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Dedication

For those who have been pushed to the margins for shining a light
where darkness was with the sole intent of making the universe
a more hospitable place for creation.

I have declared a spiritual war upon all coercion that re-
stricts man’s creative activity. There are two kinds of co-
ercion. One of them is physical. . . the other. . . is logical. We
must accept self–evident principles and the theorems result-
ing therefrom. . . . That coercion originated with the rise of
Aristotelian logic and Euclidean geometry.

—Jan Łukasiewicz, Selected Works

I have proclaimed the glory of thy works to the people who
will read these demonstrations, to the extent that the limita-
tions of my spirit would allow.

—Johannes Kepler, Harmonia Mundi

The idea does not belong to the soul; it is the soul that be-
longs to the idea.

—Charles Sanders Peirce, Collected Papers, Vol. 1

Civilization does not consist in progress as such and in mind-
less destruction of old values, but in developing and refining
the good that has been won.

—Carl Gustav Jung, Collected Works, Vol. 2

I wish we could open our eyes to see in all directions at the
same time.

—Death Cab for Cutie, “Marching Bands of Manhattan”

At least we have tomorrow if we have tomorrow. Tomor-
row’s just a day beyond today if tomorrow comes tomorrow.

—Built to Spill, “Tomorrow”

I know that I don’t know everything there is to know, but I
know that if you plant a seed you can live to see it grow.

—Brian Ernst, “Change”
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Abstract

In , Paul C. Rosenbloom put out a definition of a Post algebra after Emil L. Post published a collection

of systems of many–valued logic. Post algebras became easier to handle following George Epstein’s alterna-

tive definition. As conceived by Rosenbloom, Post algebras were meant to capture the algebraic properties

of Post’s systems; this fact was not verified by Rosenbloom nor Epstein and has been assumed by others in

the field. In this thesis, the long–awaited demonstration of this oft–asserted assertion is given.

After an elemental history of many–valued logic and a review of basic Classical Propositional Logic, the

systems given by Post are introduced. The definition of a Post algebra according to Rosenbloom together

with an examination of the meaning of its notation in the context of Post’s systems are given. Epstein’s

definition of a Post algebra follows the necessary concepts from lattice theory, making it possible to prove

that Post’s systems of many–valued logic do in fact form a Post algebra.
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Chapter 1

Introduction

In the first two years of the s, systems of many–valued logic were introduced in the respective articles

[5] and [6] of Jan Łukasiewicz and Emil L. Post, making many–valued logic an accepted area of research.

Although it is a convention that in the West many–valued logic has grown from a seed that sprouted in

Ancient Greece, it is worth noting that outside of the West, particularly in Asia, many–valued logic has been

essential to the view of the world fostered by Buddhism. Today, many–valued logic is a dynamic branch of

mathematics, but this dynamism did not come about through Jan Łukasiewicz and Emil L. Post alone. In

, Charles Sanders Peirce wrote down, in the manuscript we call the Logic Notebook (MS ), a formal

system of many–valued logic; the author is not aware of any earlier formal system. Unfortunately, it does

not seem that Peirce pursued this subject sufficiently far. Łukasiewicz and Post developed their systems of

many–valued logic independently of Peirce and of each other.

Two decades after Post put forward his systems of many–valued logic, Paul C. Rosenbloom gave a defi-

nition of an algebraic structure that served as an interpretation of Post’s systems; these structures are called

Post algebras. Rosenbloom’s definition consists of plenty of notation and axioms, making it quite heavy to

build a theory on. Almost two more decades passed before George Epstein proposed an equivalent definition

that is comparatively easy to understand; since then, much research has been done regarding Post algebras.

However, the author’s investigation has uncovered a question—does the definition of a Post algebra actu-

ally capture Post’s systems of many–valued logic?—that has been repeatedly answered in the affirmative,

but without any extant justification or proof found; in this thesis, a demonstration of this assertion shall

be given, making this the focal point of the thesis. In Chapter 2, after introducing Post’s propositional

systems of many–valued logic (Section 2.1) and Post algebras according to Rosenbloom’s definition (Sec-

tion 2.2), we shall construct the equivalent definition given by Epstein (Subsection 2.2.2). Finally, we shall

show the connection between Post algebras and the set of formulas of the propositional systems of Post,

when partitioned by a suitable equivalence relation (Subsection 2.2.3). For the moment, let us begin with a

formalization of Classical Propositional Logic and a prelude to many–valued logic.
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1.1 A Review of Classical Propositional Logic

The precursor to the system known today as Classical Propositional Logic (CPL) is found in the texts Prior

Analytics and On Interpretation by Aristotle1. In these books, Aristotle attempted to systematize, while cre-

ating a model of, what he considered to be proper reasoning. In CPL, each member of a set of propositional

variables is assigned an element from the set of truth values {>,⊥}, where> and⊥ are to be interpreted

as true and false, respectively. The set of formulas of CPL is defined as the smallest set containing the set of

propositional variables, and closed with respect to a unary operator ¬¬ and a binary operator ∨∨; these oper-

ators are called negation and disjunction, respectively. Propositional variables are called atomic formulas.

Operators on sets of formulas are also known as connectives.

For two formulas ϕ and ψ of CPL, (¬¬ϕ) and (ϕ∨∨ψ) are defined through the following truth tables:

ϕ (¬¬ϕ)

> ⊥

⊥ >

ψ

∨∨ > ⊥

ϕ
> > >

⊥ > ⊥

Observe that the truth value of the negation of a formula is the «opposite» of its truth value and the truth

value of the disjunction of a pair of formulas is the truth value of the «truest» disjunct. For readability, we

shall not use outermost parentheses in formulas unless the meaning is ambiguous.

Using ¬¬ and ∨∨, other connectives of CPL can be defined. For example, conjunction, a binary connective

denoted by ∨∨, is defined as ¬¬ ((¬¬ϕ)∨∨ (¬¬ψ)), where ϕ and ψ are formulas of CPL. A simple computation

reveals the truth table for ϕ ∨∨ ψ as follows:

ψ

∨∨ > ⊥

ϕ
> > ⊥

⊥ ⊥ ⊥

The connection between CPL and the English language is very straighforward. In On Interpretation,

Aristotle tells us that a sentence is considerable speech, various parts of which may have meaning. Certain

sentences—those that are either true or false—Aristotle called propositions. The class of propositions is the

intended realm of CPL. A proposition not containing in it another proposition is known as a simple propo-

sition. Simple propositions correspond to propositional variables in CPL; all other propositions are called

1The author is not claiming that the historical figure known by the same name is the actual writer of these works; unless it is

specified, anytime Aristotle is referred to, it is meant the person (or collection of persons) who wrote these works.
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compound propositions. In CPL, the formulas containing connectives can be thought of as representing

compound propositions.

The set of propositions in the English language can be partitioned into two polarity classes, called affir-

mative and negative. If the formulas of CPL are interpreted as propositions in the English language, it should

not be a surprise that the connective ¬¬ corresponds to the operation which changes the polarity class of a

proposition. Certain words in the English language are reserved as coordinators; these words are the mech-

anism through which two or more propositions are joined together to form another proposition. A moment

of thinking can show that the binary connectives ∨∨ and ∨∨ act as the coordinators or and and, respectively.

In CPL, the so–called Principle of Bivalence, telling us that every formula is (or has truth value) either

true or false, is upheld. A tautology of CPL is a formula for which every entry in its truth table is>; that is,

a formula is a tautology of CPL if it is true no matter what the truth values of its component formulas are.

Similarly, a formula whose truth table consists only of⊥ is called a contradiction.

If CPL is to be a model of proper reasoning, then two facts, among others, must hold. Firstly, the Law of

Excluded Middle tells us that for every formula, the formula or its negation is true. In the language of CPL,

the Law of Excluded Middle is equivalent to ϕ∨∨ (¬¬ϕ) being a tautology for any formula ϕ; this can be

observed in the following truth table:

ϕ ¬¬ϕ ϕ∨∨ (¬¬ϕ)

> ⊥ >

⊥ > >

The Law of Non–Contradiction asserts that it is not the case that a formula and its negation are true at the

same time; in CPL this means that ϕ∨∨ (¬¬ϕ) is a contradiction or, equivalently, that ¬¬ (ϕ
∨∨

(¬¬ϕ)) is a

tautology, for any formula ϕ. The following truth table confirms the Law of Non–Contradiction in CPL:

ϕ ¬¬ϕ ϕ
∨∨

(¬¬ϕ) ¬¬ (ϕ
∨∨

(¬¬ϕ))

> ⊥ ⊥ >

⊥ > ⊥ >

1.2 An Excavation of Many–Valued Logic

Through Prior Analytics and On Interpretation, Aristotle’s ideas on logic came to be the prominent and

most prevailing theory to this day, influencing every form of human thought and organization; we may never

know how convinced Aristotle, the historical figure, was that his work was adequate enough to deserve

having such an impact on what was to be the future of our species. A century before Aristotle is supposed
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to have roamed a corner of our planet, a collection of ideas that—like Aristotle’s—has been capable of

surviving in the conceptual sphere of human consciousness was in the process of being realized. Today, that

collection of ideas is called Buddhism.

Buddhism is filled with propositions that do not obey the Law of Excluded Middle nor the Law of Non–

Contradiction when viewed from the standpoint of Classical Propositional Logic; in [8], Graham Priest

provides the following example courtesy of the Buddhist philosopher Nagarjuna: “The nature of things is to

have no nature.” A way to capture the notions set forth in Buddhism involves the rejection of the Principle of

Bivalence in favor of allowing some formulas to have truth values distinct from> and⊥. Systems of logic

in which more than two truth values are involved are called systems of many–valued logic. See [7] and [8]

for a detailed description of how Buddhism can be approached through a system of many–valued logic.

Despite the fact that the system passed down in Aristotle’s works has served as the primary model of

reasoning, many–valued logic made an appearance in these writings, notably regarding propositions about

the future known as future contingents. Future contingents would come back in the twentieth century to

motivate the work of Jan Łukasiewicz and help solidify many–valued logic as an accepted area of research.

The author invites the reader to examine Chapter 1 of [9] and Chapter 4 of [4] for a general history of

many–valued logic dating back to Aristotle.

As an example of a system of many–valued logic, let us look at Charles Sanders Peirce’s system, which

was exposed by Max Fisch and Atwell Turquette in the  article [3]. In the Logic Notebook, Peirce tells

us that certain propositions declaring properties about objects are not conclusively true nor false, but at the

limit between true and false. In Peirce’s system, formulas are allowed to have any of the three truth values

V, L, and F, which are to represent verum (true), limit, and falsum (false), respectively. Peirce’s system

consists of four unary connectives and six binary connectives shown in the following tables, where x and y

are formulas:

x x x̊ x̀ x́

V F L F L

L L L V F

F V L L V

y

Φ V L F

x

V V V V

L V L F

F V F F

y

Θ V L F

x

V V V V

L V L L

F V L F
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y

Ψ V L F

x

V V V F

L V L F

F F F F

y

Z V L F

x

V V L F

L L L F

F F F F

y

Ω V L F

x

V V L F

L L L L

F F L F

y

Υ V L F

x

V V L V

L L L L

F V L F

As to what moved Peirce to settle for the connectives given above is a matter of speculation. Atwell Tur-

quette published subsequent articles exploring Peirce’s system of many–valued logic and the interested

reader is encouraged to inspect [11, 12, 13].

5



Chapter 2

An Algebraic Perspective of the Propositional Systems of Emil L. Post

2.1 The Propositional Systems of Post: Syntax and Semantics

For an integer n ≥ 2, the formulas of Post’s propositional n–valued logic are strings of symbols containing

the rotational (unary) connective ′, and the disjunctive (binary) connective ∨, with parentheses as auxiliary

symbols. The formulas are obtained after finitely many applications of the following rules:

– Any element from a countable set of propositional variables Λ is a formula.

– If ϕ is a formula, so is (ϕ′), called the rotation of ϕ.

– If ϕ and ψ are formulas, so is (ϕ ∨ ψ), which is called the disjunction of ϕ and ψ.

The set of formulas of Post’s propositional n–valued logic shall be denoted by Pn. If a formula ϕ is in Λ,

then ϕ is called an atomic formula; otherwise, ϕ is said to be a compound formula. Provided the meaning is

clear, when we find it convenient, we shall suppress the use of parentheses.

To each atomic formula ϕ, we assign an element from the set

∆n :=

{
i

n− 1
; i = 0, . . . , n− 1

}
,

called its truth value and denoted by v̂(ϕ); hence, v̂ : Λ → ∆n and we shall call v̂ a truth assignment of

Λ. Once a truth assignment v̂ of Λ has been agreed upon, we can extend v̂ to all formulas in Pn and obtain

a map v : Pn → ∆n, called a valuation of Pn, which agrees with v̂ on Λ and gives the truth values of all

compound formulas according to the rules below:

– If θ = ϕ′, then v(θ) :=


1 if v(ϕ) = 0,

v(ϕ)− 1
n−1 otherwise.

– If θ = ϕ ∨ ψ, then v(θ) := max {v(ϕ) ,v(ψ)}.

We can organize the information above into a truth table in which, given an integer n ≥ 2, for a formula

or a pair of formulas in Pn, all truth values or combinations of truth values, respectively, along with their

6



respective rotation and disjunction are displayed. For example, with n = 2, the set of truth values is given

by ∆2 = {0, 1} and we have the following truth tables:

ϕ ϕ′

1 0

0 1

ψ

∨ 1 0

ϕ
1 1 1

0 1 0

Note that the truth values of the formulas in P2 agree with the truth values of the formulas of Classical Propo-

sitional Logic when > is replaced by 1, ⊥ is replaced by 0, and the rotational and disjunctive connectives

are seen as ¬¬ and ∨∨, respectively.

When n = 3, we have that ∆3 = {0, 1/2, 1} and the truth tables are given by:

ϕ ϕ′

1 1/2

1/2 0

0 1

ψ

∨ 1 1/2 0

ϕ

1 1 1 1

1/2 1 1/2 1/2

0 1 1/2 0

The truth tables show that the formulas in P3 have truth values coinciding with the three–valued logic of

Charles Sanders Peirce when replacing 1, 1/2, and 0 by V, L, and F, respectively, and rotation and disjunction

are seen as Peirce’s ´ and Θ, respectively.

To see these systems under a better light, let us see what happens for a larger value of n. In the case

n = 5, ∆5 = {0, 1/4, 1/2, 3/4, 1} with the following truth tables:

ϕ ϕ′

1 3/4

3/4 1/2

1/2 1/4

1/4 0

0 1

ψ

∨ 1 3/4 1/2 1/4 0

ϕ

1 1 1 1 1 1

3/4 1 3/4 3/4 3/4 3/4

1/2 1 3/4 1/2 1/2 1/2

1/4 1 3/4 1/2 1/4 1/4

0 1 3/4 1/2 1/4 0

For an arbitrary integer n ≥ 2, we have that

∆n =

{
0,

1

n− 1
,

2

n− 1
, . . . ,

n− 3

n− 1
,
n− 2

n− 1
, 1

}

7



and the truth tables are given by:

ϕ ϕ′

1 n−2
n−1

n−2
n−1

n−3
n−1

...
...

2
n−1

1
n−1

1
n−1 0

0 1

ψ

∨ 1 n−2
n−1 · · · 2

n−1
1

n−1 0

ϕ

1 1 1 · · · 1 1 1
n−2
n−1 1 n−2

n−1 · · · n−2
n−1

n−2
n−1

n−2
n−1

...
...

...
. . .

...
...

...
2

n−1 1 n−2
n−1 · · · 2

n−1
2

n−1
2

n−1
1

n−1 1 n−2
n−1 · · · 2

n−1
1

n−1
1

n−1

0 1 n−2
n−1 · · · 2

n−1
1

n−1 0

Thus, we can see that rotation permutes the truth values of a formula in Pn cyclically and the truth value of

the disjunction of a pair of formulas is the maximum of the truth values of its disjuncts.

DEFINITION 1 A formula ϕ ∈ Pn is a tautology of Pn if v(ϕ) = 1 for every valuation v of Pn; ϕ is a

contradiction of Pn if v(ϕ) = 0 for every v. The sets consisting of tautologies and contradictions of Pn

shall be denoted by t and c, respectively; that is,

t := {ϕ ; ϕ ∈ Pn, v(ϕ) = 1 for every v : Pn → ∆n}

and

c := {ϕ ; ϕ ∈ Pn, v(ϕ) = 0 for every v : Pn → ∆n} .

That the sets t and c are not empty has been shown by Emil L. Post in [6]. Post also showed that the set of

connectives { ′ ,∨} is truth–functionally complete in the sense that any truth table is the truth table of some

formula in Pn.

DEFINITION 2 A binary relation ≡ on a set Ξ is an equivalence relation if it is reflexive, symmetric, and

transitive, that is, if for every θ,ϕ,ψ ∈ Ξ:

– θ ≡ θ.

– If ϕ ≡ ψ, then ψ ≡ ϕ.

– If θ ≡ ϕ and ϕ ≡ ψ, then θ ≡ ψ.

DEFINITION 3 Two formulas ϕ,ψ ∈ Pn are (logically) equivalent, denoted by ϕ m ψ, if v(ϕ) = v(ψ) for

every valuation v of Pn.

Observe that m in Definition 3 is an equivalence relation on Pn.

8



2.1.1 Post’s Interpretation of the Propositional Systems

Emil L. Post suggested a semantical interpretation for the systems of propositional logic he defined. Post

did not elaborate in depth regarding the implications of his interpretation. In this section, we shall give an

overview of Post’s intepretation of his many–valued propositional logic as is found in [6] accounting for

notational changes.

Let n ≥ 2 be an integer. The set Λ of atomic formulas of Pn consists of sequences of n − 1 atomic

formulas of Classical Propositional Logic with increasing truth values; for simplicity, we shall use 1 for >

and 0 for⊥. Hence, Λ ⊆ Kn−1, where K is the set of atomic formulas of Classical Propositional Logic. Let

û : K→ {0, 1} be a truth assignment of K. Then, ϕ is in Λ if

ϕ = 〈p1, p2, . . . , pn−1〉,

where pi ∈ K, i = 1, . . . , n − 1, with û(pj−1) ≤ û(pj), j = 2, . . . , n − 1. From û, we obtain a truth

assignment v̂ : Λ→ ∆n of Λ as follows:

v̂(ϕ) =


1 if û(p1) = 1,

n−i
n−1 if û(pi) = 1 and û(pi−1) = 0, where i = 2, . . . , n− 1,

0 if û(pn−1) = 0.

With Λ as given above, the compound formulas ϕ ∨ ψ and ϕ′ in Pn, where ϕ = 〈p1, p2, . . . , pn−1〉 and

ψ = 〈q1, q2, . . . , qn−1〉, are defined as

ϕ ∨ ψ = 〈p1∨∨ q1, p2∨∨ q2, . . . , pn−1∨∨ qn−1〉

and

ϕ′ = 〈¬¬ (p1∨∨ · · ·∨∨ pn−1) ,¬¬ (p1∨∨ · · ·∨∨ pn−1)∨∨ (p1
∨∨
p2) , . . . ,

¬¬ (p1∨∨ · · ·∨∨ pn−1)∨∨ (pn−2
∨∨
pn−1)〉,

respectively. Now, v̂ can be extended to all formulas in Pn, giving us a valuation v of Pn according to the

following rule with ϕ = 〈p1, p2, . . . , pn−1〉:

v(ϕ) =


1 if u(p1) = 1,

n−i
n−1 if u(pi) = 1 and u(pi−1) = 0, where i = 2, . . . , n− 1,

0 if u(pn−1) = 0,

9



where u is a valuation of the formulas of Classical Propositional Logic agreeing with û on K and with

truth values conforming to the truth tables for Classical Propositional Logic as given in Chapter 1, with the

exception that> and⊥ are replaced by 1 and 0, respectively.

As an example, let û be a truth assignment of K and consider ϕ ∈ Λ, where

ϕ = 〈p1, p2, p3〉

with p1, p2, p3 ∈ K such that û(p1) = û(p2) = 0 and û(p3) = 1. Observe that ϕ is in P4. Then, using û,

we have a truth assignment v̂ : Λ→ ∆4 of Λ with

v̂(ϕ) =
4− 3

4− 1
=

1

3
.

We can now compute the truth value of the ϕ′. To that end, let ϕ′ = 〈ϕ1, ϕ2, ϕ3〉, where, by definition,

ϕ1 = ¬¬ ((p1∨∨ p2)∨∨ p3) ,

ϕ2 = ¬¬ ((p1∨∨ p2)∨∨ p3)∨∨ (p1
∨∨
p2) , and

ϕ3 = ¬¬ ((p1∨∨ p2)∨∨ p3)∨∨ (p2
∨∨
p3) .

Letting u be the extension of û to all formulas of Classical Propositional Logic, a straightforward computa-

tion tells us that u(ϕ1) = 0, u(ϕ2) = 0, and u(ϕ3) = 0. Thus, since u(ϕ3) = 0, we have that v(ϕ′) = 0,

where v is a valuation of P4; note that this result agrees with the definition of the rotational connective.

Similarly, for ψ = 〈q1, q2, q3〉 ∈ P4, where q1, q2, and q3 are formulas of Classical Propositional Logic

with u(q1) = 0 and u(q2) = u(q3) = 1, we can compute the truth value of

ϕ ∨ ψ = 〈p1∨∨ q1, p2∨∨ q2, p3∨∨ q3〉.

Observe that

v(ψ) =
4− 2

4− 1
=

2

3
.

Now, we have that

u(p1∨∨ q1) = 0,

u(p2∨∨ q2) = 1, and

u(p3∨∨ q3) = 1.

Thus,

v(ϕ ∨ ψ) =
4− 2

4− 1
=

2

3
= max {v(ϕ) ,v(ψ)} ,

as the definition of disjunction prescribes.
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2.2 Post Algebras

In his  article [10], Paul C. Rosenbloom defined an algebra to capture the many–valued logic put forth

by Post, which Rosenbloom called a Post algebra.

DEFINITION 4 Given an integer n ≥ 2, the triple 〈Ξ,g,∼〉, where Ξ is a set,g is a binary operation on

Ξ, and ∼ is a unary operation on Ξ, is a Post algebra (of type n) if the axioms below are satisfied subject to

the following notational conventions:

Notations:

1. θgϕgψ = (θgϕ)gψ.

2.
b

g
i=a

f(i) = f(a)g · · ·g f(b).

3. 0∼ϕ = ϕ,
m+1∼ ϕ = ∼m∼ϕ.

4. 1ϕ =

n−1

g
m=0

m∼ϕ.

5. 2ϕ = ∼
(
1ϕ
)
, mϕ =

m−1∼
(
1ϕ
)
. (2 ≤ m ≤ n− 1).

6. 0ϕ = ∼
(
n−1ϕ

)
=

n−1∼
(
1ϕ
)
.

7. ϕ1 =
n−1∼

(
n−1

g
m=1

m∼ϕ

)
.

8. ϕm =
n−1∼
(
n−1∼
(
ϕg 2ϕ

)
g m∼ϕ

)
. (2 ≤ m ≤ n− 1).

9. ϕ
j
i =

(
i∼ϕ
)j

.

10. ϕ−i = ϕ1
n−i+1.

11. −ϕ =

n−1

g
m=1

ϕm
m.

12. ϕfψ = − ((−ϕ)g (−ψ)).

13. θfϕfψ = (θfϕ)gψ.

Axioms:

1. Ξ contains at least two distinct elements.

11



2. g is commutative and associative.

3. For every ϕ ∈ Ξ, ϕgϕ = ϕ.

4. For every ϕ ∈ Ξ, 1ϕ =
n∼
(
1ϕ
)

= ∼
(
0ϕ
)
.

5. For every θ,ϕ,ψ ∈ Ξ, θg (ϕfψ) = (θgϕ)f (θgψ).

6. For every ϕ,ψ ∈ Ξ,
n−1

g
m=0

(
ϕf m∼ψ

)
= ϕ.

7. For every ϕ ∈ Ξ,

ϕ = ϕ1g
(
2ϕfϕ1

n−1
)
g

n−3

g
i=3

((
iϕg i+1ϕ

)
fϕ−i

)
g

(
n−2ϕfϕ1

3

)
g
(
n−1ϕfϕ1

2

)
g
(
0ϕfϕ1

1

)
.

8. For every ϕ,ψ0, . . . ,ψn−1 ∈ Ξ, ∼

(
n−1

g
i=0

(
ψifϕ1

i

))
=

n−1

g
i=0

(
∼ψifϕ1

i

)
.

2.2.1 A Closer Look at the Definition in the Context of Post’s Propositional Systems

In what follows, we shall attempt at making better sense of what the notations given in Definition 4 mean in

the context of the systems of Post. Firstly, we shall adapt the notational conventions given in Definition 4.

DEFINITION 5 Given formulas θ, ϕ, ψ ∈ Pn, we have the following notational definitions:

1. θ ∨ ϕ ∨ ψ := (θ ∨ ϕ) ∨ ψ.

2.
b∨

i=a

f(i) := f(a) ∨ · · · ∨ f(b).

3. R0(ϕ) := ϕ, Rm+1(ϕ) := (Rm(ϕ))′.

4. 1ϕ :=

n−1∨
m=0

Rm(ϕ).

5. 2ϕ :=
(
1ϕ
)′
, mϕ := Rm−1(1ϕ) . (2 ≤ m ≤ n− 1) .

6. 0ϕ :=
(
n−1ϕ

)′
= Rn−1(1ϕ).

7. ϕ1 := Rn−1

(
n−1∨
m=1

Rm(ϕ)

)
.

8. ϕm := Rn−1(Rn−1(ϕ ∨ 2ϕ
)
∨ Rm(ϕ)

)
. (2 ≤ m ≤ n− 1).

12



9. ϕj
i :=

(
Ri(ϕ)

)j .
10. ϕ :=

n−1∨
m=1

ϕm
m.

11. ϕ ∧ ψ := ϕ ∨ ψ.

For a clearer understanding of the notations given in Definition 5, let us construct truth tables for a formula

ϕ ∈ P4. Note that R1(ϕ) = ϕ′, R2(ϕ) = ϕ′′, and R3(ϕ) = ϕ′′′. Notations 3–6 in Definition 5 are captured

in the following truth tables:

ϕ ϕ′ ϕ′′ ϕ′′′ 1ϕ 2ϕ 3ϕ 0ϕ

1 2/3 1/3 0 1 2/3 1/3 0

2/3 1/3 0 1 1 2/3 1/3 0

1/3 0 1 2/3 1 2/3 1/3 0

0 1 2/3 1/3 1 2/3 1/3 0

Continuing in Definition 5, the truth tables corresponding to Notations 7–10 are given by:

ϕ ϕ1 ϕ2 ϕ3 ϕ1
1 ϕ2

2 ϕ3
3 ϕ

1 1 2/3 1/3 0 0 0 0

2/3 0 0 0 0 0 1/3 1/3

1/3 0 0 0 0 2/3 0 2/3

0 0 0 0 1 0 0 1

Finally, for formulas ϕ,ψ ∈ P4, Notation 11 in Definition 5 can be portrayed as follows:

ψ

∧ 1 2/3 1/3 0

ϕ

1 1 2/3 1/3 0

2/3 2/3 2/3 1/3 0

1/3 1/3 1/3 1/3 0

0 0 0 0 0

As we can see from the truth tables above, the formulas mϕ, where 0 ≤ m ≤ 3, take one truth value

uniformly for every valuation. Note that the truth tables for ϕm consist of the truth value 0 for every

valuation v of P4, unless v(ϕ) = 1, in which case, v(ϕm) = v(mϕ). In the truth tables for ϕm
m, the truth

values of ϕm are permuted in such a way that ϕ coincides with negation as was defined by Łukasiewicz.

Lastly, the entries in the truth table for ϕ∧ ψ are the minimum of corresponding truth values of ϕ and ψ. In

the remainder of this section, we shall show the properties just mentioned.
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PROPOSITION 2.1 For any formula ϕ ∈ Pn and any valuation v of Pn,

v
(
(Rm(ϕ))′

)
= v

(
Rm
(
ϕ′
))
,

where m ≥ 0 is any integer.

Proof. We shall proceed by induction on m.

In the base case, m = 0, we have that

v
((

R0(ϕ)
)′)

= v
(
ϕ′
)

= v
(
R0
(
ϕ′
))
.

Assume the statement holds for some integer m. Then

v
((

Rm+1(ϕ)
)′)

= v
((

(Rm(ϕ))′
)′)

= v
((

Rm
(
ϕ′
))′)

= v
(
Rm+1

(
ϕ′
))
.

�

COROLLARY 2.1.1 Let v be a valuation of Pn. For any formula ϕ ∈ Pn,

v(Rm1(Rm2(ϕ))) = v
(
Rm1+m2(ϕ)

)
,

where m1,m2 ≥ 0 are integers.

LEMMA 2.1 Let v be a valuation of Pn and ϕ ∈ Pn be a formula. Then,

v(Rm(ϕ)) =


v(ϕ) + n−m

n−1 if v(ϕ) ≤ m−1
n−1 ,

v(ϕ)− m
n−1 if v(ϕ) ≥ m

n−1 ,

where m, 1 ≤ m ≤ n− 1, is an integer.

Proof. We shall use induction on m for both parts of this proof.

For the first part, in the base case, m = 1, v(ϕ) ≤ 0, which implies that v(ϕ) = 0. Thus,

v
(
R1(ϕ)

)
= 1 = 0 +

n− 1

n− 1
.

Suppose the first part of the statement holds for some integer m < n − 1. Observe that v(Rm(ϕ)) 6= 0;

if it were the case that v(Rm(ϕ)) = 0, then

v(ϕ) =
m− n
n− 1

< 0,
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which is a contradiction since v(ϕ) ≥ 0. Suppose v(ϕ) ≤ m
n−1 . Then

v
(
Rm+1(ϕ)

)
= v

(
(Rm(ϕ))′

)
= v(Rm(ϕ))− 1

n− 1

= v(ϕ) +
n−m
n− 1

− 1

n− 1

= v(ϕ) +
n− (m+ 1)

n− 1
,

as was desired.

For the second part, in the base case, m = 1, we have that v(ϕ) ≥ 1
n−1 , so that v

(
R1(ϕ)

)
= v(ϕ)− 1

n−1 .

For the inductive step, suppose the second part of the statement holds for some integer m < n − 1.

Assume v(ϕ) ≥ m+1
n−1 . Then v(ϕ) 6= 0, which implies that v(ϕ′) = v(ϕ)− 1

n−1 . Thus,

v
(
Rm+1(ϕ)

)
= v

(
Rm
(
ϕ′
))

= v
(
ϕ′
)
− m

n− 1

= v(ϕ)− 1

n− 1
− m

n− 1

= v(ϕ)− m+ 1

n− 1
,

which concludes the proof. �

OBSERVATION 2.1.1 Let v be a valuation of Pn and ϕ ∈ Pn be a formula. If v(ϕ) = m
n−1 , where m,

1 ≤ m ≤ n− 1, is an integer, then

v(Rm(ϕ)) = v(ϕ)− m

n− 1
= 0.

OBSERVATION 2.1.2 For any valuation v of Pn and formula ϕ ∈ Pn, if v(ϕ) = 1, then, for any integer m,

1 ≤ m ≤ n− 1,

v(Rm(ϕ)) = 1− m

n− 1
.

OBSERVATION 2.1.3 Let ϕ ∈ Pn be a formula. For any valuation v of Pn, if v(ϕ) = 1, then

v
(
Rm+1(ϕ)

)
< v(Rm(ϕ)) ,

where m, 1 ≤ m ≤ n− 2, is an integer.

OBSERVATION 2.1.4 Let v be a valuation of Pn and ϕ ∈ Pn be a formula. If v(ϕ) 6= 1, then v(ϕ) = m−1
n−1

for some integer m such that 1 ≤ m ≤ n− 1, which implies that

v(Rm(ϕ)) = v(ϕ) +
n−m
n− 1

=
m− 1

n− 1
+
n−m
n− 1

= 1.
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OBSERVATION 2.1.5 Let v be a valuation of Pn and ϕ ∈ Pn be a formula. If v(ϕ) 6= m−1
n−1 , where m,

1 ≤ m ≤ n − 1, is an integer, then v(Rm(ϕ)) 6= 1; for, if it were the case that v(Rm(ϕ)) = 1, then either

v(ϕ)+ n−m
n−1 = 1 or v(ϕ)− m

n−1 = 1. In the first case, v(ϕ) = m−1
n−1 , which is a contradiction; in the second

case, v(ϕ) = 1 + m
n−1 > 1, which cannot happen since v(ϕ) ≤ 1.

LEMMA 2.2 Let v be a valuation of Pn and ϕ ∈ Pn be a formula. Then

v

(
n−1∨
m=0

Rm(ϕ)

)
= 1.

Proof. Observe that if v(ϕ) = 1, then, since v
(
R0(ϕ)

)
= v(ϕ), we have that

max {v(Rm(ϕ)) ; m = 0, . . . , n− 1} = 1.

Assume v(ϕ) 6= 1. Then v(ϕ) = i−1
n−1 for some integer i, 1 ≤ i ≤ n−1. It follows, by Observation 2.1.4,

that v
(
Ri(ϕ)

)
= 1, implying that

max {v(Rm(ϕ)) ; m = 0, . . . , n− 1} = 1.

The proof is complete since

v

(
n−1∨
m=0

Rm(ϕ)

)
= max {v(Rm(ϕ)) ; m = 0, . . . , n− 1} .

�

PROPOSITION 2.2 Given a valuation v of Pn and a formula ϕ ∈ Pn:

(a) v(mϕ) = n−m
n−1 , where m, 1 ≤ m ≤ n− 1, is an integer;

(b) v
(
0ϕ
)

= 0.

Proof. (a) Recall that

1ϕ =

n−1∨
i=0

Ri(ϕ)

and
mϕ = Rm−1(1ϕ) ,

where m, 2 ≤ m ≤ n− 1, is an integer.

We shall proceed by induction on m. The base case, m = 1, is obvious by Lemma 2.2.
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Now, suppose the statement holds for some integer m < n− 1. Then v(mϕ) 6= 0. Thus,

v
(
m+1ϕ

)
= v

(
Rm
(
1ϕ
))

= v
((

Rm−1(1ϕ))′)
= v

(
(mϕ)′

)
=
n−m
n− 1

− 1

n− 1

=
n− (m+ 1)

n− 1
.

(b) Recall that 0ϕ =
(
n−1ϕ

)′. By part (a),

v
(
n−1ϕ

)
=
n− (n− 1)

n− 1
=

1

n− 1
6= 0.

It follows that

v
(
0ϕ
)

= v
(
n−1ϕ

)
− 1

n− 1
= 0.

�

PROPOSITION 2.3 For any formula ϕ ∈ Pn and any valuation v of Pn, we have that

v

(
n−1∨
m=1

Rm(ϕ)

)
=


v
(
2ϕ
)

if v(ϕ) = 1,

1 otherwise.

Proof. Recall that

v

(
n−1∨
m=1

Rm(ϕ)

)
= max {v(Rm(ϕ)) ; m = 1, . . . , n− 1} .

If v(ϕ) = 1, then, by Observation 2.1.2,

v
(
R1(ϕ)

)
= 1− 1

n− 1
=
n− 2

n− 1
.

Thus, by Observation 2.1.3 and Proposition 2.2(a),

max {v(Rm(ϕ)) ; m = 1, . . . , n− 1} = v
(
R1(ϕ)

)
= v

(
2ϕ
)
.

Assume v(ϕ) 6= 1. Then v(ϕ) = i−1
n−1 for some integer i, 1 ≤ i ≤ n − 1, which, by Observation 2.1.4,

implies that v
(
Ri(ϕ)

)
= 1 and we conclude that

max {v(Rm(ϕ)) ; m = 1, . . . , n− 1} = v
(
Ri(ϕ)

)
= 1.

�
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PROPOSITION 2.4 For any formula ϕ ∈ Pn and any valuation v of Pn,

v
(
ϕ1
)

=


1 if v(ϕ) = 1,

0 otherwise.

Proof. Recall that

ϕ1 = Rn−1

(
n−1∨
m=1

Rm(ϕ)

)
.

If v(ϕ) = 1, then, by Proposition 2.3,

v

(
n−1∨
m=1

Rm(ϕ)

)
=
n− 2

n− 1
,

from which it follows, by Observation 2.1.4, that

v
(
ϕ1
)

= v

(
Rn−1

(
n−1∨
m=1

Rm(ϕ)

))
= 1.

If v(ϕ) 6= 1, then Proposition 2.3 tells us that

v

(
n−1∨
m=1

Rm(ϕ)

)
= 1.

Hence, by Observation 2.1.1,

v
(
ϕ1
)

= v

(
Rn−1

(
n−1∨
m=1

Rm(ϕ)

))
= 0.

�

PROPOSITION 2.5 Let ϕ ∈ Pn be a formula and v be a valuation of Pn. Then,

v(ϕm) =


v(mϕ) if v(ϕ) = 1,

0 otherwise,

where m, 1 ≤ m ≤ n− 1, is an integer.

Proof. That the statement holds when m = 1 follows immediately from Propositions 2.4 and 2.2(a).

Recall that for an integer m, 2 ≤ m ≤ n− 1,

ϕm = Rn−1(Rn−1(ϕ ∨ 2ϕ
)
∨ Rm(ϕ)

)
.
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To continue the demonstration for the case when 2 ≤ m ≤ n− 1, let us simplify the problem. Observe that

v
(
ϕ ∨ 2ϕ

)
= max

{
v(ϕ) ,v

(
2ϕ
)}

=


v(ϕ) if v(ϕ) = 1,

v
(
2ϕ
)

otherwise.

If v(ϕ) = 1, then v
(
ϕ ∨ 2ϕ

)
= 1. Thus, by Observation 2.1.1,

v
(
Rn−1(ϕ ∨ 2ϕ

))
= 0.

If v(ϕ) 6= 1, then

v
(
ϕ ∨ 2ϕ

)
=
n− 2

n− 1
,

which implies, by Observation 2.1.4, that

v
(
Rn−1(ϕ ∨ 2ϕ

))
= 1.

We conclude that

v(ψ) =


0 if v(ϕ) = 1,

1 otherwise,

where ψ = Rn−1(ϕ ∨ 2ϕ
)
.

Next, note that when 2 ≤ m ≤ n− 1, if v(ϕ) = 1, then Observation 2.1.2 tells us that

v(Rm(ϕ)) = 1− m

n− 1
,

from which it follows that

v(ψ ∨ Rm(ϕ)) = max {0,v(Rm(ϕ))} = 1− m

n− 1
.

We also have that if v(ϕ) 6= 1, then

v(ψ ∨ Rm(ϕ)) = max {1,v(Rm(ϕ))} = 1.

Hence, we can write

v(ψ ∨ Rm(ϕ)) =


1− m

n−1 if v(ϕ) = 1,

1 otherwise.
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If v(ϕ) = 1, then

v(ψ ∨ Rm(ϕ)) =
n−m− 1

n− 1
,

implying, by Observation 2.1.4, that

v
(
Rn−m(ψ ∨ Rm(ϕ))

)
= 1.

It follows, by Corollary 2.1.1, Observation 2.1.2, and Proposition 2.2(a), that

v
(
Rn−1(ψ ∨ Rm(ϕ))

)
= v

(
Rm−1(Rn−m(ψ ∨ Rm(ϕ))

))
= 1− m− 1

n− 1

=
n−m
n− 1

= v(mϕ) .

If v(ϕ) 6= 1, then v(ψ ∨ Rm(ϕ)) = 1. We have, by Observation 2.1.1, that

v
(
Rn−1(ψ ∨ Rm(ϕ))

)
= 0.

The statement follows since ϕm = Rn−1(ψ ∨ Rm(ϕ)). �

PROPOSITION 2.6 For any formula ϕ ∈ Pn and any valuation v of Pn,

v(ϕm
m) =


v(mϕ) if v(ϕ) = m−1

n−1 ,

0 otherwise,

where m, 1 ≤ m ≤ n− 1, is an integer.

Proof. Recall that ϕm
m = (Rm(ϕ))m.

Assume v(ϕ) = m−1
n−1 . Then Observation 2.1.4 tells us that v(Rm(ϕ)) = 1. Hence, by Proposition 2.5,

v((Rm(ϕ))m) = v(mϕ) .

Suppose v(ϕ) 6= m−1
n−1 , then Observation 2.1.5 tells us that v(Rm(ϕ)) 6= 1. Therefore, by Proposition 2.5,

v((Rm(ϕ))m) = 0.

�
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PROPOSITION 2.7 Let ϕ ∈ Pn be a formula and v be a valuation of Pn. Then

v(ϕ) + v(ϕ) = 1.

Proof. Recall that

ϕ =

n−1∨
m=1

ϕm
m.

If v(ϕ) = 1, then Proposition 2.6 tells us that v(ϕm
m) = 0 for every integer m, 1 ≤ m ≤ n− 1. Thus,

v(ϕ) = max {v(ϕm
m) ; m = 1, . . . , n− 1} = 0 = 1− v(ϕ) .

Let v(ϕ) = i−1
n−1 , where i, 1 ≤ i ≤ n− 1, is an integer. Then, by Propositions 2.6 and 2.2(a),

v(ϕ) = max {v(ϕm
m) ; m = 1, . . . , n− 1}

= v
(
iϕ
)

=
n− i
n− 1

= 1− i

n− 1

= 1− v(ϕ) .

�

LEMMA 2.3 Let a, b ∈ ∆n. Then

min {1− a, 1− b} = 1−max {a, b} .

Proof. Without loss of generality, assume 1− a = min {1− a, 1− b}. Then 1− a ≤ 1− b, from which it

follows that b ≤ a, implying that a = max {a, b}. We conclude that

min {1− a, 1− b} = 1− a = 1−max {a, b} .

�
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PROPOSITION 2.8 Let ϕ,ψ ∈ Pn be two formulas and v be a valuation of Pn. Then

v(ϕ ∧ ψ) = min {v(ϕ) ,v(ψ)} .

Proof. Recall that ϕ ∧ ψ = ϕ ∨ ψ. By Proposition 2.7 and Lemma 2.3, we have that

v(ϕ ∧ ψ) = 1− v
(
ϕ ∨ ψ

)
= 1−max

{
v(ϕ) ,v

(
ψ
)}

= min
{

1− v(ϕ) , 1− v
(
ψ
)}

= min {v(ϕ) ,v(ψ)} .

�

DEFINITION 6 Let ϕ and ψ be formulas in Pn with truth values v(ϕ) and v(ψ), respectively.

– The formula (ϕ) is the negation of ϕ and, in accordance with Proposition 2.7, its truth value is given by

v(ϕ) = 1− v(ϕ).

– The formula (ϕ ∧ ψ) is the conjunction of ϕ and ψ; according to Proposition 2.8, its truth value is given

by v(ϕ ∧ ψ) = min {v(ϕ) ,v(ψ)}.

2.2.2 Lattices and Post Algebras

In , George Epstein’s article [2] reduced the number of axioms required in Definition 4 and, by using

a larger number of operations, gave an alternative definition of a Post algebra. Epstein’s definition relied on

concepts from lattice theory, which we review presently.

DEFINITION 7 A triple 〈Ξ,g,f〉, where Ξ is a set, andg andf are binary operations on Ξ, is a lattice

ifg andf are commutative, associative, and mutually absorptive, that is, if for every θ,ϕ,ψ ∈ Ξ:

– ϕgψ = ψgϕ and ϕfψ = ψfϕ.

– (θgϕ)gψ = θg (ϕgψ) and (θfϕ)fψ = θf (ϕfψ).

– ϕg (ϕfψ) = ϕ and ϕf (ϕgψ) = ϕ.
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PROPOSITION 2.9 Let 〈Ξ,g,f〉 be a lattice. Then, for every ϕ,ψ ∈ Ξ, ϕgψ = ψ if and only if

ϕfψ = ϕ.

Proof. If ϕgψ = ψ, then

ϕfψ = ϕf (ϕgψ) = ϕ.

Conversely, suppose ϕfψ = ϕ. Then

ϕgψ = (ϕfψ)gψ = ψg (ϕfψ) = ψg (ψfϕ) = ψ.

�

DEFINITION 8 For a lattice 〈Ξ,g,f〉, let 4 be the binary relation on Ξ, where ϕ 4 ψ if ϕgψ = ψ or

ϕfψ = ϕ.

DEFINITION 9 A binary relation v on a set Ξ is a partial order if v is reflexive, antisymmetric, and

transitive, that is, if for every θ,ϕ,ψ ∈ Ξ:

– θ v θ.

– If ϕ v ψ and ψ v ϕ, then ϕ = ψ.

– If θ v ϕ and ϕ v ψ, then θ v ψ.

DEFINITION 10 Given a set Ξ and a partial order v on Ξ, the couple 〈Ξ,v〉 is a partially ordered set.

PROPOSITION 2.10 Let 〈Ξ,g,f〉 be a lattice. The relation 4 in Definition 8 is a partial order on Ξ.

Proof. Let θ,ϕ,ψ ∈ Ξ. Then θg (θfϕ) = θ, from which it follows that

θf θ = θf (θg (θfϕ)) = θ

sinceg andf are mutually absorptive, implying that θ 4 θ. Thus, 4 is reflexive.

Suppose ϕ 4 ψ and ψ 4 ϕ. Then

ϕ = ϕfψ = ψfϕ = ψ.

Hence, 4 is antisymmetric.

Assume θ 4 ϕ and ϕ 4 ψ. Then θfϕ = θ and ϕfψ = ϕ. Thus,

θfψ = (θfϕ)fψ = θf (ϕfψ) = θfϕ = θ.

It follows that θ 4 ψ. We conclude that 4 is transitive. �

23



DEFINITION 11 A partially ordered set 〈Ξ,v〉 is a chain if for every ϕ,ψ ∈ Ξ, ϕ v ψ or ψ v ϕ.

DEFINITION 12 Let 〈Ξ,v〉 be a partially ordered set and Γ ⊆ Ξ. Then ϕ ∈ Γ is a least element (or

minimum) of Γ if ϕ v ψ for every ψ ∈ Γ.

In a similar fashion, ϕ ∈ Γ is a greatest element (or maximum) of Γ if ψ v ϕ for every ψ ∈ Γ.

If they exist, a least and a greatest element of Ξ shall be called a zero and a unit of Ξ, respectively.

Observe that given a partially ordered set 〈Ξ,v〉, if least and greatest elements of a subset Γ of Ξ exist,

then they are unique since a partial order is antisymmetric. Hence, provided they exist, we shall denote the

zero and unit elements of Ξ by o and ι, respectively. A partially ordered set 〈Ξ,v〉 with zero o and unit ι

shall be denoted by 〈Ξ,v, o, ι〉.

DEFINITION 13 Let 〈Ξ,v〉 be a partially ordered set and Γ ⊆ Ξ. An element ϕ ∈ Ξ is a lower bound of Γ

if ϕ v ψ for every ψ ∈ Γ. If ϕ is a lower bound of Γ such that θ v ϕ for every lower bound θ of Γ, then

ϕ is a greatest lower bound (or infimum) of Γ.

Similarly, ϕ ∈ Ξ is an upper bound of Γ if ψ v ϕ for every ψ ∈ Γ; ϕ is a least upper bound (or

supremum) of Γ if ϕ is an upper bound of Γ such that ϕ v θ for every upper bound θ of Γ.

Note that for a subset Γ of Ξ, where 〈Ξ,v〉 is a partially ordered set, provided they exist, the infimum

and supremum of Γ are unique since they are greatest and least elements, respectively, of subsets of Ξ. The

infimum and supremum of Γ, if they exist, shall be denoted byuΓ andtΓ, respectively. If Γ = {ϕ,ψ},

where ϕ,ψ ∈ Ξ, we shall denote its infimum and supremum by ϕ uψ and ϕ tψ, respectively.

PROPOSITION 2.11 Let 〈Ξ,g,f〉 be a lattice. Then, in the partially ordered set 〈Ξ,4〉, for anyϕ,ψ ∈ Ξ:

(a) ϕ uψ = ϕfψ and

(b) ϕ tψ = ϕgψ.

Proof. (a) Note that

(ϕfψ)gϕ = ϕg (ϕfψ) = ϕ,

which implies that ϕfψ 4 ϕ. Moreover, since ψfϕ 4 ψ and ψfϕ = ϕfψ, we have that

ϕfψ 4 ψ. Hence, ϕfψ is a lower bound of {ϕ,ψ}.

Let θ ∈ Ξ be such that θ 4 ϕ and θ 4 ψ. Then

θ = θfϕ = (θfψ)fϕ = θf (ψfϕ) = θf (ϕfψ) .
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Thus, θ 4 ϕfψ, from which it follows ϕfψ is the infimum of {ϕ,ψ}.

(b) A similar method to the one used in part (a) is used to show that ϕgψ is the supremum of {ϕ,ψ}. �

From Propositions 2.10 and 2.11, we conclude that, given a lattice 〈Ξ,g,f〉, the partially ordered set

〈Ξ,4〉 is such that the infimum and the supremum of every subset {ϕ,ψ} of Ξ exist, and are given by

ϕfψ and ϕgψ, respectively. It has been shown in [1] that if we begin with a partially ordered set for

which every pair of elements has a greatest lower bound and a least upper bound, then two commutative,

associative, and mutually absorptive binary operations on the underlying set are obtained; that is, a partially

ordered set with the property that every pair of elements has an infimum and a supremum gives rise to a

lattice. Thus, there is a correspondence between lattices and partially ordered sets in which every pair of

elements has an infimum and a supremum. This correspondence shall be taken for granted in the rest of

this section and there should be no confusion when we talk about a lattice or its corresponding partially

ordered set. The lattice corresponding to the partially ordered set 〈Ξ,4, o, ι〉 with zero o and unit ι shall be

denoted by 〈Ξ,g,f, o, ι〉. Before we give Epstein’s definition of a Post algebra, let us introduce another

term which shall be encountered.

DEFINITION 14 A lattice 〈Ξ,g,f〉 is said to be distributive if for every θ,ϕ,ψ ∈ Ξ,

θf (ϕgψ) = (θfϕ)g (θfψ) .

Now, we are ready for the definition of a Post algebra given by Epstein, which he showed to be equivalent

to Definition 4.

DEFINITION 15 For an integer n ≥ 2, a distributive lattice 〈Ξ,g,f, o, ι〉 is a Post algebra (of type n) if:

1. Ξ contains n fixed elements, denoted by o = ε0, ε1, . . . , εn−2, εn−1 = ι, such that:

a. The set {εi ; i = 0, . . . , n− 1} is a chain with εi−1 4 εi.

b. If θ ∈ Ξ and θf ε1 = o, then θ = o.

c. If θ ∈ Ξ and θg εi−1 = εi for some i, then θ = εi.

2. For every θ ∈ Ξ, there exist Cθ0,C
θ
1, . . . ,C

θ
n−1 ∈ Ξ such that:

a. Cθi fCθj = o for i 6= j.

b. t{
Cθi ; i = 0, . . . , n− 1

}
= ι.

c. θ =
(
ε0fCθ0

)
g
(
ε1fCθ1

)
g · · ·g

(
εn−2fCθn−2

)
g
(
εn−1fCθn−1

)
.
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A lattice and its corresponding partially ordered set can be depicted using a Hasse diagram. The elements

of the lattice are displayed with arrows between them according to the partial order induced by the lattice

operations; the number of arrows should be minimal and exhibit the relevant structure unambiguously. For

example, it is a well–known fact that for a finite set S, the triple 〈2S ,∪,∩〉, where 2S is the power set of S,

is a lattice and the partially ordered set corresponding to this lattice is given by 〈2S ,⊆〉; with S = {a, b, c},

the Hasse diagram of the aforementioned lattice and partially ordered set is given below:

{a, b, c}

{a, c}

{b}

∅

{a} {c}

{a, b} {b, c}

Let us try to better understand the definition of a Post algebra through a Hasse diagram. As may be ex-

pected, Hasse diagrams for Post algebras are very complicated so we shall give a very rudimentary example.

To that end, let 〈Ξ,g,f, o, ι〉 be a Post algebra of type 3. Then, for an arbitrary θ ∈ Ξ, a «slice» of the

Hasse diagram is given by:

ε2 = ι

Cθ0 Cθ1 Cθ2

ε0 = o

ε1

Note that, in the Hasse diagram above, the requirements that Cθ0, Cθ1, and Cθ2 be mutually disjoint and

t{
Cθ0,C

θ
1,C

θ
2

}
= ι are satisfied. The chain {ε0, ε1, ε2} consisting of fixed elements of Ξ is connected by

solid arrows while the set of elements of Ξ that depend on θ by dashed arrows.

Now, for θ = ε0, we must have that

ε0 = (ε0fCε00 )g (ε1fCε01 )g (ε2fCε22 ) ,
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which implies that

o = og (ε1fCε01 )gCε02

= (ε1fCε01 )gCε02 .

Hence, ε1fCε01 = o and Cε02 = o. Since ε1fCε01 = Cε01 f ε1, Axiom 1b of Definition 15 tells us that

Cε01 = o. Finally, sincet{o,Cε00 } = ι, we must have that Cε00 = ι. Thus, for ε0, the «slice» of the Post

algebra 〈Ξ,g,f, o, ι〉 of type 3 can be represented in the Hasse diagram below:

Cε00 = ι

Cε01 = o = Cε02

ε1

2.2.3 Post Algebras and the Propositional Systems of Post

In this section, we shall connect Post algebras with the systems of propositional logic given by Post. Recall

that, in Definition 3, ϕ m ψ if v(ϕ) = v(ψ) for every valuation v of Pn, where ϕ,ψ ∈ Pn are formulas, in

which case ϕ and ψ are said to be equivalent.

To achieve the intended goal, for any formula ϕ ∈ Pn, the set of formulas equivalent to ϕ shall be denoted

by ϕ; that is,

ϕ := {ψ ; ψ ∈ Pn, ϕ m ψ} .

The set of equivalence classes of Pn by m shall be denoted by Pn; hence,

Pn := Pn/m .

DEFINITION 16 For two equivalence classes ϕ,ψ ∈ Pn, let û and ü be binary operations on Pn, where

– ϕ ûψ := {θ ; θ ∈ Pn, θ m ϕ ∨ ψ, ϕ ∈ ϕ, ψ ∈ ψ} and

– ϕ üψ := {θ ; θ ∈ Pn, θ m ϕ ∧ ψ, ϕ ∈ ϕ, ψ ∈ ψ}.
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PROPOSITION 2.12 The operations on Pn in Definition 16 are well–defined.

Proof. Letϕi,ψi ∈ Pn, i = 1, 2, be equivalence classes. Supposeϕ1 = ϕ2 andψ1 = ψ2, and let ϕi ∈ ϕi

and ψi ∈ ψi, i = 1, 2, be formulas. So that for any valuation v of Pn, v(ϕ1) = v(ϕ2) and v(ψ1) = v(ψ2).

Then θ ∈ ϕ1 ûψ1 if and only if θ m ϕ1 ∨ ψ1, that is, if and only if

v(θ) = v(ϕ1 ∨ ψ1) = max {v(ϕ1) ,v(ψ1)} = max {v(ϕ2) ,v(ψ2)} = v(ϕ2 ∨ ψ2) .

Thus, θ m ϕ2 ∨ ψ2, which means that θ ∈ ϕ2 ûψ2. We conclude that ϕ1 ûψ1 = ϕ2 ûψ2.

That ϕ1 üψ1 = ϕ2 üψ2 follows in an analogous way. �

PROPOSITION 2.13 The triple 〈Pn,û,ü〉 is a lattice.

Proof. Let θ,ϕ,ψ ∈ Pn be equivalence classes. That û and ü are commutative and associative operations

on Pn follows since, for ◦ ∈ {∨,∧}, ϕ ◦ ψ m ψ ◦ ϕ and (θ ◦ ϕ) ◦ ψ m θ ◦ (ϕ ◦ ψ), where θ ∈ θ, ϕ ∈ ϕ,

and ψ ∈ ψ are formulas.

For mutual absorptivity, given a valuation v of Pn, let ϕ ∈ ϕ and ψ ∈ ψ be formulas and suppose

v(ϕ) ≥ v(ψ). Then

v(ϕ ∧ ψ) = min {v(ϕ) ,v(ψ)} = v(ψ) ,

which implies that

v(ϕ ∨ (ϕ ∧ ψ)) = max {v(ϕ) ,v(ϕ ∧ ψ)} = v(ϕ) .

Now, assume v(ϕ) < v(ψ). It follows that v(ϕ ∧ ψ) = v(ϕ). Hence,

v(ϕ ∨ (ϕ ∧ ψ)) = v(ϕ) .

We conclude that ϕ ∨ (ϕ ∧ ψ) m ϕ. Thus, ϕ û (ϕ üψ) = ϕ.

The remaining absorption is treated in a similar way. Hence, ϕ ü (ϕ ûψ) = ϕ. �

PROPOSITION 2.14 The lattice 〈Pn,û,ü〉 is distributive.

Proof. Let θ,ϕ,ψ ∈ Pn be equivalence classes. Given a valuation v of Pn, let θ ∈ θ, ϕ ∈ ϕ, and ψ ∈ ψ

be formulas.

Suppose v(θ) ≤ v(ϕ) and v(θ) ≤ v(ψ). Then

v(θ) ≤ max {v(ϕ) ,v(ψ)} = v(ϕ ∨ ψ) .
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Observe that v(θ ∧ ϕ) = v(θ) and v(θ ∧ ψ) = v(θ). Thus,

v((θ ∧ ϕ) ∨ (θ ∧ ψ)) = max {v(θ ∧ ϕ) ,v(θ ∧ ψ)}

= v(θ)

= min {v(θ) ,v(ϕ ∨ ψ)}

= v(θ ∧ (ϕ ∨ ψ)) .

Now, assume v(θ) ≥ v(ϕ) and v(θ) ≥ v(ψ). Note that v(θ ∧ ϕ) = v(ϕ) and v(θ ∧ ψ) = v(ψ). Then

v(θ) ≥ max {v(ϕ) ,v(ψ)} = v(ϕ ∨ ψ) .

It follows that

v((θ ∧ ϕ) ∨ (θ ∧ ψ)) = max {v(θ ∧ ϕ) ,v(θ ∧ ψ)}

= max {v(ϕ) ,v(ψ)}

= v(ϕ ∨ ψ)

= min {v(θ) ,v(ϕ ∨ ψ)}

= v(θ ∧ (ϕ ∨ ψ)) .

Lastly, suppose v(ϕ) ≤ v(θ) ≤ v(ψ). Then v(θ ∧ ϕ) = v(ϕ) and v(θ ∧ ψ) = v(θ). Since v(ϕ ∨ ψ) =

v(ψ), it follows that

v((θ ∧ ϕ) ∨ (θ ∧ ψ)) = max {v(ϕ) ,v(θ)}

= v(θ)

= min {v(θ) ,v(ψ)}

= min {v(θ) ,v(ϕ ∨ ψ)}

= v(θ ∧ (ϕ ∨ ψ)) .

The case when v(ψ) ≤ v(θ) ≤ v(ϕ) is treated in an analogous way.

Hence, θ ∧ (ϕ ∨ ψ) m (θ ∧ ϕ) ∨ (θ ∧ ψ). It follows that θ ü (ϕ ûψ) = (θ üϕ) û (θ üψ). �

The partial order associated with the lattice 〈Pn,û,ü〉 shall be denoted byê. Thus,ϕ ê ψ ifϕûψ = ψ

or ϕ üψ = ϕ, where ϕ,ψ ∈ Pn.

Recall, from Definition 1, that the sets of contradictions and tautologies of Pn are denoted by c and t,

respectively.
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PROPOSITION 2.15 In the partially ordered set 〈Pn,ê〉, the elements c ∈ Pn and t ∈ Pn are the zero and

unit, respectively, of Pn.

Proof. Let o ∈ c and ι ∈ t. Observe that given a valuation v of Pn, v(o) = 0 and v(ι) = 1.

Let ϕ ∈ Pn be an equivalence class and ϕ ∈ ϕ be a formula. Then

v(o ∧ ϕ) = min {v(o) ,v(ϕ)} = v(o)

and

v(ϕ ∨ ι) = max {v(ϕ) ,v(ι)} = v(ι) .

Thus, o ∧ ϕ m o and ϕ ∨ ι m ι, implying that c ü ϕ = c and ϕ û t = t. We conclude that, for every

equivalence class ϕ ∈ Pn, c ê ϕ and ϕ ê t. �

LEMMA 2.4 Let ϕ ∈ Pn be a formula. Then, for any valuation v of Pn,

v
(
ϕ1
m+1

)
=


1 if v(ϕ) = m

n−1 ,

0 otherwise,

where m, 0 ≤ m ≤ n− 1, is an integer.

Proof. From Notations 7 and 9 of Definition 5, observe that

ϕ1
m+1 =

(
Rm+1(ϕ)

)1
= Rn−1

(
n−1∨
k=1

Rk
(
Rm+1(ϕ)

))
.

If v(ϕ) = m
n−1 , then, by Lemma 2.1,

v
(
Rm+1(ϕ)

)
= v(ϕ) +

n− (m+ 1)

n− 1
=

m

n− 1
+
n−m− 1

n− 1
= 1

It follows, by Proposition 2.4, that

v
((

Rm+1(ϕ)
)1)

= 1.

Suppose v(ϕ) 6= m
n−1 . Then, for 0 ≤ m ≤ n−2, Observation 2.1.5 tells us that v

(
Rm+1(ϕ)

)
6= 1. Thus,

by Proposition 2.4,

v
((

Rm+1(ϕ)
)1)

= 0.

When m = n− 1, we have that v(ϕ) 6= 1, which implies that v(ϕ) ≤ n−2
n−1 . By Lemma 2.1,

v
(
Rn−1(ϕ)

)
= v(ϕ) +

n−m
n− 1

.
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Observe that v
(
Rn−1(ϕ)

)
6= 0; if it were the case that v

(
Rn−1(ϕ)

)
= 0, then

v(ϕ) =
m− n
n− 1

< 0,

giving us a contradiction. It follows that

v(Rn(ϕ)) = v
(
Rn−1(ϕ)

)
− 1

n− 1
.

Note that v(Rn(ϕ)) 6= 1 since v
(
Rn−1(ϕ)

)
6= 0. By Proposition 2.4,

v

((
R(n−1)+1(ϕ)

)1)
= v

(
(Rn(ϕ))1

)
= 0,

as was desired. �

DEFINITION 17 For an integer m, 0 ≤ m ≤ n− 1, the set of formulas ϕ ∈ Pn such that v(ϕ) = m
n−1 for

every valuation v of Pn shall be denoted by fm; that is,

fm :=

{
ϕ ; ϕ ∈ Pn, v(ϕ) =

m

n− 1
for every v : Pn → ∆n

}
.

LEMMA 2.5 Let θ ∈ Pn and ϕm ∈ fm be formulas, where m, 0 ≤ m ≤ n − 1, is an integer. For any

valuation v of Pn,

v
(
ϕm ∧ θ1m+1

)
=


v(ϕm) if v(θ) = m

n−1 ,

0 otherwise.

Proof. If v(θ) = m
n−1 , then Lemma 2.4 tells us that

v
(
ϕm ∧ θ1m+1

)
= min

{
m

n− 1
, 1

}
=

m

n− 1
= v(ϕm) .

Similarly, if v(θ) 6= m
n−1 , by another application of Lemma 2.4,

v
(
ϕm ∧ θ1m+1

)
= min

{
m

n− 1
, 0

}
= 0.

�

THEOREM For an integer n ≥ 2, the distributive lattice 〈Pn,û,ü, c, t〉 is a Post algebra of type n.

Proof. Let v be a valuation of Pn, F = {fi ; i = 0, . . . , n− 1}, and ϕi ∈ fi be formulas. Observe that

f0 = c and fn−1 = t. That F is a chain with fm−1 ê fm follows immediately since, for any integer m,

1 ≤ m ≤ n− 1,

v(ϕm−1 ∨ ϕm) = max {v(ϕm−1) ,v(ϕm)} = v(ϕm) ,
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which implies that ϕm−1 ∨ ϕm m ϕm, so that fm−1 û fm = fm. Hence, fm−1 ê fm.

Let θ ∈ Pn be an equivalence class and θ ∈ θ be a formula. Suppose θ ü f1 = c. Then

v(θ ∧ ϕ1) = min {v(θ) ,v(ϕ1)} = v(ϕ0) .

Since v(ϕ1) = 1
n−1 and v(ϕ0) = 0, it follows that v(θ) = v(ϕ0), implying that θ m ϕ0. Thus, θ = c.

Assume θ û fi−1 = fi for some i. Then

v(θ ∨ ϕi−1) = max {v(θ) ,v(ϕi−1)} = v(ϕi) .

Note that v(ϕi−1) = i−1
n−1 and v(ϕi) = i

n−1 . Hence, v(θ) = v(ϕi), which implies that θ m ϕi. Therefore,

θ = fi.

For each θ ∈ Pn, let Cθ0 ,C
θ
1 , . . . ,C

θ
n−1 ∈ Pn be such that

θ1m+1 ∈ Cθm,

where θ ∈ θ. Let Cθ =
{
Cθm ; θ ∈ Pn, m = 0, . . . , n− 1

}
and Cθi ,C

θ
j ∈ Cθ with i 6= j.

If v
(
θ1i+1

)
= v

(
θ1j+1

)
= 0, then

v
(
θ1i+1 ∧ θ1j+1

)
= 0 = v(ϕ0) .

If v
(
θ1i+1

)
6= 0, then, by Lemma 2.4, v

(
θ1i+1

)
= 1, which is the case only when v(θ) = i

n−1 . Thus, since

i 6= j, it follows that v
(
θ1j+1

)
= 0 by Lemma 2.4. Hence,

v
(
θ1i+1 ∧ θ1j+1

)
= 0 = v(ϕ0) ;

the case when v
(
θ1j+1

)
6= 0 is analogous. We conclude that θ1i+1 ∧ θ1j+1 m ϕ0, which implies that

Cθi ü Cθj = c

for i 6= j.

To show thattCθ = t, first observe that t is an upper bound of Cθ since t is the unit of Pn. We show

that t is the least upper bound of Cθ by contradiction. To that end, suppose there exists an upper bound

ψ ∈ Pn of Cθ such that ψ ê t but ψ 6= t and let ψ ∈ ψ be a formula. Since ψ is an upper bound of Cθ,

we have that Cθk ûψ = ψ for every integer k, 0 ≤ k ≤ n− 1, which implies that θ1k+1 ∨ ψ m ψ for every

k. Thus, for every valuation u of Pn,

u
(
θ1k+1 ∨ ψ

)
= max

{
u
(
θ1k+1

)
,u(ψ)

}
= u(ψ) .
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It follows that u
(
θ1k+1

)
≤ u(ψ) for every u. Note that, since ψ 6= t, there exists a valuation w of Pn such

that w(ψ) 6= 1, which implies that w(ψ) < 1. Now, by Lemma 2.4, w
(
θ1k+1

)
= 1 if w(θ) = k

n−1 . Thus,

when w(θ) = k
n−1 , we have that w

(
θ1k+1

)
> w(ψ), which is a contradiction, from which we conclude that

ψ = t. Therefore,

t{
Cθm ; m = 0, . . . , n− 1

}
= t.

Finally, let v(θ) = i
n−1 . Then, by Lemma 2.5,

v
(
ϕi ∧ θ1i+1

)
= v(ϕi) =

i

n− 1
= v(θ)

and v
(
ϕj ∧ θ1j+1

)
= 0 for every j 6= i. It follows that

v

(
n−1∨
m=0

(
ϕm ∧ θ1m+1

))
= max {0,v(ϕi)} = v(ϕi) = v(θ) .

Hence,
n−1∨
m=0

(
ϕm ∧ θ1m+1

)
m θ.

Since ϕm ∈ fm and θ1m+1 ∈ Cθm, for every integer m, 0 ≤ m ≤ n− 1, we have that

θ =
(
f0 ü Cθ0

)
û

(
f1 ü Cθ1

)
û · · · û

(
fn−2 ü Cθn−2

)
û

(
fn−1 ü Cθn−1

)
,

as was desired. This concludes the demonstration. �
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