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Abstract

We begin this dissertation by presenting a brief introduction to the theory of solitons and integrability (plus

some classical methods applied in this field) in Chapter 1, mainly using the Korteweg-de Vries equation as

a typical model. At the end of this Chapter a mathematical framework of notations and terminologies is

established for the whole dissertation.

In Chapter 2, we first introduce two specific matrix spectral problems (with 3 potentials) associated with

matrix Lie algebras sl(2,R) and so(3,R), respectively; then we engender two soliton hierarchies. Analysis

of their Hamiltonian structures based on the trace identity affirms that the obtained hierarchies are Liouville

integrable. This chapter shows the entire process of how a soliton hierarchy is engendered by starting from

a proper matrix spectral problem.

In Chapter 3, at first we elucidate the Gauge equivalence among three types u-linear Hamiltonian opera-

tors, and construct then the corresponding Bäcklund transformations among them explicitly. Next we derive

the if-and-only-if conditions under which the linear coupling of the discussed u-linear operators and matrix

differential operators with constant coefficients is still Hamiltonian. Very amazingly, the derived conditions

show that the resulting Hamiltonian operators is truncated only up to the 3rd differential order. Finally, a

couple of relevant examples of integrable hierarchies are illustrated.

In Chapter, 4 we first present a generalized modified Korteweg-de Vries hierarchy. Then for one of the

equations in this hierarchy, we build the associated Riemann-Hilbert problems with some equivalent spectral

problems. Next, computation of soliton solutions is performed by reducing the Riemann-Hilbert problems to

those with identity jump matrix, i.e., those correspond to reflectionless inverse scattering problems. Finally

a special reduction of the original matrix spectral problem will be briefly discussed.

iv



Chapter 1

Introduction

1.1 Solitons

Solitons are meant in mathematics and physics to be nonlinear self-reinforcing wave packets that preserve

their shapes while traveling at constant speeds. The story about the discovery of solitary waves by Scott

Russell on the Union Canal at Hermiston in 1834, is well known to soliton scientists just like Genesis to the

Christians [1]. Russell even spent time making his own water tanks to investigate these waves, but in the

middle of 19th century his experimental results cannot be explained by the existing Newton’s or Bernoulli’s

theories of hydrodynamics or water waves.

In 1870s, as an early attempt of theoretical exploration to the above phenomenon, J. Boussinesq and L.

Rayleigh published an effective approximation treatment and presented the corresponding solutions [2, 3, 4].

Then in 1895, Diederik Korteweg and Gustav de Vries formally proposed a partial differential equation

(PDE) for the description of wave propagation on shallow water surfaces (like what Russell had observed),

which is known to all of us today as the Korteweg-de Vries equation (KdV equation) [5].

But the KdV equation then immediately slept in silence for almost seven decades till it was woken up

in 1965––by using a finite difference method, N. Zabusky from Bell Labs and M. Kruskal in Princeton

University first introduced computer simulations to gain analytical insights upon soliton behavior in media

governed by the KdV equation [6]. Then by associating this result with that of an earlier numerical sim-

ulation performed by Fermi, Pasta, Ulam and Tsingou [7] (a 1-dimensional lattice of equal point masses

connected by nonlinear anharmonic strings), they also showed that the KdV equation can be viewed as the

continuum limit of this FPUT system, whose behavior remained unexplained till then (Indeed the modern

discoveries associated with the KdV equation later on was also more or less stimulated by the unexpected

numerical results yielded from this FPUT model).

In 1967, Gardner, Greene, Kruskal and Miura proposed the inverse scattering transform method that

propelled the study of exact solutions of the KdV equation on its right way [8]. Meanwhile, the mathematical

tools of Lax pairs and Lax’s equation developed by Peter Lax [9] have extended this to computing solutions

of various soliton-related models.
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Mathematically, solitons are solutions of a class of nonlinear PDEs which describe those nonlinear trav-

elling waves that are characterized by:

• The waves do not disperse, so they preserve stabilized profiles (see eqn. (1.22) below) and can travel

rather long distances if not much disturbed;

• They are localized (on every dimension), also see eqn. (1.22);

• Due to the nonlinearity, the traveling speed of such a wave is dependent on its amplitude (usually the

speed increases with the growth of amplitude, though not necessarily in proportion, see eqn. (1.22)

again), and multiple waves do not interact according to the superposition principle;

• The waves interact elastically.

The very last item above, i.e., the elastic interaction between soliton waves, can be basically pictured in

one spatial dimension as: suppose two soliton waves are initially well separated, the one with larger speed is

located to the left of the other, and both are travelling from left to right; then the taller, faster wave will catch

up with the smaller, slower one, and overlap it through a nonlinear interaction; finally both retrieve their

profiles unchanged from the collision, and still keep traveling with their own speeds independently, leaving

but only a phase shift as the evidence of undergoing a collision.

Physically, the origin of solitons lies in the mechanism of a balanced competition between nonlinear and

dispersive effects in the medium––or in another word, in the cases when the effect that causes the wave

dispersion is properly compensated by the involved nonlinear effect, such an subtle interplay between the

two may give rise to a stable, localized and uniformly traveling wave profile.

So far solitons have been observed not only in shallow water surfaces, but also through experiments in

fiber optics [10], in magnets described by Landau-Lifshitz equation or continuum Heisenberg model [11],

in the low-frequency collective motion in proteins and DNA [12] and in plasmas, etc.

1.2 The KdV equation as an integrable model

The KdV equation reads

ut + 6uux + uxxx = 0, (1.1)

where u = u(x, t) is the to-be-determined function depending spatially on x and temporally on t, was

first introduced by Joseph Boussinesq in 1877, and particularly revisited by Diederik Korteweg and Gustav

de Vries in 1895 as a mathematical model to depict the waves propagating on shallow water surfaces.

The remarkable significance of the KdV equation lies in the fact that it is the prototypical example of an
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integrable model, i.e., a nonlinear partial differential (or difference) equation whose solutions to well-posed

initial or boundary valued problems can be presented [13] in terms of elementary functions, through a finite

number of algebraic operations, composition of functions, and computing limits (including differentiations,

integrals, etc.).

The KdV equation can be solved in various ways depending on how the initial or boundary values are

posed. The most fundamental and amazing property of the KdV equation (indeed of most integrable models)

is that it can be expressed as the compatibility condition of a pair of linear differential equations. Suppose

that L and M are two operators. Let ϕ be an eigenfunction of L, with λ ∈ C (called a spectral parameter)

being the corresponding eigenvalue; and let the action of M upon φ give the associated temporal evolution

of the eigenfunction, i.e.:

Lϕ = λϕ, ϕt = Mϕ. (1.2)

By taking the partial derivative of (1.2) with respect to t, one obtains:

∂

∂t
Lϕ = Ltϕ+ Lϕt = λtϕ+ λϕt,

⇒ Ltϕ+ LMϕ = λtϕ+ λMϕ = λtϕ+M(λϕ) = λtϕ+MLϕ,

⇒ (Lt + [L,M ])ϕ = λtϕ, (1.3)

where [L,M ] = LM−ML is the operator commutator of L andM . Hence it follows from the nontriviality

of the eigenfunction ϕ(x, t) in the isospectral case of λt = 0 that the so-called Lax’s equation holds:

Lt + [L,M ] = 0. (1.4)

Peter Lax discovered in 1968 that given L = ∂2

∂x2
+ u which is the Sturm-Liouville operator, so that

Lϕ = λϕ reproduces the one-dimensional linear Schrödinger equation, and ifM is a third-order differential

operator

M = −4
∂3

∂x3
− 6u

∂

∂x
− 3ux, (1.5)

then the Lax’s equation is equivalent to the KdV equation, i.e.,

Lt + [L,M ] = ut + 6uux + uxxx = 0. (1.6)

More generally, if a nonlinear PDE, in a way similar to that for the KdV equation presented above, arises

as the compatibility condition of two operators L and M , (1.4) for the corresponding pair of L,M is then

called the Lax representation of that PDE, and L and M are said to make a Lax pair.

3



The Lax’s equation in one-dimensional space actually can be presented in a more general form. Consider

two matrix spectral problems, with a potential function u and a spectral parameter λ, i.e., a pair of first-

order linear matrix differential equations, with respect to the one-dimensional coordinate x and time t,

respectively:  φx = U(x, t, u, λ)φ,

φt = V (x, t, u, λ)φ,
(1.7)

where φ is an n-dimensional column vector, and U and V are n×nmatrices. By imposing the compatibility

condition (φx)t = (φt)x, one obtains the so-called zero curvature equation:

Ut − Vx + [U, V ] = 0. (1.8)

The zero curvature equation admits spatial eigenvalue dependence other than Lφ = λφ, and is hence more

general than the Lax’s equation.

From the view of Lagrangian mechanics, if one sets u(x, t) = ψx(x, t), the KdV equation can also be

derived as the Euler-Lagrange equation of motion associated with the Lagrangian density

L =
1

2
∂xψ∂tψ + (∂xψ)3 − 1

2
(∂2
xψ)2. (1.9)

A “milestone” discovery in the development of general methods for solving the KdV equation is that

the KdV may possess infinitely many independent conservation laws. A conservation law of a system is

mathematically characterized by ∂
∂tT + ∂

∂xX = 0 (see Definition 1.4.7 below), from which one can derive
d
dt

∫
Ω Tdx = 0 by applying the Green’s formula upon a domain Ω ⊆ RN , and so

∫
Ω Tdx comes out to be a

conserved quantity.

The first two conservation laws of the KdV equation were found with ease due to their mathematical

simplicity and physical significance:

ut = −(3u2 + uxx)x, (1.10a)

(u2)t = −(4u3 + 2uuxx − u2
x)x, (1.10b)

which correspond obviously to the conservation laws of momentum and energy in the system, respectively.

The third conservation of the KdV was then found by Whitham in 1965 to be:

(u3 − 1

2
u2
x)t = −

(
9

2
u4 + 3u2uxx− 6uu2

x − uxuxxx +
1

2
u2
xx

)
x

. (1.11)

Kruskal and Zabusky later discovered the fourth and fifth conservation laws of the KdV. This number kept

growing till Miura found the tenth. The thus-arisen conjecture that the KdV equation may have an infinite

4



number of independent conservation laws was finally proved by Miura, Gardner and Kruskal in 1968 by

using the Miura transformation which bridges the KdV equation and the so-called modified KdV equation

(we shall omit the very much detail here)

vt − 6v2vx + vxxx = 0 (1.12)

in terms of u = −(v2 +vx) (Note that through this transformation, if v solves (1.12), then u solves the KdV,

but not necessarily the converse).

Another amazing property of the KdV equation is that, as an evolutionary equation in the form of ut =

K[u] = K(x, u(k)), K[u] on the r.h.s can be written in the form of a Hamiltonian operator acting on a

Hamiltonian functional in two alternative ways. Firstly,

ut =
∂

∂x
(−uxx − 3u2) = J1δH1, (1.13)

where δ denotes the variational derivative with respect to u (See Definition 1.4.5 below) and

J1 =
∂

∂x
, H1 =

∫ (1

2
u2
x − u3

)
dx. (1.14)

Secondly, which is less obvious, K[u] can be alternatively written as

ut = (∂3
x + 4u∂x + 2ux)u = J2δH2, (1.15)

where

J2 = ∂3
x + 4u∂x + 2ux, H2 =

∫ (
−1

2
u2
)
dx. (1.16)

Both J1 and J2 can be shown to be Hamiltonian because they satisfy the skew-symmetric properties and the

Jacobi identity; bothH1 andH2 are Hamiltonian functionals (these concepts will also be briefly introduced

below). This fantastic fact indicates that not only the KdV equation is a Hamiltonian system, but also it pos-

sesses the so-called bi-Hamiltonian structure. This bi-Hamiltonian structure is in fact intimately associated

with the infinitely many conservation laws mentioned just above, and the Liouville integrability of the KdV

equation as a Hamiltonian system. We shall elucidate a bit more about the connections among them below.

1.3 Methodologies for solving the KdV equation

We shall begin with using a traditional method to obtain a solution of the KdV equation with a stable

localized wave shape that travels to the right at a constant speed c (i.e., a simplest one-soliton solution). Such

a solution can intuitively be conjectured to take the form u(x, t) = f(x − ct) = f(w), where w = x − ct.

5



By substituting this into the KdV equation ut + 6uux + uxxx = 0, we are given an ordinary differential

equation (ODE)

−c df
dw

+ 6f
df

dw
+
d3f

dw3
= 0, (1.17)

which can be integrated directly to give

−cf + 3f2 +
d2f

dw2
= C1, (1.18)

where C1 is a constant of integration. Next we multiply (1.18) with df
dw and integrate again to yield a first

order ODE

−cf df
dw

+ 3f2 df

dw
+
d2f

dw2

df

dw
= C1

df

dw
⇒ − c

2
f2 + f3 +

1

2

(
df

dw

)2

= C1f + C2.

where C2 involves as the second constant of integration. The condition that u(x, t) = f(w) is localized

requires f, dfdw ,
d2f
dw2 → 0 as x→ ±∞, from which it follows apparently that C1 = C2 = 0.

It remains therefore to solve

− c
2
f2 + f3 +

1

2

(
df

dw

)2

= 0 ⇒
(
df

dw

)2

= f2(c− 2f), (1.19)

or equivalently, to integrate ∫ f

f(0)
(w)

dz

z
√
c− 2z

=

∫ w

0
dη. (1.20)

For this purpose we introduce the change of variable 2z = csech2y, such that one derives easily

c− 2z = c(1− sech2y) = ctanh2y, dz = −c sinhy
cosh3y

dy ⇒ dz

z
√
c− 2z

= − 2√
c
dy.

By this change of variable, the upper and lower limits of the integral on l.h.s of (1.20) must also be trans-

formed to sech−1
√

2f/c and sech−1
√

2f(0)/c, respectively. The integration therefore gives

− 2√
c

(
sech−1

√
2f

c
− sech−1

√
2f(0)

c

)
= w = x− ct, (1.21)

from which it follows immediately that

f =
c

2
sech2

(√
c

2
(x− ct) + a

)
. (1.22)

where the phase shift a can be easily determined by the value of f at w = 0, i.e., a = sech−1
√

2f(0)
c .

Below we shall introduce a few systematical methodologies which are pretty well-developed in solving

the KdV equation as an integrable model.
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1.3.1 Bäcklund transform

The study of Bäcklund transformations can be traced back to originate from the work of Albert Victor

Bäcklund, a swedish geometrist. When he was investigating surfaces with negative constant curvatures, he

discovered that one can build a transformation between the two existing solutions u1 and u2 to the sine-

Gordon equation (to his knowledge at that time) uxy = sinu, which reads

u2,x = u1,x + 2a sin
(u1 + u2

2

)
, u2,y = −u1,y −

2

a
sin
(u1 − u2

2

)
,

where a is an arbitrary constant. This is the well-known (auto) Bäcklund transformation for the sine-Gordon

equation. Just like the KdV equation, Bäcklund transformations did not find quick applications and slept in

a even longer silence, before it resurrected in 1960s.

The fundamental idea of Bäcklund transform in solving a nonlinear PDE is that, by starting from a “triv-

ial” solution (i.e., a solution pretty obvious and easy to guess), the Bäcklund transform can map it to a new

solution which is less trivial [15] (if the new solution solves the same PDE, this Bäcklund transform is said

to be Auto-Bäcklund; but in general, Bäcklund transform can also map the original solution to something

which solves another related PDE).

To show how Bäcklund transform works for the KdV equation, we begin by letting u = vx for some

function v, and this leads to

ut + 6uux + uxxx = (vx)t + 6vxvxx + (vx)xxx =
∂

∂x
(vt + 3v2

x + vxxx) = 0. (1.23)

It follows then that vt + 3v2
x + vxxx must be dependent of t only, i.e.,

vt + 3v2
x + vxxx = f(t). (1.24)

We now introduce

w = v −
∫ t

f(s)ds, (1.25)

such that w clearly satisfy

wt + 3w2
x + wxxx = 0. (1.26)

Next we introduce an Auto-Bäcklund transform given by

ṽx = β − wx −
1

2
(ṽ − w)2, (1.27a)

ṽt = −wt + (ṽ − w)(ṽxx − wxx)− 2(ṽ2
x + ṽxwx + w2

x), (1.27b)

where the involved β is called the Bäcklund parameter. Through a routine computation one can derive that

ṽ satisfies also ṽt + 3ṽ2
x + ṽxxx = 0, as w does.
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At this point we’d like to trivially pick w = 0, such that (1.27a), (1.27b) now reduce to

ṽx = β − 1

2
ṽ2, (1.28a)

ṽt = ṽṽxx − 2ṽ2
x. (1.28b)

We can easily solve (1.28a) by integration and substitute the result into (1.28b) to find a solution ṽ. One

of the solutions we can have is

ṽ(x, t) =
√

2βtanh
[√β

2
(x− 2βt) + a

]
, (1.29)

(where, just like in (1.22), the phase shift a arises as a constant of integration) from which it follows finally

the one-soliton solution

u(x, t) = ṽx = βsech2
[√β

2
(x− 2βt) + a

]
. (1.30)

(1.30) is clearly equivalent to (1.22) since the latter is reproduced by setting β = c
2 in the former.

Bäcklund transform can also be used to compute multiple-soliton solutions of the KdV equation.

1.3.2 Inverse scattering transform

The inverse scattering transform (IST) is in all senses a very typical example of the so-called “inverse prob-

lems” in mathematics. In contrast to direct problems, in which we straightforwardly derive consequences

(that we expect to observe) based on given causal factors, in an inverse problem we try to figure out from a

set of observed consequences the causal factors that lead to these consequences (which in general, is more

difficult). I.S.T. was developed originally because of its importance in exploring atomic and particle struc-

tures in physics, i.e., via an scattering experiment, the physicists expect to reconstruct the potential that

causes plenty of atomic and subatomic phenomena from the phase shifts of the various scattered waves.

Very famous, for example, is the Rutherford scattering experiment carried out in 1911, through which the

existence of an atomic nucleus in an atom (a milestone in exploration of atomic structure) was demonstrated.

But mathematically, the inverse scattering transform method is usually called the “nonlinear version of

Fourier analysis” in the following sense: For example, when we solve a PDE about a dependent variable

u depending on a spatial independent variable x and a temporal independent variable t, i.e., u = u(x, t),

with initial conditions u(x, 0) = f(x) and ut(x, 0) = g(x), we first perform a Fourier transform w.r.t x-

––this converts the original PDE into an ODE of a Fourier coefficient U(k, t) = F(u)(k) depending on

time t (with k transformed from x now being the Fourier parameter); then by solving this ODE, we find the

temporal evolution of the Fourier coefficient; finally through the inverse Fourier transform, we obtain the

solution u(x, t) that describes the system for any later time t > 0.
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Based on this understanding, the steps of running an inverse scattering transform can be sketched as

follows (of course, solving specified Cauchy problems of the KdV equation also follow these steps; but

since I.S.T. is in this thesis only an auxiliary tool for understanding part of the materials in Chapter 4, and

since presentation for an specific model costs a bit lengthy text, we are going to present only its spirit instead

of detailed computation, and the interested readers may refer to [8, 32, 14]):

• Step 1. Proceed with forward scattering (which is the “direct problem” counterpart of inverse scattering)

to find the Lax pair of the nonlinear PDE that we are studying. The routine procedure is that of solving

a matrix spectral problem, the readers will see how this works in Chapter 4;

• Step 2. Collect the so-called scattering data and compute its time evolution. Scattering data refers to a

set of information that encloses the eigenfunctions associated with each eigenvalue λ, the normalizing

constants and the reflection coefficient. In most cases, the information of scattering data is carried by a

matrix (said to be the scattering matrix). Generally the time evolution of the scattering data is described

by a system of linear ODEs that is solvable.

• Step 3. Finally, one performs the inverse scattering procedure through solving the so-called Gel’fand-

Levitan-Marchenko equation, which is a linear integral equation, to obtain the final solution of the

original nonlinear PDE. Generally all the scattering data will be called in this step, though the process

could be simplified a lot if the reflection coefficient happens to be zero.

So to summarize, Fig. 1 gives a schematic diagram of the inverse scattering procedure. If one replaces in

this figure “scattering” by “Fourier transform”, as well as “Scattering data S” by F(k)(u), respectively, the

figure reduces to a chart flow diagram for solving a linear PDE via the Fourier transform. Therefore one sees

that scattering data for a nonlinear PDE plays the role similar to that of the Fourier transform of a solution

in a linear PDE.

The inverse scattering procedure, in the case of a nonlinear PDE with only one space dimension, can

always be reformulated as a Riemann-Hilbert problem. In higher space dimensions, one obtains instead a

“nonlocal” Riemann-Hilbert problem or a ∂̄−problem [16, 17] (i.e., the problem of solving any differential

equation involving the ∂̄ derivative, e.g., ∂̄f(z, z̄) = g(z, z̄), z ∈ D, where ∂̄ = ∂
∂z̄ , g is a given function

and D is a simply-connected domain of the complex plane).

1.3.3 Hirota bilinear method

There are a bunch of ways through which one can compute multi-soliton solutions of the KdV equation,

such that the elastic interaction between distinct solitons can be investigated and interpreted in mathematical

9



u(x, 0) - Scattering data S(λ, 0)

u(x, t) � Scattering data S(λ, t)
?

Direct Scattering

Inverse Scattering

Compute time

evolution of scattering

data via dispersion

relation ω(k)

Figure 1.: Schematic Diagram of the Inverse Scattering Transform

detail. The most effective one of them is probably the Hirota bilinear method [18].

Hirota first realized that a PDE’s most popular “face” may not be the best one for its mathematical anal-

ysis, and for the KdV equation he insightfully saw the bilinear properties hidden behind, and proposed the

bilinear differential operator based on this understanding:

Let f(x, t) and g(x, t) be sufficiently smooth functions of x and t. Let m,n ≥ 0 be integers. The action

of the Hirota differential operators Dx and Dt upon the product f · g is given by

Dn
xD

m
t f · g =

(
∂

∂x
− ∂

∂x′

)n( ∂

∂t
− ∂

∂t′

)m
f(x, t)g(x′, t′)|x′=x,t′=t

=
∂n

∂x̃n
∂m

∂t̃m
f(x+ x̃, t+ t̃)g(x− x̃, t− t̃)|x̃=t̃=0, (1.31)

in which the involved two ways of definition are obviously equivalent.

It would be straightforward to derive the following properties of the bilinear differential operators: (i)

Dn
xD

m
t f · g = (−1)m+nDn

xD
m
t g · f (from which Dn

xD
m
t f · f = 0, when m + n is odd, is an immediate

consequence); (ii)Dn
xD

m
t f ·1 = ∂nx∂

m
t f ; (iii) Given that ξ1 = ω1t+k1x+ϕ1 and ξ2 = ω2t+k2x+ϕ2, where

ω1, ω2, k1, k2 are constants,Dn
xD

m
t eξ1 ·eξ2 = (ω1−ω2)m(k1−k2)neξ1+ξ2––in particular,Dn

xD
m
t eξ1 ·eξ1 =

0.

In order to apply this to the KdV equation, Hirota also introduced the transformation

u = 2
∂2

∂x2
ln f = 2(ln f)xx =

2(fxxf − f2
x)

f2
, (1.32)

through which the KdV equation is converted into

ut + 6uux + uxxx =

[
(D4

x +DxDt)f · f
f2

]
x

,
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where by definition of the bilinear differential operator,

(D4
x +DxDt)f · f = 2(fxtf − fxft + fxxxxf − 4fxxxfx + 3f2

xx). (1.33)

Therefore f solves the above bilinear version of Kdv equation (D4
x + DxDt)f · f = 0 implies that u =

2(ln f)xx will solve the original KdV equation (but not necessarily the converse). The bilinear property

carried by (1.33) is indeed quite advantageous for constructing explicit exact solutions.

We shall work with this tool to compute multi-soliton solutions of the KdV equation. We suppose that

f = f(x, t) can be expanded as a power series of ε, which is introduced here as a parameter:

f(x, t) = 1 + εf (1) + ε2f (2) + · · · = 1 +
∞∑
k=1

εkf (k), (1.34)

By substituting this expansion of f into (D4
x+DxDt)f ·f = 0, and equating the coefficients of all powers

of ε yields

f
(1)
tx + f (1)

xxxx = 0, (1.35a)

2(f
(2)
tx + f (2)

xxxx) = −(DxDt +D4
x)f (1) · f (1), (1.35b)

f
(3)
tx + f (3)

xxxx = −(DxDt +D4
x)f (1) · f (2), (1.35c)

2(f
(4)
tx + f (4)

xxxx) = −(DxDt +D4
x)(2f (1) · f (3) + f (2) · f (2)), (1.35d)

. . . . . .

One can easily derive that a linear exponential function in the form of

f (1) = eη1 , η1 = ω1t+ k1x+ φ1, ω1 = −k3
1 (1.36)

nontrivially solves (1.35a). By substituting now f (1) in (1.35b) by (1.36), one obtains from the properties of

bilinear differential operators that

f
(2)
tx + f (2)

xxxx = 0. (1.37)

If one takes at this point trivially that f (2) = 0, it follows from (1.35c) that

f
(3)
tx + f (3)

xxxx = 0. (1.38)

Again one can take f (3) = 0. By always applying this logic trivially, it follows naturally that f (4) = f (5) =

· · · = 0. The power series is thus truncated to be finite, and when ε = 1 it gives

f(x, t) = 1 + eη1 ⇒ u = 2(ln f)xx =
k2

1

2
sech2ω1t+ k1x+ φ1

2
. (1.39)
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So far we obtain the simplest solution, one-soliton solution.

Since the equation (1.35a) is linear (i.e., principle of superposition is here applicable), one can naturally

generalize the above one-soliton solution to a two-soliton solution by assuming

f (1) = 1 + eη1 + eη2 , (1.40)

where

η1 = ω1t+ k1x+ φ1, η1 = ω2t+ k2x+ ϕ2, ω1 = −k3
1, ω2 = −k3

2.

By substituting (1.40) into (1.35b), one obtains (nontrivially, ω1k2 − ω2k1 6= 0 is assumed)

f
(2)
tx + f (2)

xxxx = 3k1k2(k1 − k2)2eη1+η2 , (1.41)

from which one solves

f (2) = Ceη1+η2 , with C =

(
k1 − k2

k1 + k2

)2

. (1.42)

Now f (1), f (2) and (1.35c) together will imply

f
(3)
tx + f (3)

xxxx = 0, (1.43)

for which we again can trivially take f (3) = 0 (similar to what we did for the one-soliton solution). Likewise

it follows then that f (4) = f (5) = · · · = 0. Therefore by admitting ε = 1 we obtain that

f(x, t) = 1 + eη1 + eη2 + Ceη1+η2 = 1 + eη1 + eη2 + eη1+η2+A12 , (1.44)

where we have assumed C = eA12 . Therefore the two-solitons’ solution of the KdV equation reads

u = 2[ln(1 + eη1 + eη2 + eη1+η2+A12)]xx. (1.45)

Likewise one can compute the N -soliton solution with N > 2. Obviously the complexity of the involved

computation as well as of the results increases with the growth of N . For example, the 3-soliton solution of

the KdV equation is found to possess the general form

u = 2(ln f)xx,

f = 1 + eη1 + eη2 + eη3 + eη1+η2+A12 + eη1+η3+A13 + eη2+η3+A23

+ eη1+η2+η3+A12+A13+A23 , (1.46)

where

ηj = ωjt+ kjx+ ϕj , eAjl =

(
kj − kl
kj + kl

)2

, ωjkl − ωlkj 6= 0, 1 ≤ j < l ≤ 3. (1.47)
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Satsuma, Freeman and Nimmo ingeniously showed that the multi-soliton solutions to the KdV equation

can be expressed in terms of the Wronskian determinant [19, 20]; Matveev then generalized the Wronskian

determinant to verify the existence of another important class of exact solutions, the so-called positons, to

the KdV equation [21, 22] . Ma and You also greatly enriched these work in 2005 [23].

1.3.4 Riemann-Hilbert problems

Riemann-Hilbert problems (RHP), named after the giant German mathematicians Bernhard Riemann and

David Hilbert, are a class of models which can be used to solve certain differential equations with the

assistance of complex analysis techniques such as analytical continuation. RHP can be presented in slightly

different ways when treating different problems [24]. Here we introduce only the most typical representation

that is widely used in integrable systems.

Let γ ⊂ C be an oriented contour in the complex λ-plane. The orientation defines traditionally the D+

and D− sides of γ as being on the left and right sides of the direction arrow, respectively. Let G be a map

from γ into the set ofN×N invertible matrices (with complex entries), which we shall denote byGLN (C).

An RHP associated with the pair (γ;G) consists in finding an N ×N matrix-valued function Φ(λ) (λ ∈ C)

characterized by [26]:

• Φ(λ) is holomorphic in C\γ;

• Φ+(λ) = Φ−(λ)G(λ) for all λ ∈ γ, where

Φ+(λ) = lim
λ′→λ,λ′∈D+

Φ(λ′), and Φ−(λ) = lim
λ′→λ,λ′∈D−

Φ(λ′); (1.48)

G(λ) involved here is often called the jump matrix in this model; more generally, Φ+(λ) and Φ−(λ)

can be defined as Φ(λ) restricted to λ ∈ D+ and λ ∈ D−, respectively (hence Φ+(λ) and Φ−(λ) are

holomorphic in D+ and D−, respectively);

• Both Φ+(λ) and Φ−(λ) approach the identity matrix as λ→∞ (canonical normalization condition).

To solve the simplest scalar case N = 1, one can rewrite the original multiplicative jump condition into

an additive form with the help of the logarithmic function

log Φ+(λ) = log Φ−(λ) + logG(λ), (1.49)

which can always be solved by using the Cauchy-Plemelj-Sokhotskii formula [27, 28]

log Φ(λ) =
1

2πi

∫
γ

logG(z)

z − λ
dz. (1.50)
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RHPs with N ≥ 1 can be solved also explicitly by (1.50), whenever the involved matrix multiplication

for G is abelian, i.e., when [G(λ1), G(λ2)] := G(λ1)G(λ2)−G(λ2)G(λ1) = 0 for all λ1, λ2 ∈ γ; that is

Φ(λ) = exp

(
1

2πi

∫
γ

logG(z)

z − λ
dz

)
. (1.51)

For a more general non-abelian matrix RHP, formula (1.50) or (1.51) unfortunately ceases to work–it is

so far believed that in such cases the RHP cannot be solved in analytical form by means of contour integrals.

However, reformulating the original problem into an RHP still makes much sense, since it can always be

reduced to the study of a linear singular-integral equation. Indeed, nonabelian RHPs usually arise when

the original problem is nonlinear, so the value of the Riemann-Hilbert reformulation lies in the fact that it

linearizes a nonlinear system effectively.

The Riemann-Hilbert approach has acquired wide applications in integrable systems, orthogonal poly-

nomials, random matrices, and asymptotic analysis. In particular for many integrable systems, the inverse

spectral or inverse scattering problems associated particularly with the Cauchy problems for 1+1 dimen-

sional (typically, space x and time t) PDEs, or the construction of soliton solutions for these systems, can

be formulated as RHPs on the real line R.

In many applications, the jump matrices G(λ) in play often exhibit an oscillatory dependence on x (or t)

as the latter approaches ±∞. The asymptotic estimate of the solution Φ(x, t;λ) of the RHP as x, t→ ±∞

will then involve evaluating the asymptotics of oscillatory contour integrals by using the classical method

of steepest descent or stationary phase. Starting from the pioneering works in 1973 by Shabat, Manakov,

Ablowitz and Newell [29, 30], the asymptotic analysis of integrable systems reached in around 20 years a

new peak marked by the nonlinear steepest descent method for oscillatory RHPs, which was introduced in

1993 by Deift and Zhou [31].

In Chapter 4 we will use the Riemann-Hilbert approach to compute multi-soliton solutions of a gener-

alized mKdV system, hence we’d like to postpone some further discussions till that chapter (with a target-

oriented model, this more effectively helps the readers to see how a RHP works).

What have been so far elucidated or discussed above are based mainly on the KdV equation, since as an

integrable system it is so perfect as well as simple enough for an introduction chapter. Certainly this does

not mean the KdV equation is the only integrable system. Indeed, soliton-generating, possessing Hirota

bilinear forms, infinitely many conservation laws or bi-Hamiltonian structures, as well as the mathematical

tools preliminarily mentioned above, are (to more or less extents) the common characteristics of many other

physically important systems in the frame of integrable systems; for example, the Ablowitz-Kaup-Newell-

Segur equation [32], the Kadomtsev-Petviashvili equation [33] and the Davey-Stewartson equation [34], etc.
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Today mathematicians are still working hard trying to find more such systems and study their behavior.

1.4 Mathematical framework

From now on we shall try to present the work in the language of mathematics. By this chance we set up also

the major notations, concepts and definitions for all chapters in this dissertation.

Let n and m be positive integers. Let t ∈ R, x = (x1, . . . , xn) ∈ X = Rn, and ∂i = ∂
∂xi

. Let

u = (u1, . . . , um)T ∈ U ⊆ Rm, where ui = ui(x, t) (1 ≤ i ≤ m) are functions of x and t. Let

α = (α1, . . . , αn) be a n-tuple multi-index that has αi ≥ 0 for all 1 ≤ i ≤ n. Define accordingly

uiα = Dαui, 1 ≤ i ≤ m, with Dα = ∂α1
1 . . . ∂αnn . (1.52)

Let M ⊆ X × U be a connected open subset (can be sufficiently large for the description of the whole

system). Assume thatA denotes the space of all smooth local functions f(x, u(k)) (k ≥ 0 is a finite integer),

where u(k) stands for the k-th prolongation of u (w.r.t. to x), i.e. to be brief, the set of u and all its possible

partial derivatives with respect to x up to order k ≥ 0 evaluated at the point x (for example, if m = 1 and

n = 2, then u(2) = (u;ux1 , ux2 ;ux1x1 , ux1x2 , ux2x2)). The locality here implies that the dependence of f

on u, i.e. (f(u))(x), is completely determined by the values of u in an arbitrarily small neighborhood of x.

In this dissertation, to make things concise as well as to remind the readers that f(x, u(k)) is a function of

x, u and the derivatives of u, very often we use also the abbreviated symbol f [u] := f(x, u(k)).

1.4.1 Evolution equations

DEFINITION 1.4.1 A system of evolution equations is generally meant to be a system of PDEs of u(x, t) =

(u1(x, t), . . . , um(x, t))T ∈ Rm (t ∈ R, x ∈ Rn) given specifically in the form

∂u

∂t
= K[u] = K(x, u(k)), (1.53)

where K(x, u(k)) ∈ A for some k ≥ 0 (Note that K does not depend explicitly on t).

Certainly an evolution equation can also be an ODE. Even some second order equation, utt = f(u) for

instance, can be reformulated into a first order system by introducing an auxiliary variable v, such that the

equivalent system  ut = v,

vt = f(u)

can be viewed as evolutionary.
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DEFINITION 1.4.2 A Lax pair consists of a spectral operator L and a Lax operator M that may depend on

x, u and ux, uxx, . . . , etc. (but not explicitly on t), such that the Lax’s equation

Lt + [L,M ] = 0,

where [L,M ] = LM − ML is the commutator of L and M (being operators, obviously they could be

non-commutative), represents a a nonlinear system of evolution equations of u = u(x, t).

The Sturm-Liouville operator L = ∂2
x + u and M = −4∂3

x − 6u∂x − 3ux constitute the Lax pair of the

KdV equation.

As a somewhat informal definition, a (matrix) spectral problem is usually meant in the domain of inte-

grable systems to be a first-order differential eigenvalue problem in the form of

φx = M(x, u(k), λ)φ,

whereM is a square matrix whose entries are functions of x,u and derivatives of u w.r.t. x (up to some order

k), as well as of λ (λ serves as the spectral parameter).

Ablowitz, Kaup, Newell and Segur published in 1974 a matrix formalism for the Lax pair [25, 32]. They

introduced a system that consists of a pair of matrix spectral problems with a potential function u and a

spectral parameter λ:

φx = U(t, x, u(k), λ)φ, (1.54a)

φt = V (t, x, u(k), λ)φ, (1.54b)

where φ is an n-dimensional vector, and U and V are n × n matrices. Through applying the isospectral

(λt = 0) compatibility condition φxt = φtx, one obtains Ut − Vx + [U, V ] = 0.

DEFINITION 1.4.3 The zero curvature equation Ut − Vx + [U, V ] = 0, also known as the matrix’s Lax

equation, is given as the compatibility condition φxt = φtx of the matrix spectral problems (1.54a) and

(1.54b). It also represents a nonlinear system of evolution equations.

The matrices U, V are usually also called a Lax pair (of matrix form).

1.4.2 Variational calculus

DEFINITION 1.4.4 [38] Let X = Rn. Let Ω be an open, connected subset of X with smooth boundary ∂Ω.

The goal of a variational problem is to address the extrema of a functional

L[u] =

∫
Ω
L(x, u(n))dx (1.55)
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for a certain class of functions u = u(x) (i.e., they commonly possess some specified properties) defined on

Ω. The integrand L(x, u(n)) in (1.55) is said to be the Lagrangian of the variational problem.

DEFINITION 1.4.5 [38] Let u = u(x), v = v(x) both be m-tuple smooth functions on Ω, and v has a

compact support K ⊆ Ω. Let L[u] be the functional of a variational problem. The variational derivative is

meant to be the m-tuple function δL[u] = (δ1L[u], . . . , δmL[u]), such that

d

dε

∣∣∣
ε=0
L[u+ εv] =

∫
Ω
δL[u(x)] · v(x)dx =

m∑
k=1

∫
Ω
δkL[u]vk(x)dx. (1.56)

where v = (v1, . . . , vm)T . δkL[u] is often written also as δL[u]
δuk

(1 ≤ k ≤ m). (1.56) can be easily proved

by using integration by parts and the fact that v has a compact support K ⊆ Ω.

1.4.3 Conservation laws and symmetries

DEFINITION 1.4.6 Let K,S ∈ Am. The Gateaux derivative of K in the direction of S at the point u is

defined by

K ′[S] = K ′(u)[S] =
∂

∂ε
K(u+ εS)|ε=0. (1.57)

If the Gateaux derivative K ′(u)[S] exists for every S ∈ Am, then one says K is Gateaux-differentiable at u.

DEFINITION 1.4.7 For a PDE

4(x, t, u(x, t)) = 0, (1.58)

where t ∈ R, x ∈ Rn are the spatial and temporal independent variables, respectively, u is the dependent

variable, and 4 is a smooth function of x, t, u and the partial derivatives of u with respect to x and t up to

some order, a conservation law is meant to be an equation characterized as

∂

∂t
T + DivX = 0, (1.59)

(where Div stands for the spatial divergence) which holds for all u that solve (1.58); T = T (x, t, u) and

X = X(x, t, u) are here functions of x, t and u, as well as the partial derivatives of u up to some order.

Usually, T is said to be the conserved density, and X , the conserved flow [35].

The meaning of conservation law lies basically in the fact that if u,X(x, t, u)→ 0 sufficiently rapidly as

|x| → ∞, one derives in the case of one spatial dimension

d

dt

∫ ∞
−∞

Tdx = 0, (1.60)
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or in the case of n spatial dimensions
d

dt

∫
Ω
Tdx = 0, (1.61)

where Ω ⊆ RN is a domain in Rn (it could be Ω = Rn), which implies that∫ ∞
−∞

Tdx = const, or
∫

Ω
Tdx = const, (1.62)

where the inetgral is therefore called a conserved functional. Hence a conserved functional yields a con-

servation law.

Below in this subsection we present the basic concepts related to symmetries according to the manner of

[36].

DEFINITION 1.4.8 A function S = S(x, u(k)) ∈ Am is said to be a symmetry of the (1.53), provided S

solves the linearized equation of (1.53), i.e.,

∂

∂ε
(u+ εS)t

∣∣∣∣ε=0 =
∂

∂ε
K(u+ εS)

∣∣∣∣
ε=0

⇒ dS

dt
= K ′(u)[S], (1.63)

where d/dt stands for the total derivative with respect to t, and K ′(u)[S] is the Gateaux derivative defined

above.

Obviously, the definition of symmetry can also be equivalently written as

dS

dt
=
∂S

∂t
+
∂S

∂u
ut =

∂S

∂t
+ S′(u)[K] = K ′(u)[S] ⇒ ∂S

∂t
== [K,S]. (1.64)

where [K,S] := K ′(u)[S] − S′(u)[K]. It is advantageous to use this commutator [K,S] (K,S ∈ Am) in

some cases, because Am is known to form a Lie algebra [38] with respect to this commutator.

Let L(Am) be the set of linear operators that map Am into itself. Let U be the set of differentiable

operators Φ = Φ(x, u) that map Rn ×Am into L(Am). Thus ΦK = Φ(x, u)K for Φ ∈ U and K ∈ Am is

meant to be the action of the operator Φ upon K.

DEFINITION 1.4.9 Let Φ ∈ U and K ∈ Am. One defines the Lie derivative LKΦ ∈ U of Φ with respect

to K as

(LKΦ)S = Φ[K,S]− [K,ΦS], ∀S ∈ Am. (1.65)

DEFINITION 1.4.10 An operator Φ ∈ U is said to be a hereditary symmetry, if

Φ2[K,S] + [ΦK,ΦS]− Φ[K,ΦS]− Φ[ΦK,S] = 0, ∀K,S ∈ Am. (1.66)
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Evidently, an operator Φ ∈ U is a hereditary symmetry if and only if

LΦKΦ = ΦLKΦ, ∀K ∈ Am. (1.67)

Proof. Since ∀S ∈ Am, (LΦKΦ)S = (ΦLKΦ)S ⇒ Φ[ΦK,S] − [ΦK,ΦS] = Φ(Φ[K,S] − [K,ΦS]),

which is simply a rewriting of (1.66). �

DEFINITION 1.4.11 If the action of an operator Φ ∈ U upon one symmetry of (1.53) gives another symme-

try of (1.53), then Φ is said to be a strong symmetry (or a recursion operator) of (1.53).

It is also easy to verify that an operator Φ ∈ U is a recursion operator of (1.53), if and only if

∂Φ

∂t
+ LKΦ = 0. (1.68)

Moreover, one can also define

Φ′[K]S =
∂

∂ε
Φ(u+ εK)S

∣∣
ε=0

, ∀S ∈ Am, (1.69)

based on which one can derive

LKΦ = Φ′[K]− [K ′,Φ] = Φ′[K]−K ′Φ + ΦK ′. (1.70)

The condition for Φ to be a hereditary symmetry, eqn. (1.66), can thus also be equivalently formulated as

Φ′[ΦK]S − Φ′[ΦS]K − Φ(Φ′[K]S − Φ′[S]K) = 0, ∀K,S ∈ Am. (1.71)

1.4.4 Hamiltonian structures

DEFINITION 1.4.12 Suppose P,Q ∈ A. Define P to be equivalent to Q, denoted by P ∼ Q, if there exists

R = (R1, . . . , Rn) ∈ An, such that Q − P = divR =
∑n

k=1 ∂kRk. Obviously ∼ defines an equivalence

relation on A. Denote P̃ =
∫
Pdx as the equivalence class that P ∈ A belongs to. One then defines the

quotient space of A with respect to ∼, and denote it by F , i.e. F := A/ ∼.

In particular, provided that the functions in A that we are interested in are also all from the Schwartz

space S [37], and P is a conserved density, i.e.,
∫
Pdx is a conserved functional, then if Q ∼ P , it follows

directly that
∫

(P − Q)dx =
∫

divRdx = 0 (since R ∈ Sn); that is, Q is also a conserved density, and∫
Qdx (=

∫
Pdx) is a conserved functional as well since it possesses the same constant of motion as

∫
Pdx

does.
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Thus we can define also the inner product

(P,Q) =

∫
P TQdx =

∫ r∑
i=1

PiQidx,

for P = (P1, . . . , Pr)
T , Q = (Q1, . . . , Qr)

T ∈ Ar.

DEFINITION 1.4.13 [38] Let J : Am → Am be a linear operator. Let P,Q ∈ F . The Poisson bracket of

P and Q with respect to J is defined formally as

{P,Q}J =

∫
δP · J δQdx. (1.72)

The Poisson bracket defined above is indeed the infinite-dimensional generalization of the Poisson bracket

applied in N -dimensional classical Hamiltonioan mechanics [38]:

{f, g} =
N∑
k=1

(
∂f

∂qk

∂g

∂pk
− ∂f

∂pk

∂g

∂qk

)
. (1.73)

for two given functions f(q1, . . . , qN ; p1, . . . , pN ; t) and g(q1, . . . , qN ; p1, . . . , pN ; t). Obviously in both

cases, the Poisson bracket is a binary operation; and its particular importance lies in the fact that mathemat-

ically, the time evolution of a Hamiltonian dynamical system is intimately related to the Poisson bracket.

DEFINITION 1.4.14 The adjoint D∗ of a linear operator D : Am → Am is given by∫
P · DQdx =

∫
(D∗P ) ·Qdx, ∀P,Q ∈ Am. (1.74)

DEFINITION 1.4.15 [38] Let J : Am → Am be a linear operator. If for all P,Q,R ∈ F , the Poisson

bracket with respect to J satisfies always both

(i) the condition of skew-symmetry, i.e.,

{P,Q}J = −{Q,P}J ; (1.75)

and (ii) the Jacobi identity, i.e.,

{{P,Q}J ,R}J +{{R,P}J ,Q}J +{{Q,R}J ,P}J = {{P,Q}J ,R}J +cycle(P,Q,R) = 0, (1.76)

then J is said to be Hamiltonian.

It follows immediately from the above definitions that a Hamiltonian operator J must be skew-adjoint,

i.e., J ∗ = −J . Moreover, it is easy to derive that a skew-adjoint operator J is Hamiltonian if and only if

for all P,Q,R ∈ Am, ∫
P TJ ′(u)[JQ]Rdx+ cycle(P,Q,R) = 0, (1.77)

where ′(u)[.] denotes the Gateaux derivative defined above.
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DEFINITION 1.4.16 A system of evolution equations is said to be Hamiltonian, provided it can be formu-

lated in the form of
∂u

∂t
= K[u] = J · δH, (1.78)

where J is a Hamiltonian operator andH is a Hamiltonian functional, i.e.,H =
∫
Hdx ∈ F .

DEFINITION 1.4.17 [44] Let G be a differential function. Define its one-form to be

dG :=
n∑
k=1

∂G

∂xk
dxk +

∂G

∂t
dt+

m∑
α=1

∑
#I≥0

∂G

∂uαI
duαI , (1.79)

where uαI = uα in case #I = 0 (i.e., cardinality of I is 0); if the cardinality #I = l ≥ 1, it is understood

that uαI = ∂luα

∂xi1 ...∂xil
for I = (i1, . . . , il), 1 ≤ ik ≤ m, 1 ≤ k ≤ l.

Let J∞ be the so-called infinite jet space, which is the conceptual extension of (x, u(k)) by admitting

k →∞ in the k-th prolongation u(k).

DEFINITION 1.4.18 [44] Let K be a set consisting of integer elements and m > 0 be an integer. We define

a set of m-tuples of differential functions

{Gk = (G1
k, . . . , G

m
k )T |k ∈ K}

to be independent, if all the m-tuples of one forms

{dGk = (dG1
k, . . . , dG

m
k )T |k ∈ K},

are linearly independent everywhere in the infinite jet space J∞. A class of conserved functionals {Hk}k∈K
of a Hamiltonian system (1.78) is called independent, if all the characteristics {J δHk

δu }k∈K of the Hamilto-

nian vector fields associated with J are independent.

Based on Definitions 1.4.17 and 1.4.18, one can now come up with:

DEFINITION 1.4.19 [38, 44] One claims that a Hamiltonian system (1.78) is Liouville integrable, if there

is a sequence of conserved functionals {Hk}∞k=0 that are in involution pairwise, i.e., the Poisson bracket of

any pair of conserved functionals from {Hk}∞k=0 associated with the Hamiltonian operator J is identical to

0:

{Hk1 ,Hk2}J =

∫ (δHk1
δu

)T
J δHk2

δu
= 0, k1, k2 ≥ 0; (1.80)

and the characteristics of the Hamiltonian vector fields associated with J

Kk := J δHk
δu

, k ≥ 0, (1.81)

are independent.
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DEFINITION 1.4.20 [38] A pair of m × m matrix differential operators J and M is said to construct a

Hamiltonian pair if c1J + c2M is always a Hamiltonian for all c1, c2 ∈ R.

If a system of evolution equations can be formulated as

ut = K[u] = J δH1 =MδH0, (1.82)

where J ,M forms a Hamiltonian pair, and bothH1 andH0 are proper Hamiltonian functionals, then (1.82)

is said to be a bi-Hamiltonian system.

F. Magri had first introduced the concepts of bi-Hamiltonian structures and systems [86], major conclu-

sions about bi-Hamiltonian systems can be briefly summarized in the following theorem [38, 86]:

THEOREM 1.4.1 [38] Let J andM be a Hamiltonian pair, and J is non-degenerate (i.e., if J isAr → As,

and D is As → A, then D · J = 0 always implies D = 0; the non-degeneracy guarantees the existence of

J −1). Let

ut = K1[u] = J δH1 =MδH2 (1.83)

be the corresponding bi-Hamiltonian system of evolution equations, which generates the corresponding

recursion operator R = M · J −1. Let K0 = J δH0. With the aid of R we can recursively generate the

sequence

Kn = RKn−1, n ≥ 1, (1.84)

where Kn−1 lies in the image ofR for every n ≥ 1 is assumed. Then there exists accordingly a sequence of

functionals {Hk}∞k=1, such that

(i) the sequence

utn = Kn[u] = J δHn =MδHn−1 (1.85)

(n ≥ 1) engenders a hierarchy of bi-Hamiltonian systems of evolution equations;

(ii) the corresponding evolutionary vector fields vn = vKn are all pairwise commutative, i.e.,

[vm, vn] = 0, m, n ≥ 0; (1.86)

(iii) the Hamiltonian functionals in the sequence {Hk}∞k=1 are all pairwise in involution w.r.t. the Poisson

brackets associated with both J andM:

{Hm,Hn}J = {Hm,Hn}M = 0, m, n ≥ 0. (1.87)

The sequence of Hamiltonian functionals {Hk}∞k=1 thus provides an infinite collection of conservation

laws for each bi-Hamiltonian system utk = Kk(k ≥ 1).
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Chapter 2

Integrable Hamiltonian hierarchies with three potentials based on matrix spectral

problems associated with sl(2,R) and so(3,R)

2.1 Matrix spectral problems

A pretty matured and powerful mathematical tool for generating integrable soliton hierarchies is to start from

a well-selected matrix spectral problem, construct the corresponding zero curvature formulation and solve

it. The Korteweg-de Vries hierarchy [9], the Ablowitz-Kaup-Newell-Segur hierarchy [32], the Kaup-Newell

hierarchy [50], the Dirac hierarchy [49] and the Heisenberg hierarchy [51], etc., are known as celebrated

examples of soliton hierarchies that are generated by using this technique. This technique is also equipped

with a well-developed Analysis toolkit for Hamiltonian structures in terms of the trace identity[52, 74],

or in more general sense the variational identity[47, 48], through which it has been shown that all the

above-mentioned soliton hierarchies are characterized by Hamiltonian or bi-Hamiltonian (or even multiple-

Hamiltonian) structures, and are Liouville integrable[14, 39, 40].

We recall that in Chapter 1, a matrix spectral problem is informally defined as a first-order differential

eigenvalue problem in the form of

ϕx = M(x, u(k), λ)ϕ,

where M is a square matrix whose entries are functions of x,u and derivatives of u w.r.t. x (up to a certain

order k), as well as of a spectral parameter λ that is also the eigenvalue of this problem.

In the frame of integrable systems, the major purpose of solving matrix spectral problems is to find the

key element––Lax pair which has been mentioned in Chapter 1. To put it more exactly, once given an

appropriate spectral matrix U(u, λ), in order to engender a soliton hierarchy, one has to correspondingly

find a sequence of Lax matrices {V [k](u, λ)}, each of which together with U , constitute a Lax pair (U, V [k])

that satisfies the zero curvature equation

Utk − V
[k]
x + [U, V [k]] = 0.

This sequence of zero curvature equations represents in turn a sequence of nonlinear evolutationary equa-

tions, which, by running through some subsequent analysis (e.g. computing Hamiltonian structures), very
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often can finally be demonstrated to be Liouville integrable or possess bi- or multi-Hamiltonian structures.

First of all, we shall review briefly the procedures for constructing soliton hierarchies by means of zero

curvature equations [52, 74]. To begin with, we select an appropriate matrix loop algebra g̃ associated

usually with a semisimple matrix Lie algebra g, with [P,Q] = PQ−QP (∀P,Q ∈ g) being the commutator,

and consider a spatial matrix spectral problem based on g̃:

ϕx = Uϕ, U = U(u, λ) ∈ g̃, (2.1)

where λ is the spectral parameter, and U represents a matrix whose entries involve the potential functions of

x and t. Our goal is to look for a solution expressed in terms of a Laurent expansion in λ

W = W (u, λ) =
∑
k≥0

W0,kλ
−k, W0,k ∈ g, i ≥ 0, (2.2)

to the stationary zero curvature equation (i.e., by assuming Ut = 0 in the zero curvature equation)

Wx = [U,W ]. (2.3)

The solution W is important not only in computing the soliton hierarchy, but also plays key roles in the

subsequent Hamiltonian analysis by means of trace or variational identity. As long as W is determined, we

shall attempt to construct a sequence of matrix spectral problems with respect to t, that is, we formulate for

all m ≥ 0 the Lax matrices

V [m] = V [m](u, λ) = (λmW )+ + δm ∈ g̃, (2.4)

with (λmW )+ denoting the polynomial part of λmW in λ, to construct

ϕtm = V [m]ϕ = V [m](u, λ)ϕ, m ≥ 0, (2.5)

in terms of the Lax matrices

V [m] = V [m](u, λ) = (λmW )+ + δm ∈ g̃, m ≥ 0. (2.6)

The δm introduced above represents a modification term which is used to correct the Lax matrices in case

of necessity, to make sure that the zero curvature equations (i.e., the compatibility conditions of (2.1) and

(2.5))

Utm − V [m]
x + [U, V [m]] = 0, m ≥ 0, (2.7)

will generate a soliton hierarchy

utm = Km(u), m ≥ 0. (2.8)
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Such a soliton hierarchy, in general, is characterized by the following Hamiltonian structures

utm = Km(u) = J
δHm
δu

, m ≥ 0, (2.9)

where J is a Hamiltonian operator, and {Hm}∞m=0 is a sequence of Hamiltonian functionals that can in

principle be determined using the trace identity [52, 74] if the associated matrix Lie algebras are semi-

simple:
δ

δu

∫
tr
(
W
∂U

∂λ

)
dx = λ−γ

∂

∂λ
λγ tr

(
W
∂U

∂u

)
, γ = −λ

2

d

dλ
ln|tr(W 2)|, (2.10)

or through the variational identity [47, 48] provided the involved matrix Lie algebras are non-semi-simple:

δ

δu

∫
〈∂U
∂λ

,W 〉dx = λ−γ
∂

∂λ
λγ〈∂U

∂u
,W 〉, γ = −λ

2

d

dλ
ln|〈W,W 〉|. (2.11)

Here, 〈., .〉 is an ad-invariant, nondegenerate and symmetric bilinear form defined on the underlying matrix

loop algebra g̃. The Hamiltonian structures of the whole hierarchy are regarded as well established, as long

as J and {Hm}∞m=0 can be worked out in a recursive manner. In most cases, the recursion structure revealed

by such an analysis will lead to Liouville integrability, rather often to bi-Hamiltonian structures as well

(could be even multi-Hamiltonian structures).

When restricted to the real field, there are only two 3-dimensional Lie algebras, i.e., the real special

linear Lie algebra sl(2,R) and the real special orthogonal Lie algebra so(3,R). They have derived Lie

algebras exactly identical to themselves (hence are also three-dimensional). In particular, so(3,R) offers us

a different basis as well as a new starting point for constructing soliton hierarchies, and such works were

therefore frequently reported in recent years [41, 42, 43, 45, 46]. This Lie algebra consists simply of all

3× 3 antisymmetric real matrices, and is realized by simply using the following 3× 3 matrices as the basis:

e1 =


0 0 −1

0 0 0

1 0 0

 , e2 =


0 0 0

0 0 −1

0 1 0

 , e3 =


0 −1 0

1 0 0

0 0 0

 . (2.12)

This basis has a set of beautiful cyclic commutators (so many people start liking to use this Lie algebra):

[e1, e2] = e3, [e2, e3] = e1, [e3, e1] = e2. (2.13)

In addition, the basis of sl(2,R) is (i.e. sl(2,R) Lie algebra consists of all 2×2 real matrices with a vanishing

trace)

e1 =

 1 0

0 −1

 , e2 =

 0 1

0 0

 , e3 =

 0 0

1 0

 , (2.14)
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with pairwise commutators being

[e1, e2] = 2e2, [e1, e3] = −2e3, [e2, e3] = e1. (2.15)

The Lie algebra sl(2,R) and so(3,R), when extended to be on the complex field C, become sl(2,C) and

so(3,C), respectively. The latter two can be proved to be isomorphic to one another, and are therefore the

same Lie algebra. However, when restricted to the real field R, sl(2,R) and so(3,R) are still pretty different

things.

It has already been many years since sl(2,R) was applied to construction of soliton hierarchies by starting

from matrix spectral problems [9, 32, 49, 50, 51, 52].

We introduce now the corresponding matrix loop algebras of sl(2,R) and so(3,R) as below, which will

be called frequently in this chapter, i.e.:

s̃l(2,R) =

∑
k≥0

Lkλ
n−k|Lk ∈ sl(2,R), k ≥ 0, n ∈ Z

 (2.16)

and

s̃o(3,R) =

∑
k≥0

Lkλ
n−k|Lk ∈ so(3,R), k ≥ 0, n ∈ Z

 , (2.17)

It is obvious that these two matrix loop algebras contain the following linear combinations:

c1λ
k1e1 + c2λ

k2e2 + c3λ
k3e3, (2.18)

where k1, k2, k3 ∈ Z, and c1, c2, c3 are real constants, and e1, e2, e3 can be chosen as either (2.12) or (2.14).

We shall organize this chapter in the following way: in Section 2.2, somewhat enlightened by the Dirac

hierarchy, we shall introduce a new matrix spectral problem associated with s̃l(2,R), and proceed with

computing the corresponding soliton hierarchy by means of the zero curvature equation; in Section 2.3,

then, computations are performed for a formally identical matrix spectral problem whose loop algebra is

but substituted by s̃o(3,R). Hamiltonian structures are computed by using the trace identity in these two

sections to indicate that the two engendered soliton hierarchies are both Liouville integrable. Finally we

make a few concluding remarks in Section 2.4.

2.2 A new soliton hierarchy based on the sl(2,R) Lie algebra

2.2.1 From spectral problem to soliton hierarchy

In this subsection we shall begin with a matrix spectral problem based on the sl(2,R) Lie algebra. That is,

we bring forth a 2× 2 matrix spectral problem
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ϕx = Uϕ = U(u, λ)ϕ, where u = (p, q, r)T and ϕ = (ϕ1, ϕ2)T , (2.19)

for which the spectral matrix U ∈ s̃l(2,R) reads

U = U(u, λ) = pe1 + (q + λ)e2 + (r + λ)e3 =

 p q + λ

r + λ −p

 , (2.20)

with the basis (e1, e2 and e3) being given by (2.14). The mathematical profile U looks similar to the matrix

spectral problem

U = U(u, λ) = pe1 + (q + λ)e2 + (q − λ)e3 =

 p q + λ

q − λ −p

 (2.21)

of the Dirac hierarchy [49], of which a generalization for so(3,R) has been reported [43]. There are yet two

fundamental distinctions between (2.20) and (2.21). Firstly, in (2.20) we get same signs “+” leading λ, but

in (2.21) these signs are different; Secondly, in (2.20) there are 3 dependent variables p, q and r, however

(2.21) has merely 2 variables p and q.

We shall follow the procedures given in Section 2.1 by beginning with solving the stationary zero curva-

ture equation

Wx − [U,W ] = 0, W ∈ s̃l(2,R). (2.22)

We assume that W has the form

W = ae1 + (b+ c)e2 + (b− c)e3 =

 a b+ c

b− c −a

 , (2.23)

and so the stationary zero curvature equation (2.22) gives
ax = −2λc− (r − q)b− (r + q)c,

bx = (r − q)a+ 2pc,

cx = −2aλ+ 2pb− a(r + q).

(2.24)

Next we assume that a, b and c can be expressed in terms of Laurent expansions

a =
∑
i≥0

aiλ
−i, b =

∑
i≥0

biλ
−i, c =

∑
i≥0

ciλ
−i, (2.25)

and apply the initial values

a0 = c0 = 0, b0 = 1, (2.26)
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through a comparison of the coefficients of all powers of λ in (2.24), we arrive at:
ai+1 = −1

2ci,x + pbi − 1
2(r + q)ai,

ci+1 = −1
2ai,x −

1
2(r − q)bi − 1

2(r + q)ci,

bi+1,x = (r − q)ai+1 + 2pci+1,

i ≥ 0. (2.27)

We impose the following condition while proceeding with the above recursive calculation:

ai|u=0 = bi|u=0 = ci|u=0 = 0, i ≥ 1, (2.28)

such that the whole sequence of functions {ai, bi, ci|i ≥ 1} can be uniquely determined. By running (2.27),

we list here the three members that are leading this sequence as follows:

a1 = p, b1 = 0, c1 = −1

2
(r − q);

a2 =
1

4
(rx − qx)− 1

2
p(r + q), b2 =

1

8
(r − q)2 − 1

2
p2, c2 = −1

2
px +

1

4
(r2 − q2);

a3 =
1

4
pxx +

1

8
p(3r2 + 3q2 + 2rq)− 1

2
p3 − 3

8
(rrx − qqx) +

1

8
(rqx − qrx),

b3 =
1

2
p2(r + q)− 1

4
p(rx − qx) +

1

4
px(r − q)− 1

8
(r + q)(r − q)2,

c3 = −1

8
(rxx − qxx) +

1

4
p(rx + qx) +

1

2
px(r + q) +

1

4
p2(r − q)

− 1

16
(r − q)(3r2 + 3q2 + 2rq).

These data indicate that {a1, b1, c1; a2, b2, c2; a3, b3, c3} are all local (since they are all differential poly-

nomials whose values at a specified point x0 are completely determined by u = (p, q)T and its derivatives

with respect to x in an arbitrarily small neighborhood of x0), and may naturally suggest that the entire se-

quence of {ai, ci, bi}∞i=1 could be all local. This is actually the truth that can be justified by applying the

method of mathematical induction as follows: First by following (2.22), and observing that both U and W

are from s̃l(2,R), we get (recalling that trace has the remarkable properties of tr(X + Y ) = trX + trY , and

tr(XY ) = tr(Y X))

[tr(W 2)]x = tr[(W 2)x] = tr(WWx +WxW )

= 2tr(WWx) = 2tr(W [U,W ]) ≡ 0.

Hence tr(W 2) must be a constant. Noticing also that tr(W 2) = 2(a2 + b2 − c2), and recalling (2.26), it

follows

a2 + b2 − c2 ≡ (a2 + b2 − c2)|u=0 = 1. (2.29)
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Then we substitute a, b, c by their Laurent expressions, apply again the initial values (2.26), and through

setting the coefficients of λ−i in (2.29) to 0, we arrive at

bi = −1

2

∑
m+n=i,m,n≥1

(aman + bmbn − cmcn), i ≥ 1. (2.30)

By keeping (2.30) in mind and recalling the first two recursion relations in (2.27), and directly applying the

mathematical induction, it follows that for all i ≥ 1, ai, bi, ci appear in the face of differential polynomials

of u, and thus, they must be all local. The mathematical induction indicates also that the differential order

of ai reads i− 1, the differential order of bi reads i− 2, and the differential order of ci reads i− 1 (i ≥ 2).

With the knowledge of {ai, bi, ci|i ≥ 1} in hand, let (λmW )+ denote the polynomial part of λmW in λ,

we thus arrive at

d

dx
(λmW )+ − [U, (λmW )+]

=

m∑
k=0

[ak,xe1 + (bk,x + ck,x)e2 + (bk,x − ck,x)e3]λm−k

−

[
pe1 + (λ+ q)e2 + (λ+ r)e3,

m∑
k=0

(
ake1 + (bk + ck)e2 + (bk − ck)e3

)
λm−k

]

=

m∑
k=0

[ak,xe1 + (bk,x + ck,x)e2 + (bk,x − ck,x)e3]λm−k

−
m∑
k=0

2p(bk + ck)λ
m−ke2 +

m∑
k=0

2p(bk − ck)λm−ke3 +

m∑
k=0

2(λ+ q)akλ
m−ke2

−
m∑
k=0

(λ+ q)(bk − ck)λm−ke1 −
m∑
k=0

2(λ+ r)akλ
m−ke3 +

m∑
k=0

(λ+ r)(bk + ck)λ
m−ke1

=

m∑
k=0

(
ak,x + 2λck − (q − r)bk + (q + r)ck

)
λm−ke1

+

m∑
k=0

(bk,x + ck,x + 2λak + 2qak − 2pbk − 2pck)λ
m−ke2

+

m∑
k=0

(bk,x − ck,x − 2λak − 2rak + 2pbk − 2pck)λ
m−ke3

=

m∑
k=0

(
ak,x + 2ck+1 − (q − r)bk + (q + r)ck

)
λm−ke1 − 2cm+1e1 + 2c0λ

m+1e1

+

m∑
k=0

(bk,x + ck,x + 2ak+1 + 2qak − 2pbk − 2pck)λ
m−ke2 − 2am+1e2 + 2a0λ

m+1e2

+

m∑
k=0

(bk,x − ck,x − 2ak+1 − 2rak + 2pbk − 2pck)λ
m−ke3 − 2am+1e3 + 2a0λ

m+1e3
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= −2cm+1e1 − 2am+1e2 + 2am+1e3

=

 −2cm+1 −2am+1

2am+1 2cm+1

 , m ≥ 0, (2.31)

where

ak,x + 2ck+1 − (q − r)bk + (q + r)ck = 0,

bk,x + ck,x + 2ak+1 + 2qak − 2pbk − 2pck = 0,

bk,x − ck,x − 2ak+1 − 2rak + 2pbk − 2pck = 0,

for all k ≥ 0, which can be concluded from (2.27), are applied in the last several steps of derivation. This

computation also convinces us why the initial data (2.26) were chosen this way.

This expression,−2cm+1e1−2am+1e2+2am+1e3, does not generally agree with Utm = ptme1+qtme2+

rtme3, hence one must amend modification terms to fix the imbalance. We observe that

[U, e2] = −(r + λ)e1 + 2pe2, [U, e3] = (q + λ)e1 − 2pe3,

we thus employ a sequence of Lax operators that are amended by modification terms

V [m] = (λmW )+ + δm, with δm = βbm+1e3 + βbm+1e2, m ≥ 0,

with β being an arbitrary constant. To this stage we obtain

V [m]
x − [U, V [m]]

=

 −2cm+1 + β(r − q)bm+1 −2am+1 + βbm+1,x − 2βpbm+1

2am+1 + βbm+1,x + 2βpbm+1 2cm+1 − β(r − q)bm+1

 ,
and then, the associated zero curvature equations

Utm − V [m]
x + [U, V [m]] = 0, m ≥ 0,

will generate a soliton hierarchy

utm =


p

q

r


tm

= Km =


−2cm+1 − β(q − r)bm+1

−2am+1 + βbm+1,x − 2βpbm+1

2am+1 + βbm+1,x + 2βpbm+1

 , m ≥ 0. (2.32)
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Since the sequence {ai, bi, ci|i ≥ 1} is known to be all local, as a consequence, it naturally follows that the

entire hierarchy of soliton equations are all local. We list here only the first two nonlinear members:

ut1 =


p

q

r


t1

= K1 =


K1,a

K1,b

K1,c

 ,
where

K1,a = px −
1

2
(r2 − q2) +

1

8
β(r − q)3 − 1

2
β(r − q)p2,

K1,b = −1

2
(rx − qx) + p(r + q) +

1

4
β(r − q)(rx − qx)− βppx −

1

4
βp(r − q)2 + βp3,

K1,c =
1

2
(rx − qx)− p(r + q) +

1

4
β(r − q)(rx − qx)− βppx +

1

4
βp(r − q)2 − βp3,

and

ut2 =


p

q

r


t2

= K2 =


K2,a

K2,b

K2,c

 ,
where

K2,a =
1

4
(rxx − qxx)− 1

2
p(rx + qx)− px(r + q)− 1

2
p2(r − q)

+
1

8
(r − q)(3r2 + 3q2 + 2rq) +

1

2
βp2(r2 − q2)− 1

4
βp(r − q)(rx − qx)

+
1

4
βpx(r − q)2 − 1

8
β(r + q)(r − q)3,

K2,b = −1

2
pxx −

1

4
p(3r2 + 3q2 + 2rq) + p3 +

3

4
(rrx − qqx)− 1

4
(rqx − qrx)

− βp3(r + q) +
1

2
βp2(rx − qx)− 1

2
βppx(r − q) +

1

4
βp(r + q)(r − q)2

+
1

2
β(rx + qx)p2 + (r + q)βppx −

1

4
βp(rxx − qxx) +

1

4
βpxx(r − q)

− 1

8
β(r − q)(3rrx − qxr + qrx − 3qqx),

K2,c =
1

2
pxx +

1

4
p(3r2 + 3q2 + 2rq)− p3 − 3

4
(rrx − qqx) +

1

4
(rqx − qrx)

+ βp3(r + q)− 1

2
βp2(rx − qx) +

1

2
βppx(r − q)− 1

4
βp(r + q)(r − q)2

+
1

2
β(rx + qx)p2 + (r + q)βppx −

1

4
βp(rxx − qxx) +

1

4
βpxx(r − q)

− 1

8
β(r − q)(3rrx + qrx − qxr − 3qqx).
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2.2.2 Analysis of Hamiltonian structures

The Hamiltonian structures of a soliton hierarchy typically has the following mathematical expression:

utk = Kk(u) = J
δHk
δu

, k ≥ 0, (2.33)

where J is a Hamiltonian operator, and {Hk}∞k=0 is a sequence of Hamiltonian functionals that, in principle,

can be determined through the trace identity (2.10), or in general by using the variational identity (2.11).

To this stage, because the involved Lie algebra sl(2,R) is semisimple, for the soliton hierarchy (2.32) we

shall employ the trace identity to produce Hamiltonian structures. As the first step, a quick differentiation

directly gives

∂U

∂λ
=

 0 1

1 0

 , ∂U

∂p
=

 1 0

0 −1

 , ∂U

∂q
=

 0 1

0 0

 , ∂U

∂r
=

 0 0

1 0

 ,
and

tr
(
W
∂U

∂p

)
= 2a, tr

(
W
∂U

∂q

)
= −(c− b),

tr
(
W
∂U

∂r

)
= c+ b, tr

(
W
∂U

∂λ

)
= 2b.

Insert all the above into the trace identity, and thus the identity is indeed equivalent to

δ

δu

∫
2b dx = λ−γ

∂

∂λ
λγ


2a

b− c

b+ c

 .
Balancing the coefficients that are leading all powers of λ, we have that for all m ≥ 0,

δ

δu

∫
2bm+1dx = (γ −m)


2am

bm − cm

bm + cm

 .
Because γ is a constant, it can be determined by looking at a special case, for example, one picks m = 1

and concludes that it must be γ = 0; the variational identity thus become

δ

δu

∫ (
−2bm+1

m

)
dx =


2am

bm − cm

bm + cm

 , m ≥ 1.
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Naturally it follows that one can take the Hamiltonian functionals to be

Hm =

∫ (
−2bm+1

m

)
dx, m ≥ 1. (2.34)

Recalling (2.33) and particularly that bm+1,x = 2pcm+1 + (r − q)am+1, we arrive at

Km = J


2am+1

bm+1 − cm+1

bm+1 + cm+1

 =


−2cm+1 + (r − q)βbm+1

−2am+1 − 2pβbm+1 + βbm+1,x

2am+1 + 2pβbm+1 + βbm+1,x

 , (2.35)

where

J =


0 1 + 1

2(r − q)β −1 + 1
2(r − q)β

−1− 1
2(r − q)β β∂ β∂ − 2βp

1− 1
2(r − q)β β∂ + 2βp β∂

 . (2.36)

A rather routine computation (could be performed with Maple) reveals that the Poisson bracket of J is

anti-symmetric and satisfies the Jacobi identity, therefore the operator J is Hamiltonian. Therefore the

Hamiltonian structures of the hierarchy (2.32) can thus be written down as:

utm = Km = J
δHm+1

δu
, m ≥ 0, (2.37)

with the Hamiltonian operator J and the Hamiltonian functionalsHm’s being explicitly given by (2.36) and

(2.34), respectively.

According to Definitions 1.4.17–1.4.19 (whose statements effectively take advantages of the characteris-

tics of the associated Hamiltonian vector fields), we must show two properties before we can claim that a

soliton hierarchy is Liouville integrable: (i) the infinitely many conserved functionals are pairwise commu-

tative; and (ii) these conserved functionals have characteristics that are functionally independent. For our

soliton hierarchy (2.32), the fact that the conserved functionals are commutative is ensured by their zero

curvature representations that actually form a Virasoro algebra which is commutative (refer to related liter-

atures [53, 54, 55, 56]). We should emphasize that all these Hamiltonian functionals actually correspond to

common conservation laws shared by every soliton equation in the soliton hierarchy (2.32).

Keeping in mind also the Hamiltonian structures from (2.37) and the distinct differential orders of the

sequence {ai, bi, ci|i ≥ 1}, the differential recursion structure of the hierarchy thus tells us (because clearly,

a group of differential functions is said to be independent, provided that the differential orders of its members

are all pairwise distinct), the corresponding characteristics of the conserved functionals are functionally

independent. To summarize, the soliton hierarchy (2.32) is Liouville integrable in accordance with the

Definition 1.4.19. To put it more accurately, all equations in the soliton hierarchy (2.32) have an infinite
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number of independent conserved functionals that pairwise commute in the sense of (1.80), and an infinite

number of generalized symmetries that pairwise commute in the sense of:

[Kn,Kl] := K ′n(u)[Kl]−K ′l(u)[Kn] = J
δ{Hn,Hl}J

δu
= 0, n, l ≥ 0, (2.38)

with K ′ standing for the Gateaux derivative of K.

2.3 An so(3,R)-counterpart

2.3.1 From spectral problem to soliton hierarchy

We continue in this section to present an so(3,R)-counterpart of the matrix spectral problem in Section 2.2.

We again begin with a matrix spectral problem:

ϕx = Uϕ = U(u, λ)ϕ, where u = (p, q, r)T and ϕ = (ϕ1, ϕ2, ϕ3)T , (2.39)

(thus the wave function ϕ accordingly has 3 components) for which the spectral matrix U belonging to

s̃o(3,R) reads

U = U(u, λ) = pe1 + (q + λ)e2 + (r + λ)e3 =


0 −r − λ −p

r + λ 0 −q − λ

p q + λ 0

 , (2.40)

it differs however from that in (2.20) because the basis is that of so(3,R) given in (2.12). This matrix spectral

problem has 3 dependent variables, too.

Just like what we have done in Section 2.2, we first work on the stationary zero curvature equation

Wx − [U,W ] = 0, W ∈ s̃o(3,R). (2.41)

Similarly, by assuming W to be

W = ae1 + (b+ c)e2 + (b− c)e3 =


0 −b+ c −a

b− c 0 −b− c

a b+ c 0

 , (2.42)

the stationary zero curvature equation [U,W ]−Wx = 0 yields
ax = −(r − q)b− (r + q + 2λ)c,

bx = 1
2(r − q)a+ pc,

cx = 1
2(r + q + 2λ)a− pb.

(2.43)
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Again by applying the assumption that a, b and c are Laurent expansions in λ

a =
∑
i≥0

aiλ
−i, b =

∑
i≥0

biλ
−i, c =

∑
i≥0

ciλ
−i, (2.44)

and employing the initial conditions

a0 = c0 = 0, b0 = 1, (2.45)

we obtain through balancing the coefficients leading all powers of λ
ai+1 = pbi − 1

2(r + q)ai + ci,x,

ci+1 = −1
2(r − q)bi − 1

2(r + q)ci − 1
2ai,x,

bi+1,x = +1
2(r − q)ai+1 + pci+1,

i ≥ 0. (2.46)

Note that we still use the following condition while running the above recursive steps:

ai|u=0 = bi|u=0 = ci|u=0 = 0, i ≥ 1, (2.47)

such that the whole sequence {ai, bi, ci|i ≥ 1} is worked out in a unique manner. Upon running (2.46), the

first three members of {ai, bi, ci|i ≥ 1} are computed and listed below:

a1 = p, b1 = 0, c1 = −1

2
(r − q);

a2 = −1

2
(rx − qx)− 1

2
p(r + q), b2 = −1

8
(r − q)2 − 1

4
p2, c2 = −1

2
px +

1

4
(r2 − q2);

a3 = −1

2
pxx +

1

8
p(r2 + q2 + 6rq)− 1

4
p3 +

3

4
(rrx − qqx)− 1

4
(rqx − qrx),

b3 =
1

4
p2(r + q)− 1

4
px(r − q) +

1

4
p(rx − qx)− 1

8
(r + q)(r − q)2,

c3 =
1

4
(rxx − qxx) +

1

4
p(rx + qx) +

1

2
px(r + q) +

1

8
p2(r − q)

− 1

16
(r − q)(r2 + q2 + 6rq).

Likewise, by running mathematical induction as what we have done in Section 2.2, we can again prove the

localness of the sequence {ai, bi, ci|i ≥ 1}, and that the differential order of ai reads i − 1, the differential

order of bi reads i− 2, and the differential order of ci reads i− 1 (i ≥ 2).

Upon having the results of {ai, bi, ci|i ≥ 1} that are computed recursively, next we calculate (we omit

here the lengthy intermediate steps that we have presented for sake of clarity in Sec 2.2)

d

dx
(λmW )+−[U, (λmW )+]

= −2cm+1e1 + am+1e2 − am+1e3

=


0 am+1 2cm+1

−am+1 0 −am+1

−2cm+1 am+1 0

 , m ≥ 0. (2.48)
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This however does not agree generally with the shape of Utm = ptme1 + qtme2 + rtme3, and hence modifi-

cation terms again have be introduced to correct the Lax operators. Likewise by noticing

[U, e2] = −(r + λ)e1 + pe3, [U, e3] = (q + λ)e1 − pe2,

we choose a sequence of Lax operators corrected by modification terms

V [m] = (λmW )+ + δm, with δm = βbm+1e3 + βbm+1e2, m ≥ 0,

where β is an arbitrary constant. To this stage we obtain

V [m]
x − [U, V [m]] =


0 −Z3 −Z1

Z3 0 −Z2

Z1 Z2 0

 ,
where

Z1 = −2cm+1 + β(r − q)bm+1,

Z2 = am+1 + βpbm+1 + βbm+1,x,

Z3 = −am+1 − βpbm+1 + βbm+1,x,

and then, the associated zero curvature equations

Utm − V [m]
x + [U, V [m]] = 0, m ≥ 0,

will generate a hierarchy of solition equations

utm =


p

q

r


tm

= Km =


−2cm+1 + β(r − q)bm+1

am+1 + βpbm+1 + βbm+1,x

−am+1 − βpbm+1 + βbm+1,x

 , m ≥ 0. (2.49)

Since the sequence of functions {ai, bi, ci|i ≥ 1} is known to be all local, as a consequence, we can therefore

claim with confidence that the whole hierarchy of soliton equations are local. Again we write down here the

very first two nonlinear members from this hierarchy:

ut1 =


p

q

r


t1

= K1 =


K1,a

K1,b

K1,c

 ,
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where

K1,a = px −
1

2
(r2 − q2)− 1

8
β(r − q)3 − 1

4
β(r − q)p2,

K1,b = −1

2
(rx − qx)− 1

2
p(r + q)− 1

4
β(r − q)(rx − qx)− 1

2
βppx

− 1

8
βp(r − q)2 − 1

4
βp3,

K1,c =
1

2
(rx − qx) +

1

2
p(r + q)− 1

4
β(r − q)(rx − qx)− 1

2
βppx

+
1

8
βp(r − q)2 +

1

4
βp3,

and

ut2 =


p

q

r


t2

= K2 =


K2,a

K2,b

K2,c

 ,

where

K2,a = −1

2
(rxx − qxx)− 1

2
p(rx + qx)− px(r + q)− 1

4
p2(r − q)

+
1

8
(r − q)(r2 + q2 + 6rq) +

1

4
βp2(r2 − q2) +

1

4
βp(r − q)(rx − qx)

− 1

4
βpx(r − q)2 +

1

8
β(r − q)3(r + q),

K2,b = −1

2
pxx +

1

8
p(r2 + q2 + 6rq)− 1

4
p3 +

3

4
(rrx − qqx)− 1

4
(rqx − qrx)

+
1

4
βp3(r + q)− 1

4
βppx(r − q) +

1

4
βp2(rx − qx) +

1

8
βp(r + q)(r − q)2

+
1

4
β(rx + qx)p2 +

1

2
βppx(r + q) +

1

4
βp(rxx − qxx)− 1

4
βpxx(r − q)

+
1

8
β(r − q)(3rrx − rqx + rxq − 3qqx),

K2,c =
1

2
pxx −

1

8
p(r2 + q2 + 6rq) +

1

4
p3 − 3

4
(rrx − qqx) +

1

4
(rqx − qrx)

− 1

4
βp3(r + q) +

1

4
βppx(r − q)− 1

4
βp2(rx − qx)− 1

8
βp(r + q)(r − q)2

+
1

4
β(rx + qx)p2 +

1

2
βppx(r + q) +

1

4
βp(rxx − qxx)− 1

4
βpxx(r − q)

+
1

8
β(r − q)(3rrx − rqx + rxq − 3qqx).
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2.3.2 Analysis of Hamiltonian structures

We shall follow the routine steps to perform Hamiltonian analysis as we did in subsection 2.2.2. First, it

comes up straightforwardly with

∂U

∂λ
=


0 −1 0

1 0 −1

0 1 0

 , ∂U

∂p
=


0 0 −1

0 0 0

1 0 0

 ,

∂U

∂q
=


0 0 0

0 0 −1

0 1 0

 , ∂U

∂r
=


0 −1 0

1 0 0

0 0 0

 ,
and

tr
(
W
∂U

∂p

)
= −2a, tr

(
W
∂U

∂q

)
= −2(c+ b),

tr
(
W
∂U

∂r

)
= 2(c− b), tr

(
W
∂U

∂λ

)
= −4b.

The trace identity then connects these results to give

δ

δu

∫
2b dx = λ−γ

∂

∂λ
λγ


a

b+ c

b− c

 .
Balancing now the coefficients leading all powers of λ, we arrive at

δ

δu

∫
2bm+1dx = −(m− γ)


am

bm + cm

bm − cm

 , m ≥ 0.

Just like in section 2.2.2, γ can be determined by working on a special case, for example, one picks m = 1

and works out γ = 0. The variational identity thus gives rise to

δ

δu

∫ (
−2bm+1

m

)
dx =


am

bm + cm

bm − cm

 , m ≥ 1.

This indicates that we can choose the Hamiltonian functionals to be

Hm =

∫
−2bm+1

m
dx, m ≥ 1. (2.50)
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Recalling that bm+1,x = pcm+1 + r−q
2 am+1, we can now present the Hamiltonian structures for (2.49)

Km = J


am+1

bm+1 + cm+1

bm+1 − cm+1

 =


−2cm+1 + (r − q)βbm+1

am+1 + pβbm+1 + βbm+1,x

−am+1 − pβbm+1 + βbm+1,x

 , (2.51)

where

J =


0 −1 + 1

2β(r − q) 1 + 1
2β(r − q)

1− 1
2β(r − q) β∂ β∂ + pβ

−1− 1
2β(r − q) β∂ − βp β∂

 (2.52)

is also a Hamiltonian operator since both the anti-symmetry and the Jacobi identity are satisfied. The Hamil-

tonian structures of the hierarchy (2.49) can therefore be formulated as:

utm = Km = J
δHm+1

δu
, m ≥ 0, (2.53)

with J and the Hamiltonian functionals Hm’s being given by (2.50) and (2.52), respectively. By following

what we have argued at the end of Section 2.2.2, once again we arrive at the conclusion that the soliton

hierarchy (2.49) is Liouville integrable.

2.4 Concluding remarks

In this chapter, by starting from two spectral problems associated with the matrix loop algebras s̃l(2,R)

and s̃o(3,R), we have engendered two soliton hierarchies that are known to be integrable. The analysis

of Hamiltonian structures via the trace identity reveals that, all the members created recursively in the two

hierarchies of soliton equations are Liouville integrable.

The systems reported in this chapter provide two new examples of soliton hierarchies carrying three

potential variables. We expect to find more interesting and convincing examples of such soliton hierarchies

which have three, or even four to five dependent variables. That certainly requires insightful understandings

and smart applications of, for instance, computer algebras, trace identities as well as variational identities.

Using computer algebras (Maple, Mathematica, etc.) to automate the whole procedures of engendering a

soliton hierachy by starting from a matrix spectral problem (hopefully including the computation of Hamil-

tonian structures as well) may greatly increase the efficiency of the mathematicians’ work in this field. There

are certainly many subtle details that can challenge the software’s intelligence, such as judging whether a

modification term is needed or not and how to determine it, or drawing the conclusion about the Liouville

integrability, etc. Therefore it would be more wise to make the software into something that mathematicians

can intervene (if absolutely necessary) at some critical steps.
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Plenty of matrix spectral problems in higher-order were also reported to be able to yield soliton hierarchies

[61, 62, 63, 64, 65, 66, 67]. At the end of this chapter, we’d also like to mention that integrable couplings

associated with enlarged matrix loop algebras [68, 69, 70, 71] is a potential powerful tool that can help a lot

in enriching specific examples of soliton hierarchies.
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Chapter 3

A type of Hamiltonian operators with two potentials and their integrable hierarchies

3.1 Introduction

DEFINITION 3.1.1 Let u = (u1, . . . , um)T (m > 0 is an integer) be a vector potential. A u-dependent

operator A[u] = A[(u1, . . . , um)T ] is said to be u-linear, provided A[cu] = cA[u], where c is an arbitrary

real constant, always holds.

Many matrix spectral problems can yield Hamiltonian operators that have one or several components

which are u-linear and are very often themselves Hamiltonian, too, in their Hamiltonian structures. In

particular whenm = 2 and a simplified notation u = (p, q)T is frequently applied in this case, such u-linear

Hamiltonian components can be encountered in many soliton hierarchies explored during recent decades,

for example, the generalized WKI hierarchy [72], the coupled Burgers hierarchy [73], etc. Experienced

mathematicians working in this field are always very careful about such a fact: that is, the original matrix

spectral problems of some soliton hierarchies may have very different faces, but can be eventually verified

to be mutually convertible in terms of Bäcklund type transformations [75, 76, 77, 78, 79]. As a part of

this chapter, we shall discuss several u-linear Hamiltonian operators and argue via mathematical proofs

that there exist Bäcklund type transformation among these operators, hence they can be viewed as Gauge

equivalent. These Hamiltonian operators are frequently encountered in some integrable systems, but it seems

the implications of the Gauge equivalence therein are still not sufficiently understood and realized by people.

Mathematicians of integrable theory are always also interested in constructing new Hamiltonian operators

using those existing ones. A rather well-known and effective method is to couple some u-linear Hamiltonian

operators with matrix differential operators with constant coefficients (we shall for brevity call the latter

constant matrix differential operators in this chapter) to create new Hamiltonian operators [81]. People

thought that such kind of couplings might be working at very high (perhaps infinite) differential orders,

and in those cases the underlying mathematics is expected to extremely complicated. We shall explore this

phenomenon in this chapter for a specific class of u-linear Hamiltonian operators, and will argue that these

couplings could be effective only up to a finite k-th differential order, addressed to be k = 3 for this study.
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Recall now most of the notations given at the beginning of Sec. 1.4. Recall also thatA is defined to be the

space of all smooth local functions f(x, u(k)) (k is a nonnegative integer). We’d like to define furthermore B

as the space of smooth functions f(x, u(k)), with the only distinction that we allow the functions in B to be

nonlocal. For example
∫ x4
−2 x

′4∂3u
1dx′4 is acceptable in B, however not in A–notice but that the superscript

4 of x′ and x here refers to the fourth component of x, not the power. The r-th power direct products of A

and B can thus be defined as

Ar = {(f1, . . . , fr)
T |fi ∈ A, 1 ≤ i ≤ r}, Br = {(f1, . . . , fr)

T |fi ∈ B, 1 ≤ i ≤ r}, (3.1)

respectively.

Now the definitions of Gateaux derivative, equivalence and equivalence class of functions in A, the ac-

tion of linear operators and their adjoints upon A, Hamiltonian operators and Hamiltonian pair can all be

generalized to B or Br without too much difficulties.

Though we have already some vague ideas about Bäcklund transformation in Chapter 1 (Sec. 1.3.1),

we’d like to review it in a more strict mathematical language, by using (as we think more compatible for this

chapter) the definition from Fuchssteiner and Fokas [77]:

DEFINITION 3.1.2 Let B(u, ũ) be a function of two sets of arguments u ∈ M and ũ ∈ M̃ with function

values in a vector space S′, where M and M̃ are two manifolds with their fibers of tangent bundles being S

and S̃, respectively (generally, S and S̃ are different from S′). Let Bu and Bũ denote the partial derivatives

of B w.r.t. u and ũ, respectively; B is said to be admissible provided the implicit function defined by

B(u, ũ) = 0 establishes a one-to-one map between the corresponding tangent spaces; i.e., it is required that

for B = 0 the linear maps Bu and Bũ from S to S′ and S̃ to S′ are both invertible.

Let

ut = K[u], u ∈M, (3.2a)

ũt = G[ũ], ũ ∈ M̃ (3.2b)

be two systems of evolution equations. We call an admissible function B(u, ũ) (or the implicit function

relating u and ũ given by B(u, ũ) = 0) a Bäcklund transformation between the equations (3.2a) and

(3.2b), if B(u(t), ũ(t)) ≡ 0 for all t, whenever B(u(0), ũ(0)) = 0.

The above definition implies that, Bäcklund transformations are connections between partial differential

equations and their solutions. The two functions u and ũ solve (3.2a) and (3.2b), respectively, thus when

B(u, ũ) is admissible, either u or ũ is said to be a Bäcklund transformation of the other.
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A Bäcklund transformation may often relate a solution of a PDE (in which we are interested) to a solution

of another PDE which we know better or which is easier to solve. In particular, a Bäcklund transformation

that maps between solutions of the same PDE is said to be an auto-Bäcklund transformation. If an auto-

Bäcklund transformation of a PDE can be found, then it could be effectively applied in mapping existing

solutions of this PDE to some new solutions which are probably unknown. Therefore Bäcklund transfor-

mation is a powerful tool in searching for solutions to PDEs, especially those PDEs in soliton theory and

integrable systems.

In general, Bäcklund transformations are viewed as a type of Gauge transformations [80]. Therefore two

systems linked by a Bäcklund transformation are usually also considered in this sense to be Gauge equivalent

to each other. So throughout this chapter, the terminology “Gauge equivalence” is used to indicate that two

systems can be mapped into each other via a Gauge transformation in Bäcklund type.

To be as simple as possible, in this chapter unless otherwise stated, below we always set n = 1 and

m = 2; i.e., we shall apply u = u(x, t) = (p, q)T (where p, q are functions of x and t). Also, we define

∂ = d
dx , ∂−1 =

∫
dx, where in ∂−1 the involved constant of integration is properly selected to make sure

that ∂∂−1 = ∂−1∂ = 1 always holds. Moreover, below in this chapter, we let ∂mg denote the m-th order

derivative of g w.r.t. x, except sometimes when m = 1 or 2, for convenience we use gx or gxx instead.

Let g be a function of x, t and u which is smooth enough. Let k, l ≥ 0 be integers. Based on a quick and

direct computation via integration by parts one can conclude that,

xk∂lg ∼

 0, if k < l,

(−1)lk(k − 1) . . . (k − l + 1)xk−lg, if k ≥ l;

where ∼ means the equivalent relation in the sense of Definition 1.4.12. In particular, xk∂kg ∼ (−1)kk!g.

We shall call this conclusion from time to time in this chapter.

This chapter runs as follows: We investigate in Sec.3.2 a class of matrix differential Hamiltonian operators

H and the Gauge equivalence among them. Then we study the coupling of H to constant matrix differential

operators in Sec.3.3, where it got proved that this kind of coupling no longer takes effect at differential

orders k ≥ 4. Finally in Sec.3.4 several illustrative examples are presented so that the readers might catch

the ideas how the Gauge equivalence elucidated in Sec.3.2 actually works. We end this chapter with a couple

of concluding remarks.
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3.2 The Gauge equivalence of a class of Hamiltonian matrix differential operators

Ma [81] proved that matrix u-linear differential operators in the profile of

H1 =

 p∂ + ∂p q∂

∂q 0

 , (3.3)

where u = (p, q)T is a column vector that contains two potentials, are Hamiltonian. Generalizing this result

a bit, matrix differential operators carrying the form

H2 =

 0 ∂p

p∂ q∂ + ∂q

 (3.4)

can also be proved to be Hamiltonian in a similar way.

What’s more, people can claim that matrix differential operators that can be expressed as linear combina-

tions of H1 and H2 via real constants c1, c2, that is,

H = c1H1 + c2H2 =

 c1(p∂ + ∂p) c2∂p+ c1q∂

c2p∂ + c1∂q c2(q∂ + ∂q)

 (3.5)

are Hamiltonian, too. To prove this, certainly people can apply the conventional method reported in the

original paper. There is however another approach that takes advantage of the of the Gauge transformation

of Bäcklund type among Hamiltonian operators, which could be more concise as well as more enlighten-

ing, since it reveals the fact that the three types of matrix differential operators H1, H2 and H are Gauge

equivalent.

THEOREM 3.2.1 Suppose H1, H2 and H are given by Eqs. (3.3), (3.4) and (3.5), respectively. Suppose that

c2
1 + c2

2 6= 0. Then H1, H2 and H are pairwise Gauge equivalent. Furthermore, H is both u-linear and

Hamiltonian.

Proof. Let H be given by (3.5). It is apparently u-linear. First let

D =

 1 0

−c2 c1

 which suggests

 p̃ = p,

q̃ = (−c2p+ c1q).
(3.6)

If c1 6= 0, the following computations immediately guide us to

H̃ = DHD∗

=

 c1p∂ + c1∂p c1(−c2p+ c1q)∂

c1∂(−c2p+ c1q) 0

 = c1

 p̃∂ + ∂p̃ q̃∂

∂q̃ 0

 , (3.7)
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where D∗ stands for the Hermitian conjugate of D (D∗ reduces to D’s transpose whenever c1, c2 ∈ R), is

a Hamiltonian operator of H1-type with a scaler c1 (therefore still of H1-type). According to Fuchssteiner

and Fokas [76], H is Gauge equivalent to H1. On the other hand, in case of c2 6= 0, one again finds that H

is Gauge equivalent to the H2-type Hamiltonian operator with a scaler c2

H̃ ′ = c2

 0 ∂p̃′

p̃′∂ q̃′∂ + ∂q̃′

 (3.8)

via

D′ =

 c2 −c1

0 1

 that suggests

 p̃′ = c2p− c1q,

q̃′ = q.
(3.9)

The transitivity of an equivalence relation implies that H1 and H2 are Gauge equivalent as well. This

Gauge-equivalence among H1, H2 and H is therefore pairwise, and thus guarantees that H is Hamiltonian.

�

The above theorem gives us insights that: the three classes of Hamiltonian operators H , H1 and H2

defined by Eqs. (3.5), (3.3) and (3.4) respectively, are actually Gauge equivalent in such a sense that any

two of them can be mapped into each other via Gauge transformations in Bäcklund type. Not many people

however looked into this fact so far, though proving it just comes out to be rather brief and concise.

3.3 The coupling between H and constant matrix differential operators

Mathematicians already knew the way of generating new Hamiltonian operators through coupling matrix

differential operators of H1, H2 or H types to constant matrix differential operators with low orders [81, 82,

83, 84, 85]. Let

K =
m∑
k=0

Bk∂
k, Bk = (bijk)2×2 (3.10)

be a matrix differential operator summed up to the m-th order which has constant parameters bijk (where

1 ≤ i, j ≤ 2 and 0 ≤ k ≤ m). It can be easily verified that when and only when

bijk = (−1)k+1bjik (3.11)

holds, K comes out to be skew-symmetric. This condition also automatically guarantees K Hamiltonian.

To generalize the work from [81], We now state and prove the following theorem:

THEOREM 3.3.1 Suppose that H and K are defined by Eqs. (3.5) and (3.10), respectively, where the pa-

rameters bijk in K satisfy Eq. (3.11). Suppose that c2
1 + c2

2 6= 0. Then the if-and-only-if conditions for the
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matrix differential operator

J = K +H (3.12)

to be a Hamiltonian operator read as follows:

K =

 b111 b121

b121 b221

 ∂ +

 0 b122

−b122 0

 ∂2 +

 b113 b123

b123 b223

 ∂3, (3.13)

where b111, b121, b221 and b122 are arbitrary real constants; and b113, b123 and b223 are real constants

satisfying

b113c2 − b123c1 = 0 and b223c1 − b123c2 = 0. (3.14)

Proof. It is rather straightforward to show the skew-symmetry required by being Hamiltonian. Hence in

this proof we concentrate on verifying the Jacobi Identity.

First of all, we already know from Sec. 3.2 that the H-part of J is Hamiltonian. The computation thus

reduces directly to (for example, for {X,Y, Z} in the Jacobi identity)

{X,Y, Z} =

m∑
k=0

∫
[fk(X,Y, Z) + gk(X,Y, Z) + hk(X,Y, Z) + jk(X,Y, Z)]dx,

where (since all the matrix operators involved are 2×2, it is obvious thatX,Y, Z are arbitrarily picked from

A2 (or B2), i.e., X = (X1, X2)T , Y = (Y1, Y2)T , Z = (Z1, Z2)T )

fk(X,Y, Z) = c1(X1Z1,x −X1,xZ1)b11k∂
kY1, (3.15a)

gk(X,Y, Z) = c1(X1Z1,x −X1,xZ1)b12k∂
kY2 + c2(X2Z1,x −X1,xZ2)b11k∂

kY1

+ c1(X1Z2,x −X2,xZ1)b21k∂
kY1, (3.15b)

hk(X,Y, Z) = c2(X2Z1,x −X1,xZ2)b12k∂
kY2 + c1(X1Z2,x −X2,xZ1)b22k∂

kY2

+ c2(X2Z2,x −X2,xZ2)b21k∂
kY1, (3.15c)

jk(X,Y, Z) = c2(X2Z2,x −X2,xZ2)b22k∂
kY2, (3.15d)

for all 0 ≤ k ≤ m. Considering the subscripts and the differential orders of Pi, Qi, Ri, one can tell that for

H +K, the Jacobi identity is satisfied if and only if

f̄k(X,Y, Z) = fk(X,Y, Z) + cycle(X,Y, Z) ∼ 0, (3.16a)

ḡk(P,Q,R) = gk(X,Y, Z) + cycle(X,Y, Z) ∼ 0, (3.16b)

h̄k(X,Y, Z) = hk(X,Y, Z) + cycle(X,Y, Z) ∼ 0, (3.16c)

j̄k(X,Y, Z) = jk(X,Y, Z) + cycle(X,Y, Z) ∼ 0, (3.16d)
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where 0 ≤ k ≤ m.

First we look into the case of k = 0. Considering that b110 = b220 = 0 and b210 = −b120, a particular

choice of (3.16b) with X1 = r, Y1 = 0, Z1 = x and Y2 = 1, and a special choice of (3.16c) with X1 = 1,

X2 = 0, Y2 = s and Z2 = x (one can choose s and r to be any smooth functions of x), give rise to

ḡ0(X,Y, Z) = c1b120(r − xrx) ∼ 2c1b120r,

h̄0(X,Y, Z) = c2b120(s− xsx) ∼ 2c2b120s,

respectively. One concludes quickly from the “arbitrariness” of r and s that b120 = 0. Hence when k = 0,

(3.16a)-(3.16d) automatically holds if and only if B0 = 0.

As the second step, we check when happens when k = 1. Automatically we already have f̄1(X,Y, Z)

= j̄1(X,Y, Z) = 0. Furthermore the condition b211 = b121 ensures that ḡ(X,Y, Z) = h̄1(X,Y, Z) = 0. So

in case of k = 1 nothing more than BT
1 = B1 is required.

Next we look into the case of k = 2. The prerequisites b112 = b222 = 0 and b212 = −b122 ensure that

f̄2(X,Y, Z) = j̄2(X,Y, Z) = 0 and

ḡ2(X,Y, Z) =
d

dx
[c1b122(X1Z1,x −X1,xZ1)Y2,x + cycle(X,Y, Z)] ∼ 0,

h̄2(X,Y, Z) =
d

dx
[c2b122(X2Y2,x −X2,xY2)Z1,x + cycle(X,Y, Z)] ∼ 0.

Hence for k = 2 it is only required that BT
2 = −B2.

For the case of k = 3 we need a slightly longer discussion. On the one hand, we have

f̄3(X,Y, Z) =
d

dx
[c1b113X1(Z1,xY1,xx − Y1,xZ1,xx) + cycle(X,Y, Z)] ∼ 0,

j̄3(X,Y, Z) =
d

dx
[c2b223X2(Z2,xY2,xx − Y2,xZ2,xx) + cycle(X,Y, Z)] ∼ 0.

By again making use of the “arbitrariness” of r and s, a particular choice of (3.16b) with X1 = r, Z1 = x,

Y2 = x3

3! and Y1 = X2 = Z2 = 0 gives

ḡ3(X,Y, Z) = c1b123(r − xrx +
1

2
x3∂3r)− 1

6
c2b113x

3∂3r ∼ (−c1b123 + c2b113)r,

based on which, (3.16b) would thus require

c1b123 − c2b113 = 0. (3.17)

Likewise, a particular choice of (3.16c) with X2 = s, Y1 = x3

3! , Z2 = x and X1 = Z1 = Y2 = 0 leads to

c1b223 − c2b123 = 0. (3.18)
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Whereas on the other hand, if (3.17) and (3.18) are satisfied, we arrive at

ḡ3(X,Y, Z) = γ1
d

dx
[(X1Z1,x −X1,xZ1)Y2,xx + (Y2,xZ1 − Y2Z1,x)X1,xx

+ (X1,xY2 −X1Y2,x)Z1,xx + cycle(X,Y, Z)] ∼ 0,

where γ1 = c2b113 = c1b123, and

h̄3(X,Y, Z) = γ2
d

dx
[(X1Z2,x −X1,xZ2)Y2,xx + (Y2,xZ2 − Y2Z2,x)X1,xx

+ (X1,xY2 −X1Y2,x)Z2,xx + cycle(X,Y, Z)] ∼ 0,

where γ2 = c2b123 = c1b223. Thus, (3.17) and (3.18) combine to guarantee that (3.16a)-(3.16d) hold in the

case of k = 3.

We discuss now the very last case of m ≥ k ≥ 4. A particular choice of (3.16a) with X1 = r, Y1 = xk

k!

and Z1 = x, and a particular choice of (3.16d) with X2 = s, Y2 = xk

k! and Z2 = x, will produce

f̄k = c1b11k[r − rxx− (1− k)
xk

k!
∂kr] ∼ c1b11k[2− (−1)k(1− k)]r,

j̄k = c2b22k[s− xsx − (1− k)
xk

k!
∂ks] ∼ c2b22k[2− (−1)k(1− k)]s, (3.19)

respectively. The condition k ≥ 4 indicates that both

c1b11k = 0, and c2b22k = 0 (3.20)

are needed to make sure that f̄k ∼ 0 and j̄k ∼ 0 will hold. Then, by using (3.20), two special choices of

(3.16b) with X1 = r, Y1 = 0, Z1 = x and Y2 = xk

k! , and of (3.16c) with X1 = 0, Y1 = xk

k! , Z2 = x and

X2 = s, will yield

ḡk(X,Y, Z) = c1b12k(r − xrx)− 1

k!
c2b11kx

k∂kr +
1

(k − 1)!
c1b21kx

k∂kr

∼ c1b12k(2− k)r − (−1)kc2b11kr, (3.21)

h̄k(X,Y, Z) = c2b21k(s− xsx)− 1

k!
c1b22kx

k∂ks+
1

(k − 1)!
c2b12kx

k∂ks

∼ c2b21k(2− k)s− (−1)kc1b22ks. (3.22)

Since c2
1 + c2

2 6= 0, first we assume c1 6= 0 without loss of generality. Then, (3.20) implies b11k = 0, from

which (3.21) will lead to b12k = 0. It follows b21k = 0 as a consequence of (3.11), from which b22k = 0 is

finally again concluded from (3.22). We will similarly arrive at b11k = b12k = b21k = b22k = 0 if c2 6= 0

is assumed at first. Thus in brief, the conditions in (3.20), (3.21) and (3.22) together give rise to the only

possibility: that is, Bk = 0 for m ≥ k ≥ 4.
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Hence to summarize, that (3.13) and (3.14) being satisfied by the coefficients in K is the sufficient and

necessary condition for H +K to be Hamiltonian. The proof is completed. �

Based on early Hamiltonian theory [86], Fokas and Fuchssteiner proved in [87] that if two differential

operators J and M constitute a Hamiltonian pair, where J is invertible, then one can construct a hereditary

symmetry Φ = MJ−1. Following this remarkable result, for M = H +K (which is Hamiltonian) with H ,

K being defined by (3.5), (3.13), respectively (and of course all the coefficients in K satisfy the conditions

given by (3.14)), we let

J =

 d1 d2

d2 d3

 ∂ +

 0 a

−a 0

 ∂2 +

 d4 d5

d5 d6

 ∂3, (3.23)

where d4
b113

= d5
b123

= d6
b223

if they are all nonzero, or b113 = 0 if and only if d4 = 0, and likewise for b123 and

d5, b223 and d6 (this condition shows up here to guarantee that an arbitrary linear combination of J and M

will always yield a Hamiltonian operator, which is the if-and-only-if condition that J and M will make a

Hamiltonian pair). What’s more, a and d1, d2, d3 must be properly chosen to make sure that J is invertible.

Thus the linear combination of J and M always gives Hamiltonian operators, and (J,M) therefore gives

rise to a Hamiltonian pair. Two typical examples of such J given by (3.23) could be, say, presented by

J =

 d1 d2

d2 d3

 ∂ ⇒ J−1 =
1

4

 d3 −d2

−d2 d1

 ∂−1, (3.24)

with4 = d1d3 − d2
2 6= 0; or another one which is less frequently used,

J =

 0 a

−a 0

 ∂2 +

 d4 d5

d5 d6

 ∂3 ⇒

J−1 =
1

a2

 d6∂
−1 −d5∂

−1 − a∂−2

−d5∂
−1 + a∂−2 d4∂

−1

 ,
with a 6= 0 and d4d6 − d2

5 = 0. One can illustrate more examples of such Hamiltonian operators. Therefore

it comes up immediately with

THEOREM 3.3.2 LetH , K and J be given by (3.5), (3.13), and (3.23), respectively. LetM = H+K. Then

Φ = MJ−1 gives rise to a hereditary symmetry.

The hereditary symmetries Φ given by Theorem 3.3.2depends only implicitly on x, and is thus transla-

tional invariant w.r.t. x. Therefore ∀S ∈ B2,we always have a Lie derivative which is identical to 0 [88],

i.e.,

(LuxΦ)S = Φ[ux, S]− [ux,ΦS] = 0. (3.25)

49



Therefore by Corollary 1 in [89], we can conclude

[Φmux,Φ
nux] = 0, ∀m,n ≥ 0,

and it follows naturally also that

THEOREM 3.3.3 Suppose that H , K and J are defined by (3.5), (3.13) and (3.23), respectively. Let M =

H +K and Φ = MJ−1. Then the hierarchy of evolution equations

ut = Φmux, m ≥ 0 (3.26)

constitutes a sequence of infinitely many common symmetries {Km = Φmux} (m ≥ 0), with Φ being a

common hereditary strong symmetry.

The hierarchy (3.26) generally is integrable in the sense that each member of this hierarchy has infinitely

many K-symmetries [87, 89].

3.4 Examples

We present in this section a couple of illustrative examples, aiming at indicating the implications behind the

discussed Gauge equivalence.

3.4.1 Example #.1

As the first example, it was reported in [74] the following matrix spectral problem:

φx = Uφ = U(u, λ)φ, where u = [p, q]T and φ = [φ1, φ2]T ,

for which the spectral matrix U ∈ s̃l(2,R) possesses the form

U = (−q − λ)e1 + pe2 + γe3 =

 −q − λ p

γ q + λ

 , (3.27)

with γ 6= 0 being a constant, and

e1 =

 1 0

0 −1

 , e2 =

 0 1

0 0

 , e3 =

 0 0

1 0

 (3.28)

are the three elements that form the basis of sl(2,R). The soliton hierarchy engendered by this matrix

spectral problem is Liouville integrable and possesses the bi-Hamiltonian structure

utk = J
δHk
δu

= M
δHk−1

δu
, for all k ≥ 1, (3.29)
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whereHk (k ≥ 0) are the involved Hamiltonian functionals, and J , M together form the Hamiltonian pair:

J = −1

γ

 0 ∂

∂ 0

 , M =

 1
γ (p∂ + ∂p) 1

2γ∂
2 + 1

γ q∂

− 1
2γ∂

2 + 1
γ∂q −1

2∂

 . (3.30)

J is obviously invertible, and M clearly has the shape of the J operator presented in Theorem 3.3.1 with

α = 0 (i.e., the H-component of J reduces to H1 given in (3.3)). If one specifically sets γ = 1/β, and

modifies the matrix spectral problem (3.27) into

φ̃x = Ũ φ̃ = Ũ(u, λ)φ̃, Ũ =

 −λ− αp̃− βq̃ p̃

1
β λ+ αp̃+ βq̃

 (3.31)

via the transformation through the matrix D p

q

 = D

 p̃

q̃

 , with D =

 1 0

α β

 , (3.32)

this will give rise to the Hamiltonian operator

M̃ =

 β(p̃∂ + ∂p̃) 1
2∂

2 − α∂p̃+ βq̃∂

−1
2∂

2 − αp̃∂ + β∂q̃ − 1
2β2∂ − α(q̃∂ + ∂q̃)

 (3.33)

which apparently has again the shape of the J operator presented in Theorem 3.3.1. Also by Theorem 3.3.1,

M̃ is connected with M in (3.30) through

M̃ = D−1MD−1∗ . (3.34)

Especially, the K-component in M , while undergoing the same Bäcklund type transformation, is observed

to remain as a (Hamiltonian) K-component in M̃ . The above facts justify our statements in Theorem 3.3.1.

3.4.2 Example #.2

The Wadati-Konno-Ichikawa (WKI) hierarchy was generalized in 2002 by Xu [72, 90] through computing

the following matrix spectral problem (for simplicity of computation, the matrix problem is presented here

in a slightly different form from the original work; but they are in no doubt exactly equivalent):

φx = Uφ = U(u, λ)φ, with u = [p, q]T and φ = [φ1, φ2]T ,

where U ∈ s̃l(2,R) is given by

U = (λ− α

2
p)e1 + λpe2 + λqe3 =

 λ− α
2 p λp

λq −λ+ α
2 p

 . (3.35)
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By routinely solving the stationary zero-curvature equationWx = [U,W ], also withW ∈ s̃l(2,R) chosen

to be

W =

 (λ− α
2 p)a−

αbx
2λ λpa+ bx

λqa+ cx −(λ− α
2 p)a+ αbx

2λ

 , (3.36)

where a, b and c are functions of λ, x and t expressed in terms of Laurent expansions of λ:

a =
∑
i≥0

aiλ
−i, b =

∑
i≥0

biλ
−i, c =

∑
i≥0

ciλ
−i, (3.37)

it was demonstrated that this generalized WKI soliton hierarchy possesses a bi-Hamiltonian structure utm =

M δHm
δu = J δHm−1

δu (m ≥ 1), whereHm,Hm−1 are the corresponding Hamiltonian functionals, with J and

M being the Hamiltonian pair. In particular here M reads

M =

 0 ∂2 + α∂p

−∂2 + αp∂ α(q∂ + ∂q)

 , (3.38)

which has the characteristics of the J operator presented in Theorem 3.3.1 when β = 0 (or in another word,

the H-component of J reduces to H2 given in (3.4)). Interestingly, this soliton hierarchy is also Liouville

integrable, though J in the Hamiltonian pair does not have the form as that of (3.23). This matrix spectral

problem (3.35) of the generalized WKI hierarchy, if modified to

φ̃x = Ũ φ̃ = Ũ(u, λ)φ̃, Ũ =

 λ− α
2 (αp̃− βq̃) αλp̃− βλq̃

λq̃ −λ+ α
2 (αp̃− βq̃)

 (3.39)

by using the transformation  p

q

 = T

 p̃

q̃

 , with T =

 α −β

0 1

 , (3.40)

will convert the the Hamiltonian operator M into

M̃ =

 β(p̃∂ + ∂p̃) 1
α∂

2 + α∂p̃+ βq̃∂

− 1
α∂

2 + αp̃∂ + β∂q̃ α(q̃∂ + ∂q̃)

 . (3.41)

Here M̃ apparently carries also the characteristics of the J operator presented in Theorem 3.3.1, and is

associated with M in (3.38) through

M̃ = T−1MT−1∗ . (3.42)

Once again, the K-component in M , while undergoing the same Bäcklund type transformation, is observed

to remain as a (Hamiltonian) K-component in M̃ . The above facts again justify our statements in Theorem

3.3.1.

It was also reported in [91] an alternative form of the generalized WKI hierarchy, for which rather similar

arguments about a Gauge transformation of Bäcklund type can be made.
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3.4.3 Example #.3

In 2015 Zhang et al. published the coupled Burgers hierarchy based on the matrix spectral problem [73]

φx = Uφ = U(u, λ)φ, where u = (p, q)T and φ = (φ1, φ2)T ,

in which the spectral matrix U belonging to s̃l(2,R) possesses the mathematical profile

U = (−λ+ αp+ βq)e1 + pe2 + qe3 =

 −λ+ αp+ βq p

q λ− αp− βq

 . (3.43)

One thing that needs to be emphasized here is, in this model the constants α, β are subjected to the constraint

αβ = −1/4. The soliton hierarchy engendered by this matrix spectral problem is also Liouville integrable

and has a bi-Hamiltonian structure utm = J δHmδu = M δHm−1

δu (m ≥ 1), for which the Hamiltonian pair is

J =

 0 ∂

∂ 0

 , M =

 β(p∂ + ∂p) −1
2∂

2 + α∂p+ βq∂

1
2∂

2 + αp∂ + β∂q α(q∂ + ∂q)

 , (3.44)

where J is definitely invertible, and M has the characteristics of the J operator presented in Theorem 3.3.1

(note that αβ = −1/4). This matrix spectral problem (3.43), if modified into

φ̃x = Ũ φ̃ = Ũ(u, λ)φ̃, Ũ =

 −λ+ 2αp̃+ q̃ p̃

α
β p̃+ 1

β q̃ λ− 2αp̃− q̃

 , (3.45)

by using the Gauge transformation p

q

 = D

 p̃

q̃

 , with D =

 1 0

α
β

1
β

 , (3.46)

will convert M into

M̃ =

 β(p̃∂ + ∂p̃) −1
2β∂

2 + βq̃∂

1
2β∂

2 + β∂q̃ 0

 . (3.47)

M̃ again has the characteristics of the J operator, with its H-component reducing to that of H1’s form in

(3.3), presented in Theorem 3.3.1. The matrix spectral problem can also be modified into

φ̂x = Û φ̂ = Û(u, λ)φ̂, Û =

 −λ− p̂+ 2βq̂ − 1
α p̂+ α

β q̂

q̂ λ+ p̂− 2βq̂

 (3.48)

via the transformation  p

q

 = D

 p̂

q̂

 , with D =

 − 1
α

β
α

0 1

 , (3.49)
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to yield the Hamiltonian operator

M̂ =

 0 1
2α∂

2 + α∂p̂

−1
2α∂

2 + αp̂∂ α(q̂∂ + ∂q̂)

 , (3.50)

which has also the characteristics of the J operator, with its H-component reducing to the shape of H2 in

(3.4), presented in Theorem 3.3.1. Both M̃ given by (3.47) and M̂ given by (3.50) in this example can be

obtained from M in (3.44) by using M̃(or M̂) = D−1MD−1∗ .

3.4.4 Example #.4

As a somehow different final example, we consider now the Hamiltonian operator that carries such a shape:

J = B1∂ +B2∂
2 +B3∂

3 =

 d1 d2

d2 d3

 ∂ +

 0 a

−a 0

 ∂2 +

 d4 d5

d5 d6

 ∂3, (3.51)

where a is nonzero, and detB3 = d4d6 − d2
5 = 0. J of (3.51) has a formal inverse which be presented as

J−1 =

 d3 + d6∂
2 d2 + a∂ + d5∂

2

d2 − a∂ + d5∂
2 d1 + d4∂

2

4−1 ∂−1, (3.52)

where

4 = d1d3 − d2
2 + (d1d6 + d3d4 + a2 − 2d2d5)∂2. (3.53)

Let M = H (i.e., M has merely the H-component of J = H +K in Theorem 3.3.1) satisfy the conditions

in Theorems 3.3.2 and 3.3.3, one arrives thus at the conclusion that Φ = MJ−1 (the recursion operator)

gives rise to a hereditary strong symmetry, and the hierarchy of evolution equations ut = Φmux (m ≥ 0)

therefore possesses a sequence of infinitely many common symmetries {Km = Φmux}∞m=0. The Hamil-

tonian operator J given by (3.51) involved in this example has a third order differential component, and

therefore carries some characteristics of a Camassa-Holm type hierarchy [92], due to the presence of 4 in

(3.53).

By introducing another two implicit variables r, s (when dealing with Camassa-Holm type systems, this

is a typical recipe) that are related to p, q in terms of p = C1r + C2rxx,

q = C1s+ C2sxx,
(3.54)
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where C1 = d1d3 − d2
2, and C2 = d1d6 + d5d2 + a2 − 2d3d4. The first nonlinear member of this hierarchy,

ut = (pt, qt)
T = Φux (Φ = MJ−1) can be presented in a bit complicated form:

pt = 2βp(d3rx − d2sx) + βpx(d3r − d2s)− βq(d2rx − d1sx)

−βq(d5rxxx − d4sxxx) + 2βp(d6rxxx − d5sxxx)

+βpx(d6rxx − d5sxx)− βa(pxsx + 2psxx − qrxx)

+α[p(d1s− d2r)]x + α[p(d4sxx − d5rxx)]x + αa(prx)x,

qt = β[q(d3r − d2s)]x + β[q(d6rxx − d5sxx)]x − βa(qsx)x

−2αq(d2rx − d1sx)− αqx(d2r − d1s) + αp(d3rx − d2sx)

+αp(d6rxxx − d5sxxx)− 2αq(d5rxxx − d4sxxx)

−αqx(d5rxx − d4sxx) + αa(qxrx + 2qrxx − psxx).

(3.55)

If alternatively, one imposes in (3.51) B2 = 0 (i.e. a = 0), and admits but detB1 < 0, or to put it more

precisely,

detB1 = d1d3 − d2
2 = −d

2
1

d2
4

(
d5 −

d2d4

d1

)2

, (3.56)

which is an alternative equivalent version of d1d6 + d4d3 − 2d2d5 = 0, and J has an explicit inverse

guaranteed by these assumptions:

J−1 =
1

detB1

 d6∂ + d3∂
−1 −d5∂ − d2∂

−1

−d5∂ − d2∂
−1 d4∂ + d1∂

−1

 . (3.57)

Rather similarly, the Hamiltonian operator J in (3.51) satisfying (3.56), and a second Hamiltonian operator

M = H +K, will together produce a hereditary strong symmetry Φ = MJ−1. The hierarchy of evolution

equations ut = Φmux (m ≥ 0) indeed corresponds to a sequence of infinitely many common symmetries

{Km = Φmux}∞m=0.

3.5 Concluding remarks

We have shown in this chapter that matrix differential operators carrying the profiles of H1, H2 or H

defined by (3.3), or (3.4) and (3.5), respectively, are u-linear Hamiltonian operators that are also pairwise

gauge equivalent. The local transformations among them can be performed by means of constant 2 × 2

matrices. Hopefully, such gauge equivalence among H1, H2 and H can be accordingly generalized to more

Hamiltonian operators, and may help to shed light on the classification of Hamiltonian operators.

Further it is proved that new Hamiltonian operators can be generated by coupling these matrix differential

operators to constant differential operators. The corresponding sufficient and necessary conditions (3.13)
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and (3.14) were derived as well. The shining point in Theorem 3.3.1 is that this kind of coupling takes effect

up to a finite order only (for the operators studied in this chapter, it has been determined to be the 3rd order)

of the constant differential operators. This piece of remarkably succinct result (conciser and simpler than

we used to expect) would encourage us to explore further what might be the interesting mathematics behind

those Hamiltonian structures.
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Chapter 4

Computation of soliton solutions of a generalized eight-component mKdV system

based on Riemann-Hilbert problems

The inverse scattering transform (IST) is a powerful tool for addressing the Cauchy problems of many

nonlinear evolution PDEs associated with integrable models, as mentioned in Chapter 1, in modern soliton

theory [39, 93]. Such problems of I.S.T., preferably for those nonlinear PDEs involving only one spatial

dimension, can always be formulated into a Riemann-Hilbert problem (RHP) [39] characterized by a jump

on the real line R (subjected typically to canonical normalization condition), with bounded eigenfunctions

that are analytically continuable to

D+ := {λ ∈ C|Imλ > 0} or D− := {λ ∈ C|Imλ < 0}, (4.1)

and continuous in their closures D̄+ or D̄−, through which the involved nonlinear elements can be effectively

linearized.

In particular, soliton solutions can be obtained by reducing such an RHP to reflectionless scattering prob-

lem (mathematically performed by admitting an identity jumping matrix in the RHP) [39, 104]. By taking

special limits of these soliton solutions, one may obtain periodic solutions, lump solutions [94], or even

complexiton solutions [95].

The standard procedure of formulating an RHP associated with a scattering problem on the real axis R

runs as follows:

Step 1. One starts from a pair of matrix spectral problems that can be written in the shape of

−iφx = U(u, λ)φ, −iφt = V (u, λ)φ, (4.2)

where λ is the spectral parameter, φ is an m×m matrix eigenfunction, u is a (column) vector of potentials,

and

U(u, λ) = U0(λ) + P (u, λ), V (u, λ) = V0(λ) + P (u, λ),

with U0, V0 being constant commuting (usually diagonal) m ×m matrices, and P,Q being traceless (i.e.,

trP = trQ = 0). The complex unit -i here is introduced to greet the appetite of the direct scattering
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method––since this method prefers the solution to the matrix spectral problem has “planar wave” behavior

at infinity (on the real line), which is guaranteed by the presence of this −i (could be i, too) as well as the

fast decreasing of the entries in p and q described below. The zero curvature equation (if admitted by the

system) for this pair of matrix spectral problems (4.2) apparently is

Ut − Vx + i[U, V ] = 0. (4.3)

Step 2. By introducing

φ = ψEg, with Eg = ei[U0(λ)x+V0(λ)t], (4.4)

we can formulate the equivalent matrix spectral problems with respect to anotherm×mmatrix eigenfunction

ψ:

ψx = i[U0(λ), ψ] + P̃ψ, ψt = i[V0(λ), ψ] + Q̃ψ, (4.5)

where P̃ = iP , Q̃ = iQ. Such an equivalence is guaranteed by the commutativity of U0 and V0. One of

the major advantages of having this equivalent form of a zero curvature equation is that: since φ → Eg

as x → ±∞ (generally, the potential vector u, and so P (u, λ) and Q(u, λ), are assumed to be rapidly

decreasing to 0 as x → ±∞; see (4.38) below), the eigenfunction ψ possesses now the more preferable

constant asymptotic behavior

ψ → Im, as x, t→ ±∞, (4.6)

where Im is the m×m identity matrix.

Step 3. From the ψ± obtained in Step 2, one then tries to construct two matrix function Y ±(x, t, λ) that

are analytical in D+ and D−, as well as continuous in D̄+ and D̄− (as defined in (4.1)), respectively, to

formulate an RHP on the real axis:

G+(x, t, λ) = G−(x, t, λ)G(x, t, λ), λ ∈ R, (4.7)

where

G+(x, t, λ) = lim
µ∈D+,µ→λ

Y +(x, t, µ), (G−)−1(x, t, λ) = lim
µ∈D−,µ→λ

Y −(x, t, µ).

Step 4. The RHP, when reduced to reflectionless scattering problem (by taking J = Im), can usually

be solved to yield soliton solutions by computing the asymptotics of the matrix functions Y ± (subjected to

canonical normalization condition) at |λ| → ∞.

Study of solutions to nonlinear evolution equations using the Riemann-Hilbert approach have been re-

ported on a few integrable equations, for instance the multiple wave interaction equations [39], the Harry-

Dym equations [96], the general coupled nonlinear Schrödinger equations [97, 98], the generalized Sasa-

58



Satsuma equation [99], and the coupled multiple nonlinear Schrödinger equations and the coupled mKdV

equations [100, 101, 102], etc.

We shall present in this chapter a new class of generalized modified Korteweg-de Vries (mKdV) system

and compute N -soliton solutions for one special case using the Riemann-Hilbert approach formulated from

the inverse scattering transform, by following the steps in Chapter 2 (when solving the matrix spectral

problem in zero curvature formulation) and the Steps 1-4 mentioned just above (when formulating and

solving the related RHP).

4.1 Matrix spectral problems of a class of generalized modified KdV systems

Let m,n > 0 be arbitrary integers. We shall investigate the following matrix spectral problem

−iφx = U(u, λ)φ, U = [Uij ](m+n)×(m+n) =

 α1λIm p

q α2λIn

 , (4.8)

where λ stands for the spectral parameter, α1, α2 are real constants, p = (pij)m×n, q = (qij)n×m are sub-

matrices whose entries denote scalar potential components, and u is a column potential vector constructed

by arranging all the 2mn entries of p, q in the shape of

u = (p11, . . . , p1n, p21, . . . , p2n, . . . , pm1, . . . , pmn;

q11, . . . , qn1, q12, . . . , qn2, . . . , q1m, . . . , qnm)T . (4.9)

By following the routine procedures of solving matrix spectral problems to engender the associated inte-

grable hierarchy, we accordingly look for a solution W in the form

W =

 a b

c d

 (4.10)

to the stationary zero curvature equation Wx = i[U,W ], with the submatrices

a = (aij)m×m, b = (bij)m×n, c = (cij)n×m, d = (dij)n×n (4.11)

being arranged correspondingly. Upon letting α = α1 − α2, the stationary zero curvature equation is thus

equivalently formulated as 

ax = i(pc− qb),

bx = i(αλb+ pd− ap),

cx = i(−αλc+ qa− dq),

dx = i(qb− cp).

(4.12)
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Then, upon writing W formally as a Laurent series of λ:

W =

 a b

c d

 =

∞∑
k=0

Wkλ
−k, Wk = Wk(u) =

 a(k) b(k)

c(k) d(k)

 , k ≥ 0, (4.13)

one derives immediately the equivalent recursive form of the stationary zero curvature equation:



b(k+1) = 1
α [−ib(k)

x − (pd(k) − a(k)p)],

c(k+1) = 1
α [ic

(k)
x + (qa(k) − d(k)q)],

a
(k+1)
x = i(pc(k+1) − b(k+1)q),

d
(k+1)
x = i(qb(k+1) − c(k+1)p),

k ≥ 0, (4.14)

Upon running Eqn. (4.14), one derives recursively the sequences of submatrices {a(k), b(k), c(k), d(k)}∞k=0.

Thus by admitting

a(0) = β1Im, d(0) = β2In, b(0) = c(0)T = (0)m×n, (4.15)

and introducing Lax matrices in size of (m+ n)× (m+ n) as follows:

V (r) = V (r)(u, λ) = (λrW )+ =

r∑
k=0

Wkλ
r−k, ∀r ≥ 1 (4.16)

the compatibility conditions, i.e., the zero curvature equations, will straightforwardly yield:

Utk =

 0 ptk

qtk 0

 =

 0 iαb(k+1)

−iαc(k+1) 0

 , k ≥ 0. (4.17)

Due to the redundancy of Utk , as well as the a bit complicated recursion relations (4.14) since b and c are

here matrices, we shall use utk with u given by (4.9). Through a subtle computation we obtain c̄(k+1)

b̄(k+1)

 = Ψ

 c̄(k)

b̄(k)

 , k ≥ 0, (4.18)

where

b̄ = (b11, . . . , b1n, b21, . . . , b2n, . . . , bm1, . . . , bmn)T ,

c̄ = (c11, . . . , cn1, c12, . . . , cn2, . . . , c1m, . . . , cnm)T ,

and

Ψ =

 Ψ11 Ψ12

Ψ21 Ψ22

 , (4.19)
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with Ψ11, Ψ12, Ψ21 and Ψ22 being mn×mn submatrices that read

Ψ11 =
i

α

(
(∂ + pT∂−1qT )Inδjl + (pj∂

−1ql)n×n
)
m×m ,

Ψ12 = − i
α

(
pTl ∂

−1pj + [pTl ∂
−1pj ]

T
)
m×m ,

Ψ21 =
i

α

(
ql∂
−1qTj + [ql∂

−1qTj ]T
)
m×m ,

Ψ22 = − i
α

(
(∂ + q∂−1p)Inδjl + (qTj ∂

−1pTl )n×n
)
m×m . (4.20)

It is obvious that here Ψ11,Ψ12,Ψ21,Ψ22 are all arranged in terms ofm×m structure, with each entry being

an n×n submatrix. Thus the involved indices 1 ≤ j, l ≤ m are used to denote that the referred n×n block

is locating on the position of the (j, l)-entry. In addition, for example, pj and ql are used to denote the j-th

row of p and l-th column of q, respectively.

We now show that the generalized multicomponent AKNS integrable hierarchy (4.18) possesses a bi-

Hamiltonian structure that can be engendered through the trace identity, or in general, the variational identity.

Indeed, one can compute for all 1 ≤ j ≤ m and 1 ≤ k ≤ n that

∂U

∂λ
=

 α1Im 0

0 α2In

 , ∂U

∂pjk
=

 (0)m×m (1jk)m×n

(0)n×m (0)n×n

 ,
∂U

∂qkj
=

 (0)m×m (0)m×n

(1kj)n×m (0)n×n

 , (4.21)

where (1jk) denotes a matrix with all entries being 0 except only that the (j, k)-entry is 1, and also

tr
(
W
∂U

∂λ

)
= α1tr(a) + α2tr(d), tr

(
W

∂U

∂pjk

)
= ckj , tr

(
W

∂U

∂qkj

)
= bjk. (4.22)

These results are now connected by the trace identity as follows:

δ

δu

∫
[α1tr(a) + α2tr(d)]dx = λ−γ

∂

∂λ
λγ

 tr
(
W ∂U

∂p̄

)
tr
(
W ∂U

∂q̄

)
 = λ−γ

∂

∂λ
λγ

 c̄

b̄

 , (4.23)

Through balancing the leading coefficients of all powers of λ, we have

δ

δu

∫
[α1

m∑
j=1

a
(k+1)
jj + α2

n∑
j=1

d
(k+1)
jj ]dx = (γ − k)

 c̄(k)

b̄(k)

 , k ≥ 0. (4.24)

The constant γ, since it does not vary with respect to k, can be computed by checking a particular case, say,

k = 2; and this gives γ = 0 (so far γ = 0 is verified for all m,n ≤ 4; we believe it is 0 for all m,n ≥ 1, but

this requires a proof), thus the above variational identity becomes
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δ

δu

∫ (
−
α1
∑m

j=1 a
(k+1)
jj + α2

∑n
j=1 d

(k+1)
jj

k

)
dx =

 c̄(k)

b̄(k)

 , k ≥ 1, (4.25)

As an immediate consequence, one can choose the Hamiltonian functionals to be

Hk =

∫ (
−
α1
∑m

j=1 a
(k+1)
jj + α2

∑n
j=1 d

(k+1)
jj

k

)
dx, k ≥ 1, (4.26)

and (4.25) can now be reformulated as

δHk
δu

= Gk−1, with Gk−1 =

 c̄(k)

b̄(k)

 , k ≥ 1. (4.27)

This suggests as a consequence the following bi-Hamiltonian structure for the multi-component AKNS

system which was computed above:

ut = Kk = JGk = J
δHk+1

δu
= M

δHk
δu

, k ≥ 1, (4.28)

where the Hamiltonian pair thus reads

J =

 0 αImn

−αImn 0

 , (4.29)

and

M = JΨ =

 M11 M12

M21 M22

 , (4.30)

where Ψ is given by (4.20) and thus

M11 = i
(
pTl ∂

−1pj + [pTl ∂
−1pj ]

T
)
m×m ,

M12 = −i
(
(∂ + pT∂−1qT )Inδjl + (pj∂

−1ql)n×n
)
m×m ,

M21 = −i
(

(∂ + q∂−1p)Inδjl + (qTj ∂
−1pTl )n×n

)
m×m

,

M22 = i
(
ql∂
−1qTj + [ql∂

−1qTj ]T
)
m×m

.

(4.31)

where the indices j, l are interpreted in a similar manner as that in (4.20). Thus, we know that the operator

Φ = Ψ† = MJ−1 is a recursion operator for the entire hierarchy (4.28).

4.2 Riemann-Hilbert problems

We shall work on in this section a special case of the integrable hierarchy discussed above, i.e., we shall

choose m = n = 2, which corresponds to a special generalized modified KdV system with 8 potentials
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(since m = n in this case, the determinants det p and det q, as well as the cofactors of the entries of the

submatrices p and q, will make sense). By letting β = β1 − β2, and

p̄ = (p11, p12, p21, p22)T , q̄ = (q11, q21, q12, q22)T , (4.32)

the first two nonlinear integrable systems of this hierarchy (4.18) can be written down for all 1 ≤ r, j ≤ 2

as:

prj,t =
−iβ
α2

[prj,xx + 2(p̄T q̄)prj − 2Crj(q) det p], (4.33a)

qrj,t =
iβ

α2
[qrj,xx + 2(p̄T q̄)qrj − 2Crj(p) det q], (4.33b)

and

prj,t = − β

α3
[prj,xxx + 3(p̄T q̄)prj,x + 3(p̄Tx q̄)prj − 3Crj(q)(det p)x], (4.34a)

qrj,t = − β

α3
[qrj,xxx + 3(p̄T q̄)qrj,x + 3(p̄T q̄x)qrj − 3Crj(p)(det q)x]. (4.34b)

where Cij(p), Cij(q) are the (i, j)-cofactors of p, q, respectively.

Based on the results obtained in the previous section, the matrix spectral problems of the 8-component

mKdV system (4.34a), (4.34b) is indeed

−iφx = Uφ = U(u, λ)φ, −iφt = V [3]φ = V [3](u, λ)φ, (4.35)

where the Lax pair reads

U = λΛ + P, V [3] = λ3Ω +Q, (4.36)

with Λ = diag(α1Im, α2In), Ω = diag(β1Im, β2In), and

P =

 0 p

q 0

 , Q =

 a(1)λ2 + a(2)λ+ a(3) b(1)λ2 + b(2)λ+ b(3)

c(1)λ2 + c(2)λ+ c(3) d(1)λ2 + d(2)λ+ d(3)

 , (4.37)

where a(k), b(k), c(k), d(k) (1 ≤ k ≤ 3) are determined recursively from (4.14).

From now on throughout the context below in the chapter we shall concentrate our attention on this

8-component mKdV system (4.34a) & (4.34b); and in this section, we shall study the direct and inverse

scatterings for this system using the Riemann-Hilbert approach. The yielded results will be called in the

following section for computing soliton solutions. To make issues consistent, without loss of generality we

apply the assumptions α = α1−α2 > 0 and β = β1−β2 > 0 for sake of convenience. Also we assume that
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all the potentials (i.e., all the entries in the submatrices p and q) are rapidly decreasing functions in Schwartz

space, i.e., for all 1 ≤ k ≤ m and 1 ≤ l ≤ n,

sup
0≤t<∞,x∈R

|x|m1 |t|m2

(∣∣∣∣ ∂n1

∂xn1

∂n2

∂tn2
pkl

∣∣∣∣+

∣∣∣∣ ∂n1

∂xn1

∂n2

∂tn2
qlk

∣∣∣∣) <∞, m1,m2, n1, n2 ≥ 0. (4.38)

By the above rapidly-decreasing assumption, from the matrix problems (4.35) we obtain the asymptotic

behavior of φ ∼ eiλΛx+iλ3Ωt as x, t→ ±∞. Thus, through the variable transformation

φ = ψEg, Eg = eiλΛx+iλ3Ωt,

we achieve to have the canonical normalization ψ → I4, when x, t → ±∞. By introducing P̃ = iP and

Q̃ = iQ, the matrix spectral problem (4.35) is converted equivalently into

ψx = iλ[Λ, ψ] + P̃ψ, (4.39a)

ψt = iλ3[Ω, ψ] + Q̃ψ. (4.39b)

Let us now formulate the corresponding RHP with respect to x. In the direct scattering problem, we first

introduce the two matrix solutions ψ+ and ψ− of (4.39a) characterized by the asymptotic behavior

ψ± → I4, as x→ ±∞, (4.40)

respectively. The above superscripts indicates to which end of the x-axis these boundary conditions are

imposed. By the Liouville’s formula in ODE theory, it follows then from (4.39a) and (4.39b) (in particular

because P̃ and Q̃ are both traceless) that detψ+ = detψ− ≡ 1 everywhere on the real line. Since

φ± = ψ±E, E = eiλΛx, (4.41)

are both solutions of (4.35) (which is of first order), they are linearly dependent, i.e. ψ−E and ψ+E can be

associated with each other in terms of

ψ−E = ψ+ES(λ), λ ∈ R, (4.42)

via the so-called scattering matrix S(λ) = (sjk)4×4. It follows immediately at this moment that detψ± ≡

1 implies detS(λ) ≡ 1.

One derives based on (4.39a) that

ψx − iλ[Λ, ψ] = P̃ψ

⇒ e−iλΛx(ψx − iλ[Λ, ψ])eiλΛx = e−iλΛxP̃ψeiλΛx

⇒ d

dx

(
e−iλΛxψeiλΛx

)
= e−iλΛxP̃ψeiλΛx,
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from which we naturally realize that we can convert the spatial part of the matrix spectral problem (4.39a)

into the Volterra integral equations for ψ+ and ψ−:

ψ−(λ, x) = I4 +

∫ x

−∞
eiλΛ(x−x′)P̃ (x′)ψ−(λ, x′)eiλΛ(x′−x)dx′, (4.43a)

ψ+(λ, x) = I4 −
∫ ∞
x

eiλΛ(x−x′)P̃ (x′)ψ+(λ, x′)eiλΛ(x′−x)dx′, (4.43b)

where the boundary condition (4.40) here takes effect. In order to extend ψ+ and ψ− analytically off the

real axis, one necessarily has to perform a spectral analysis for (4.43a) and (4.43b) w.r.t. λ, i.e., to study the

behavior of convergence of the integrals on the right hand sides. Recalling that α > 0 and Λ is diagonal, we

can directly find that the integrands of the integral equations for the third and fourth columns of ψ− contain

only the exponential factor e−αλ2(x−x′), which attenuates as long as λ = λ1 + iλ2 ∈ D+, since x′ ≤ x in

the integral of (4.43a). So do the first and second columns of ψ+ because the involved integrands contain

only the factor eαλ2(x−x′) and x′ ≥ x in the integral of (4.43b). This implies that the columns mentioned

above are analytically continuable to D+. Likewise, we conclude that the first two columns of ψ− and the

last two columns of ψ+ are analytically continuable to D−.

Or to put it more exactly, the idea involved in the spectral analysis is to classify the columns or rows in

ψ+ and ψ−, and rearrange them according to their behavior of convergence in D+ and D−. If we denote

ψ+ = (ψ+
1 , ψ

+
2 , ψ

+
3 , ψ

+
4 ), ψ− = (ψ−1 , ψ

−
2 , ψ

−
3 , ψ

−
4 ) (4.44)

with ψ±j standing for the jth column of ψ± (1 ≤ j ≤ 4), then the re-assembled matrix solution

Y + = Y +(x, λ) = (ψ+
1 , ψ

+
2 , ψ

−
3 , ψ

−
4 ) = ψ+H1 + ψ−H2 (4.45)

is analytic for all λ ∈ D+, whereas the other re-assembled matrix solution

(ψ−1 , ψ
−
2 , ψ

+
3 , ψ

+
4 ) = ψ−H1 + ψ+H2 (4.46)

is analytic for all λ ∈ D−, where

H1 = diag(1, 1, 0, 0), H2 = diag(0, 0, 1, 1). (4.47)

Moreover, from the Volterra integral equation (4.43a), (4.43b), we see that

Y +(x, λ)→ I4, when |λ| → ∞ in D+, (4.48)

and

(ψ−1 , ψ
−
2 , ψ

+
3 , ψ

+
4 )→ I4, when |λ| → ∞ in D−. (4.49)
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We still have to construct the analytic counterpart of Y + in D− from the adjoint counterparts of the matrix

spectral problems. Considering that for a matrix A depending on x,

(AA−1)x = AxA
−1 +AA−1

x = 0, ⇒ A−1
x = −A−1AxA

−1,

let now φ̃± = (φ±)−1 and ψ̃± = (ψ±)−1, the adjoint equation of the x-part of (4.35) and the adjoint

equation of (4.39a) can be derived to be

iφ̃x = i(−φ̃φxφ̃) = i(−φ̃iUφφ̃) = φ̃U, (4.50)

and

iψ̃x = −iψ̃ψxψ̃ = −iψ̃(iλ[Λ, ψ] + P̃ψ)ψ̃

= λψ̃(Λψ − ψΛ)ψ̃ − iψ̃P̃

= λ(ψ̃Λ− Λψ) + ψ̃P

= λ[ψ̃,Λ] + +ψ̃P, (4.51)

respectively.

Note that φ̃± and ψ̃± solve (4.50) and (4.51), respectively. Upon expressing ψ̃± as

ψ̃± =


ψ̃±,1

ψ̃±,2

ψ̃±,3,

ψ̃±,4

 , (4.52)

with ˜ψ±,j standing for the jth row of ψ̃± (1 ≤ j ≤ 4), we can verify by similar arguments that the adjoint

matrix solution

Y − =


ψ̃+,1

ψ̃+,2

ψ̃−,3,

ψ̃−,4

 = H1ψ̃
+ +H2ψ̃

− = H1(ψ+)−1 +H2(ψ−)−1 (4.53)

is analytic for all λ ∈ D−, and the matrix solution
ψ̃−,1

ψ̃−,2

ψ̃+,3,

ψ̃+,4

 = H1ψ̃
− +H2ψ̃

+ = H1(ψ−)−1 +H2(ψ+)−1 (4.54)
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is analytic for all λ ∈ D+. Pretty similarly, it applies also that

Y −(x, λ)→ I4, as |λ| → ∞ in D−, (4.55)

and 
ψ̃−,1

ψ̃−,2

ψ̃+,3,

ψ̃+,4

→ I4, , as |λ| → ∞ in D+. (4.56)

We have so far constructed the two matrix functions, Y + and Y −, which are analytic in D+ and D−,

respectively. Now define for all λ ∈ R

G+(x, λ) = lim
µ∈D+,µ→λ

Y +(x, µ), G−(x, λ) = lim
ν∈D−,ν→λ

Y −(x, ν), (4.57)

we can directly show that the two matrix functions G+ and G− are related on the real line R by

G−(x, λ)G+(x, λ) = G(x, λ), λ ∈ R, (4.58)

where by (4.42), it follows that for all λ ∈ R,

G(x, λ) = G−(x, λ)G+(x, λ)

= lim
ν∈D−,ν→λ

Y −(x, ν) · lim
µ∈D+,µ→λ

Y +(x, µ)

= lim
ν∈D−,ν→λ

(H1(ψ+)−1 +H2(ψ−)−1) · lim
µ∈D+,µ→λ

(ψ+H1 + ψ−H2)

= E(H1 +H2S
−1(λ))(H1 + S(λ)H2)E−1

= E


1 0 s13 s14

0 1 s23 s24

ŝ31 ŝ32 1 0

ŝ41 ŝ42 0 1

E
−1. (4.59)

Note that S−1(λ) = (S(λ))−1 = (ŝjk)4×4. The equations (4.58) and (4.59) are precisely the associated ma-

trix Riemann-Hilbert problems one would like to build for the 8-component mKdV system (4.34a), (4.34b).

The asymptotic behavior

Y ±(x, λ)→ I4, when |λ| → ∞ in D± (4.60)

is certainly consistent with the canonical normalization conditions

G±(x, λ), G(x, λ)→ I4, when λ ∈ R, |λ| → ∞, (4.61)
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for the Riemann-Hilbert problems constructed above.

The direct scattering transform achieves it mission by obtaining the temporal evolution of the scattering

matrix. So let’s work out the derivative of (4.42) with respect to t and apply to it the condition that the

potentials vanish at infinity of t. It can be thus derived that the time evolution of the scattering matrix S is

governed by (observing that in this system, the matrices E and Ω are commutative):

(ψ−E)t = (ψ+ES)t, i.e. ψ−t E = ψ+
t ES + ψ+ESt,

⇒ (iλ3[Ω, ψ−] + Q̃ψ−)E = (iλ3[Ω, ψ+] + Q̃ψ+)ES + ψ+ESt,

⇒ iλ3(Ωψ− − ψ−Ω)E = iλ3(Ωψ+ − ψ+Ω)ES + ψ+ESt,

⇒ −iλ3ψ−EΩ = −iλ3ψ+EΩS + ψ+ESt,

⇒ −iλ3ψ+ESΩ = −iλ3ψ+EΩS + ψ+ESt,

⇒ St = iλ3[Ω, S]. (4.62)

From this first-order linear matrix differential equation all the individual scattering coefficients of S can be

solved as: 

s13 = s13(λ, 0)eiβλ
3t, s14 = s14(λ, 0)eiβλ

3t,

s23 = s23(λ, 0)eiβλ
3t, s24 = s24(λ, 0)eiβλ

3t,

s31 = s31(λ, 0)e−iβλ
3t, s41 = s41(λ, 0)e−iβλ

3t,

s32 = s32(λ, 0)e−iβλ
3t, s42 = s42(λ, 0)e−iβλ

3t,

(4.63)

whereas all other scattering coefficients do not vary with t and hence are functions of λ only.

4.3 Soliton solutions

It is inevitable that we often encounter Riemann-Hilbert problems in which detY + and detY − have zeros.

The most effective way of handling such RHPs is to transform them into the ones without zeros. However,

if the numbers of zeros of detY + and detY − are not the same, the canonical normalization conditions are

no longer guaranteed in such an transformation––which implies that this RHP is not solvable. Only when

detY + and detY − have the same numebrs of simple zeros which are all specified, we can confidently say

that this RHP can be uniquely solved [105, 106, 107].

Based on detψ± = 1, it follows from the definitions of Y ± and detS = 1 that

detY + = s44(λ)s33(λ)− s34(λ)s43(λ) = ŝ11(λ)ŝ22(λ)− ŝ12(λ)ŝ21(λ),

detY − = ŝ44(λ)ŝ33(λ)− ŝ34(λ)ŝ43(λ) = s11(λ)s22(λ)− s12(λ)s21(λ).
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Let N > 0 be another integer and assume that detY + has N roots λk ∈ D+, and detY − has N roots

λ̂k ∈ D−, 1 ≤ k ≤ N . To generate simple soliton solutions, we assume also that all the zeros, λk and λ̂k

(1 ≤ k ≤ N ), are simple. Therefore, every kerY +(λk) (1 ≤ k ≤ N ) contains merely a single basis column

vector, denoted by wk; for the same reason there is merely a single basis row vector, ŵk (1 ≤ k ≤ N ),

contained in every kerY −(λ̂k):

Y +(λk)wk = 0, ŵkY
−(λ̂k) = 0, 1 ≤ k ≤ N. (4.64)

The RHPs formulated by (4.58) and (4.59), with the canonical normalization conditions in (4.61) and the

zero structures in (4.64) can be explicitly solved so as to work out the potential matrix P . Note that Y +

solves the matrix spectral problem (4.39a). Hence, by expanding Y + at large λ as [39, 105]

Y +(x, λ) = I4 + λ−1Y +
1 (x) + O(λ−2), λ→∞,

and substituting this series expansion into (4.39a), the comparison of the O(1) terms will give

P̃ = −i[Λ, Y +
1 ]. (4.65)

This is equivalent to retrieving the potential matrix as:

P = −[Λ, Y +
1 ] =


0 0 −α(Y +

1 )13 −α(Y +
1 )14

0 0 −α(Y +
1 )23 −α(Y +

1 )24

α(Y +
1 )31 α(Y +

1 )32 0 0

α(Y +
1 )41 α(Y +

1 )42 0 0

 . (4.66)

Alternatively, the matrix P can also be retrieved by expanding Y −(x, λ) as

Y −(x, λ) = I4 + λ−1Y −1 (x) + O(λ−2), λ→∞,

and then substituting it into the adjoint equation (4.51), to yield

P = [Λ, Y −1 ]. (4.67)

That is to say, the 8 potentials in submatrices p and q can be retrieved from Y + or Y − as follows:

p11 = −α(Y +
1 )13 = α(Y −1 )13, p12 = −α(Y +

1 )14 = α(Y −1 )14,

p21 = −α(Y +
1 )23 = α(Y −1 )23, p22 = −α(Y +

1 )24 = α(Y −1 )24,

q11 = α(Y +
1 )31 = −α(Y −1 )31, q12 = α(Y +

1 )32 = −α(Y −1 )32,

q21 = α(Y +
1 )41 = −α(Y −1 )41, q22 = α(Y +

1 )42 = −α(Y −1 )42. (4.68)
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We make a short pause here to elucidate briefly about how an RHP is solved. First of all, if detY ± do

not have zeros in D+ and D−, the RHP is said to be regular (it is worthwhile to mention that in case of a

regular RHP, G−(x, λ)G+(x, λ) = G(x, λ) for all λ ∈ R can be equivalently reformulated as Ĝ+(x, λ) =

Ĝ−(x, λ)G(x, λ) for all λ ∈ R, where Ĝ+(x, λ) = G+(x, λ) and Ĝ−(x, λ) = (G−)−1(x, λ)––since G− is

invertible due to the regularity). A regular RHP subjected to the canonical normalization condition is proved

[104] to be uniquely solvable in the light of complex analysis (in particular the Liouville’s theorem, or its

alternative––the so-called Vanishing Lemma [24]), and the solution can be formally expressed in terms of

the Plemelj formula.

If however as indicated above, in case N ≥ 1, such an RHP is said to be nonregular. The idea of solving

nonregular RHPs is simply to convert them into regular ones. We introduce now the matrix

Γ(λ) = ΓN (λ)ΓN−1(λ) . . .Γ1, (4.69)

where

Γk(λ) = I − λk − λ̂k
λ− λ̂k

Pk, 1 ≤ k ≤ N. (4.70)

Here Pk = |wk〉〈ŵk|
〈ŵk|wk〉 is a projection operator, where to distinguish between the column vector wk and the row

vector ŵk, we have used the Dirac bra-ket notation |wk〉 and 〈ŵk|. It is easy to check that P 2
k = Pk. It is

also direct to show that

Γ−1(λ) = Γ−1
1 (λ)Γ−1

2 (λ) . . .Γ−1
N (λ), (4.71)

where

Γ−1
k (λ) = I − λ̂k − λk

λ− λk
Pk, 1 ≤ k ≤ N. (4.72)

Let now Ỹ +(λ) = Y +(λ)Γ−1(λ) and Ỹ −(λ) = Γ(λ)Y −(λ). Using complex analysis (e.g., residue

thereoem) one straightforwardly proves that Ỹ +(λ) and Ỹ −(λ) are analytic in D+ and D−, respectively;

and det Ỹ +(λ) and det Ỹ −(λ) no longer vanish at their original zeros––since, say, the zero λk in Y +(λ) is

canceled out by λ− λk living on the denominator in Γ−1
k (λ); the situation is likewise for Y −(λ) and Γ(λ).

At this moment one can readily show that the original RHP can now be reformulated into

G̃−(x, λ)G̃+(x, λ) = G̃(x, λ), λ ∈ R, (4.73)

where for all λ ∈ R,

G̃+(x, λ) = lim
µ∈D+,µ→λ

Ỹ +(x, µ), G̃−(x, λ) = lim
ν∈D−,ν→λ

Ỹ −(x, ν), (4.74)

and

G̃(x, λ) = Γ−1(λ)G(x, λ)Γ(λ). (4.75)
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Based on the arguments above, G̃+(x, λ) and G̃−(x, λ) do not have zeros in D+ and D−, respectively.

Therefore the original nonregular RHP is thus reduced to a regular one.

We admit now G = I4 in the Riemann-Hilbert problem (4.58) in order to calculate soliton solutions. One

accomplishes this by setting s13 = ŝ31 = s14 = ŝ41 = s23 = ŝ32 = s24 = ŝ42 = 0, which corresponds to

a reflectioless scattering problem. Following the above spirits, it is already verified that the solutions to the

reduced Riemann-Hilbert problem can be explicitly written down as [39, 105, 104]

Y +(λ) = I4 −
N∑

k,l=1

wk(M
−1)klŵl

λ− λ̂l
, Y −(λ) = I4 +

N∑
k,l=1

wk(M
−1)klŵl

λ− λl
, (4.76)

where the entries of the square matrix M = (mkl)N×N are computed through

mkl =
ŵkwl

λl − λ̂k
, 1 ≤ k, l ≤ N. (4.77)

The fact that the zeros λk and λ̂k are space and time independent helps us to work out the evolutions with

respect to space and time for the kernel vectors wk(x, t) and ŵk(x, t) (1 ≤ k ≤ N ) routinely. Let’s take,

say, the first set of equations in (4.64), and compute its x-derivative. Recalling (4.39a) and (4.64), we obtain

Y +(λk, x)

(
dwk
dx
− iλkΛwk

)
= 0, 1 ≤ k ≤ N. (4.78)

It thus implies that for each 1 ≤ k ≤ N , dwkdx − iλkΛwk lives in the kernel of Y +(λk, x) and hence must be

a constant multiple of wk, i.e., in general,

dwk
dx
− iλkΛwk = αk(x)wk, 1 ≤ k ≤ N, (4.79)

where αk(x) is a scalar function depending on x only, from which one obtains the solution

wk(x) = eiλkΛ(x−x0)wk0e
∫ x
x0
αk(s)ds

, vk0 = vk|x=x0 .

One finds that once the above wk(x) goes back into the formulae (4.76) and (4.77), the term e
∫ x
x0
αk(s)ds

cancels out and becomes immaterial. Hence, without loss of generality we are happy to use here the simplest

case, i.e.,
dwk
dx

= iλkΛwk, 1 ≤ k ≤ N. (4.80)

Pretty similarly, one obtains the time dependence of wk

dwk
dt

= iλ3
kΩwk, 1 ≤ k ≤ N, (4.81)
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by playing the same trick upon the t-part of the matrix spectral problem. We obtain therefore

wk(x, t) = eiλkΛx+iλ3kΩtwk,0, 1 ≤ k ≤ N, (4.82a)

ŵk(x, t) = ŵk,0eiλkΛx+iλ3kΩt, 1 ≤ k ≤ N, (4.82b)

where wk,0 and ŵk,0 are constant column and row vectors, respectively.

Eventually, through (4.68) we conclude

Y +
1 = −

N∑
k,l=1

wk(M
−1)klŵl. (4.83)

And in turn through the results we obtained above in (4.76), the N -soliton solution to our 8-component

mKdV system can be represented by

prj = α
N∑

k,l=1

wk,r(M
−1)klŵl,j+2, qrj = −α

N∑
k,l=1

wk,r+2(M−1)klŵl,j , (4.84)

where 1 ≤ r, j ≤ 2, wk = (wk,1, wk,2, wk,3, wk,4)T and ŵk = (ŵk,1, ŵk,2, ŵk,3, ŵk,4) (1 ≤ k ≤ N ) are

given by (4.82a) and (4.82b), respectively.

4.4 Reductions

We make a specific reduction by applying the following constraints to the potential matrix P :

P † = CPC−1, C =

 Σ1 0

0 Σ2

 , (4.85)

where the application of † produces the Hermitian transpose of a matrix and Σ1,2 are 2×2 constant Hermitian

symmetric matrices: Σ†1,2 = Σ1,2. Below we shall denote the complex conjugate of a complex number z by

z̄; and for a matrix B depending on the spectral parameter λ, we denote the Hermitian transpose of B(λ) by

B†(λ̄), the inverse of B(λ̄) by B−1(λ̄), respectively; i.e., B†(λ̄) = (B(λ))† and B−1(λ̄) = (B(λ̄))−1.

Let ψ(λ) be a matrix eigenfunction of (4.39a). One can easily prove that both matrix adjoint eigen-

functions Cψ−1(λ̄) and ψ†(λ̄)C solve the adjoint equation (4.51) associated with the eigenvalue λ̄. Upon

noticing the asymptotic behavior of ψ± as λ→∞, the uniqueness of solution therefore guarantees that for

either ψ = ψ+ or ψ = ψ−,

Cψ−1(λ̄) = ψ†(λ̄)C ⇒ ψ†(λ̄) = Cψ−1(λ̄)C−1. (4.86)

Moreover, one derives also from the definitions of Y ± that the so-called involution relation can be con-

structed between Y + and Y −:

(Y +)†(λ̄) = CY −(λ̄)C−1, (4.87)
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as well as between the scattering matrix S(λ) and its inverse (likewise by definition):

S†(λ̄) = CS−1(λ̄)C−1. (4.88)

For the zeros of detY ±, starting from (4.87) one can show that

det(Y +)†(λ̄) = detCY −(λ̄)C−1, ⇒ det(Y +(λ))† = detY −(λ̄),

⇒ detY +(λ) = detY −(λ̄),

from which it follows immediately that under the reduction given by (4.85), detY +(λ) = 0 if and only if

detY −(λ̄) = 0; or in another word under this reduction one fabulously associates λk and λ̄k in terms of

λ̂k = λ̄k, 1 ≤ k ≤ N. (4.89)

We now compute the Hermitian transpose of the first equation in (4.64) in order to obtain the involution

eigenvectors vk and v̂k with the existence of (4.87) and (4.89):

Y +(λk)wk = 0 ⇒ 0 = w†k(Y
+(λk))

† = w†kCY
−(λ̄k)C

−1, 1 ≤ k ≤ N. (4.90)

It is implied in the above result that the involution eigenvectors can be written for all 1 ≤ k ≤ N as:

wk(x, t) = eiλkΛx+iλ3kΩtwk,0, ŵk(x, t) = w†kC = w†k,0e−iλ̄kΛx−iλ̄3kΩtC, (4.91)

where vk,0 are constant column vectors.

We take now

Σ1 =
1

σ1
I2, Σ2 =

1

σ2
I2, σ1, σ2 ∈ R\{0}, (4.92)

from which (and (4.85)) it follows immediately that

q =
σ2

σ1
p†. (4.93)

If one admits simultaneously the matrix function c in (4.12) to be

c =
σ2

σ1
b†, (4.94)

it can be derived easily that all these will guarantee

a† = a, d† = d, (4.95)

where a and d are given by (4.12). In turn this will lead to (by consideration of (4.36) and (4.37))

(V [3])†(λ̄) = CV [3](λ̄)C−1, Q†(λ̄) = CQ(λ̄)C−1. (4.96)

73



The reduction depicted by (4.92) therefore takes effect reasonably for the x-part and t-part of the matrix

spectral problems (4.35). The 8-component mKdV system (4.34a), (4.34b) is thus reduced to

prj,t = − β

α3
prj,xxx − 3

βσ2

α3σ1

( 2∑
k,l=1

|pkl|2
)
prj,x − 3

βσ2

α3σ1

( 2∑
k,l=1

pkl,xp̄kl

)
prj

+ 3
βσ2

α3σ1
Crj(p

†)(det p)x, 1 ≤ r, j ≤ 2. (4.97)

One sees that in such a reduction only the ratio σ2/σ1, other than the exact values of σ1,2, is fundamental.

4.5 Concluding remarks

In this chapter, by starting from a generalized mKdV matrix spectral problem that has been properly treated

to guarantee analytical continuation of eigenfunctions into D+ and D−, respectively, we have first computed

its soliton hierarchy. We have then developed an inverse scattering transform in terms of Riemann-Hilbert

formulation for one of the equations in this hierarchy. Based on this, the computation of soliton solutions

has been successfully performed by reducing the Riemann-Hilbert problems to those with an identity jump

matrix, i.e., those correspond to a reflectionless inverse scattering problems. Both the Riemann-Hilbert

approach and the inverse scattering transform demonstrate their power in linearizing a problem which is

originally nonlinear in essence.

The Riemann-Hilbert problems formulated from inverse scattering transforms has become, apart from the

Hirota bilinear method, the Wronskian technique, the Bäcklund and Darboux transformations [108], another

very effective tool in computing soliton solutions [104, 109, 103]. At the moment, various attempts are also

being made to apply this tool in generating lump solutions [94, 110], positon and complexiton solutions

[95, 111], as well as algebro-geometric solutions [112, 113]. Also recently, generalizations of this method

were applied in solving some specific Cauchy problems of nonlinear integrable equations on the half real

line [114], as well as on some finite intervals [115].
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