University of South Florida

DIGITAL COMMONS Digital Commons @ University of

@ UNIVERSITY OF SOUTH FLORIDA South Florida
USF Tampa Graduate Theses and Dissertations USF Graduate Theses and Dissertations
May 2018

Statistical Analysis and Modeling of Cyber Security and Health
Sciences

Nawa Raj Pokhrel
University of South Florida, nawaraj@mail.usf.edu

Follow this and additional works at: https://digitalcommons.usf.edu/etd

b Part of the Statistics and Probability Commons

Scholar Commons Citation

Pokhrel, Nawa Raj, "Statistical Analysis and Modeling of Cyber Security and Health Sciences" (2018). USF
Tampa Graduate Theses and Dissertations.

https://digitalcommons.usf.edu/etd/7703

This Dissertation is brought to you for free and open access by the USF Graduate Theses and Dissertations at
Digital Commons @ University of South Florida. It has been accepted for inclusion in USF Tampa Graduate Theses
and Dissertations by an authorized administrator of Digital Commons @ University of South Florida. For more
information, please contact digitalcommons@usf.edu.

https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/etd
https://digitalcommons.usf.edu/grad_etd
https://digitalcommons.usf.edu/etd?utm_source=digitalcommons.usf.edu%2Fetd%2F7703&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/208?utm_source=digitalcommons.usf.edu%2Fetd%2F7703&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usf.edu

Statistical Analysis and Modeling of Cyber Security and Health Sciences

Nawa Raj Pokhrel

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
Department of Mathematics & Statistics
College of Arts and Sciences
University of South Florida

Major Professor: Chris P. Tsokos, Ph.D.
Kandethody M. Ramachandran, Ph.D.
Lu Lu, Ph.D.

Yuncheng You, Ph.D

Date of Approval:
May 17, 2018

Keywords: Software Vulnerability, ARIMA, Differential Equation, Operating System, SHEER

Copyright (©) 2018, Nawa Raj Pokhrel

Dedication

To my parents Kaladhar and Tulasi.
To my brother Keshav and sister-in-law Goma.
To my wife Kabita.

Acknowledgments

First and foremost, my deepest gratitude to my major Professor Chris P. Tsokos, whose
immeasurable advice, unflinching support, and continuous guidance are always my source of
inspiration. Without his guidance this dissertation would not have been possible. Words are

not enough to thank him.

I am also greatful to the members of my dissertation committee: Dr. Kanadethody M.
Ramachandran, Dr. Lu Lu, and Dr. Yuncheng You for their support and advice throughout
this process. I am thankful to Dr.Yicheng Tu for chairing the session. I would like to express
my sincere thanks to Dr. Netra khanal and Dr. Keshav Pokhrel for their vital contribution

in part of this dissertation.

I am indebted to Mahdi Goudarzi, Hansapani Sarasepa Rodrigo, Mohamed Abu Sheha, Freeh
Alenezi, Emmanuel A. Appiah, Sulav Malla and all my fellow graduate friends for their

constructive suggestions and critiques.

Finally, I would like to express my heartfelt thanks to my parents for manifold blessings and
my wife Kabita for support and encouragement. I would not have been able to accomplish

this feat without them.

List of Tables
List of Figures

Abstract . .

Chapter 1
1.1
1.2

1.3
1.4
1.5
Chapter 2
2.1
2.2

2.3
2.4

2.5
2.6
Chapter 3
3.1
3.2
3.3

3.4

3.5
Chapter 4
4.1
4.2
4.3

Table of Contents

Introduction
Background and Research Problem
Stochastic Model to Determine Overall Network Security Risk

1.2.1 Vulnerability Database

1.2.2 Introduction to Markov Chain
Predictive Model for Desktop Operating System
A Predictive Software Vulnerability Model using Differential Equation
Health Science : A Predictive Analytical Model for Stomach Cancer Data . . .
A Stochastic Predictive Model to Determine Overall Network Security Risk . .
Introduction
Background and Terminologies of Cybersecurity

2.2.1 Vulnerabilities o
2.2.2 Markovian Properties and Attacking Process
2.2.3 Attack Graphs
2.2.4 Common Vulnerability Scoring System(CVSS)

Cyber Security Analytical Framework
Model Representation

2.4.1 The Risk Based on Ranking
Network Environment:Illustration
Contributions e
Time Series Predictive Modeling of Desktop Operating System Vulnerabilities .
Introduction
Related Research
Data and Methodology

3.3.1 Autoregressive Integrated Moving Average Process (ARIMA) Model .
3.3.2 Artificial Neural Network
3.3.3 Support Vector Machine (SVM)
3.3.4 Analysis with ANN and € SV regression
Analysis e
3.4.1 Predictive Capability of Models

Contributions L
A Predictive Analytical Model for Vulnerability Discovery Process
Introduction
Modeling Approach
Results
4.3.1

4.4
4.5
Chapter 5
5.1
5.2
5.3
5.4
5.5
5.6
Chapter 6
6.1
6.2
6.3
References

4.3.2 Model Selection and Comparisons 60

Prediction 63
Contributions 65
Health Science : A Predictive Analytical Model for Stomach Cancer Data . . . 67
Introduction 67
Data Description L e 68
Modeling Approach 69
Model Diagnostic 71
Prediction e 72
Contributions oL 73
Future Research e 74
Integration of Software Vulnerability and Software Reliability 74
Redesigning the CVSS Framework, 75
Applying Power Law Process and Non-homogeneous Poisson Process 75
.. 76

Appendix A Base Score: Common Vulnerability Scoring System (CVSS)Version 2.0 . . . 82
Appendix B Base Metric Evaluation Score 83

ii

© 0 N O Ot ks W N =

—
o

11
12
13
14

List of Tables

Firewall rules e 20
Host vulnerabilities« . e 21
Risk association with each node 23

Descriptive statistics of vulnerability datasets: mac os, windows 7, and linux kernel os . 31

Output measurement criteria on testing data sets for eachos 41
List of best model selected for each oso 42
Forecasted vulnerabilities of mac os x, windows 7, and linux kernel os 44
Actual and forecasted vulnerability comparison of theos 45
Model comparison based on Akaike Information Criteria (AIC) 62
Predicted vulnerabilities using PKT model 63
Model diagnostics based on Shapiro Wilk goodness of fit test 64
SSE of predicted vulnerabilities 65
Cumulative: actual vs predicted tumor size (mm) 72

Exact: actual vs predicted tumor size (mm) 72

iii

© 00 N O Ut ke W N

NN N NN N NN N = e e s s e
O N O T ke W NN R, O O 00NN OOt Wy = O

List of Figures

Common vulnerability system for base metric calculation model
Previous models on software vulnerability 0 oL
Cyber security analytical framework0 0oL
An example of host access graph oL
Modified host access graph
A couple of nodes in host access graph L L
Flow chart to compute risk of overall network
Experimental topology e
Host access graph for experimental topology
Market share of desktop os based on netmarketshare data
Classification of desktop os e
Bird’s eye view of data clollecton and method selection via flow chart
Time series pattern of mac os X
Time series pattern of windows 70s Lo
Time series pattern of linux kernel os.
The architecture of the ANN model used foros
Overall monthly deviation and yearly pattern of mac os x and windows 7o0s
Overall monthly deviation and yearly pattern of linux kernelos
Original vulnerability vs. fitted vulnerabilities for macosxos
Original vulnerability vs. fitted vulnerabilities for linux kernel os
Original vulnerability vs. fitted vulnerabilities for windows 7os
Proposed vulnerability life cycle o
Existing and proposed models Lo
Classification of 08 L
Market share of 0s L
The monthly time series and cumulative quarterly scatter plot for three OS
Prediction with a 95% confidence band of mac os x: PKT
Prediction with a 95% confidence band of linux kernel: PKT

iv

29 Prediction with a 95% confidence band of windows 7: PKT 59

30 Model comparison of PKT with RL, RE, and AML for macosx 60
31 Model comparison of PKT with RL, RE, and AML for linux kernel 61
32 Model comparison of PKT with RL, RE, and AML for windows 7 61
33 Schematic diagram of stomach cancer patients with malignant and benign tumor size . . 69
34 Prediction with a 95% confidence band of white female patients 70
35a Standardized residual plot (left) Lo 71
35b Standardized QQ plot (right) 71
36 Software reliability vs. software vulnerability using Bayesian approach 74

Abstract

Being in the era of information technology, importance and applicability of analytical statistical
model an interdisciplinary setting in the modern statistics have increased significantly. Conceptu-
ally understanding the vulnerabilities in statistical perspective helps to develop the set of modern
statistical models and bridges the gap between cybersecurity and abstract statistical /mathemat-
ical knowledge. In this dissertation, our primary goal is to develop series of the strong statistical
model in software vulnerability in conjunction with Common Vulnerability Scoring System (CVSS)
framework. In nutshell, the overall research lies at the intersection of statistical modeling, cyberse-
curity, and data mining. Furthermore, we generalize the model of software vulnerability to health
science particularly in the stomach cancer data.

In the context of cybersecurity, we have applied the well-known Markovian process in the
combination of CVSS framework to determine the overall network security risk. The developed
model can be used to identify critical nodes in the host access graph where attackers may be
most likely to focus. Based on that information, a network administrator can make appropriate,
prioritized decisions for system patching. Further, a flexible risk ranking technique is described,
where the decisions made by an attacker can be adjusted using a bias factor. The model can be
generalized for use with complicated network environments.

We have further proposed a vulnerability analytic prediction model based on linear and non-
linear approaches via time series analysis. Using currently available data from National Vulnera-
bility Database (NVD) this study develops and present sets of predictive model by utilizing Auto
Regressive Moving Average (ARIMA), Artificial Neural Network (ANN), and Support Vector Ma-
chine (SVM) settings. The best model which provides the minimum error rate is selected for
prediction of future vulnerabilities.

In addition, we purpose a new philosophy of software vulnerability life cycle. It says that

vulnerability saturation is a local phenomenon, and it possesses an increasing cyclic behavior within

vi

the software vulnerability life cycle. Based on the new philosophy of software vulnerability life cycle,
we purpose new effective differential equation model to predict future software vulnerabilities by
utilizing the vulnerability dataset of three major OS: Windows 7, Linux Kernel, and Mac OS X.
The proposed analytical model is compared with existing models in terms of fitting and prediction
accuracy.

Finally, the predictive model not only applicable to predict future vulnerability but it can be
used in the various domain such as engineering, finance, business, health science, and among others.
For instance, we extended the idea on health science; to predict the malignant tumor size of stomach
cancer as a function of age based on the given historical data from Surveillance Epidemiology and

End Results (SEER).

vii

Chapter 1

Introduction

In today’s world, there is a tremendous amount of demand to protect an individual computer
or computer networks from unauthorized users. Almost all work in this domain is focused on
the particular aspect of the problem ignoring the holistic perspective thus systems are robust
to attack. The core logic behind the scene is, almost all cybersecurity problems are by nature
interdisciplinary. Very little has been done in the scientific and research community to incorporate
the cybersecurity problem in holistic perspective on interdisciplinary settings. We believe that
statistics as a discipline could thrive in cross disciplinary platform. To strengthen this idea, we
have breached the traditional academic boundaries and developed a series of statistical models to
address the problem quantitatively in the field of cybersecurity. In a nutshell, the overall research
lies at the intersection of statistical modeling, cybersecurity, and data mining. Furthermore, we
have generalized the model developed in software vulnerability to health science particularly in
stomach cancer data.

This dissertation consists of five complete chapters where the first four chapters are dedicated
to present customized and standard models with their application in the given subject area. The
methods we developed are not only applicable to cybersecurity domain but can be used in engineer-
ing products, health oriented systems, business and finance forecasting, among others. For instance,
in Chapter 5, the developed model in software vulnerability is generalized in health science.

This chapter is organized as follows: Section 1.1 discusses our background and research problems.
In Section 1.2, a model developed to compute overall security risk will be discussed. Section 1.3 will
provide the predictive modeling of desktop Operating System using linear and non linear approach.
Section 1.4 explores the differential equation model to predict the future vulnerability. Finally, the

model we develop in software vulnerability is generalized in health system on Section 1.5.

1.1 Background and Research Problem

Cyber attacks are considered daunting challenges to individuals, small to medium to large scale
companies/enterprises, educational institutions, governments, among others. Even if one uses so-
phisticated hardware, software, and high level of security measures, they are susceptible to attack.
In today’s world, none of the hardware, software, network architectures and devices are devel-
oped free of vulnerabilities. Vulnerability is simply the loophole that opens the door to exploit
the sensitive resources to unauthorized users. Those who are directly involved in accessing the re-
sources illegally are called hackers. In general depending on the complexity and size of the network,
Information Technology (IT) manager(s)/system administrator(s) are responsible to protect any
computer resources in an efficient way. There is always a tug of war between hackers and system
administrators. To implement the proper plan, system administrators must know their own system
weakness and behavior of the attackers. In a nutshell, to protect the resources, we should have a
complete idea of our own weakness and behavior of the attackers. These two dimensions are the
primary ingredients to protect the computer resources. This dissertation focuses on either of the

dimension.

The overall cost and severity of the problem in cyberattacks are skyrocketing almost daily. A
case in point is in 2017 National Vulnerability Database [1]; Flexera Software Vulnerability Report
[2] and CVE details [3] websites recorded 14,712 new vulnerabilities which is almost 60 % higher
than the previous year 2016. In the first four months of year 2018, a total of 4,393 vulnerabilities
were added. According to Cisco, the number of denial of service attacks flood the system server’s
with irrelevant/junk traffic globally by 172 %. They also predict the overall growth of such type
of activities by another two and a half times to 301 millions attacks by 2021. According to Cy-
bersecurity Ventures Report [4], cybercrime the total cost in the world is around 6 trillion dollars
annually by 2021. From the Yahoo hack almost 3 billion users were affected. In 2017 the Wanna
Cry ransomware attack alone, spread over 150 countries and damages were around $4 billion. Not
only the numbers of attacks but also the magnitude/severity of attacks is on the rise as well. Cyber-
attacks are progressively disastrous and trget the broader area even from politics to health sciences.
Obama’s administration proposed a $19 billion budget for cybersecurity. In the presidential cam-
paign, Hillary’s personal emails became front page news. In May 2017, Trump signed an executive
order to improve the existing cybersecurity internal and external threats. Spending that amount

of money from a high level indicates an acknowledgment to safeguards the nations digital assets

and to minimize the damages and losses.

In recent days, online services have become so popular with consumers and businesses alike. On
the other hand, hacking is more easier than ever in a sense that more accessible technology is
available to everyone. The internet makes it more convenient for world but at the same time it
exposes their users to new threats.

One of the prominent concerns is the entire nature of the business process has completely changed
in the digital age. In almost all cases, technology is not considered to be a supplemental aspect of
business operation rather assets of the company solely depends on their computer networks as their
core operations. For instance, the world’s valuable companies from Facebook to Amazon to Uber
to Ebay and several other companies’ core business operations depend upon computer networks.
This leads to a high level of investment to protect the core computer network to run the business
efficiently and effectively.

It is worth mentioning here that applying scientific methodology and integration of knowledge
of cybersecurity, statistical modeling, and data mining should be of major priority. Looking at the
vulnerabilities in statistical perspective and analyzing the vulnerabilitiy data to predict the future
behavior would play a crucial role in the computer security decision making process. Thus, our
objective is to develop an innovative model in the vulnerability analysis and make a contribution

for further development of this area.

1.2 Stochastic Model to Determine Overall Network Security Risk

The primary purpose of this Chapter is to develop the analytical statistical model to determine the
overall network security risk using Markovian process in conjunction with Common Vulnerability
Scoring System (CVSS) frame work. Unlike our approach which is used to determine the overall risk
of the computer network, several studies tackled the network security problem but from different
perspectives. A recent study [5] introduced simulation based study using Markovian process to
develop security matrices.. Reference [6] employs the Markov property to rank each node in the
security attack model. Cynthia and Laura [7] analyzed the risk to a specific network based on the
attack paths that have high probability of successful attacks. Alternatively, reference [8] presented a
quantitative approach to evaluate a risk based on system architecture and lists of the vulnerabilities
associated with each component. Another similar recent work [9] presented a ranking scheme for
the state of an attack graph that determines the probabilities of attackers reaching the states of

the attack graph.

Reference [10] developed the stochastic model in conjunction with vulnerability life cycle. Condi-
tional risk assessment technique was developed with respect to the known vulnerabilities. Similarly,
[11] presented a model and methodology for security risk analysis of enterprise networks using prob-
abilistic attack graph. The novelty of [12] this work comparing to the previous ones was that it
adopted multi-agents technology in the risk assessment process and algorithm to compute the
different risk indexes.

We purpose a novel model to determine overall network security risk based on exploitability and
impact sub-score along with skills and expertise of the attackers. Utilizing firewall rules, vulner-
abilities contained on each host, and services running on each host, an attack graph is developed
called host access graph. Using Markovian random walk, risks are prioritized and the sum of the

risk associated with each node makes the total security risk present in computer network.

1.2.1 Vulnerability Database

Our study on series of vulnerability analytical models in each chapter is based on available data. The
most commonly used and best available data source is National Vulnerability Database (NVD) [1].
NVD, run by the U.S. Department of Commerce’s National Institute of Standards and Technology,
builds off the catalog of “Common Vulnerabilities and Exposures”(CVEs) maintained by non profit
Mitre Corp. NVD is based on the Common Vulnerability Scoring System (CVSS) [13]. CVSS is the
open framework that provides the quantitative scores representing the overall severity and risk of
the known vulnerabilities. It is maintained by the Forum of Incident Response Team (FIRST)
[14]. A CVSS score is on the scale of 0 to 10 and consists of three major metrics group: base,
temporal and environmental as mentioned in Figure 1. Vulnerabilities with the base score range
from 0-3.9 is considered Low, vulnerability, 4.0-6.9 as Medium, and 7.0-10 as High. The base score
is computed using two sub-scores; Exploitability sub — score and Impact sub — score using
standard expression mentioned in Figure. In Chapter 2, two sub-scores (Exploitability, Impact) are
the fundamental quantitative value for our analysis. Furthermore, in Chapters 3 and 4, base score
is employed. Further explanation of the listed equations on the schematic diagram is explained in

the Appendix.

1.2.2 Introduction to Markov Chain

Mathematically, a Markov chain can be defined as a discrete stochastic process [32]. More specif-

ically let S be a set of states (in the present study S is finite, we can think of it as nodes in host

CVSS Metric
1

v v v

Base Temporal Environmental

Base Score = (0.6 impact (v)) + 0.4 e (v) - 1.5) . f (impact)

Base
|
v ¥
Exploitability Impact
I [
v v v v v v
Access Vector Access complexity Authentication Confidentiality Integrity Availability
(AU) (AC) (AV) © (1) (GY)
Exploitability sub-score e (v) = 20xAVxACxAU Impact (v) =10.41x [1-(1-C)] 1-1] [1-A]

Figure 1.: Common vulnerability system for base metric calculation model

access graph). A Markov chain is a sequence of random variables Xy, X1, Xo,........ ,Xn € S that

satisfies the “Markovian property”, that is,
P[Xn+1:y | X():i]j‘o,Xl:l'l...,Xn:{l,‘n]:P[XnJrl:y | Xn:.’l,‘n]

We make the assumption that transition probabilities do not depend on time. The transition

probability (Py,,) defined as follows.
P(XaY):P[XnH:y | Xn:x], for all n.

The transition probability matrix of P, is N x N matrix whose (x,y) entry should satisfied the

following properties.
0<Py<1,1<z,y<N

and

i Poy=1,1<z<N.

If any matrix satisfies the above two conditions then it is considered as transition matrix for the

Markov Chain. In our analysis we have implemented discrete Markovian process.

__| Vulnerability Scrying
Approach

— Text Mining Approach

Code Characteristics ==

— Empirical Study

L Component
Dependency Graph
. . Vulnerability
A _(Forecasting Models —
AML (different
version)

Rescorla Linear

Statistical Density ==

- Rescorla Exponential

Andreson
Thermodynamic

Figure 2.: Previous models on software vulnerability

1.3 Predictive Model for Desktop Operating System

The primary purpose of this chapter is to develop the time series predictive model to predict the
future vulnerabilities using linear and non-linear techniques. In linear setting, we have employed
Auto-Regressive Moving Average (ARIMA). On the other hand, Support Vector Machine (SVM)
and Artificial Neural Networks (ANN) methods are implemented in a non-linear setting. We have
selected three major Operating Systems, namely, Windows 7, Mac OS, and Linux kernel by using
the listed vulnerabilities on National Vulnerability Database (NVD). As far as we know, this is
the first study on the development of vulnerability prediction model using time series analysis by
incorporating non-linear behavior. There are few existing models that have been developed in the
scientific and research community with predefined assumptions and the given framework. Broadly
speaking, previous research on this domain can be explained in schematic network diagram 2.
Code characteristics models rely on finding out the relationship between attributes of the code
with its corresponding vulnerabilities. Rahimi and Zargham, [15] proposed a vulnerability scrying
approach, that is, a vulnerability discovery prediction method based on code properties and quality.

S. Riccardo et. al. [16] proposed a machine learning approach to predict which components of the

software applications contain security vulnerabilities using a text mining approach. This approach
identified a series of vulnerable terms contained in its source code and was used to compute its
frequency. Based on the frequency, they proceeded to forecast its future. Shin et. al. [17] performed
an empirical study with traditional metrics of complexity, code churn, and faulty history using a
large open source project to determine whether fault prediction models can be used for vulnerability
prediction models . Nguyen and Tran, [18] proposed a component dependency graph to predict
vulnerable components using machine learning methodology. All the mentioned approaches requires
source code to build the models; source code of the OS is dynamic in nature and it is not available
to the public in case of proprietary OS.

Statistical density based forecasting models use historical data to predict the future. To fulfill this
objective, various kinds of models have been developed, mainly Alhazmi-Malaiya Logistic (AML)
with different versions, [19] Poisson Log Arithmetic Model, [20], Rescorla Exponential Models
[21], and Andersons Thermodynamics Model [22]. All the developed models are based on their
underlying assumptions and defined framework and none of them considers the non linear behavior
of the signal.

For code characteristics based models, we need a source code of the given software to develop
statistical models. In reality, source code of the commercial OS is not available to the public. On
the other hand, statistic density based models that have been developed are based on a series of
underlying assumptions and criteria may or may not be applicable. Because of such limitations
that exist on both categories, we should identify an alternative approach to forecast the future
vulnerability of an OS by using time series analysis. Our model considers trend, level, and sea-
sonality components if they exists. Similarly, to analyze the non-linear behavior of the number of

vulnerabilities, we implemented ANN and SVM methodology.

1.4 A Predictive Software Vulnerability Model using Differential Equation

In this chapter, we have extended the vulnerability forecasting model to a more customized model
using differential equations. Before developing the model, we looked deeply at the nature of vul-
nerability during the life cycle of the software because vulnerabilities are discovered throughout the
entire life cycle of the software. We have developed the new philosophy of vulnerability life cycle
and based on that idea, we have developed a new time based non linear differential equation model.
Our proposed model is based on the fact that the vulnerability saturation is a local phenomenon,

and it possesses an increasing cyclic behavior within the software vulnerability life cycle. The daily

vulnerability data is extracted from National Vulnerability Database (NVD) and is designed to
obtain cumulative quarterly dataset. We purpose the strong statistical data driven model that
best fits the available data, and projects future vulnerabilities along with current and future trends
based on historical data. We even compare our model with the existing models and our model

stands out best in terms of fitting and prediction capabilities.

1.5 Health Science : A Predictive Analytical Model for Stomach Cancer Data

In this chapter, we have generalized the differential equation model in stomach cancer data. The
predictive model is not only applicable to software vulnerability but it can be used in various
domains such as engineering, finance, business, health science, among others. For instance, we
have implemented the idea on health science, to predict the malignant tumor size of stomach
cancer as a function of age, based on the given historical data. Our analysis and modeling is based
on the data obtained from Surveillance Epidemiology and End Results (SEER) program of the
United States.

Chapter 2
A Stochastic Predictive Model to Determine Overall Network Security Risk

In this chapter, we propose a stochastic model to determine the overall network security risk
using markovian process in conjunction with Common Vulnerability Scoring System (CVSS). By
constructing host access graph with the help of provided firewall rules, list of the nodes with its
rank is prepared via ranking algorithm. Finally, summing up the risk associated with each node
yields total risk present in the given network. One article is published [23] based on findings of this
Chapter.

The rest of this study is organized as follows: Section 2.1 describes the overall introduction to
the subject area. In Section 2.2, major components and statistical methodology employed will be
discussed. Section 2.3 will provide the analytical framework of our study. Section 2.5 explores the
implementation of our idea in specific network environment. Finally, contribution is presented in

Section 2.6.

2.1 Introduction

Computer networks are undoubtedly vulnerable no matter what level of hardware, software or a
combination of both types of security parameters are incorporated. As long as the network servers
provide services on different host servers, they depend on the server software that may have security
holes which makes them susceptible to malicious attacks. To detect and/or prevent the network
accessible resources from suspicious attacks, various commercial Intrusion Detection Systems (IDSs)
[24] /Prevention Systems are available in the market. These intrusion detection/prevention based
tools provides some sort of a signal that alerts the network administrator and provides them a
partial picture of the network [25]. One of the most important challenges on today’s networks is to
develop the mechanism to aggregate the security risk of all systems in a network to evaluate the
overall security risk.

In order to evaluate the security risk of a large scale enterprise, an administrator must consider not

only single vulnerability exploit but also the multi-stage and the multi-host vulnerability attack used

by the attackers. To incorporate this fact, an attack graph is built to find out the logical relationship
between multiple exploits. However, when size and complexity of the network increases, two major
problems occur. First, the attack graph grows exponentially when the size of the network and
algorithm complexity increase. Secondly, comprehending the information conveyed by the graph
becomes difficult. Therefore, the attack graph that addresses the issues mentioned earlier were
chosen and we will explain further in the next section.

Very little has been done in scientific and research community to develop statistical model that
quantify the overall network security risk. Most of the work focuses on qualitative and subjective
aspect of networks without having formal statistical model. To get rid of this problem, we introduce
the statistical model that uses Markov chains in conjunction with CVSS framework metrics to
analyze risks associated with structures of various networks. The model can be used to identify
critical nodes in the host access graph where attackers may be most likely to focus. Based on
that information, a network administrator can make appropriate, prioritized decisions for system
patching. Further, a flexible risk ranking technique is described, where the decisions made by an
attacker can be adjusted using a bias factor. The model can be generalized for use with complicated
network environments.

In the present study, we are proposing a stochastic model for the security risk evaluation for
the entire network based on the Exploitability sub — score and Impact sub — score. We are
considering a realistic network topology having three host servers and each host consists of one
vulnerability. Based on the network architecture and given firewall rules, a host access graph
is constructed. From the host access graph one state transition probability matrix is computed
by utilizing Exploitability sub — score and Impact sub — score. By using the Markovian
random walk, we can prioritize the risk associated with each node via ranking.

Finally, summing up the risk associated with all the nodes present in the network, we determine
the overall network security risk. This quantitative value can be taken as a security metric to
determine the risk of an entire network. Finally, the schematic network topology in our study
represents a typical security system that is in operation. Thus, our proposed statistical model and

methodology can be applied to a specific security system that is in place for a given company.

2.2 Background and Terminologies of Cybersecurity

In this section, we have defined some of the basic terminology related with cyber security. We also

explain the basic idea of the Markov chain process that is implemented to develop the stochastic

10

model to achieve our objective. Figure 1 provides the schematic presentation of the CVSS frame-
work, and vividly reveals the holistic idea to compute the base score along with Exploitability
sub — score and Impact sub — score.These two sub-scores (Exploitability, Impact) are the fun-

damental quantitative value for our analysis.

2.2.1 Vulnerabilities

A vulnerability is a flaw that exists in computer resources or control that can be exploited by
one or more threats. A software vulnerability [25] is an instance of an error in the specification,
development, or configuration of software such that its execution can violate the security policy.
Attackers normally use the known vulnerabilities which are listed publicly on National Vulnerability
Database (NVD) to penetrate the system. Sometimes attackers may use a vulnerability that has
not been disclosed publicly which is called zero day vulnerability. There is almost no defense against
a zero day attack [26]. Zero day vulnerability remains unknown to vendors; thus information about
the new vulnerabilities gives the attackers a free pass to attack any target host. The zero day

attack has not been used in this study.

2.2.2 Markovian Properties and Attacking Process

A Markov chain is regarded as one of the best modeling techniques that has been used effectively in
various fields such as reliability analysis [28], performance analysis, dependability analysis [29, 30],
and cybersecurity analysis [31], among others. We will model the host access attack graph described
in the previous subsection using a Markov chain with the real behavior of the attacker in conjunction
with the Markovian properties.

The Markovian properties reveal the fact that the transitions between states are memoryless;
transitioning to the next step depends only on the current state only and not on any of the other
previous states. We can correlate this property with the attacker’s behavior in a sense that an
attacker needs to exploit several nodes before reaching the goal node. When the attacker starts
attacking an immediate node to reach the goal node, there are many nodes available before reaching
the goal node called intermediate node. When an attacker reaches any intermediate node, there
is no memory of previous node. The attacker launches further attacks until the goal node is found.
To advance the attack, the attacker should move from one intermediate node to another/several
intermediate node/s. In the present study, we have assumed that selection of the best intermediate

node depends on three parameters, namely Exploitability sub — score, Impact sub — score

11

and an individual skill of the attacker called Bias factor.
Without loss of generality, transition states are independent of time. Mathematically, there exists

some transition probability matrix, P(x,y) such that
P(Xay):P[Xn—f—l:y | anx], for all n.

We can create a new set of states Sx[n], having a different set of states associated with each
timestep. In the present study, P(x,y) represents the transition probability matrix. To simulate the
Markov chain, a stochastic transition probability matrix P and the initial probability distribution
is required. In the present study, initial risk associated with each nodes in the host access graph is
considered as initial probability distribution which will be explained further in section 4. Once we
have the stochastic matrix P and the initial risk, then utilizing the basic properties of Markovian

process, we can determine the risk of the entire network.

2.2.3 Attack Graphs

Attackers usually penetrate any type of computer network via a chain of exploits where each exploit
in the chain creates the foundation for upcoming exploits. A combination of such exploits make the
chain called attack path; a collection of such attack paths develop the attack graph. An attack graph
is a succinct representation of all paths through a system that ends in a state where an intruder
has successfully achieved its goal [26]. There are many algorithms that have been developed in
the scientific and research community to construct the attack graphs. However, it is very difficult
to analyze the network via attack graph when a number of nodes and complexity of the network
increase. As the scalability and complexity of the network increase exponentially, the computation
cost to create the attack graph increases. As a result, it is difficult to interpret the attack graph
precisely. On the other hand, most of the attack graphs are designed for a single target, and
can not be used to evaluate the overall security of the networks with several targets. To address
these striking problems Anming Xie, Zhuhua Cai, Cong Tang, Jianbin Hu, and Zhong Chen [27]
developed a novel approach to generate and describe the attack graph. They developed a two layer
attack graph, where the upper layer is a host access graph and the lower layer is composed of some
host pair attack graphs. The lower level describes all the detailed attack scenarios between each
host pair, and the upper level shows the direct network access relationship between each host pair
by ignoring detailed information. In this study our stochastic model is based on upper layer attack

graphs; that is, host access graphs have been utilized.

12

2.2.4 Common Vulnerability Scoring System(CVSS)

CVSS [3] is the open framework that provides the quantitative scores representing the overall sever-
ity and risk of the known vulnerabilities. It is maintained by the Forum of Incident Response
Team (FIRST) [14]. A CVSS score is on the scale of 0 to 10 and consists of three major met-
rics group: base, temporal and environmental as mentioned in Figure 1. Vulnerabilities with
the base score range from 0-3.9 is considered Low vulnerability, 4.0-6.9 as Medium, and 7.0-10
as High. The base score is computed using two sub-scores; Exploitability sub — score and
Impact sub — score using standard expression mentioned in Figure 1. These two sub-scores are

the fundamental quantitative value for our analysis.

2.3 Cyber Security Analytical Framework

The schematic network given below, Figure 1, shows a bird’s eye view of our proposed cyber
security model. The most important component of our model is the attack graph. It is constructed
by considering the input as network topology, services running on each host, attack rules defined
on firewalls, and vulnerabilities associated with each host running different services.

For simplicity limited numbers of nodes are present in our network illustration and we have
developed a host access graph manually. However, as the size and complexity of the network
increase, we can use any kind of attack graph generation tools [33] to construct the intended attack
graph of interest. Nodes present on the attack graph represent the host. Each host runs different

kinds of services and there may exist various vulnerabilities. CVSS assigns severity scores for each

Apply CVSS Framework (Exploitability Sub-
Network DB score and Impact sub-score) on directed edges
of host access attack graph

Vulnerability ¥* ,; Construct Probabilistic Attack Graph
Assessment . ‘
) - |
1 T Apply Stochastics Markov Model
Host Access
Attack Graph 1
Vulnerability Service
DB Repository Prioritize the risk of individual nodes and

compute risk of entire network

Figure 3.: Cyber security analytical framework

13

vulnerability. The score is computed based on the standard expressions. The standard expression
depends on several matrices that provide a quantitative score to approximate ease and impact of
exploit. In the present study, we have applied both scores to determine whether it is beneficial
to move from one node to another node from the attacker’s perspective.These two scores, that is,
Exploitability sub-score and Impact sub-score, are combined to provide the basis of assigning the
edges of attack graphs to represent the values of the probability distribution. This probability
represents the possibility of a vulnerability to be exploited by an attacker. While implementing our
stochastic model, the behavior of the attacker is another concern. In this study, we assume that the
attacker will choose the vulnerability that maximizes the chances of succeeding in compromising
the goal state. Due to any reason, if the attacker terminates attacking, then the attacker will move
to the initial state. Finally, utilizing the properties of Markov chain, the risk of the individual node
is computed. Nodes are prioritized based on computed risk. Then, we sum the risks of all the

nodes that will give us the total security risk present in the network.

2.4 Model Representation

The central component of the proposed stochastic model exclusively depends on the host access
graph mentioned in the previous section. Before delving into the modeling approach, let us formally
explain the host access graph as shown in Figure 4.

In Figure 4 below, S;, i=1, 2, 3,......... g are host nodes and S, is a goal node. A node represents
a host in the host access graph; thus, the number of nodes is equal to the number of hosts in the
network. Similarly, directed edges between two nodes represent the access relationship between the
corresponding two hosts so that there is only one directed edge from one node to another at most.
Hence, there are no multiple edges in the graph, and our proposed model retains only the highest
access achieved between the hosts, since higher levels of access to the destination host means more
powerful attacks are achieved. A directed solid edge lines from host S; to host Sy in Figure 4
represents the access available on Sy from S7. Similarly, dashed lines from host S to host S, states
that there are other intermediate nodes present in between these nodes and the same explanation
is applicable to other hosts.

Once the host access graph is constructed, then our basic foundation is developed for further
analysis. To make this graph more applicable and realistic, we have modified it by adding one ad-
ditional dummy node to represent the attacker. The attacker starts exploiting the immediate node

by gaining a high level of privileges. In reality, even if an attacker is equipped with sophisticated

14

S1

Sy Ss
\ ”
1]
l\]
\\ /,

Figure 4.: An example of host access graph

tools and a high level of experience, there is no guarantee that he/she will reach the goal node.
This may happen due to reaching a level of difficulty or being discovered by an intrusion response

team or any type of unusual circumstance.

Whenever the attacker stops launching attacks at any point due to any reason, then he/she goes
back to the initial state from where the attacking began. To incorporate this attack scenario, a
dummy node A is introduced. For any node S;, we define the edge (S;, A). This is demonstrated
by Figure 5 below, where a node A represents an attacker. There is a directed solid edge from every
node to the attacker node A, this implies that when the attacker gives up exploiting the node further
due to any reason, again he/she goes back to the initial state and proceeds to search for alternative

options. Similarly, the meaning of dashed lines are similar to Figure 4 as mentioned before. In

(o)

Sz

— -
~ Cd
\\ /
1 1
1

~ /
N.’ Ve

L d
Sy J*

3

Figure 5.: Modified host access graph

15

our proposed model, the attacker starts attacking the immediate node and keeps on launching
attacks until it reaches the goal node. One big question that arises here is "what happens if the
attacker is encountered with the multiple nodes to reach the goal node and on what
basis the attacker decides to select the best node from the available alternatives.” We
have assumed that the attacker’s decision solely depends on two parameters. The first parameter
is Exploitability; it is all about the level of complexity involved to attack the vulnerable node.
The second parameter deals with Impact factor, which means how much impact can an attacker
make when a vulnerable node is exploited. CVSS provides numerical scores scale of (0,10) where 0
signifies the most secure and 10 signifies the least secure of the mentioned parameters. These two

parameters are conceptually expressed by,

ExploitabilityBenefit = f(Exploitability, Impact) (2.1)

In Equation 2.1, we have coined the new term ExploitabilityBenefit. It is defined as the
function of Exploitability and Impact factor. Using these values an attacker determines the
level of benefit to change from one to another node. To clarify this idea, let us take any two nodes
from the host access graph as shown below, by Figure 6, where S; and S are node j and node k,
respectively with V; and V}, being the corresponding vulnerabilities.

In Figure 6, there is a directed edge from node j to node k. An attacker makes the decision whether
to move from node j to node k based on the ExploitabilityBenefit value. Moreover, making a
final decision to move from one node to another node not only depends on Exploitability and
Impact factor but also depends on the skills and expertise of the attacker. This is the subjective
factor and varies from individual to individual.

In reality, it is an indispensable factor to make the attacking decision. We have represented this
parameter in our model and is termed a Bias factor, Bias in a sense that its value varies from
attacker to attacker. Incorporating all three mentioned parameters (Exploitability, Impact, and

Bias), Equation 2.1 is further extended mathematically to,

ajir = BExp(vi) + (1 — B)Impact(vi) 0<pB<1 (2.2)

In the above Equation 2.2, aj; is the ExploitabilityBenefit score to move from the node j to

node k. Similarly, Exp(vy) is a function that measures the level of difficulty in exploiting the node

16

S1 S

) EXploitabilityBenefil —
(Vi) P y (Vk)

Figure 6.: A couple of nodes in host access graph

k. The quantitative value that determines the level of difficulty scale of 0 to 10 is provided by
CVSS. On the other hand, Impact(vy) is a function that measures the potential damages or losses
that occur due to a successful exploitation of node k and its quantitative score is provided by CVSS.
The possibility that a successful exploitation and damages/losses occur depends on experience and
skills of the attacker. To incorporate this fact, we introduce a Bias factor 3; its value ranges from
0 to 1 to indicate the level of experience and skills that the attacker possesses. When we combine
Exploitability and Impact score with their corresponding Bias factor, a final weighted value is
obtained to move from the node j to node k. To move the attacker from the initial node to the goal
node, he/she needs to penetrate several intermediate nodes. Let us assume j is the initial node and
g is the goal node and consists of three intermediate nodes namely k, 1, and m. One possibility is
that the attacker reaches the goal node by exploiting node j to node k, node k to node 1, node 1 to
node m, and finally node m to node g. To materialize this idea in mathematical notion, we need

to construct the weighted adjacency matrix A as shown below.

apo Qapi1 °** Qog °°** QAon

aio 0 v alg cee Qin
A =

ano Qnp1 *°° ang . e 0

Each element of the adjacency matrix is computed using Equation 2.2. Diagonal values of the
adjacency matrix are all zero because no cost is involved to move from the current node to the
node itself. Elements of the matrix A are not normalized, thus, the non normalized values are
converted into probabilities using Equation 2.3. This equation reveals the fact that in each step

the attacker goes from node j to k with probability given by

_ AG,k)
Zl A(Ja l)

17

Djk (2.3)

Writing Equation 2.3 in matrix form we have,
P=DA (2.4)

Where, A is the weighted adjacency matrix. P is the transition matrix that provides the transition
probability that the attacker moves from one state to another state and D is the diagonal matrix
computed using Equation 2.5 below,
1 p .
= ifj=k
Dj, = 2 AGD (2.5)

0 Otherwise

Finally, we have constructed the transition matrix (using Equation 2.4) representing transitions

probability that an attacker moves from one state to another state, that is, from state j to state k.

2.4.1 The Risk Based on Ranking

Consider an attacker starts attacking from the initial node to the goal node. The attacker must
obtain a user level or root level of privilege on the intermediate node to advance the attack further
to reach to the goal node. In reality the attacker should try to obtain the highest level of privilege.
Host access graphs are created based on the philosophy of gaining high level of privilege. Nodes of
the host access graph are treated as OR nodes, which can be satisfied if any of the child node is
true. The risk analysis is based on the relative rank value for every node of the host access graph.
R is the risk vector and its initial risk value is computed based on the number of hosts present in
the host access graph. Suppose there exist N nodes in the host access graph; then simply set all the
node ranks equal to 1/N. This initial risk is first injected by the starting node of an attacker. This
risk value flows level by level until convergence. The complete risk ranking algorithm is described
by the schematic diagram given below by Figure 7.

The risk value of 7 for a node k depends upon the rank of its parents. The risk value of the
node set by the initial node represents the starting node of the attacker. When the ranking process
is started then intermediate risk value is computed via iteration. The intermediate value will flow
level by level until a steady state is achieved. Mathematically, suppose 7y is the risk of node k

given in the host access graph; then the risk of node k is computed using Equation 2.6, given by,

Tk =) TkDjk (2.6)

18

Suppose, R = (r1, ra2, T3, ,r>) is the risk vector, where r; is the rank of node j. Equation
2.6 is further extended to Equation 2.7 as shown below. The risk values are normalized, where
0 <rp<1,foralljand > rr = 1. Thus, written in matrix form the risk vector R is given by R

times the probability transition matrix P, that is,
R=RP (2.7)

The value of R in Equation 2.7 is recursive and must be iteratively calculated until convergence,

which is expressed by Equation 2.8, that is,
R' = R7'P (2.8)

The attacking process is based on the Markovian random walk, that is, an essential condition for
the iterative computation to converge [34]. The probability distribution of risk analysis of the
host access graph after the attacker follows one link is Ry=RP, where R is the risk vector and
P is the one step transition probability matrix identified by Equation 2.4. Similarly, after two
links the probability distribution is Re=R;P. Assuming this iteration converges to a steady state

probability, then we have Rt = R!~!'P, where R? is an eigenvector of P.

Let R = (r1, 2, M3yecececnceecncnnnnnes ,rz) be the risk associated with each node where z
Step 1: represents number of nodes present in a host access graph.

!

As in the initial state, set all the nodes’ risk equal to 1/N where N is the number of
nodes present in host access graph.

Iterate the equation R"= R™! x P until convergence.

Step 2:

Step 3:
Step 4: Determine the risk of the each node present in the host access graph.
Step 5: Prioritize the node based on the risk value.

l

Compute the total risk of the network by combining the risk associated with each
Step 6 individual node.

Figure 7.: Flow chart to compute risk of overall network

19

[

i

Attacker Internet IF:Internal Firewall

EF:External Firewall

F3

Figure 8.: Experimental topology

2.5 Network Environment:Illustration

To validate our proposed stochastic model, we have modified the network scenario [35, 36] to
make it more realistic and practical as shown in Figure 8. In this network, there are three target
hosts. These are publicly accessible Web Server (denoted by WS), a publicly accessible File
Server(denoted by FS), and Backend Database Server (denoted by BEDS).

An attacker is located outside of the network. The packet transmission to the target host is
controlled via two firewalls: External Firewall(EF) and Internal Firewall(IF). EF allows any
packet to be transmitted to WS and FS from outside of the network but no one can access the
resources of BEDS from outside of the network directly. IF manages the transmission of the packet
within the internal network.

The firewall rules are created to filter inbound and outbound traffic. A summary of firewall rules
of the network scenario are shown in Table 1 below.

We have assumed that each of the target hosts consists of a single vulnerability. The attacker
utilizes the vulnerability score to compromise the host. These are shown below by Table 2 along

with its Exploitability sub-score and Impact sub-score taken from NVD.

Table 1: Firewall rules

Source Destination Service Action

All WS http Allow
All WS ftp Allow
All FS ftp Allow
WS BEDS oracle Allow
FS BEDS ftp Allow
All All All Deny

20

Based on the experimental topology with its firewall rules and vulnerability associated with a
respective host, we have generated a host access graph as shown below by Figure 9. To simplify the
explanation, we have denoted the attacker, Web Server, File Server, and Backend Database Server
as Mg, M1, M2, and M3 respectively. The edges from all the nodes to the attacker node Mg are
omitted to view the graph more clearly.

When the process illustrated by Equation 2.2 is applied on the host access graph of the exper-
imental topology in the below Figure 9, we can obtain the weighted adjacency matrix as given
by.

0 82 9.3 0]
1 0 93 8.2
1 82 0 8.2

1 0 0 0

Note that the diagonal elements of the above weighted adjacency matrix are all zero in a sense
that practically no cost is involved to move from the current node to the same node. For the sake
of simplicity, we have assumed the value of 8 , the Biased factor to be 0.5. When the attacker
stops attacking further due to any unusual circumstances, then it is certain that he/she will return

to the initial node.

Table 2: Host vulnerabilities

Host Vulnerability CVE-ID Score Impact Sub-Score Exploitability Sub_Score
WS Apache Chunked Code CVE-2002-0392 7.5 6.4 10
FS Wuftpd Sockprintf CVE-2003-1327 9.3 10 8.6

BEDS Oracle Tns Listener CVE-2012-1675 7.5 6.4 10

Hence, elements of the first column of the weighted adjacency matrix is 1, that is, weights of
the edges from all host nodes to the attacker’s node(My) is considered as 1, a sure event. The
rest of all the elements of the weighted adjacency matrix are calculated using Equation 2.2. For
example, the entry of the first row and second column is (0.5 X 10 + 0.5 X 6.4)= 8.2. This is
the weighted value that the attacker uses to move from the node Mg to node M;. The same
explanation is applicable for the rest of the elements of the weighted adjacency matrix. We have
used the application software package "R” for all required calculations.

Once we have the weighted adjacency matrix A, then we need to convert its elements into

respective probabilities; thus, it requires constructing a diagonal matrix. The entries of the main

21

diagonal are obtained by using Equation 2.5 as shown below.

[0.05714 0 0 0|
0 0.05405 0 0
D =
0 0 0.05747 0
0 0 0 1]

An element of the first row and the first column of the diagonal matrix is 1/(8.249.3) is equivalent
to 0.05714. The same idea is used to compute the rest of all the elements. Utilizing weighted
adjacency matrix and the diagonal matrix computed as shown above, we have obtained a transition
matrix P below via Equation 2.4. Note that the extents of the first row second column is, 0.46857.
It is the transition probability of the attacker moving from node Mg to node M;y. As similar
explanation is applicable to the rest of the entries of the transition matrix P as shown below. Now,
the host access graph as shown by Figure 9 , consists of four nodes including the attacker’s node.
Based on our risk ranking algorithm explained in Figure 7, if we have four nodes then 1/4 = 0.25
is the initial risk of each node, hence the initial risk vector, R=(0.25, 0.25, 0.25, 0.25). Finally,
when the initial risk(R) and transition probability(P) are iteratively multiplied using Equation 2.8,

convergence is achieved by using the following values as listed in Table 3.

In Table 3, four nodes Mg, My, M2, and Mg are listed with their respective risk in terms of
numerical value. Mg is the dummy node added to the host access graph to represent the attacker

and is connected to every other nodes in the graph. An assumption of our ranking algorithm, initial

Attacker
(Mo)
WS — FS
(My) — (M2)
BEDS
(M3)

Figure 9.: Host access graph for experimental topology

22

risk of the all nodes are equal. Once the node is added to the graph and assigned the initial risk
then it’s final risk value is computed. As long as dummy node is considered we can ignore it’s value

from our analysis. Except My, rest of the nodes are actual nodes present in our network.

0 0.46857 0.5314 0
0.0540 0 0.5027 0.4432
0.0575 0.4712 0 0.4713

1 0 0 0

From the numerical value, we can conclude that node Mg is more risky than M; and Mjs, so
the vulnerability of the file server needs to be patched first before other nodes. The total sum of
the risk associated with the node My, Mo, and Mg becomes 0.74. This value can be used as a
security metric revealing the fact that this network is not very secure with respect to the given
vulnerabilities and access relationship among the servers, and hence appropriate action must be

implemented.

Table 3: Risk association with each node

Node Risk
M+ 0.245
Mo 0.262
Mg 0.231

2.6 Contributions

In this chapter, we have developed a stochastic model to determine overall network security risk.
The proposed model can be generalized to complicated network environment, however, the calcula-
tions are more complex but tractable. The proposed findings are based on a typical security system,
however, the modeling aspect and scientific methodology is applicable to a specific security system
that is in existence or it is required by a given enterprise. Our model findings can be useful for
the system administrator to determine the critical nodes present in thenetwork where the attacker
is most likely to visit. Here, we summarized our chapter contributions in terms of the following

points:

1. We were able to develop analytic model to determne overall network security risk using Marko-

vian process.

23

. We have developed the risk ranking algorithm using a Markovian random walk to prioritoze

the critical nodes based on quantative value.

. The risk ranking algorithm that we implemented is very flexible in a sense that we can model the
attacker in terms of skills and expertise by changing the Bias factor 8 in ExploitabilityBenefit

computation.

. Utilizing the outcome of the developed model network administrator can make the appropriate

decision about system patching with priorities of their respective software.

. Gaining in depth understanding of the risk and priority level of each host helps system ad-
ministrator to implement strategic decisions like deployment of security products and to design

network topologies.

. The subject model can be generalized to be used for a larger, complicated network environment,

however, the calculations are more complex but tractable.

24

Chapter 3

Time Series Predictive Modeling of Desktop Operating System Vulnerabilities

Unlike traditional ones, we propose a vulnerability analytic prediction model based on linear and
non-linear approaches via time series analysis. We have developed the models based on Auto Re-
gressive Moving Average (ARIMA), Artificial Neural Network (ANN), and Support Vector Machine
(SVM) settings. The best model which provides the minimum error rate is selected for prediction
of future vulnerabilities. Utilizing time series approach, this study has developed a predictive an-
alytic model for three popular Desktop Operating Systems, namely, Windows 7, Mac OS X, and
Linux Kernel by using their reported vulnerabilities on the National Vulnerability Database (NVD).
Based on these reported vulnerabilities, we predict ahead their behavior so that the OS companies
can make strategic and operational decisions like secure deployment of OS, facilitate backup provi-
sioning, disaster recovery, diversity planning, maintenance scheduling, etc. One article is published
[37] based on findings of this Chapter.

This chapter is organized as follows: Section 3.1 describes the overview of the subject area.
Section 3.2 explains the literature review . Section 3.3, explores the dataset and explanation of
major methods employed in our study. In Section 3.4 core analysis is presented. Finally in Section

3.5, we have pointed the list of the major contributions of this Chapter.

3.1 Introduction

A computer system is a collections of hardware and software components working together to
perform a well defined objective as a unified whole entity. One of the core software component of
the computer system is the Operating System (OS). An OS is a resource manager or a complex
interactive software system. It enables the higher level application software to communicate with its
hardware and memory. Vulnerabilities always exist on such software and causes tremendous security
risks to software companies, developers, and individual users. Once an attacker compromised an

Operating System via any vulnerability, this implies logically the whole computer system is in

25

Microsoft

thers (2%)
ux (5%)

le (8%)

Figure 10.: Market share of desktop os based on netmarketshare data

control of the hacker. If the computer system itself is in control of unauthorized people, very

significant consequences occur in tremendous financial loses, among other serious damages.

It is well known that the overall rate of the software vulnerabilities are extensively increasing
[38]. According to the Secunia Vulnerability Review 2015, the number has increase to 55% in the
past five years, and an 18% increase from 2013 to 2014 [39]. Similarly, Flexera Software reports
that a 39% increase in the five year trend, and a 2% increase from 2014 to 2015 [40]. A Microsoft
vulnerabilities study report in 2015 by Avecto Software Company reported that there is a significant
uplift in the total number of vulnerabilities users are exposed to, rising 52% a year to year basis
[41]. The documented facts and figures from the well established software institutions reveal the
current increasing trend in number of software vulnerabilities that offer a significant problem to the
industry. If these vulnerabilities are exploited and it is the objective of the hacker, we can realize
a tremendous amount of damages and losses to software developers, government institutions, giant
corporations, educational institutions, end users, and all possible stakeholders associated with this

domain.

Some recent analytical study and modeling of general vulnerabilities can be found in [23, 42] .
It is not possible to develop an OS software be free of vulnerabilities. On the contrary, we can
have a precise estimation of vulnerabilities along with its trends, level, and seasonality based on
the historical data. Once we have a better estimation of the number of vulnerabilities, as per our
demand with respect to the calendar time, it would assist us to be well prepared to manage the
forthcoming risks. At the same time, we can make diversity planning such as practical contingency
plans, provisioning the backup capabilities, allocation of human and financial resources effectively

and efficiently to achieve our mission, to be protected from the hackers.

Figure 10, gives a schematic view of the market share of Desktop OS worldwide, with Microsoft

dominating the subject industry. In broad classification in-terms of the type of OS, two Operating

26

Systems exist in the market as described in Figure. A proprietary Operating System which in
particularly conceptualizes, designs, and is sold by the specific company and do not share the

source code to the public.

Microsoft and Apple are the two giant companies developing proprietary desktop Operating
Systems. Similarly, Linux develops one of the non proprietary desktop Operating System referred
as Linux kernel. According to Netmarketshare up to July 2016, [43] almost 85% of the market share
of desktop Operating System is captured by the Microsoft company. Likewise, 8% of market share
is captured by the Apple company and approximately 5% from Linux kernel which is graphically
illustrated in Figure 10, above. To be more precise, out of 85% market coverage of all Microsoft’s
existing operating system, Windows 7 covers almost 48%. There is only one Operating System
developed by the Apple company that is Mac OS X. On the other hand Linux develops Linux
kernel and is considered as one of the oldest Operating System. This OS has minimum market
coverage according to Netmarketshare. From the reported facts and popularity among the users if
we aggregate the total market share of three desktop Operating System, they almost cover most of
the market share in the Desktop Environment. Thus, it is appropriate to select Windows 7, Mac
OS X, and Linux Kernel for our present study. These Operating Systems are the product of three

industry leaders, Microsoft, Apple, and Linux.

DESKTOP OS

NON PROPRIETARY

PROPRIETARY OS 0s

APPLE
MICROSOFT LINUX

| | |
l \ l MAC 0S X \ l \
WINDOWS 7 LINUX KERNEL

Figure 11.: Classification of desktop os

27

The schematic network of Desktop Operating Systems, given by Figure 11 above, displays a
layout of the process that our analytic study will follow. In the present study, we have devel-
oped analytic vulnerability forecasting models using time series analysis via linear and non-linear
approaches. The developed forecasting models completely capture the complicated linear and non-
linear interrelationship between past data points and extrapolate those relationship into the future.
We have implemented Autoregressive Integrated Moving Average (ARIMA) to incorporate the lin-
ear behavior of the signal in conjunction with trend, level and seasonality. To capture the non-linear
characteristics of the signal, we are using Artificial Neural Network (ANN) and Support Vector Ma-
chine (SVM). Finally, we have compared the final outcomes of linear and non-linear models that
best fit the actual data set. Based on the outcomes of the developed models, all the stakeholders
associated with Operating System will find our predictive models of significant importance. As a
software developer, one can evaluate and proceed to be confident with their strategic and opera-
tional policies. They can make the appropriate plans to allocate the human and financial resources
effectively and efficiently. Moreover, they can make streamline patch decisions about OS and can
utilize the outcomes for security testing procedure of the Operating System. Additionally, know-
ing the future vulnerabilities offer several benefit; one can identify the OS that are in need to be
restricted to reduce its vulnerability, the predictive vulnerability score can be used for competitive
market analysis, monitor the behavior of competing OS using the forecasted vulnerability etc. But
most importantly this information is extremely important to the IT manager for his/her strategic
planning to minimize the risk of chosen OS that will not be exploited. Finally, our results offer a
unique marketing strategy for purchasing the best OS available in the market place that will have

the best(smallest) future vulnerabilities.

3.2 Related Research

During the past years, scientists and researchers have given tremendous amounts of time and effort
to develop vulnerability forecasting models to predict the future vulnerabilities of OS taking into
consideration of their historical behavior with reported data. One can characterize these proposed
developed models into two categories.

a) Code Characteristics Based Models: These types of models are relying on finding out
the relationship between attributes of the code with its corresponding vulnerabilities. Rahimi and
Zargham, [15] proposed a vulnerability scrying approach, that is, a vulnerability discovery predic-

tion method based on code properties and quality. S. Riccardo et. al. [16] proposed a machine

28

learning approach to predict which components of the software applications contain security vul-
nerabilities using a text mining approach. This approach identified a series of vulnerable terms
contained in its source code and was used to compute its frequency. Based on the frequency, they
proceeded to forecast its future. Shin et. al. [17] performed an empirical study with traditional
metrics of complexity, code churn, and faulty history using a large open source project to deter-
mine whether fault prediction models can be used for vulnerability prediction models . Nguyen
and Tran, [18] proposed a component dependency graph to predict vulnerable components using
machine learning methodology . All the mentioned approaches requires source code to built the
models, source code of the OS is dynamic in nature and it is not available to public in case of

proprietary OS.

b) Statistical Density Based Models: In this category, vulnerability forecasting models are
based on historical data of the Operating System. To fulfill this objective, various kinds of models
have been developed, mainly Alhazmi-Malaiya Logistic(AML) with different versions, [19] Poissons
Log Arithmetic Model, [20], Rescorals Exponential Models [21], and Andresons Thermoodynamics
Model [22]. All the developed models are based on their underlying assumptions and defined

framework and none of them considers the non linear behavior of the signal.

For code characteristics based models, we need a source code of the given software to develop
statistical models. In reality, source code of the commercial OS is not available to the public. Each
and every day new vulnerability comes into existence and we need to handle new vulnerabilities,
thus the software should be continuously updated which implies that the source code changes with
respect to the life cycle of the software. A company always updates its software so as to fulfill the
demands of current or potential customers and hence we need to update the source code regularly.
Thus, processes of making source code is always dynamic in nature. One of the prominent question
that arises here is how can we forecast the future vulnerabilities by utilizing static source code?.
Knowing very well that no OS is with zero or no vulnerability at all and this will continue in the
future. On the other hand, considering statistic density based models, that have been developed
are based on a series of underlying assumptions and criteria that may or may not be applicable. For
instance, Rescola Linear Model(RL) attempts to fit vulnerability finding rates linearly with time
but in reality situations are different for nonlinear behaviours. Because of such limitations that exist
on both categories, we should identify an alternative approach to forecast the future vulnerability of
an OS by using time series analysis. Our model considers trend, level, and seasonality components

if they exists. Similarly, to analyze the non-linear behavior of the number of vulnerabilities, we

29

implemented ANN and SVM methodology.

3.3 Data and Methodology

We have directly extracted the vulnerability data from the National Vulnerability Database(NVD).
It is the U.S. governments repository that integrates publicly available vulnerability resources and
provides the common references to the industry resources. NVD is a product of the National
Institute of Standards and Technology (NIST), Computer Security Division and is sponsored by
the Department of Homeland Security’s National Cyber Security Division. It contains reported
vulnerabilities based on their Common Vulnerabilities and Exposures (CVE) identifier. The total
number of vulnerabilities with respect to time in monthly basis is the fundamental quantitative
values for our analysis and modeling. The schematic diagram in Figure 12 describes the holistic
idea about the datasets and methods employed in our study.

We have collected the vulnerabilities for each Operating System, the earliest available data from
NVD to December 2015 as training data, however, the whole one year, 2016 data is considered as
testing data to validate our model. We summed the total vulnerabilities over a monthly period.
Linear and non-linear time series methods are implementd to select the best model with minimum

forecasting error for each OS.

Collect the earliest available data to December 2016 of three major operating system
namely Windows 7, Mac OS X, and Linux Kernel from NVD.

}

Count the total numbers of vulnerabilities present on monthly basis for each OS.

!

Separate earliest available data to December 2015 as training datasets and the whole
Step 3: one year, 2016 is considered as testing datasets for each operating system to validate
the model.

Implement auto regressive moving average as linear time series method and support
Step 4 vector machine, artificial neural network as non-linear time series method for each
operating system to build the model by utilizing training data sets of respective OS.

!

Select the best model (linear or non-linear) that forecast the future vulnerabilities
(year 2016) with minimum forecasting error for each OS.

Step 1:

Step 2:

Step 5:

Figure 12.: Bird’s eye view of data clollecton and method selection via flow chart

30

The following Table 4, shows the summary of descriptive analysis of the training data. It includes
the total number of vulnerabilities on monthly basis, collection period, and monthly average. From
the table below, we can conclude that average number of vulnerabilities was highest in Mac OS X

followed by Linux kernel and Windows 7.

Table 4: Descriptive statistics of vulnerability datasets: mac os, windows 7, and linux kernel os

Operating System Collection Period Total Vulnerabilities Monthly Averages

Mac OS X Jan. 2002-Dec. 2015 1441 102.93

Windows 7 Jan. 2009-Dec. 2015 508 72.57

Linux Kernel Jan. 2001-Dec. 2015 1292 86.13
Total Jan. 2001-Dec. 2015 3241 261.68

Our analysis begins by investigating the total number of vulnerabilities accumulated by month
for three OS, Figure 13, below reveals the overall variation in total number of vulnerabilities of Mac
OS X. Inspecting Figure 13, the trend of the number of vulnerabilities of MAC OS X Operating
System, it is clearly visible that initially the number of vulnerabilities are low and fairly stable,
as a function of time. There is a high spike at the end of year 2015. In 2015 the number of
vulnerabilities are almost four times greater than in previous years. One of the prominent reason
is due to the rapid market share gains of Mac OS X which leads to growing attack surface for
sensitive data. There are several malicious malware introduced in 2015, for instance, XcodeGhost
which inserts malicious components in to the applications made with Xcode [44] (Apple’s official

tool for developing IOS and OS Apps).

75+

50~

Number of Vulnerabilities

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
Year

Figure 13.: Time series pattern of mac os x

31

304

204

Number of Vulnerabilities

2009 2010 2011 2012 2013 2014 2015 2016
Year

Figure 14.: Time series pattern of windows 7 os

Figure 14, shows the overall trend of the number of vulnerabilities of Windows 7 OS having a
very nonlinear behavior. Initially number of vulnerabilities seems low but after a short period of
time, we can see a significance increase and decrease of the number of vulnerabilities as a function
of time.

There is a very sharp increase in the number of vulnerabilities in 2012, 2014 and 2015 for win-
dows 7. ”Secunia Vulnerability Review 2014”, reported that the majority of the vulnerabilities on
Windows 7 comes from the non-Microsoft software like Google Chrome, Adobe Flash Player and
others rather than the major defect in OS itself. To incorporate the sharp random fluctuations of
the number of vulnerabilities in each year, we initially believe that non linear time series methods
is the suitable method to build the analytical forecasting model. If the IT manager had a good
forecast of the large number of vulnerabilities, the subject of our study, he/she would have taken
appropriate action to address this critical issue.

The overall trend of the number of vulnerabilities of Linux Kernel OS is demonstrated by Figure
15, from 2001 to 2015. Even though there is an increasing and decreasing trend, it would be fair to
say that there is a significant variation in the number of vulnerabilities especially in 2014 and 2015,
with more than double the number of vulnerabilities for the previous year. Years 2014 and 2015
were difficult years for Linux OS in terms of security perspective, for example ”Heartbleed” is the
severe vulnerability detected in OpenSSL that left large number of cryptographic keys and private
data from important sites and services in the Internet that were open to the hackers. Similarly,

Shellshock is the vulnerability that is dominantly used in Linux OS command line Shell, also called

32

404

301

204

Number of Vulnerabilities

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
Year

Figure 15.: Time series pattern of linux kernel os

Bash or GNU Bourne Again Shell left the door open for an hacker to lunch malicious attack.

All three graphs mentioned above, Figure, provides a pictorial view comparison of the number of
vulnerabilities of the three OS, MAC OS X, Windows 7 OS, and Linux Kernel OS from respective
calender time, on monthly basis. It does not seem obvious seasonality components exist but random
fluctuations have a significant influence on each case. It is clear that each of the OS has some sort
of increasing or decreasing trend for a specific period of time and all of sudden some spikes come
and changes the behavior of the signal. To incorporate all the mentioned facts, we have employed
linear and non linear techniques to build the best analytic forecasting model. The following section

provides a brief explanation of the techniques employed in this study.

3.3.1 Autoregressive Integrated Moving Average Process (ARIMA) Model

Autoregressive Integrated Moving Average(ARIMA) models, commonly used for linear models for
univariate time series analysis. To construct the ARIMA model to forecast the vulnerabilities
requires three steps. Before going to the first step, it is necessary to check if the vulnerability data
is stationary, this implies that the number of vulnerabilities associated with each operating system
shows no trend over monthly observations. We have implemented Dicky-Fuller and Philips-Perron
[45] unit root test to examine the stationarity of the ARIMA models. Whenever stationarity of
the ARIMA models is established, the first steps to build the ARIMA model requires to identify

the appropriate structure and order of the model. The ARIMA model includes autoregressive

33

terms(AR), moving average terms(MA), and differencing operations. An ARIMA model structure
is represented by (p, d, q) where p is AR process, d is number of differences(filtering) and q is
MA process. An AR(n) specifies number of immediately preceding vulnerabilities in the series
that are used to forecast vulnerabilities at present. For example, AR(1) means the number of
vulnerabilities at time t=1 rely on the numbers of vulnerabilities at t-1. Differencing term d is the
degree of differencing (the number of times the vulnerability data have had past value subtracted)
required to achieve the stationarity condition of the process. The MA(n) shows that present
vulnerabilities have a relationship with past vulnerabilities, white noise error terms or random
shocks. The random shocks are assumed to be independent and come form the same probability
distribution. For example, MA(1), AR(1) means that the number of vulnerabilities at time t=1
relies on numbers of past prediction errors at t-1. The general equation of the model ARIMA (p,

d, q) is given by:

Yt = C + (alyt_l F veennnns + apyt—p) + (,Blet_l F eeeennnn + ,qut—q) + et (31)

where,

Yyt = differenced in series
¢ = a constant
a, B =coefficients or weights
p = order of the AR term
q = order of MA term

e; = residuals at time t

The second step is to construct the ARIMA model is to identify the number of parameters that
are necessary to be included in the model which is a function of the order of the model. Furthermore
we need to obtain estimates of the parameter that drive the model. We have implemented a graph-
ical and statistical approach to find out the parameters used to forecast the vulnerabilities. For the
graphical method, autocorrelation function (ACF) and partial autocorrelation function (PACF) is
implemented. On the other hand, estimation of the required parameters requires complicated itera-
tion procedure using maximum likelihood or non linear least square estimation methods. The final
step of ARIMA is a diagnostic checking and forecasting vulnerabilities of the OS. The complete
model fitting process is based on the law of principle of parsimony where the best possible model

is the simplest with respect to accurately forecast the vulnerability of a given OS.

34

Utilizing the model building procedure of ARIMA model namely model formulation, model esti-
mation, and model checking or model verification, we have developed three models for Mac OS X,

Windows 7, and Linux as shown by the following equation 2, 3, and 4 respectively:

Mac OS X(ARIMA(1,1,3)):
yt = 0.0203 — 0.8190y¢_; — 0.3626€e;_1 — 0.8124e;_o + 0.4432e;_3 + et (3.2)

Windows 7(ARIMA(2,1,1)):
y¢ = 0.0197 — 0.1956y¢—1 — 0.3350y¢_2 — 0.8533e¢_1 + €¢ (3.3)

Linux Kernel(ARIMA(2,0,3)):

y; = 1.3367 + 0.0217y;—1 + 0.7517y;_o — 0.0648¢e;_7 — 0.6713e;_1 (3.4)
3.4
+ 0.33176t_1 + €t

The abovementioned models are used to predict the future vulnerabilities via linear approach.

3.3.2 Artificial Neural Network

Artificial Neural Networks (ANN) is one of the useful and popular method, which have been used in
forecasting using time series data. A wide variety of applications can be found in market predictions,
meteorological and network traffic forecasting, [46, 47, 48, 49], where most of them have used feed-
forward ANN models in a sliding window format over the input sequence. The major advantage
of neural networks is that they are data driven and does not require restrictive assumptions about

the form of the basic model.
@, @ N D) N (D)
vt = f(wgy + wyj D e(wWor + > Wi vi-1))s (3.5)
k=1 1=1

Any feed forward ANN model consists of three or more layers called input, hidden, and output.
The operational structure of the ANN model for the subject study are demonstrated below by
Figure , and the final outcome of the ANN with one hidden node would be expressed analytically

in Equation 3.5; where y; is the total number of vulnerabilities reported in month t, p is the number

35

- -~

- o)
b1
d
2 W(T) (1) (1)

W<121) 2 W, X, F=h (bﬁé W, X.)
@
2 Cg‘f)

@ T! g (b‘j’% W(JZ;FJ)

31 Output

Hidden

Figure 16.: The architecture of the ANN model used for os

of lags (number of vulnerabilities reported in the past p months) and the H is the number of hidden
nodes, g and f are the activation functions associated with the hidden and the output nodes. In
order to have a better generalization with the ANN model, we need to develop new procedures.
Here, in our analysis, we have used different number of lags and select the model with minimum
Mean Absolute Error. In addition to that we have used time series cross validation (forecast
evaluation with a rolling origin) methods to identify the optimal number of hidden nodes, which
refelects on the quality of the forecast of a given OS.

Figure 16, shows the basic architecture of an ANN and it represents a multivariate non-linear
function mapping between a set of inputs and outputs variables (Bishop, 1995). These networks are
organized as several interconnected layers. Each layer is a collection of artificial neurons (nodes)
where the connections are governed by the corresponding weights. Data have been fed through the
input layer, and then they pass through the one or more hidden layers, and the final outcome is
given by the output layer. One of the challenges that we face when we use ANN in time series
prediction in identifying the number of inputs which is not fixed. We used a procedure to identify

the best possible number of lags.

3.3.3 Support Vector Machine (SVM)

Traditionally SVMs are used for classification in pattern recognition applications. These learning

algorithms have also been applied to general regression analysis, the estimation of a function by

36

fitting a curve to a set of data points. The application of SVMs to general regression analysis
case is called Support Vector Regression (SVR) and is vital for many of the time series prediction
applications. SVMs used for time series prediction span many practical application areas from
financial market prediction to electric utility load forecasting to medical and other scientific fields.
One of the advantage in SVM is that it just correspond to a convex optimization problem when
determining the model parameters and hence easily can be implemented. In using Support Vector
(SV) regression, our goal is to find a function f(x) that has at most € deviation from the actually
obtained targets y; for all the training data, and will not accept any deviation larger than that.
Anything beyond the specified e— will be penalized in proportion to C, which is the regularization

parameter. This can be explained with a linear function of the form

f(z) = who(x) +b (3.6)
where our goal is to minimize
1 T L *
W W + C;(si +€7), (3.7)

with respect to the constraints

y(zi) — f(zi) < e+ ey
f(xs) —y(x;) < e+e€;, (3.8)

and €/, >0

The constant C' > 0, determines the trade-off between the flatness off and the amount up to which
deviations larger than € are tolerated. Support vector machine can be generalized to deal with a

nolinear function f(x), and minimize the weights with respect to the constraint

1 1
min ;(a —aM)TQ(a—a*) € Z(ai +af) + Z vi(a; — af) (3.9)

a7a . .
i=1 i=1

such that 0 < oy,] < C, and Zé:l(ai — o) = 0 where, oy, o are the Lagrange multipliers,
Q is a 1 by I positive semidefinite matrix with, Q;;=vy;y;K(xi,z;) and K(zi,x;) =¢ (z:)T () is

the kernel. However, in SVR we have no control on how many data vectors from the dataset become

37

support vectors and the correct choice of kernel parameters is crucial for obtaining desirable results
[50]. Our objective is to conduct extensive analytical driven search procedure on the parameter

space to obtain the optimal set of parameters that drive the model.

3.3.4 Analysis with ANN and € SV regression

We began our analysis by dividing the vulnerability dataset into two groups; Training and Testing.
The testing data set consists of vulnerabilities reported in year 2016. We then normalized the data
by applying the min-max normalization method. Our analysis with ANN and SV regression makes
the assumption that the number of future vulnerabilities depends on the vulnerabilities identified
in the present and past months (lags). The number of significant lags in the partial auto correlation
function has been used initially to determine the optimal number of lags. We proceeded by carring
out further analysis by changing the number of lags from 2 to 10.

The radial basis functional kernel is used to develop the SV regression models with fine-tuning
the two set of parameters; gamma and the regularization parameter C. In developing the ANN
model we used 10-fold cross validation method for time series. When using this techniques we
incremented the training sets data, gradually shifting the training data set window one by one.
This was repeated for different number of hidden nodes. The optimal analytical model is selected
based on the average mean absolute error (MAE). Finally, the selected analytical model is used to

make the prediction in the testing data set.

3.4 Analysis

Our statistical analysis follows the process that we have introduced in Section 3, where we described
the overall time series trend of each OS. We need further investigation on each signal to see if any
trend, cycles, and seasonality exists. Usually time series data consist of a specific trend, cycles,
and seasonality. To identify the best analytical forecasting model, we will first proceed to identify
the time series pattern in the data, and then select an appropriate method that will capture the
patterns effectively. Figure 17 and 18 is structured in two columns; which consist of six individual
graphs. In Figure 17, 18, Fig(a), Fig(c), and Fig(e) descriebes the monthly behaviour of Mac OS X,
Windows 7, and Linux Kernel OS respectively. These sub-series plots are inspected as a preliminary
screening tool, that allow us for a visual inferences to be drawn from the data before proceeding to

modeling and forecasting.

38

Year
754 —— 2002
754 — 2003
n —— 2004
Q
= 73 — 2005
5 g
< = — 2006
& 50 3
£ 5 50 — 2007
=}
2 < — 2008
S} >
5 5 — 2009
= o — 2010
g 25 é
= 3 25+ /~’ — 2011
— A /\\\ N\ A (l 7' '\"‘ -~ zzi
— - //‘” ‘\/)‘\\\v/é"g'\\\\\)ﬁiié‘\" ‘ll"“‘\'i‘\(‘ 2014
[WK R ‘\ LK) \ o
o W /M ol QA}!’A\;{A"A&'@Z&!&AA‘{A‘Q — 2015
Jr-:m Féb Mla\r Alpr Mlay JLlln J:Jl AIIJg Sép Olct N;)v Dlec Jr-:m Féb Mla\r A;)r Mlay Jllm J:J| Ailg Slep Olct N:av D:ec
Fig(a):MAC OS X monthly Fig(b):MAC OS X yearly
304
301
I Year
Q 0
= 2 — 2009
8 =
E 20+ g 2010
; 2 204 — 2011
=}
5 2 2012
5 S — 2013
2 o]
S kel — 2014
2 104 4 § 0]
1 1l | \ = — 2015
0 ‘ 0
Jalm Féb Mlar Alpr M:ay JlJn J:Jl AIIJg Slep Olct N(I)v Dalec Jelm Féb Mla\r Alpr Mlay Jllm J:Jl AIIJg Stlep Olct Nlov D:ac
Fig(c):Windows 7 monthly Fig(d):Windows 7 yearly

Figure 17.: Overall monthly deviation and yearly pattern of mac os x and windows 7 os

In Figure 17, 18 first columns’ sub-series plots emphasize monthly patterns where the data for
each month is collected together in separate mini time plots. The horizontal lines indicate the
means for each month. This plot helps to find the monthly pattern over time. In each plot, none
of the graph specifically are revealing any seasonal and cyclical pattern. Likewise there is not a
significant variation in the means for each month.

In Figure 17, Fig(b) shows no seasonality or cyclic behavior is present over a year. It is clearly

visible that there is sharp increase of vulnerabilities in year 2015 in comparison to the other year,

39

2002 to 2014. However, the Mac OS X system shows a significant random variation of the number of

vulnerabilities. Similiarly, in Fig(d) each individual year shows random fluctuations of the number

404

Year
2001
— 2002

404

— 2003
304

301 — 2004

— 2005
— 2006

ME=
| | i) /Xﬁ o

| Ca =
ikl R 0_ i@@é@ | =

2015

204
204

/

Number of Vulnerabilities
Number of Vulnerabilities

[N
o

Jelm Féb Mlar /-\Ipr Mlay JLIm Jlul Aijg Sép Olct Né)v Dlec Jan Feb Mar Apr May Jun Jul /-\ug Sep Oct Nov Dec
Fig(e):Linux Kernel monthly Fig(f):Linux Kernel yearly

Figure 18.: Overall monthly deviation and yearly pattern of linux kernel os

of vulnerabilities over a twelve month period. We also concluded that there is no specific pattern
of the behavior of the signals on a yearly basis of Windows 7 OS. Year 2009 and 2013 show the
largest number of vulnerabilities followed by a significant reduction for year 2015 by a factor of
10. Lastly, Figure 18 of Fig(f), the signal of each individual year shows random variation of a
number of vulnerabilities for a twelve month period. Year 2010, and 2013 show the largest number

of vulnerabilities followed by a significant reduction for year 2010.

We plotted vulnerabilities against the individual months in which data are observed. Similarly,
plots have been developed where data from each month is overlapped. These graphs allow us to
make a decision that there is no specific seasonal or cyclical pattern seen in terms of monthly or
yearly basis. We have found there is a large jump of vulnerability in specific years. The remaining
years exhibit fluctuations on the number of vulnerabilities but no obvious seasonal or cyclic patterns.
Inspecting the signal of the number of venerability in each OS, we have found that trend, level and
random fluctuations are the major ingredients to build the forecasting model. Incorporating these
facts, we have utilized ANN, SVM, and ARIMA models to forecast the future level of vulnerabilities
for the three OS.

40

3.4.1 Predictive Capability of Models

One of the most important criteria for evaluating forecasting accuracy is to evaluate the er-
ror(residuals) generated by the testing data sets. An optimal model is selected based on how
accurately it forecast our testing data sets. We have computed Root Mean Square Error(RMSE),
Mean Absolute Error(MAE), and Symmetric Mean Absolute Percentage Error(SMAPE), for each
model to assist in the selection process of the best model. For each forecast error estimation lower
values are preferred.

Prediction accuracy of the analytic model is one of the most important criteria to evaluate the
model performance and reliability. In addition to RMSE and MAE, we utilized an error analysis
based on Symmetric Mean Absolute Percent Error(SMAPE) rather than Mean Absolute Percent
Error(MAPE) to convinence the validity of our model. Even though SAMPE is based on MAPE,
it does consider data containing zeros and non zero values that may skew the error rate. It consist
of 0% of lower bound and 200% of upper bound, thus it reduces the impact of zeros and non zero

values on our data sets. The error is computed based on the analytical form defined by the equation

below: N
2 Pi — Ai
SMAPE = —) | ——]|, (3.10)

where, N is the total number of prediction intervals, P; is the predicted number of vulnerabilities,
and Aj; is the actual number of vulnerabilities. Once we employed ANN, SVM, and ARIMA model
on our testing data set following optimal model are selected based on our error measurement criteria

in Table 5.

Table 5: Output measurement criteria on testing data sets for each os

Criteria Mac OS X Windows 7 Linux Kernel
ARIMA ANN SVM ARIMA ANN SVM ARIMA ANN SVM

RMSE 19.645 28.563 24.674 21.597 9.55 3.581 22.900 4.080 3.990
MAE 16.174 22.060 19.925 21.272 8.911 3.150 24.200 3.410 3.280
SAMPE 0.312 1.225 0.950 0.992 1.284 0.124 1.570 0.730 0.410

Our ANN model evaluation results were quite good despite the fact that we did not have enough
data to improve the training of our model. However, we believe that as more information of the
subject matter becomes available the ANN model will be easier to implement and with higher
accuracy in predicting the number of vulnerabilities of the present OS in the market place. For

Windows 7 and Linux kernel is the analytical model, SVM driven by the final Equation 3.9. With

41

Line
—— Actual
754
— Fitted
(]
@
=
=
g
o 501
£
=
>
Y—
o
p—
S 25
IS
>
2
0 -

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
Year

Figure 19.: Original vulnerability vs. fitted vulnerabilities for mac os x os

reference to the Table 5, the best models are selected for each OS based on the low error rate and

the law of parsimony are listed in Table 6.

Table 6: List of best model selected for each os

oS Best Model SAMPE
Mac OS X ARIMA 0.312
Windows 7 SVM 0.124
Linux Kernel SVM 0.141

From Table 6 ARIMA(1,1,3) with drift, SVM with lag 5, and SVM with lag 5 models are selected
for Mac OS X OS, Windows 7 OS, and Linux Kernel OS respectively. To be more specific, the
forecasting model for Windows 7 OS had the lowest SMAPE of (12.45%) which implies it is a good
forecasting model. The developed model provides good fit to the vulnerability data for Mac OS
X and Linux Kernel but prediction accuracy is varied. In terms of forecasting, Linux kernel has a
convincing SMAPE of (14.1%) but MAC OS X is reasonably accurate with a SMAPE (31.25 %).
One possible reason for high percentage error may be due to missing components in our analysis
such as OS development process, patch cycles, difference in security enforcement criteria, as well
as market share and popularity of the OS.After the selection of the best model with minimum
error rate, our study revealed the fact that the developed model provides a good fit for the OS

datasets and can be used to forecast the future vulnerabilities. Fitting time series models to the

42

vulnerability database is demonstrated via the graph.

4049 Line
—— Actual

— Fitted

301

20 M p\l

!

T T T T T T T T T T T T T T T
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
Year

Number of Vulnerabilities

Figure 20.: Original vulnerability vs. fitted vulnerabilities for linux kernel os

Figure 19 shows the original vulnerability plot against fitted vulnerabilities of MAC OS X Oper-
ating System. Even though having random fluctuations that is increasing and decreasing behavior
present in each year, our model accurately captures the holistic attributes of the signal with rea-
sonable accuracy.

Figure 21, demonstrates results of fitted time series model and the actual vulnerabilities of the
Windows 7 OS. Eventhough Windows 7 OS have limited amount of data comparing to other OS,
it has lowest approximately 12% prediction error which attends to the high qualitiy of forecasting
future vulnerabilities.

Figure 20 shows the fitting time series of the SVM model and the actual vulnerability data of
Linux Kernel OS. Graphically our model shows a perfect fit with a prediction accuracy of 14%
little bit higher than Windows 7 OS. This is probably due to very sharp increase of vulnerabilities
in 2014 and a sudden decrease of in 2015.

All of the above plots provides a good fit for each OS but different degrees of prediction accuracy.
From a careful reading of the fitted plots, we can conclude that best fitted model may not produce
the best forecasting accuracy and vice versa. In case of Mac OS X, forecasted vulnerabilities is not

that much better to the fit of data. Unlike Mac OS X, windows 7 has quite good fit but forecasted

43

Line
Actual

— Fitted
301

204

Number of Vulnerabilities

2009 2010 2011 2012 2013 2014 2015
Year

Figure 21.: Original vulnerability vs. fitted vulnerabilities for windows 7 os

vulnerabilities are a way better than Mac OS X. We eventually used our models to forecast the
future vulnerabilities of these OS and recommended choice for predicting monthly vulnerabilities is
summarized by Table 7. As an example, the following Table 7 highlights the fore-casted values for
the 12 months of the year 2016. From the table we can say that predicted number of vulnerabilities
for 2016 for Mac OS X is highest followed by Linux kernel and Windows 7.

Table 7: Forecasted vulnerabilities of mac os x, windows 7, and linux kernel os

oS Forecasted Vulnerabilities Total

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Mac OS X 28 24 32 26 32 34 31 26 27 36 38 37 371
Windows 7 11 10 9 11 9 11 11 10 10 11 11 13 127
Linux Kernel 7 16 7 18 34 8 7 24 7 7 12 18 165

Initially, we split our data sets in terms of training and testing data sets. The collection period
of training data set of each OS is mentioned in Table 4. Similarly, 2016 is considered as testing
data sets to validate our model for all OS. Utilizing our best developed model, we forecasted
2016 vulnerabilities which are given in Table 8. Now the following Table 8 compares the total true

vulnerabilities and forecasted vulnerabilities for each OS. This comparison table shows the accuracy

44

and reliability of our developed analytical models.

Table 8: Actual and forecasted vulnerability comparison of the os

OS 2016 Vulnerabilities
Actual Forecasted
Mac OS X 396 371
Windows 7 134 127
Linux Kernel 230 165

Our study revealed the fact that seasonality and trends are not the major components of the
forecasting models. Nevertheless, the level of the time series is only the significant component
to build the model. This suggests that it is difficult to predict vulnerabilities based on monthly
seasonal patterns or trends. Further investigation is needed whether weekly, quarterly, or annual
patterns might produce remarkable trends or seasonal components but such data is not publically
availiable to improve the quality of the model.

The ANN model did not perform well in forecasting the vulnerabilities because we did not have
enough data to improve the training process so as to improve its forecasting accuracy. With
more vulnerability data we believe that the ANN model will be very competative in forecasting

vulnerabilities of the OS.

3.5 Contributions

We have developed a high quality analytical forecasting model utilizing both linear and nonlinear
methods to predict the number of vulnerabilities of a given operating system. In addition we
performed a statistical evaluations of other models that perform the same task the predicting
process of OS. The selected model provides overall trend and behaviour of the OS ahead of time;
OS companies can make strategical and operational decisions such as secure deployment of OS,
facilitate backup provisioning, disaster recovery, diversity plannng, and maintenance scheduling.

In nutshell, we have summarized our chapter contributions in terms of the following points:

1. The best forecasting model helps to predict the number of vulnerabilities that may occur in the

future for a given Operating System (OS) by utilizing linear and nonlinear method.

2. Operating System companies can make strategic and operational decisions like secure deploy-

ment of OS, facilitate backup provisioning, disaster recovery, diversity planning, and mainte-

45

nance scheduling.
. Model helps to identify the prioritized patched decision of the Operating System.

. Model help in accessing current security risk along with estimation of resources needed for

handling potential security breaches and to foresee the future releases of security patches.

. Overall trend and behavior of the OS ahead of time can be reported based on given level of

vulnerabilities.

. Outcome of the model helps to compare the OS.

46

Chapter 4

A Predictive Analytical Model for Vulnerability Discovery Process

In this chapter, we examine the existing models on the subject area and propose a new time-based
nonlinear differential equation model. Our proposed model is based on the fact that the vulnera-
bility saturation is a local phenomenon, and it possesses an increasing cyclic behavior within the
software vulnerability life cycle. The daily vulnerability data is extracted from National Vulner-
ability Database (NVD) and is designed to obtain cumulative quarterly dataset. We apply the
proposed model in cumulative quarterly vulnerability data for three Operating Systems: Mac OS
X, Windows 7, and Linux Kernel. Our model performs significantly better when compared with
the existing models in terms of fitting and prediction capabilities.

This chapter is organized as follows: Section 2.1 describes the our philosophy of vulnerability
life cycle and existing models are presented. 4.2 introduces and explains our model entitled as
Modeling Approach. Section 4.3 explores the application of our model in the realm of available
datasets for three operating systems. The result section is further classified into three subsections:
an application to vulnerability data, model selection and comparisons, and prediction. Finally,

section 4.5 major contributions of this chapter are listed out.

4.1 Introduction

A software vulnerability can be defined as a loophole that allows an attacker to compromise the
system. Normally, software is compromised with respect to its integrity, availability, or confiden-
tiality. There is no software or Operating System (OS) without vulnerability and this scenario is
most likely to continue in the foreseeable future. The existence of known vulnerabilities possess
extremely high risk to all the stakeholders of the software. It may not be feasible to identify and
rectify every vulnerability present in any software. The software developers and users need to es-
timate the level of risk produced by the given vulnerabilities and efficient counter measures need
to be implemented. Developers need to stay ahead from the attackers by efficient allocation of

resources and adopting ongoing vulnerability testing and software patch development procedures.

47

On the other hand, end users may invest in intrusion detection/prevention mechanism and different
data safeguard techniques based on their requirements. The investment by developers and users
depend on the level of risk posed by the vulnerability. Thus, one can argue that the investment is
directly proportional to the level of vulnerability risk involved.

A plethora of research is conducted focusing on qualitative aspects of vulnerability. However,
there is a need of developing statistical models that allow risks of the vulnerabilities to be evaluated
quantitatively. Vulnerability models are required to assess the current security risk along with the
estimation of resources required for handling potential security breaches. In addition, a robust
model could potentially help to make an informed decision about future releases of software patches
and evaluate the risk of vulnerability exploitation. A strong statistical data driven model that best
fits the available data, and projects future vulnerabilities along with current and future trends

based on historical data is the demand of the current time.

T1, T2, Tauereeinineineeeeneees Ty ¢ Time frame
]-L Lz, Li ..o Ly - Life evele for particnlar period of time

& Mature (V)
& Growth [G)
® |ntroduction (I}

Cumulative Vulnerabilities

T1 Tz TE T.I T]\'

Calendar Time

Figure 22.: Proposed vulnerability life cycle

Our current study of vulnerability gives us a different perspective to look at the transition phases

of vulnerability life cycle as explained by Figure 22. It consist of different time frames ranges from

48

t1to t, where within each time frame, three transition phases (introduction, growth, and mature)
exist locally and we believe this is a more realistic approach. The combination of three phases for
the particular period of time generates partial life cycle. In real life, the transition phases exist
locally but with the stability and continuity of the software, user base increases again and so does
the vulnerability. All the partial life cycles from Iy to I, make a complete vulnerability life cycle.
The combination of all the transition phases and time frames generates cyclic increasing behavior
to explain the entire vulnerability life cycle.

The existing models shown in Figure 22 computed their model parameters by utilizing three tran-
sition phases of vulnerability life cycle due to simplicity of interpretation and analytical tractability.
The study by Alhazmi and Malaiya [53], published in 2005, mentions that the Rescorla Linear Model

for cumulative vulnerability given by
Q(t) = Bt®> 4+ Kt,

obtained from the vulnerability rate w(t) = Bt + K, where B is the slope, and K is a constant;

both regression coefficients and the Rescorla Exponential Model given by
Q(t) = N1 — eM),

where IN is the total number of vulnerabilities, and A is the rate constant failed the goodness of
fit test for Windows 95 cumulative vulnerability data. It was discovered that the models such as
RL, RE,and AT failed the goodness of fit tests except the AML model. The AML model is given

in [55] by
B

BCeABt 11’

Q(t) =

where (meaning of A,B,C.) This model assumes that the vulnerability discovery rate increases at
the beginning, reaches a steady rate, and then starts to decline. This model is suitable only for one
partial life cycle but when there is a cyclic increasing behavior of many partial life cycles, it fails
to model the situation.
In the present study, we propose a new time based nonlinear differential equation model given
by
Q"(t) + ?Q(t) = f(2), (4.1)

where Q(t) is the cumulative vulnerability count at time ¢, and f(t) is the quadratic forcing term.

49

A general solution of the differential equation 4.1 is given by
Q(t) = c¢;1 cos(wt) + co sin(wt) + c3t? + cat + cs, (4.2)

where ¢y, ca,...,c5 are the coefficients that derives the model. The model 4.2 is considered as the final
mathematical model, named as Pokhrel-Khanal-Tsokos differential equation model (PKT Model).
We compare this model with the existing ones shown in Figure 23 in terms of fitting and prediction
accuracy. The parameter estimation and their significance are discussed in a homogeneous manner
using Nonlinear Regression methodologies. To support our arguments, we use the quarterly data,
from National Vulnerability Database(NVD), of three Operating System(OS): Windows 7, Mac OS
X, and Linux kernel.

The schematic network of desktop Operating System, given by Figure 23, which displays a layout
of the process that our analytic study will follow. In broad classification in-terms of the type of OS,
two Operating Systems exist in the market as described in Figure . A proprietary Operating System
which in particularly conceptualizes, designs, and is sold by a private company does not share the
source code to the public. Microsoft and Apple are the two giant companies developing proprietary
desktop Operating System. Similarly, Linux develops one of the nonproprietary desktop Operating
System referred as Linux kernel. We have collected the vulnerabilities for each Operating System,
with the earliest available data from NVD to December 2015 as training data, however, the whole
one year, 2016 data is considered as testing data to validate our proposed model. We summed the

total vulnerabilities over a quarterly period.

EEE—

T T T

. .

Figure 23.: Existing and proposed models

50

’ DESKTOP OS

NON PROPRIETARY
PROPRIETARY OS oS
R m— ; 1) :
MICROSOFT ‘ APPLE
- “ r- Y - -

WINDOWS 7 MAC 0S X LINUX KERNEL
CUM. VUL: 508 CUM. VUL: 1441 CUM.VUL: 3241
YEAR: 2009 -- 2015 YEAR: 2002 - 2015 (TRAINING) YEAR: 2001 -- 2015
(TRAINING) (TRAINING)
YEAR: 2016 (TESTING)

YEAR: 2016 (TESTING) YEAR: 2016 (TESTING)

Figure 24.: Classification of os

Figure 24 gives a schematic view of the market share of Desktop OS worldwide, with Microsoft
dominating the subject industry. According to Netmarketshare upto October 2017, [65] almost 90%
of the market share of desktop Operating System is captured by the Microsoft company. Likewise,
4% of market share is captured by the Apple company and approximately 3% from Linux kernel

which is graphically illustrated in Figure 25. To be more precise, out of 90% market coverage of all

Microsoft (
thers (3%)

ux (3%)
le (4%)

Figure 25.: Market share of os

Microsoft’s existing Operating System, Windows 7 covers almost 48%. The only desktop Operating
System developed by the Apple company is Mac OS X. On the other hand, Linux develops Linux
kernel and is considered as one of the oldest Operating System. This OS has minimum market
coverage according to Netmarketshare but still it is popular due to availability of source code
to the public. From the reported facts and popularity among the users if we aggregate the total
market share of three desktop Operating System, they almost cover most of the market share in the
desktop environment. Thus, it is appropriate to select Windows 7, Mac OS X, and Linux Kernel for

our present study. These Operating Systems are the product of three industry leaders, Microsoft,

o1

Apple, and Linux. In Figure 26, we have produced six panels of displays. Each panel consists
of two graphs for Mac, Linux, and Windows respectively. The graphs in (a), (c), (e) display the
number of vulnerabilities versus time on monthly basis. The graphs show a completely nonlinear
behavior with random fluctuations and irregular spikes. A recently published paper [66] uses linear
(ARIMA) and nonlinear (ANN, SVM) time series models for monthly data and concludes that
there is no influential trend or seasonality components. In the present study, we plan to develop
a customized model that captures the nonlinear behaviors. The existing vulnerability models use
cumulative number of vulnerabilities with time as a independent variable. As one of our goals in
this research is to compare our model with the existing ones, for uniformity, we structurize our data
in a cumulative quarterly basis.The graphs in (b), (d), and (f) display the scatter plots of quarterly
vulnerability data for the corresponding OS.

Our proposed analytical model strongly captures the complicated linear and nonlinear behavior
of the historically available data points and helps us to predict the future vulnerabilities. The
proposed model is compared with the existing ones based on Akaike Information Criteria (AIC)
and goodness of fit test for all operating systems. It is also found that the prediction accuracy is
noticeably higher for the proposed new model. Based on the outcomes of the developed model,
all the stakeholders associated with Operating System will find this new predictive model is of
significantly important and useful. As a software developer, one can evaluate and proceed to
be confident with their strategic and operational policies. They can make appropriate plans to
allocate the human and financial resources effectively and efficiently. Moreover, they can also make
streamline patch decisions about OS and can utilize the outcomes for security testing procedure of
the Operating System. Additionally, knowing the future vulnerabilities offer several benefits; one
can identify the OS that are in need to be restricted to reduce their vulnerability, the predictive
vulnerability score can be used for competitive market analysis, monitor the behavior of competing
OS using the forecasted vulnerability and accordingly take appropriate actions. Most importantly,
this information is extremely relevant to the IT manager for his/her strategic planning to minimize
the risk of a chosen OS that will not be exploited. Finally, our results offer a unique marketing
strategy for purchasing the best OS available in the market place that will have the best(smallest)

future vulnerabilities.

52

a
S
o
[}

£
S

>
=
S
=
[}

o
£
S

=z

Number of Vulnerabilities

Number of Vulneral

500 ®
L]
304 ¢
400 .
2 .
= L]
Q L]
[°°
2 300 L
o = L]
20 g °
£ }
O L]
o 2004 7
= []
38 .
10 £ s
=
100 .
L]
L]
L]
L]
L]
04 0 e e e
T T T T T T T T T T T T T T T T
2009 2010 2011 2012 2013 2014 2015 2016 2009 2010 2011 2012 2013 2014 2015 2016
Year Year
1453 .
L]
57 12114
°
L]
L[]
£ 9691 .
K o
50 © .
8 o00°®
= L]
S 7274 o
£ °®®
=1 (]
O o°°
Q - L]
3 485 .‘a
254 = .
.‘.
L[]
243 o°
..
‘.
°®
o®
0 14 Jo000®
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
Year Year
404 (]
1251 g
L]
L]
L]
L]
L]
L]
10014 .
L]
E o’
=
o)
S 7514
£
20 S
£
3
O 501+
> o
= .-"'
- (]
104 .n.
251+ o®
0 14 e®00®

T T T
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
Year

v v v v v v v v v v g v v g v v
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

Year

Figure 26.: The monthly time series and cumulative quarterly scatter plot for three OS

53

4.2 Modeling Approach

A number of vulnerability models have been proposed in the past to predict the number of vulner-
abilities of a given OS: Musa-Okomoto Model, Anderson Thermodynamic Model, Rescorla Linear
Model, Rescorla Exponential Model, and Alhazmi-Malaiya Logistic Model. Our aim in the present
study is to develop a differential equation model approach that captures the rate of change of the
total vulnerabilities discovered in three widely-used operating systems: Mac, Windows, and Linux.
The existing models for software vulnerability have been developed based on some specific
underlying assumptions and defined frameworks. In the present study, we plan to develop an
analytic model that more accurately captures the dynamics of the total cumulative vulnerabilities
of a given OS. We propose a new time-based nonlinear differential equation model and proceed to
compare the results of our model with some of the existing models on the subject area, and include
in our proposed model reasonably strong improvement in estimation and prediction performance.

A careful reading of the scatter plots given in Figure 26 for the three different operating systems
do not support the claim that the vulnerability attains a saturation phase. For a particular time
frame, the transition phases exist locally but with the stability and continuity of the software, user
base increases again and so does the vulnerability. Thus, the combination of all these different
transition phases and time frames make a cyclic increasing behavior within the life span of the
vulnerability life cycle.

A careful study of data, suggests that there are two types of trends: one cyclic behavior and
another steady increase. If Q = Q(t) is the cumulative vulnerability counts at time ¢ then the

vulnerability rate and its rate of change are given by,

_Q(t+h) — Qt — h)

2h
_(t+h)—Q(t—h)
- 2h

'(¢)

and

QII (t)

, Wwhere

h is the time step. The data set for Q" (¢) + Q(t) portrays a very strong quadratic behavior. So,

we propose a differential equation model of the form
Q"(t) + w*Q(t) = f(t),

with a quadratic forcing term f(t) = At%2 + Bt + C, where w = 2%, T being the period and the

period depends upon the data set considered.

o4

The complementary solution of the homogeneous part of equation (4.1) is
Q.(t) = c1 cos(wt) + c2 sin(wt)

and the particular solution is
Qp(t) = C3t2 =+ C4t + Cp

where c3 = % cq = % and ey = % — %. Therefore, the general solution of the differential
w?2? w2’ w w ’

equation (4.1) is given by
Q(t) = ¢;1 cos(wt) + cosin(wt) + c3t? + cat + cs.

We can use an appropriate method based on the given data to estimate the values of the coefficients
c1, C2, €3, C4, and cs.

The solution of the differential equation (4.1) is given by the equation (4.2) and it is our proposed
analytical model, named as Pokhrel-Khanal-Tsokos Differential Equation Model (PKT Model).
PKT analytical model can be used for estimating and predicting the total cumulative software
vulnerability. The proposed model is applied to the available data for three operating systems:

Mac OS X, Windows 7, and Linux Kernel.

4.3 Results

This section is divided into three subsections. The first subsection discusses the application of
the proposed model to the vulnerability data for all three major operating systems: Mac OS X,
Windows 7, and Linux Kernel. The development of the model together with fitting the model to
the data with 95% confidence band will be discussed in detail. The second subsection is dedicated
to the model validation and comparison with other existing models. The third subsection is devoted
for the prediction accuracy of PKT analytic model using available vulnerability data of all three

major operating systems.

4.3.1 An Application to Vulnerability Data

We have extracted the vulnerability data from the National Vulnerability Database (NVD). It is
the U.S. governments’ repository that integrates publicly available vulnerability resources and pro-

vides common references to the industry resources. NVD is a product of the National Institute of

95

Standards and Technology (NIST), Computer Security Division, and is sponsored by the Depart-
ment of Homeland Security’s National Cyber Security Division. It contains reported vulnerabilities
based on their Common Vulnerabilities and Exposures (CVE) identifier. Each CVE is assigned a
quantitative score to identify the severity level of the vulnerability that ranges from 0 to 10. We
have collected the vulnerabilities for three Operating System namely Mac OS X, Linux Kernel,
and Windows 7; from the earliest reported date to December 2015. More specifically, collection
period of Mac OS X starts from 2002, Linux Kernel starts from 2001, and Windows 7 starts from
2009. According to the published date of CVE, we find quarterly sum of vulnerability counts. The
vulnerability data of four quarters of 2016 is used as testing data to validate our analytic model.

In the proposed model

Q(t) = ;1 cos(wt) + co sin(wt) + cst? + cqt + c5

given in equation (4.3), w = 2% depends upon the time period T' and T depends on the data
set. In our case for the operating system MAC, there are 54 quarterly data points. For one cycle,
T = 54 and w = 27 = 0.116355283466; for one and half cycle, T = 36 and w = 2% ~
0.174532925199; for two cycles, T = 27 and w = 2—77’ ~ 0.232710566933 and so on. For Mac
OS X, we consider just one cycle for simplicity and use w ~ 0.116355283466 in our model.

One of the most important issues is to estimate the five integral coefficient ¢q,-- -, c5 using
nonlinear approach. Like in linear regression, nonlinear regression provides estimated values of
the coefficients based on the least square criterion. However, unlike linear regression, no explicit
mathematical solution is available and specific algorithms are needed to solve the minimization
problem, involving iterative numerical approximations [57]. The estimated parameters are obtained
by minimizing the residual sum of squares (RSS) with respect to the unknown parameters. There
are no explicit formula and procedure to estimate the unknown parameters of the model. We
used a recursive method to estimate the parameters that best fits the given data. The iterative
procedure demands a starting values. To determine the best starting values and to avoid asymptotic
behavior, we run the model using linear time series approach by using total number of quarterly
vulnerability as response and time as a predictor variable. We set the starting value of the nonlinear
regression from the estimated value obtained from linear time series method. We have achieved the

convergence within two iteration in all cases.

By Implementing the computational procedure mentioned above, the estimated values of the pa-

96

rameters are: ¢1=26656.79, c2=32220.98, c3=272.47, c4=-4033.11, and ¢c5=-26376.42. Therefore,
the model that provides the cumulative vulnerability behavior at any time t for Mac OS X is given

by

Q(t) = 26656.79 cos(0.12t) 4+ 32220.98 sin(0.12t)

+272.47t% — 4033.11t — 26376.42. (4.3)

25004 Curve
— Predicted Curve
— Lower Bound Curve

Upper Bound Curve

2000

® Actual Data

1500 1

1000

Cumulative Vulnerability

500

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
Year

Figure 27.: Prediction with a 95% confidence band of mac os x: PKT

Figure 27 exhibits predicted 95% confidence band values of cumulative vulnerabilities given by
the PKT analytical model (4.3) along with the actual data points. The solid red curve represents
the actual and predicted values by the proposed model. The black and green lines represent lower
and upper 95% confidence of the true values. Figure shows a good fit within the given confidence

limits except one point in the fourth quarter of 2015. The total number of vulnerabilities in 2015

o7

Curve

— Predicted Curve
1500 -
— Lower Bound Curve

Upper Bound Curve

® Actual Data

1000~

Cumulative Vulnerability

3]
o
o

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
Year

Figure 28.: Prediction with a 95% confidence band of linux kernel: PKT

increases almost four times larger than the previous year, which is an extreme observation compared
to the rest of the data set. One of the prominent reasons is due to the rapid market share gains
of Mac OS X which leads to growing attack surface for sensitive data. There are several malicious
malware introduced in 2015, for instance, XcodeGhost which inserts malicious components into the
applications made with Xcode (Apple’s official tool for developing I0S and OS Apps)[64]. Thus,
using Figure 27, for the last quarter of the year 2016, we predict the cumulative vulnerability value
to be 1775. Furthermore, we are 95% confident that the true confidence level of Mac OS X will be
greater than 1693 and less than 1860.

The fitted curve shows an increasing trend with increasing rate of cumulative vulnerabilities until
2008 followed by a slow growth until 2013 for Linux Kernel using the PKT model. The overall
trend sharply increases from 2014 onwards.The dashed vertical line after 2015 displays the future
prediction for the next two years. The AML model does not seem to fit the data because it demands
stability for the entire vulnerability life cycle and the reality does not reveal such a fact. RL and
RE models are better suited to capture the trend than AML model after 2014 but PKT model

addresses these issues with excellent results.

98

Curve

— Predicted Curve

8001 — Lower Bound Curve
Upper Bound Curve

700 41

6004 @ Actual Data

500 1

4001

Cumulative Vulnerability

300 41

200 1

1004

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
Year

Figure 29.: Prediction with a 95% confidence band of windows 7: PKT

The PKT model is also applied to develop the nonlinear models for Linux Kernel and Windows

7 OS. The final model for Linux and Windows 7 are given by the following equations:

Q(t) = 1.13 cos(1.05t) + 23.55sin(1.05t) + 3.97t>

+ 24.57t — 71.04,

Q(t) = 18.94 cos(1.15t) — 27.79sin(1.15t) + 7.57t>

+ 4.54¢ + 7.57.

The fitted values given by the above models together with cumulative vulnerability data

and 95% confidence and prediction band are given in the Figures 28 and 29. Thus, using Figure 28
and 29, for the last quarter of 2016, we predict that the cumulative vulnerability value to be 1475
and 672 respectively. Furthermore, we are 95% confident that the true confidence level of Linux
Kernel will be greater than 1453 and less than 1497 and the true confidence level of Windows 7
will be greater than 633 and less than 711.

99

4.3.2 Model Selection and Comparisons

Here, we proceed to compare PKT model with the other existing vulnerability discovery models,
namely RL, RE, and AML.The same techniques of evaluating estimation of these parameters for
PKT model are used to evaluate the parameters of the other models. The comparison is based on

Sum of Squares (RSS) and Akaike Information Criteria(AIC) which is defined by:

AIC = (—2 X logLik) + 2P,

Where, logLik represents log-likelihood value and P is the number of parameters in the fitted
model. The maximum likelihood estimates are used to calculate the weights of AIC. Lower AIC
value indicates a better fit of the data. Table 9 lists RSS and AIC values for RL, RE, AML, and
PKT models for all three operating systems. In each case, PKT model depicts lower RSS and AIC

values.

1452 .
Models
— AML
)
— PKT
1210 RE

— RL

968

® Actual Data

7264

Cumulative Vulnerability

484

2424

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
Year

Figure 30.: Model comparison of PKT with RL, RE, and AML for mac os x

60

Models
— AML
1246
— PKT
— RE
—RL
997
E‘ ® Actual Data
=
<
o
2 748+
=]
>
[}
=
8
g
S 499
O
2504
14

T T T T T T T T T T T T T T T T
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
Year

Figure 31.: Model comparison of PKT with RL, RE, and AML for linux kernel

501 1
Models
— AML
— PKT
— RE
— RL
3764
E‘ ® Actual Data
=
]
2
9]
£
S 2514
]
=
8
>3
£
]
o
126 1
1 -
T T T T T T T T
2009 2010 2011 2012 2013 2014 2015 2016

Year

Figure 32.: Model comparison of PKT with RL, RE, and AML for windows 7

61

Table 9: Model comparison based on Akaike Information Criteria (AIC)

Operating Systems Models RSS AIC
RL 241314.7 633.5574
RE 262502.3 638.2703
MAC
AML 334296.1 653.8092

PKT 45584.43 529.1156

RL 48998.95 578.5852
RE 124456.7 634.5147
Linux Kernel
AML 78961.47 609.2149
PKT 18451.8 525.987
RL 16595.93 264.2324
RE 22418.38 272.6527
ind
Windows 7 AML 17965.02 268.4519

PKT 2808.963 220.4948

The proposed model together with RL, RE, and AML are presented in Figure for Mac OS X. The
curves in different color represent estimated fit of cumulative vulnerability data given by different
models. We used maximum likelihood estimate method to estimate the best fitting parameters for
all models. The goodness of fit tests for different models are presented in the Table 9.

From Figure 30, we can see that the RL, RE and AML predictions overestimate the cumulative
vulnerability from 2003 to 2007, underestimate from 2008 to 2012 and overestimate again up to
2016. The PKT follows the actual data quite well. The PKT model comparing with RL, RE, and
AML are presented in Figures 31 and 32, and for Linux Kernel and Windows 7. The curves in
different color represent estimated fit of cumulative vulnerability data given by different models.
For Linux and Windows, the fitted PKT model captures the cyclic trend reasonably better than
the other models Figure . The variability of data is higher towards the right tail for all operating
systems and PKT model stands out to capture the trend.

The model assumptions are visually assessed through standardized residual plots and normal qq
plots. In addition, normal assumption of error is evaluated through Shapiro-Wilk goodness of fit
test. The Table 11 demonstrates that the PK'T model strongly agrees with the normal assumptions
of error. We have utilized Shapiro Wilk Test to assess whether or not residuals are normally

distributed. We have made the following hypothesis:

62

Table 10: Predicted vulnerabilities using PK'T model

2016
Operating Systems Q1 Q2 Q3 Q4
Predicted Interval [1340-1370] [1377-1410] [1416-1452] [1457-1496]
Linux Kernel Predicted Vulnerability 1354 1393 1433 1475
Actual Vulnerability 1306 1407 1443 1522
Predicted Interval [503-556] [536-602] [569-650] [637-749]
Windows 7 Predicted Vulnerability 537 573 609 644
Actual Vulnerability 538 569 596 642
Predicted Interval [1252-1497] [1319-1614] [1392-1742] [1472-188§]
Mac OS X Predicted Vulnerability 1431 1534 1649 1775
Actual Vulnerability 1499 1573 1656 1756

Hy: Standardized Residuals are Normally Distributed.
H;: Standardized Residuals are not Normally Distributed.

We have assumed an alpha level of 5% i.e. if the P value of the Shapiro Wilk Test is below
0.05 null hypothesis is rejected. To verify normality of residuals we should not reject the null
hypothesis. Similarly , Shaprio Wilk test statistics value closer to 1 indicates the better agreement
to the normality assumptions. Table 11 demonstrate the Shaprio Wilk test statistics, P value for
each OS. In every cases, null hypothesis is not rejected. This shows the strong statistical evidence

that residuals produced by PKT model are normally distributed.

4.4 Prediction

The proposed analytical model for software vulnerability and other existing models can be used
to project the future vulnerability trends. We have applied the proposed model given in equation
(4.3) and the other models to estimate the cumulative vulnerability counts for the four quarters of
2016 and the first two quarters of 2017 for all three operating systems: Mac, Linux, and Windows.

The models are fitted using data up to the last quarter of 2015 and vulnerability counts of
2016 and 2017 are estimated by using the fitted model. We used actual vulnerability data of 2016
and 2017 for validation purpose. Nonlinear regression method does not have explicit prediction
algorithm to predict the future data. We have implemented the bootstrap method to obtain
prediction interval based on fitted value of nls() on some random sample re-sampled from the
original one. From the bootstrapped fitted values and predictions, 90% predicted intervals are
estimated. Table 10 presents the 90% predicted interval using our proposed PKT model together

with the actual vulnerability data for all three operating systems. Notice that the prediction interval

63

Table 11: Model diagnostics based on Shapiro Wilk goodness of fit test

Operating Systems Models Shaprio-Wilk Test P-Value

RL 0.92423 0.002169
RE 0.92273 0.001898
MAC AML 0.89681 0.000221
PKT 0.96599 0.1279
RL 0.96072 0.005103
I RE 0.9154 0.000503
AML 0.942555 0.007053
PKT 0.9776 0.3358
RL 0.90054 0.01178
RE 0.92762 0.05372
Windows 7 AML 0.96042 0.3567
PKT 0.97119 0.6128

in case of linux changes in linear fashion whereas the other two operating system do not exhibit
a specific pattern. One of the reason for this observation could be the choice of w. The value of
w is determined based on the nature of the data itself and the range of the prediction interval is
influenced by w.

Table 10 shows that the prediction is very accurate for all quarters in case of Linux and Windows.
The prediction for the first quarter of 2016 in case of Mac is somewhat underestimated but the
prediction for the next three quarters are within the 90% confidence limit. The total number of
vulnerability in year 2015 is four times higher than the previous year. One of the prominent reason
of higher vulnerability in 2015 is that there were defects in Apple’s official tool that provides the
framework to develop IOS and OS Apps [64]. The defect on the framework itself caused to increase
the total number of vulnerabilities. The prediction results obtained by using the PKT analytical
model are found to be more accurate than those given by any other existing models.

The entries in the brackets are lower and upper bounds of 90% prediction interval for the four
quarters of 2016. We have not listed the information related to predicted interval and predicted
vulnerability of the other models used in this study because we proved that our model stands out
best among the existing ones in the previous sections. We have utilized the information presented
in Table 10 to compute Sum of Square of Error(SSE) of the predicted vulnerability using PKT
model and compared with RL, RE, and AML models presented in the following Table 12.

64

Table 12: SSE of predicted vulnerabilities

SSE
Operating Systems o RL RE AML
Linux Kernel 1603 4259.33 13839.33 13710
Windows 7 63.33 179.33 109.67 17494.67
Mac OS X 2185 151149 128300.3 260835.3

On SSE scale of Linux Kernel OS, PKT model gives the best SSE of 1603, followed by RL at
4259.33, AML at 13710, and RE at 13839.33. Similarly, in case of Windows 7 OS, SSE of PKT
model is 63.33, followed by RE at 109.67, RL at 179.33, and AML at 17494.67. Eventually, for
Mac OS X OS, it yields SSE of 2185, followed by RE at 128300.3, RL at 151149, and AML at
260835.3. In either of the OS, PKT model has lower SSE in terms of predictive capabilities. Hence,
we conclude that PKT model performs better not only for fitting but also for prediction purpose

among other models presented in this research.

4.5 Contributions

We have developed an effective differential equation model for software vulnerabilities by utilizing
the vulnerability datasets of three major OS: Windows 7, Linux Kernel, and Mac OS X. The
proposed analytical model is significantly much better among the existing models in terms of
excellent fitting and prediction accuracy. We have presented the chapter contributions in terms of

the following points:

1. The developed model can be used by the developers, the users community, and individual

organizations to predict their vulnerability levels of their softwares.

2. Developers of the OS can examine the software readiness by predicting the future vulnerability

trend.

3. IT manager can allocate the security maintenance resources to detect the forthcoming vulner-

abilities.
4. Software company can plan for proper software security patch.

5. The users of OS can benefit by comparing different software of particular domains in terms of

risk with their vulnerability. They also can access the risk before patches are applied.

65

6. This invention is not only applicable to computer OS but it can be used in engineering products,

health oriented systems, business and finance forecasting, among others.

66

Chapter 5
Health Science : A Predictive Analytical Model for Stomach Cancer Data

We have developed a predictive software vulnerability model in Chapter 4. This predictive model
is not only applicable to computer OS but it can be used in various domains such as engineering,
finance, business, health science, among others. For instance, we have implemented the idea on
health science, to predict the malignant tumor size of stomach cancer as a function of age based
on the given historical data.

This chapter is organized as follows: Section 5.1 describes the background and introduction to
stomach cancer in detail. 5.2 explains the structure of the database. Section 5.3 explores the
idea behind the model development. In Section 5.4 results of the model are presented along with
model diagnostic and prediction. Finally, in Section 5.6 major contributions of this chapter are

highlighted.

5.1 Introduction

In general cancer appears when cells in the body start to grow out of control. If the cancer starts
in the stomach then it is called stomach or gastric cancer. There are several risk factors associated
with this type of cancer namely gender, ethnicity, age, geography, tobacco use, and diet. There
is no concrete way to prevent stomach cancer. When a tumor grows, the patients may have more
serious symptoms. Surgery, chemotherapy, targeted therapy, and radiation therapy are the best
possible available treatment options for this cancer. The location of the tumor, size, age, and stage
are the primary risk factor considered while treatment.

According to the American Cancer Society [67], it is the fifth leading cancer and the third leading
cause of death of human beings. It also estimates for 2018 that there are about 26,240 cases of
stomach cancer that will be diagnosed (16,520) in men and 9,720 in women) and about 10,800
people will die from this type of cancer (6,510 men and 4,290 women). The total survival rate
of the patients depends on several factors such as which stage patient falls in, age, and previous

treatments applied. Stomach cancer is very common in underdeveloped and developing nations due

67

to the diet habits and food they eat. For instance, the Japan Cancer Society reports (2007) one in
every three deaths was attributed to stomach cancer.

The recent study [68] exclusively focused on statistical analysis and modeling of stomach cancer
data. More specifically, extensive parametric analysis was performed on race and sex of patients
with malignant tumors. The overall conclusion of the study was malignant stomach tumor sizes
significantly different on gender and races. Similarly, quantile regression and decision tree analysis
techniques were implemented to find the probabilistic behavior of the given phenomenon. Similarly,
quantile regression model explored that patient age was the most significant variable to determine
the size of the malignant tumor. When age of the patient increases, so does the tumor size. Thus,

the relationship between tumor size and age of the patient can be expressed as:

Tumor Size (mm) = f(Age)

This function is exactly similar to the predictive model we developed in Chapter 4. The model
was based on cumulative number of vulnerabilities of the given OS with respect to the calendar

time. We implement the same philosophy in case of stomach cancer data.

5.2 Data Description

Our analysis and modeling is based on the data obtained from Surveillance Epidemiology and
End Results (SEER) program of the United States. The SEER database include incidient and
population data with respect to age, sex, race, year of diagnosis, geographic areas (SEER registry
and county), and size of tumors. Figure 33 presents the schematic diagram that reveals the holistic
picture of the data structure.

Figure 33 depicts data from a a total of 11,462 stomach cancer patients collected from 2004 to
2013. The total numbers of patients are further classified into male and female with malignant and
benign tumors. There are so many patients with the same age having different tumor size. We
have computed the mean of tumor size of each age category, then the cumulative tumor size of
each category is determined. Cumulative tumor size measured in millimeters with respect to age is
the fundamental quantitative value for our analysis. We have developed the statistical predictive

model of malignant tumor size for white female category only.

68

WHITES (2,662)

MALIGNANT ‘ AFRICAN

(4,279) AMERICAN (658)

BENIGN (34
(34) OTHERS (959)

WHITES (4,945)

FEMALE (4,313)

Stomach Cancer
(11,462)

- o .

MALIGNANT ‘ AFRICAN

— (7,115) AMERICAN (864)
MALE (7,149) L L

. BENIGN (34) OTHERS (1,306)

Figure 33.: Schematic diagram of stomach cancer patients with malignant and benign tumor size

5.3 Modeling Approach

In this section, the basic aspect of modeling part is highlighted. The derivation of the model was

completely explained in Chapter 4 under section 4.2. The final form of the analytical model is,

Q(t) = c1 cos(wt) + cosin(wt) + cat? + cqt + cs (5.1)

In the given equation (5.1), t refers to the time; in this case age of the patients; Q(t) is the
cumulative tumor size in terms of millimeters. w = 2% depends upon the time period T and T
depends on the data set. In our case for the White Female patient, there are 41 age specific data
points. For one cycle, T' = 41 and w = i—’lr =~ 0.1532484; for one and half cycle, T = 27 and
w = % =~ 0.23271056; for two cycles, T' = 21 and w = 2—717 =~ 0.2991993 and so on. We have
considered just one cycle since we do not have enough cumulative data points in our model and
use w = 0.1532484. Single cycle describes the overall behavior of the given data.

By implementing the computational procedure mentioned in Chapter 4 under Section 4.2, the

estimated values of the parameters are: ¢1=>55.62, ca=-12.99, ¢3=0.24, c4=11.96, and c5=-792.97.

Therefore, the model that provides the cumulative tumor size of the patients at any age t for White

69

Female is given by,

Q) = 55.62cos(0.15t) — 12.99 sin(0.15t)

+0.24t% + 11.96t — 792.97. (5.2)

Figure 34 exhibits predicted 95% confidence band values of cumulative tumor size produced by
our analytical model (5.2) along with the actual data points. The solid red curve represents the
actual and predicted values by the proposed model. The black and green lines represent lower and
upper 95% confidence of the true values. Figure shows a good fit within the given confidence limits.
Since we have a limited number of cumulative data points, it does not perfectly reveal the cyclic
increasing behavior graphically but when the number of data points increases, then it is feasible to

see its pattern via graph.

Curve
— Predicted Curve
— Lower Bound Curve
16014 Upper Bound Curve
1401 1
c ® Actual Data
é 1201 1
o1
N
(9)]
o] _
g 1001
|_
g
E 801 4
=
IS
=1
O 6014
401 4
201 A
l -

4IO 4I5 5IO 5I5 6I0 6I5 7IO 7I5 8IO 8I5
Age

Figure 34.: Prediction with a 95% confidence band of white female patients

70

5.4 Model Diagnostic

We have implemented a graphical procedure to validate our model to detect the model violations if
they exist. We assess goodness of fit through the standardized residuals. It is computed by dividing
the centered residuals by the residual standard error.

Figure 35, the very first graph (left) is plotted to standardized residuals vs. fitted value to
evaluate if there is any indication of variance heterogeneity. Similarly, the second graph (right)
is normal probability plot (or QQ plot) that compares the standardized residuals vs. theoretical

values from a standard normal distribution.

* .
2 24
d . o o
L] . Y
L]
)

1 « * * 14 o
= e * . 3 ®
< =
3 * . . g P
‘0 [
Q [3 L]
@ . o °
B o © Q
g 0 L = 0 L
g e * ® * . £ M
& . . . % Cond

. . . o o 000®®
.
L) ° L]
-1+ . -1+ °
. L]
.
° - °
o .
— _2 -
2 . .
0 500 1000 1500 -2 -1 0 1 2
Fitted Values: Tumor Size(mm) Theoretical Quantiles

Figure 35a.: Standardized residual plot (left) Figure 35b.: Standardized QQ plot (right)

Figure 35, clearly shows no problems with the model assumptions, residual seem to be approxi-
mately normally distributed. In addition to supplement more evidence statistically, we have utilized
Shapiro Wilk Test to assess whether or not residuals are normally distributed. We have made the

following hypothesis:

Hy: Standardized Residuals are Normally Distributed.
H;: Standardized Residuals are not Normally Distributed.

We have assumed an alpha level of 5% i.e. if the P value of the Shapiro Wilk Test is below
0.05 the null hypothesis is rejected. To verify normality of residuals we should not reject the null

hypothesis. Similarly, Shapiro Wilk test statistics value closer to 1 indicates the better agreement

71

to the normality assumptions. In this case, the value of Shapiro Wilk Test is 0.98164 along with p
value of 0.7374. In a nutshell, the null hypothesis is not rejected. This shows the strong statistical

evidence that residuals produced by our analytical model are normally distributed.

5.5 Prediction

The predictive analytical model for cumulative tumor size (mm) is used to project the future tumor
size of the patients. We have applied the proposed model given in equation (5.2) to estimate the
cumulative tumor size from age 81 to 85. The models are fitted using data from age 40 to age 80

and tumor size ranges from age 81 to 85 are estimated by using the fitted model.

Table 13: Cumulative: actual vs predicted tumor size (mm)

AGE
80 81 82 83 84 85

Actual 1659 1701 1746 1798 1850 1896
Predicted 1665 1710 1756 1802 1850 1898

Table 13, shows the predicted cumulative tumor size (mm). To make it more user friendly and
interpretable value needs to be converted to exact tumor size with respect to age. Once we subtract
the current cumulative tumor size to its immediate past cumulative tumor size, the exact tumor
size (mm) in a particular age is obtained. The exact predicted tumor size along with its age is

illustrated in Table 14.

Table 14: Exact: actual vs predicted tumor size (mm)

Age
81 82 83 84 85

Actual 42 45 52 52 46
Predicted 45 46 46 48 48

Utilizing the developed model, we forecasted the tumor size ranges from the age of 81 to 85. This

comparison Table 14 reveals the accuracy and reliability of our developed model.

72

5.6 Contributions

We have generalized the differential equation model initially developed for software vulnerabilities
to stomach cancer data. The proposed analytical model shows significantly better results in terms
of excellent fitting and prediction accuracy. We have presented the chapter contributions in terms

of the following points:

1. The developed model can be used by the physician to make more accurate decision about the

patients.

2. Based on the projected tumor size of the patient different preventative actions can be imple-

mented to decrease the situation more severe.
3. It helps in planning any sort of resources ahead of time both for the patient and doctors.

4. This invention is not only applicable to computer health oriented systems, but it can be used

in engineering products, business and finance forecasting, among others.

73

Chapter 6
Future Research

Our future works mainly consist of three directions. The very first is to integrate software vulnera-
bility and software reliability using Bayesian approach. The second is to improve internal structure
of Common Vulnerability Scoring System (CVSS) framework. The third is to apply power law

process and non-homogeneous Poisson process.

6.1 Integration of Software Vulnerability and Software Reliability

Security and reliability are the major ingredients of a complex software system. When the software
contains a high level of vulnerabilities, then it can be inferred that given software is less reliable
and vice versa. Thus, software reliability can be estimated when the level of the vulnerabilities in

the software is provided and vice versa.

Software Vulnerability Software Reliability
A
Bayesian
Analysis
N €

Figure 36.: Software reliability vs. software vulnerability using Bayesian approach

In the near future, we want to integrate the two independent domains using Bayesian analysis
to quantitatively define the relationship. This idea is demonstrated via the schematic diagram in

Figure 36.

74

6.2 Redesigning the CVSS Framework

Another important research objective that we have for the near future is to completely redesign
the CVSS framework as a whole. As we explained in the previous chapters, CVSS is the open
framework that provides the quantitative scores representing the overall severity and risk of the
known vulnerabilities. It is maintained by the Forum of Incident Response Team (FIRST)
[14]. A CVSS score is on the scale of 0 to 10 and consists of three major metrics group: base,
temporal and environmental as mentioned in Figure 1. Vulnerabilities with the base score ranging
from 0-3.9 is considered Low vulnerability, 4.0-6.9 as Medium, and 7.0-10 as High. Calculation
of the base score depend upon the several metrics and standard equations. CVSS does not explain
the internal methodology to measure the degree of confidence with respect to the calculation of

these scores. We expect to coordinate the NVD team to improve the overall scoring system further.

6.3 Applying Power Law Process and Non-homogeneous Poisson Process

Our primary objective is to develop a set of statistical model and methodologies in cybersecurity.
With respect to the most commonly used and the best available data source, two major methodolo-
gies can be applied to answer several questions in software vulnerability area. Once the intensity
function is identified based on the given data sets in the subject area, we can have several answers

for instance probability of system being exploited is increasing, decreasing, or remains same.

75

1]

References

National Vulnerability Database (NVD),

https://nvd.nist.gov/

Flexera Vulnerability Review (2017),

https:/ /resources.flexera.com/web /pdf/Research-SVM-Vulnerability-Review-2017.pdf

CVE Details,

http://www.cvedetails.com/

Cyber Crime Report (2017),
https://cybersecurityventures.com/2015-wp/wp-content /uploads/2017/10/2017-Cybercrime-

Report.pdf

Abraham, S., & Nair, S. (2014) Cyber security analytics: a stochastic model for security quantification

using absorbing markov chains, Journal of Communications, 9(12), 899-907.

Kijsanayothin, P. (2010) Network security modeling with intelligent and complexity analysis, Ph.D

Dissertation, Texas Tech University.

Phillips, C., & Swiler, L. P. (1998) A graph-based system for network-vulnerability analysis, In Pro-

ceedings of the 1998 workshop on New security paradigms, 71-79.

Balzarotti, D., Monga, M., & Sicari, S. (2006) Assessing the risk of using vulnerable components, In

Quality of Protection, Springer, 65-67.

Mehta, V., Bartzis, C., Zhu, H., Clarke, E., & Wing, J. (2006) Ranking attack graphs, International

Workshop on Recent Advances in Intrusion Detection, Springer, 127-144.

Joh, H., & Malaiya, Y. K. (2011) Defining and assessing quantitative security risk measures using
vulnerability lifecycle and cvss metrics, International Conference on Security and Management (SAM),

10-16.

76

[11]

[12]

Singhal, A.,; & Ou, X. (2017) Security risk analysis of enterprise networks using probabilistic attack

graphs, Network Security Metrics, 53-73.

Xie, L., Zhang, X., & Zhang, J. (2013) Network security risk assessment based on attack graphs, JCP,

8(9), 2339-2347.

Mell, P., Scarfone, K. and Romanosky, S.(2007) A complete guide to the common vulnerability scoring
system version 2.0, FIRST-Forum of Incident Response and Security Teams, 1-23,

https://www.first.org/cvss/cvss-v2-guide.pdf

Forum of Incident Response and Security Teams (FIRST),

https://www.first.org/about

Rahimi, S., & Zargham, M. (2013), Vulnerability scrying method for software vulnerability discovery

prediction without a vulnerability database, IEEE Transactions on Reliability, 62(2), 395-407.

Scandariato, R., Walden, J., Hovsepyan, A., & Joosen, W. (2014), Predicting vulnerable software

components via text mining, IEEE Transactions on Software Engineering, 40(10), 993-1006.

Shin, Y., & Williams, L. (2013), Can traditional fault prediction models be used for vulnerability

prediction?., Empirical Software Engineering, 18(1), 25-59.

Nguyen, V. H., & Tran, L. M. S. (2010), Predicting vulnerable software components with dependency

graphs,Proceedings of the 6th International Workshop on Security Measurements and Metrics, ACM.

Alhazmi, O. H., & Malaiya, Y. K. (2006, January), Prediction capabilities of vulnerability discovery

models, Reliability and Maintainability Symposium, IEEE, 86-91.

Musa, J. D., & Okumoto, K. (1984), A logarithmic poisson execution time model for software reliability

measurement, Proceedings of the 7th international conference on Software engineering, IEEE, 230-238.
Rescorla, E. (2005), Is finding security holes a good idea?., IEEE Security & Privacy, 3(1), 14-19.

Anderson, R. (2002), Security in open versus closed systems?the dance of Boltzmann, Coase and Moore.,

Technical report, Cambridge University, England.

Pokhrel, N. R., & Tsokos, C. P. (2017), Cybersecurity: A Stochastic Predictive Model to Determine

Overall Network Security Risk Using Markovian Process, Journal of Information Security, 8(02), 91-105.

77

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

33]

[34]

[35]

[36]

Jha, S., Sheyner, O., & Wing, J. M. (2002), Minimization and reliability analyses of attack graphs,

Technical Report, Carnegie-Mellon University Pittsburgh PA School of Computer Science.

Kemmerer, R. A., & Vigna, G. (2002), Intrusion detection: a brief history and overview, Computer,

35(4), supl27-supl30.
Bilge, L., & Dumitras T., An empirical study of zero-day attacks in the real world, CCS’12, 16-18.

Xie, A., Cai, Z., Tang, C., Hu, J., & Chen, Z. (2009), Evaluating network security with two-layer attack

graphs, Computer Security Applications Conference IEEE, 127-136.

Bolch, G., Greiner, S., De Meer, H., & Trivedi, K. S. (2006), Queueing networks and Markov chains:

modeling and performance evaluation with computer science applications, John Wiley & Sons.
Trivedi, K. S. (2011), Probability & Statistics with Reliability, PHI Learning Pvt. Limited.

Sahner, R. A., Trivedi, K.,& Puliafito, A. (2012). Performance and reliability analysis of computer
systems: an example-based approach using the SHARPE software package. Springer Science & Business

Media.

Abraham, S., & Nair, S. (2014), Cyber security analytics: a stochastic model for security quantification

using absorbing markov chains, Journal of Communications, 9(12), 899-907.
Cinlar, E. (2013), Introduction to stochastic processes, Courier Corporation.

Sheyner, O., & Wing, J. (2003), Tools for generating and analyzing attack graphs, International Sym-

posium on Formal Methods for Components and Objects, 344-371.

Mehta, V., Bartzis, C., Zhu, H., Clarke, E., & Wing, J. (2006), Ranking attack graphs, Advances in

Intrusion Detection Springer, 127-144.

Hewett, R., & Kijsanayothin, P. (2008), Host-centric model checking for network vulnerability analysis,

Computer Security Applications Conference, IEEE, 225-234.

Ammann, P., Pamula, J., Ritchey, R., & Street, J. (2005), A host-based approach to network attack

chaining analysis, Computer Security Applications Conference, IEEE.

Pokhrel, N. R., Rodrigo, H., & Tsokos, C. P. (2017), Cybersecurity: Time Series Predictive Modeling
of Vulnerabilities of Desktop Operating System Using Linear and Non-Linear Approach, Journal of

Information Security, 8(04), 362.

78

[38]

[39]

[40]

[41]

[42]

[49]

[50]

National Institute of Standard and Technology (NIST) Report (2014),

http://www.nist.gov/

Secunia Vulnerability Review (2015),

https://secunia.com/?action=fetch & filename=secunia _vulnerability review 2015 _pdf.pdf

Vulnerability Review (2016),

http://www.flexerasoftware.com/enterprise/resources/research/vulnerability-review/

Microsoft Vulnerabilities Study (2015), Mitigating Risk by Removing User Privileges,

http://learn.avecto.com/2015-microsoft-vulnerabilities-report

Othmane, L. B., Chehrazi, G., Bodden, E., Tsalovski, P., & Brucker, A. D. (2017), Time for addressing
software security issues: prediction podels and impacting factors, Data Science and Engineering, 2(2),

107-124.

Desktop Operating System Market Share,

https://www.netmarketshare.com/

https://assets.documentcloud.org/documents/2459197/bit9-carbon-black-threat-research-report-

2015.pdf

Phillips, P.C.& Perron, P.(1998) Testing for a unit root in time series regression, Biometrika,75(2)
335-346.

Frank, R. J., Davey, N., & Hunt, S. P. (2001), Time series prediction and neural networks, Journal of

Intelligent and Robotic Systems, 31(1-3), 91-103.

Edwards, T., Tansley, D., Frank, R., & Davey, N. (1997), Traffic trends analysis using neural networks,

Int Workshop on Applications of Neural Networks to Telecommunications.

Patterson, D. W., Chan, K. H., & Tan, C. M. (1993), Time series forecasting with neural nets: a
comparative study, International Conference on Neural Network Applictions to Signal Processing, 269-

274.

Bengio, S., Fessant, F., & Collobert, D. (1995), A connectionist system for medium-term horizon time

series prediction, Intl. Workshop Application Neural Networks to Telecoms, 308-315.

Cortes, C., & Vapnik, V. (1995), Support-vector networks, Machine Learning, 20(3), 273-297.

79

[51]

Musa, John D and Okumoto, Kazuhira(1984), A logarithmic poisson execution time model for software

reliability measurement, 7th international conference on Software engineering, 230-238.

Anderson, Ross(2002), Security in open versus closed systems? the dance of Boltzmann, Coase and

Moore, Technical report, Cambridge University, England.

O. H. Alhazmi and Y.K. Malaiya(2005), Quantitative vulnerability assessment of systems software,

Annual Reliability and Maintainability Symposium, 615-620.

O. H. Alhazmi and Y. K. Malaiya(2008), Application of vulnerability discovery models to major oper-

ating systems, IEEE Transactions on Reliability, 57(1), 14-22.

Alhazmi;, Omar H., and Yashwant K. Malaiya(2005), Modeling the vulnerability discovery process,

Software Reliability Engineering, IEEE, 10-pp.

Alhazmi; Omar H., and Yashwant K. Malaiya(2006), Prediction capabilities of vulnerability discovery

models, Reliability and Maintainability Symposium, IEEE 86-91.

Baty, Florent, Christian Ritz, Sandrine Charles, Martin Brutsche, Jean-Pierre Flandrois, and Marie-
Laure Delignette-Muller(2015), A toolbox for nonlinear regression in R: the package nlstools, Journal

of Statistical Software 66(5), 1-21.

Bishop, Peter, and Robin Bloomfield. A conservative theory for long-term reliability-growth prediction

[of software](1996), IEEE Transactions on Reliability 45(4), 550-560.

G. Grothendieck, nls2: Non-linear regression with brute force, R package version 0.2.,

https://CRAN.R-project.org/package=nls2

Joh, HyunChul, and Yashwant K. Malaiya(2011), Defining and assessing quantitative security risk
measures using vulnerability lifecycle and cvss metrics, International conference on security and man-

agement (sam), 10-16.

V. H. Nguyen and F. Massacci(2012), An idea of an independent validation of vulnerability discovery
models, 89-96.

E. Rescorla (2005), Is finding security holes a good idea, IEEE Computer Securuty & Privacy, 14-19.

R Core Team(2017), R: A language and environment for statistical computing, R Foundation for Sta-
tistical Computing, Vienna, Austria,

https://www.R-project.org/

80

[64]

[65]

https://assets.documentcloud.org/documents/2459197/bit9-carbon-black-threat-research-report-

2015.pdf

Net Market Share,

https://www.netmarketshare.com/

Pokhrel, N.R., Rodrigo, H. and Tsokos, C.P. (2017), Cybersecurity: time series predictive modeling of
vulnerabilities of desktop operating system using linear and non-linear approach, Journal of Information

Security, 8, 362-382.

American Cancer Society (ACS),

https://www.cancer.org/cancer/stomach-cancer/about/key-statistics.html.

Chao Gao (2017), Statistical analysis and modeling of stomach cancer data, Ph.D Dissertation, Uni-

versity of South Florida.

Abbas, A.K., Bassam, R.(2009), Phonocardiography signal processing, Morgan and Claypool Publish-

ers.

Abdulkader, S.N., Atia, A., Mostafa, M.M. (2015), Brain computer interfacing: Applications and

challenges, Egyptian Informatics Journal. 12(2), 213-230.

Addison, P.S. (2005) Wavelet transforms and the ECG: A review, physiological measurement. 26(5),

155-199.

81

Appendix A
Base Score: Common Vulnerability Scoring System (CVSS)Version 2.0

Base Equation:

Scoring equations and algorithms for the base metric groups are described below. Further discussion
of the origin and testing of this equation is available at www.first.org/cvss. Base score is the
foundation of the scoring system, it is listed as:

Base Score = round_to_1_decimal(((0.6*Impact)+(0.4*Exploitability)—1.5)*f(Impact))
Impact = 10.41*(1-(1-ConfImpact)*(1-IntegImpact)*(1- Availlmpact))

Exploitability = 20* AccessVector*AccessComplexity* Authentication

f(impact)= 0 if Impact=0, 1.176 otherwise

AccessVector = case AccessVector of
requires local access: 0.395
adjacent network accessible: 0.646
network accessible: 1.0

AccessComplexity = case AccessComplexity of
high: 0.35
medium: 0.61
3 27 et [o

ARuthentication = case Authentication of
requires multiple instances of authentication: 0.45
requires single instance of authentication: 0.56
requires no authentication: 0.704

ConfImpact = case ConfidentialityImpact of
none: 0.0
partial: .ty
complete: 0.660

IntegImpact = case IntegrityImpact of
none: 0.0
partial: 02715
complete: 0.660

Availlmpact = case AvailabilityImpact of
none: 0.0
partial: 0.275
complete: 0.660

82

Appendix B

Base Metric Evaluation Score

Example:

In this section, we have selected the specific vulnerability (CVE-2003-0818) to demonstrate how its

base score is computed. More explanation is available at www.first.org/cvss.

BASE METRIC EVALUATION SCORE
Access Vector [Hetwork] (1.00)
Aecess Complexity [Low] (0.71)
Authentication [Hone] (0.704)
Confidentiality Impact [Complete] (0.66)
Integrity Impact [Complete] (0.66)
Availability Impact [Complete] (0.66)
FORMULA BASE SCORE
Impact = 10.41* (1-(0.34*0.34*0.34)) == 10.0
Exploitability = 20*0.71*0.704*1 == 10.0

£ (Impact) = 1.176
BaseScore =((0.6*10.0)+(0.4*10.0)-1.5)*1.176
== ({10.0)

Thus, final value 10.0 is the base score of CVE-2003-0818 vulnerability.

83

	Statistical Analysis and Modeling of Cyber Security and Health Sciences
	Scholar Commons Citation

	tmp.1570140005.pdf.HN5Gf

