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Abstract 

Factor mixture modeling (FMM) has been increasingly used to investigate unobserved population 

heterogeneity. This Monte Carlo simulation study examined the issue of measurement invariance testing 

with FMM when there are covariate effects. Specifically, this study investigated the impact of excluding 

and misspecifying covariate effects on the class enumeration and measurement invariance testing with 

FMM. Data were generated based on three FMM models where the covariate had impact on the latent 

class membership only (population model 1), both the latent class membership and the factor (population 

model 2), and the latent class membership, the factor, and one item (population model 3). The number of 

latent classes was fixed at two. These two latent classes were distinguished by factor mean difference for 

conditions where measurement invariance held in the population, and by both factor mean difference and 

intercept differences across classes when measurement invariance did not hold in the population.  

For each of the population models, different analysis models that excluded or misspecified 

covariate effects were fitted to data. Analyses consisted of two parts. First, for each analysis model, class 

enumeration rates were examined by comparing the fit of seven solutions: 1-class, 2-class configural, 

metric, and scalar, and 3-class configural, metric, and scalar. Second, assuming the correct solution was 

selected, the fit of analysis models with the same solution was compared to identify a best-fitting model. 

Results showed that completely excluding the covariate from the model (i.e., the unconditional model) 

would lead to under-extraction of latent classes, except when the class separation was large. Therefore, it 

is recommended to include covariate in FMM when the focus is to identify the number of latent classes 

and the level of invariance. Specifically, the covariate effect on the latent class membership can be 

included if there is no priori hypothesis regarding whether measurement invariance might hold or not. 

Then fit of this model can be compared with other models that included covariate effects in different ways 
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but with the same number of latent classes and the same level of invariance to identify a best-fitting 

model.
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Chapter 1:  Introduction 

Over recent years, mixture modeling has been studied and used to investigate unobserved 

population heterogeneity, when the source of heterogeneity is not defined a priori (Lubke & Muthén, 

2005; Tay, Newman, & Vermunt, 2011). Population heterogeneity is captured by latent classes. For 

example, in the field of psychopathology, there might be unobserved subtypes of the population that 

differ in anxiety sensitivity (Bernstein, Stickle, & Schmidt, 2013). In the educational context, students 

might be classified into latent classes of “masters” and “nonmasters”, depending on how well they master 

the knowledge required in a cognitive test (Lubke & Muthén, 2005). Investigating unobserved 

heterogeneity might provide researchers with a more nuanced understanding of the population and design 

different interventions or curricula for different classes of individuals.  

Increasing interest in the latent class approach to investigating population heterogeneity has 

originated from the downsides of the conventional approach that relies on manifest grouping variables, 

such as gender, race, ethnicity, and so on. These manifest grouping variables might be the surrogates for 

the true source of heterogeneity in how individuals respond to items (Cohen & Bolt, 2005). Even if the 

manifest grouping variable captures the population heterogeneity to some extent, homogeneity within the 

group is often assumed, which might not hold in reality. Samuelsen (2005) provided an example of within 

group heterogeneity about ethnicity. That is, the Hispanic group might come from different origins, such 

as Mexico, Cuba, Central or South America, and they might be of any race. Such heterogeneity within the 

group might indicate that, if using ethnicity as the manifest grouping variable, not all members of the 

Hispanic group will respond to items in the same way.  

Due to these limitations of using manifest grouping variable to examine population heterogeneity, 

the latent class approach has been advocated (e.g., Samuelsen, 2005; Tay et al., 2011). It maximizes the 

differences across latent classes by identifying the underlying differences in how individuals respond to 
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the items. Multiple covariates and covariate interactions could be incorporated as predictors of the latent 

class variable (Samuelsen, 2005). The substantive differences among latent classes can be further 

investigated in terms of their composition and other characterizations based on this set of covariates. 

Applications of this approach can be seen in many substantive studies on population heterogeneity using 

mixture modeling (e.g., Dimitrov, Al-Saud, & Alsadaawi, 2015; Dyer & Day, 2015).   

Factor mixture modeling (FMM), one type of mixture modeling, can be used to investigate the 

unobserved population heterogeneity. FMM is a combination of confirmatory factor analysis (CFA) and 

latent class analysis (LCA), where the latent classes are distinguished by differences in measurement 

parameters and/or structural parameters across classes. FMM is analogous to the multiple group (MG) 

CFA and multiple-indicators multiple-causes (MIMIC) models with respect to the CFA part, and the 

major difference is that the grouping variable is latent in FMM. Similar to MG CFA and MIMIC models, 

measurement invariance testing can be conducted to examine whether items measure the factor 

equivalently across latent classes, prior to making any comparisons in the structural parameters (E. Kim, 

Joo, Lee, Wang, & Stark, 2016; Lubke & Muthén, 2005). This study aims to examine the performance of 

FMM in measurement invariance (MI) testing under a specific scenario, the presence of covariate effects.  

The issue of covariates in FMM and mixture modeling in general has drawn the attention of many 

researchers. This might be attributable to the nature of the mixture modeling that once the classes are 

identified, further understanding of the latent classes is required, such as the characterization of classes, 

the cause of the class distinctiveness, and the potential consequences of being classified into a certain 

group. That is, the effect of covariates on the latent class membership and the effect of the latent class 

membership on the outcomes of interest are typically included in applications of FMM and other mixture 

models (e.g., Allan et al., 2014; Bernstein, Stickle, & Schmidt, 2013; Elhai, Naifeh, Forbes, Ractliffe, & 

Tamburrino, 2011). The exploration of covariate effects would help researchers better understand the 

connections between the latent class membership and some observed characteristics and behaviors of 

individuals. Recently, the possibility of some other covariate effects has been considered, such as the 
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direct effects of the covariate on items that were used to identify classes in the latent class analysis 

(Asparouhov & Muthén, 2014; Nylund-Gibson & Masyn, 2016).  

Methodological studies have investigated the impact of different approaches to specifying 

covariate effects in mixture modeling. For example, Lubke and Muthén (2007) suggested a one-step 

approach that includes the covariate when fitting the mixture models, where both the observed variables 

and the covariate are used to cluster observations into classes. This approach might improve the class 

enumeration and class assignment, as the incorporation of covariate might increase the class separation. 

The downside of this approach is that class enumeration and class assignment might change considerably 

when different covariates are included or different ways of specifying covariate effects are taken (Lubke 

& Muthén, 2005; Nylund-Gibson & Masyn, 2016). To prevent this change of classification, some 

researchers suggested excluding covariates in the latent class enumeration, i.e., specifying an 

unconditional mixture model, and including covariate effects in the subsequent steps. For example, based 

on the recently developed three-step procedure (Vermunt, 2010), latent class enumeration is done with the 

unconditional model (Step 1), and then observations are classified into one of the latent classes based on 

the most likely class membership (Step 2). Step 3 is to regress the class variable on covariates while 

taking into account the classification error. However, evidence from simulation studies has shown that 

when some covariate effects were ignored, bias would occur in class enumeration, class assignment, and 

the estimation of the covariate effect on the latent class membership (Asparouhov & Muthén, 2014; M. 

Kim, Vermunt, Bakk, Jaki, & Van Horn, 2016). 

Although various ways to specifying covariate effects have been studied in the mixture modeling 

context, most simulation studies focused on LCA and class enumeration. Few studies have examined the 

issue of specifying covariate effects in the FMM context, specifically for measurement invariance (MI) 

testing. Therefore, this study aims to fill the methodological gap and investigates how the MI testing with 

FMM will be affected by different covariate inclusion strategies, which encompasses the exclusion of 

covariates and the misspecification of covariate effects. Data will be simulated under various conditions, 

including types of covariate effects (effect on the latent class membership, both the latent class 
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membership and the factor, and the latent class membership, the factor, and the item), strengths of 

covariate effects (1 or 2 for effect on the latent class membership, .4 or .8 for effect on the factor and the 

item), magnitudes of measurement noninvariance (.4, .8, or 1.2 intercept difference), number of items 

with measurement noninvariance (1 or 2), mixing proportions (balanced or unbalanced), and sample sizes 

(500 or 2000). Through systematic evaluations of the covariate inclusion on MI testing with FMM, this 

simulation study aims to provide applied researchers guidelines and implications on whether the covariate 

should be included in the MI testing and if yes, how to include the covariate effects.  
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Chapter 2: Literature Review 

The literature review part consists of three sections: measurement invariance (MI) testing in the 

confirmatory factor analysis (CFA) framework, factor mixture modeling (FMM) specification and MI 

testing with FMM, and the particular issue of covariate inclusion for MI testing with FMM.  

Measurement Invariance (MI) Testing in CFA 

Introduction of MI. When items are used to measure a latent construct (e.g., depression), MI 

testing is conducted to investigate if items measure the construct in the same way across subpopulations 

(e.g., males and females). The establishment of MI provides evidence for construct validity, while the 

violation of MI indicates potential measurement bias, which might lead to inaccurate interpretations of 

results. Specifically, MI refers to the fact that individuals who are at the same level of the construct/factor 

have the same probability to endorse an item, regardless of the subpopulations they belong to (Meredith, 

1993). That is, 

                                                                          𝑃(𝑌|𝜂, 𝐺) = 𝑃(𝑌|𝜂),                                                                          (1) 

where Y is the observed item score, 𝜂 is the factor score, and G indicates the group membership. 

Typically, MI testing is first conducted as an omnibus test where Equation 1 holds across all items and all 

groups. If MI is violated, item-level analysis can be conducted to identify items that function differently 

across groups (i.e., differential item functioning, or DIF items).  

In the CFA framework, multiple group confirmatory factor analysis (MG CFA) has been 

commonly used to test MI. It is conducted by comparing a series of models with increasing restrictions of 

parameter invariance across groups. A typical MG CFA model can be expressed as: 

                                                   Yig = 𝑣𝑔 + Λ𝑔𝜂𝑖𝑔 + 𝜀𝑖𝑔,                                                              (2) 
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where the response vector (Yig) of an individual i in group g (g = 1, 2, …, G) is a function of the intercept 

vector 𝑣𝑔, factor loading Λ𝑔, the vector of individual’s factor scores 𝜂𝑖𝑔, and the residual 𝜀𝑖𝑔. The 

configural invariance refers to the fact that the same factor structure (i.e., number of factors and the 

corresponding items) applies to all groups, but model parameters are freely estimated across groups (as 

expressed in Equation 2). The fit of the configural invariance model is checked first to ensure that the 

same factor structure does fit data of each group well. Building on the configural invariance model, the 

metric invariance model adds additional constraints on the equality of factor loadings (Λ) across groups, 

that is, Λ1 = Λ2 = Λ3 = ⋯ = Λ𝐺. Then the metric invariance model is compared with the configural 

invariance model. If the additional constraints on the equality of factor loadings do not worsen the model 

fit substantially, the metric invariance holds. In addition to both the factor structure and factor loadings, 

item intercepts (𝜈) are constrained to be equal across groups (𝑣1 = 𝑣2 = 𝑣3 = ⋯ = 𝑣𝐺) in a scalar 

invariance model. Likewise, scalar invariance can be established by no significant deterioration of model 

fit as compared with the metric invariance model. Note that on top of these restrictions, the equality of 

item residual variances can be included, which leads to the strict invariance model. This model is not 

included here because the establishment of scalar invariance has been considered as a prerequisite for 

factor mean comparisons, which is often the focus of substantive research (E. Kim, 2011; Meredith, 

1993).  

 The fit of models with different levels of invariance can be evaluated by the chi-square goodness 

of fit and several model fit indices, such as the comparative fit index (CFI), root mean square error of 

approximation (RMSEA), and standardized root mean squared residual (SRMR). Recommended cutoff 

values of those indices for good model fit are statistically nonsignificant chi-square (p ≥ .05), CFI ≥ .95, 

RMSEA ≤ .06, and SRMR ≤ .08 (Hu & Bentler, 1999). Model comparisons are evaluated by the 

likelihood ratio test (LRT; or the chi-square difference test), and changes in model fit indices, such as the 

CFI and RMSEA. The LRT statistic is given by: 

                                                    𝐿𝑅 = −2(𝐿𝐿0 − 𝐿𝐿1),                                                                (3) 
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where 𝐿𝐿0 and 𝐿𝐿1 refers to the log-likelihood for the null and alternative models, respectively. The test 

statistic 𝐿𝑅 follows a chi-square distribution with degrees of freedom (dfs) being the differences in the dfs 

of the two models. The more constrained model (e.g., metric invariance versus configural invariance) is 

supported based on a nonsignificant LRT statistic (p ≥ .05), ΔCFI ≤ .01, and ΔRMSEA ≤ .015 (Chen, 

2008; Cheung & Rensvold, 2002). 

Inclusion of covariates in MI testing. In addition to MG CFA, the multiple-indicators multiple-

causes (MIMIC) model is another commonly used MI testing method within the typical CFA framework. 

Unlike MG CFA where the measurement model is built for each group and the invariance constraints can 

be imposed across groups, a single CFA model is fitted for the population and the group membership is 

included as a covariate in the MI testing. A generic MIMIC model for MI testing is shown in Figure 1. To 

test factor loading noninvariance (i.e., nonuniform DIF) of a particular item, the item is regressed on the 

interaction between the factor and the grouping variable (𝜂 ∗ 𝐺). To test the intercept noninvariance 

(uniform DIF), the item is regressed on the grouping variable G (E. Kim, Yoon, & Lee, 2012; Woods & 

Grimm, 2011). Therefore using the two-group scenario as an illustration, the full model with both paths 

can be written as: 

                                                             𝑌𝑖𝑗 = 𝜆𝑗𝜂𝑖 + 𝛽𝑗𝐺𝑖 + 𝜔𝑗𝜂𝑖 ∗ 𝐺𝑖 + 𝜀𝑖𝑗 ,                                                          (4)  

                                                                                   𝜂𝑖 = 𝛾𝐺𝑖 + 𝜁𝑖,                                                                            (5) 

where 𝐺𝑖 is the dummy-coded grouping variable as a covariate in the MIMIC model (e.g., 0 = the 

reference group, 1 = the focal group); 𝛽𝑗 denotes the effect of the covariate on the intercept of the jth 

item, i.e., intercept difference between two groups; and 𝜔𝑗 refers to the covariate effect on the factor 

loading of the jth item, that is, the factor loading difference between two groups. 

MI testing (or DIF item detection) can be conducted as comparing metric and configural 

invariance models, and scalar and metric invariance models, respectively. The configural invariance 

model can be expressed as Equation 4 where differences in factor loadings and intercepts between groups 

are estimated. In the metric invariance model, the path coefficient 𝜔𝑗 is constrained to be zero, because 
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factor loadings are equal across these groups. For the scalar invariance model, because both factor 

loadings and intercepts are equal across groups, both 𝜔𝑗 and 𝛽𝑗 would be zero. If the scalar invariance can 

be established, factor means can be compared that 𝛾 in Equation 5 indicates the factor mean difference 

between groups. Similar to MG CFA, the configural, metric, and scalar invariance models can be 

compared sequentially based on the LRT and/or ΔCFI, ΔRMSEA. Another option available for the 

MIMIC modeling is the Wald z test that tests whether a single parameter is zero. The p-value of the test 

statistic is associated with each of the path coefficients, 𝜔𝑗 and 𝛽𝑗. A nonsignificant p-value indicates the 

absence of the covariate effect and thus the corresponding level of invariance holds.  

A major advantage of the MIMIC modeling over MG CFA is the flexibility in accommodating 

covariates (E. Kim et al. 2011; Marsh, Tracey, & Craven, 2006). For example, covariates in the MIMIC 

modeling can be either categorical or continuous (e.g., age). In the MIMIC model, multiple covariates 

and/or the interactions among covariates can be included. In addition, for MG CFA sample sizes for each 

group need to be reasonable large.  Testing DIG using a single group using MIMIC might not require the 

same number of cases. 

Factor Mixture Modeling (FMM) 

 This section will present the specification of FMM first, followed by procedures of MI testing 

with FMM.  

Specification of FMM. FMM (see Figure 2) is a combination of CFA and latent class analysis 

(LCA) (Lubke & Muthén, 2005). LCA allows us to model and capture the unobserved population 

heterogeneity in measurement and/or structural parameters through the latent class variable. The CFA part 

models the variability across individuals within each latent class, with the factor score quantifying the 

variability. The CFA part of the FMM can be extended from MG CFA where the observed group 

membership g is replaced by a latent class membership indicator k:  

                                                               𝑦𝑖𝑘 = 𝜈𝑘 + Λ𝑘𝜂𝑖𝑘 + 𝜀𝑖𝑘 ,                                                               (6) 
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where k can take on values from 1, 2, …, K, where K is the number of latent classes. The subscript k is 

attached to parameters in Equation 6, indicating that parameters can vary across latent classes. Of note is 

that in MI testing, the measurement parameters (𝜈𝑘 and Λ𝑘) can be constrained to indicate a certain level 

of invariance, which will be discussed shortly. The homogeneity within each class is assumed that the 

same measurement parameters, such as intercepts and factor loadings, applies to all individuals within the 

class. Residuals (𝜀𝑖𝑘) are assumed to be normally distributed with a mean of zero and variance of Θ𝑘. It is 

also assumed that 𝜂𝑖𝑘~𝑁(𝛼𝑘 , Φ𝑘). Thus the class-specific mean vectors and class-specific variance-

covariance matrices can be expressed as: 

                                                                    𝜇𝑘 = 𝜈𝑘 + Λ𝑘𝛼𝑘 ,                                                                     (7) 

                                                                  Σ𝑘 = Λ𝑘Φ𝑘Λ𝑘
′ + Θ𝑘 .                                                                 (8) 

 The structural part of the FMM model is achieved by regressing 𝜂𝑖 on the latent class variable 

𝐶𝑖𝑘: 

                                                                   𝜂𝑖𝑘 = 𝐴𝐶𝑖𝑘 + 𝜉𝑖𝑘.                                                                     (9) 

𝐶𝑖𝑘 is a multinomial variable with K – 1 categories: 𝐶𝑖𝑘  = 1 if individual i belongs to class k, and 𝐶𝑖𝑘 = 0 

if individual belongs to a reference class. Similar to the MIMIC model, A is the vector containing the 

factor mean differences between the reference class and every other classes. Of note is that latent class 

membership is exclusive in a sense that individuals belong to one and only one latent class. Individuals 

are not classified into two or more classes. However, the probability of belonging to each of the latent 

classes is estimated through a multinomial regression model:  

                                                                     ln [
𝑃(𝐶𝑖 = 𝑘|𝑋𝑖)

𝑃(𝐶𝑖 = 𝑟|𝑋𝑖)
] = 𝜆𝑐𝑘 + Γ𝑐𝑘𝑋𝑖.                                                     (10) 

The left side of the equation denotes the log odds of the probability of belonging to a particular class k 

over that of belonging to a reference class r, given a vector of covariates 𝑋𝑖. The log odds can be 

predicted by covariates, with Γ𝑐𝑘 denoting the regression coefficients and 𝜆𝑐𝑘 denoting intercepts. The 

subscript c indicates that the regression coefficients and intercepts are associated with the multinomial 

regression for the latent class variable, 𝐶𝑖. The subscript k indicates that both Γ𝑐𝑘 and 𝜆𝑐𝑘 can vary across 
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classes, that is, the relationship between covariates and the log odds of being assigned to a certain class 

can be class-specific. Note that the effect of covariates on the latent class membership is typically 

included in applications of FMM (e.g., Allan et al., 2014; Bernstein et al., 2013; Elhai et al., 2011). The 

rationale for this covariate inclusion is that researchers are often interested in understanding how to 

characterize classes and what causes the distinctiveness of classes. Individuals are assigned to a class 

based on their highest posterior probability of latent class membership. For the majority of the FMM 

applications, the number of classes is not known a priori and is determined by comparing FMMs with 

varying numbers of classes.  

Testing MI across latent classes with FMM. Similar to MG CFA and MIMIC models, MI can 

be tested across subpopulations in FMM, to examine whether items measure the factor equivalently 

across latent classes, prior to making any comparisons in the structural parameters (E. Kim et al., 2016; 

Lubke & Muthén, 2005). That is, in the configural invariance model the same factor structure is fitted 

across latent classes but factor loadings and intercepts are free to vary, which is expressed by Equation 6. 

In the metric invariance model, factor loadings are equal across latent classes, suggesting 𝑦𝑖𝑘 = 𝜈𝑘 +

Λ𝜂𝑖𝑘 + 𝜀𝑖𝑘. An additional constraint of intercept equality across latent classes is imposed in the scalar 

invariance model, 𝑦𝑖𝑘 = 𝜈 + Λ𝜂𝑖𝑘 + 𝜀𝑖𝑘 . Similar to MG CFA, LRT, ∆CFI, and ∆RMSEA can be used in 

model comparisons. If a certain level of invariance is violated, item-level DIF analysis can be conducted 

based on the LRT.  

However, the MI testing procedures described above might not be applicable, when the optimal 

number of classes is not known a priori. The task of determining the optimal number of classes will be 

entangled with the MI testing. In other words, should we determine the number of classes first and then 

test MI across classes? Or should we investigate both simultaneously? Both approaches have been 

adopted in the methodological and substantive literature (e.g., Clark et al., 2013; E. Kim et al., 2016; E. 

Kim, Cao, Wang, & Nguyen, 2017; Lubke & Neale, 2008; Tay et al., 2011). For example, both the E. 

Kim et al. (2016) and Tay et al. (2011) studies determined the number of classes first and then test MI 

across the classes. When fitting FMMs with varying numbers of classes, the measurement (loadings, 
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intercepts/thresholds) and structural parameters (factor means, factor variances/covariances) were class-

specific. In other words, the configural invariance model was specified in determining the number of 

classes. Once the optimal number of classes was determined, MI was tested across the classes.  

By contrast, Clark et al. (2013) fitted a series of FMM models to determine the number of classes 

and the level of invariance simultaneously. They took a more exploratory approach to FMM that FMM 

models fitted depended upon the LCA and EFA analyses that were conducted first. Because results from 

LCA and EFA showed that the three-class model and the one-factor model fitted data well, respectively, 

FMM models constructed included one- to three-class one-factor model. Lubke and Neale (2008) took the 

exploratory approach as well, but they examined the number of classes, the level of invariance, together 

with the number of factors simultaneously. The approach Lubke and Muthén (2005) took in their 

demonstration was more confirmatory FMM where the number of factors was fixed at two, and only 

determining the number of classes and testing MI was conducted simultaneously. Similarly, E. Kim et al. 

(2017) also suggested this simultaneous approach which compared models included 1-class, 2-class 

configural, 2-class metric, 2-class scalar, 3-class configural, 3-class metric, 3-class scalar, and so on.  

Note that no simulation study has been conducted to compare the sequential and the simultaneous 

approaches to MI testing with FMM. Intuitively, the simultaneous approach might have the advantage 

that model comparisons are more comprehensive, including possible combinations of the number of latent 

classes and the level of invariance, which might lead to more accurate results in class enumeration and MI 

testing. However, involving more model comparisons might be time-intensive. In comparison, the 

sequential approach does not involve many model comparisons. It might meet the needs of applied 

researchers better if typology and MI are separate interests. However, for the sequential approach, results 

of MI testing might be impacted greatly by the class enumeration. If class enumeration is incorrect, MI 

testing would be problematic.  

 Depending on the approach to testing the number of latent classes and testing MI, model 

comparisons will be different. If the sequential approach is taken, models with different numbers of 

classes can be compared with bootstrap LRT (BLRT), Lo-Mendell-Rubin (LMR) test, ad hoc adjusted 
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LMR (aLMR) and information criteria (IC), which will be discussed below. Then to investigate the level 

of MI that holds, LRT, ∆CFI, and ∆RMSEA can be used. If the simultaneous approach is taken, BLRT, 

LMR, aLMR and IC can be used in model comparisons.   

Class enumeration. Likelihood-based tests and IC have been used to compare the fit of FMMs 

with different numbers of classes. Although the regular LRT test (see Equation 4) has been commonly 

used in model comparisons in structural equation modeling (SEM), it cannot be applied to the context of 

FMM or mixture modeling in general (Lubke & Muthén, 2005; McLachlan & Peel, 2000). That is, when 

testing the k-class model (null hypothesis) against the model with k+1 classes (alternative hypothesis), the 

k-class model can be specified by one of the class proportions being zero. Thus, due to the problems of 

the true parameter under the null hypothesis being on the space boundary (proportions ranging from 0 to 

1) and parameter non-identification, the regularity conditions do not hold. In this case, the LRT statistic 

does not follow the asymptotic chi-square distribution. 

Alternative LRT tests have been developed and applied in model comparison in the mixture 

modeling context (including FMM), such as LMR (Lo, Mendell, & Rubin, 2001), the aLMR (Lo et al. 

2001), and BLRT (McLachlan & Peel, 2000). The LMR test adopts an approximation of the sampling 

distribution of LR and compares models with k and k-1 classes, favoring the k class model if rejecting the 

null hypothesis (p-value below the nominal alpha level). The aLMR incorporates a correction term to the 

test statistic to improve the accuracy of LMR. The BLRT generates an empirical sampling distribution for 

LR by drawing many bootstrap samples and computing LR for the null and alternative models. This 

empirical sampling distribution is then used to estimate p-value for the observed LR statistic.  

In addition to these likelihood-based tests, ICs are also commonly used in model comparisons, 

including Akaike information criterion (AIC; Akaike, 1974), consistent AIC (cAIC; Bozdogan, 1987), 

Bayesian information criterion (BIC; Schwarz, 1978), and sample size adjusted BIC (saBIC; Sclove, 

1987). These ICs are based on the log-likelihood of the model and penalizes the model for the number of 

free parameters, sample size, or both. Smaller values of ICs indicate a better model fit. Entropy has also 

been used in model selection as a classification-based measure (E. Kim et al., 2016; Tein, Coxe, & Cham, 
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2013; Ramaswamy, DeSarbo, Reibstein, & Robinson, 1993). The classification is evaluated at the 

individual level and entropy indexes the aggregated classification accuracy. Values of entropy are 

bounded by 0 and 1. Higher entropy indicates that the posterior probabilities are very distinctive across 

classes, classes are well separated, and classification of individuals is more accurate. Therefore, a model 

with a higher value of entropy is more desirable.  

 Regarding the performance of various measures for model selection, there has been inconsistency 

among the methodological literature primarily due to different model specifications and simulation 

conditions. For example, BLRT was shown to have greater power than other likelihood-based tests across 

all sample sizes (Nylund, Asparouhov, & Muthén, 2007). E. Kim et al. (2016) found that BLRT, as well 

as AIC, outperformed other model selection methods when class separation was small or sample size was 

small. However, two concerns have been raised about BLRT: the long execution time and possible model 

nonconvergence (E. Kim et al., 2016; Nylund et al., 2007). Overextraction of classes was observed for 

AIC, especially when sample size was larger (Cho & Cohen, 2010; Henson, Reise, & Kim, 2007; 

Lukočienė & Vermunt, 2010; Nylund et al., 2016). BIC and SaBIC have been suggested for model 

selection, particularly with relatively large sample sizes (E. Kim et al., 2016; Nylund et al., 2007; Tein et 

al., 2013). Entropy has been shown to be an unreliable measure for model selection (Tein et al., 2013).  

The Inclusion of Covariates in MI Testing with FMM 

A major issue particularly to mixture modeling that perplexes the MI testing in FMM is the 

inclusion of covariates. The next section will be devoted to discussing this issue in detail. Specifically, 

different ways to specify covariate effects in FMM will be described, followed by discussions on the 

impact of misspecifying covariate effects in FMM and mixture modeling in general. This section will 

conclude with a review of studies that examined the issue of covariates in MI testing with FMM. 

Specification of FMM with covariate(s). Possible covariate effects in FMM are illustrated in 

Figure 3. Path 1 (see Equation 10), denoting the covariate effect on the latent class membership, was most 

frequently examined in substantive studies. Path 2 (𝛾𝜂𝑘) refers to the covariate effect on the factor mean, 
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similar to the MIMIC model. This indicates factor mean differences across the levels of the covariate 

within each latent class. The factor mean can thus be expressed as: 

                                                  𝜂𝑖𝑘 = 𝐴𝐶𝑖𝑘 + 𝛾𝜂𝑘𝑋𝑖 + 𝜁𝑖𝑘.                                                         (11) 

Note that the covariate effect 𝛾𝜂𝑘 can be class-invariant or class-specific. If it is class-invariant, the effect 

of covariate on the factor mean is the same across all latent classes. If it is class-specific, the covariate 

impacts the factor mean differently across classes. In other words, there is an interaction between the 

covariate and the latent class.  

Paths 3 and 4 represent covariate effects on the measurement model. Similar to the logic of the 

MIMIC model, the covariate can have a direct effect on the observed variable (Path 3), indicating that 

some of the within-class variation in that observed variable can be explained by the covariate. The 

covariate can have an effect on the factor loadings as well (Path 4), creating the interaction between the 

latent factor and the covariate. That is,  

                                             𝑦𝑖𝑘 = 𝜈𝑘 + Λ𝑘𝜂𝑖𝑘 + 𝛽𝑘𝑋𝑖 + 𝜔𝑘𝜂𝑖 ∗ 𝑋𝑖 + 𝜀𝑖𝑘.                                              (12) 

Note that 𝛽𝑘 and 𝜔𝑘 denote the covariate effect on the intercepts and factor loadings, respectively. These 

two path coefficients indicate measurement noninvariance with respect to the covariate within latent 

classes. For example, if the covariate is gender and 𝛽𝑘 and 𝜔𝑘 are substantial across two latent classes, it 

suggests that within each latent class, males and females respond differently to the item. Note that 𝛽𝑘 and 

𝜔𝑘 can be class-invariant or class-specific. If class-invariant, the direction and magnitude of DIF are the 

same across latent classes. If class-specific, item might favor one group in one latent class, but not the 

other in the other latent class; or it favors one group to different extents across latent classes.  

 De Ayala, Kim, Stapleton, and Dayton (2002) demonstrated this possibility of class-specific DIF. 

Class 1 was dominated by Black examinees (67.56%), and the majority of Class 2 were White examinees 

(80.97%). DIF analysis (using the Mantel-Haenszel method) within each latent class showed that 22 out 

of 50 items displayed DIF against Black examinees in both classes, while some items were biased against 

Black examinees in Class 1, but not in Class 2. Tay et al. (2011) also illustrated that gender DIF was only 
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shown in one class which was dominated by individuals with relatively more work experience. Gender 

DIF was not displayed for the other class dominated by those with limited work experience.  

Please note that although the covariate effect can be present with respect to the residual variance 

of observed variables, it is not considered in this study, because scalar invariance (equality in factor 

loadings and intercepts) is sufficient for comparisons of structural parameters. Additionally, although 

including distal outcomes of the latent class membership can be of interest (e.g., Lanza, Tan, & Bray, 

2013), this is beyond the scope of the study and thus will not be illustrated here.  

The impact of misspecified covariate effects. The inclusion of covariates has been a long-

standing issue in the general framework of mixture modeling, not particularly for MI testing with FMM. 

The impact of covariate effect misspecification on the class enumeration and parameter estimates of the 

mixture modeling has been investigated. A summary of the relevant literature is provided in Table 1.  

 Nylund-Gibson and Masyn (2016) focused on the impact of misspecifying covariate effects on 

the class enumeration in latent class analysis through a simulation study. They observed over-extraction 

of latent classes when the covariate effect was misspecified. That is, three classes were extracted rather 

than two, when only the covariate effect on the latent class membership was specified, while the true 

effects included an additional effect on the item (indicating uniform DIF within latent classes). Such over-

extraction was more severe with larger sample size (1000 versus 500), and unbalanced class sizes (80-20  

versus 50-50 split). BIC performed remarkably better than LMR and BLRT and only BIC correctly 

detected two latent classes with sample size of 500. More severe over-extraction was evidenced when the  

misspecification of covariate effects was more substantial, such as only specifying the covariate effect on 

latent class membership with true covariate effects on latent class membership, item, and the path from 

the factor to the item. Note that this last path indicates nonuniform DIF within latent classes. Even BIC 

failed to detect the correct number of classes when the true covariate effect on the item was ignored and 

the effect on latent class membership was estimated instead. However, the unconditional model omitting 

the covariates (as Step 1 in the three-step procedure) could still extract the correct number of classes, 

regardless of the true relationship between the covariates and latent class model parameters in the 
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population model. One exception was when there was more severe violations of the local independence 

assumption underlying LCA, i.e., two out of five observed variables had direct relationships with the 

covariates. Therefore, authors suggested the three-step procedure based on results of their simulation 

study. 

However, Asparouhov and Muthén (2014) found that the three-step procedure would be 

contaminated if the direct covariate effects on items were ignored in the latent class analysis. Specifically, 

ignoring the direct effects on the item tended to overestimate the relationship between the covariate and 

the latent class membership. Overestimation became more substantial as the number of omitted direct 

effects on items increased and/or the entropy became smaller. Therefore the largest absolute bias (.76) 

was observed when five covariate effects on items (out of 10 items) were ignored and the entropy was .6. 

When the direct covariate effects on items were modeled, the three-step procedure performed much 

better, but the relationship between the covariate and the latent class membership would still be 

overestimated when the entropy was .6. They argued that the three-step procedure has the flaw that the 

latent class membership could not be well measured because the classification model excludes the 

covariate. This can be problematic because if there are direct covariate effects on two or more items, these 

items would be correlated through the covariate, while LCA assumes items are independent given the 

latent class membership. In this case, the formation of latent classes and the accuracy of classification 

might be affected, and the prediction model might have bias in the estimation of covariate effect on the 

latent class membership. Even if the direct effects on items were included, the classification might still be 

incorrect, though to a much smaller degree than ignoring the direct effects. This is because the 

classification model does not include the effect of covariate on the latent class membership, and such 

effect can be absorbed by the covariate effects on items, which might lead to inaccurate estimation of the 

parameters in the classification model. In comparison, the one-step approach performed very well in 

estimating the relationship between the covariate and the latent class membership, with the covariate 

effects on items and the latent class membership correctly modeled. 
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Consistent with the findings of the Asparouhov and Muthén (2014) study, Lubke and Muthén 

(2007) also observed the benefit of including covariate when estimating the latent class membership. That 

is, when the covariate had a medium to large effect on the class membership, including such covariate 

effect would improve the correct class assignment and the coverage of factor mean differences even if 

with small class separation. Aligned with this approach, Curran, Cole, Bauer, Hussong, and Gottfredson 

(2016) also demonstrated in their simulation study that including covariates in a single-factor 

measurement model would improve the accuracy and precision of factor score estimation. Although it is 

still questionable whether this finding in the common factor analysis framework can be confirmed in 

mixture models, the potential impact of including background covariates on the model parameter 

estimates was evidenced. Interestingly, they found that factor scores were estimated accurately when only 

the covariate effect on the factor was specified, while the correct specification should be covariate effects 

on both the factor and observed variables.  

The impact of omitting covariate effects was also examined in regression mixture models by M. 

Kim et al. (2016). They studied the efficacy of the one-step and the three-step approaches when the 

covariate effect on the outcome variable was ignored and only the regression of the outcome variable on a 

predictor was modeled. They noticed that when ignoring this covariate effect, substantial bias in the class 

enumeration occurred in the one-step approach where the covariate was included to predict the latent 

class membership; the class enumeration remained accurate in the three-step approach. However, ignoring 

the same covariate effect in Step 1 of the three-step approach, the covariate effect on the class 

membership was not estimated adequately. One exception occurred when the covariate effect on the 

outcome was zero and the covariate had zero correlation with the predictor. In the one-step approach, 

even if the covariate effect on the outcome was modeled, the three-step approach showed biased estimates 

of the covariate effect on the latent class membership most of the time. This limited ability of the three-

step approach with the presence of the covariate effect on the outcome variable seemed to confirm what 

Asparouhov and Muthén (2014) speculated in their simulation study. That is, the exclusion of the 
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covariate effect on the latent class membership in the classification model might lead to biased estimates 

of the model and inaccurate class enumeration.  

The inclusion of covariates in MI testing with FMM. Different approaches with respect to 

including covariates were also found in the methodological literature on MI testing and DIF (differential 

item functioning) detection across latent classes (see Table 2 for a summary of the literature). Distinctions 

among these approaches were even more nuanced than those discussed above (e.g., LCA), because the  

model complexity under FMM increased with a CFA measurement model. Considerations of the  

covariate effects were not limited to items, but also the factor measured by items. For instance, Lubke and 

Muthén (2005) demonstrated using factor mixture modeling to investigate measurement invariance across 

classes with two covariates included at the onset. Both the factor and the class variable were regressed on 

covariates, thus estimating the variations in the factor scores and between-class variations due to the 

covariate effects. An increasing number of classes was specified, with varying levels of class-invariant 

restrictions imposed on the intercepts of observed variables.  

Maij-de Meij et al. (2010), on the other hand, only included the covariate effect on the latent class 

variable in the mixture Rasch model to detect DIF. In their simulation study, they generated two latent 

classes with equal and unequal class sizes and 1/3 of the items exhibited DIF across latent classes. When 

sample size was relatively small (1000), the one-class model was supported across all simulation 

conditions based on BIC. When sample size was medium (5000), the two-class model was supported over 

the one-class model if correlations between the covariate and the latent class variable were high (over .6). 

Regarding the large sample size (25000), the two-class model was selected with equal class sizes, but 

exceptions occurred that the one-class model was shown to provide best fit when the unequal class size 

was coupled with low correlations between the covariate and the latent class variable. They also observed 

that when the covariate had zero correlation with the latent class variable, excluding the covariate in the 

mixture Rasch model would yield more accurate results in DIF detection, with the number of false 

negatives much lower as compared with the approach including the covariate. However, when the 
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covariate had nonzero (even if as low as .2) correlation with the latent class variable, including the 

covariate effect on the latent class variable improved DIF item detection.  

Tay et al. (2011) proposed and demonstrated an integrated mixture measurement IRT model with 

covariates (or MM-IRT-C as used in their paper) to examine items displaying DIF across latent classes, as 

well as observed DIF (i.e., DIF with respect to the covariate). Authors suggested that determining the 

optimal number of classes can be conducted first without covariates. Then testing covariate effects and 

MI across latent classes can be employed in this order: covariate effect on the factor, covariate effect on 

the latent class variable, nonuniform DIF across classes, uniform DIF across classes, class-specific 

uniform and nonuniform DIF within each latent class, and factor mean comparisons across latent classes 

if MI was established across classes. Nonsignificant covariate effects were set to zero and parameters for 

items without DIF (either latent or observed) were constrained to be equal. 

Significance of This Study   

Although simulation studies have been conducted to examine different approaches to covariate 

inclusion in the mixture modeling context, few studies have examined this issue systematically in FMM, 

particularly for the MI testing. Most simulation studies on this topic have considered LCA and focused on 

the class enumeration and the estimation of the relationship between the covariate and the latent class 

membership (e.g., Asparouhov & Muthén, 2014; Lubke & Muthén, 2007; Nylund-Gibson & Masyn, 

2016). The Lubke and Muthén (2005) and Tay et al. (2011) studies focused on this issue of including 

covariates in MI testing, but both were demonstrations. Maij-de Meij et al. (2010) is the only relevant 

simulation study that investigated the issues of covariates in the testing of MI across latent classes in the 

mixture modeling framework. But their focus was on the mixture Rasch model. In addition, they only 

considered the covariate effect on the latent class membership. Other covariate effects, such as those on 

the factor, item, and the path from the factor to the item, remain unexplored in MI testing with FMM. 

Taken together, it is not clear how the MI testing with FMM would perform under different ways 

of including the covariate, such as excluding or misspecifying the covariate effects. Therefore, this study 

aims to fill this gap by conducting a Monte Carlo simulation study to investigate the issue of including 
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covariates in MI testing under FMM. Additionally, this study will also examine results in terms of class 

enumeration, because it is of common interest in mixture modeling. More specifically, this study aims to 

address the following research questions: 

1. What is the impact of excluding and misspecifying covariate effects on the class enumeration 

of factor mixture modeling (FMM)? 

2. What is the impact of excluding and misspecifying covariate effects on the measurement 

invariance testing in FMM?  

  



21 

 

Table 1. A Summary of Literature on the Inclusion of Covariates in Mixture Modeling  

 

 

Table 2. A Summary of Literature on the Inclusion of Covariates in Measurement Invariance Testing with 

Factor Mixture Modeling 

Study Study Type Model Inclusion of Covariate Effects 

Lubke & Muthén, 

2005 

Demonstration FMM Covariate effects on the latent class 

variable and the factor  

    

Maij-de Meij, 

Kelderman, & 

Van der Flier, 

2010 

Simulation Mixture Rasch model Covariate effects on the latent class 

variable  

    

Tay, Newman, & 

Vermunt, 2011 

Demonstration Mixture 2-parameter 

logistic (2PL) model 

Test covariate effects on the factor and 

latent class variable prior to MI testing; 

remove if nonsignificant 

 

  

Study  Model Inclusion of Covariate Effects Outcomes of Interest 

Nylund-Gibson 

& Masyn, 2016  

LCA Omit covariate(s) when determining the 

number of classes, except for substantial 

covariate effects on items 

Class enumeration 

    

Asparouhov & 

Muthén, 2014 

LCA When substantial covariate effects on items 

are found, those effects should be included in 

the LCA model 

Bias and coverage of 

the covariate effect on 

the latent class 

variable  

    

Lubke & 

Muthén, 2007 

FMM Include the covariate effect on the latent class 

variable 

Class assignment, 

coverage of factor 

mean differences and 

intercept differences 

    

Kim, Vermunt, 

Bakk, Jaki, & 

Van horn, 2016 

Regression 

mixture 

Omit covariate(s) when determining the 

number of classes, but include covariate(s) 

when estimating model parameters 

Class enumeration, 

parameter estimates 
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Figure 1. A generic MIMIC model for MI testing. 

 

 

Figure 2. An example of the factor mixture modeling (FMM) model. 

 

 

Figure 3. A generic model of FMM with covariate effects. 
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Chapter 3: Methodology 

Data Generation  

 Data were generated based on the factor mixture model with covariate effects. Depending on the 

locations of the covariate effects, three population models were considered, which will be described in 

detail shortly. Covariate was assumed to be continuous and normally distributed, with mean of zero and 

variance of one. The CFA model consisted of a single factor and six continuous items. Items were 

normally distributed with mean of zero and variance of one. Residual variance for each item was 

specified in data generation and the values depended upon the factor loadings used, that is, for each item 

the sum of squared loading and residual variance should be one. Factor loadings ranged from .5 to .8 

across items and were assumed to be equal across latent classes. The number of latent classes was fixed at 

two. Classes were separated based on factor mean difference for conditions with measurement invariance 

and based on both factor mean difference and intercept difference for conditions with measurement 

noninvariance. Factor means were simulated to be 0 and .5 (corresponds to .5 effect size) for two latent 

classes, respectively. The rationale for fixing some simulation factors in the simulation design was to 

ensure that the scale of the study is manageable and results are interpretable. However, it is acknowledged 

that it might be of future research interest to vary some factors, such as the differences in factor loadings 

or the number of latent classes. Data were generated and analyzed using Mplus 7.1 (Muthén & Muthén, 

1998-2014). Two hundred replications were simulated for each condition. The default robust maximum 

likelihood estimation was employed.  

Simulation Design Factors 

 Manipulated factors included three population models, each representing one type of covariate 

effect, level of DIF magnitude (0, .4, .8, and 1.2), number of DIF items (1 and 2), strength of covariate 

effects (1 and 2 for the effect on the latent class membership; .4 and .8 for the effect on the factor; and .4 
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and .8 for the effect on the item depending on the population model), sample size (500 and 2000), and 

mixing proportions (balanced 50-50, and unbalanced 30-70). Because population models involved 

different covariate effects and thus different simulation factors, Table 3 summarizes simulation factors by 

population model.  

Population models. Three population models considered are displayed in Figure 4. Figure 4(a) 

represents the population model when only the covariate effect on the latent class variable is present. 

Figure 4(b) adds an additional effect from the covariate on the factor, suggesting factor mean differences 

with respect to the covariate within each latent class. Figure 4(c) refers to the case when the covariate has 

a direct effect on one of the items (Y2), indicating uniform DIF with respect to the covariate within each 

latent class.  

To facilitate the understanding of each population model, consider a hypothetical scenario where 

researchers identified two latent classes based on whether students mastered the knowledge required to 

solve problems in a math test or not (masters and nonmasters). They also collected data on a covariate, 

students’ attitude towards math. Population model (a) indicated that students’ attitude towards math 

predicted their being in the masters or nonmasters class. For example, students with more positive attitude 

towards math might be more likely to belong to the masters class. Model (b) implied that in addition to 

the impact on the latent class membership, students’ attitude towards math also explained the variability 

in the test scores within each latent class. On top of these two covariate effects, students’ attitude towards 

math also affected students’ response to item Y2 within each latent class in model (c). In other words, for 

both masters and nonmasters, Y2 had DIF in terms of the covariate. For instance, students with a more 

positive attitude towards math tend to get higher responses on Y2 than those with less positive attitude 

even though their math abilities are the same. This is true for both masters and nonmasters. Note that this 

DIF was related with the students’ attitude towards math, not with the latent classes.  

It was expected as stronger covariate effects were ignored or misspecified, class enumeration 

would be less accurate. Specifically, if covariate effects were ignored, more latent classes might be 
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selected to absorb the effects. For models (a) and (b) where there is no direct effect on item(s), MI testing 

might remain less affected than model (c), when the covariate effects were ignored.  

Magnitude of DIF. For the majority of the simulation studies on DIF, the magnitude of uniform 

DIF ranged from .3 to 1.5 (i.e., DIF effect sizes; e.g., Jackman, 2012; E. Kim et al., 2017; Maij-de Meij et 

al., 2010). Therefore, three levels of uniform DIF magnitude were selected: .4, .8, and 1.2, representing 

small, medium, and large DIF, respectively. That is, across population models, item intercepts in one 

class were fixed at zero, while intercepts in the other class were .4, .8, or 1.2 for the DIF items. It is 

important to highlight that this DIF was between classes, not the DIF in terms of the covariate (i.e., the 

direct effect of X on Y2). For null conditions, equal intercepts across latent classes were generated. It was 

expected that as intercept differences across classes became larger, class separation would be greater and 

more accurate class enumeration might be observed, under the exclusion or misspecification of covariate 

effects. In addition, when covariate effects were ignored or misspecified, the correct level of MI might be 

better detected, as the intercept differences increased.  

Number of DIF items. For population models 4(a) and 4(b), one or two items out of six were 

DIF items (i.e., DIF between latent classes), which corresponds to about 17% and 33% DIF 

contamination. Overall, compared with the one DIF item scenario, it was anticipated that with two DIF 

items, class separation would be greater. Therefore, class enumeration and scale-level MI testing should 

yield more accurate results, under the covariate exclusion or misspecification. For population model 4(c), 

only one item was simulated to have DIF. In addition, DIF across latent classes occurred for Y4 and DIF 

within latent classes occurred for Y2. 

 Strength of covariate effects. Across all population models, the effect of the covariate on the 

latent class variable varied at two levels, 1 and 2, which is consistent with previous simulation studies on 

mixture modeling with covariates (Lubke & Muthén, 2007; Maij-de Meij et al., 2010; Nylund-Gibson & 

Masyn, 2016). These levels of effects correspond to odds ratios of 2.72, and 7.39. The covariate effects on 

the factor and item(s) both varied at .4 and .8 (Nylund-Gibson & Masyn, 2016). Overall, excluding or 

misspecifying a larger covariate effect was expected to yield worse class enumeration. When a larger 
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direct covariate effect on item(s) was ignored or misspecified, MI testing across latent classes could be 

affected to a greater extent.  

 Sample sizes. The sample sizes varied at 500 and 2000, representing small to medium sample 

sizes observed in applied and simulation studies on mixture modeling (e.g., Asparahov & Muthén, 2014; 

Bernstein et al., 2013; Lubke & Neale, 2008; Tein et al., 2013). Larger sample size was expected to yield 

higher class enumeration rates for the correct model in MI testing.  

 Mixing proportions. Balanced (50-50) and unbalanced (30-70) proportions were considered, 

which is consistent with simulation studies on mixture modeling (e.g., De Ayala et al., 2002; Park & Yu, 

2016). With covariate exclusion/misspecification, class enumeration and MI testing might be worse under 

unbalanced proportions, as compared with the balanced proportions.  

Fitted Models and Simulation Outcomes of Interest 

For data generated based on each of the population models shown in Figure 4, four models were 

fitted. Figure 5 lists these models: (a) an unconditional model excluding the covariate; (b) covariate is 

included in the model but only the effect on the latent class membership is modeled; (c) both covariate 

effects on the latent class membership and the factor are included; and (d) model estimates covariate 

effects on the latent class membership, the factor, and all the items. Covariate effects on all the items were 

included, because in applied studies, researchers were uncertain for which item the effect occurs (Nylund-

Gibson & Masyn, 2016). This fitted model thus mimicked the approach applied researchers might take in 

examining covariate effects.  

For each of the fitted models, the number of classes and the level of MI were tested 

simultaneously. Specifically, models with an increasing number of classes were constructed 

simultaneously while testing measurement invariance. More specifically, seven models were compared: 

1-class, 2-class configural, 2-class metric, 2-class scalar, 3-class configural, 3-class metric, and 3-class 

scalar. This study adopted this simultaneous approach, due to its advantage in conducting more 

comprehensive model comparisons over the sequential approach. Although it might be ideal to compare 

across likelihood-based tests and ICs, only AIC, BIC, and SaBIC were used for model comparisons. 
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Although overall BLRT performed well, the execution time would be very long considering the number 

of conditions and the number of fitted models to run. Thus it was not considered in this study. 

For each fitted model, class enumeration results were summarized and the proportions of 

replications selecting each class were reported. For conditions where there was no DIF across latent 

classes, the 2-class scalar model was expected to be selected. For conditions that had intercept 

noninvariance, the 2-class metric model was expected to be selected. In addition to analyzing class 

enumeration results within each analysis model, the model fit across analysis models was examined as 

well. Specifically, the fit of the true model was compared across the four analysis models, to see which 

analysis model fitted the data better. Non-convergence and inadmissible solutions (e.g., negative residual 

variances) were checked and reported. Note that only converged models with proper solutions were 

compared for model selection.  
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Table 3. Simulation Factors by Population Model 

Population model Manipulated factors Number of conditions 

 

Covariate effect on class (1, 2) Level of DIF 

magnitude (0, .4, .8, 

1.2) 

 

Sample size (500, 

2000) 

 

Mixing proportions 

(50-50, 30-70) 

2*2*3*2*2 + 2*2*2 = 

56 Number of DIF items (1, 2) 

 

Covariate effect on class (1, 2) 2*2*2*3*2*2 + 

2*2*2*2 = 112 Covariate effect on factor 

(.4, .8) 

Number of DIF items (1, 2) 

 

Covariate effect on class (1, 2) 2*2*2*3*2*2 + 

2*2*2*2*2 = 128 Covariate effect on factor 

(.4, .8) 

Covariate effect on item (.4, .8)  

 

 

      

Figure 4. Population models used for data generation. 
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Figure 5. Fitted models in class enumeration of factor mixture modeling.  
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Chapter 4: Results 

Non-Convergence and Inadmissible Solutions Check 

Convergence was examined for all fitted models (including 1-class, 2-class configural, metric, 

and scalar, and 3-class configural, metric, and scalar models) under each simulation condition. The 

proportion of converged replications out of 200 replications ranged from .74 to 1.00 across all fitted 

models and conditions for Population Model 1 (PM1), .67 to 1.00 for Population Model 2 (PM2), and .76 

to 1.00 for Population Model 3 (PM3). One exception occurred that all replications of the 1-class model 

did not converge for Analysis Model 4 (AM4) across population models. Also, only 103 out of 200 

replications converged for the 3-class metric model under one condition (sample size 2000, balanced 

proportions, 1 DIF item, .4 DIF magnitude, covariate effect on the latent class variable = 2, covariate 

effect on the factor = .8, and covariate effect on the item = .8). Overall the 3-class models, especially the 

3-class configural model, had lower convergence rates compared with other models. It can be observed 

that the convergence rates for AM1 tended to be slightly lower than other analysis models. The presence 

of inadmissible solutions for the true model was checked when the true model was supported. The rates 

for inadmissible solutions were near zero across simulation conditions.  

Class Enumeration and Measurement Invariance Testing When Measurement Invariance Held in 

the Population 

When measurement invariance held, factor mean difference of .5 between two latent classes was 

simulated. Overall AIC did not perform very well. The proportion of replications that selected the correct 

model (2-class scalar) ranged between .01 and .19 across conditions and analysis models for PM1, .00 to 

.43 for PM2, and .00 to .09 for PM3. Instead of 2-class scalar, AIC tended to select a more complex 

model (i.e., either 2-class configural, 2-class metric, 3-class configural or 3-class metric). BIC and saBIC 

performed much better than AIC. Eta-squared analyses were conducted to investigate the impact of 
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simulation factors and their two-way interaction on the proportion of replications that selected the 2-class 

scalar model for BIC and saBIC. Results of eta-squared analyses were summarized in Table 5 by the 

population model.  

For PM1 where the covariate had impact only on the class membership in the population, analysis 

model (𝜂2= .99) was shown to have significant impact on the MI testing when using BIC in model 

comparisons. When saBIC was used in model comparisons, analysis model (𝜂2= .70), the interaction 

between analysis model and sample size (𝜂2= .17), and sample size (𝜂2= .11) had significant impact on 

the MI testing. As can be seen from Table 6, overall A2 and A4 yielded better results in terms of 

identifying the correct model, where A2 matched the population model used to generate data (i.e., 

covariate effect on the latent class) and A4 had covariate effects on the latent class, factor, and all items. 

Taking a closer look at the results, when the covariate was ignored (A1, unconditional model), almost all 

replications selected 1-class model. Results for A3 (i.e., covariate effect on the latent class and factor) 

were very comparable to those under A1, that is, 1-class model was selected. saBIC tended to be more 

sample size dependent than BIC. In other words, when sample size was small (i.e., 500), BIC was more 

reliable than saBIC. For example, when using AM2, 83% of the replications correctly detected the 2-class 

scalar model for BIC, but saBIC only had 39% of replications detecting the correct model.  

For PM2 where the covariate had impact on both the latent class membership and the factor, 

analysis model (𝜂2= .76), the interaction between analysis model (𝜂2= .17), and the covariate effect on 

the factor (𝜂2= .06), and the covariate effect on the factor significantly affected the MI testing when BIC 

was used in the model comparisons. Analysis model (𝜂2= .47), the interaction between analysis model 

and the covariate effect on the factor (𝜂2= .24), the interaction between analysis model and sample size 

(𝜂2= .13), and the covariate effect on the factor (𝜂2= .07) had significant impact on the MI testing when 

saBIC was used in the model comparisons. As shown in Table 6, AM4 worked very well in identifying 

the correct model, regardless of the covariate effect on the factor. But AM2 performed well only when the 

covariate effect on the factor was moderate (.4). When a stronger covariate effect (.8) was ignored, 3-class 
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scalar model was supported instead of 2-class scalar. AM1 and AM3 supported the 1-class model. saBIC 

did not perform as well as BIC when sample size was 500 and AM4 was used.  

 For PM3 where the covariate had impact on the latent class membership, the factor, and the item, 

analysis model (𝜂2= .99) had significant impact on the MI testing when BIC was used in model 

comparison. When saBIC was used in model comparisons, analysis model (𝜂2= .79) and the interaction 

between analysis model and sample size (𝜂2= .16) had significant impact on the MI testing. As can be 

seen in Table 6, only AM4 performed well in detecting the correct model. BIC was more reliable than 

saBIC when sample size was 500. The other three analysis models could not well detect the 2-class scalar 

model. Specifically, AM1, AM2 and AM3 had near zero proportion of replications selecting the true 

model across conditions and information criteria. Instead, 1-class model was supported under AM1; 3-

class metric model was supported under AM2; 2-class metric and 3-class metric models were supported 

under AM3. 

Comparing the Fit of Analysis Models When Measurement Invariance Held in the Population 

Assuming the correct model (i.e., 2-class scalar) was selected, the fit of analysis models that had 

different covariate effects was compared. The purpose was to examine which approach to including the 

covariate effect had the best fit for each population model. Results of the model comparisons were 

presented in Tables 7, 8, and 9 for PM1, PM2, and PM3, respectively. For PM1, overall AM1, AM2, and 

AM3 could all be selected as the best-fitting model. Compared with AIC and saBIC, BIC tended to have 

more replications selecting AM2, which matched PM1. For PM2, AM2 and AM4 were shown to have 

better model fit than A1 and A3. Specifically, AM2 had the best model fit when the covariate effect on 

the factor was .4 and AM4 had the best model fit when that effect was .8. In other words, when the 

covariate effect on the factor was not very strong, ignoring that effect yielded the best model fit compared 

with other ways of modeling the covariate effects. However, when the effect on the factor was strong, 

including that effect led to the best model fit. For PM3, it was apparent that AM4 almost always yielded 

the best fit.  
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Class Enumeration and Measurement Invariance Testing When Measurement Invariance Did Not 

Hold in the Population 

Similar to the results under the establishment of measurement invariance, AIC did not perform 

very well in detecting the correct model (i.e., the 2-class metric model). Overall the proportions of 

replications that detected the correct model were low, ranging from .04 to .26 for AM1, .08 to .28 for 

AM2, .06 to .19 for AM3, and .03 to .12 for AM4. The 1-class model was almost never selected across 

analysis models. For other models, there was no consistent pattern which model was preferred over 

others. BIC and saBIC performed much better than AIC. Results of eta-squared analyses on the class 

enumeration rates were summarized in Table 10 by the population model. Eta-squared analyses showed 

that for PM1 where the covariate had impact only on the latent class membership, DIF magnitude (𝜂2= 

.28), analysis model (𝜂2= .22), number of DIF items (𝜂2= .12), and sample size (𝜂2= .08) had significant 

impact on the MI testing results when using BIC in model comparisons. Similarly, these four design 

factors had significant impact on MI testing (𝜂2= .27, .23, .14, and .08, respectively) when saBIC was 

used in model comparisons. The proportion of replications that selected the correct model (i.e., 2-class 

metric invariance model) was presented in Table 11 based on the simulation factors that showed 

significant impact. AM2 performed the best among all analysis models, followed by AM3, AM4, and 

AM1. Overall across all analysis models, the proportions of replications that selected the correct model 

were higher as the DIF magnitude increased, the number of DIF items increased, and the sample size 

increased. For example, the class enumeration rates increased from .24 to .54 and .73 for saBIC as the 

DIF magnitude increased from .4 to .8 and 1.2, respectively, when there was 1 DIF item and sample size 

was 500. The class enumeration rates were .54 and .82 for 1 and 2 DIF items, respectively, when the DIF 

magnitude was .8 and sample size was 500. Overall saBIC performed better than BIC. For AM2, saBIC 

almost always supported the correct model when the DIF magnitude was above .4 and sample size was 

2000. When there were 2 DIF items, the DIF magnitude was larger (.8 and 1.2), AM3, AM4, and AM1 

could also detect the 2-class metric model.  
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 For PM2 where the covariate had impact on both the latent class membership and the factor, eta-

squared analyses showed that DIF magnitude (𝜂2= .27), the number of DIF items (𝜂2= .14), the 

interaction between analysis model and the covariate effect on the factor (𝜂2= .08), and the analysis 

model (𝜂2= .08) had significant impact on the class enumeration for BIC. The same simulation factors 

impacted the class enumeration rates for saBIC substantially, but eta-squared values were different 

(please refer to Table 10 for the values). As shown in Table 12, AM3 performed well in identifying the 

correct model when the DIF magnitude was .8 and 1.2. Note that AM3 matched the data generation model 

where there were covariate effects on the latent class variable and the factor. As the DIF magnitude 

increased, the class enumeration rates increased substantially across all analysis models. AM2 (i.e., 

ignoring the covariate effect on the factor) worked well in detecting the 2-class metric model when the 

covariate effect on the factor was .4. When the effect was .8, ignoring that effect would lead to an over-

extraction of latent classes, that is, 3-class metric instead of 2-class metric model. AM4, which was the 

most complex model with covariate effects on all items, supported the 2-class metric model only when 

DIF magnitude was .8 or 1.2 with 2 DIF items; it supported the 2-class scalar model instead for other 

conditions. A1 only worked well with 1.2 DIF magnitude and 2 DIF items. But for most conditions, it 

tended to select the 1-class model.  

For PM3 where the covariate had impact on the latent class membership, the factor, and the item, 

simulation factors that had significant impact on the class enumeration included: analysis model (𝜂2= 

.25), the interaction between analysis model and the covariate effect on the item (𝜂2= .11), and the 

interaction between analysis model and sample size (𝜂2= .06) for BIC. For saBIC, the interaction between 

analysis model and the covariate effect on the item (𝜂2= .23), analysis model (𝜂2= .14), the interaction 

between analysis model and DIF magnitude (𝜂2= .11), the interaction between analysis model and 

covariate effect on the factor (𝜂2= .07), the interaction between analysis model and sample size (𝜂2= .07), 

and the DIF magnitude (𝜂2= .07) all affected the class enumeration. Surprisingly, overall AM3 performed 

better than AM4 in detecting the 2-class metric model, as seen in Table 13. In other words, it was better to 
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ignore the covariate effect on the item if the effect was present than including covariate effects on all 

items. But this was the case only when the covariate effect on the item was .4. When the effect was .8, 

ignoring that effect tended to result in an additional latent class (i.e., 3-class metric instead of 2-class 

metric). AM4 only worked well when sample size was 2000 and the DIF magnitude was 1.2. AM2 (i.e., 

ignoring both covariate effects on the factor and the item) only worked well when these two covariate 

effects were .4 and sample size was 500; for other conditions, an over-extraction of latent classes (i.e., 3-

class metric) was observed. A1 tended to support the 2-class scalar model rather than the 2-class metric 

model.  

Comparing the Fit of Analysis Models When Measurement Invariance Did Not Hold in the 

Population 

For PM1, BIC and saBIC showed that overall AM2 had the best model fit among all analysis 

models (see Table 14). For PM1, more replications selected AM2 as the best-fitting model as the DIF 

magnitude, sample size, number of DIF items, and the covariate effect on the latent class variable 

increased. Other analysis models were much less likely to be selected as the best-fitting model. As 

expected, for PM2, AM3, which matched PM2, showed the best model fit (see Table 15). For PM3, AM4, 

which modeled the covariate effect on all items, had the best model fit (see Table 16).
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Table 4. Non-Convergence and Inadmissible Solutions Check  

 Proportion of converged replications 

Population model 1  

    Analysis model 1 .74 ~ 1.00 

    Analysis model 2 .78 ~ 1.00 

    Analysis model 3 .86 ~ 1.00 

    Analysis model 4 .84 ~ 1.00a 

  

Population model 2  

    Analysis model 1 .67 ~ 1.00 

    Analysis model 2 .87 ~ 1.00 

    Analysis model 3 .87 ~ 1.00 

    Analysis model 4 .83 ~ 1.00a 

  

Population model 3  

    Analysis model 1 .76 ~ 1.00 

    Analysis model 2 .88 ~ 1.00 

    Analysis model 3 .88 ~ 1.00 

    Analysis model 4 .84 ~ 1.00a 

Note. aThe range of convergence rates did not include the 1-class model, because all replications of the 1-

class model did not converge. 

 

 

Table 5. Results of Eta-Squared Analyses by Population Model When Measurement Invariance Held in 

the Population 

Population 

model 

BIC saBIC 

Simulation factor 𝜂2 Simulation factor 𝜂2 

 

Analysis model  .99 Analysis model .70 

  Analysis model*sample size .17 

  Sample size  .11 

     

 

Analysis model .76 Analysis model .47 

Analysis model*covariate effect on 

factor 

.17 Analysis model*covariate effect on 

factor 

.24 

Covariate effect on factor .06 Analysis mode*sample size .13 

  Covariate effect on factor .07 

     

 

Analysis model .99 Analysis model .79 

  Analysis model*sample size .16 

Note. BIC = Bayesian information criterion, saBIC = sample size adjusted BIC.  
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Table 6. Class Enumeration and Measurement Invariance (MI) Testing When MI Held in the Population 

   Analysis Model 

   

    
Population Model Covariate 

Effect on 

Factor 

Sample 

Size BIC saBIC BIC saBIC BIC saBIC BIC saBIC 

 

 
500 .01 .14 .83 .39 .00 .03 .92 .32 

 
2000 .00 .05 .93 .84 .00 .00 .98 .84 

 

.4 500 .00 .15 .95 .72 .00 .03 .94 .33 

 2000 .00 .03 .92 .74 .00 .05 .99 .85 

.8 500 .00 .15 .12 .00 .00 .02 .94 .38 

 2000 .00 .04 .00 .00 .01 .10 .98 .84 

 

 500 .00 .00 .00 .00 .08 .00 .94 .33 

 2000 .00 .01 .00 .00 .00 .00 .99 .87 

Note. BIC = Bayesian information criterion, saBIC = sample size adjusted BIC.  
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Table 7. Comparing Analysis Models When Measurement Invariance Held in the Population under Population Model 1 

 Sample 

size 

Mixing 

proportion 

Covariate 

effect on 

class 

AIC_a1 AIC_a2 AIC_a3 AIC_a4 BIC_a1 BIC_a2 BIC_a3 BIC_a4 saBIC_a1 saBIC_a2 saBIC_a3 saBIC_a4 

500 50-50 1 .37 .37 .25 .02 .53 .39 .09 .00 .39 .39 .23 .00 

2 .25 .34 .38 .04 .45 .40 .15 .01 .30 .38 .32 .02 

30-70 1 .37 .39 .22 .03 .58 .37 .06 .00 .41 .42 .17 .01 

2 .33 .30 .35 .03 .53 .33 .14 .00 .37 .31 .32 .01 

2000 50-50 1 .18 .27 .49 .07 .33 .47 .20 .00 .24 .40 .36 .01 

2 .02 .24 .69 .07 .06 .66 .28 .00 .04 .45 .51 .01 

30-70 1 .23 .27 .45 .06 .44 .39 .17 .00 .33 .36 .32 .00 

2 .05 .20 .69 .06 .15 .56 .30 .00 .08 .41 .51 .01 

Note. The suffix of a1, a2, a3, and a4 for AIC, BIC, and saBIC indicates that analysis models 1, 2, 3, and 4 (see Figure 5a, 5b, 5c, and 5d), respectively. 
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Table 8. Comparing Analysis Models When Measurement Invariance Held in the Population under Population Model 2 

 Sample 

size 

Mixing 

proportion 

Covariate 

effect on 

class 

Covariate 

effect on 

factor 

AIC_a1 AIC_a2 AIC_a3 AIC_a4 BIC_a1 BIC_a2 BIC_a3 BIC_a4 saBIC_a1 saBIC_a2 saBIC_a3 saBIC_a4 

500 50-50 1 4 .07 .40 .00 .53 .14 .85 .00 .02 .08 .71 .00 .22 

8 .00 .02 .00 .99 .00 .02 .00 .99 .00 .02 .00 .99 

2 4 .12 .39 .00 .51 .27 .71 .00 .03 .20 .66 .00 .15 

8 .00 .01 .00 1.00 .00 .01 .00 1.00 .00 .01 .00 1.00 

30-70 1 4 .07 .37 .00 .57 .13 .87 .00 .01 .08 .67 .00 .26 

8 .00 .02 .00 .99 .00 .02 .00 .99 .00 .02 .00 .99 

2 4 .13 .40 .00 .49 .22 .77 .00 .02 .16 .66 .00 .19 

8 .00 .01 .00 .99 .00 .01 .00 .99 .00 .01 .00 .99 

2000 50-50 1 4 .00 .06 .00 .95 .00 .99 .00 .01 .00 .58 .00 .43 

8 .00 .01 .00 1.00 .00 .01 .00 1.00 .00 .01 .00 1.00 

2 4 .00 .06 .00 .94 .00 .99 .00 .02 .00 .66 .00 .34 

8 .00 .01 .00 .99 .00 .01 .00 .99 .00 .01 .00 .99 

30-70 1 4 .00 .05 .00 .96 .00 .97 .00 .04 .00 .53 .00 .47 

8 .00 .02 .00 .99 .00 .02 .00 .99 .00 .02 .00 .99 

2 4 .00 .26 .00 .74 .00 1.00 .00 .00 .00 1.00 .00 .01 

8 .00 .02 .00 .99 .00 .02 .00 .99 .00 .02 .00 .99 

Note. The suffix of a1, a2, a3, and a4 for AIC, BIC, and saBIC indicates that analysis models 1, 2, 3, and 4 (see Figure 5a, 5b, 5c, and 5d), respectively. 
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Table 9. Comparing Analysis Models When Measurement Invariance Held in the Population under Population 

Model 3 

Sam

ple 

size 

Mixing 

proport

ion 

Covari

ate 

effect 
on 

class 

Covari

ate 

effect 
on 

factor 

Covari

ate 

effect 
on 

item 

AIC_

a1 

AIC_

a2 

AIC_

a3 

AIC_

a4 

BIC_

a1 

BIC_

a2 

BIC_

a3 

BIC_

a4 

saBIC

_a1 

saBIC

_a2 

saBIC

_a3 

saBIC

_a4 

500 50-50 1 4 4 .00 .00 .00 1.00 .00  .00 .00 1.00 .00 .00 .00 1.00 

8 .00 .00 .00 1.00 .00 .00 .00 1.00 .00 .00  .00 1.00 

8 4 .00 .00 .01 .99 .00 .00   .37 .63 .00 .00 .04 .96 

8 .00 .00 .01 1.00 .00 .00 .01 1.00 .00 .00 .01 1.00 

2 4 4 .00 .00 .01 1.00 .00 .00 .01 1.00 .00 .00 .01 1.00 

8 .00 .00 .00 1.00 .00 .00 .00 1.00 .00 .00 .00 1.00 

8 4 .00 .00 .02 .99 .00 .00 .35 .65 .00 .00 .05 .95 

8 .00 .00 .01 1.00 .00 .00 .01 1.00 .00 .00 .01 1.00 

30-70 1 4 4 .00 .00 .01 1.00 .00 .00 .01 1.00 .00 .00 .01 1.00 

8 .00 .00 .01 1.00 .00 .00 .01 1.00 .00 .00 .01 1.00 

8 4 .00 .00 .01 .99 .00 .00 .39 .61 .00 .00 .06 .95 

8 .00 .00 .00 1.00 .00 .00 .00 1.00 .00 .00 .00 1.00 

2 4 4 .00 .00 .01 1.00 .01 .00 .00 1.00 .00 .00 .01 1.00 

8 .00 .00 .00 1.00 .00 .00 .00 1.00 .00 .00 .00 1.00 

8 4 .00 .00 .01 .99 .00 .00 .35 .66 .00 .00 .04 .96 

8 .00 .00 .01 .99 .00 .00 .01 .99 .00 .00 .01 .99 

2000 50-50 1 4 4 .00 .00 .00 1.00 .00 .00 .00 1.00 .00 .00 .00 1.00 

8 .00 .00 .00 1.00 .00 .00 .00 1.00 .00 .00 .00 1.00 

8 4 .00 .00 .03 .98 .00 .00 .03 .98 .00 .00 .03 .98 

8 .00 .00 .01 1.00 .00 .00 .01 1.00 .00 .00 .01 1.00 

2 4 4 .00 .00 .00 1.00 .00 .00 .00 1.00 .00 .00 .00 1.00 

8 .00 .00 .01 1.00 .00 .00 .01 1.00 .00 .00 .01 1.00 

8 4 .00 .00 .01 .99 .00 .00 .01 .99 .00 .00 .01 .99 

8 .00 .00 .01 .99 .00 .00 .01 .99 .00 .00 .01 .99 

30-70 1 4 4 .00 .00 .00 1.00 .00 .00 .00 1.00 .00 .00 .00 1.00 

8 .00 .00 .01 .99 .00 .00 .01 .99 .00 .00 .01 .99 

8 4 .00 .00 .02 .99 .00 .00 .02 .99 .00 .00 .02 .99 

8 .00 .00 .01 1.00 .00 .00 .01 1.00 .00 .00 .01 1.00 

2 4 4 .00 .00 .00 1.00 .00 .00 .00 1.00 .00 .00 .00 1.00 

8 .00 .00 .00 1.00 .00 .00 .00 1.00 .00 .00 .00 1.00 

8 4 .00 .00 .02 .99 .00 .00 .02 .99 .00 .00 .02 .99 

8 .00 .00 .02 .98 .00 .00 .02 .98 .00 .00 .02 .98 
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Table 10. Results of Eta-Squared Analyses by Population Model When Measurement Invariance Did Not Hold in 

the Population 

Population 

model 

BIC saBIC 

Simulation factor 𝜂2 Simulation factor 𝜂2 

 

DIF magnitude .28 DIF magnitude .27 

Analysis model .22 Analysis model .23 

Number of DIF items .12 Number of DIF items .14 

 Sample size .08 Sample size .08 

     

 

DIF magnitude .27 DIF magnitude .20 

Number of DIF items .14 Analysis model*covariate effect on factor .15 

Analysis model*covariate effect on 

factor 

.08 Analysis model .12 

Analysis model .08 Number of DIF items .11 

     

 

Analysis model .25 Analysis model*covariate effect on item .23 

Analysis model*covariate effect on 

item 

.11 Analysis model .14 

Analysis model*sample size .06 Analysis model*DIF magnitude .11 

  Analysis model*covariate effect on factor .07 

  Analysis model*sample size .07 

  DIF magnitude .07 

Note. BIC = Bayesian information criterion, saBIC = sample size adjusted BIC.  
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Table 11. Class Enumeration and Measurement Invariance (MI) Testing When MI Did Not Hold in the Population under Population Model 1 

    Analysis Model 

    

    
Population 

Model 

DIF 

Magnitude 

Number 

of DIF 

Items 

Sample 

Size BIC saBIC BIC saBIC BIC saBIC BIC saBIC 

 

.4 1 500 .00 .02 .11 .24 .00 .06 .02 .15 

  2000 .00 .00 .29 .60 .00 .07 .01 .05 

 2 500 .00 .02 .18 .40 .00 .13 .02 .15 

  2000 .00 .01 .70 .92 .05 .51 .01 .13 

.8 1 500 .00 .02 .36 .54 .00 .32 .03 .15 

  2000 .00 .00 .92 .98 .46 .78 .03 .18 

 2 500 .00 .16 .82 .82 .19 .71 .14 .39 

  2000 .07 .88 1.00 1.00 .99 1.00 .95 .97 

1.2 1 500 .00 .03 .69 .73 .13 .63 .03 .21 

  2000 .00 .00 1.00 1.00 .84 .99 .34 .60 

 2 500 .36 .84 1.00 .87 .93 .83 .96 .74 

  2000 1.00 .98 1.00 .99 1.00 .99 .99 .97 

Note. BIC = Bayesian information criterion, saBIC = sample size adjusted BIC.  
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Table 12. Class Enumeration and Measurement Invariance (MI) Testing When MI Did Not Hold in the Population under Population Model 2 

    Analysis Model 

    

    
Population Model DIF 

Magnitude 

Number 

of DIF 

Items 

Covariate 

Effect on 

Factor 

BIC saBIC BIC saBIC BIC saBIC BIC saBIC 

 

.4 1 .4 .00 .02 .14 .41 .00 .09 .01 .10 

  .8 .00 .02 .00 .00 .00 .06 .01 .11 

 2 .4 .00 .01 .46 .69 .10 .44 .02 .15 

  .8 .00 .02 .02 .00 .08 .47 .01 .15 

.8 1 .4 .00 .02 .65 .80 .25 .65 .03 .18 

  .8 .00 .01 .01 .00 .23 .64 .02 .23 

 2 .4 .08 .56 .94 .88 .71 .88 .56 .69 

  .8 .07 .57 .32 .01 .76 .90 .55 .72 

1.2 1 .4 .00 .02 .86 .86 .60 .84 .20 .43 

  .8 .00 .02 .08 .00 .54 .86 .25 .52 

 2 .4 .75 .90 .98 .61 1.00 .90 .96 .85 

  .8 .76 .92 .34 .08 1.00 .91 .95 .87 

Note. BIC = Bayesian information criterion, saBIC = sample size adjusted BIC.  
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Table 13. Class Enumeration and Measurement Invariance (MI) Testing When MI Did Not Hold in the Population under Population Model 3 

     Analysis Model 

     

    
Population 

Model 

Covariate 

Effect on 

Item 

Sample 

Size 

Covariate 

Effect on 

Factor 

DIF 

Magnitude BIC saBIC BIC saBIC BIC saBIC BIC saBIC 

 

.4 500 .4 .4 .00 .03 .99 .41 .91 .63 .02 .18 

   .8 .00 .03 .99 .35 .98 .58 .02 .18 

   1.2 .00 .11 .99 .25 1.00 .49 .06 .30 

  .8 .4 .00 .01 .07 .00 .08 .72 .03 .17 

   .8 .00 .02 .13 .00 .39 .76 .02 .22 

   1.2 .00 .04 .14 .00 .80 .76 .08 .33 

 2000 .4 .4 .00 .00 .17 .00 .98 .22 .01 .05 

   .8 .00 .04 .08 .00 .91 .07 .08 .33 

   1.2 .04 .58 .02 .00 .71 .01 .61 .80 

  .8 .4 .00 .00 .00 .00 1.00 .99 .01 .06 

   .8 .00 .00 .00 .00 1.00 .96 .14 .46 

   1.2 .00 .14 .00 .00 .75 .67 .54 .76 

.8 500 .4 .4 .00 .04 .00 .00 .00 .00 .02 .15 

   .8 .00 .28 .00 .00 .00 .00 .02 .17 

   1.2 .13 .67 .00 .00 .00 .00 .05 .30 

  .8 .4 .00 .03 .00 .00 1.00 .33 .02 .18 

   .8 .00 .12 .00 .00 1.00 .34 .02 .18 

   1.2 .01 .49 .00 .00 1.00 .29 .09 .31 

 2000 .4 .4 .00 .07 .00 .00 .00 .00 .01 .07 

   .8 .48 .88 .00 .00 .00 .00 .08 .34 

   1.2 .98 .99 .00 .00 .00 .00 .62 .80 

  .8 .4 .80 .01 .00 .00 .66 .02 .02 .07 

   .8 .12 .69 .00 .00 .47 .01 .14 .47 

   1.2 .89 .98 .00 .00 .20 .00 .77 .89 

Note. BIC = Bayesian information criterion, saBIC = sample size adjusted BIC.  
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Table 14. Comparing Analysis Models When Measurement Invariance Did Not Hold in the Population under 

Population Model 1 

DIF 

magnit

ude 

Sam

ple 

size 

Num

ber 

of 

DIF 

items 

Covari

ate 

effect 

on 

class 

AIC_

a1 

AIC_

a2 

AIC_

a3 

AIC_

a4 

BIC_

a1 

BIC_

a2 

BIC_

a3 

BIC_

a4 

ssBIC

_a1 

ssBIC

_a2 

ssBIC

_a3 

ssBIC

_a4 

4 500 1 1 .26 .29 .32 .14 .53 .30 .17 .00 .35 .32 .29 .04 

2 .15 .23 .39 .24 .31 .43 .26 .01 .19 .31 .41 .10 

2 1 .17 .26 .37 .20 .37 .39 .24 .00 .21 .34 .39 .07 

2 .04 .30 .35 .31 .12 .62 .25 .01 .06 .48 .37 .10 

2000 1 1 .10 .23 .39 .29 .25 .54 .21 .00 .15 .45 .38 .03 

2 .00 .43 .24 .33 .00 .90 .09 .00 .00 .76 .21 .03 

2 1 .01 .36 .33 .31 .03 .84 .13 .00 .02 .70 .27 .02 

2 .00 .66 .17 .17 .00 .99 .02 .00 .00 .93 .07 .01 

8 500 1 1 .16 .26 .30 .29 .35 .46 .19 .00 .24 .37 .30 .10 

2 .03 .36 .25 .37 .08 .76 .16 .01 .03 .54 .27 .16 

2 1 .02 .51 .31 .17 .05 .80 .15 .00 .02 .66 .26 .06 

2 .00 .67 .20 .13 .00 .93 .07 .01 .00 .82 .15 .04 

2000 1 1 .01 .41 .21 .38 .01 .93 .06 .00 .01 .81 .17 .02 

2 .00 .71 .20 .10 .00 .98 .02 .00 .00 .91 .09 .00 

2 1 .00 .79 .17 .05 .00 .98 .02 .00 .00 .95 .05 .00 

2 .00 .81 .16 .03 .00 .99 .02 .00 .00 .96 .04 .00 

12 500 1 1 .06 .33 .27 .34 .16 .70 .14 .01 .09 .50 .29 .13 

2 .00 .53 .16 .32 .00 .92 .07 .01 .00 .73 .16 .11 

2 1 .00 .77 .20 .04 .00 .97 .03 .00 .00 .87 .13 .00 

2 .00 .79 .18 .03 .00 .97 .03 .00 .00 .88 .12 .00 

2000 1 1 .00 .71 .18 .11 .00 .97 .03 .00 .00 .92 .07 .01 

2 .00 .81 .19 .01 .00 .98 .02 .00 .00 .94 .06 .00 

2 1 .00 .81 .17 .02 .00 .99 .01 .00 .00 .97 .03 .00 

2 .00 .83 .15 .02 .00 .99 .02 .00 .00 .95 .05 .00 

Note. The suffix of a1, a2, a3, and a4 for AIC, BIC, and saBIC indicates that analysis models 1, 2, 3, and 4 (see 

Figure 5a, 5b, 5c, and 5d), respectively.  
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Table 15. Comparing Analysis Models When Measurement Invariance Did Not Hold in the Population under 

Population Model 2 

Covari

ate 

effect 

on 

factor 

Sam

ple 

size 

DIF 

magnit

ude 

Num

ber 

of 

DIF 

items 

AIC_

a1 

AIC_

a2 

AIC_

a3 

AIC_

a4 

BIC_

a1 

BIC_

a2 

BIC_

a3 

BIC_

a4 

ssBIC

_a1 

ssBIC

_a2 

ssBIC

_a3 

ssBIC

_a4 

4 500 4 1 .02 .05 .62 .31 .09 .19 .71 .01 .04 .09 .74 .14 

2 .02 .11 .52 .36 .08 .26 .65 .01 .03 .15 .68 .13 

8 1 .00 .03 .53 .44 .02 .23 .74 .01 .00 .08 .72 .20 

2 .00 .03 .77 .20 .00 .19 .80 .01 .00 .07 .87 .06 

12 1 .00 .01 .60 .39 .01 .15 .83 .02 .00 .04 .78 .18 

2 .00 .01 .95 .05 .00 .02 .99 .00 .00 .01 .99 .01 

2000 4 1 .00 .01 .56 .44 .00 .03 .96 .00 .00 .01 .94 .05 

2 .00 .00 .68 .32 .00 .04 .96 .00 .00 .02 .96 .03 

8 1 .00 .00 .71 .29 .00 .01 .99 .00 .00 .00 .97 .03 

2 .00 .00 .95 .05 .00 .00 1.00 .00 .00 .00 1.00 .00 

12 1 .00 .00 .91 .09 .00 .00 1.00 .00 .00 .00 1.00 .00 

2 .00 .00 .97 .04 .00 .00 1.00 .00 .00 .00 1.00 .00 

8 500 4 1 .00 .00 .70 .31 .00 .00 .99 .01 .00 .00 .87 .13 

2 .00 .00 .59 .41 .00 .00 .99 .02 .00 .00 .84 .17 

8 1 .00 .00 .53 .47 .00 .00 .98 .02 .00 .00 .77 .23 

2 .00 .00 .80 .20 .00 .00 1.00 .00 .00 .00 .93 .07 

12 1 .00 .00 .65 .35 .00 .00 .99 .01 .00 .00 .83 .17 

2 .00 .00 .96 .04 .00 .00 1.00 .00 .00 .00 1.00 .00 

2000 4 1 .00 .00 .65 .35 .00 .00 .99 .01 .00 .00 .97 .03 

2 .00 .00 .77 .24 .00 .00 1.00 .00 .00 .00 .99 .02 

8 1 .00 .00 .76 .24 .00 .00 1.00 .00 .00 .00 .98 .02 

2 .00 .00 .94 .06 .00 .00 1.00 .00 .00 .00 1.00 .00 

12 1 .00 .00 .93 .07 .00 .00 1.00 .00 .00 .00 1.00 .00 

2 .00 .00 .95 .05 .00    .00 1.00    .00 .00 .00 1.00 .00 

Note. The suffix of a1, a2, a3, and a4 for AIC, BIC, and saBIC indicates that analysis models 1, 2, 3, and 4 (see 

Figure 5a, 5b, 5c, and 5d), respectively.   
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Table 16. Comparing Analysis Models When Measurement Invariance Did Not Hold in the Population under 

Population Model 3 

 Covar

iate 

effect 

on 

item 

Covar

iate 

effect 

on 

factor 

Sam

ple 

size 

AIC

_a1 

AIC

_a2 

AIC

_a3 

AIC

_a4 

BIC

_a1 

BIC

_a2 

BIC

_a3 

BIC

_a4 

ssBIC

_a1 

ssBIC

_a2 

ssBIC

_a3 

ssBIC

_a4 

4 4 500 .00 .00 .02 .98 .00 .03 .38 .59 .00 .00 .05 .95 

2000 .00 .00 .01 .99 .00 .00 .01 .99 .00 .00 .01 .99 

8 500 .00 .00 .17 .83 .00 .00 .91 .09 .00 .00 .37 .63 

2000 .00 .00 .06 .94 .00 .00 .66 .34 .00 .00 .24 .76 

8 4 500 .00 .00 .01 .99 .00 .00 .01 .99 .00 .00 .01 .99 

2000 .00 .00 .01 .99 .00 .00 .01 .99 .00 .00 .01 .99 

8 500 .00 .00 .02 .98 .00 .00 .31 .69 .00 .00 .04 .96 

2000 .00 .00 .00 1.00 .00 .00 .01 1.00 .00 .00 .00 1.00 

Note. The suffix of a1, a2, a3, and a4 for AIC, BIC, and saBIC indicates that analysis models 1, 2, 3, and 

4 (see Figure 5a, 5b, 5c, and 5d), respectively.   
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Chapter 5: Discussion 

This simulation study examined the impact of covariate effect inclusion on measurement 

invariance testing with factor mixture modeling. Different covariate effects were simulated, including the 

covariate effect on the latent class variable, the factor, and the item. Then different analysis models were 

fitted where the covariate effects were misspecified and class enumeration was examined to see how the 

misspecification affected the class enumeration. Key findings will be summarized and discussed first, 

followed by implications of this study on applied and methodological research in the future.  

When measurement invariance (MI) held, two latent classes were distinguished by factor mean 

difference. Overall models that included the covariate effect on the latent class membership only (i.e., 

analysis model 2) and the covariate effects on the latent class membership, factor, and all items (i.e., 

analysis model 4) performed well. Specifically, both models could well identify the correct model (i.e., 2-

class scalar in this study), if there was only covariate effect on the latent class membership or the 

covariate effect on the factor was weak (.4 in this study). Under these circumstances, the simpler model 

including only the covariate effect on the latent class membership had better fit than the more complex 

model including direct covariate effects on all items. However, only the more complex model identified 

the 2-class scalar model when the covariate effect on the factor was strong (i.e., .8 in this study) or there 

was direct covariate effect on the item. Under these circumstances, the more complex model fitted data 

better than the simpler model. However, in reality, it is unknown what the underlying population model 

is, whether the covariate effect on the factor is strong, or whether there are direct covariate effects on the 

items. Therefore, we recommend the most complex model in the class enumeration process when MI 

holds. Once the number of latent classes and the level of invariance are identified, a simpler model (i.e., 

covariate effect on the latent class membership only) with these factors fixed (e.g., 2-class scalar) can be 

fitted and compared to the same solution under the more complex model. Then the model that has better 
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model fit can be selected based on information criteria and parameter estimates can be examined and 

interpreted. However, it should be noted that due to the complexity of this analysis model, it might not be 

a practical solution when there are multiple covariates (Nylund-Gibson & Masyn, 2016). It might be 

challenging to estimate model parameters when all the included covariates have direct effects on all the 

items.  

When MI held, the unconditional model tended to select the 1-class model, which might result 

from the low class separation. That is, classes were separated only by the factor mean difference so both 

the class separation and classification accuracy could be low. Therefore, information criteria failed to 

identify the 2-class scalar model. The poor performance of the unconditional model compared with other 

model that included covariate effects showed that including covariate effects might help improve class 

separation and thus the class enumeration in MI testing (Lubke & Muthén, 2007; Maij-de Meij et al., 

2010). However, the inclusion of covariate effects does not necessarily guarantee accurate results for MI 

testing. Specifically, the analysis model including both covariate effects on the latent class membership 

and the factor also supported 1-class model. This might be because although the covariate effect on the 

factor was simulated within each latent class and the factor mean difference was simulated between latent 

classes, the covariate path to the factor in the fitted model captured the variability in the factor mean as a 

whole. Therefore, the 1-class model was supported instead of the 2-class scalar model. Other possible 

explanations have been ruled out by results of a few additional simulation conditions. That is, larger 

factor mean difference (1.5 rather than the original .5) and the covariate effect on the latent class variable 

being zero were simulated separately. Similar results were found with these additional simulations that 

adding the covariate effect on the factor would lead to the 1-class solution. That is, even though the factor 

mean difference between classes got larger or the covariate had no relationship with the latent class 

membership, the difference in the factor mean would still be captured by the covariate effect. Overall, 

when MI held, BIC was more reliable than saBIC. The performance of saBIC was sample-dependent.  

When MI did not hold, overall the choice of analysis models depended upon the population 

model and class separation. When there were covariate effects on the latent class variable only 
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(population model 1) or both the latent class variable and the factor (population model 2), all analysis 

models including the unconditional model performed well if the class separation was large; otherwise, the 

analysis model that matched the population model performed the best. For population model 1, in 

addition to the analysis model that matched the population model, the slightly over-specified model 

including covariate effects on both the latent class membership and the factor also performed well, when 

the class separation was large. For population model 2, the analysis model that ignored the covariate 

effect on the factor performed well when the omitted covariate effect was not strong. When the covariate 

effect on the factor was strong, the analysis model that matched the population model (i.e., covariate 

effects on both the latent class membership and the factor) performed the best. When there were covariate 

effects on the latent class membership, the factor, and the item (population model 3), the model that 

ignored the covariate effect on the item performed very well when the omitted effect was not strong. 

When the effect was strong, none of the models performed satisfactorily; however, with large sample size 

and large separation, the unconditional model was acceptable.  

Overall, when there was measurement noninvariance, the unconditional model should not be 

recommended, because it tended to select the 1-class model regardless of the population model. This is 

similar to the finding under measurement invariance conditions and consistent with previous findings in 

the literature (Lubke & Muthén, 2007; Maij-de Meij et al., 2010). That is, including covariates in the class 

enumeration could improve the class separation and thus covariates should be included in the factor 

mixture model when testing measurement invariance across latent classes. Note that the poor performance 

of the unconditional model was not observed in previous simulation studies using latent class analysis 

model (Nylund-Gibson & Masyn, 2016) and regression mixture model (M. Kim et al., 2016). Both 

studies found that the unconditional model performed well in terms of class enumeration. This 

discrepancy in the performance of the unconditional model might occur due to several differences 

between this study and the other two studies mentioned above. First, this study focused on the factor 

mixture modeling, which is a combination of confirmatory factor analysis and latent class analysis. 

Therefore, the model could be considered as more complex than the latent class analysis and regression 
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mixture model. It might be more difficult to distinguish latent classes because simulated differences 

across classes might be absorbed by other model parameters. If this happens, including covariates could 

improve the class separation and classification accuracy, which would further help the class enumeration. 

Second, class enumeration is defined differently for this study and the other two studies. This study 

examined the number of latent classes and the level of invariance simultaneously in the class enumeration 

process, while the other two studies only considered the number of latent classes. Overall, it would be 

beneficial to include covariate effects into the factor mixture model in class enumeration. 

Specifically, it seems that including covariate effects on both the latent class membership and the 

factor yielded desirable results consistently across population models, when there was measurement 

noninvariance. However, the model should be interpreted with caution because when the class separation 

was not large, that is, smaller DIF magnitude coupled with fewer DIF items, the model tended to select 

the 1-class model. Only including the covariate effect on the latent class membership might lead to over-

extraction of latent classes if there were other covariate effects but were omitted. In other words, 

additional latent classes emerged due to the omitted effects. Nevertheless, if the direct covariate effects on 

all the items were modeled in the most complex analysis model, the 2-class scalar model was selected 

instead of the 2-class metric model. This might be because the covariate effects on items absorbed the 

intercept noninvariance.  

Although including covariate effects on the latent class variable and the factor seemed to work 

well in identifying the correct model under measurement noninvariance, this approach did not have the 

best model fit across simulation conditions. That is, with intercept noninvariance, the analysis model that 

matched the population model yielded the best fit to the data, as compared with other analysis models. 

Therefore, instead of recommending a single model that includes covariate effects on the latent class 

variable and the factor, we suggest that applied researchers can use this model as a starting point in the 

class enumeration process and compare that model to other analysis models. That is, first, identify the 

number of latent classes and the level of invariance using the model that includes covariate effects on the 

latent class variable and the factor. Second, fit other analysis models that modeled the covariate effects 
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differently with the number of latent classes and the level of invariance identified at the first step. The 

fitted analysis models include the model that has the covariate effect on the latent class membership only, 

and the most complex analysis models that includes covariate effects on the latent class membership, the 

factor, and all items. Third, compare the fit of the analysis models with the model used at the first step 

and choose an analysis model that yields the best fit.  

It is important to note that the recommendation provided above regarding the inclusion of 

covariate effects in testing measurement invariance are assuming measurement noninvariance. In other 

words, the recommendation can be taken if applied researchers hypothesize measurement noninvariance 

based on substantive theory or previous research. If the hypothesis is wrong and measurement invariance 

actually holds, following the recommendation would lead to biased results. That is, although including 

covariates on the latent class variable and the factor is recommended in testing measurement invariance 

across latent classes assuming measurement noninvariance, this way of modeling covariate effects would 

not work in testing factor mean differences across classes when measurement invariance actually held. In 

other words, if the only difference across classes was in the factor mean, including covariate effects on 

both the latent class variable and the factor would not lead to the identification of the scalar invariance 

model. Instead, the 1-class model would be supported, because the factor mean difference would be 

absorbed by the covariate effect on the factor, as discussed earlier. In this case, including covariate effects 

on both the latent class membership and the factor was not a good option. If applied researchers had no 

hypothesis about whether measurement invariance holds or not, including the covariate effect only on the 

latent class membership seems to be a reasonable approach. This approach would lead to satisfactory 

class enumeration results except when the covariate effect on the factor was strong or there were direct 

effects on the items. Then the fit of this model can be compared with other analysis models, including the 

model that has the covariate effects on both the latent class membership and the factor, and the model that 

includes the covariate effects on the latent class membership, the factor, and all the items. The number of 

latent classes and the level of invariance for these analysis models are fixed to be the same as the solution 

identified by the model with covariate effect on the latent class membership only.  
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Some additional words of caution need to be pointed out in interpreting or generalizing results 

and recommendations. First, this study focused on the impact of excluding/misspecifying covariate effects 

on the class enumeration for MI testing with factor mixture modeling. Future research could further 

examine the classification accuracy and parameter estimates once the correct solution and the best-fitting 

analysis model is identified. Second, only measurement noninvariance in intercepts was considered in this 

study and factor loadings were constrained to be equal across latent classes. It would be interesting to 

examine the performance of the analysis models under loading noninvariance only or both loading and 

intercept noninvariance. Third, this study focused on detecting measurement noninvariance across latent 

classes (i.e., latent DIF), but results showed that the presence of observed DIF related with the covariate 

could distort the results for testing latent DIF. That is, when there was a strong direct covariate effect on 

the item (i.e., observed DIF), all analysis models fitted in this study failed to detect the correct level of 

measurement invariance across latent classes. Future methodological research can further examine how to 

conduct measurement invariance testing across latent classes with the presence of observed DIF and what 

approaches or model building process should be used to identify latent and observed DIF. Note that Tay 

et al. (2011) proposed a procedure to test latent and observed DIF in the item response theory framework. 

Masyn (2017) proposed a stepwise MIMIC approach to testing observed nonuniform and uniform DIF 

related with a covariate in latent class analysis. Nevertheless, simulation studies are needed in the future 

to investigate the performance of the approach and other possible approaches.  

In summary, this study shows that covariates should be included in the factor mixture modeling 

when the focus is to identify the number of latent classes and the level of invariance. It is not a good 

option to exclude the covariate effects because this approach would lead to the 1-class solution. Instead, 

when testing measurement invariance, the covariate effect on the latent class membership can be included 

if there is no priori hypothesis regarding whether measurement invariance might hold or not. If 

measurement invariance might not hold based on substantive theory or prior research, the covariate 

effects on the latent class membership and the factor can be included to identify a solution. In addition, it 

is good to know that larger sample size and larger class separation would help the class enumeration.  
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