined by 

calculating eta-squares from analysis of variance using SAS 9.4. The moderate effect size of .058 

suggested by Cohen’s (1992) was used as a cutoff value for further examination of significant 

factors. 
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CHAPTER FOUR: RESULTS 

The purposes purpose of this dissertation was to examine how well the four statistical 

models (i.e., repeated measures CFA, multiple group CFA, multilevel repeated measures CFA, 

and design-based multilevel CFA) detect different levels of measurement invariance with paired 

and partially nested data in various research scenarios. The setting of paired data is when the two 

raters are rating the same participant such as assessments from mother and father on their child’s 

anxiety. The setting for partially nested data is when the participant is singleton to one rater (e.g., 

parent) but nested to another rater (teacher). For example, ratings of children depression from 

parents and psychiatrist and in this scenario, the multiple patients are nested within one 

psychiatrist but each patient is singleton to their parents. While multiple group CFA has been a 

commonly used approach in the literature to test measurement invariance with both types of data, 

the other three models have been rarely used but proposed in this dissertation to test 

measurement invariance with these two different kinds of data.  

Two simulation studies were conducted to investigate the performance of these statistical 

models with the two data types: repeated measures CFA (Model 1) and multiple group CFA 

(Model 2) in Study 1, and multilevel repeated measures CFA (Model 3), multiple group CFA 

(Model 4), and design-based multilevel CFA (Model 5) in Study 2. Results from the two 

simulation studies are presented in this chapter. Because the detection rates of all models across 

configural, metric and scalar invariance were relatively similar between two levels of factor 

correlation in Study 2, only conditions with small factor correlation are presented for this study 

for simplicity. Only one and 11 cases out of 1000 replications in two conditions where the 
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multilevel repeated measure CFA model did not converge and there was no problem of 

convergence in all other simulation conditions examined in this dissertation of other models. 

1. Results of Study 1 

There were six simulation factors investigated in Study 1: 1) number of items (5 and 10); 

2) noninvariance location (noninvariance in both factor loadings and intercepts, and 

noninvariance only in intercepts); 3) magnitude of noninvariance (zero, small, large); 4) factor 

correlation (0.4 and 0.7); 5) sample size (100, 500, 1000 participants); and 6) error correlation 

(0.3 and 0.6). Results of Study 1 are shown in the following section.  

1.1. Detection rates of Model 1 and Model 2 

This section presents detection rates of Model 1 and Model 2 using Chi-square difference 

test, CFI difference with cut-off value of 0.01 and RMSEA difference with cut-off value of 0.015 

for configural, metric and scalar invariance conditions. 

1.1.1. Detection Rates for Configural Invariance Conditions 

Table 5 presents detection rates of Models 1 and 2 using Δχ2 test, suggested cut-off 

values of 0.01 for ΔCFI and 0.015 for ΔRMSEA for configural invariance with 5-item conditions 

(i.e. conditions where there was noninvariance in both intercepts and factor loadings and the 

number of items per factor was five). The results from this table show that when magnitude of 

noninvariance is big (i.e., 0.6 difference in intercepts and 0.4 difference in factor loadings) 

together with large sample sizes (i.e. 500 and 1000 participants), both two models for Study 1 

could detect the noninvariance using all three criteria of Δχ2 test but the detection rates were 

consistently higher for Model 1 (89% to 100%) than those of Model 2 (79%-100%). With large 

noninvariance but small sample size (100) conditions, while the detection rates of Model 1 

decreased to the range of 74% - 91% depending on levels of error correlations (higher error 
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correlation associated with higher detection rates), those rates of Model 2 were ranged between 

55% and 61% (higher error correlation associated with lower detection rates because error 

correlations were ignored in Model 2).  

Table 5. Detection rates of Models 1 and 2 for configural invariance with 5-item conditions  

Detection rate 
using Δχ2 test 

Detection rate using 
ΔCFI 

Detection rate 
using ΔRMSEA 

# of 
Items 

NI size Factor 
Corr 

Sample 
size 

Error 
Corr 

M1 M2 M1 M2 M1 M2      

0.26 0.18 0.28 0.25 0.27 0.30 5 Small 0.4 100 0.3 

0.36 0.13 0.31 0.19 0.36 0.24 5 Small 0.4 100 0.6 

0.89 0.80 0.26 0.23 0.60 0.73 5 Small 0.4 500 0.3 

0.98 0.80 0.30 0.19 0.83 0.71 5 Small 0.4 500 0.6 

1.00 0.99 0.25 0.22 0.83 0.91 5 Small 0.4 1000 0.3 

1.00 0.99 0.33 0.17 0.97 0.92 5 Small 0.4 1000 0.6 

0.27 0.16 0.28 0.23 0.30 0.27 5 Small 0.7 100 0.3 

0.43 0.10 0.34 0.16 0.42 0.21 5 Small 0.7 100 0.6 

0.92 0.80 0.27 0.22 0.68 0.71 5 Small 0.7 500 0.3 

0.99 0.79 0.37 0.15 0.90 0.69 5 Small 0.7 500 0.6 

1.00 0.99 0.28 0.22 0.89 0.91 5 Small 0.7 1000 0.3 

1.00 1.00 0.43 0.14 0.99 0.93 5 Small 0.7 1000 0.6 

0.70 0.61 0.72 0.70 0.68 0.70 5 Large 0.4 100 0.3 

0.86 0.58 0.80 0.68 0.82 0.69 5 Large 0.4 100 0.6 

1.00 1.00 0.99 0.99 1.00 1.00 5 Large 0.4 500 0.3 

1.00 1.00 1.00 0.99 1.00 1.00 5 Large 0.4 500 0.6 

1.00 1.00 1.00 1.00 1.00 1.00 5 Large 0.4 1000 0.3 

1.00 1.00 1.00 1.00 1.00 1.00 5 Large 0.4 1000 0.6 

0.74 0.59 0.74 0.70 0.71 0.69 5 Large 0.7 100 0.3 

0.91 0.55 0.84 0.66 0.87 0.68 5 Large 0.7 100 0.6 

1.00 1.00 0.99 0.99 1.00 1.00 5 Large 0.7 500 0.3 

1.00 1.00 1.00 1.00 1.00 1.00 5 Large 0.7 500 0.6 

1.00 1.00 1.00 1.00 1.00 1.00 5 Large 0.7 1000 0.3 

1.00 1.00 1.00 1.00 1.00 1.00 5 Large 0.7 1000 0.6 

 
Note: M1 = Model 1, M2 = Model 2, NI size =magnitude of noninvariance, Factor Corr = factor correlation, Error 
Corr = error correlation 
 

For simulation conditions of five items per factor in addition to a small magnitude of 

noninvariance (i.e., 0.3 difference in intercepts and 0.2 difference in factor loadings), Model 1 

could sometimes (16% to 43%) detect the noninvariance (i.e., configural invariance) with small 

sample size (100) using any of three criteria but was able to detect noninvariance most of the 



52 
 

time (89%-100%) for large sample sizes (500, 1000) using Δχ2 test or often (60 - 97%) using 

ΔRMSEA. In addition, with these conditions while Δχ2 test and ΔRMSEA had high detection 

rates (80% - 100% and 69% - 93%, respectively) for Model 2 and (89% - 100% and 60% - 99%, 

respectively) for Model 1 with large sample sizes (500 and 1000), the detection rates using ΔCFI 

were always less than 25% for Model 2 and 43% for Model 1 even with large sample sizes.  

For those four conditions of 5-item and small noninvariance + small sample size with low 

detection rates, when the configural invariance was not correctly detected, the metric invariance 

model was selected more often than scalar invariance model using all three criteria (see Table 6).  

Table 6. Incorrectly detected rates of configural invariance for 5-item and small noninvariance 
+small sample size conditions  

Model  Proportion of replications when metric 
invariance was incorrectly selected  

Proportion of replications when scalar 
invariance was incorrectly selected 

 Δχ2 test ΔCFI ΔRMSEA Δχ2 test ΔCFI ΔRMSEA 
Model 1 53% - 60% 53% - 62% 48% - 56% 4% - 17% 7% - 19% 8% - 23% 
Model 2 44% - 48% 49% - 51% 46% - 49% 35% - 45% 26% - 33% 24% - 32% 
 

When the number of items per factor was increased to 10, the ability to detect configural 

invariance of both models also goes up if using Δχ2 test but does not change much (Model 1) or 

decreases (Model 2) if using ΔCFI or ΔRMSEA (see Table 7). 

While both Models 1 and 2 were able to detect configural invariance all the time across 

different degrees of factor correlation, error correlation, invariance level or sample size if using 

the Δχ2 test, the two models could perfectly perform this task only with large noninvariance 

together with big sample size (i.e., 500 and 1000) if using ΔCFI or ΔRMSEA criteria. When the 

magnitude of noninvariance was small, the detection rates for configural invariance with ten 

items were always below 45% for Model 1 or less than 19% for Model 2 if using ΔCFI but were 

higher if using ΔRMSEA and could reach to the range of 73% to 96% for Model 1 and 61% - 

88% for Model 2 with large sample size (i.e. 500, 1000) coupled with big error correlations (i.e., 
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0.6) conditions. Note that the detection rates of Model 2 was slightly negatively associated with 

the magnitude of error correlations. When the number of items was ten per factor and the 

magnitude of noninvariance was large, the ability to detect configural invariance of the two 

models was pretty high for even small sample sizes and perfect with large sample sizes using any 

of the three criteria, Δχ2 test, ΔRMSEA, or ΔCFI. 

Table 7. Detection rates of models 1, 2 for configural invariance with 10-item conditions 

Detection rate 
using Δχ2 test 

Detection rate 
using ΔCFI  

Detection rate 
using ΔRMSEA  

# of 
Items 

NI 
size 

Factor 
Corr 

Sample 
size 

Error 
Corr 

M1 M2 M1 M2 M1 M2      

0.43 0.28 0.31 0.19 0.12 0.22 10 Small 0.4 100 0.3 

0.65 0.21 0.37 0.14 0.22 0.16 10 Small 0.4 100 0.6 

0.99 0.99 0.19 0.11 0.38 0.65 10 Small 0.4 500 0.3 

1.00 0.99 0.30 0.08 0.73 0.63 10 Small 0.4 500 0.6 

1.00 1.00 0.11 0.06 0.56 0.88 10 Small 0.4 1000 0.3 

1.00 1.00 0.26 0.03 0.90 0.86 10 Small 0.4 1000 0.6 

0.47 0.25 0.33 0.16 0.13 0.19 10 Small 0.7 100 0.3 

0.70 0.12 0.44 0.08 0.25 0.11 10 Small 0.7 100 0.6 

1.00 0.99 0.20 0.10 0.45 0.64 10 Small 0.7 500 0.3 

1.00 0.99 0.41 0.05 0.80 0.61 10 Small 0.7 500 0.6 

1.00 1.00 0.14 0.05 0.62 0.87 10 Small 0.7 1000 0.3 

1.00 1.00 0.43 0.03 0.96 0.86 10 Small 0.7 1000 0.6 

0.97 0.92 0.91 0.81 0.58 0.77 10 Large 0.4 100 0.3 

0.99 0.92 0.95 0.80 0.82 0.74 10 Large 0.4 100 0.6 

1.00 1.00 1.00 1.00 1.00 1.00 10 Large 0.4 500 0.3 

1.00 1.00 1.00 1.00 1.00 1.00 10 Large 0.4 500 0.6 

1.00 1.00 1.00 1.00 1.00 1.00 10 Large 0.4 1000 0.3 

1.00 1.00 1.00 1.00 1.00 1.00 10 Large 0.4 1000 0.6 

0.96 0.91 0.90 0.80 0.59 0.75 10 Large 0.7 100 0.3 

0.99 0.89 0.97 0.78 0.86 0.71 10 Large 0.7 100 0.6 

1.00 1.00 1.00 1.00 1.00 1.00 10 Large 0.7 500 0.3 

1.00 1.00 1.00 1.00 1.00 1.00 10 Large 0.7 500 0.6 

1.00 1.00 1.00 1.00 1.00 1.00 10 Large 0.7 1000 0.3 

1.00 1.00 1.00 1.00 1.00 1.00 10 Large 0.7 1000 0.6 

Note: M1 = Model 1, M2 = Model 2, NI size =magnitude of noninvariance, Factor Corr = factor correlation, Error 
Corr = error correlation 
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1.1.2. Detection Rates for Metric Invariance Conditions 

When there was noninvariance only in intercepts but factor loadings were generated 

equally between two informant factors (i.e., metric invariance conditions), detection rates of 

metric invariance conditions using Δχ2 test, ΔCFI or ΔRMSEA were always high or perfect 

(75% or above for Model 1 and 71% or above for Model 2) across all conditions (Tables 8 and 9) 

and these rates were higher for 10-item conditions than those in 5-item conditions. While 

detection rates of Model 1 were much higher than detection rates of Model 2 when sample size 

was small coupled with small degree of noninvariance, those rates of Model 1 were slightly 

lower or similar to Model 2 in other 5-item metric invariance conditions. The slight negative 

impact of error correlations on the detection rates of Model 2 was not observed in the metric 

invariance conditions possibly because the noninvariance was present only in the mean structure 

(intercepts) and the misspecification in the covariance structure by omitting error correlations in 

Model 2 seemed to have no notable impact on the detection of noninvariance in the mean 

structure.   

 Table 9 shows that the detection rates for metric invariance with 10 items per factor were 

similar and nearly perfect or perfect (95% - 100%) across all these conditions if using Δχ2 test 

but slightly higher if using ΔCFI or ΔRMSEA (98% - 100%). The detection rates of Model 2 

were also marginally higher than those of Model 1 for 10-item metric invariance if using Δχ2 test 

but similar if using the other two criteria. It should be noted that the detection rates of metric 

invariance (i.e., intercept noninvariance) were generally higher than those of configural 

invariance (i.e., factor loading and intercept noninvariance) regardless of the models used for 

invariance testing. It is well documented that factor loading noninvariance is more difficult to 

detect. Thus, as described in the previous section, when configural vs. metric invariance models 
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were compared, the metric invariance model could be falsely selected when configural 

invariance was true. However when metric invariance was generated, among the four conditions 

of 5-item + small noninvariance + small sample size where the detection rates of Model 2 were 

lower (65% - 73%) using three criteria, scalar invariance model was selected more often than 

configural invariance models for all of these criteria. 

Table 8. Detection rates of models 1 and 2 for metric invariance with 5-item conditions 

Detection rate 
using Δχ2 test 

Detection rate 
using ΔCFI 

Detection rate using 
ΔRMSEA  

# of 
Items 

NI 
size 

Factor 
Corr 

Sample 
size 

Error 
Corr 

M1 M2 M M2 M1 M2      

0.83 0.70 0.77 0.67 0.75 0.70 5 Small 0.4 100 0.3 

0.92 0.70 0.90 0.66 0.87 0.71 5 Small 0.4 100 0.6 

0.94 0.97 1.00 1.00 0.99 0.96 5 Small 0.4 500 0.3 

0.94 0.98 1.00 1.00 0.98 0.98 5 Small 0.4 500 0.6 

0.95 0.96 1.00 1.00 1.00 0.98 5 Small 0.4 1000 0.3 

0.95 0.98 1.00 1.00 1.00 0.99 5 Small 0.4 1000 0.6 

0.83 0.71 0.77 0.68 0.75 0.73 5 Small 0.7 100 0.3 

0.92 0.71 0.90 0.65 0.87 0.73 5 Small 0.7 100 0.6 

0.95 0.98 1.00 1.00 0.99 0.97 5 Small 0.7 500 0.3 

0.95 0.99 1.00 1.00 0.99 0.99 5 Small 0.7 500 0.6 

0.96 0.98 1.00 1.00 1.00 0.99 5 Small 0.7 1000 0.3 

0.95 0.99 1.00 1.00 1.00 1.00 5 Small 0.7 1000 0.6 

0.93 0.96 0.92 0.93 0.91 0.88 5 Large 0.4 100 0.3 

0.93 0.98 0.95 0.97 0.91 0.94 5 Large 0.4 100 0.6 

0.94 0.97 1.00 1.00 0.99 0.96 5 Large 0.4 500 0.3 

0.94 0.98 1.00 1.00 0.98 0.98 5 Large 0.4 500 0.6 

0.95 0.96 1.00 1.00 1.00 0.98 5 Large 0.4 1000 0.3 

0.95 0.98 1.00 1.00 1.00 0.99 5 Large 0.4 1000 0.6 

0.93 0.96 0.93 0.94 0.91 0.91 5 Large 0.7 100 0.3 

0.93 1.00 0.95 0.98 0.91 0.97 5 Large 0.7 100 0.6 

0.95 0.98 1.00 1.00 0.99 0.97 5 Large 0.7 500 0.3 

0.95 0.99 1.00 1.00 0.99 0.99 5 Large 0.7 500 0.6 

0.96 0.98 1.00 1.00 1.00 0.99 5 Large 0.7 1000 0.3 

0.95 0.99 1.00 1.00 1.00 1.00 5 Large 0.7 1000 0.6 

 
Note: M1 = Model 1, M2 = Model 2, NI size =magnitude of noninvariance, Factor Corr = factor correlation, Error 
Corr = error correlation 
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Table 9. Detection rates of models 1and 2 for metric invariance with 10-item conditions 

Detection rate 
using Δχ2 test 

Detection rate using 
ΔCFI 

Detection rate using 
ΔRMSEA 

# of 
Items 

NI 
size 

Factor 
Corr 

Sample 
size 

Error 
Corr 

M1 M2 M M2 M1 M2      

0.95 0.98 0.98 0.99 0.99 0.98 10 Small 0.4 100 0.3 

0.95 0.99 0.99 1.00 0.99 0.99 10 Small 0.4 100 0.6 

0.95 0.97 1.00 1.00 1.00 1.00 10 Small 0.4 500 0.3 

0.95 0.99 1.00 1.00 1.00 1.00 10 Small 0.4 500 0.6 

0.95 0.98 1.00 1.00 1.00 1.00 10 Small 0.4 1000 0.3 

0.96 0.99 1.00 1.00 1.00 1.00 10 Small 0.4 1000 0.6 

0.95 0.99 0.98 0.99 0.99 0.99 10 Small 0.7 100 0.3 

0.95 1.00 0.99 1.00 0.99 1.00 10 Small 0.7 100 0.6 

0.96 0.99 1.00 1.00 1.00 1.00 10 Small 0.7 500 0.3 

0.96 1.00 1.00 1.00 1.00 1.00 10 Small 0.7 500 0.6 

0.96 0.99 1.00 1.00 1.00 1.00 10 Small 0.7 1000 0.3 

0.95 1.00 1.00 1.00 1.00 1.00 10 Small 0.7 1000 0.6 

0.95 0.98 0.98 0.99 0.99 0.98 10 Large 0.4 100 0.3 

0.95 0.99 0.99 1.00 0.99 0.99 10 Large 0.4 100 0.6 

0.95 0.97 1.00 1.00 1.00 1.00 10 Large 0.4 500 0.3 

0.95 0.99 1.00 1.00 1.00 1.00 10 Large 0.4 500 0.6 

0.95 0.98 1.00 1.00 1.00 1.00 10 Large 0.4 1000 0.3 

0.96 0.99 1.00 1.00 1.00 1.00 10 Large 0.4 1000 0.6 

0.95 0.99 0.98 0.99 0.99 0.99 10 Large 0.7 100 0.3 

0.95 1.00 0.99 1.00 0.99 1.00 10 Large 0.7 100 0.6 

0.96 0.99 1.00 1.00 1.00 1.00 10 Large 0.7 500 0.3 

0.96 1.00 1.00 1.00 1.00 1.00 10 Large 0.7 500 0.6 

0.96 0.99 1.00 1.00 1.00 1.00 10 Large 0.7 1000 0.3 

0.95 1.00 1.00 1.00 1.00 1.00 10 Large 0.7 1000 0.6 

 
Note: M1 = Model 1, M2 = Model 2, NI size =magnitude of noninvariance, Factor Corr = factor correlation, Error 
Corr = error correlation 
 

1.1.3. Detection Rates for Scalar invariance conditions 

Table 10 presents detection rates of Models 1 and 2 using Δχ2 test, ΔCFI and ΔRMSEA 

for scalar invariance (i.e., conditions where magnitude of noninvariance was zero and both factor 

loadings and intercepts were invariant between mother and father factors). Both Model 1 and 

Model 2 were able to detect the scalar invariance from 84% to 100% of cases, using any of the 

three criteria. The detection rates for each of both models were similar across different factor 
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correlations, sample sizes and error correlations if using Δχ2 test but they were higher for larger 

sample sizes (500 and 1000) if using ΔCFI or ΔRMSEA than smaller sample size (100). The 

detection rates of Model 2 were relatively higher than those of Model 1 if using Δχ2 test (all 

cases) or ΔCFI test (small sample size) but those rates of the two models were similar if using 

ΔRMSEA test. 

Table 10. Detection rates of models 1 and 2 for scalar invariance conditions 

Detection rate 
using Δχ2 test 

Detection rate 
using ΔCFI  

Detection rate using 
ΔRMSEA  

# of 
Items 

NI 
size 

Factor 
Corr 

Sample 
size 

Error 
Corr 

M1 M2 M1 M2 M1 M2      

0.89 0.95 0.86 0.91 0.84 0.85 5 Zero 0.4 100 0.3 

0.88 0.98 0.91 0.97 0.85 0.94 5 Zero 0.4 100 0.6 

0.89 0.96 1.00 1.00 0.98 0.95 5 Zero 0.4 500 0.3 

0.90 0.98 1.00 1.00 0.97 0.98 5 Zero 0.4 500 0.6 

0.89 0.94 1.00 1.00 0.99 0.97 5 Zero 0.4 1000 0.3 

0.89 0.98 1.00 1.00 0.99 0.99 5 Zero 0.4 1000 0.6 

0.89 0.95 0.87 0.93 0.85 0.88 5 Zero 0.7 100 0.3 

0.88 1.00 0.92 0.98 0.84 0.96 5 Zero 0.7 100 0.6 

0.90 0.97 1.00 1.00 0.98 0.96 5 Zero 0.7 500 0.3 

0.91 0.99 1.00 1.00 0.98 0.99 5 Zero 0.7 500 0.6 

0.90 0.96 1.00 1.00 0.99 0.98 5 Zero 0.7 1000 0.3 

0.89 0.99 1.00 1.00 0.99 1.00 5 Zero 0.7 1000 0.6 

0.90 0.97 0.95 0.99 0.98 0.97 10 Zero 0.4 100 0.3 

0.89 0.99 0.98 1.00 0.97 0.99 10 Zero 0.4 100 0.6 

0.89 0.97 1.00 1.00 1.00 1.00 10 Zero 0.4 500 0.3 

0.90 0.99 1.00 1.00 1.00 1.00 10 Zero 0.4 500 0.6 

0.90 0.98 1.00 1.00 1.00 1.00 10 Zero 0.4 1000 0.3 

0.91 0.99 1.00 1.00 1.00 1.00 10 Zero 0.4 1000 0.6 

0.89 0.98 0.96 0.99 0.97 0.98 10 Zero 0.7 100 0.3 

0.88 1.00 0.98 1.00 0.98 1.00 10 Zero 0.7 100 0.6 

0.90 0.98 1.00 1.00 1.00 1.00 10 Zero 0.7 500 0.3 

0.91 1.00 1.00 1.00 1.00 1.00 10 Zero 0.7 500 0.6 

0.91 0.99 1.00 1.00 1.00 1.00 10 Zero 0.7 1000 0.3 

0.90 1.00 1.00 1.00 1.00 1.00 10 Zero 0.7 1000 0.6 

 
Note: M1 = Model 1, M2 = Model 2, NI size =magnitude of noninvariance, Factor Corr = factor correlation, Error 
Corr = error correlation 
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1.2. Impact of Simulation Factors on the Detection Rates for Model 1 and Model 2 

There were six simulation factors in Study 1: 1) number of items per factor (5 and 10); 2) 

magnitude of noninvariance (small and large); 3) location of noninvariance (noninvariance in 

both factor loadings and intercepts, noninvariance in intercepts only); 4) factor correlation (0.4 

and 0.7); 5) sample size (100, 500, and 1000); and 6) error correlation (0.3 and 0.6). The effects 

of these simulation factors in addition to the type of model as well as interactions of type of 

model and each of the simulation factor were calculated for each of the three outcomes (i.e., 

criteria): chi-squared difference test, CFI difference and RMSEA difference for each of the three 

levels of invariance (i.e., configural, metric, and scalar) conditions for the two models in Study 1. 

The cut-off value for significant effect is 0.058 based on guidelines from Cohen (1992). 

1.2.1. Effect Sizes for Configural Invariance Conditions 

As seen in Table 11, the two simulation factors, magnitude of noninvariance and sample 

size had significant effect on most or all of the three criteria. While the magnitude of 

noninvariance had important impact on every single outcome criterion with strongest influence 

(η2=0.913) on ΔCFI and least strong effect (η2=0.130) on Δχ2 test, sample size had important 

effect on the ΔRMSEA (η2= 0.5) and Δχ2 tests (η2=0.549) but not significant on the ΔCFI test. 

Table 11. Effect sizes of significant factors on detection rates of models 1 and 2 for configural 
invariance 

 Sample size  Magnitude of noninvariance  

ΔRMSEA 0.500 0.337 

ΔCFI  0.913 

Δχ2 test 0.549 0.130 

As seen in Figures 5 through 7, the detection rates of configural invariance conditions 

were much higher for larger noninvariance than smaller noninvariance. In the same manner, 

while the detection rates for larger sample sizes (500 and 1000) were always (if using Δχ2) or on 
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average (if using ΔRMSEA) higher than 80%, the detection rates for smaller sample size (100) 

could drop to 10% if using ΔRMSEA or on average of about 50% if using Δχ2. 

 

Figure 4. Distributions of detection rates of Models 1 and 2 using ΔRMSEA for configural 
invariance conditions by sample size 
 

 

 

Figure 5. Distributions of detection rates of Models 1 and 2 using ΔRMSEA for configural 
invariance conditions by magnitude of noninvariance 
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Figure 6. Distributions of detection rates of Models 1 and 2 using ΔCFI for configural invariance 
conditions by magnitude of noninvariance 
 
 

 

Figure 7. Distributions of detection rates of Models 1 and 2 using Δχ2 for configural invariance 
conditions by magnitude of noninvariance 



61 
 

 

Figure 8. Distributions of detection rates of Models 1 and 2 using Δχ2 for configural invariance 
conditions by sample size 
 

1.2.2. Effect Sizes for Metric Invariance Conditions 

The simulation factors that have significant effect on the criteria used to measure 

detection rates for metric invariance conditions are shown in Table 12. Both sample size and 

number of items significantly impacted on the detection rates using any of three criteria with 

stronger effect of sample size than effect of number of items for all of these criteria.  

Table 12. Effect sizes of significant factors on detection rates of Models 1 and 2 for metric 
invariance 

 Number of items  Sample size  
ΔRMSEA 0.189 0.298 

ΔCFI 0.101 0.258 

Δχ2 test 0.105 0.150 

As seen in Figures 9 to 14, larger number of items (10) and larger sample sizes (500 and 

1000) resulted in higher detection rates for all metric invariance conditions. Specifically, when 

the number of items was ten, the detection rates were always 95% -100% for both models using 

any of the three criteria regardless of sample size or other simulation factor variation. Similarly, 

the detection rates were also 94% or higher when sample size was 500 or 1000 even with small 

number of items. 
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Figure 9. Distributions of detection rates of Models 1 and 2 using ΔRMSEA for metric 
invariance conditions by number of items 
 
 

 

Figure 10. Distributions of detection rates of Models 1 and 2 using ΔRMSEA for metric 
invariance conditions by sample size 
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Figure 11. Distributions of detection rates of Models 1 and 2 using ΔCFI for metric invariance 
conditions by number of items 
 

 

 

Figure 12. Distributions of detection rates of Models 1 and 2 using ΔCFI for metric invariance 
conditions by sample size 
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Figure 13. Distributions of detection rates of Models 1 and 2 using Δχ2 test for metric invariance 
conditions by number of items 
 

 

Figure 14. Distributions of detection rates of Models 1 and 2 using Δχ2 test for metric invariance 
conditions by sample size 
 

1.2.3. Effect Sizes for Scalar Invariance Conditions 

Eta-squared values of significant factors on detection rates of Model 1 and Model 2 for 

scalar invariance are presented in Table 13. 
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Table 13. Effect sizes of significant factors on detection rates of Models 1 and 2 for scalar 
invariance 

 Model  Sample Size Model * Sample size # of items 

ΔRMSEA  0.393  0.252 

ΔCFI  0.470 0.076 0.093 

Δχ2 test 0.910    

 
For scalar invariance conditions, the detection rates using both ΔRMSEA and ΔCFI 

received significant effect from simulation factors of sample size and number of items with 

larger sample sizes (500 or 1000) or bigger number of items (10) led to higher detection rates. 

 

Figure 15. Distributions of detection rates of Models 1 and 2 using ΔRMSEA for scalar 
invariance conditions by sample size 
 

For example while all 10-item conditions had detection rates of 95% or above, most of 5-

item conditions had detection rates equal or larger than 87% (see Figures 16 and 18). In addition, 

as shown in Figure 19, ΔCFI also got important influence from the interaction of model and 

sample size with more differences of detection rates between small sample size (100) and larger 

sample size (500 and 1000) for Model 1 than those of Model 2. Specifically, the detection rates 

of both models were 100% for larger sample sizes (500 and 1000) but were smaller for Model 1 

than Model 2 with small sample size (100). As seen in Table 13 and Figure 20, the detection 
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rates of two models were significantly different from each other only using Δχ2 (η2 = 0.910) with 

higher rates for Model 2 than Model 1 although detection rates of Model 1 were still always 

equal or higher than 88%.  

 

Figure 16. Distributions of detection rates of Models 1 and 2 using ΔRMSEA for scalar 
invariance conditions by number of items 
 

 

Figure 17. Distributions of detection rates of Models 1 and 2 using ΔCFI for scalar invariance 
conditions by sample size 
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Figure 18. Distributions of detection rates of Models 1 and 2 using ΔCFI for scalar invariance 
conditions by number of items 
 

 

Figure 19. Distributions of detection rates of Models 1 and 2 using ΔCFI for scalar invariance 
conditions by model and sample size 
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Figure 20. Distributions of detection rates of Models 1 and 2 using Δχ2 test for scalar invariance 
conditions by type of model 
 

2. Result of Study 2 

2.1. Detection rates of Model 3, Model 4 and Model 5 

This section presents results to answer research question 1 of Study 2, i.e. how well 

Models 3, 4, and 5 detect measurement invariance levels across the simulation factors examined 

in this study measured by the detection rates for each level of MI using one of three criteria: Δχ2 

or Satorra–Bentler LRT test, ΔCFI and ΔRMSEA tests. The detection rates of Model 3 and 

Model 5 using Δχ2 test were calculated but there were many cases of negative values of this test 

for the two models, especially for scalar invariance conditions. For example for the condition of 

five items + small factor correlation + small cluster size + small number of clusters + small ICC 

+ small error correlation, out of 1000 replications, there were 168 and 289 replications with 

negative values of Δχ2 between scalar and metric invariance models for Model 3 and Model 5, 

respectively. The highest cases of negative chi-square difference values out of 1000 replications 

were 199 for Model 3 and 524 for Model 5.  On the other hand, there were almost no negative 

values (only one condition with 11 replications out of 1000 replications) of detection rates of 
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Models 3 and 5 using the SB LRT test. Thus only the detection rates using SB LRT test was 

reported for these two models with MLR estimator. 

2.1.1. Detection Rates for Configural Invariance Conditions  

Table 13 shows detection rates of Models 3, 4, and 5 for configural invariance with 5-

item (i.e. noninvariance in both intercepts and factor loadings between two factors and 5 items as 

number of items per factor) with small factor correlation. Overall the detection rates of Model 3 

were often higher than those of Model 4 and Model 5 for configural invariance 5-item conditions 

if using Δχ2, Satorra–Bentler LRT or ΔCFI test. If using ΔRMSEA criterion, the detection rates 

for these 5-item configural invariance conditions were highest for Model 4, following by Model 

5 and lowest for Model 3 with small magnitude of noninvariance but those rates were often 

highest for Model 3 for large noninvariance conditions. 

When magnitude of noninvariance was large, all three models were able to detect 

configural invariance very well using Δχ2 or Satorra–Bentler LRT test with the detection rates 

were always 99% - 100% for Model 3, 84%-100% for Model 4 and 61%-100% for Model 5. The 

only cases where Models 4 and 5 had lower detection rates using either of the two LRT tests 

were large ICC combined with small cluster sizes. For ΔCFI or ΔRMSEA, the detection rates of 

Model 3 for large noninvariance size were higher than those rates of Model 4 and the lowest 

rates were often from Model 5. 

When magnitude of noninvariance was small but total sample size was big (i.e. large 

number of clusters or small number of clusters but coupled with large cluster size), Model 3 was 

still able to catch the noninvariance in both factor loadings and intercepts 94% to 100% of the 

time if using Sattorra-Bentler LRT test. Even with small total sample size (i.e. small cluster size 

together with small number of clusters), Model 3 could detect configural invariance 66% to 90% 
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but Models 4 and 5 could only do the task 24% - 57% among 1000 replications using Δχ2 test or 

Sattorra-Bentler LRT test. The detection rates of all three models were low for small 

noninvariance if using ΔCFI or ΔRMSEA, except conditions of large sample sizes (i.e. cluster 

size of 20 and number of clusters of 80) coupled with large error correlation (i.e. 0.6) could lead 

to higher detection rates of 78% to 82% using ΔRMSEA.  

Similar to 5-item configural invariance conditions, the detection rates of Model 3 were 

highest (91% - 100%), followed by Model 5 (47% - 100%) and Model 4 (69% - 100%) if using 

Δχ2 test or Sattorra-Bentler LRT test (see Table 15) across all 10-item configural invariance 

conditions. However the ability to detect small noninvariance in these conditions of all three 

models were really low if using ΔRMSEA and ΔCFI (37% or smaller). On the other hand, when 

the magnitude of noninvariance was large, the detection rates of three models were always 87% 

to 100% if using ΔCFI but were lower if using ΔRMSEA, especially for conditions with small 

ICC combined with small number of clusters.  

  2.1.2. Detection Rates for Metric Invariance Conditions  

The detection rates of Models 3, 4, and 5 for metric invariance with 5-item conditions 

(i.e. conditions with invariant factor loadings but there was noninvariance in intercepts between 

two factors and the number of items per factor was five) using four criteria are presented in 

Table 16. When the magnitude of noninvariance was large, the ability to detect metric invariance 

was highest for Model 4, following by Model 5 and Model 3 using Satorra–Bentler LRT or 

regular LRT and the detection rates of three models were much higher for conditions with 

smaller ICC than those with larger ICC. However if using ΔRMSEA or ΔCFI, while detection 

rates of Model 4 for metric invariance with 5-item were often high (61% - 100%), these rates of 

Model 5 was pretty lower and the rates of Model 3 were smallest and even less than 30% for 

small noninvariance condtions.  
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Table 14. Detection rate (DR) of Models 3, 4, and 5 for configural invariance with 5-item and small factor correlation conditions 
DR using 
Δχ2 test 

DR using SB 
LRT 

DR using ΔCFI DR using ΔRMSEA # of 
Items 

NI 
size 

Factor 
corr 

cluster 
size 

# of 
cluster 

ICC Error 
corr 

M4 M3 M5 M3 M4 M5 M3 M4 M5        
0.45 0.61 0.45 0.33 0.26 0.23 0.13 0.41 0.31 5 Small 0.3 10 30 0.13 0.3 
0.42 0.82 0.57 0.36 0.22 0.25 0.26 0.39 0.39 5 Small 0.3 10 30 0.13 0.6 
0.47 0.61 0.24 0.32 0.35 0.21 0.13 0.29 0.15 5 Small 0.3 10 30 0.33 0.3 
0.45 0.81 0.25 0.36 0.33 0.21 0.23 0.27 0.16 5 Small 0.3 10 30 0.33 0.6 
0.88 0.98 0.90 0.28 0.19 0.20 0.27 0.67 0.47 5 Small 0.3 10 80 0.13 0.3 
0.89 1.00 0.97 0.34 0.18 0.22 0.53 0.68 0.64 5 Small 0.3 10 80 0.13 0.6 
0.71 0.98 0.47 0.27 0.22 0.12 0.27 0.33 0.16 5 Small 0.3 10 80 0.33 0.3 
0.70 1.00 0.51 0.34 0.21 0.12 0.51 0.32 0.20 5 Small 0.3 10 80 0.33 0.6 
0.77 0.94 0.74 0.34 0.23 0.24 0.18 0.55 0.37 5 Small 0.3 20 30 0.13 0.3 
0.76 1.00 0.84 0.38 0.20 0.32 0.38 0.53 0.49 5 Small 0.3 20 30 0.13 0.6 
0.71 0.94 0.30 0.34 0.38 0.20 0.18 0.24 0.13 5 Small 0.3 20 30 0.33 0.3 
0.70 1.00 0.31 0.37 0.37 0.21 0.37 0.24 0.14 5 Small 0.3 20 30 0.33 0.6 
1.00 1.00 1.00 0.27 0.15 0.21 0.46 0.81 0.66 5 Small 0.3 20 80 0.13 0.3 
1.00 1.00 1.00 0.34 0.13 0.30 0.78 0.82 0.78 5 Small 0.3 20 80 0.13 0.6 
0.92 1.00 0.60 0.27 0.20 0.13 0.44 0.32 0.14 5 Small 0.3 20 80 0.33 0.3 
0.93 1.00 0.63 0.35 0.19 0.14 0.78 0.34 0.15 5 Small 0.3 20 80 0.33 0.6 
0.96 1.00 0.96 0.97 0.89 0.86 0.73 0.93 0.85 5 Large 0.3 10 30 0.13 0.3 
0.97 1.00 0.99 0.99 0.90 0.92 0.93 0.93 0.94 5 Large 0.3 10 30 0.13 0.6 
0.85 0.99 0.61 0.97 0.80 0.59 0.72 0.65 0.46 5 Large 0.3 10 30 0.33 0.3 
0.84 1.00 0.64 0.99 0.78 0.62 0.90 0.63 0.51 5 Large 0.3 10 30 0.33 0.6 
1.00 1.00 1.00 1.00 0.99 0.99 0.98 1.00 1.00 5 Large 0.3 10 80 0.13 0.3 
1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 5 Large 0.3 10 80 0.13 0.6 
0.99 1.00 0.97 1.00 0.89 0.80 0.98 0.87 0.76 5 Large 0.3 10 80 0.33 0.3 
0.99 1.00 0.98 1.00 0.89 0.83 1.00 0.87 0.79 5 Large 0.3 10 80 0.33 0.6 
1.00 1.00 1.00 0.99 0.98 0.98 0.96 0.99 0.97 5 Large 0.3 20 30 0.13 0.3 
1.00 1.00 1.00 0.99 0.98 0.99 1.00 0.99 0.99 5 Large 0.3 20 30 0.13 0.6 
0.98 1.00 0.74 0.99 0.87 0.66 0.96 0.69 0.51 5 Large 0.3 20 30 0.33 0.3 
0.98 1.00 0.75 0.99 0.87 0.69 1.00 0.68 0.51 5 Large 0.3 20 30 0.33 0.6 
1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 5 Large 0.3 20 80 0.13 0.3 
1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 5 Large 0.3 20 80 0.13 0.6 
1.00 1.00 1.00 0.99 0.95 0.89 1.00 0.91 0.79 5 Large 0.3 20 80 0.33 0.3 
1.00 1.00 1.00 0.99 0.95 0.90 1.00 0.92 0.80 5 Large 0.3 20 80 0.33 0.6 

 
Note: NI size = magnitude of noninvariance, M3=Model 3, M4=Model 4, M5=Model 5, Factor Corr = factor correlation, Error Corr = error correlation
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Table 15. Detection rate (DR) of Models 3, 4, and 5 for configural invariance with 10-item and small factor correlation conditions 
DR using 
Δχ2 test 

DR using SB 
LRT 

DR using ΔCFI DR using ΔRMSEA # of 
items 

Factor 
Corr 

NI size Cluster 
size 

# of 
cluster 

ICC Error 
Corr 

M4 M3 M5 M3 M4 M5 M3 M4 M5        
0.78 0.91 0.82 0.29 0.21 0.23 0.00 0.21 0.12 10 0.3 Small 10 30 0.13 0.3 
0.76 0.99 0.92 0.37 0.19 0.28 0.01 0.22 0.17 10 0.3 Small 10 30 0.13 0.6 
0.71 0.91 0.47 0.28 0.28 0.20 0.00 0.01 0.02 10 0.3 Small 10 30 0.33 0.3 
0.69 0.98 0.53 0.37 0.25 0.20 0.00 0.01 0.02 10 0.3 Small 10 30 0.33 0.6 
1.00 1.00 1.00 0.19 0.11 0.13 0.03 0.40 0.21 10 0.3 Small 10 80 0.13 0.3 
1.00 1.00 1.00 0.29 0.09 0.17 0.11 0.40 0.38 10 0.3 Small 10 80 0.13 0.6 
0.98 1.00 0.93 0.18 0.10 0.07 0.02 0.01 0.01 10 0.3 Small 10 80 0.33 0.3 
0.97 1.00 0.96 0.29 0.09 0.07 0.11 0.01 0.02 10 0.3 Small 10 80 0.33 0.6 
0.98 1.00 0.98 0.24 0.16 0.21 0.00 0.15 0.14 10 0.3 Small 20 30 0.13 0.3 
0.98 1.00 1.00 0.34 0.13 0.29 0.01 0.14 0.20 10 0.3 Small 20 30 0.13 0.6 
0.94 1.00 0.67 0.24 0.24 0.17 0.00 0.00 0.01 10 0.3 Small 20 30 0.33 0.3 
0.93 1.00 0.71 0.34 0.21 0.18 0.01 0.00 0.01 10 0.3 Small 20 30 0.33 0.6 
1.00 1.00 1.00 0.14 0.06 0.11 0.03 0.36 0.24 10 0.3 Small 20 80 0.13 0.3 
1.00 1.00 1.00 0.24 0.05 0.18 0.19 0.33 0.42 10 0.3 Small 20 80 0.13 0.6 
1.00 1.00 0.99 0.13 0.06 0.05 0.02 0.00 0.00 10 0.3 Small 20 80 0.33 0.3 
1.00 1.00 1.00 0.24 0.05 0.05 0.18 0.00 0.00 10 0.3 Small 20 80 0.33 0.6 
1.00 1.00 1.00 1.00 0.98 0.96 0.19 0.95 0.82 10 0.3 Large 10 30 0.13 0.3 
1.00 1.00 1.00 1.00 0.98 0.99 0.57 0.94 0.93 10 0.3 Large 10 30 0.13 0.6 
1.00 1.00 0.96 1.00 0.94 0.87 0.12 0.29 0.25 10 0.3 Large 10 30 0.33 0.3 
1.00 1.00 0.98 1.00 0.94 0.90 0.48 0.28 0.25 10 0.3 Large 10 30 0.33 0.6 
1.00 1.00 1.00 1.00 1.00 1.00 0.83 1.00 1.00 10 0.3 Large 10 80 0.13 0.3 
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 10 0.3 Large 10 80 0.13 0.6 
1.00 1.00 1.00 1.00 1.00 0.97 0.79 0.67 0.60 10 0.3 Large 10 80 0.33 0.3 
1.00 1.00 1.00 1.00 1.00 0.98 0.99 0.67 0.68 10 0.3 Large 10 80 0.33 0.6 
1.00 1.00 1.00 0.89 1.00 1.00 0.57 0.98 0.93 10 0.3 Large 20 30 0.13 0.3 
1.00 1.00 1.00 0.89 1.00 1.00 0.96 0.98 0.98 10 0.3 Large 20 30 0.13 0.6 
1.00 1.00 1.00 0.89 0.98 0.93 0.50 0.22 0.23 10 0.3 Large 20 30 0.33 0.3 
1.00 1.00 1.00 0.89 0.99 0.95 0.94 0.19 0.21 10 0.3 Large 20 30 0.33 0.6 
1.00 1.00 1.00 0.87 1.00 1.00 0.99 1.00 1.00 10 0.3 Large 20 80 0.13 0.3 
1.00 1.00 1.00 0.87 1.00 1.00 1.00 1.00 1.00 10 0.3 Large 20 80 0.13 0.6 
1.00 1.00 1.00 0.87 1.00 0.99 0.99 0.69 0.54 10 0.3 Large 20 80 0.33 0.3 
1.00 1.00 1.00 0.87 1.00 0.99 1.00 0.68 0.54 10 0.3 Large 20 80 0.33 0.6 

  
Note: NI size = magnitude of noninvariance, M3=Model 3, M4=Model 4, M5=Model 5, Factor Corr = factor correlation, Error Corr = error correlation  
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   Increasing number of items per factor to ten results in higher detection rates of metric 

invariance using Δχ2 test or Satorra–Bentler LRT for all three models even with small magnitude 

of noninvariance (see Table 17). While the detection rates of Model 3 and Model 5 were always 

higher than 90% across all metric invariance conditions, these rates of Model 4 were only above 

90% for small ICC conditions and ranged from 63% to 86% for large ICC condition. The 

detection rates using ΔRMSEA or ΔCFI also improved when the number of items per factor 

went up to ten. While the ability to detect metric invariance with 10-item was really high to 

perfect for Models 4 and 5 using these two criteria, that ability of Model 3 was only high for a 

half of conditions (small ICC + small cluster size + small noninvariance or small cluster size + 

large noninvariance or small ICC + large noninvariance) if using ΔCFI and even fewer 

conditions (e.g. small cluster size + large number of clusters + small ICC) if using ΔRMSEA. 

Model 3 could hardly detect 10-item metric invariance for conditions of small number of clusters 

+ large ICC if using ΔRMSEA or conditions of large cluster size + large ICC if using ΔCFI. 

2.1.3. Detection Rates for Scalar Invariance Conditions 

  The detection rates of Models 3, 4, and 5 for scalar invariance (i.e. invariant intercepts 

and factor loadings) with small factor correlations conditions using chi-square difference test and 

suggested difference cutoffs of CFI and RMSEA difference tests are presented in Table 18. 

While the detection rates for scalar invariance conditions using Satorra-Bentler LRT test for 

Models 3 and 5 were always high and pretty similar to each other and across conditions (84%-

89% for Model 5 and 87% - 91% for Model 3), those rates of Model 4 were much lower (0.01% 

- 74%), particularly for higher degree of ICC conditions with the rates below 28%.
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Table 16. Detection rate of Models 3, 4, 5 for metric invariance with 5 items and small factor correlation 
DR using 
Δχ2 test 

Detection rate 
using SB LRT 

Detection rate using 
ΔCFI 

Detection rate using 
ΔRMSEA 

# of 
Items 

Factor 
Corr 

NI 
size 

Cluster 
size 

# of 
clusters 

ICC Error 
Corr 

M4 M3 M5 M3 M4 M5 M3 M4 M5        
0.89 0.63 0.73 0.30 0.86 0.77 0.13 0.85 0.75 5 0.3 Small 10 30 0.13 0.3 
0.91 0.66 0.75 0.20 0.86 0.82 0.14 0.86 0.80 5 0.3 Small 10 30 0.13 0.6 
0.69 0.26 0.32 0.06 0.73 0.47 0.03 0.61 0.39 5 0.3 Small 10 30 0.33 0.3 
0.69 0.26 0.31 0.02 0.72 0.48 0.03 0.63 0.42 5 0.3 Small 10 30 0.33 0.6 
0.94 0.93 0.93 0.22 0.98 0.96 0.29 0.96 0.97 5 0.3 Small 10 80 0.13 0.3 
0.96 0.94 0.93 0.08 0.98 0.98 0.32 0.96 0.98 5 0.3 Small 10 80 0.13 0.6 
0.75 0.59 0.67 0.01 0.87 0.68 0.03 0.80 0.64 5 0.3 Small 10 80 0.33 0.3 
0.77 0.62 0.67 0.00 0.87 0.69 0.03 0.81 0.65 5 0.3 Small 10 80 0.33 0.6 
0.91 0.69 0.79 0.03 0.93 0.83 0.05 0.90 0.81 5 0.3 Small 20 30 0.13 0.3 
0.93 0.71 0.79 0.01 0.93 0.86 0.07 0.92 0.86 5 0.3 Small 20 30 0.13 0.6 
0.54 0.25 0.33 0.01 0.77 0.49 0.01 0.66 0.39 5 0.3 Small 20 30 0.33 0.3 
0.55 0.26 0.31 0.00 0.78 0.49 0.01 0.67 0.38 5 0.3 Small 20 30 0.33 0.6 
0.93 0.95 0.95 0.00 0.98 0.97 0.09 0.99 0.98 5 0.3 Small 20 80 0.13 0.3 
0.94 0.96 0.94 0.00 0.98 0.98 0.09 0.99 0.99 5 0.3 Small 20 80 0.13 0.6 
0.59 0.64 0.69 0.00 0.91 0.68 0.00 0.85 0.59 5 0.3 Small 20 80 0.33 0.3 
0.60 0.64 0.68 0.00 0.91 0.69 0.00 0.84 0.59 5 0.3 Small 20 80 0.33 0.6 
0.94 0.94 0.93 0.96 0.99 0.99 0.77 0.92 0.96 5 0.3 Large 10 30 0.13 0.3 
0.96 0.93 0.92 0.95 0.99 0.99 0.79 0.94 0.96 5 0.3 Large 10 30 0.13 0.6 
0.77 0.76 0.81 0.50 0.86 0.88 0.21 0.85 0.85 5 0.3 Large 10 30 0.33 0.3 
0.78 0.76 0.79 0.34 0.86 0.88 0.21 0.87 0.85 5 0.3 Large 10 30 0.33 0.6 
0.94 0.95 0.94 1.00 1.00 1.00 0.99 0.96 1.00 5 0.3 Large 10 80 0.13 0.3 
0.96 0.95 0.94 1.00 1.00 1.00 0.99 0.97 0.99 5 0.3 Large 10 80 0.13 0.6 
0.76 0.95 0.93 0.51 0.99 1.00 0.48 0.94 0.98 5 0.3 Large 10 80 0.33 0.3 
0.78 0.95 0.93 0.25 0.99 1.00 0.48 0.95 0.98 5 0.3 Large 10 80 0.33 0.6 
0.91 0.94 0.93 0.81 1.00 1.00 0.48 0.94 0.99 5 0.3 Large 20 30 0.13 0.3 
0.94 0.93 0.93 0.50 1.00 1.00 0.50 0.95 0.99 5 0.3 Large 20 30 0.13 0.6 
0.56 0.79 0.83 0.09 0.88 0.92 0.09 0.90 0.88 5 0.3 Large 20 30 0.33 0.3 
0.57 0.79 0.81 0.01 0.89 0.92 0.10 0.91 0.86 5 0.3 Large 20 30 0.33 0.6 
0.93 0.96 0.95 0.90 1.00 1.00 0.90 0.99 1.00 5 0.3 Large 20 80 0.13 0.3 
0.94 0.96 0.94 0.50 1.00 1.00 0.91 0.99 1.00 5 0.3 Large 20 80 0.13 0.6 
0.59 0.96 0.93 0.01 1.00 1.00 0.19 0.97 0.99 5 0.3 Large 20 80 0.33 0.3 
0.60 0.96 0.92 0.00 1.00 1.00 0.19 0.96 0.99 5 0.3 Large 20 80 0.33 0.6 

 
Note: NI size = magnitude of noninvariance, M3=Model 3, M4=Model 4, M5=Model 5, Factor Corr = factor correlation, Error Corr = error correlation  
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Table 17. Detection rate of Models 3, 4, and 5 (M3, M4, and M5) for metric invariance with 10-item and small factor correlation 
Detection rate 
using Δχ2 test 

Detection rate 
using SB LRT 

Detection rate using 
ΔCFI  

Detection rate using 
ΔRMSEA  

# of 
Items 

Factor 
Corr 

NI size Cluster 
size 

# of 
clusters 

ICC Error 
corr 

M4 M3 M5 M3 M4 M5 M3 M4 M5        
0.95 0.92 0.93 1.00 1.00 1.00 0.16 1.00 1.00 10 0.3 Small 10 30 0.13 0.3 
0.98 0.93 0.93 1.00 1.00 1.00 0.19 1.00 1.00 10 0.3 Small 10 30 0.13 0.6 
0.80 0.92 0.92 0.83 0.98 0.99 0.01 1.00 0.97 10 0.3 Small 10 30 0.33 0.3 
0.84 0.93 0.92 0.58 0.99 1.00 0.01 1.00 0.98 10 0.3 Small 10 30 0.33 0.6 
0.96 0.94 0.95 1.00 1.00 1.00 0.89 1.00 1.00 10 0.3 Small 10 80 0.13 0.3 
0.98 0.94 0.94 1.00 1.00 1.00 0.93 1.00 1.00 10 0.3 Small 10 80 0.13 0.6 
0.83 0.94 0.95 0.95 1.00 1.00 0.19 1.00 1.00 10 0.3 Small 10 80 0.33 0.3 
0.86 0.94 0.95 0.68 1.00 1.00 0.21 1.00 1.00 10 0.3 Small 10 80 0.33 0.6 
0.94 0.93 0.93 0.85 1.00 1.00 0.02 1.00 1.00 10 0.3 Small 20 30 0.13 0.3 
0.97 0.92 0.92 0.55 1.00 1.00 0.02 1.00 1.00 10 0.3 Small 20 30 0.13 0.6 
0.65 0.93 0.92 0.05 1.00 1.00 0.00 1.00 0.95 10 0.3 Small 20 30 0.33 0.3 
0.67 0.92 0.92 0.00 1.00 1.00 0.00 1.00 0.95 10 0.3 Small 20 30 0.33 0.6 
0.95 0.95 0.96 0.87 1.00 1.00 0.33 1.00 1.00 10 0.3 Small 20 80 0.13 0.3 
0.97 0.95 0.95 0.64 1.00 1.00 0.37 1.00 1.00 10 0.3 Small 20 80 0.13 0.6 
0.63 0.94 0.95 0.01 1.00 1.00 0.01 1.00 1.00 10 0.3 Small 20 80 0.33 0.3 
0.66 0.95 0.95 0.00 1.00 1.00 0.02 1.00 1.00 10 0.3 Small 20 80 0.33 0.6 
0.95 0.92 0.93 1.00 1.00 1.00 0.76 1.00 1.00 10 0.3 Large 10 30 0.13 0.3 
0.98 0.93 0.93 1.00 1.00 1.00 0.85 1.00 1.00 10 0.3 Large 10 30 0.13 0.6 
0.80 0.92 0.92 0.99 0.98 0.99 0.03 1.00 1.00 10 0.3 Large 10 30 0.33 0.3 
0.84 0.93 0.92 0.94 0.99 1.00 0.04 1.00 1.00 10 0.3 Large 10 30 0.33 0.6 
0.96 0.94 0.95 1.00 1.00 1.00 1.00 1.00 1.00 10 0.3 Large 10 80 0.13 0.3 
0.98 0.94 0.94 1.00 1.00 1.00 1.00 1.00 1.00 10 0.3 Large 10 80 0.13 0.6 
0.83 0.94 0.95 1.00 1.00 1.00 0.54 1.00 1.00 10 0.3 Large 10 80 0.33 0.3 
0.86 0.94 0.95 0.99 1.00 1.00 0.58 1.00 1.00 10 0.3 Large 10 80 0.33 0.6 
0.94 0.93 0.93 0.89 1.00 1.00 0.24 1.00 1.00 10 0.3 Large 20 30 0.13 0.3 
0.97 0.92 0.92 0.89 1.00 1.00 0.26 1.00 1.00 10 0.3 Large 20 30 0.13 0.6 
0.65 0.93 0.92 0.39 1.00 1.00 0.00 1.00 0.99 10 0.3 Large 20 30 0.33 0.3 
0.67 0.92 0.92 0.09 1.00 1.00 0.00 1.00 1.00 10 0.3 Large 20 30 0.33 0.6 
0.95 0.95 0.96 0.87 1.00 1.00 0.95 1.00 1.00 10 0.3 Large 20 80 0.13 0.3 
0.97 0.95 0.95 0.87 1.00 1.00 0.97 1.00 1.00 10 0.3 Large 20 80 0.13 0.6 
0.63 0.94 0.95 0.40 1.00 1.00 0.12 1.00 1.00 10 0.3 Large 20 80 0.33 0.3 
0.66 0.95 0.95 0.02 1.00 1.00 0.12 1.00 1.00 10 0.3 Large 20 80 0.33 0.6 

 
Note: NI size = magnitude of noninvariance, M3=Model 3, M4=Model 4, M5=Model 5, Factor Corr = factor correlation, Error Corr = error correlation  
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Using ΔCFI or ΔRMSEA criteria, while Model 3 was able to detect scalar invariance all 

the time (99% - 100%), Model 5 could detect this level of measurement invariance 79% - 100% 

across all conditions, and Models 4 could perform this task 81% - 100% for only the conditions 

with low ICC + large number of clusters. The detection rates of Model 4 for high ICC + small 

number of clusters conditions were only 34% - 47% if using ΔRMSEA and 53% - 58% for high 

ICC + small number of clusters + small number of items conditions if using ΔCFI. 

2.2. Impact of simulation factors on the detection rates for Models 3, 4 and 5  

Study 2 includes eight simulation factors: 1) number of items (5 and 10); 2) magnitude of 

noninvariance (zero, small, large); 3) location of noninvariance (noninvariance in both intercepts 

and factor loadings, noninvariance in intercepts only); 4) factor correlation (0.3 and 0.5); 5) 

cluster size (10 and 20); 6) number of clusters (30 and 80); 7) ICC (0.13 and 0.33); and 8) error 

correlation (0.3 and 0.8). Effect size of each simulation factor and the type of model (i.e. Model 

3, 4 or 5) on one of the three outcomes for each model (i.e. Satorra–Bentler LRT, ΔCFI, and 

ΔRMSEA for Models 3 and 5, and Δχ2 test, ΔCFI, ΔRMSEA for Model 4) were calculated using 

eta-squared analyses for main effects and first-degree interactions of the type of model with each 

simulation factor with suggested cut-off value of 0.058 as significant effect by Cohen (1992). As 

explained earlier, the detection rates of Models 3 and 5 using Δχ2 test were calculated but had 

negative values for several cases and were not reported in this dissertation. Instead, the detection 

rates of Models 3 and 5 using SB LRT and the detection rates of Model 4 using Δχ2 test were 

combined into one outcome criterion named as ΔLRT (loglikelihood ratio difference) to 

calculate effect sizes. 
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Table 18. Detection rates (DR) of Models 3, 4 and 5 (M3, M4, and M5) for scalar invariance with small factor correlation conditions 
DR 
using 
Δχ2 test 

DR using Satorra-
Bentler χ2 test 

DR using ΔCFI DR using ΔRMSEA # of 
items 

Factor 
correlation 

Cluster 
size 

# of 
clusters 

ICC Error 
correlation 

M4 M3 M5 M3 M4 M5 M3 M4 M5 
0.66 0.89 0.87 0.99 0.87 0.93 0.99 0.67 0.88 5 0.3 10 30 0.13 0.3 
0.74 0.88 0.86 1.00 0.91 0.92 0.99 0.74 0.85 5 0.3 10 30 0.13 0.6 
0.26 0.89 0.85 0.99 0.38 0.79 0.99 0.53 0.83 5 0.3 10 30 0.33 0.3 
0.28 0.88 0.84 1.00 0.41 0.79 1.00 0.56 0.84 5 0.3 10 30 0.33 0.6 
0.67 0.90 0.89 1.00 1.00 1.00 1.00 0.82 0.95 5 0.3 10 80 0.13 0.3 
0.74 0.91 0.89 1.00 1.00 1.00 1.00 0.86 0.95 5 0.3 10 80 0.13 0.6 
0.28 0.91 0.88 1.00 0.81 0.95 1.00 0.73 0.94 5 0.3 10 80 0.33 0.3 
0.30 0.91 0.88 1.00 0.84 0.95 1.00 0.75 0.92 5 0.3 10 80 0.33 0.6 
0.39 0.88 0.88 1.00 0.86 0.95 1.00 0.62 0.90 5 0.3 20 30 0.13 0.3 
0.44 0.88 0.87 1.00 0.88 0.94 1.00 0.66 0.89 5 0.3 20 30 0.13 0.6 
0.08 0.88 0.85 1.00 0.34 0.83 1.00 0.56 0.88 5 0.3 20 30 0.33 0.3 
0.09 0.88 0.85 1.00 0.34 0.81 1.00 0.58 0.89 5 0.3 20 30 0.33 0.6 
0.42 0.91 0.89 1.00 0.99 1.00 1.00 0.81 0.97 5 0.3 20 80 0.13 0.3 
0.47 0.91 0.89 1.00 0.99 0.99 1.00 0.82 0.96 5 0.3 20 80 0.13 0.6 
0.09 0.90 0.87 1.00 0.80 0.96 1.00 0.78 0.96 5 0.3 20 80 0.33 0.3 
0.09 0.91 0.87 1.00 0.81 0.96 1.00 0.78 0.96 5 0.3 20 80 0.33 0.6 
0.49 0.87 0.88 1.00 0.94 0.98 1.00 0.92 0.98 10 0.3 10 30 0.13 0.3 
0.63 0.87 0.87 1.00 0.98 0.98 1.00 0.95 0.98 10 0.3 10 30 0.13 0.6 
0.10 0.86 0.86 1.00 0.42 0.89 1.00 0.94 0.98 10 0.3 10 30 0.33 0.3 
0.13 0.87 0.86 1.00 0.47 0.90 1.00 0.95 0.98 10 0.3 10 30 0.33 0.6 
0.47 0.88 0.88 1.00 1.00 1.00 1.00 0.99 1.00 10 0.3 10 80 0.13 0.3 
0.59 0.88 0.88 1.00 1.00 1.00 1.00 1.00 1.00 10 0.3 10 80 0.13 0.6 
0.10 0.89 0.88 1.00 0.91 0.99 1.00 1.00 1.00 10 0.3 10 80 0.33 0.3 
0.11 0.88 0.89 1.00 0.93 0.99 1.00 1.00 1.00 10 0.3 10 80 0.33 0.6 
0.16 0.87 0.87 1.00 0.93 0.99 1.00 0.94 0.99 10 0.3 20 30 0.13 0.3 
0.22 0.87 0.86 1.00 0.96 0.99 1.00 0.95 0.98 10 0.3 20 30 0.13 0.6 
0.01 0.87 0.86 1.00 0.37 0.91 1.00 0.95 0.99 10 0.3 20 30 0.33 0.3 
0.01 0.87 0.86 1.00 0.40 0.90 1.00 0.96 0.99 10 0.3 20 30 0.33 0.6 
0.17 0.90 0.89 1.00 1.00 1.00 1.00 0.99 1.00 10 0.3 20 80 0.13 0.3 
0.21 0.89 0.89 1.00 1.00 1.00 1.00 1.00 1.00 10 0.3 20 80 0.13 0.6 
0.01 0.89 0.89 1.00 0.92 0.99 1.00 1.00 1.00 10 0.3 20 80 0.33 0.3 
0.01 0.89 0.89 1.00 0.93 0.99 1.00 1.00 1.00 10 0.3 20 80 0.33 0.6 
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2.2.1. Effect Sizes for Configural Invariance Conditions 

Table 19 presented eta-squared values of significant simulation factors for configural 

invariance using each of the three outcome criteria.  

Table 19. Effect sizes of significant factors on detection rates of Models 3, 4 and 5 for configural 
invariance 
Criteria Model # of items # of 

clusters  
Magnitude of noninvariance  ICC 

ΔRMSEA  0.09 0.06 0.58 0.11 

ΔCFI    0.94  

ΔLRT 0.09 0.09 0.11 0.17  

 
As seen in Table 19, the simulation factor of magnitude of noninvariance had significant 

effect on all of three outcome criteria with strongest effect on ΔCFI (η2= 0.94) and least strong 

on ΔLRT (η2=0.17). Figures 23, 25, and 29 show that bigger degree of noninvariance resulted in 

much higher detection rates than smaller noninvariance although the differences were larger 

using ΔCFI than if using ΔRMSEA or either of the two LRT tests (i.e. Satorra–Bentler LRT for 

Models 3 and 5 and regular Δχ2 test for Model 4). Both the number of items and number of 

clusters factors significantly impacted on the detection rates for configural invariance using 

ΔRMSEA or ΔLRT tests with larger number of items or number of clusters led to higher 

detection rates (see Figures 21, 22 and Figures 27, 28).  

ICC played important role on detection rates for configural invariance of three models in 

Study 2 only when using ΔRMSEA criterion. The smaller the ICC was, the higher the detection 

rates for configural invariance using this criterion (see Figure 24). The detection rates of three 

models for configural invariance were significantly different only when using ΔLRT (Figure 26) 

and were pretty similar if using other two other alternative fit criteria. 
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Figure 21. Distributions of detection rates of three models with partially nested data for 
configural invariance using ΔRMSEA by number of items 
 

 

Figure 22. Distributions of detection rates of three models with partially nested data for 
configural invariance using ΔRMSEA by number of clusters 
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Figure 23. Distributions of detection rates of three models with partially nested data for 
configural invariance using ΔRMSEA by magnitude of noninvariance 
 

 

Figure 24. Distributions of detection rates of three models with partially nested data for 
configural invariance using ΔRMSEA by ICC 
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Figure 25. Distributions of detection rates of three models with partially nested data for 
configural invariance using ΔCFI by magnitude of noninvariance 
 
 

 

Figure 26. Distributions of detection rates of three models with partially nested data for 
configural invariance using Δχ2 or SB LRT test by model 
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Figure 27. Distributions of detection rates of three models with partially nested data for 
configural invariance using Δχ2 or SB LRT test by number of items 
 

 

 

Figure 28. Distributions of detection rates of three models with partially nested data for 
configural invariance using Δχ2 or SB LRT test by number of clusters 
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Figure 29. Distributions of detection rates of three models with partially nested data for 
configural invariance using Δχ2 or SB LRT test by magnitude of noninvariance 
 

2.2.2. Effect sizes for Metric Invariance Conditions 

Effect sizes of the factors that played important role on the detection rates using three 

outcome criteria for metric invariance conditions are shown in Table 20. The ICC significantly 

impacted on the detection rates of metric invariance conditions for all three outcome criteria with 

larger ICC resulted in lower detection rates (see Figures 32, 36 and 39).  

Table 20: Effect sizes of significant factors on detection rates of Models 3, 4, and 5 for metric 
invariance 
 Model # of 

items  
Magnitude of 
noninvariance  

Model * Cluster size ICC  

ΔRMSEA 0.61  0.06  0.07 

ΔCFI 0.41 0.10  0.06 0.07 

ΔLRT  0.15 0.07  0.22 
 
As seen in Figures 30 and 33, while the detection rates of metric invariance using 

ΔRMSEA or ΔCFI were similar for Models 4 and 5, these rates were lower with larger variance 

for Model 3 than Models 4 and 5. However, it should be kept in mind that the cutoff of RMSEA 

difference (and CFI difference in the following section) was developed on the basis of a single 

level model so it is relevant to Models 4 and 5 but may not be appropriate to Model 3 which is 

multilevel. 
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Figure 30. Distributions of detection rates of three models with partially nested data for metric 
invariance using ΔRMSEA by model 
 

While number of items had significant effects on detection rates using ΔCFI and ΔLRT, 

magnitude of noninvariance was the significant factor on the detection rates using ΔRMSEA and 

ΔLRT. As shown in Figures 31 and 38, while majority of metric invariance conditions had 

detection rates of 80% or higher with large noninvariance using both ΔRMSEA and ΔLRT, 

about only a half of metric invariance conditions had detection rates of 60% or above if using 

ΔRMSEA and 80% or above if using ΔLRT with small noninvariance. 

 

Figure 31. Distributions of detection rates of three models with partially nested data for metric 
invariance using ΔRMSEA by magnitude of noninvariance 
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As presented in Figures 34 and 37, while all of metric invariance conditions had detection 

rates of 60% or above (with mean =90%) using ΔLRT and many invariance conditions had 

detection rates 80% or higher with average rates of 90% using ΔCFI for 10-item, the average of 

detection rates for 5-items were only nearly 70% for ΔCFI and 80% for ΔLRT.  

 

Figure 32. Distributions of detection rates of three models with partially nested data for metric 
invariance using ΔRMSEA by ICC 
 

 

Figure 33. Distributions of detection rates of three models with partially nested data for metric 
invariance using ΔCFI by type of model 
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Figure 34. Distributions of detection rates of three models with partially nested data for metric 
invariance using ΔCFI by number of items 
 

 

Figure 35. Distributions of detection rates of three models with partially nested data for metric 
invariance using ΔCFI by model and cluster size 
 

Figure 35 shows that while the detection rates of Model 4 and Model 5 were similar 

across two levels of cluster size (10 and 20), the detection rates of Model 3 were distinguishable 

between these two cluster sizes. 
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Figure 36. Distributions of detection rates of three models with partially nested data for metric 
invariance using ΔCFI by ICC 
 

 

Figure 37. Distributions of detection rates of three models with partially nested data for metric 
invariance using Δχ2 or SB LRT test by number of items 
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Figure 38. Distributions of detection rates of three models with partially nested data for metric 
invariance using Δχ2 or SB LRT test by magnitude of noninvariance 
 

 

Figure 39. Distributions of detection rates of three models with partially nested data for metric 
invariance using Δχ2 or SB LRT test by ICC 
 

2.2.3. Effect Sizes for Scalar Invariance Conditions 

Table 21 shows the eta-squared values for factors that had significant effects on the 

detection rates of Models 3, 4 and 5 for scalar invariance conditions. The detection rates of three 

models were significantly different from each other using all of the three criteria with strongest 
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effect on the ΔLRT test and least strong on ΔCFI. However the effect of type of model on the 

detection rates of scalar invariance conditions depended on number of items if using ΔRMSEA 

(Figure 40) and ICC if using ΔCFI or ΔLRT (Figures 41 and 42). It can be seen in Figure 40 that 

while there was almost no difference in detection rates of Model 3 between 5-item and 10-item 

scalar conditions, the difference was noticeable for Model 5 (about 18%) and largest for Model 4 

(about 26%). 

Table 21. Effect sizes of significant factors on detection rates of Models 3,4, and 5 for scalar 
invariance 

 

 

Figure 40. Distributions of detection rates of three models with partially nested data for scalar 
invariance using ΔRMSEA by type of model and number of items 

 
As witnessed in Figures 41 and 42, the differences in detection rates between two levels 

of ICC were largest for Model 4 and smallest for Model 3 but the gap was wider if using CFI 

than using Δχ2 or SB LRT test. 

 Model # of 
items (i) 

ICC (ic) Number of 
clusters (c) 

Model*ic Model*i Model*c 

ΔRMSEA 0.348 0.252    0.228  
ΔCFI 0.273  0.151 0.127 0.179  0.122 
ΔLRT 0.808    0.069   
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Figure 41. Distributions of detection rates of three models with partially nested data for scalar 
invariance using ΔCFI by type of model and ICC 
 

 

Figure 42. Distributions of detection rates of three models with partially nested data for scalar 
invariance using Δχ2 or SB LRT test by type of model and ICC 
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Figure 43. Distributions of detection rates of three models with partially nested data for scalar 
invariance using ΔCFI by type of model and number of clusters 
 

Similar to the interaction effect of type of model and ICC on the detection rates of scalar 

invariance using ΔCFI, the differences of detection rates between small number of cluster and 

large number of cluster were biggest for Model 4, following by Model 5 and smallest (only 1%) 

for Model 3 as shown in Figure 43.  
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CHAPTER FIVE: DISCUSSION 

1. Summary of the Study 

1.1. Purpose 

The goals of this dissertation were twofold: (1) propose two statistical models to test 

measurement invariance between adult informants of children (e.g., father vs. mother, parent vs. 

teacher, etc.) for paired and partially nested data, and (2) conduct two Monte Carlo simulation 

studies to investigate the adequacy of the two proposed models as well as the commonly used 

multiple-group CFA model and the design-based multilevel CFA model.  

1.2. Research questions  

Research questions for Study 1: 

1. How well does each model for the paired data detect the level of measurement 

invariance (configural, metric, or scalar invariance) under different research settings?  

2. What simulation design factors (e.g., factor correlations, degree of data dependency) 

are related to the performance of the proposed model as well as the comparative model for the 

paired data?  

Research questions for Study 2: 

1. How well does each model detect the level of measurement invariance (configural, 

metric, or scalar invariance) under different research settings for partially nested data?  
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2. What simulation design factors (e.g., sample size, degree of data dependency) are 

related to the performance of the proposed model as well as the comparative models for partially 

nested data?  

 1.3. Methods  

The two studies in this dissertation were Monte Carlo simulations with a partially 

crossed-factorial design. Study 1 included six simulation factors (number of items, location of 

measurement noninvariance, magnitude of noninvariance, magnitude of correlation between two 

informant scores, magnitude of correlation between two unique factors, and sample size). Study 

2 was comprised of eight factors (number of items, location of measurement noninvariance, 

magnitude of noninvariance, magnitude of correlation between two informant scores, magnitude 

of correlation between two unique factors, number of level-2 units, number of level-1 units per 

level-2 unit, and partial ICC for nested items).  

Mplus 7 software program was utilized to generate data and run the fitted models. The 

Statistical Analysis System (SAS) package version 9.4 was used to analyze the impact of 

simulation factors on the outcomes as well as to call and run the fitted models with all 

replications for each condition in each simulation study. While the estimation method for Model 

1, Model 2 and Model 4 was maximum likelihood (ML), the estimator for Model 3 and Model 5 

was maximum likelihood estimation with robust standard errors (MLR), which were the default 

estimators for single level and multilevel or design-based models in Mplus.  
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2. Answers to Research Questions for Study 1 

2.1. Research question 1: How well does each of the two statistical models for the paired 

data detect the level of measurement invariance (configural, metric, or scalar invariance) under 

different research settings?  

Overall, both Model 1 (repeated measure CFA) and Model 2 (multiple-group CFA) could 

detect scalar invariance very well with the detection rates from 84% to 100% for Model 1 and 

slightly higher (85% to 100%) for Model 2 using any of the three criteria. The detection rates of 

either of the two models in Study 1 using Δχ2 test were pretty similar across all scalar invariance 

conditions. In other words, no simulation factors examined in Study 1 had significant impact on 

the detection rates of the two models in Study 1 using Δχ2 test. For these conditions of invariant 

intercepts and factor loadings, the effects of two simulation factors of magnitude of 

noninvariance and location of noninvariance on the detection rates did not exist and there was 

only significant difference in detection rates using Δχ2 test between the two models with higher 

rates for Model 2 than those of Model 1. However sample size and error correlation had an 

impact on the detection rates using ΔCFI and ΔRMSEA with higher error correlation or larger 

sample size resulting in higher detection rates. There was no significant difference between the 

two models using either of the two global fit indices for scalar invariance conditions. 

Unlike the scalar invariance conditions, ability to detect configural invariance or metric 

invariance was always higher for Model 1 than Model 2 across all cases using any of the three 

criteria. When sample size was large (500 or 1000), detection rates of Model 1 were always 89% 

to 100% for configural invariance and 83% or above for metric invariance. These rates for Model 

2 were 79% to 100% for configural invariance and 70% to 100% for metric invariance using Δχ2 
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test. If the magnitude of noninvariance or number of items was large, the detection rates using 

Δχ2 test were also often high even with a small sample size.  

In general, using Δχ2 test or RMSEA difference with cut-off of 0.015 often resulted in 

higher detection rates of measurement invariance for both Models 1 and 2 than using CFI 

difference with suggested cut-off of 0.01. CFI difference could result in high detection rates for 

scalar or metric invariance across most of the research scenarios examined in this study but only 

led to high detection rates for configural invariance when sample size was 1000 with small 

noninvariance or sample size of 500 or larger with big noninvariance.  

2.2. Research question 2:  What simulation design factors (e.g., sample size, degree of 

data dependency) are related to the performance of the proposed model as well as the 

comparative models for paired data?  

While the magnitude of noninvariance, sample size and the interaction of these two 

factors all had a significant effect on the detection rates of configural invariance using Δχ2 test or 

ΔRMSEA criteria for both Models 1 and 2, only magnitude of noninvariance significantly 

impacted on the detection rates using ΔCFI test. Although higher sample size and magnitude of 

noninvariance would lead to higher detection rates of configural invariance, the difference in 

detection rates of small noninvariance coupled with small sample size was much bigger than the 

difference of large noninvariance coupled with large sample size. In other words, the increase of 

detection rates of configural invariance using Δχ2 test or ΔRMSEA criteria from small to large 

noninvariance was slower than the improvement of these rates when sample size increased. The 

larger the magnitude of noninvariance resulted in much higher the detection rates than the 

smaller magnitude of noninvariance for the two models for configural invariance while using the 

ΔCFI test. 
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Both sample size and number of items were the simulation factors that significantly 

impacted on the ability to detect the noninvariance in only intercepts and invariant factor 

loadings (i.e. metric invariance conditions) for the paired data using all of the three criteria: Δχ2, 

ΔCFI or ΔRMSEA test.  

For conditions with invariant factor loadings and intercepts (i.e. scalar invariance), only 

type of model had eta-squared value larger than significant cutoff of 0.058 on the detection rates 

using Δχ2 with higher detection rates for Model 2 than Model 1. However the detection rates of 

scalar invariance for Model 1 were still always higher than 88% across all conditions using Δχ2. 

Both sample size and number of items were factors that had significant effect on the detection 

rates using both alternative fit criteria, ΔRMSEA and ΔCFI for the paired data. But the effects of 

sample size on detection rates using ΔCFI depended on the effect of number of items on 

detection rates using this criterion. 

3. Answers to Research Questions for Study 2 

3.1. Research question 1: How well does each of the three statistical models detect the 

level of measurement invariance (configural, metric, or scalar invariance) under different 

research settings for partially nested data?  

The ability to detect scalar invariance with partially nested data was highest for Model 3, 

following by Model 5 and lowest for Model 4 for all three criteria. Using any of three criteria, 

while both Model 3 could detect scalar invariance well with detection rates of nearly 90% across 

most scalar conditions, Model 4 could only perform this task well for most conditions (except the 

ones with small number of clusters coupled with large ICC) if using ΔRMSEA or ΔCFI. If using 

Δχ2 test, Model 4 could moderately detect scalar invariance only with conditions of small cluster 

size combined with small ICC and could hardly detect scalar invariance for other conditions. 
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Among the three criteria (i.e., LRT difference, CFI difference, or RMSEA difference), the 

highest detection rates were often from ΔCFI and ΔRMSEA and the lowest rates were from Δχ2 

test. Particularly for Model 3, using ΔCFI and ΔRMSEA always resulted in detection rates of 

99% or 100% across all scalar invariance conditions.  

Using Δχ2 test or Satorra-Bentler LRT could help detect configural invariance much 

better for Model 3 than Models 4 and 5, especially for 5-item conditions. With this criterion, 

while Model 3 could catch configural invariance 82% to 100% among 1000 replication across 

majority of configural invariance conditions (except only two conditions with detection rates of 

61%), Models 4 and 5 could reach these rates only with the largest sample sizes (i.e., large 

number of cluster or large cluster size or large in both factors) when the magnitude of 

noninvariance was small. For small sample size conditions combined with small noninvariance, 

the detection rates for configural invariance were only 31% - 58% for Models 4 and 5. When 

either magnitude of noninvariance or number of items was bigger, the detection rates for 

configural invariance were much improved for all of the three models examined in Study 2. 

The detection rates for configural invariance were much lower using ΔCFI or ΔRMSEA 

than Δχ2 test or Satorra-Bentler LRT for Models 3, 4 and 5 with the highest rates for Model 3, 

following by Model 5 and then Model 4. Probability to detect configural invariance for all three 

models was only moderate to high using ΔCFI when magnitude of noninvariance was large and 

largest with combined big noninvariance + large number of items. The detection rates for 

configural invariance using ΔCFI were very low or low (around 10% - 40%) for all small 

magnitude of noninvariance conditions. Ability to detect configural invariance using ΔRMSEA 

was highest for conditions of combined large magnitude of noninvariance + large sample size 
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(i.e., bigger number of clusters or cluster size or both) for Models 3 and 4 and for conditions of 

combined large magnitude of noninvariance + small ICC for Model 5. 

Unlike scalar and configural invariance, the ability to detect metric invariance was 

highest for Model 4, following by Model 5 and lowest for Model 3 across many conditions using 

all of the three performance criteria. The ability to detect metric invariance of Models 3 and 5 

using SB LRT test was lowest (25% - 33%) for four conditions of large ICC combined with 

small noninvariance level + small number of items + small number of clusters. The detection 

rates of these two models using SB LRT test witnessed much improvement (82% - 97% for the 

two models) for 10-item conditions, even with small noninvariance or small number of clusters. 

When using ΔCFI, the detection rates were highest for Model 3 with conditions of either 

combined small cluster size + small ICC or small cluster size + large noninvariance, highest for 

Model 5 with all conditions of 10-item (99%-100%) or conditions of 5-item coupled with large 

magnitude of noninvariance (88% -100%). While the detection rates using ΔCFI were really low 

(2% - 39%) for small noninvariance + 5-item or small noninvariance + large ICC (0.33) + large 

number of clusters (80) for Model 3, the overall detection rates using ΔCFI were pretty high to 

perfect for Models 4 and 5. The detection rates for metric invariance using ΔRMSEA were 

higher (61% - 100%) and more stable for Model 4 than those of Models 3 and 5 (39% - 100%), 

especially in comparison with Model 3 (0% - 100%). Model 3 could only detect metric 

invariance pretty well to perfectly (77% - 100%) in the following conditions: combination of 

small ICC + large number of clusters + large noninvariance, or small ICC + large number of 

clusters + small noninvariance + 10-item, or small ICC + large noninvariance + 10-item.  In 

other conditions, Model 3 could never or sometimes catch metric invariance. Models 4 and 5 

were able to detect metric invariance very well (mostly above 80% for Model 4 and 95% for 



99 
 

Model 5) in majority of conditions examined in Study 2, except conditions of five items per 

factor coupled with large ICC. 

3.2. Research question 2: What simulation design factors (e.g., sample size, degree of 

data dependency) are related to the performance of the proposed model as well as the 

comparative models for partially nested data?  

Magnitude of noninvariance was the factor that had strong effect on detection rates using 

all three criteria for configural invariance and two criteria (ΔLRT and ΔRMSEA) for metric 

invariance in Study 2. While ICC had a significant effect on detection rates of metric invariance 

using all three criteria, it only had a significant effect on detection rates of configural invariance 

using ΔRMSEA. Number of items also had a significant impact on detection rates of the two out 

three criteria (i.e. ΔRMSEA and ΔLRT for configural invariance, and ΔCFI and ΔLRT for metric 

invariance conditions) for metric and configural invariance and on detection rates using 

ΔRMSEA for scalar invariance but in different directions. While larger number of items led to 

higher detection rates if using ΔLRT or ΔCFI, it resulted in lower detection rates if using 

ΔRMSEA for both metric and configural invariance. But for scalar invariance conditions, the 

detection rates of larger number of items conditions were significantly higher than those rates of 

smaller number of items if using ΔRMSEA. 

While type of model had significant effects on detection rates of scalar invariance using 

any of three criteria, this factor had significant effect on only ΔLRT for configural invariance 

and on both ΔCFI and ΔRMSEA for metric invariance conditions. Model 3 often had significant 

higher detection rates for scalar and configural invariance but significant lower detection rates 

for metric invariance conditions than Models 4 and 5.  
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4. Discussion and Conclusion 

This dissertation examined the performance of two proposed models and other commonly 

used or potential suitable models to test measurement invariance with paired and partially nested 

data. 

For the paired data, given high detection rates across three levels of measurement 

invariance (except small sample size conditions in configural invariance), both Model 1 and 

Model 2 could be reasonable to test measurement invariance with Δχ2 test. However Model 1 

could be a favored choice to detect noninvariance due to high and better overall detection rates in 

metric and configural invariance than those rates of Model 2. The detection rates of metric 

invariance in Model 1 were always very high across all conditions and those rates of configural 

invariance were also ranged between 74% and 100% except the four conditions of small sample 

size combined with small noninvariance. To ensure high probability of detecting all levels of 

measurement invariance, particularly for configural invariance, sample size of 500 or higher 

would be recommended. If researchers are interested in testing scalar invariance, Model 2 is a 

good option with consistently high detection rates for this level of MI. 

The results of this dissertation suggested that taking into account the partially nested 

feature of data (as in Model 3) seems to be more effective in detecting invariance and 

noninvariance in both factor loadings and intercepts (i.e. scalar invariance and configural 

invariance, respectively) than detecting noninvariance in intercepts only (i.e. metric invariance).  

As higher detection rates for all configural and scalar invariance, and moderate detection 

rates for many metric invariance conditions (except cases of small number of clusters combined 

with large ICC), Model 3 could be a good candidate to test measurement invariance with 

partially nested data. But Model 3 should be used only when having sufficient number of clusters 
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or if having small number of clusters, the ICC should be also low. Model 5 might be also a 

reasonable option for this type of data if both the number of clusters and cluster size were large 

(i.e., 80 and 20, respectively), or either one of these two factors was large coupled with small 

ICC. If ICC is not small, it is recommended to have a large number of clusters or combination of 

large number of clusters and large cluster size to ensure high detection rates of measurement 

invariance for partially nested data. As multiple group CFA had better and reasonable detection 

rates than the design-based and multilevel repeated measure CFA models cross configural, 

metric and scalar invariance with the conditions of small cluster size (10) and small ICC (0.13), 

researchers can consider using this model to test measurement invariance when they can only 

collect 10 participants within a cluster (e.g. students within a classroom) and there is small 

degree of data dependency (e.g. small variance between clusters) in the data.  

For the paired data, among the configural and metric invariance conditions where the 

detection rates were low, the next less restricted model in the sequential MI testing was often 

selected if the correct invariance model was not chosen. Specifically, when the configural 

invariance was not correctly detected using Δχ2, ΔRMSEA or ΔCFI test, the metric invariance 

was often selected and the scalar invariance was often chosen in the cases that the metric 

invariance was not correctly detected.  

Based on the research scenario examined in this dissertation, ΔRMSEA and ΔCFI tended 

to favor scalar invariance when the data were partially nested. When the data were generated as 

scalar invariance (i.e. invariant factor loadings and intercepts), the detection rates were nearly 

perfect to perfect using these two criteria. When the data were generated as either metric or 

configural invariance, if the correct model was not detected, scalar model was also always 

chosen as the correct model by these two model fit indices regardless the data were generated as 
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configural or metric invariance. However if using Δχ2 test or SB LRT test, for the incorrect 

detection cases, if the configural invariance model was not detected, the metric invariance model 

was chosen more often than the scalar invariance model and if the metric invariance model was 

not detected, the scalar invariance model was more favorably selected than the metric invariance 

model. 

In general, the larger number of items per factor often led to higher detection rates across 

three levels of measurement invariance for both studies in this dissertation if using Δχ2 test, SB 

LRT or ΔCFI. However for partially nested data, while increasing the number of items per factor 

from five to ten resulted in moderate to very high detection rates for scalar invariance and metric 

invariance (with highest rates for Model 3), the ability of detecting noninvariance in configural 

invariance significantly decreased with small number of items if using ΔRMSEA. The ability to 

detect metric invariance or configural invariance, especially for partially nested data was also 

poor in many conditions using ΔRMSEA and ΔCFI. This result reiterates the recommendation 

from Ryu and West (2009) as well as Hsu, Kwok, Lin, and Acosta (2015) about using level-

specific global fit indices of ΔRMSEA and ΔCFI for multilevel SEM data due to its lack of 

power to detect the misspecification in the between-group model. In another aspect, Putnick and 

Bornstein (2016) suggested some evidence about the relationship of model size (such as degree 

of freedom, the amount of factors and observed variables estimated in the model) and the 

performance of fit statistics used in measurement invariance testing (e.g., chi-square difference 

test, ΔRMSEA, and ΔCFI). However there were lack of studies that examined how model 

complexity (e.g. number of items per factor, number of parameters estimated) or data complexity 

(e.g. nested or paired) impacts on the performance of these model fit criteria across different 

levels of measurement invariance. Further studies are needed to determine how much the 
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performance of Δχ2 test, ΔRMSEA, and ΔCFI depends on the number of items or other factors 

in the models used to test different levels of measurement invariance. 

5. Limitations of the Study 

Given the Monte Carlo research design with control of simulation factors, this 

dissertation has some limitations. The results of this dissertation are limited to the simulation 

conditions investigated in the two studies and should be generalized within the extent of these 

research scenarios. In addition, variables investigated in this dissertation were all continuous 

with assumption of multivariate normality while categorical variables such as Likert-type scales 

were also common in educational, social and health sciences. 
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