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ABSTRACT

We generalize the results of Leger and Luks and other researchers about generalized

derivations to the cases of ternary Lie algebras and n-BiHom Lie algebras. We investigate

the derivations algebras of ternary Lie algebras induced from Lie algebras, we explore the

subalgebra of quasi-derivations and give their properties. Moreover, we give a classification

of the derivations algebras for low-dimensional ternary Lie algebras.

For the class of n-BiHom Lie algebras, we study the algebras of generalized derivations

and prove that the algebra of quasi-derivations can be embedded in the derivation algebra

of a larger n-BiHom Lie algebra.
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1 Introduction

In this chapter, we briefly introduce the Hom and BiHom algebraic structures, n-ary algebras

and the notion of generalized derivations. We will also state the definitions that we use

throughout this dissertation.

For many years the algebras of derivations and generalized derivations have been

a subject of study by many researchers. For instance, derivations appear in the study

of Hochschild cohomology; in fact, the first cohomology group is the group of derivations

modulo the inner derivations and it is called the group of outer derivations. Generalized

derivations are particularly important in the study of Lie algebras and their generalizations

like Lie superalgebras. Also, generalized derivations have held a central position in the theory

of deformations of algebraic structures.

In this dissertation, we mean by a derivation of an algebra A a linear map D that

satisfies the Leibniz rule:

D(ab) = D(a)b+ aD(b). (1.0.1)

Over the years, twisted versions of the Leibniz rule were used to define different

generalizations of derivations: δ-derivations [14, 25, 26, 27], σ-derivations, (σ, τ)-derivations,

(α, β, γ)-derivations [39], and αk-derivations are some examples among the generalized deriva-

tions that were studied. In these general notions of derivations, the rule (1.0.1) was deformed

using one or many parameters as in δ-derivations, (α, β, γ)-derivations and in other cases,

endomorphisms are used to twist the standard definition like the σ-derivations and the (σ, τ)-

derivations.

Definition 1.0.1 Let A be an algebra and σ : A → A a morphism. A σ-derivation of A is
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a linear map D : A → A that satisfies the σ-Leibniz rule

D(x.y) = D(x).y + σ(x).D(y) (1.0.2)

for all x, y ∈ A.

Among the most important and widely studied σ-derivations are the Jackson q-

derivative and the shifted difference operator. These examples lie at the foundations of

q-analysis and are extensively investigated in physics and engineering.

Example 1.0.2 The Jackson q-derivative operator ∂σ :

∂σ(a)(t) =
a(qt)− a(t)

(q − 1)t

with σ(f)(t) = f(qt),

Example 1.0.3 The shifted difference operator:

∂σ(a)(t) = a(t+ 1)− a(t)

with σ(f)(t) = f(t+ 1).

If instead of one morphism σ we use two maps to twist (1.0.1), we get a more general

definition:

Definition 1.0.4 Let A be an algebra and σ, τ : A → A two morphisms. A (σ, τ)-derivation

of A is a linear map D : A → A that satisfies the (σ, τ)-Leibniz rule

D(x.y) = D(x).τ(y) + σ(x).D(y) (1.0.3)

for all x, y ∈ A.

One particular area where σ-derivations play a crucial role is the deformation theory

of mathematical structures as in [16, 30, 32]. In [32] for example, Larsson and Silvestrov
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used σ-derivations to construct a quasi-deformations of the simple 3-dimensional Lie algebra

sl2(F). Recall that sl2(F), as a vector space, is generated by the elements H,E, F subject to

the brackets:

[H,E] = 2E, [H,F ] = −2F, [E,F ] = H.

To quasi-deform sl2(F), they first considered a representation A in terms of first order dif-

ferential operators acting on some vector space of functions in the variable t:

E 7→ ∂, H 7→ −2t∂, F 7→ −t2∂.

Then they replaced ∂ by a σ-derivation ∂σ to obtain:

[H,E]σ = 2∂σ(t)∂σ, [H,F ]σ = 2σ(t)∂σ(t)t∂σ, [E,F ]σ = −(σ(t) + t)∂σ(t)∂σ,

The new bracket [·, ·]σ satisfies a twisted Jacobi identity and the obtained algebra is of type

quasi-hom Lie. Note that the new quasi-hom Lie algebra structure is not defined on sl2(F)

but on A.∂σ. If a different base algebra A is chosen (σ also will change since it is dependent

on A), we get a different structure on A.∂σ. In other words, the deformation is based on two

parameters, namely A and σ.

In this dissertation we are interested in studying some special generalizations of

derivations, mainly, generalized derivations, quasi-derivations, the centroid and the quasi-

centroid.

It has been shown that for some special cases, it is possible to induce a post-Lie

algebra structure by generalized derivations. In [7], D. Burde and K. Dekimpe proved that

under some suitable conditions on a pair of Lie algebras (g, n), a post-Lie algebra structure

can be induced by a quasi-derivation of n. In the following, we recall the definition of a

post-Lie algebra and the results introduced by the authors in their article.

Definition 1.0.5 Let (g, [·, ·]) and (n, {·, ·}) be two Lie algebras on a vector space V . A

post-Lie algebra structure on the pair (g, n) is a bilinear product x · y such that for all
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x, y, z ∈ V , the following identities hold

x · y − y · x = [x, y]− {x, y};

[x, y] · z = x · (y · z)− y · (x · z);

x · {y, z} = {x · y, z}+ {y, x · z}.

D. Burde and K. Dekimpe proved that if n is semisimple, then the product x · y is

given by a linear map ϕ : g → n that satisfies some conditions involving the brackets of g

and n. But if in addition, the Lie bracket of g is given as a linear function of the Lie bracket

of n, then ϕ is indeed a quasi-derivation of n.

Proposition 1.0.6 [7] Let x · y be a post-Lie algebra structure on (g, n) with n semisimple,

and x · y = {ϕ(x), y} for some ϕ ∈ End(V ). Assume that [x, y] = τ({x, y}) for some

τ ∈ End(V ), then ϕ is a quasi-derivation of the Lie algebra n.

In [33], it was shown that if (L, [·, ·]) is a simple Lie algebra of a rank at least 2, then

QDer(L) = ad(L) ⊕ C · id, where QDer(L) is the space of quasi-derivations, and ad(L) is

the set of adjoint maps of L. That is, for u ∈ L, ad(u) = [u, ·]. Using this fact with the

previous result, one can conclude a complete description of a post-Lie structure on special

pairs of Lie algebras.

Proposition 1.0.7 [7] Suppose that x · y is a post-Lie algebra structure on (g, n), where n

is simple of a rank at least 2. If [x, y] = τ({x, y}) for some τ ∈ End(V ), then

x · y = {{z, x}, y}+ λ{x, y}

for some z ∈ n and some λ ∈ C.
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1.1 Generalized Derivations

In this section, we introduce the types of generalized derivations that we will be studying in

this dissertation.

Definition 1.1.1 Let (A, µ) be an algebra. A linear map D : A → A is called a derivation

of A if for any a, b ∈ A, the following identity holds

µ(D(a), b) + µ(a,D(b)) = D(µ(a, b)).

The space of the derivations of (A, µ) is denoted by Der(A).

Remark: As the space End(A) of linear maps ofA, equipped with the commutator [f1, f2] =

f1f2 − f2f1 is a Lie algebra denoted by gl(A), the set Der(A) is a Lie subalgebra of gl(A)

since [Der(A), Der(A)] ⊆ Der(A).

Now let ∆(A) be the subset of End(A)× End(A)× End(A) defined by:

∆(A) = {(f, f ′, f ′′) ∈ End(A)3 : µ(f(a), b) + µ(a, f ′(b)) = f ′′(µ(a, b))}.

Definition 1.1.2 A linear map D of (A, µ) is called a generalized derivation if there exists

two maps D′ and D′′ such that (D,D′, D′′) ∈ ∆(A). We denote by GDer(A) the space of

generalized derivations of A.

Definition 1.1.3 A linear map D of (A, µ) is called a quasi-derivation if there exists a map

D′ such that (D,D,D′) ∈ ∆(A). We denote by QDer(A) the space of quasi derivations of

A.

Remark: The terms generalized derivation and quasi-derivation are not new and have been

used with different defining conditions in many articles [17, 42, 18].

Remark: It is clear that any quasi-derivation is a generalized derivation, moreover, if D is

a derivation, then (D,D,D) is in ∆(A). Therefore Der(A) is a subset of QDer(A) which is
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itself a subset of GDer(A). We have therefore the following inclusions

Der(A) ⊂ QDer(A) ⊂ GDer(A).

Example 1.1.4 Let (g, [·, ·]) be the 2-dimensional Lie algebra with g = Span{X, Y } and

such that [X, Y ] = Y . Let a map D : g → g be defined by D(X) = 0 and D(Y ) = X. A

direct computation shows that D is a quasi-derivation of g.

Example 1.1.5 Let V be a vector space with a basis B = {e0, e1, e2, e3, e4, e5}. Define the

bracket [·, ·] by:

[e0, e1] = e1; [e0, e3] = e3; [e0, e5] = e5; [e1, e2] = e5; [e3, e4] = e5,

the omitted brackets are zeros. The map f ∈ End(V ) given by f(e1) = −e4, f(e3) = e2 and

f(ei) = 0 for i 6= 1, 3 is a quasi-derivation of (V, [·, ·]).

Definition 1.1.6 The centroid C(A) of (A, µ) is the space of linear maps D ∈ End(A) such

that

D(µ(a, b)) = µ(D(a), b) = µ(a,D(b))

for all a, b ∈ A.

Definition 1.1.7 The quasi-centroid QC(A) of (A, µ) is the space of linear maps D ∈

End(A) such that

µ(D(a), b) = µ(a,D(b))

for all a, b ∈ A.

The most important research on the algebras of generalized derivations of Lie algebras

and their subalgebras is the article of G.F. Leger and E. Luks [33], where the authors studied
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the structure and properties of the algebras of generalized derivations, quasi-derivations, the

centroid and quasi-centroid of finite-dimensional Lie algebras. For a Lie algebra L with toral

Cartan subalgebras, they established the equality QDer(L) = Der(L) +C(L). They gave a

characterization on Lie algebras for which QC(L) = C(L) and GDer(L) = QDer(L). More-

over, the authors described sufficient conditions so that GDer(L) = gl(L) and QDer(L) =

gl(L). The results of Leger and Luks were generalized by many researchers to other classes

of algebras. For example, Chen, Ma and Li [12] studied the generalized derivations of color

Lie algebras; Zhou and Fan considered the cases of Hom-Lie color algebras [51] and n-Hom

Lie superalgebras [50]; Generalized derivations of Hom-Lie algebras were investigated in [49].

Kaygorodov and Popov explored generalized derivations of color n-ary Ω-algebras in [21]. For

more on the generalized derivation algebras, the reader will be referred to [48, 29, 46, 47, 11].

In this thesis we extend some of the results of Leger and Luks to the cases of ternary

Lie algebras and n-BiHom-Lie algebras.

1.2 The Class of BiHom-Lie Algebras

The deformation theory of algebraic, analytic and geometric structures has been a field of

active research for mathematicians and physicists for many decades. The main purpose of

deforming an object is to construct a more general structure which in most of the cases

belongs to the same category. This is especially true in the case of Lie algebras. In this

spirit and motivated by the study of the quantum deformations (also called q-deformations)

of the Witt and Virasoro algebras, Hartwig, Larsson and Silvestrov developed an approach

of deformation based on σ-derivations in [16]. They introduced the class of Hom-Lie algebras

as deformed Lie algebras, where the defining Jacobi identity is twisted by a single map.

Definition 1.2.1 [16] A Hom-Lie algebra is a triple (L, [·, ·], α) where L is a vector space,

[·, ·] a bilinear skew symmetric mapping on L×L and α : L→ L a linear map such that the

following deformed Jacobi identity is satisfied

[α(x), [y, z]] + [α(z), [x, y]] + [α(y), [z, x]] = 0,

7



for all x, y, z ∈ L. Note that this version of the Jacobi identity is called the hom-Jacobi

identity.

The reason behind the use of the term “Hom-algebras” for this new class of algebras

is, as Silvestrov explained, the fact that the map used to deform the original algebra is a

homomorphism.

Example 1.2.2 (Jackson sl2) The Jackson sl2 is a classical example of a Hom-Lie algebra

that is a q-deformation of the Lie algebra sl2 by a Jackson derivation. Let {x1, x2, x3} be the

basis of sl2 and q be a parameter in K. The bracket and the map α are given by:

[x1, x2] = −2qx2, α(x1) = qx1,

[x1, x3] = x3, α(x1) = q2x2,

[x2, x3] = −1

2
(1 + q)x1, α(x1) = qx3.

When q = 1, we recover the classical sl2.

The appearance of Hom-Lie algebras opened the doors to a significant research ac-

tivity on Hom-type algebras over the past few years and it is still a growing field. A more

general class named quasi-Lie algebras and a subclass called quasi-Hom-Lie algebras were

introduced in [31, 30]. Let us recall the definition and show how quasi-Hom-Lie algebras and

Hom-Lie algebras can be recovered from quasi-Lie algebra.

Definition 1.2.3 [31] Let L be a vector space. A quasi-Lie algebra structure on L is a tuple

(L, 〈·, ·〉, α, β, θ, ω) where 〈·, ·〉 : L× L is a bilinear bracket on L; α, β, two linear maps; and

θ, ω : Dθ, Dω ⊆ L× L→ L (L) such that

〈x, y〉 = ω(x, y)〈y, x〉 for (x, y) ∈ Dω,

	x,y,z θ(z, x)(〈α(x), 〈y, x〉〉+ β〈x, 〈y, x〉〉) = 0

for (z, x), (y, z), (x, y) ∈ Dθ.
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Taking θ = ω in the previous definition gives the class of quasi-hom-Lie algebras and if in

addition one takes θ = ω = −id and β = id, then one gets the class of hom-Lie algebras,

finally, a hom-Lie algebra with α = id is a Lie algebra. In other words, quasi-hom-Lie

algebras, hom-Lie algebras and Lie algebras are all subclasses of quasi-Lie algebras. In fact,

the class of quasi-Lie algebras includes also a subclass of color Lie algebras and super-Lie

algebras. This can be summarized in the following scheme

Lie ⊂ Hom-Lie ⊂ Quasi-Hom-Lie ⊂ Quasi-Lie

Color-Lie ⊂ Quasi-Lie

Super-Lie ⊂ Quasi-Lie

If the Jacobi identity is twisted by two morphisms instead of one, then we get a

BiHom-Lie algebra. In fact, BiHom algebras are generalizations of Hom-algebras.

Definition 1.2.4 [15] A BiHom-Lie algebra is a 4-tuple (L, [·, ·], α, β) where L is a vector

space, [·, ·] a bilinear bracket and α, β two linear maps such that:

1. α ◦ β = β ◦ α

2. α([x, y]) = [α(x), α(y)], β([x, y]) = [β(x), β(y)]

3. [β(x), α(y)] = −[β(y), α(x)]

4. [β2(x), [β(y), α(z)]] + [β2(z), [β(x), α(y)]] + [β2(y), [β(z), α(x)]] = 0

(BiHom Jacobi identity),

for all x, y ∈ L.

Remark: The second condition in the definition is sometimes dropped and a BiHom-Lie

algebra where (2) holds is called multiplicative. Moreover, if α and β are bijective then

(L, [·, ·], α, β) is called a regular BiHom-Lie algebra.
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Remark: A Hom-Lie algebra (L, [·, ·], α) can induce a BiHom-Lie algebra by taking β = α.

Conversely, if (L, [·, ·], α, α) is a regular BiHom-Lie algebra, then (L, [·, ·], α) is a Hom-Lie

algebra.

The concept of BiHon structures was introduced for the first time in [15] from a

categorical approach. The authors considered the classes of BiHom-associative algebras,

Bihom-Lie algebras, BiHom-bialgebras, BiHom-coassociative coalgebras and studied their

structures. Their goal was to generalize the construction of the Hom-structures using the

“twisting principle”. At this point a natural question arises: Could this method be gen-

eralized to a higher order? According to the authors, the answer is no! They claim that

it wouldn’t be possible to construct a TriHom-associative algebra. However, BiHom-Lie

algebra can be induced from a BiHom-associative algebra or also from a Lie algebra.

Definition 1.2.5 [15] A BiHom associative algebra is 4-tuple (V, µ, α, β) where V is a vector

space, α : V → V , β : V → V and µ : V⊗V → V are linear maps such that for all u, v, w ∈ V ,

the following hold

α ◦ β = β ◦ α

α(µ(u, v)) = µ(α(u), α(v)), and β(µ(u, v)) = µ(β(u), β(v)), Multiplicativity

µ(α(u), µ(v, w)) = µ(µ(u, v), β(w)) BiHom− associativity

Proposition 1.2.6 [15] If (V, µ, α, β) is a BiHom-associative algebra such that α and β are

bijective, then with the bracket [·, ·] defined on V by

[u, v] = uv − (α−1β(v))(αβ−1(u))

for any u, v ∈ V , and by writing uv instead of µ(u, v), (V, [·, ·], α, β) is a BiHom-Lie algebra.

Proposition 1.2.7 [15] Let (L, [·, ·]) be a Lie algebra and let α and β be two commuting Lie

algebra morphisms on L. Define {·, ·} : L⊗ L, by {a, b} = [α(a), β(b)]. Then (L, {·, ·}, α, β)

is a BiHom-Lie algebra called the Yau twist of (L, [·, ·]) and denoted by Lα,β.
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1.3 n-ary Algebras

We observe that n-ary operations and multilinear structures arise in many contexts in the-

oretical physics such as statistical mechanics, String theory, M-branes and Quark models.

For example, ternary algebras can be used to provide solutions to the Yang-Baxter equa-

tion. Also, Nambu mechanics (which is a generalization of Hamiltonian mechanics that was

introduced by Y. Nambu, where he considered two Hamiltonians instead of one) involves an

n-ary bracket that satisfy an n-ary version of the Jacobi identity. The study of supergravity

solutions describing M2-branes ending on M5-branes led Basu and Harvey [8] to the conclu-

sion that the Lie algebra appearing in the Nahm equations has to be replaced by a 3-Lie

algebra. With this growing interest, the algebraic structure of n-Lie algebras (also called

Nambu algebras or Filippov algebras) was introduced and studied by Filippov in [13] as a

generalization of Lie algebras

Definition 1.3.1 [13] An n-Lie algebra (L, [·, ..., ·]) is a vector space L equipped with a

skew-symmetric n-linear map [·, ..., ·] : Ln → L such that for every x1, ..., xn−1, y1, ..., yn ∈ L,

the following identity holds

[x1, .., xn−1, [y1, .., yn]] =
n∑
i=1

[y1, .., yi−1, [x1, .., xn−1, yi], yi+1, .., yn].

This identity is called the fundamental identity or Filippov identity. As one would expect,

the case n = 2 is just the Jacobi identity.

Example 1.3.2 Let A be an (n + 1)-dimensional vector space with the basis {v1, ..., vn+1}.

The bracket

[v1, ..., v̂i..., vn+1] = (−1)n+1+ivi

for i ∈ {1, ..., n+ 1} provides A with an n-Lie algebra structure.

Example 1.3.3 Let A = K[X1, ..., Xn] be the algebra of n indeterminate polynomials. Define

[P1, ..., Pn] = Jac(P1, ..., Pn),

11



where Jac(P1, ..., Pn) is the determinant of the Jacobian matrix of P1, ..., Pn. Thus (A, [·, ..., ·])

is an n-Lie algebra.

Definition 1.3.4 Let (L, [·, ..., ·]) and (L′, {·, ..., ·}) be two n-Lie algebras. An n-Lie algebra

morphism is a linear map f : L→ L′ satisfying

f([x1, ..., xn]) = {f(x1), ..., f(xn)},

for every x1, ..., xn ∈ L.

Definition 1.3.5 Let (L, [·, ..., ·]) be an n-Lie algebra. Let S be a subspace of L. We say that

S is a subalgebra of L if [S, ..., S] ⊂ S. And we say that S is an ideal of L if [S, L, ..., L] ⊂ S.

Definition 1.3.6 Let (L, [·, ..., ·]) be an n-Lie algebra. The center of L is the ideal defined

by

Z(L) = {z ∈ L : [z, x1, ...xn−1] = 0, for every x1, ...xn−1 ∈ L}.

Even though Lie algebras and n-Lie algebras have many similarities when it comes

to their identities and algebraic properties, it has become clear that some constructions and

generalizations like the quantum deformation require extra structure. The construction of

(n+1)-ary algebras from n-ary algebras is also a well-studied problem, in this dissertation we

use some results given in the study of this type of algebras. The case of ternary Lie algebras

induced by Lie algebras was discussed in [3], ternary Hom-Nambu-Lie algebras induced

by Hom-Lie algebras were introduced in [4]. In [5], the authors presented a procedure to

construct (n+ 1)-ary Hom-Nambu-Lie algebras from n-ary Hom-Nambu-Lie algebras and as

a generalization, (n+ 1)-ary BiHom-Lie algebras induced by n-ary BiHom-Lie algebras were

considered in [28].

In the second chapter of this dissertation, we study the algebras of generalized deriva-

tions of ternary Lie algebras. First, we briefly review the basic definitions and examples.

Then we introduce the algebras of generalized derivations, quasi-derivations, central deriva-

tions and other subalgebras. We close the chapter by a classification for low dimensional
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algebras. The third chapter is dedicated to the generalized derivations of n-BiHom-Lie alge-

bras we study their properties and investigate the algebras of derivations of (n+1)-BiHom-Lie

algebras induced by n-BiHom-Lie algebras.
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2 Derivations of Ternary Lie Algebras ∗

In this chapter we study derivations of ternary Lie algebras. Precisely, we investigate the

relation between derivations of Lie algebras and the induced ternary Lie algebras. We also

explore the spaces of quasi-derivations, the centroid and the quasi-centroid and give some

properties. Finally, we compute these spaces for low-dimensional ternary Lie algebras g.

In the first section, we review the basics of ternary Lie algebras, give some examples

and recall the construction given in [4] that allows one to induce ternary Lie algebras by a

Lie algebra and a trace function. Section 2 deals with derivations of ternary Lie algebras

and some generalizations. We discuss the space Der(g) and other subspaces, we give their

properties and study the connection between derivations of Lie algebras and induced ternary

Lie algebras. We show that if g is a ternary Lie algebra with trivial center which can be

decomposed to a sum of ideals then we can reduce the study of its derivations to those of the

components. Moreover we discuss centroids, quasi-derivations, quasi-centroids, (α, β, γ, θ)-

derivations and (α, β, γ, θ)-quasiderivations. In Section 3, we compute the set of derivations

and other generalized derivations of low-dimensional ternary Lie Algebras.

2.1 Ternary Lie algebras

Definition 2.1.1 Let [·, ·, ·] be a skew-symmetric trilinear map on a K-vector space g. We

say that (g, [·, ·, ·]) is a ternary Lie algebra or a 3-Lie algebra if the map [·, ·, ·] satisfies for

∗Sections of this chapter are taken from [1], which has been published in the journal “Int. Electron. J. Algebra”,
Vol.21, no.4, 2017.
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all x1, .., x5 ∈ g the identity

[x1, x2, [x3, x4, x5]] = [[x1, x2, x3], x4, x5] + [x3, [x1, x2, x4], x5] + [x3, x4, [x1, x2, x5]]. (2.1.1)

This identity is called the Nambu identity or sometimes the fundamental identity or Filippov

identity.

Example 2.1.2 Let V be a three-dimensional vector space with basis {e1, e2, e3}. Any skew-

symmetric trilinear map [·, ·, ·] : V −→ V satisfies the identity (2.1.1). To verify this we let

i, j = 1, 2, 3 with i < j and by an easy computation we obtain

[[ei, ej, e1], e2, e3] + [e1, [ei, ej, e2], e3] + [e1, e2, [ei, ej, e3]] = [ei, ej, [e1, e2, e3]].

Example 2.1.3 Let Mn(C) be the space of n × n matrices over the field of complex num-

bers. The bracket [A,B,C] = 	 Tr(A)Γ(B,C), where Tr is the trace function and Γ is the

commutator operator defined by Γ(A,B) = AB−BA, this bracket gives Mn(C) a ternary Lie

algebra structure. The symbol 	 means that we are taking a cyclic summation on A,B,C.

Example 2.1.4 The algebra of polynomials in 3 variables x1, x2, x3, with the bracket defined

by the functional jacobian:

[f1, f2, f3] =

∣∣∣∣∣∣∣∣∣
∂f1
∂x1

∂f1
∂x2

∂f1
∂x3

∂f2
∂x1

∂f2
∂x2

∂f2
∂x3

∂f3
∂x1

∂f3
∂x2

∂f3
∂x3

∣∣∣∣∣∣∣∣∣ (2.1.2)

is a ternary Lie algebra.

Example 2.1.5 The following ternary Lie algebra is the only 4-dimensional simple ternary
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Lie algebra. The bracket are defined with respect to the basis {e1, e2, e3, e4} by

[e1, e2, e3] = −e4,

[e1, e2, e4] = e3,

[e1, e3, e4] = −e2,

[e2, e3, e4] = e1.

Definition 2.1.6 Let (g, [·, ·, ·]) be a ternary Lie algebra and let h be a subspace of g.

• We say that h is a ternary Lie sub-algebra of (g, [·, ·, ·]) if it is closed under the bracket,

that is if [h, h, h] ⊆ h.

• A subspace I of g is called an ideal if [I, g, g] ⊂ I.

• A ternary Lie algebra is said to be simple if it has no proper ideal.

• The center of (g, [·, ·, ·]) is the set

Z(g) = {u ∈ g; [u, x1, x2] = 0 for all x1, x2 ∈ g}.

Z(g) is an abelian ideal of g.

An easy fact is that the center of a non-abelian simple ternary Lie algebra is trivial.

• The subspace g1 = [g, g, g] is a ternary Lie sub-algebra of g called the derived algebra

of g.

• A morphism of ternary Lie algebra is a linear map ϕ : (g, [·, ·, ·]g) −→ (η, [·, ·, ·]η) such

that for any x, y, z ∈ g we have

ϕ([x, y, z]g) = [ϕ(x), ϕ(y), ϕ(z)]η.

Remark 2.1.7 As in the case of Lie algebras, the kernel of a ternary Lie algebras mor-

phism is an ideal of g. In fact, if u is in ker(ϕ) then for any v, w ∈ g, ϕ([u, v, w]g) =
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[ϕ(u), ϕ(v), ϕ(w)]η = 0.

However, its image =(ϕ) is not always an ideal but a ternary Lie sub-algebra of η: For

v1, v2, v3 ∈ =(ϕ) we have [v1, v2, v3]η = [ϕ(u1), ϕ(u2), ϕ(u3)]η = ϕ([u1, u2, u3]g) for some

u1, u2, u3 ∈ g.

The two following propositions are given in [40] in a context of Hom-Lie algebras,

here we state them in the case of ternary Lie algebras.

Proposition 2.1.8 Given two ternary Lie algebras (g, [·, ·, ·]) and (η, [·, ·, ·]η), the space g⊕η

with the bracket defined by

[(u1, v1), (u2, v2), (u3, v3)]g⊕η = ([u1, u2, u3]g, [v1, v2, v3]η)

is a ternary Lie algebra.

Proposition 2.1.9 A linear map ϕ : (g, [·, ·, ·]g) −→ (η, [·, ·, ·]η) is morphism of ternary Lie

algebras if and only if its graph Gϕ is a ternary Lie sub-algebra of (g⊕ η, [·, ·, ·]g⊕η).

Proof. Suppose that ϕ : (g, [·, ·, ·]g) −→ (η, [·, ·, ·]η) is morphism of ternary Lie algebras and

let u, v, w ∈ g. We have

[(u, ϕ(u)), (v, ϕ(v)), (w,ϕ(w))]g⊕η = ([u, v, w]g, [ϕ(u), ϕ(v), ϕ(w)]η)

= ([u, v, w]g, ϕ([u, v, w]g)) ∈ Gϕ.

Then Gϕ is closed under the bracket [·, ·, ·]g⊕η.

Conversely, if Gϕ is a ternary Lie sub-algebra of (g⊕ η, [·, ·, ·]g⊕η), then

Gϕ 3 [(u, ϕ(u)), (v, ϕ(v)), (w,ϕ(w))]g⊕η = ([u, v, w]g, [ϕ(u), ϕ(v), ϕ(w)]η).

Thus [ϕ(u), ϕ(v), ϕ(w)]η = ϕ([u, v, w]g).
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2.1.1 Ternary Lie algebras induced by Lie algebras

In [4], the authors gave a procedure to construct a ternary Lie algebra structure from a Lie

bracket over the same vector space using a trace map. Precisely, we have the following.

Proposition 2.1.10 [4] Let (g, [·, ·]) be a Lie algebra and τ : g −→ K be a trace map on g,

then (g, [·, ·, ·]τ ) is a ternary Lie algebra, where

[x, y, z]τ = τ(x)[y, z] + τ(z)[x, y] + τ(y)[z, x].

The ternary Lie algebra (g, [·, ·, ·]τ ) is called the ternary Lie algebra induced by the Lie algebra

(g, [·, ·]) and the trace map τ .

Remark 2.1.11 We recall that a trace function τ : g −→ K is a linear map such that

τ([x, y]) = 0 for all x, y ∈ g.

We give an example to illustrate this construction.

Example 2.1.12 Let H2 be the 5-dimensional Heisenberg Lie algebra with generators P1, P2, Q1, Q2

and Z subject to the following bracket relations (unspecified bracket relations are obtained by

skew-symmetry or are zeros):

[P1, Q1] = [P2, Q2] = Z, and [P1, Q2] = [P2, Q1] = −Z.

Since Z is the only bracket, then any linear map τ : H2 −→ K such that τ(Z) = 0, is a

trace function on H2. Then (H2, [·, ·, ·]τ ) is a ternary Lie algebra with the following ternary

brackets:

[P1, P2, Q1]τ = τ(P1 − P2)Z

[P1, P2, Q2]τ = τ(P1 + P2)Z

[Q1, Q2, P1]τ = τ(Q1 +Q2)Z

[Q1, Q2, P2]τ = τ(Q1 −Q2)Z.
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A converse construction is also possible in the following sense: If (g, [·, ·, ·]) is a ternary

Lie algebra, we can induce a Lie algebra structure on g. Fix an element ω ∈ g and define the

bracket [x, y]ω = [x, y, ω], then (g, [·, ·]ω) is a Lie algebra. In fact [·, ·]ω is clearly bilinear and

skew-symmetric and by a direct computation one can see that it satisfies the Jacobi identity.

2.2 Derivations of ternary Lie algebras and ternary Lie algebras induced by

Lie algebras

Now let us define derivations of a ternary Lie Algebra and some other generalizations.

2.2.1 Derivations, Central Derivations and Centroids

Definition 2.2.1 Let (g, [·, ·, ·]) be a ternary Lie algebra and D a linear map of g. D is said

to be a derivation of g if

D([x1, x2, x3]) = [D(x1), x2, x3] + [x1, D(x2), x3] + [x1, x2, D(x3)].

For all x1, x2, x3 ∈ g. We denote by Der(g) the space of derivations of g.

Example 2.2.2 A straightforward computation gives the following fact: If D is a derivation

of the ternary Lie algebra in Example 2.1.5 with its matrix M = (aij)1≤i,j≤4 with respect to

the basis {e1, e2, e3, e4} then

M =


0 a12 a13 a14

−a12 0 a23 a24

−a13 −a23 0 a34

−a14 −a24 −a34 0

 .

Remark 2.2.3 Der(g) is a Lie algebra with the bracket

[D1, D2] = D1 ◦D2 −D2 ◦D1.
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Der(g) can also be equipped with a ternary Lie algebra structure induced from this Lie

bracket. We have the following:

Proposition 2.2.4 Let g be a finite dimensional Lie algebra. Consider the map τ : Der(g) −→

K defined by τ(D) = tr(D) consisting of the trace of the matrix of D. Then τ is a trace

function on Der(g) and it follows that (Der(g), [·, ·, ·]τ ) is a ternary Lie algebra.

Proposition 2.2.5 Let (g, [·, ·, ·]) be a ternary Lie algebra with trivial center and which can

be decomposed as the direct sum of two ideals: g = I ⊕ J , then we have

Der(g) = Der(I)⊕Der(J ).

To prove this proposition, we are going to use the following lemma:

Lemma 2.2.6 Let (g, [·, ·, ·]) be a ternary Lie algebra such that g = I ⊕ J , where I and J

are two ideals of g. Suppose that Z(g) = {0}, then for every D ∈ Der(g), we have D(I) ⊆ I

and D(J ) ⊆ J .

Proof. Let u ∈ I such that D(u) = v1 + v2, where v1 ∈ I and v2 ∈ J . Let x, y ∈ g. We

have

[v2, x, y] = [D(u)− v1, x, y]

= [D(u), x, y]− [v1, x, y]

= D([u, x, y])− [u,D(x), y]− [u, x,D(y)]− [v1, x, y].

Since I is an ideal of g, all of [u,D(x), y], [u, x,D(y)] and [v1, x, y] are in I.

Now write x = x1 + x2 and y = y1 + y2 such that x1, y1 ∈ I and x2, y2 ∈ J . Then

[u, x, y] = [u, x1, y1] + [u, x1, y2] + [u, x2, y1] + [u, x2, y2].

Each of [u, x1, y2], [u, x2, y1], [u, x2, y2] are in I ∩ J , so they are all zero, thus
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D([u, x, y]) = D([u, x1, y1])

= [D(u), x1, y1] + [u,D(x1), y1] + [u, x1, D(y1)].

Hence D([u, x, y]) ∈ I. It follows that [v2, x, y] ∈ I ∩J , so [v2, x, y] = 0. Hence v2 = 0 since

Z(g) = 0.

We can now prove Proposition 2.2.5.

Proof. By the previous lemma, we can see that a restriction of any derivation of g to I

(respectively to J ) is a derivation of I (respectively J ).

A natural question concerning derivations of ternary Lie algebras induced by a Lie

bracket is how they are related to derivations of the original Lie algebra.

Proposition 2.2.7 Let (g, [·, ·]) be a Lie algebra and (g, [·, ·, ·]τ ) be an induced ternary Lie

algebra. Let D be a derivation of (g, [·, ·]). If D(g) ⊂ Ker(τ), then D is a derivation of

(g, [·, ·, ·]τ ).

Proof. Let D be a derivation of (g, [·, ·]). For all x, y, z ∈ g,

[D(x), y, z]τ + [x,D(y), z]τ + [x, y,D(z)]τ = τ(D(x))[y, z] + τ(z)[D(x), y]

+ τ(y)[z,D(x)] + τ(z)[x,D(y)]+

τ(D(y))[z, x] + τ(x)[y,D(z)]

+ τ(D(z))[x, y] + τ(y)[D(z), x].
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Now, if D(g) ⊂ Ker(τ), then

[D(x), y, z]τ + [x,D(y), z]τ + [x, y,D(z)]τ

= τ(x)([D(y), z] + [y,D(z)]) + τ(y)([z,D(x)] + [D(z), x]) +

τ(z)([D(x), y] + [x,D(y)])

= τ(x)D([y, z]) + τ(y)D([z, x]) + τ(z)D([x, y])

= D(τ(x)[y, z] + τ(y)[z, x] + τ(z)[x, y]) = D([x, y, z]τ ).

Thus D is a derivation of (g, [·, ·, ·]τ ).

Lemma 2.2.8 Let D : g→ g be a Lie algebra derivation, then τ ◦D is a trace function on

g .

Proof. for all x, y ∈ g, we have :

τ (D ([x, y])) = τ ([D(x), y] + [x,D(y)]) = τ ([D(x), y]) + τ ([x,D(y)]) = 0.

A more powerful criterion is given in the next theorem,

Theorem 2.2.9 ([3]) Let D : g → g be a derivation of the Lie algebra (g, [·, ·]), then D is

a derivation of the induced ternary Lie algebra (g, [·, ·, ·]τ ) if and only if:

[x, y, z]τ◦D = 0,

for all x, y, z ∈ g.
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Proof. Let D be a derivation of g and x, y, z ∈ g:

D ([x, y, z]τ ) = τ(x)D ([y, z]) + τ(y)D ([z, x]) + τ(z)D ([x, y])

= τ(x) [D(y), z] + τ(y) [D(z), x] + τ(z) [D(x), y]

+ τ(x) [y,D(z)] + τ(y) [z,D(x)] + τ(z) [x,D(y)]

+ τ(D(x)) [y, z] + τ(D(y)) [z, x] + τ(D(z)) [x, y]

− τ(D(x)) [y, z] + τ(D(y)) [z, x] + τ(D(z)) [x, y]

= [D(x), y, z]τ + [x,D(y), z]τ + [x, y,D(z)]τ − [x, y, z]τ◦D .

Proposition 2.2.10 Let D be a derivation of (g, [·, ·, ·]). For w ∈ g, D is a derivation of

the Lie algebra (g, [·, ·]w) if and only if D(w) ∈ Z(g, [·, ·, ·]).

Proof. Let x, y ∈ g,

D([x, y]w) = D([x, y, w]) = [D(x), y, w] + [x,D(y), w] + [x, y,D(w)]

= [D(x), y]w + [x,D(y)]w + [x, y,D(w)].

Hence if D(w) is in the center of the ternary Lie algebra (g, [·, ·, ·]), then D is clearly a

derivation of the induced Lie algebra (g, [·, ·]w).

For any x = (x1, x2) ∈ g× g, the map defined by

adx :g −→ g

u 7→ [x1, x2, u]

is a derivation which we call an inner derivation.
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In fact, For u, v, w ∈ g,

adx([u, v, w]) = [x1, x2, [u, v, w]]

= [[x1, x2, u], v, w] + [u, [x1, x2, v], w] + [u, v, [x1, x2, w]]

= [adx(u), v, w] + [u, adx(v), w] + [u, v, adx(w)].

Remark 2.2.11

ad :g× g −→ gl(g)

(x1, x2) 7→ ad(x1,x2)

is the adjoint representation of g.

It turns out that all the derivations on a semi-simple Lie algebra are inner derivations.

This is also true for Lie triple systems [34] and many other algebraic structures. In particular,

all the derivations of the ternary Lie algebra defined in Example 2.1.5 are inner.

Proposition 2.2.12 The space Der(g) is an invariant of the ternary Lie algebra g.

Remark 2.2.13 Here the space of derivations is considered as ternary Lie algebra induced

from the Lie algebra structure as shown in Proposition 2.2.4.

Proof. Let σ : (g, [·, ·, ·]g) −→ (η, [·, ·, ·]η) be a ternary Lie algebra isomorphism and let D

be a derivation of g. Then for any x, y, z ∈ η we have:

σDσ−1([x, y, z]η) = σD([σ−1(x), σ−1(y), σ−1(z)]g)

= σ([Dσ−1(x), σ−1(y), σ−1(z)]g) + σ([σ−1(x), Dσ−1(y), σ−1(z)]g)

+ σ([σ−1(x), σ−1(y), Dσ−1(z)]g)

= [σDσ−1(x), y, z]η + [x, σDσ−1(y), z]η + [x, y, σDσ−1(z)]η.

Thus σDσ−1 is a derivation of η, hence the mapping

φ : Der(g) −→ Der(η)

D 7−→ σDσ−1
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is an isomorphism of ternary Lie algebras.

In fact, it is easy to see that φ is linear. Moreover, let D1, D2, D3 be derivations of g :

φ([D1, D2, D3]tr) = φ(tr(D1)[D2, D3]) + φ(tr(D3)[D1, D2]) + φ(tr(D2)[D3, D1])

= tr(D1)φ([D2, D3]) + tr(D3)φ([D1, D2]) + tr(D2)φ([D3, D1])

= tr(φ(D1))[φ(D2), φ(D3)] + tr(φ(D3))[φ(D1), φ(D2)]

+tr(φ(D2))[φ(D3), φ(D1)]

since φ is a morphism of the Lie algebras Der(g) and Der(η), and tr(D) = tr(σDσ−1). Then

φ([D1, D2, D3]tr) = [φ(D1), φ(D2), φ(D3)]tr.

Definition 2.2.14 The centroid of a ternary Lie algebra g is the set of all linear maps D

that satisfy:

D([x, y, z]) = [D(x), y, z] = [x,D(y), z] = [x, y,D(z)],

for all x, y, z ∈ g. We denote by C(g) the centroid of g.

Remark 2.2.15 We can define the centroid only by the equality D([x, y, z]) = [D(x), y, z],

and the two other equalities follow by the skew symmetry of the bracket.

Proposition 2.2.16 The centroid of a ternary Lie algebra g is a ternary Lie subalgebra of

(Der(g), [·, ·, ·]tr).

Proof. Let D1, D2, D3 ∈ C(g) and ψ = [D1, D2, D3]tr. For simplicity we let λi = tr(Di) for

i = 1, 2, 3. So ψ = λ1(D2D3 − D3D2) + λ3(D1D2 − D2D1) + λ2(D3D1 − D1D3). Then for
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x, y, z ∈ g, we have

[ψ(x), y, z] = [λ1(D2D3 −D3D2)(x) + λ3(D1D2 −D2D1)(x)

+ λ2(D3D1 −D1D3)(x), y, z]

= λ1([D2D3(x), y, z]− [D3D2(x), y, z]) + λ3([D1D2(x), y, z]

− [D2D1(x), y, z]) + λ2([D3D1(x), y, z]− [D1D3(x), y, z])

= λ1(D2([D3(x), y, z])−D3([D2(x), y, z])) + λ3(D1([D2(x), y, z])

−D2([D1(x), y, z])) + λ2(D3([D1(x), y, z])−D1([D3(x), y, z]))

= λ1(D2D3 −D3D2)([x, y, z]) + λ3(D1D2 −D2D1)([x, y, z])+

λ2(D3D1 −D1D3)([x, y, z]).

= ψ([x, y, z]).

Proposition 2.2.17 Let D ∈ C(g, [·, ·]). If for every u, v ∈ g we have

τ(u)D(v) = τ(D(u))v,

then D ∈ C(g, [·, ·, ·]τ ).

Proof.

D([x, y, z]τ ) = τ(x)D([y, z]) + τ(z)D([x, y])τ(y)D([z, x])

= τ(D(x))[y, z] + τ(z)[D(x), y] + τ(y)[D(z), x]

= τ(D(x))[y, z] + τ(z)[D(x), y] + τ(y)[z,D(x)]

= [D(x), y, z]τ .

Moreover, any centroid element of a ternary Lie algebra (g, [·, ·, ·]) is a centroid element

of an induced Lie algebra (g, [·, ·]w).
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The following proposition reduces the centroid of any simple ternary Lie algebra to

the space of its homothety.

Proposition 2.2.18 Let (g, [·, ·, ·]) be a simple ternary Lie algebra over an algebraically

closed field K. Then

C(g) = K Id,

where Id is the identity map on g.

Proof. First, one can see that the adjoint representation of g is simple because otherwise, if

a subset A of g is stable under the action of ad(x1,x2) for any x1, x2 ∈ g, then A is an ideal.

In addition, for any centroid element D we have

D([x, y, z]) = [x, y,D(z)].

Therefore

D ◦ ad(x,y) = ad(x,y) ◦D.

Thus using the Schur’s Lemma, we conclude that D = λId for some scalar λ.

Definition 2.2.19 A linear map D is a central derivation of (g, [·, ·, ·]) if D(g) ⊂ Z(g) and

D(g1) = {0}.

We denote by ZDer(g) the set of all central derivations of (g, [·, ·, ·]).

Example 2.2.20 A simple ternary Lie algebra does not have a non zero central derivation

since g1 = g. Recall that g1 = [g, g, g].

Proposition 2.2.21 For a ternary Lie algebra (g, [·, ·, ·]), we have

ZDer(g) = Der(g) ∩ C(g).
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Proof. A central derivation is obviously a derivation of the ternary Lie algebra. Moreover,

it is a centroid element since

D([x, y, z]) = [D(x), y, z] = [x,D(y), z] = [x, y,D(z)] = 0

for all x, y, z ∈ g. Conversely, if D ∈ Der(g) ∩ C(g), then

D([x, y, z]) = 3D([x, y, z]).

Therefore D([x, y, z]) = 0. Also [D(x), y, z] = 3[D(x), y, z], thus [D(x), y, z] = 0 and D(x) ∈

Z(g).

Here again we study central derivations of a ternary Lie algebra induced by a Lie algebra

and vice versa.

Proposition 2.2.22 Let (g, [·, ·, ·]) be a ternary Lie algebra. For any w ∈ g, let (g, [·, ·]w)

be the induced Lie algebra. Every central derivation of (g, [·, ·, ·]) is also a central derivation

of the induced (g, [·, ·]w).

Proof. If D is a central derivation of (g, [·, ·, ·]), then for any u, v ∈ g

[D(u), v]w = [D(u), v, w] = 0,

thus D(u) ∈ Z(g, [·, ·]w).

Proposition 2.2.23 Let (g, [·, ·, ·]τ ) be a ternary Lie algebra induced by a Lie algebra (g, [·, ·])

and the trace map τ . Let D ∈ ZDer(g, [·, ·]). Then D is a central derivation of (g, [·, ·, ·]τ )

if and only if D(g) ⊂ Ker(τ).

Proof. Let D ∈ ZDer(g, [·, ·]) and x, y, z ∈ g,

D([x, y, z]τ ) = τ(x)D([y, z]) + τ(z)D([x, y]) + τ(y)D([z, x]) = 0.
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In addition,

[D(x), y, z]τ = τ(D(x))[y, z] + τ(z)[D(x), y] + τ(y)[z,D(x)] = τ(D(x))[y, z].

2.2.2 Quasi-derivations and Quasi-centroids

Definition 2.2.24 A linear map D of g is a quasi-derivation if there exists D′ such that

[D(x), y, z] + [x,D(y), z] + [x, y,D(z)] = D′([x, y, z]),

for all x, y, z ∈ g. We denote by QDer(g) the set of all quasi derivations of g.

Example 2.2.25 Let (V, [·, ·, ·]) be the ternary Lie algebra defined in Example 2.1.5. For

any linear map D of V with M = (aij) its matrix in the base (e1, e2, e3, e4), there exists D′

such that D ∈ QDer(V ) and the matrix M ′ = (bij) of D′ is given by:

bij = −aji for 1 ≤ i 6= j ≤ 4;

and

bii =
4∑
j=1
j 6=i

ajj.

As in Theorem 2.2.9, the next proposition establish the link between the quasi-

derivations of a Lie algebra and the induced ternary Lie algebra.

Proposition 2.2.26 Let D be a quasi-derivation of a Lie algebra (g, [·, ·]) and let τ be a

trace function on g. Then D is a quasi-derivation of (g, [·, ·, ·]τ ) if and only if [x, y, z]τ◦D = 0

for any x, y, z.

Remark 2.2.27 Unlike Lemma 2.2.8, in this case the map τ ◦D is not necessarily a trace

on g.
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Every derivation is obviously a quasi-derivation, so we have Der(g) ⊂ QDer(g). We

will see now that a sum of any derivation and a centroid element is also a quasi-derivation:

Proposition 2.2.28 If (g, [·, ·, ·]) is a ternary Lie algebra with trivial center, then we have

Der(g)⊕ C(g) ⊂ QDer(g).

Proof. Let D ∈ C(g), for any x, y, z ∈ g, we have

[D(x), y, z] + [x,D(y), z] + [x, y,D(z)] = 3D([x, y, z]).

So D is a quasi derivation, thus Der(g) +C(g) ⊂ QDer(g). Now if D ∈ Der(g)∩C(g), then

[D(x), y, z] + [D(x), y, z] + [D(x), y, z] = [D(x), y, z].

Thus [D(x), y, z] = 0, therefore D(x) ∈ Z(g), for every x, which means that D = 0. Hence

Der(g) ∩ C(g) = {0}.

Proposition 2.2.29 Let (g, [·, ·, ·]) be a ternary Lie algebra with trivial center and suppose

that g = I ⊕ J , then

(1) QDer(g) = QDer(I)⊕QDer(J )

(2) C(g) = C(I)⊕ C(J ).

Proof. Since Lemma 2.2.6 can be applied to any quasi-derivation and any centroid element,

so the decomposition in Proposition 2.2.5 holds naturally.

Definition 2.2.30 The quasi-centroid of g is the set of all linear maps D such that

[D(x), y, z] = [x,D(y), z] = [x, y,D(z)]

for all x, y, z ∈ g. We denote by QC(g) the quasi-centroid of g.
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Proposition 2.2.31 Let D ∈ QC(g, [·, ·]). Suppose that D(g) ⊂ Ker(τ) and for every

u, v ∈ g we have τ(u).v = τ(v).u, then D ∈ QC(g, [·, ·, ·]τ ).

The proof is quite similar to the proof of 2.2.17.

Lemma 2.2.32 The derived algebra g1 is preserved under Der(g) and C(g) but not QC(g).

Proof. If D is a derivation of g, then by definition, fo every x, y, z ∈ g we have

D([x, y, z]) = [D(x), y, z] + [x,D(y), z] + [x, y,D(z)] ∈ g1.

Similarly, if D ∈ C(g), so D([x, y, z]) = [D(x), y, z] ∈ g1.

We show that the derived algebra is not necessarily preserved by the quasi-centroid, by

the following counter example. Let (L, [·, ·, ·]) be the ternary Lie algebra with the basis

{e1, e2, e3} such that [e1, e2, e3] = e1. Let ϕ be a linear map defined by ϕ(e1) = e2 and

ϕ(ee) = ϕ(e3) = 0. Then ϕ ∈ QC(L) since [ϕ(e1), e2, e3] + [e1, ϕ(e2), e3] + [e1, e2, ϕ(e3)] = 0.

However ϕ does not preserve L1 =< e1 >.

2.2.3 (α, β, γ, θ)-Derivations and (α, β, γ, θ)-Quasiderivations

We will now define another generalization for a derivation of (g, [·, ·, ·]).

Definition 2.2.33 Let g be a ternary Lie algebra, D ∈ End(g), and α, β, γ, θ ∈ K. We say

that D is an (α, β, γ, θ)-derivation of g if

αD([x1, x2, x3]) = β[D(x1), x2, x3] + γ[x1, D(x2), x3] + θ[x1, x2, D(x3)],

For every x1, x2, x3 ∈ g.

We denote by D(α, β, γ, θ) the set of (α, β, γ, θ)-derivations.

Remark 2.2.34 It is clear that D(0, 0, 0, 0) = End(g), therefore we can assume that the

parameters α, β, γ, θ are not all zero. One can also see that D(1, 1, 1, 1) = Der(g).
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Theorem 2.2.35 Suppose that α 6= 0. The space D(α, β, γ, θ) is one of the following spaces:

• D(1, λ, 0, 0)

• D(1, λ, δ, δ)

• D(1, λ, 0, 0) ∩QC(g)

for some λ, δ ∈ K.

Proof. Let D ∈ D(α, β, γ, θ). Using the skew-symmetry of the bracket we have the following

equalities, for every x, y, z ∈ g

αD([x, y, z]) = β[D(x), y, z] + γ[x,D(y), z] + θ[x, y,D(z)] (2.2.3)

αD([x, y, z]) = β[D(z), x, y] + γ[z,D(x), y] + θ[z, x,D(y)] (2.2.4)

−αD([x, y, z]) = β[D(x), z, y] + γ[x,D(z), y] + θ[x, z,D(y)] (2.2.5)

−αD([x, y, z]) = β[D(y), x, z] + γ[y,D(x), z] + θ[y, x,D(z)] (2.2.6)

Now by adding eq (2.2.3) to each equation, we get

0 = (γ − θ)[x,D(y), z] + (θ − γ)[x, y,D(z)] (2.2.3) + (2.2.5)

0 = (β − γ)[D(x), y, z] + (γ − β)[x,D(y), z] (2.2.3) + (2.2.6)

If γ = θ = 0, then D ∈ D(1, β
α
, 0, 0).

If γ = θ 6= 0, D ∈ D(1, β
α
, γ
α
, γ
α

).
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Similarly, if β = γ, then D(α, β, γ, θ) = D(1, θ
α
, 0, 0) or D(α, β, γ, θ) = D(1, γ

α
, γ
α
, θ
α

).

If θ 6= γ and β 6= γ, it follows from the equations above that D ∈ QC(g) hence D satisfies

D([x, y, z]) = β+γ+θ
α

[D(x), y, z].

Let us now discuss the case of a ternary Lie algebra induced by a Lie algebra. Here we

denote the space of the (α, β, γ, θ)-derivations of the induced ternary Lie algebra (g, [·, ·, ·]τ )

by Dτ (α, β, γ, θ).

Proposition 2.2.36 Suppose that for every u, v ∈ g we have τ(u).v = τ(v).u, then any

(α, β, γ)-derivation D of (g, [·, ·]) that satisfies D(g) ⊂ Ker(τ) is an (α′, β′, γ′, θ′)-derivation

of (g, [·, ·, ·]τ ) for some α′, β′, γ′, θ′. Precisely, D is in one of the following spaces:

(i) End(g),

(ii) {f ∈ End(g); f(g1) = {0}},

(iii) QC(g, [·, ·, ·]τ ),

(iv) QC(g, [·, ·, ·]τ ) ∩ {f ∈ End(g); f(g1) = {0}},

(v) Dτ (δ, 1, 1, 1), for some δ ∈ K,

(vi) QC(g, [·, ·, ·]τ ) ∩Dτ (δ, 1, 1, 1), for some δ ∈ K.

To prove this, we recall the following proposition stated in [39].

Proposition 2.2.37 Let g be a Lie algebra and α, β, γ ∈ C. D(α, β, γ) is one of the following

spaces:

(i) D(0, 0, 0) = End(g),

(ii) D(1, 0, 0) = {f ∈ End(g); f(g1) = {0}},

(iii) D(0, 1,−1) = QC(g, [·, ·, ·]τ ),
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(iv) D(1, 1,−1) = QC(g, [·, ·]) ∩ {f ∈ End(g); f(g1) = {0}},

(v) D(δ, 1, 1),

(vi) D(δ, 1, 0) = QC(g, [·, ·]) ∩D(2δ, 1, 1).

Proof. [Proof of Proposition 2.2.36] (i), (ii) are obvious.

(iii), (iv) by proposition 2.2.31.

(v) Let D ∈ D(δ, 1, 1). Then

δD([x, y, z]τ ) = τ(x)δD([y, z]) + τ(z)δD([x, y]) + τ(y)δD([z, x])

= τ(x)([D(y), z] + [y,D(z)]) + τ(z)([D(x), y] + [x,D(y)])

+ τ(y)([D(z), x] + [z,D(x)])

= τ(z)[D(x), y] + τ(y)[z,D(x)] + τ(x)[D(y), z] + τ(z)[x,D(y)]

+ τ(y)[D(z), x] + τ(x)[y,D(z)]

= [D(x), y, z]τ + [x,D(y), z]τ + [x, y,D(z)]τ .

(vi) We apply (v) to the space D(2δ, 1, 1).

2.3 Derivations and Central Derivations of ternary Lie Algebras of dimension

less or equal than 4

In this section, we will use the classification theorem of ternary Lie algebras of dimension

less or equal 4 given in [13] to determine the spaces Der(g) and C(g). Then we determine

the space of central derivations ZDer(g) using Proposition 2.2.21.

Theorem 2.3.1 [13] Let g be a ternary Lie algebra of dimension less or equal than 4 and

let (ei)1≤i≤dim(g) be a basis of g. Then g is isomorphic to one of the following

1. If dim g < 3, then g is abelian

2. If dim g = 3, then
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a. g is abelian.

b. [e1, e2, e3] = e1.

3. If dim g = 4, then

a. g is abelian

b. [e2, e3, e4] = e1.

c. [e1, e2, e3] = e1.

d. [e1, e2, e4] = αe3 + βe4; [e1, e2, e3] = γe3 + δe4, where

 α β

γ δ

 is an invertible

matrix.

e. [e2, e3, e4] = e1; [e1, e3, e4] = αe2; [e1, e2, e4] = βe3 with α, β 6= 0.

f. [e2, e3, e4] = e1; [e1, e3, e4] = αe2; [e1, e2, e4] = βe3; [e1, e2, e3] = γe4 with α, β, γ 6= 0.

The omitted brackets are either zeros or can be obtained by skew-symmetry.

Let D be a linear map of g and let M = (ai,j) its matrix in the basis (ei)1≤i≤dim(g). We will

compute the spaces of derivations. Each of the following items corresponds to its respective

case in the previous theorem.

1. If dim(g) < 3, then we have

Der(g) = C(g) = ZDer(g) = End(g).

2. dim(g)=3, {e1, e2, e3} a basis of g

a. g is abelian: same as the case (1).

b. [e1, e2, e3] = e1.

∗ Der(g) = {D ∈ End(g) such that

M =


a11 a12 a13

0 a22 a23

0 a32 −a22

}.
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∗ C(g) = {D ∈ End(g) such that

M =


a11 a12 a13

0 a11 a23

0 a32 a11

}.

∗ ZDer(g) = {D ∈ End(g) such that

M =


0 a12 a13

0 0 a23

0 a32 0

}.

3. dim(g)=4, {e1, e2, e3, e4} a basis of g

a. g is abelian: same as the case (1).

b. [e2, e3, e4] = e1

∗ Der(g) = {D ∈ End(g) such that

M =


a22 + a33 + a44 a12 a13 a14

0 a22 a23 a24

0 a32 a33 a34

0 a42 a43 a44

}.

∗ C(g) = {D ∈ End(g) such that,

M =


a11 a12 a13 a14

0 a11 a23 a24

0 a32 a11 a34

0 a42 a43 a11

}.
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∗ ZDer(g) = {D ∈ End(g) such that

M =


0 a12 a13 a14

0 0 a23 a24

0 a32 0 a34

0 a42 a43 0

}.

c. [e1, e2, e3, ] = e1

∗ Der(g) = {D ∈ End(g) such that,

M =


a11 a12 a13 0

0 a22 a23 0

0 a32 −a22 0

0 a42 a43 a44

}.

∗ C(g) = {D ∈ End(g) such that

M =


a11 a12 a13 a14

0 a11 a23 a24

0 a32 a11 a34

0 a42 a43 a44

}.

∗ ZDer(g) = {D ∈ End(g) such that

M =


0 a12 a13 0

0 0 a23 0

0 a32 0 0

0 a42 a43 a44

}.

d. [e1, e2, e4] = αe3 + βe4; [e1, e2, e3] = γe3 + δe4, with

 α β

γ δ

 is an invertible

matrix.
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The matrix of a derivation D is of the form

M =

 A 0

B C


where A,B,C are 2× 2 matrices such that Tr(A) = 0 except if β 6= δ.

∗ ZDer(g) = {D ∈ End(g) such that

M =


0 a12 0 0

a21 0 0 0

a31 a32 0 0

a41 a42 0 0

}.

e. [e2, e3, e4] = e1; [e1, e3, e4] = αe2; [e1, e2, e4] = βe3

∗ Der(g) = {D ∈ End(g) such that

M =


a11 a12 a13 a14

αa12 a11 a23 a24

−βa13
β
α
a23 a11 a34

0 0 0 −a11

}.

∗ C(g) = {D ∈ End(g) such that

M =


a11 0 0 a14

0 a11 0 a24

0 0 a11 a34

0 0 0 a11

}.
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∗ ZDer(g) = {D ∈ End(g) such that

M =


0 0 0 a14

0 0 0 a24

0 0 0 a34

0 0 0 0

}.

f. [e2, e3, e4] = e1; [e1, e3, e4] = αe2; [e1, e2, e4] = βe3; [e1, e2, e3] = γe4

∗ Der(g) = {D ∈ End(g) such that

M =


0 a12 a13 a14

αa12 0 a23 a24

−βa13
β
α
a23 0 a34

γa14 − γ
α
a24

γ
β
a34 0

}.

∗ C(g) = {λId},

∗ Thus ZDer(g) = {0}.

2.3.1 Classification of (α, β, γ, θ)-Derivations and (α, β, γ, θ)-Quasiderivations

Now we classify, using Theorem 2.2.35, (α, β, γ, θ)-Derivations in dimension three and di-

mension four. For this we need to determine the spaces D(1, λ, 0, 0) and QC(g).

Remark 2.3.2 If λ = 1, then D(1, λ, 0, 0) ∩ QC(g) = C(g). Therefore, in the following

computations, we suppose that λ 6= 1.

Lemma 2.3.3 Every central derivation of a ternary Lie algebra g is an (α, β, γ, θ)-derivation.

Proof. Let D be a central derivation of g, then the image of g under D is a subset of its

center. Therefore, for any x, y, z in g we have

[D(x), y, z] = [x,D(y), z] = [x, y,D(z)] = 0.
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On the other hand, since D(g1) = {0}, so D([x, y, z]) = 0. Thus D is an (α, β, γ, θ)-

derivation.

Let D be an (α, β, γ, θ)-Derivation of g

1. If dim(g) = 3,

• g is abelian, D(α, β, γ, θ) = End(g).

• [e1, e2, e3] = e1 : D(α, β, γ, θ) = ZDer(g).

2. If dim(g) = 4,

• [e2, e3, e4] = e1,

– If λ = 0, then D(α, β, γ, θ) = ZDer(g).

– If λ 6= 0, then the matrix M of D has the form

M =



1
λ
a22 a12 a13 a14

0 a22 a23 a24

0 a32 a22 a34

0 a42 a43 a22

 .

• [e1, e2, e3] = e1: D(α, β, γ, θ) = ZDer(g).

• [e2, e3, e4] = e1; [e1, e3, e4] = ae2; [e1, e2, e4] = be3 : D(α, β, γ, θ) = ZDer(g).

• [e2, e3, e4] = e1; [e1, e3, e4] = ae2; [e1, e2, e4] = be3; [e1, e2, e3] = ce4 : D(α, β, γ, θ) =

ZDer(g).
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3 Generalized Derivations of n-BiHom-Lie algebras

This chapter is devoted to studying the generalized derivations of n-BiHom-Lie algebras. We

introduce and study properties of derivations, (αs, βr)-derivations and generalized deriva-

tions. We also study quasiderivations of n-BiHom-Lie algebras. Generalized derivations of

(n+1)-BiHom-Lie algebras induced by n-BiHom-Lie algebras are also considered. Section 3.1

deals with the preliminary background including the main definitions. In Section 3.2 we

study properties of derivations, (αs, βr)-derivations and generalized derivations. Section 3.3

is dedicated to quasi-derivations of n-BiHom-Lie algebras we prove that the quasi-derivation

algebra of an n-BiHom-Lie algebra can be embedded into the derivation algebra of a larger

n-BiHom-Lie algebra. In Section 3.4 we study generalized derivations of (n+ 1)-BiHom-Lie

algebras induced by n-BiHom-Lie algebras.

3.1 Basic review of n-BiHom-Lie algebras

Definition 3.1.1 A quadruple (g, [·, ·, ·], α, β), where g is a vector space, α, β are linear

maps of g, and [·, ·, ·] : g⊗3 → g is a 3-linear map, is called a 3-BiHom-Lie algebra if the

following conditions are satisfied.

1. α ◦ β = β ◦ α.

2. [β(x1), β(x2), α(x3)] = Sgn(σ)[β(xσ(1)), β(xσ(2)), α(xσ(3))], for all x1, x2, x3 ∈ g and σ ∈

S3.
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3.

[β2(x1), β2(x2), [β(y1), β(y2), α(y3)]] = [β2(y2), β2(y3), [β(x1), β(x2), α(y1)]]

− [β2(y1), β2(y3), [β(x1), β(x2), α(y2)]] + [β2(y1), β2(y2), [β(x1), β(x2), α(y3)]],

for all x1, x2, y1, y2, y3 ∈ g.

Definition 3.1.2 An n-BiHom-Lie algebra is a vector space g equipped with an n-linear

map [·, . . . , ·] and two linear maps α and β such that

1. α ◦ β = β ◦ α.

2. [β(x1), . . . , β(xn−1), α(xn)] = Sgn(σ)[β(xσ(1)), . . . , β(xσ(n−1)), α(xσ(n))], for any σ ∈ Sn.

3.

[β2(x1), . . . , β2(xn−1), [β(y1), . . . , β(yn−1), α(yn)]] =

n∑
k=1

(−1)n−k[β2(y1), . . . , β̂2(yk), . . . , β
2(yn), [β(x1), . . . , β(xn−1), α(yk)]],

for all x1, . . . , xn−1, y1, . . . , yn ∈ g.

We say that (g, [·, . . . , ·], α, β) is a multiplicative n-BiHom-Lie algebra if α and β are algebra

morphisms and regular if they are automorphisms.

n-BiHom-Lie algebras may be induced from n-Lie algebras using two algebra mor-

phisms as stated in the following proposition given in [28].

Proposition 3.1.3 Let (V, [·, . . . , ·]) be an n-Lie algebra and α, β two morphisms of V that

commute with each other. For x1, . . . , xn ∈ V define

[x1, . . . , xn]αβ = [α(x1), . . . , α(xn−1), β(xn)].

Then (V, [·, . . . , ·]αβ, α, β) is an n-BiHom-Lie algebra.
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In this chapter we are interested in the derivations of this particular type of n-BiHom-Lie

algebras, we compare them to the derivations of the original Lie algebras, and study their

inherited properties.

Example 3.1.4 Let V be a 4-dimensional vector space with the basis {e1, e2, e3, e4}. Define

the following brackets:

[e1, e2, e3] = −e4 ; [e1, e2, e4] = e3 ; [e1, e3, e4] = −e2 ; [e2, e3, e4] = e1.

With this bracket, (V, [·, ·, ·]) is a 3-Lie algebra. Let α and β be two linear maps of V defined

by :

α(e1) = −e2 ; α(e2) = −e1 ; α(e3) = −e4 ; α(e4) = −e3 and , β = −α.

Let [x1, x2, x3]αβ = [α(x1), α(x2), β(x3)], be a twisted bracket defined on V . Then (V, [·, ·, ·]αβ, α, β)

is a 3-BiHom-Lie algebra.

Recall that a subset S ⊆ g is a subalgebra of (g, [·, . . . , ·], α, β) if α(S) ⊆ S, β(S) ⊆ S

and [S,S, . . . ,S] ⊆ S. We say that S is an ideal if α(S) ⊆ S, β(S) ⊆ S and [S,S, . . . , g] ⊆ S.

Definition 3.1.5 The center of (g, [·, . . . , ·], α, β) is the set of u ∈ g such that

[u, x1, x2, . . . , xn−1] = 0

for all x1, x2, . . . , xn−1 ∈ g. The center is an ideal of g which we will denote by Z(g).

A more general definition of the center is the one involving the two morphisms α and β and

we will call it the (α, β)-center.

Definition 3.1.6 The (α, β)-center of (g, [·, . . . , ·], α, β) is the set

Z(α,β)(g) = {u ∈ g, [u, αβ(x1), . . . , αβ(xn−1)] = 0, for any x1, . . . , xn−1 ∈ g}.
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Example 3.1.7 A direct computation gives that the (α, β)-center of the 3-BiHom-Lie alge-

bra given in Example 3.1.4 is trivial, that is Z(α,β)(g) = {0}.

3.2 Derivations, (αs, βr)-derivations and Generalized derivations

Definition 3.2.1 Let (g, [·, ·, ·], α, β) be a 3-BiHom-Lie algebra. A linear map D : g→ g is

a derivation if for all x, y, z ∈ g

D([x, y, z]) = [D(x), y, z] + [x,D(y), z] + [x, y,D(z)], (3.2.1)

and it is called an (αs, βr)-derivation of (g, [·, ·, ·], α, β), if it satisfies

D ◦ α = α ◦D, and D ◦ β = β ◦D, (3.2.2)

D([x, y, z]) = [D(x), αsβr(y), αsβr(z)] + [αsβr(x), D(y), αsβr(z)] +

[αsβr(x), αsβr(y), D(z)]. (3.2.3)

Similarly, one can define (αs, βr)-derivations of n-BiHom-Lie algebras. Condition

(3.2.3) becomes

D[x1, . . . , xn] = [D(x1), αsβr(x2), . . . , αsβr(xn)]

+
n∑
i=2

[αsβr(x1), . . . , αsβr(xi−1), D(xi), α
sβr(xi+1), . . . , αsβr(xn)].

Let Der(αs,βr)(g) be the set of (αs, βr)-derivations of g and set

Der(g) :=
⊕
s≥0

⊕
r≥0

Der(αs,βr)(g).

We show that Der(g) is equipped with a Lie algebra structure. In fact, for D ∈

Der(αs,βr)(g) and D′ ∈ Der(αs′ ,βr′ )(g), we have [D,D′] ∈ Der(αs+s′ ,βr+r′ )(g) , where [D,D′] is

the standard commutator defined by [D,D′] = DD′ −D′D.
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Let (V, [·, . . . , ·]) be an n-Lie algebra and (V, [·, . . . , ·]αβ, α, β) the induced n-BiHom-

Lie algebra where α, β are the two morphisms used for this induction. A direct computation

gives the following proposition

Proposition 3.2.2 Any derivation of the n-Lie algebra (V, [·, . . . , ·]) is a derivation of its

induced n-BiHom-Lie algebra (V, [·, . . . , ·]αβ, α, β) as well.

Definition 3.2.3 Let (g, [·, . . . , ·], α, β) be an n-BiHom-Lie algebra and let D be an endo-

morphism of g. The linear map D is called a generalized (αs, βr)-derivation of g if there

exists D(i), i ∈ {1, . . . , n}, a family of endomorphisms of g, such that

D ◦ α = α ◦D; D ◦ β = β ◦D

D(i) ◦ α = α ◦D(i); D(i) ◦ β = β ◦D(i) for any i, and

D(n)([x1, . . . , xn]) = [D(x1), αsβr(x2), . . . , αsβr(xn)]

+
n∑
i=2

[αsβr(x1), . . . , αsβr(xi−1), D(i−1)(xi), α
sβr(xi+1), . . . , αsβr(xn)]

for all x1, . . . , xn ∈ g.

The set of generalized (αs, βr)-derivations of g is GDer(αs,βr)(g) and as for Der(g), we

denote

GDer(g) :=
⊕
s≥0

⊕
r≥0

GDer(αs,βr)(g).

Definition 3.2.4 An endomorphism D of an n-BiHom-Lie algebra g is called a (αs, βr)-

quasiderivation if there exists an endomorphism D′ of g such that

D ◦ α = α ◦D; D ◦ β = β ◦D

D′ ◦ α = α ◦D′; D′ ◦ β = β ◦D′, and

D′([x1, . . . , xn]) =
n∑
i=1

[αsβr(x1), . . . , αsβr(xi−1), D(xi), α
sβr(xi+1), . . . , αsβr(xn)]
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for any x1, . . . , xn ∈ g.

We then define

QDer(g) :=
⊕
s≥0

⊕
r≥0

QDer(αs,βr)(g).

Proposition 3.2.5 Let (g, [·, . . . , ·], α, β) be a regular n-BiHom-Lie algebra with trivial cen-

ter. Suppose that g = I ⊕ J , where I and J are ideals of g, then

GDer(g) = GDer(I)⊕GDer(J ).

Proof. To prove the proposition, first we will show that for any D ∈ GDer(g), we have

D(I) ⊂ I and D(J ) ⊂ J , then it follows that the restriction of D to I (resp. J ) is a

generalized derivation of I (resp. J ). Let u ∈ I and let D(u) = a + b, a ∈ I, b ∈ J be

the decomposition of D(u). For any y1, . . . , yn−1 ∈ g, we have [b, y1, . . . , yn−1] ∈ J . On the

other hand,

[b, y1, . . . , yn−1] = [D(u)− a, y1, . . . , yn−1] = [D(u), y1, . . . , yn−1]− [a, y1, . . . , yn−1]

since I is an ideal and a ∈ I, so [a, y1, . . . , yn−1] ∈ I. Moreover, for each 1 ≤ i ≤ n− 1, let

yi = αsβr(xi), then

[D(u), y1, . . . , yn−1] = [D(u), αsβr(x1), . . . , αsβr(xn−1)]

= D(n)[u, x1, . . . , xn−1]−
n−1∑
i=1

[αsβr(u), αsβr(x1), . . . , D(i)(xi), α
sβr(xi+1), . . . , αsβr(xn−1)].

For every i, [αsβr(u), αsβr(x1), . . . , D(i)(xi), α
sβr(xi+1), . . . , αsβr(xn−1)] ∈ I,

so
∑n−1

i=1 [αsβr(u), αsβr(x1), . . . , D(i)(xi), α
sβr(xi+1), . . . , αsβr(xn−1)] ∈ I.

Now let xi = ai + bi be the decomposition of xi,

[u, x1, . . . , xn−1] = [u, a1 + b1, . . . , an−1 + bn−1] = [u, a1 + b1, . . . , an−1] + [u, a1 + b1, . . . , bn−1]
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but [u, a1 + b1, . . . , bn−1] ∈ I ∩ J = {0}, so

[u, x1, . . . , xn−1] = [u, a1 + b1, . . . , an−2 + bn−2, an−1].

Similarly, [u, a1 + b1, . . . , bn−2, an−1] = 0. Thus,

[u, x1, . . . , xn−1] = [u, a1, . . . , an−2, an−1].

Therefore,

D(n)[u, x1, . . . , xn−1] = D(n)[u, a1, . . . , an−1] = [D(u), αsβr(a1), . . . , αsβ(an−1)]

+
n−1∑
i=1

[αsβr(u), αsβr(a1), . . . , D(i)(ai), α
sβr(ai+1), . . . , αsβr(an−1)] ∈ I.

Then [D(u), y1, . . . , yn−1] ∈ I and so is [b, y1, . . . , yn−1]. Hence [b, y1, . . . , yn−1] ∈ I ∩ J . We

conclude that b ∈ Z(g) = {0} and so D(I) ⊂ I.

Remark: Since any derivation quasiderivation is a generalized derivation:

Der(g) ⊆ QDer(g) ⊆ GDer(g).

Hence Proposition 3.2.5 holds for QDer(g) and Der(g) as well, that is

Der(g) = Der(I)⊕Der(J ),

and

QDer(g) = QDer(I)⊕QDer(J ).

Definition 3.2.6 A linear map D is called an(αs, βr)-central derivation of g if it satisfies

D([x1, . . . , xn]) = [αsβr(x1), . . . , αsβr(xi−1), D(xi), α
sβr(xi+1), . . . , αsβr(xn)] = 0,
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for all i ∈ {1, . . . , n}.

The set of (αs, βr)-central derivations is denoted by ZDer(αs,βr)(g) and we set

ZDer(g) :=
⊕
s≥0

⊕
r≥0

ZDer(αs,βr)(g).

Definition 3.2.7 The (αs, βr)-centroid of (g, [·, . . . , ·], α, β) denoted by C(αs,βr)(g) is the set

of linear maps D satisfying:

D([x1, . . . , xn]) = [αsβr(x1), . . . , αsβr(xi−1), D(xi), α
sβr(xi+1), . . . , αsβr(xn)]

for all i ∈ {1, . . . , n}. We set

C(g) :=
⊕
s≥0

⊕
r≥0

C(αs,βr)(g).

Proposition 3.2.8 For any r, s, we have

ZDer(αs,βr)(g) = Der(αs,βr)(g) ∩ C(αs,βr)(g).

Proof. It is clear that ZDer(αs,βr)(g) ⊆ Der(αs,βr)(g) and ZDer(αs,βr)(g) ⊆ C(αs,βr)(g). Con-

versely, let D ∈ Der(αs,βr)(g) ∩ C(αs,βr)(g), so for each i we have

D([x1, . . . , xn]) = [αsβr(x1), . . . , αsβr(xi−1), D(xi), α
sβr(xi+1), . . . , αsβr(xn)].

In addition,

D([x1, . . . , xn]) =
n∑
i=1

[αsβr(x1), . . . , αsβr(xi−1), D(xi), α
sβr(xi+1), . . . , αsβr(xn)].

Then D([x1, . . . , xn]) = nD([x1, . . . , xn]). Thus D([x1, . . . , xn]) = 0 and D ∈ ZDer(αs,βr)(g).

Definition 3.2.9 The (αs, βr)-quasicentroid QC(αs,βr)(g) is the set of linear maps D such
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that

[D(x1), αsβr(x2) . . . , αsβr(xn)] = [αsβr(x1), . . . , αsβr(xi−1), D(xi), α
sβr(xi+1), . . . , αsβr(xn)]

for all i ∈ {1, . . . , n}. We set

QC(g) :=
⊕
s≥0

⊕
r≥0

QC(αs,βr)(g).

Lemma 3.2.10 Let (g, [·, . . . , ·], α, β) be an n-BiHom-Lie algebra.

(1) [Der(g),C(g)] ⊆ C(g);

(2) C(g)⊕Der(g) ⊆ Der(g).

Proof. Let D ∈ Der(αs,βr)(g) and D′ ∈ C(αs′ ,βr′ )(g) for some s, s′, r, r′. Let x1, . . . , xn ∈ g.

(1) Compute

[DD′(x1), αs+s
′
βr+r

′
(x2), . . . , αs+s

′
βr+r

′
(xn)]

= D([D′(x1), αs
′
βr
′
(x2), . . . , αs

′
βr
′
(xn)])−

n∑
i=2

[αsβrD′(x1), . . . , D(xi), . . . , α
sβr(xn)]

= DD′([x1, . . . , xn])−
n∑
i=2

[αsβr(x1), . . . , D′D(xi), . . . , α
sβr(xn)].

On the other hand,

[D′D(x1), αs+s
′
βr+r

′
(x2), . . . , αs+s

′
βr+r

′
(xn)] = D′([D(x1), αsβr(x2), . . . , αsβr(xn)])

= DD′([x1, . . . , xn])−D′(
n∑
i=2

[αsβr(x1), . . . , D(xi), . . . , α
sβr(xn)])

but since for each i,

D′([αsβr(x1), . . . , D(xi), . . . , α
sβr(xn)]) = [αsβr(x1), . . . , D′D(xi), . . . , α

sβr(xn)],

so

D′(
∑n

i=2[αsβr(x1), . . . , D(xi), . . . , α
sβr(xn)]) =

∑n
i=2[αsβr(x1), . . . , D′D(xi), . . . , α

sβr(xn)].
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Hence [[D,D′](x1), αs+s
′
βr+r

′
(x2), . . . , αs+s

′
βr+r

′
(xn)] = [D,D′]([x1, . . . , xn]).

The same proof holds for any i ∈ {1, . . . , n}. Thus [D,D′] ∈ C(αs+s′ ,βr+r′ )(g).

(2) Now

D′D([x1, . . . , xn]) = D′([D(x1), αsβr(x2) . . . , αsβr(xn)])

+D′(
n∑
i=2

[αsβr(x1), . . . , D(xi), . . . , α
sβr(xn)])

= [D′D(x1), αs+s
′
βr+r

′
(x2), . . . , αs+s

′
βr+r

′
(xn)]

+
n∑
i=2

[αs+s
′
βr+r

′
(x1), . . . , D′D(xi), . . . , α

s+s′βr+r
′
(xn)].

Thus D′D ∈ Der(αs+s′ ,βr+r′ )(g).

In the following lemma, we provide some properties and relations of the subspaces of

Der(g) involving in particular the subalgebra of quasiderivations QDer(g).

Lemma 3.2.11 Let (g, [·, . . . , ·], α, β]) be a multiplicative n-BiHom-Lie algebra.

(1) [QDer(g),QC(g)] ⊆ QC(g);

(2) C(g) ⊆ QDer(g);

(3) [QC(g),QC(g)] ⊆ QDer(g);

(4) QDer(g) + QC(g) ⊆ GDer(g).

Proof. (1) This inclusion is similar to (1) of Lemma 3.2.10.

(2) It is an immediate consequence of the definition of a quasiderivation. If D ∈

C(αs,βr)(g), then
∑n

i=1[αsβr(x1), . . . , D(xi), . . . , α
sβr(xn)] = nD([x1, . . . , xn]).
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(3) Let D ∈ QC(αs,βr)(g) and D′ ∈ QC(αs′ ,βr′ )(g). For any x1, . . . , xn ∈ g we have

[DD′(x1), αs+s
′
βr+r

′
(x2), . . . , αs+s

′
βr+r

′
(xn)] = [αsβrD′(x1), Dαs

′
βr
′
(x2), . . . , αs+s

′
βr+r

′
(xn)]

= [αs+s
′
βr+r

′
(x1), Dαs

′
βr
′
(x2), D′αsβr(x3), . . . , αs+s

′
βr+r

′
(xn)]

= [Dαs
′
βr
′
(x1), αs+s

′
βr+r

′
(x2), D′αsβr(x3), . . . , αs+s

′
βr+r

′
(xn)]

= [D′D(x1), αs+s
′
βr+r

′
(x2), αs+s

′
βr+r

′
(x3), . . . , αs+s

′
βr+r

′
(xn)].

Then [[D,D′](x1), αs+s
′
βr+r

′
(x2), . . . , αs+s

′
βr+r

′
(xn)] = 0.

In the same way we have [αs+s
′
βr+r

′
(x1), . . . , [D,D′](xi), . . . , α

s+s′βr+r
′
(xn)] = 0 for

all i. Hence
∑n

i=1[αs+s
′
βr+r

′
(x1), . . . , [D,D′](xi), . . . , α

s+s′βr+r
′
(xn)] = 0. And so [D,D′] ∈

QDer(αs+s′ ,βr+r′ )(g).

(4) The inclusion is straightforward.

Proposition 3.2.12 If (g, [·, . . . , ·], α, β) is an n-BiHom-Lie algebra with trivial center, then

Der(g)⊕ C(g) ⊆ QDer(g).

Proof. Both Der(g) and C(g) are subspaces of QDer(g). Moreover, if D ∈ Der(g)∩C(g) then

for u ∈ g we have
∑n

i=1[D(u), x1, . . . , xn−1] = [D(u), x1, . . . , xn−1] = 0, for all x1, . . . , xn−1 ∈

g. Therefore D(u) ∈ Z(g), hence D = 0.

3.3 Quasiderivations of n-BiHom-Lie Algebras

The main goal in this section is to prove that the space of quasi-derivations of an n-BiHom

Lie algebra can be embedded in the space of derivation of a larger algebra. We start by giving

an n-BiHom Lie structure to the vector space that we define in the following proposition.

Proposition 3.3.1 Let (g, [·, . . . , ·]g, α, β) be an n-BiHom-Lie algebra over K and t be an

indeterminate. Define ğ = {Σ(x⊗t+y⊗tn) | x, y ∈ g}, ᾰ(ğ) = {Σ(α(x)⊗t+α(y)⊗tn) | x, y ∈

g},
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and β̆(ğ) = {Σ(β(x)⊗ t+ β(y)⊗ tn) | x, y ∈ g}. Then (ğ, [·, . . . , ·]ğ, ᾰ, β̆) is a multiplicative

n-BiHom-Lie algebra where the bracket is given by

[x1 ⊗ ti1 , x2 ⊗ ti2 , . . . , xn ⊗ tin ]ğ = [x1, x2, . . . , xn]g ⊗ t
∑
ij ,

for i1, . . . , in ∈ {1, n} . If k > n, we let tk = 0.

Proof. For any x, x1, . . . , xn ∈ g and i, i1, . . . , in ∈ {1, n}, we have

ᾰ ◦ β̆(x⊗ ti) = ᾰ(β(x)⊗ ti)

= α ◦ β(x)⊗ ti

= β ◦ α(x)⊗ ti = β̆ ◦ ᾰ(x⊗ ti).

Then ᾰ ◦ β̆ = β̆ ◦ ᾰ. Also,

ᾰ([x1 ⊗ ti1 , x2 ⊗ ti2 , . . . , xn ⊗ tin ]) = ᾰ([x1, x2, . . . , xn]⊗ t
∑
ij)

= [α(x1), α(x2), . . . , α(xn)]⊗ t
∑
ij

= [ᾰ(x1 ⊗ ti1), ᾰ(x2 ⊗ ti2), . . . , ᾰ(xn ⊗ tin)].

The same argument holds for β̆.

[β̆(x1 ⊗ ti1), . . . , β̆(xn−1 ⊗ tin−1), ᾰ(xn ⊗ tin)] = [β(x1), . . . , β(xn−1), α(xn)]⊗ t
∑
ij

= Sgn(σ)[β(xσ(1)), . . . , β(xσ(n−1)), α(xσ(n))]⊗ t
∑
ij

= Sgn(σ)[β̆(xσ(1) ⊗ ti1 , . . . , β̆(xσ(n−1) ⊗ tin−1), ᾰ(xσ(n) ⊗ tin)]

for any σ ∈ Sn. Note that if ij = n for some j, then the bracket would be zero since in that

case the sum
∑
ij ≥ n + 1 therefore t

∑
ij = 0. So one may assume that i1 = . . . = in = 1.
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Finally,

[β̆2(x1 ⊗ ti1), . . . , β̆2(xn−1 ⊗ tin−1), [β̆(y1 ⊗ ti
′
1), . . . , β̆(yn−1 ⊗ ti

′
n−1), ᾰ(yn ⊗ ti

′
n)]]

= [β2(x1)⊗ ti1 , . . . , β2(xn−1)⊗ tin−1 , [β(y1), . . . , β(yn−1), α(yn)]⊗ t
∑
i′j ]

= [β2(x1), . . . , β2(xn−1), [β(y1), . . . , β(yn−1), α(yn)]]⊗ t
∑
ij+

∑
i′j

=
n∑
k=1

(−1)n−k[β2(y1), . . . , β̂2(yk), . . . , β
2(yn), [β(x1), . . . , β(xn−1), α(yk)]]⊗ t

∑
ij+

∑
i′j

=
n∑
k=1

(−1)n−k[β̆2(y1 ⊗ ti
′
1), . . . , ̂β̆2(yk ⊗ ti

′
k), . . . , β̆2(yn ⊗ ti

′
n), [β̆(x1 ⊗ ti1), . . .

. . . , β̆(xn−1 ⊗ tin−1), ᾰ(yk ⊗ ti
′
k)]].

Thus, (ğ, [·, . . . , ·], ᾰ, β̆) is a multiplicative n-BiHom-Lie algebra.

For the sake of convenience, we will write xt (xtn) instead of x⊗ t (x⊗ tn). If U is a

subspace of g such that g = U ⊕ [g, . . . , g], then

ğ = gt+ gtn = gt+ Utn + [g, . . . , g]tn.

Let a map ϕ : QDer(g)→ End(ğ) be defined by

ϕ(D)(at+ utn + btn) = D(a)t+D′(b)tn,

where D ∈ QDer(g), D′ is a map related to D by the definition of quasiderivation, a ∈ g, u ∈

U, b ∈ [g, . . . , g].

Proposition 3.3.2 Let g, ğ, ϕ be as above. Then

(1) ϕ is injective and ϕ(D) does not depend on the choice of D′;

(2) ϕ(QDer(g)) ⊆ Der(ğ).
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Proof. (1) If ϕ(D1) = ϕ(D2), then for all a ∈ g, b ∈ [g, . . . , g] and u ∈ U we have

ϕ(D1)(at+ utn + btn) = ϕ(D2)(at+ utn + btn),

so

D1(a)t+D′1(b)tn = D2(a)t+D′2(b)tn,

therefore D1(a) = D2(a). Thus D1 = D2.

Now suppose that there exists D′′ such that

ϕ(D)(at+ utn + btn) = D(a)t+D′′(b)tn,

and

D′′([x1, . . . , xn]) =
n∑
i=1

[αsβr(x1), . . . , αsβr(xi−1), D(xi), α
sβr(xi+1), . . . , αsβr(xn)],

for any x1, . . . , xn ∈ g, then D′′([x1, . . . , xn]) = D′([x1, . . . , xn]). Hence D′′(b) = D′(b) and so

ϕ(D)(at+ utn + btn) = D(a)t+D′(b)tn = D(a)t+D′′(b)tn.

(2) Let x1t
i1 , . . . , xnt

in ∈ ğ. Again, here we consider only the case when i1 = . . . =

in = 1 since otherwise [x1t
i1 , . . . , xnt

in ] = 0.

ϕ(D)([x1t, . . . , xnt]) = ϕ(D)([x1, . . . , xn]tn) = D′([x1, . . . , xn])tn

=
n∑
i=1

[αsβr(x1), . . . , αsβr(xi−1), D(xi), α
sβr(xi+1), . . . , αsβr(xn)]tn

=
n∑
i=1

[αsβr(x1)t, . . . , αsβr(xi−1)t,D(xi)t, α
sβr(xi+1)t, . . . , αsβr(xn)t]

=
n∑
i=1

[ᾰsβ̆r(x1t), . . . , ᾰ
sβ̆r(xi−1t), ϕ(D)(xit), ᾰ

sβ̆r(xi+1t), . . . , ᾰ
sβ̆r(xnt)].

Hence ϕ(D) ∈ Der(αs,βr)(ğ).
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Proposition 3.3.3 Let g be a multiplicative n-BiHom-Lie algebra with trivial center and let

ğ, ϕ be as defined above.Then

Der(ğ) = ϕ(QDer(g))⊕ ZDer(ğ).

Proof. It is obvious that ϕ(QDer(g)) + ZDer(ğ) ⊆ Der(ğ) since both ϕ(QDer(g)) and

ZDer(ğ) are subsets of Der(ğ).

Moreover, since Z(g) = {0}, we have Z(ğ) = gtn. Let g ∈ Der(ğ), so g(Z(ğ)) ⊆ Z(ğ),

then g(Utn) ⊆ g(Z(ğ)) ⊆ Z(ğ) = gtn. Define a map f : gt+ Utn + [g, . . . , g]tn → gtn by

f(x) =


g(x) ∩ gtn, x ∈ gt;

g(x), x ∈ Utn;

0, x ∈ [g, . . . , g]tn.

f is linear and we know that

f([ğ, . . . , ğ]) = f([g, . . . , g]tn) = 0,

[ᾰsβ̆r(ğ), . . . , f(ğ), . . . , ᾰsβ̆r(ğ)] ⊆ [αsβr(g)t+αsβr(g)tn, . . . , gtn, . . . , αsβr(g)t+αsβr(g)tn] = 0,

then f ∈ ZDer(ğ). We claim that g − f ∈ ϕ(QDer(g)). This implies that g ∈ ϕ(QDer(g)) +

ZDer(ğ), hence we have equality. In fact, since

(g − f)(gt) = g(gt)− g(gt) ∩ gtn = g(gt)− gtn ⊆ gt, (g − f)(Utn) = 0,

and

(g − f)([g, . . . , g]tn) = g([ğ, . . . , ğ]) ⊆ [ğ, . . . , ğ] = [g, . . . , g]tn,

there exists D, D′ ∈ End(g) such that for all a ∈ g, b ∈ [g, . . . , g],

(g − f)(at) = D(a)t, (g − f)(btn) = D′(b)tn.
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g − f ∈ Der(ğ), then

n∑
i=1

[ᾰsβ̆r(a1t), . . . , ᾰ
sβ̆r(ai−1t), (g − f)(ait), ᾰ

sβ̆r(ai+1t), . . . , ᾰ
sβ̆r(ant)]

= (g − f)([a1t, . . . , ant]),

for all a1, . . . , an ∈ g. Then

n∑
i=1

[αsβr(a1), . . . , D(ai), . . . , α
sβr(an)]tn = D′([a1, . . . , an])tn,

thus
n∑
i=1

[αsβr(a1), . . . , D(ai), . . . , α
sβr(an)] = D′([a1, . . . , an]),

which means that D ∈ QDer(g). Therefore, g − f = ϕ(D) ∈ ϕ(QDer(g)).

Now if f ∈ ϕ(QDer(g)) ∩ ZDer(ğ), then f = ϕ(D) for some D ∈ QDer(g). So

f(at+ utn + btn) = ϕ(D)(at+ utn + btn) = D(a)t+D′(b)tn,

where a ∈ g, b ∈ [g, . . . , g]. Also, since f ∈ ZDer(ğ), we have

f(at+ btn + utn) ∈ Z(ğ) = gtn.

That is, D(a) = 0, for all a ∈ g and so D = 0. Hence f = 0.

We conclude that

Der(ğ) = ϕ(QDer(g))⊕ ZDer(ğ).
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3.4 Generalized Derivations of (n+ 1)-BiHom-Lie Algebras induced by

n-BiHom-Lie algebras

In [5], the authors investigated a construction of (n + 1)-Hom-Lie algebras induced by n-

Hom-Lie algebras. The construction of (n+1)-BiHom-Lie Algebras induced by n-BiHom-Lie

algebras was studied in [28]. In this section, we discuss (αs, βr)-derivations of n-BiHom-Lie

algebras that give (αs, βr)-derivations on the induced (n+ 1)-BiHom-Lie algebras.

Definition 3.4.1 Let A be a vector space, φ : An → A be an n-linear map and τ be a linear

form. The map τ is said to be an (α, β)-twisted φ-trace if it satisfies the following condition:

∀x1, . . . , xn ∈ A, τ(φ(β(x1), . . . , β(xn−1), α(xn))) = 0.

We set φτ be an (n+ 1)-linear map defined by

∀x1, . . . , xn+1 ∈ A, φτ (x1, . . . , xn+1) =
n+1∑
i=1

(−1)i−1τ(xi)φ(x1, . . . , x̂i, . . . , xn+1).

We recall the construction of an (n + 1)-BiHom-Lie algebra using an n-BiHom-Lie

algebra and an (α, β)-twisted trace given in [28]:

Theorem 3.4.2 Let (A, [·, . . . , ·], α, β) be an n-BiHom-Lie algebra and τ an (α, β)-twisted

[·, . . . , ·]-trace. If the following conditions are satisfied

Forallx, y ∈ A, τ(α(x))β(y) = τ(β(x))α(y),

τ ◦ α = τ and τ ◦ β = τ,

then (A, [·, . . . , ·]τ , α, β) is an (n+1)-BiHom-Lie algebra. We say that this algebra is induced

by (A, [·, . . . , ·], α, β).

We first focus on the ternary case. For a given BiHom-Lie algebra (g, [·, ·]) and a
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[·, ·]-trace map τ : g→ K, the ternary induced bracket is then given by

[x, y, z]τ := τ(x)[y, z]− τ(y)[x, z] + τ(z)[x, y]. (3.4.4)

Now we have the following theorem.

Theorem 3.4.3 Let (g, [·, ·], α, β) be a BiHom-Lie algebra. Let D : g → g be an (αs, βr)-

derivation of (g, [·, ·], α, β). If the following identity holds, for all x, y, z ∈ g,

αsβr(τ(D(x))[y, z])− αsβr(τ(D(y))[x, z]) + αsβr(τ(D(z))[x, y]) = 0,

then D is an (αs, βr)-derivation of the induced ternary BiHom-Lie algebra (g, [·, ·, ·]τ , α, β).

Proof. In the sequel, for simplicity we drop the τ from the ternary bracket. We have to

prove that

D[x, y, z] = [D(x), αsβr(y), αsβr(z)] + [αsβr(x), D(y), αsβr(z)] + [αsβr(x), αsβr(y), D(z)].

By applying D to each side of equation (3.4.4), we get

LHS = D[x, y, z] = τ(x)D[y, z]− τ(y)D[x, z] + τ(z)D[x, y]

= τ(x)([D(y), αsβr(z)] + [αsβr(y), D(z)])−

τ(y)([D(x), αsβr(z)]− [αsβr(x), D(z)]) +

τ(z)([D(x), αsβr(y)] + [αsβr(x), D(y)]),
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while

RHS = [D(x), αsβr(y), αsβr(z)] + [αsβr(x), D(y), αsβr(z)] + [αsβr(x), αsβr(y), D(z)]

= τ(D(x))[αsβr(y), αsβr(z)]− τ(αsβr(y))[αsβr(x), D(z)] + τ(αsβr(z))[D(x), αsβr(y)]

+ τ(αsβr(x))[D(y), αsβr(z)]− τ(D(y))[αsβr(x), αsβr(z)] + τ(αsβr(z))[αsβr(x), D(y)]

+ τ(αsβr(x))[αsβr(y), D(z)]− τ(αsβr(y))[D(x), αsβr(z)] + τ(D(z))[αsβr(x), αsβr(y)].

Using the fact that

τ ◦ α = τ and τ ◦ β = τ,

we can rewrite the right hand side as

RHS = τ(D(x))[αsβr(y), αsβr(z)]− τ(y)[αsβr(x), D(z)] + τ(z)[D(x), αsβr(y)]

+ τ(x)[D(y), αsβr(z)]− τ(D(y))[αsβr(x), αsβr(z)] + τ(z)[αsβr(x), D(y)]

+ τ(x)[αsβr(y), D(z)]− τ(y)[D(x), αsβr(z)] + τ(D(z))[αsβr(x), αsβr(y)],

Thus the difference between the right hand side and the left hand side is given by

RHS − LHS = τ(D(x))[αsβr(y), αsβr(z)]− τ(D(y))[αsβr(x), αsβr(z)] +

τ(D(z))[αsβr(x), αsβr(y)],

= τ(D(x))αsβr[y, z]− τ(D(y))αsβr[x, z] + τ(D(z))αsβr[x, y].

We then obtain the result by assuming that the following identity holds, ∀x, y, z ∈ g,

αsβr(τ(D(x))[y, z]− τ(D(y))[x, z] + τ(D(z))[x, y]) = 0.

This completes the proof.

Similar computations lead to a generalization of Theorem 3.4.3 to n-ary case.

Theorem 3.4.4 Let (g, [·, . . . , ·], α, β) be an n-BiHom-Lie algebra. Let D : g → g be an
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(αs, βr)-derivation of (g, [·, . . . , ·], α, β). If the following identity holds

∀x1, . . . , xn ∈ g,

n∑
i=1

(−1)i−1αsβr(τ(D(xi))[x1, . . . , x̂i . . . , xn]) = 0,

then D is a derivation of the induced (n+ 1)-BiHom-Lie algebra (g, [·, . . . , ·, ·]τ , α, β).

Example 3.4.5 We consider the 2-dimensional BiHom-Lie algebra g with a basis {e1, e2},

where the map α is given by α(e1) = e1 and α(e2) = 1
m
e1+n−1

n
e2 and β is the identity map (see

[41]). The bracket is given by [e1, e1] = 0, [e1, e2] = me2−ne1, [e2, e1] = (n−1)e1− m(n−1)
n

e2

and [e2, e2] = − n
m
e1 + e2, where m and n are scalars such that m,n 6= 0.

A direct computation gives that

αs(e1) = e1, αs(e2) =
ns − (n− 1)s

n(s−1)m
e1 +

(n− 1)s

ns
e2.

We set D(e1) = ae1 + be2 and D(e2) = ce2 + de2. Finding the conditions on the parameters

a, b, c, d such that D is an (αs, βr)-derivation and solving the system, we obtain that the

following (αs, βr)-derivations:

For n = 1, D(e1) = ae1; D(e2) = be1 + (a−mb)e2.

For n 6= 1, D(e1) = 0; D(e2) = a(e1 + m
n
e2).

Now, seeking a linear form τ that are [·, ·]-trace, we obtain first

nτ(e1) = mτ(e2).

The condition τ(α(x))β(y) = τ(β(x))α(y) implies that τ(e1) = 0 = τ(e2) and thus the form

τ is identically trivial. Therefore the ternary bracket is trivial and any linear map is a

derivation.
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4 Conclusion and Future Work

The main subject in this dissertation is the generalized derivations and the study of their

algebras. We explore the abgebras of generalized derivations and quasi-derivations of ternary

Lie algebras and n-BiHom Lie algebras and study their properties. We introduce examples

and a classification of the algebras of generalized derivations of low dimensional ternary Lie

algebras.

Despite the research that has been done on the algebras of generalized derivations

of different algebraic structures, it continues to draw the attention of many researchers. As

generalized derivations of numerous generalizations of Lie algebras have been investigated,

we believe that one can study these objects in a general framework. For that purpose,

we plan on studying generalized derivations of the set of algebra varieties of BiHom alge-

bras, which includes BiHom-associative algebras, BiHom-alternative algebras, BiHom-Lie

algebras, BiHom-Leibniz algebras, BiHom-preLie.

Moreover, a research on some concrete examples can be fruitful. For instance, the

quasi-deformations of sl2(F) introduced by Larsson and Silvestrov in [32] where they pre-

sented a complete set of equations can be used to compute the algebras of generalized

derivations of the deformed algebra.

Also, we plan to apply some of the methods used in the deformations of Lie algebras

to other structures related to Knot theory like Quandles and Racks.
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[39] Novotný, P., Hrivnák, J., On (α, β, γ)-derivations of Lie algebras and corresponding

invariant functions, J. Geom. Phys., 58, (2008), no. 2, 208–217.

[40] Sheng, Y., Representations of hom-Lie algebras, Algebr. Represent. Theory, 15, (2012),

no. 6, 1081–1098.

[41] Sheng Y. , Qi H. Representations of BiHom-Lie algebras, arXiv: 1610.04302, (2016).

[42] Vinberg, B., Generalized derivations of algebras, Algebra and analysis, Amer. Math.

Soc. Transl. Ser. 2 163, (1989), no. 3, 185–188.

[43] Yau, D., The Hom-Yang-Baxter equation and Hom-Lie algebras, J. Math. Phys., 52,

(2011), no. 5, 053502, 19.

[44] Yau, D., The Hom-Yang-Baxter equation, Hom-Lie algebras, and quasi-triangular bial-

gebras, J. Phys. A, 42, (2009), no. 16, 165202, 12.

[45] Yau, D., Hom-algebras and homology, J. Lie Theory, 19, (2009), no. 2, 409–421.

[46] Zhou J., Chen L., Ma Y., Generalized Derivations of Lie triple systems, Open Mathe-

matics, 14 (2016), 260–271.

65



[47] Zhou J., Chen L., Ma Y., Generalized Derivations of Hom-Lie triple systems, Bulletin

of the Malaysian Mathematical Sciences Society, 39 (2016), DOI 10.1007/s40840-016-

0334-2

[48] Zhang R., Zhang Y., Generalized derivations of Lie superalgebras, Communications in

Algebra, 38 (2010), 10, 3737–3751

[49] Zhou J., Niu Y., Chen L., Generalized Derivations of Hom-Lie algebras (Chinese), Acta

Math. Sinica (Chin. Ser.), 58 (2015), 4, 551–558.

[50] Zhou J., Fan G., Generalized Derivations of n-Hom Lie superalgebras, Mathematica

Aeterna, 6 (2016), 4, 533–550.

[51] Zhou J., Fan G., Generalized Derivations of Hom-Lie Color Algebra (Chinese), Pure

Mathematics, 6 (2016), 3, 182-189

66



Appendices

67



4.0.1 Appendix A - Copyright and Permissions

68



About the Author

Amine Ben Abdeljelil was born and raised in M’saken, Tunisia. He graduated from a

local high school in 2007 then entered the College of Sciences at the University of Monastir,

Tunisia where he earned his BSc degree majoring in Mathematics in 2010. He moved to

France and entered the graduate school at the University of Paul Verlaine, Metz where he

received his Master’s degree in 2012. After one year as a Ph.D. student at the University

of Haut-Alsace, Mulhouse, France, He joined the Ph.D program at the University of South

Florida in Fall 2014.

Amine studied the algebras of generalized derivations of Lie algebras and their gener-

alizations under the supervision of Professor Mohamed ELHAMDADI, University of South

Florida, and Professor Abdenacer MAKHLOUF, University of Haut-Alsace, France. As a

Graduate Teaching Associate at the department of Mathematics and Statistics at USF, he

taught several undergraduate courses. His research interests include Deformations of Lie

algebras, algebraic Varieties and Quandles.


	Generalized Derivations of Ternary Lie Algebras and n-BiHom-Lie Algebras
	Scholar Commons Citation

	tmp.1574272083.pdf.ii4Ys

