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Abstract 

The goal of the research conducted in this dissertation was to define and test methods to 

incorporate oil spill effects into an ecosystem-based assessment model. It was instigated by the 

Deepwater Horizon oil spill, an unprecedented oil spill in the United States for both depth and 

volume, with unknown implications for the health of the region. Using an ecosystem-based 

assessment model like Atlantis, with integrated oil spill dynamics, was the ideal candidate to 

predict long-term impacts such as decreased abundance or population recovery time. However 

no previous methodology existed for doing so in any ecosystem-based assessment model. 

Therefore, first I conducted a literature review to gather data across fish species on lesion 

frequency and fish body growth impacts from oil exposure. The two data sets were then fitted to 

four different dose-response models, and an effect threshold log-linear “hockey-stick” model was 

selected as the best fit and most parsimonious for both lesions and growth. Next, I conducted a 

similar analysis comparing macrofaunal and meiofaunal abundances to oil exposure 

concentrations in the Gulf of Mexico collected after Deepwater Horizon. I confirmed that these 

data had the domed relationship between invertebrate abundances and oil concentration observed 

in previous invertebrate oil studies. This domed relationship indicates that abundance increases 

at low to moderate oil levels, and declines at high oil levels. To drive this relationship in an 

Atlantis ecosystem model, three scenarios were tested in combination with oil toxicity: 1) 

Mississippi nutrient loading, 2) increased detritus from marine oil snow sedimentation and 

flocculent accumulation, and 3) predators altering their behavior to avoid oil exposure. At the 

Atlantis polygon resolution, only scenario 2, increased detritus from marine oil snow 
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sedimentation and flocculent accumulation, generated the domed relationship for invertebrate 

abundances. Lastly, the “hockey-stick” model for fish mortality and growth was applied to both 

fishes and invertebrates in combination with scenario 2 for an integrated long-term assessment of 

the Gulf of Mexico. Newly available fish exposure data were used to generate an uptake-

depuration model for this assessment. The combined effect forcings on vertebrates and 

invertebrates proved to have more severe long-term implications on population size and recovery 

than simulations with only fish forcings. Large demersal fishes, including elasmobranchs, were 

the most severely impacted by large biomass declines in the model spill region. Sensitivity 

analyses indicated that there was the potential for no recovery during 50 years of simulation in 

the spill region for many functional groups. Analysis of the synergy between fishing mortality F 

and toxicity from an oil spill identified that some guilds are more sensitive in an oil spill 

simulation to varied F than others. Snappers are the most sensitive to increased fishing mortality, 

while groupers respond the most to a reduction in fishing mortality. The invertebrate guild and 

small pelagic fishes responded the least to different values of F. Changing F also had 

implications for guild recovery – some guilds only fully recovered to control scenario biomass 

when F was reduced. A few functional groups were unable to survive with the combined effects 

of oil toxicity and increased F, and went extinct before the end of the 50-year simulation. 

Overall, this work provided the first framework for initial integrated modeling of oil spill 

impacts in an ecosystem-based assessment model, a potentially important component to future 

ecosystem-based fisheries management. The “hockey-stick” dose response model is applicable 

beyond Atlantis modeling, and can be tuned to fit specific events based on available data. I have 

also identified the importance of including marine oil snow sedimentation and flocculent 

accumulation to accurately drive the response of benthic invertebrates. Findings from the 
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combined vertebrate and invertebrate simulations should help inform research efforts in the Gulf 

of Mexico and future oil spill response efforts.  
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Chapter One: Introduction 

Ecosystem-based fisheries management (EBFM) has been hailed as the future of fisheries 

management for decades (Knecht & Cicin-Sain, 1993; Grumbine, 1994; Griffis & Kimball, 

1996; Costanza et al., 1998; Link & Browman, 2014; Marshall et al., 2017; Levin et al., 2018). It 

offers a holistic approach to resource management with the goal of sustaining ecosystem health 

(Pikitch et al., 2004), accounting for population drivers beyond single species dynamics. These 

drivers can include competition, predation, anthropogenic impacts, and environmental 

conditions. EBFM is also a useful tool for managing multiple fisheries with interacting target 

species, and accounts for the compounding effects of fishing and environmental factors to 

maximize system health (Pikitch et al., 2004; Plagányi & Butterworth, 2004).  

EBFM is widely acknowledged as a necessary tool for modern fisheries management 

(Pikitch et al., 2004; Murawski, 2007; Engler, 2015; Patrick & Link, 2015), but the scope of 

EBFM makes implementation more difficult than a single species approach (Browman & 

Stergiou, 2004; Plagányi & Butterworth, 2004; Curtin & Prellezo, 2010; Cowan et al., 2012). 

EBFM requires the ability to accurately collect and analyze more data than is needed for single 

species efforts (Hilborn, 2011; Cowan et al., 2012; Walther & Möllmann, 2014). In addition, it is 

constrained by the ability of the managing body to accurately interpret results, understand the 

limitations of outputs, and appropriately implement into policy the outputs of EBFM (Leslie et 

al., 2008; Jennings and Rice, 2011; Berkes 2012). Despite international calls for EBFM 

implementation (Ministry of the Environment, 1997; Ecosystem Principles Advisory Panel, 

1999; World Summit on Sustainable Development, 2002; United Nations Environment 
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Programme, 2006), common misconceptions regarding EBFM still exist (Murawski, 2007; 

Patrick & Link, 2015) and implementation is not wide-spread.  

Where feasible, the benefits of using EBFM are clear. EBFM additionally works to 

reconcile the needs of other human sectors of the system, including tourism, water management, 

and oil and gas activity and related potential spill events. As oil exploration and drilling move 

into deeper water and new environments, the ability to understand the impact of an oil spill is a 

prime example of an event with ecosystem level implications. Using ecosystem-based 

assessment tools to determine the impacts of these events could provide the same beneficial 

insights as using EBFM instead of a single species approach. Ecosystem-based models are 

useful, but underutilized, tools to assess impacts of an oil spill. Not only can these models be 

tuned to match the current state of the system, but they can project possible future states, test 

different management strategies, and predict potential outcomes of disturbance events 

(Christensen & Walters, 2004; Plagányi & Butterworth, 2004; Fulton et al., 2011, 2014). 

Importantly, ecosystem models can help amalgamate and synthesize research after oil spills 

(Okey & Wright 2004; Ainsworth et al. 2018).   

Mass data collection and research efforts were instigated in response to the unique and 

extensive Deepwater Horizon (DwH) oil spill, which make it an ideal candidate for end-to-end 

ecosystem modeling efforts. On April 20th, 2010, the MC252 Macondo well site (also known as 

DwH) blew out after the platform exploded, killing 11 people. As previously used methods of 

halting the flow of oil failed (Lubchenco et al., 2012), unprecedented amounts of oil were 

released into the GoM from a depth of 1500 meters. Eventually the wellhead was capped on July 

15th, 2010. Over the course of 87 days, Griffiths (2012) estimates 4.6 million barrels of oil 

flowed into the GoM, though according to the US v. BP trial (2015) that value is 3.19 million 
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barrels. Both estimates set the DwH event as the largest oil spill in US history, and it is also 

unprecedented both for its depth (greater than 1000m) and the use of dispersants at the wellhead 

(Kujawinski et al., 2011). This combination of factors resulted in a deep-sea plume of oil within 

which up to 35% of the released hydrocarbons were trapped (Griffiths, 2012; Ryerson et al., 

2012) with unknown persistence time (Peterson et al., 2012).  

Satellite imagery revealed that oil covered a surface area of 68,000 square miles (Norse 

& Amos, 2010). The surface oil interacted with marine snow and mineral particles to form heavy 

aggregates (Passow et al., 2012; Daly et al., 2016) that resulted in a rapid pulse of sedimentation 

– a process now known as Marine Oil Snow Sedimentation and Flocculent Accumulation 

(MOSSFA, Daly et al., 2016) -- that exceeded background levels (White et al., 2012; Montagna 

et al., 2013; Valentine et al., 2014; Brooks et al., 2015; Chanton et al., 2015; Romero et al., 

2015). It appears that 0.5-47% of the oil spilled reached the seafloor through this process 

(Valentine et al., 2014; Chanton et al., 2015; Romero et al., 2017), the value range being a result 

of different regional deposition.  

These different components of the oil spill covered a vast extent of the northern GoM 

ecosystem, with the potential for wide-reaching ecological impacts. Toxicological impacts have 

been found in communities ranging from microbial and planktonic (Bælum et al., 2012; Almeda 

et al., 2013, 2014) to fishes (Murawski et al., 2014; Tarnecki & Patterson, 2015; Herdter et al., 

2017) and to charismatic megafauna and top predators (US Fish and Wildlife Service, 2011, 

Henkel et al., 2012; Haney et al., 2014). The massive research response to the DwH event 

provides the opportunity to collaborate across disciplines and use the data collected in an 

ecosystem-based modeling effort. Ainsworth et al. (2018) reported on impacts on fishes from the 

DwH oil spill based on an Atlantis model. Toxic effects on fish health and growth were added to 
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the model following Dornberger et al. (2016), as well as emergency fisheries response closures, 

in order to estimate potential long-term effects of the oil spill in the GoM ecosystem. Other 

research efforts are also ongoing to use ecosystem models to describe the DwH event, including 

another Atlantis model of the northern GoM (Gosnell, S., unpublished data) and an Ecopath with 

Ecosim model of the GoM (Rohal, M., unpublished manuscript). 

This dissertation focuses on informing ecosystem-based modeling efforts of oil spills and 

describes potential long-term impacts and recovery time from the DwH event. Chapter 2 

describes methods for modeling how individual organism-level fish health effects of oil exposure 

contribute to effects a population level across a continuous exposure spectrum. Here, I explored 

the dose-response relationship of oil exposure on both body growth and mortality, using lesion 

prevalence as a measure of declined health that would result in a higher mortality rate. The 

coauthors of this publication provided helpful insights on methods improvement and overall 

feedback. This manuscript was published in the journal Marine Science Pollution Bulletin 

(Dornberger et al., 2016). Towards a holistic approach, I designed Chapter 3 to first assess the 

relationship between benthic invertebrate abundance and oil exposure, and then determine if the 

resulting relationship could be driven in Atlantis using external forcings. After confirming that 

benthic invertebrate abundances sampled in the GoM indicated a domed shaped relationship with 

oil (data from Montagna et al., 2013), three forcing scenarios were tested in combination with 

toxicity in Atlantis. I determined that it was feasible to drive both abundance increases and 

toxicity in benthic invertebrate populations, using detrital forcings to represent MOSSFA organic 

enrichment. For the final chapter, the results from Chapters 2 & 3 were input into the Atlantis 

model for a combined higher and lower trophic level view of the DwH impacts on the system. 

Oil toxicity parameters and sediment exposure estimates of fishes and invertebrates were varied 
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in sensitivity analysis, and four different fishing efforts assessed to observe the combined impact 

of fisheries management and oil impacts. 
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Chapter Two: Developing a polycyclic aromatic hydrocarbon exposure dose-response 

model for fish health and growth 

2.1 Note to reader 

Appendix A - Developing a polycyclic aromatic hydrocarbon exposure dose-response 

model for fish health and growth presents research published in the journal Marine Pollution 

Bulletin. A full reprint is available in Appendix A with permission from Elsevier. The original 

text is available here: https://doi.org/10.1016/j.marpolbul.2016.05.072 . All authors (Lindsey 

Dornberger, Cameron Ainsworth, Stephen Gosnell, and Felicia Coleman) worked together 

equally to conceptualize this manuscript. Literature review and data collection were designed by 

LD and SG. Analytical methods, including model design and testing, were developed by LD, 

CA, FC, and SG, and were conducted by LD. LD wrote the manuscript and generated all tables 

and figures. All authors edited the manuscript during the preparation and publication process. 

2.2 Research overview 

I generated a continuous, multi-species dose-response model for fishes exposed to 

petrogenic polycyclic aromatics hydrocarbons (PAHs). First, I conducted a comprehensive 

literature review and collected published data sets describing the health effects of petrogenic 

PAH exposure on fishes. I selected two health effects for dose-response modeling: growth and 

mortality. Before testing dose-response models, I compared the exposure medium of the 

collected data sets by generating the ratio of the effect observed to the log of the exposure value. 

I compared the source effect across nested mixed-effect models fit using X2 tests. For mortality, 

exposure mediums were not significantly different, so the data could be combined for dose-

https://doi.org/10.1016/j.marpolbul.2016.05.072
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response model analysis. Growth analysis indicated the sediment and water exposure mediums 

were not significantly different and could be combined, however food exposure was significantly 

different and had to be assessed separately. I fit four models (linear, step-wise, exponential, and 

“hockey-stick) to all three data sets using nonlinear least squares. Then I used Akaike 

Information Criterion to identify the most parsimonious model for both mortality and growth. 

The “hockey-stick” model was the best fit and most parsimonious in all settings. The results of 

this chapter were used to describe oil spill simulations in the Atlantis modeling framework. 
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Chapter Three: Simulating oil-driven abundance increases and toxicity in benthic marine 

invertebrates using the Atlantis modeling framework 

3.1 Introduction 

Between April 20th and July 15th, 2010, the Deepwater Horizon (DwH) oil spill in the 

Gulf of Mexico (GoM) released an estimated 4.6 million barrels of oil (Griffiths, 2012). 

Mitigation actions taken to reduce the impact of the spill included significant releases of 

freshwater from the Mississippi River, surface oil burns, and dispersant applications at the 

surface and wellhead (Kujawinski et al., 2011; Lubchenco et al., 2012; McNutt et al., 2012). The 

freshwater outflow from the Mississippi River -- a large source of sediment and particulates in 

the region (Corbett et al., 2006; Bianchi et al., 2007) -- was elevated above normal levels 

between May and October 2010 in an attempt to flush oil from the Mississippi delta and 

coastline (Bianchi et al., 2011; Kourafalou & Androulidakis, 2013). The increased Mississippi 

flow contributed to significant deposition of sediment and hydrocarbons near the De Soto 

Canyon and in other areas (White et al., 2012; Montagna et al., 2013; Valentine et al., 2014; 

Brooks et al., 2015; Chanton et al., 2015; Romero et al., 2015). The mass sediment flux to the 

seafloor is from marine oil snow formation during and after the spill (Brooks et al., 2015) 

through a pathway now known as Marine Oil Snow Sedimentation and Flocculent Accumulation 

(MOSSFA; Daly et al., 2016). Indeed, 0.5-47% of the oil spilled sedimented to the seafloor 

(Valentine et al., 2014; Chanton et al., 2015; Romero et al., 2017) in a spotty distribution across 

the continental shelf, slope, and onto the deep ocean seafloor. This key pathway is important in 

extrapolating effects to unsampled areas, and in determining the impacts of this spill on the 
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benthic community in the GoM. Potential effects include direct toxicity from crude oil and its 

by-products, smothering, shading, and anoxia. With the potentially large volume of oil that 

reached the seafloor, chronic effects could occur in the sediment, as well as in demersal 

communities due to resuspension of oil from disturbance events. 

Montagna et al. compared effects of oil release on meiofauna and macrofauna 

communities at the DWH wellhead and at natural seeps in the same vicinity. What they found 

were diversity reductions in soft-bottom benthic meiofauna and macrofauna in the 24 km2 

surrounding the DwH wellhead, with more moderate effects observed as distance from the 

wellhead increased. They correlated this effect with oil indicators and distance from the 

wellhead. No comparable correlation was found associated with natural hydrocarbon seeps. A 

follow-up study conducted the subsequent year revealed persistent contamination and continued 

declines in richness and biodiversity (Montagna et al., 2017). This result suggests that the system 

had persistent community structure shifts within that time frame of these two studies.  

These benthic habitats are important repositories of biodiversity (Hessler & Sanders, 

1967; Grassle & Maciolek, 1992), and changes in community structure can have effects across 

the marine food web. The direct and indirect effects of oil exposure on benthic-dwelling 

organisms varies with species group and habitat, with sessile and relatively sedentary organisms 

more affected in soft sediment habitats, and more mobile invertebrates affected most on rocky 

shorelines (Suchanek, 1993). Fishes are negatively affected by oil toxins, such as polycyclic 

aromatic hydrocarbons (PAHs), which can reduce growth and fecundity in fishes, and are 

correlated with increased prevalence of lesions and cancers (Collier et al., 2013; Murawski et al., 

2014; Vignet et al., 2014; Brown-Peterson et al., 2015; Hedgpeth & Griffitt, 2016; Herdter et al., 

2017). Oil spills add to the chronic oil toxicity burden as oil settles in the sediment and 
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resuspension of contaminated sediments occurs from disturbance (Latimer et al., 1999; Yang et 

al., 2008; Roberts, 2012).  

Some populations of organisms may actually benefit from oil exposure through organic 

enrichment of the food web (Jewett et al., 1999) or other mechanisms. Studies of natural oil 

seeps reveal toxic effects of exposure on benthic invertebrates within seeps, but microbial and 

meiofaunal enrichment at seep peripheries (Montagna & Spies, 1985; Montagna et al., 1986, 

1987). These findings led to the exploration of toxicity vs. enrichment in relation to oil. The 

pioneer experiment by Spies et al. (1988) examined dose-responses of meiofauna and 

macrofauna abundance in sediments containing various concentrations of oil with supplemental 

kelp. They found a pronounced domed response in macrofauna, with abundance highest at low 

concentrations of oil, and declining as oil concentrations increased (Figure 3.1). They determined 

that direct oil exposure had little effect on meiofaunal abundance, though other studies had 

shown loss of individuals from oil (Ustach, 1979; McLachan & Harty, 1982; Frithsen et al., 

1985).  

Additional studies have found similar domed-shaped relationships (Figure 3.1) in relation 

to natural oil seeps (Montagna et al., 1986; Palmer et al., 1988; Montagna et al., 1995). A leading 

explanation is that in the presence of oil, the abundance of oil-degrading microbes increases, 

providing additional food for meiofauna, which, in turn, are food to macrofauna (Olsgard & 

Gray, 1995; Steichen et al., 1996; Peterson et al., 1996; Jewett et al.; 1999). Top-down shifts 

through fish physiological (e.g., reduced growth and fecundity, increased mortality; cite papers) 

and behavioral (e.g., avoidance, migration; Rice et al., 1976; Gray, 1990; Martin, 2017; 

Ainsworth et al., 2018) responses to oil exposure could indirectly boost benthic invertebrate 

abundances through predation release or diet shifts. Specific to the GoM and DwH, common fish 
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invertivores of interest include grunts (family Haemulidae), porgies (family Sparidae), snappers 

(family Lutjanidae), and triggerfish (family Balistidae) (Dance et al., 2011).  

 

This study aimed first to explore whether a domed relationship (Figure 3.1) existed 

between benthic invertebrates in the GoM and the DwH oil. To do so, I examined sediment core 

data (Montagna et al., 2013) from the northern GoM (nGoM). Secondly, I tested the possible 

relationships between benthic invertebrate abundance and sediment oil concentration in an end-

to-end ecosystem model. The model framework selected for this study was Atlantis (Fulton, 

2001; Fulton et al., 2004a, b, 2005, 2007), which is being used by others in simulations of GoM 

ecosystem response to the DWH event (Ainsworth et al., 2018), and in ongoing work to model 

the Ixtoc oil spill (Ortega-Ortiz, J., unpublished manuscript).  

I use Atlantis to examine the conditions that could create an increase in invertebrate 

macro- and meio-faunal abundances at low to intermediate oil concentrations. Three hypotheses 

Toxicity Enrichment 

Figure 3.1 A conceptual model of the potential domed relationship between invertebrate abundance and 

environmental oil concentration 
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are tested: 1) Mississippi nutrient loading, based on the flushing of the Mississippi river (Bianchi 

et al., 2011) stimulated primary production at the surface (O’Connor et al., 2016); 2) increased 

detritus from MOSSFA (Brooks et al., 2015; Romero et al., 2015) stimulated the benthic food 

web; and 3) predators altering their behavior to avoid oil exposure (Rice et al., 1976; Gray, 1990; 

Martin, 2017; Ainsworth et al., in 2018) reduced predation mortality on invertebrates. Scenario 1 

would stimulate a primary production based food web, scenario 2 would stimulate a detritus 

based food web, and scenario 3 would be a release of top-down pressure on the system. Each 

scenario was tested individually to determine if one scenario alone could have been the driver of 

the dome-shaped population response of macro- and meio-fauna, or if a combination of factors 

were necessary. Finally, toxicity was applied based on the dose-response model of Dornberger et 

al. (2016), following the methods of Ainsworth et al. (2018) in combination with each scenario.  

3.2 Methods 

3.2.1 Analysis of benthic invertebrate relationship 

I used the data from Montagna et al. (2013, Supplementary Table 1), which includes 

cores from 68 stations in the nGoM assessed for meiofaunal and macrofaunal abundances, and 

other biotic and chemical data, such as total petrogenic hydrocarbons (TPH). These data were 

used to compare invertebrate abundances against TPH values to determine what relationships 

exist. 

First, I examined the relationship between depth and benthic invertebrate abundances. 

Abundances were log transformed and regressed against depth using linear model least squares 

residuals. Because the negative correlations were significant (meiofauna: R2 = 0.09, p < 0.05; 

macrofauna: R2 = 0.24, p < 0.0001), I then examined two other key environmental variables: 

TPH and barium. TPH was the measured oil exposure variable, and barium was another potential 
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oil-related variable that could be used to describe the domed relationship, as it is found in 

relation to offshore drilling operations (Kennicutt et al., 1996). TPH and barium were tested 

against each other, and each were tested against depth, for redundancies in explanatory variables. 

The correlation between these variables was tested using the Spearman rank correlation 

coefficient (SRCC). Because TPH and barium were significantly positively correlated (rho = 

0.48, p < 0.001), I used TPH alone in model building. Depth was not correlated with oil 

variables, so, partial residuals were generated to remove the determined depth effect, as if depth 

were held constant across the data set. To preserve the appropriate scale for the abundances, the 

y-intercept from the depth regression was added to the depth-controlled data (Rex et al., 2006).  

Then, to test the dome relationship, the depth controlled benthic invertebrate abundances 

were fit to four TPH models, using data points where TPH values were measured and present 

1. constant, log(𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒) = 𝑎        Eq. 3.1 

2. linear, log(𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒) = 𝑙𝑜𝑔(𝑇𝑃𝐻) + 𝑎      Eq. 3.2 

3. exponential, log(𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒) = 𝑏 ∗ 𝑒(𝑙𝑜𝑔(𝑇𝑃𝐻∗𝑐))     Eq. 3.3 

4. quadratic, log(𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒) = 𝑏 ∗ log(𝑇𝑃𝐻)2 +  𝑐 ∗ log(𝑇𝑃𝐻) + 𝑎   Eq. 3.4 

Here, a represents log of abundance with no oil effect, and b and c are modifiers for the 

rate of change of abundance. Models 1-3 were selected as potential simpler models to describe 

the relationship between benthic invertebrate abundance and TPH. All models were built and 

fitted in R using linear model least squared residuals or non-linear least squares for both macro- 

and meiofauna data sets. The models were then assessed for parsimony using AIC (Akaike, 

1973, 1974).  
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3.2.2 Atlantis simulations 

Atlantis is a spatially explicit, three-dimensional, deterministic, end-to-end ecosystem 

model operating at 12-hour time steps (Fulton, 2001; Fulton et al., 2004a, b, 2005, 2007). The 

model is coupled to a hydrodynamic model that provides currents, temperature, and salinity. 

Hydrodynamics for the GoM model are provided by the American Seas model based on the 

National Research Laboratory developed NCOM model (Martin, 2000). These dynamics affect 

nutrient cycling, primary production, and organism physiology and distribution. Several nutrients 

are tracked, although nitrogen is the model’s main currency (Link et al., 2011). Atlantis polygon 

geometry is determined based on bioregional features and fisheries management areas. 

Depending on depth, there are up to six water column layers per polygon, and a sediment layer. 

Atlantis uses 91 functional groups: 61 age-structured (AS) vertebrates and invertebrates, 19 non-

age-structured invertebrates, 6 primary producers, 2 bacteria and 3 detritus. Each functional 

group is constrained by sub-models describing consumption, production, respiration, 

reproduction, and movement. Vertebrates and some exploited invertebrates are tracked by 

numbers and body weight, while non-exploited invertebrates are only tracked as biomass pools. 

The 23 invertebrate functional groups are: protists, crustose coralline algae, toxic dinoflagellates, 

infaunal meiobenthos*, small zooplankton, large zooplankton, jellyfish, squid, sponges*, sessile 

filter feeders*, herbivorous echinoderms*, stony corals*, octocorals*, oysters*, bivalves*, blue 

crab*, stone crab*, crabs and lobsters*, carnivorous macrobenthos*, brown shrimp* (AS), white 

shrimp* (AS), pink shrimp* (AS), and other shrimp* (AS). Groups with an asterisk were 

considered benthic associated invertebrate functional groups in Atlantis for the purposes of this 

study. The three detrital groups are labile, refractory, and carrion. Functional groups can 

contribute to detrital and nutrient pools through waste excretion, sloppy feeding, and mortality. 
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The detrital groups can also be defined as part of any functional groups’ diet. A more in-depth 

review of the system equations is available in Link et al. (2011). The GoM implementation of 

Atlantis is described in Ainsworth et al. (2015). 

To drive abundance increases in scenarios 1 and 2, point source inputs were used. For 

scenario 1: Mississippi nutrient loading was targeted to increase in the six polygons surrounding 

the Mississippi River Delta by about a factor of six, based on the observations of Bianchi et al. 

(2011). The silica, nitrate, and ammonium concentrations were increased when compared to non-

enriched Atlantis simulations. For scenario 2: increased detrital deposition from MOSSFA had 

an increase in detrital loads on the seafloor by a factor of about 2-5 in the seven polygons closest 

to the wellhead (Brooks et al., 2015). The nutrient and detrital values were held for the duration 

of the oil spill, then returned to normal. For scenario 3 (predators altered behavior to avoid oil): 

benthic fish (predators) were removed from oiled polygons. To do so, spatial forcing files were 

created following the methods of Ainsworth et al. (2018) that set a spatial mortality effect 

proportional to the oil concentration. This approach kills predators in the system instead of 

relocating them to non-oiled areas, but it should result in a similar effect as predator behavioral 

changes would have on mortality rates of benthic invertebrates. The predator mortality forcing 

lasted for the duration of the oil spill. Functional groups were considered a benthic predatory fish 

if their diet consisted of 20% or more from the benthos. 

Each of these three scenarios were used in Atlantis individually, in the absence of oil 

toxicity, to determine if they were capable of inducing benthic invertebrate abundance increases. 

Abundance increase was determined by comparing the scenarios to a control simulation at the 

polygon level. Once determined that a scenario could independently cause abundance increases, 

it was used in conjunction with oil concentration estimates from Lagrangian oil transport model 
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(Paris et al., 2012; Aman & Paris, 2013). Toxicity spatial forcing was generated for the 17 

benthic associated invertebrate functional groups, following the hockey-stick methods of 

Dornberger et al. (2016) and Ainsworth et al. (2018). This hockey-stick function assumes that oil 

concentrations below a defined threshold will have no impact on the population, and above that 

threshold mortality will increase log-linearly. Since the initial dose-response hockey-stick 

relationship was developed for fishes, multiple iterations of each scenario containing toxicity 

were run, varying the threshold that determines when toxicity effects begin to occur. Thresholds 

tested were 100 ppb, 200 ppb, 300 ppb, 500 ppb, 1000 ppb, 2000 ppb, and 3000 ppb. The water 

column far field oil model was compared to sedimentary oil data (Romero et al., 2015, 2017) to 

create an approximate oil concentration in the sediment covering the entire oil field (Ainsworth 

et al., 2018). They demonstrated that the concentration factor could vary up to 1000, which was 

the factor used in this study. No toxicity was applied to fish functional groups to avoid 

confounding effects from predator death (except when used as the method for simulating 

predators altering their behavior to avoid oil exposure). This reductionist approach will allow us 

to identify more easily the mechanics at work in the invertebrate response to oil. Simulations in 

Atlantis lasted for one year. All scenario results were assessed using September and October 

2010 outputs from Atlantis, to match the timeframe that the sediment core abundance data were 

collected (Montagna et al., 2013). 

3.3 Results 

3.3.1 Benthic invertebrate abundance and TPH relationship 

The results of fitting the established linear model of abundance by depth (reviewed by 

Rowe, 1983; Rex et al., 2006) indicated that for this data set, depth had a significant (R2 = 0.23, 

p < 0.001 for macrofauna, and R2 = 0.09, p < 0.05 for meiofauna) relationship with log 
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abundance of both groups, consistent with past research. Correlating TPH versus Barium, the 

SRCC value was 0.48 and the p value < 0.001, which is why barium was excluded from further 

modeling efforts. For TPH and depth, the SRCC value was -0.02 and the p value was 0.87, 

indicating that they are not correlated variables and would act independently on abundance.  

 The results from the linear and nonlinear least squares fitted models for TPH against 

both macrofaunal and meiofaunal depth controlled abundances selected the quadratic equation as 

the best fit with the lowest sum of squared residuals, as well as the most parsimonious based on 

the AIC results (Table 3.1). The increase in macrofauna and meiofauna was apparent at low-

medium oil concentrations, suggesting a domed relationship exists between oil concentration and 

benthic invertebrate abundance (Figure 3.2). Figure 3.2 shows abundance partial residuals after 

removing the depth effect, with the intercept added back to values for scale preservation. 

Table 3.1 Sum of squared residuals (SS) and AIC results for macrofauna and meiofauna invertebrate abundances. 

ωAIC is the Akaike weight, which can be interpreted as the probability that the model would be the best fit under 

repeated sampling among all the models tested (Pechenik 1987). 

 

 Macrofauna Meiofauna 

Model SS AIC ωAIC SS AIC ωAIC 

Constant 2.542 -10.243 2.97E-05 6.310 41.313 1.22E-04 

Linear 2.539 -8.311 1.13E-05 5.195 32.811 0.00859 

Exponential 2.423 -10.929 4.19E-05 5.898 39.674 2.78E-04 

Parabola 1.631 -31.089 1 4.197 23.296 1 
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3.3.2 Atlantis simulations 

 Comparison between the three scenarios and a control Atlantis simulation indicated that 

each forcing function methodology was suitable to achieve the desired scenarios in the model. 

For scenario 1, nutrients were elevated from 2 – 20 x control levels, in scenario 2, detrital levels 

were 3.5 - 6.5 x control levels, and in scenario 3, benthic predatory fish densities were reduced 

by 4 -290 t·km-2. Benthic invertebrate abundance increases occurred in each scenario, to varying 

degrees. Of the three scenarios, the smallest effect averaged across polygons was observed in 

scenario 1 (~0.01 t·km-2 relative to an average abundance of 344 t·km-2 in the control scenario) 

(Figure 3.3). Scenario 2 had the strongest average effect, showing a much larger response than 

the other two scenarios (Figure 3.3). For scenario 2, the abundance of the oyster functional group 

was not used to calculate this average, as it had a much stronger abundance increase than other 

groups. The average abundance of benthic invertebrates, excluding oysters, in the control was 

133 t·km-2. Data are not shown. 

Figure 3.2 Benthic invertebrate abundances against sediment total petrogenic hydrocarbon sediment concentrations,with best fit 

quadratic models. Effects of depth were removed. A) Macrofaunal abundances in numbers per square meter. B) Meiofaunal 

abundances in numbers per 10 square centimeters. Raw data from Montagna et al. (2013) 

A B 
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In the three scenarios combined with toxicity, it became apparent that low threshold 

toxicity overwhelmed any abundance increases that had occurred without mortality forcing from 

oil toxicity. Of all of the 100 ppb, 200 ppb, 300 ppb, 500 ppb, 1000 ppb, 2000 ppb, and 3000 ppb 

threshold simulations, only scenario 2 (MOSSFA) at 3000 ppb demonstrated both increased 

abundances in some polygons, and toxicity effects in others (Figure 3.4). Figure 3.4 shows total 

benthic invertebrate biomass differences between each scenario and the control scenario. Blue 

polygons indicate a net increase in biomass, red polygons a net decrease, as a result of the 

scenario drivers. Additional scenario 1 simulations were run increasing the nutrient loading, up 

to thousands of times greater than control levels, however still no enrichment was apparent when 

toxicity was present.  

Figure 3.3 Average benthic invertebrate functional group abundance increases in scenarios 1-3 with no toxicity. The averages 

were calculated using the six common polygons where direct forcing occurred in each scenario. The oyster functional group was 

removed from the detritus scenario as an outlier. 

3 

 

2 
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Though scenario 3 indicated slightly higher biomass increases in oil free simulations 

(Figure 3.3), it also did not have any polygons with net abundance increases when oil toxicity 

was present (Figure 3.4). Additional scenarios were run removing all fishes from the oiled 

region, not just benthic predators; however, both increases and declines in abundance were still 

not present at the polygon level except in one functional group, infaunal meiobenthos. Based on 

these results, only scenario 2 produced polygons representing both sides of the domed 

relationship. An apparent combination of increased productivity at low-med oil concentrations 

and toxicological mortality at high oil concentrations across benthic invertebrate functional 

groups is evident in scenario 2. In scenario 2, across the model, a general shift in predation 

occurred towards benthic invertebrates, stimulated by the addition of detritus. Within this trend 

however, consumption of shrimps is reduced, as the majority of their predators’ (such as mullet, 

demersal fish, and larger crustaceans) diets shifted to other benthic invertebrate prey resources. 

As stimulation of the benthic detrital food web moves across the model through neighboring 

polygons, the blue polygons in the southwest GoM in scenario 2 are mostly a result of these 

shrimp biomass increases. Oysters were removed from Figure 3.4, as their biomass increase was 

orders of magnitude greater than other functional groups. As the only scenario indicating both 

1 2 

Figure 3.4 Benthic invertebrate density differences in oil scenarios 1-3 compared to a control simulation. 1) Mississippi 

nutrient loading and toxicity, 2) Increased detritus from MOSSFA and toxicity, oyster functional group removed as an extreme 

outlier, 3) Predators altered behavior to avoid oil exposure and toxicity. Results are summed across functional groups, from 

October 2010 in the 3000 ppb threshold simulation. 

3 
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increases and decreases in abundance based on oil concentration, scenario 2 invertebrate 

functional groups’ biomass was plotted against simulated oil exposure to determine if the 

expected dome shape was present. It is distinct for some groups (Figure 3.3). Other groups 

indicated a reverse parabola. 

 

Figure 3.3 Example functional group abundance differences in detritus enrichment oil scenario. BSH – Brown Shrimp, WSH – 

White Shrimp, PSH – Pink Shrimp, OSH – Other Shrimp, CMB – Carnivorous Macrobenthos, INF – Infaunal Meiobenthos, 

OYS – Oysters, SES – Sessile Filter Feeders, BIV – Bivalves. Results from October 2010 in the 3000 ppb threshold scenario. 
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3.4 Discussion 

This study aligns with previously published results indicating that exposure to low to 

intermediate oil levels can cause increases in some benthic invertebrate populations (Spies et al., 

1988; Steichen et al., 1996; Olsgard & Gray, 1995; Peterson et al., 1996; Jewett et al., 1999). I 

confirmed the previously described domed relationship between benthic invertebrate abundance 

and oil exposure existed in the GoM after the DwH oil spill for two benthic invertebrate groups. 

The delayed abundance peak in the meiofaunal data set compared to the macrofaunal dataset is 

likely a function of top-down predation pressure on meiofauna from macrofauna. 

This research was the first to examine that relationship using an ecosystem model. The 

three scenarios examined here (1: nutrient loading from the Mississippi, 2: increased detritus 

from MOSSFA, and 3: predator behavioral changes to avoid oil) were chosen to represent 

potential changes to the system resulting specifically from the DWH oil spill that would 

stimulate abundance increases in the benthos. I demonstrated that benthic invertebrate abundance 

increases were possible using either nutrient, detrital, or predator oil avoidance forcings. 

However, note that the current means of modeling predator oil avoidance make it impossible to 

differentiate between predator death and oil avoidance. In a true oil avoidance scenario, 

predators would relocate to different polygons within the model in order to evade oil. Within the 

limitations of the Atlantis software, benthic predators had to be completely removed from the 

system using the mortality forcing. The mortality and subsequent decay of the predators results 

in increased nutrients in polygons affected, which could be confounding the effects of predators 

altering their behavior to avoid oil exposure and potentially adding a second forcing through 

nutrient enrichment (Figure 3.3).  
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By combining the nutrient or detrital enrichment or predator oil avoidance forcing 

functions with a toxic oil field, the viability was determined for each forcing effect as the sole 

driver of the increased population abundance at low-med oil concentrations. Addition of 

nutrients at the Mississippi River delta had the smallest effect on invertebrate populations, and 

never produced a domed relationship in Atlantis, even at the highest nutrient levels. For this 

reason, scenario 1 must be eliminated as a potential driver of benthic invertebrate abundance 

increases in the Atlantis GoM oil spill model. This suggests that surface nutrient source input 

alone is not likely to explain the observed effects on benthic invertebrates from the DwH oil 

spill.  

For scenario 3, only benthic predators were removed from initial testing to avoid 

confounding food web effects. Although benthic predator removal caused slightly greater 

increases in invertebrate abundance than scenario 1, it did not produce a domed relationship. In 

additional test simulations, extending the predator removal to include all fish functional groups 

produced increases in a single functional group, infaunal meiobenthos, while all other benthic 

invertebrates only showed decreases in abundance (mortality). These results indicate that benthic 

predators altering their behavior to avoid oil exposure is not the sole driver of benthic 

invertebrate abundance increases. Enrichment of the detrital food web appears to be the best 

candidate as a potential driver of benthic invertebrate population increase. This fits with other 

research indicating that increased oil provides food for microbes, which in turn provide food for 

meiofauna, then macrofauna (Steichen et al., 1996; Olsgard & Gray, 1995; Peterson et al., 1996; 

Jewett et al., 1999).  

The environmental forcing functions nearly matched detritus levels sampled in the GoM 

(Brooks et al., 2015), and the functional group abundance increases supported the pattern seen in 
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the data from Montagna et al. (2013) for both macrofauna and meiofauna. However, not all 

macrofaunal functional groups had low oil biomass increases. The sessile filter feeders 

functional group indicated a reverse parabola, suggesting that there are additional food web 

interactions. Oysters, which had a uniquely large abundance increase, could be outcompeting the 

other sessile filter feeding functional group, which would otherwise benefit from increased 

detritus in the water. This is supported by the oyster and sessile filter feeder parameters in 

Atlantis GoM: oysters have a production rate (P/B) of 1.2, and a daily growth rate of 0.22%, 

versus sessile filter feeder’s production rate of 0.8 and daily growth rate of 0.16%. Alternatively, 

benthic predator populations that consume the sessile group could be growing in response to 

increased resources from the increased detritus, and preying upon the sessile group. It should be 

noted that our oyster dynamic does not match observed trends. There is a documented loss of 

oysters since the DwH oil spill that has been attributed to low salinity from Mississippi flushing 

(Powers et al. 2017), an event that is not captured here. Other potential factors not represented in 

these simulations include bioaccumulation, the potential chemical effects of dispersants, benthic 

oxygen limitation, and the by-products of the surface oil burns (Kujawinski et al., 2011; 

Lubchenco et al., 2012; McNutt et al., 2012).  

MOSSFA research has been an important component in understanding the ecosystem 

response to the DwH oil spill, and these results indicate that MOSSFA could provide a pathway 

for enrichment of benthic invertebrate abundance. In the GoM, it is possible that any or all three 

of these factors contributed to the relationship between benthic invertebrates and TPH. The 

Deepwater Horizon oil spill has shown us how oil interactions in deltaic systems can result in 

MOSSFA, an express pathway for surface oil to reach the benthos. In such cases, stimulation of 
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the detritus food web may be common and result in unintuitive and non-linear influences on 

benthic fish and invertebrate populations already affected by direct oil toxicity. 
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Paris, C.B., Hénaff, M.L., Aman, Z.M., Subramaniam, A., Helgers, J., Wang, D.P., Kourafalou, 

V.H., & Srinivasan, A. (2012). Evolution of the Macondo well blowout: Simulating the 

effects of the circulation and synthetic dispersants on the subsea oil 

transport. Environmental Science & Technology, 46(24), 13293-13302. 

Pechenik, J. A. (1987). Environmental influences on larval survival and development. 

Reproduction of Marine Invertebrates, 9, 551-608. 

Peterson, C. H., Kennicutt II, M. C., Green, R. H., Montagna, P., Harper, Jr, D. E., Powell, E. N., 

& Roscigno, P. F. (1996). Ecological consequences of environmental perturbations 



39 

 

associated with offshore hydrocarbon production: a perspective on long-term exposures in 

the Gulf of Mexico. Canadian Journal of Fisheries and Aquatic Sciences, 53(11), 2637-

2654.  

Powers, S. P., Grabowski, J. H., Roman, H., Geggel, A., Rouhani, S., Oehrig, J., & Baker, M. 

(2017). Consequences of large-scale salinity alteration during the Deepwater Horizon oil 

spill on subtidal oyster populations. Marine Ecology Progress Series, 576, 175-187. 

Rex, M.A., Etter, R.J., Morris, J.S., Crouse, J., McClain, C.R., Johnson, N.A., Stuart, C.T., 

Deming, J.W., Thies, R., & Avery, R. (2006). Global bathymetric patterns of standing 

stock and body size in the deep-sea benthos. Marine Ecology Progress Series, 317, 1-8. 

Rice, S. D., Short, J. W., & Karinen, J. F. (1976). Comparative oil toxicity and comparative 

animal sensitivity. Fate and Effects of Petroleum Hydrocarbons in Marine Ecosystems 

and Organisms, 78-94.  

Roberts, D. A. (2012). Causes and ecological effects of resuspended contaminated sediments 

(RCS) in marine environments. Environment International, 40, 230-243.  

Romero, I.C., Schwing, P.T., Brooks, G.R., Larson, R.A., Hastings, D.W., Ellis, G., Goddard, 

E.A., & Hollander, D.J. (2015). Hydrocarbons in deep-sea sediments following the 2010 

Deepwater Horizon blowout in the northeast Gulf of Mexico. PLoS one, 10(5), 

p.e0128371.  

Romero, I. C., Toro-Farmer, G., Diercks, A. R., Schwing, P., Muller-Karger, F., Murawski, S., & 

Hollander, D. J. (2017). Large-scale deposition of weathered oil in the Gulf of Mexico 

following a deep-water oil spill. Environmental Pollution, 228, 179-189. 

Rowe, G. T. (1983). Benthic production and processes off Baja California, northwest Africa and 

Peru: a classification of benthic subsystems in upwelling ecosystems, in International 



40 

 

Symposium on Important Up- welling Areas of West Africa: Instituto de Investigaciones 

Pesqueras, Barcelona, v. II, 589-612. 

Snyder, S. M., Pulster, E. L., Wetzel, D. L., & Murawski, S. A. (2015). PAH exposure in Gulf of 

Mexico demersal fishes, post-Deepwater Horizon. Environmental Science & 

Technology, 49(14), 8786-8795.  

Spies, R. B., Hardin, D. D., & Toal, J. P. (1988). Organic enrichment or toxicity? A comparison 

of the effects of kelp and crude oil in sediments on the colonization and growth of benthic 

infauna. Journal of Experimental Marine Biology and Ecology, 124(3), 261-282.  

Steichen Jr, D. J., Holbrook, S. J., & Osenberg, C. W. (1996). Distribution and abundance of 

benthic and demersal macrofauna within a natural hydrocarbon seep. Marine Ecology 

Progress Series, 71-82.  

Suchanek, T. H. (1993). Oil impacts on marine invertebrate populations and 

communities. American Zoologist, 33(6), 510-523.  

Tarnecki, J. H., & Patterson III, W. F. (2015). Changes in Red Snapper diet and trophic ecology 

following the Deepwater Horizon Oil Spill. Marine and Coastal Fisheries, 7(1), 135-147.  

Ustach, J. F. (1979). Effects of sublethal oil concentrations on the copepod, Nitocra 

affinis. Estuaries, 2(4), 273-276. 

Valentine, D. L., Fisher, G. B., Bagby, S. C., Nelson, R. K., Reddy, C. M., Sylva, S. P., & Woo, 

M. A. (2014). Fallout plume of submerged oil from Deepwater Horizon. Proceedings of 

the National Academy of Sciences, 111(45), 15906-15911.  

Vignet, C., Le Menach, K., Mazurais, D., Lucas, J., Perrichon, P., Le Bihanic, F., Devier, M.H., 

Lyphout, L., Frère, L., Bégout, M.L., & Zambonino-Infante, J.L. (2014). Chronic dietary 

exposure to pyrolytic and petrogenic mixtures of PAHs causes physiological disruption in 



41 

 

zebrafish-part I: Survival and growth. Environmental Science and Pollution 

Research, 21(24), 13804-13817.  

White, H.K., Hsing, P.Y., Cho, W., Shank, T.M., Cordes, E.E., Quattrini, A.M., Nelson, R.K., 

Camilli, R., Demopoulos, A.W., German, C.R., Brooks, J.M., Roberts, H.H., Shedd, W., 

Reddy, C.M., & Fisher, C.R. (2012). Impact of the Deepwater Horizon oil spill on a 

deep-water coral community in the Gulf of Mexico. Proceedings of the National 

Academy of Sciences, 109(50), 20303-20308.  

Yang, Z., Feng, J., Niu, J., & Shen, Z. (2008). Release of polycyclic aromatic hydrocarbons from 

Yangtze River sediment cores during periods of simulated resuspension. Environmental 

Pollution, 155(2), 366-374. 

 

 

 

 



42 

 

 

 

 

 

 
Chapter Four: A synthesis of top down and bottom up impacts of the Deepwater Horizon 

oil spill using ecosystem modeling 

4.1 Introduction 

The Deepwater Horizon (DwH) oil spill in the Gulf of Mexico (GoM) resulted in the largest 

response effort to an oil spill in US history (Levy & Gopalakrishnan, 2010; Barron, 2012), as 

well as a coordinated research effort by many scientists across different government agencies 

and research institutions to assess the state of the system (Deepwater Horizon Project Tracker, 

2018). Two of the largest research collaboration efforts were initiated by NOAA’s Natural 

Resource Damage Assessment process (NRDA) (Lubchenco et al., 2012) and the Gulf of Mexico 

Research Initiative (GoMRI) (Colwell et al., 2014). [Put NOAA/ NRDA first –that group started 

long before GoMRI.] . The NRDA process for the DwH event was the largest federal response 

ever undertaken, with the primary directive to determine how the event affected the GoM’s 

natural resources, as well as the impact on human use of those resources (Lubchenco et al., 

2012). The GoMRI offered competitive research grants to collaborative consortia with two goals 

in mind: first, to study the DwH event and its effects on the system, and second to create 

improvements for oil spill mitigation, detection, and remediation (Colwell et al., 2014).  

These efforts have resulted in hundreds of publications describing the effects of the DwH 

event on various components of the system. Publications range from topically specific studies, 

like single species impacts, to literature reviews (e.g. Beyer et al., 2016; Daly et al., 2016). 

Targeted assessments provide vital information at the species level, however using single species 

assessments alone to attempt to determine the impact of the DwH on the health of organisms is a 
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limited approach, as community interactions and synergistic effects are not accounted for. There 

is the potential for non-linear dynamics and interactions between affected components. An 

ecosystem-based approach to assessing DwH can help to address these interactions (reviewed by 

Curtin & Prellezo, 2010), and would be a key step towards integrating the knowledge gained 

from research efforts. 

Using oil spill data in a holistic, end-to-end ecosystem model can provide meaningful 

insights that inform future oil spill response efforts, as well as the end goals of both GoMRI and 

NRDA. Ainsworth et al. (2018), for instance, used data from DwH response efforts and other oil 

related studies in an Atlantis model to characterize ecosystem behavior and predict long-term 

effects of the oil spill on the northern Gulf of Mexico, particularly as it related to fish 

populations. Whereas Ainsworth et al. (2018) tested top-down effects of the oil spill on fish 

abundance and mortality, this study represents a synthesis of bottom-up and top-down effects 

across a broader range of taxa.  

Bottom-up effects relate to the accumulation of detrital biomass on the seafloor as a result of 

marine oil snow sedimentation and flocculent accumulation (MOSSFA). MOSSFA is a transport 

pathway for surface oil to reach the seafloor through aggregation of oil and marine snow and 

subsequent rapid sinking, as was observed in the GoM after the DwH spill (Passow, 2014; 

Brooks et al., 2015; Romero et al., 2015). This significantly impacted the distribution of oil, and 

spurred researchers to examine the ecological consequences of MOSSFA on pelagic and benthic 

communities (Daly et al., 2016). This bottom-up driver is extremely important for DWH (Brooks 

et al. 2015; Daly et al., 2016; Romero et al., 2017) and representing this significant pathway of 

oil to the benthic community is therefore key to accurately modeling an ecosystem level response 

to the oil spill. In addition to MOSSFA bottom-up drivers, I used a dose-response hockey-stick 
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model (Dornberger et al., 2016) to drive benthic invertebrate mortality at high oil concentrations, 

which in combination with MOSSFA generates a domed relationship between benthic 

invertebrate abundance and oil (Chapter 3 Dornberger). 

Research into the cumulative effects of various human stressors on fish populations has been 

identified as a major gap in our knowledge (Sala et al., 2003; Pew Ocean Commission, 2003; 

U.S. Commission on Ocean Policy, 2004; Crain et al., 2008, 2009). In particular, Crain et al. 

(2008) note that the absence of controlled studies assessing the combined effects of fishing and 

other stressors on fish populations is a particular concern. Controlled field experiments of this 

type are inherently difficult to perform, requiring that they be addressed using different means 

(Crain et al. 2009). For instance, using established ecosystem-based modeling efforts, one could 

not only identify the potential cumulative effects of fishing and an oil spill, but it could elucidate 

the synergistic effects of multiple stressors across a community of fished populations, providing 

critical insights for both scientists and managers. My objective in this study is to do just that, 

using an Atlantis ecosystem-based fishery model.  

4.2 Methods 

4.2.1 Atlantis 

Atlantis is a deterministic, end-to-end ecosystem model with a spatially explicit three-

dimensional framework (Fulton, 2001; Fulton et al., 2004a, b, 2005, 2007). It operates at 12-hour 

time steps. Atlantis uses an irregular polygon structure reflecting bioregional features, and 

political and regulatory boundaries. Each polygon has a sediment layer and up to 6 water column 

layers, depending on depth of the area described by the polygon. Depth strata are consistent 

across polygons (z-coordinate system).  
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Atlantis is also coupled to a hydrodynamic model that includes currents, temperature and 

salinity per polygon and depth layer. For the GoM Atlantis model, the coupled hydrodynamic 

data are provided by the American Seas model, which is based on the National Research 

Laboratory developed NCOM model (Martin, 2000). Nutrient cycling and subsequent primary 

productivity, as well as organism distribution, are all affected by the hydrodynamic inputs. 

Nitrogen is used as the measure of functional group biomass and the model’s main currency 

(Link et al., 2011), though several other nutrients are also tracked.  

The GoM Atlantis model uses a total of 91 functional groups: 61 age-structured 

vertebrates and invertebrates, 19 non-age-structured invertebrates, 6 primary producers, 3 types 

of detritus, and 2 bacteria. All vertebrates and some exploited invertebrates that are age-

structured are tracked in Atlantis by body weight in mg N, and number of individuals. Non-

exploited invertebrates are only tracked as biomass pools in mg N. Carrion detritus, labile 

detritus, and refractory detritus are the three detrital functional groups. Any functional group can 

add to detrital and nutrient pools through mortality, waste excretion, and remnants from feeding 

behavior. The detrital groups can also be consumed as a defined part of any functional groups’ 

diet. A full review of the modeling system and equations is available in Link et al. (2011). The 

specific GoM implementation of Atlantis and model fitting is available in Ainsworth et al. 

(2015). For this research project, Atlantis simulations were run for 50 years, from 2010 to 2060. 

4.2.2 Environmental drivers of the oil spill 

Oil concentration estimates were provided by a probabilistic framework for oil droplet-

tracking based on an open-source Lagrangian stochastic model, the Connectivity Modeling 

System (CMS) (Paris et al., 2012, 2013; Aman & Paris, 2013). The most recent CMS simulations 

of the Deepwater Horizon blowout are described in an article in preparation (Paris & Perlin, 
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unpublished manuscript). Implementation of these oil data in Atlantis follows the methods of 

Ainsworth et al. (2018). Briefly, oil estimates were provided at 1/12th degree grid points and in 

four depth layers, averaged across 0-20m, 20-50m, 50-200m, and 200m-2000m. Dose-response 

calculations were made at the grid point scale and averaged over all Atlantis polygons, adjusting 

for the proportion of grid points per polygon that do not contain oil. Transient biomass dynamics 

were allowed to settle in the first 110 days of the simulation before introducing oil forcing to the 

model, which then lasts for 167 days.  

There is not enough available sediment oil data from the field to use directly in the model 

as the oil driver for the sediment layer in simulations. In addition, the precise distribution, 

concentration, and extent of DwH oil on the seafloor is unknown. Romero et al. (2015, 2017) 

provided sediment core concentrations, which were then compared to estimated time- and depth-

integrated water column concentrations from CMS, to establish a ratio between sediment and 

water column concentrations (Ainsworth et al. 2018). Using an estimated ratio between sediment 

oil concentrations and modeled oil values allows for the generation of an estimated, continuous 

sediment concentration map used to drive sediment oil toxicity. The sediment-to-water column 

ratio (K) is potentially up to 1000:1 (Ainsworth et al. 2018), so a K of 1000 was used as an upper 

limit of sensitivity analyses, along with 30%K, and 60%K values or K = 1000, 700, and 400. K 

plays a critical role in the impact of the oil spill on benthic organisms. 

Metabolic processing of oil for all fish and benthic invertebrates was accounted for by 

calculating uptake and depuration rates based on data from fish exposure studies. Miller et al. 

(2017) exposed red drum to a CEWAF solution at 1 ppm (TPH) using Corexit 9500 and 

Louisiana Sweet crude oil for four days. Following the exposure, they moved the fish to tanks of 

untreated, clean seawater for six days. During their experiment, two fish were sacrificed every 
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day for the exposure period, then every other day during the recovery, through day ten. This 

sampling was used to generate average liver total PAH concentrations for each day sampled 

(Miller et al. 2017). The four days of exposure values were used to calculate a linear regression 

uptake value based on 1 ppm exposure, resulting in an uptake of 2.13 ppm/day. This exposure to 

uptake ratio calculates to 0.47. This can be used to estimate the uptake rate at any exposure level 

assuming a linear relationship. To reflect uptake in Atlantis, current oil exposure values were 

divided by 0.47 to generate the exposure-specific linear uptake rate 𝜇. To calculate depuration 

rate, the peak average liver concentration and subsequent concentrations at 2, 4, and 6 days post 

exposure were used to calculate an exponential decay formula. When external exposure ends, the 

estimated decay formula returns the body load to 1% of peak levels through depuration in about 

10 days (parameter p in the decay Equation 4.1 = -0.46). In the Atlantis simulations, these rates 

are used for both water column and sediment exposure. These rates were combined with the oil 

concentration estimates to calculate an exposure concentration, [oil]exposed. 

[𝑜𝑖𝑙]𝑒𝑥𝑝𝑜𝑠𝑒𝑑 = [𝑂𝑖𝑙𝑡−1 + (
𝑂𝑖𝑙𝑡

𝜇
)] ∗ 𝑒𝑝         Eq. 4.1 

To drive simulated MOSSFA in the system, point source inputs for detrital loading were 

used. Detrital concentrations were targeted to increase by a factor of about 2 – 5 x in the seven 

polygons closest to the wellhead, based on observations of increased detritus after the DwH 

event (Brooks et al., 2015). The elevated detrital input values were held for the duration of the oil 

spill forcing (167 days), then inputs were lowered to normal values. 

4.2.3 Biological drivers of the oil spill 

To drive oil effects on organism health, dose-response models that were evaluated for 

mortality and growth in a previous publication were used (Dornberger et al. 2016). Four models 

were fit by maximum likelihood estimation and compared using an Akaike information criterion 
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(AIC). For both mortality and growth, the “hockey-stick” equations best explained the 

relationship between oil exposure and fish health and growth. The applied version of this 

hockey-stick equation is shown in equation 1, where it has been adjusted to only calculate the 

modifier to a generic response if oil exposure is past the threshold value.  

𝑅𝑡 =  𝑎 ∗ 𝐿𝑜𝑔 (𝐾 ∗
[𝑜𝑖𝑙]𝑒𝑥𝑝𝑜𝑠𝑒𝑑

[𝑜𝑖𝑙]𝑡ℎ𝑟𝑒𝑠ℎ
) ∗ 𝜔−1      𝑖𝑓 [𝑜𝑖𝑙]𝑒𝑥𝑝𝑜𝑠𝑒𝑑 ≥ [𝑜𝑖𝑙]𝑡ℎ𝑟𝑒𝑠ℎ    Eq. 4.2 

Rt is the response modifier for either growth or mortality at time t, and a is the fitted slope 

(mmortality = 0.2885, mgrowth = 0.1051). ω represents the average exposure period from the studies 

used to derive the dose-response relationships (15 days), so the inverse was used to determine an 

average daily effect. [oil]thresh is the threshold below which oil has no effect on the response. The 

mortality threshold has a large impact on the magnitude of the effect modifier, so sensitivity 

analyses included three variants of [oil]thresh for fishes: 362, 635, and 907 ppb based on validation 

and sensitivity done in Ainsworth et al. (2018), and two for benthic invertebrates: 1,000 and 

3,000 ppb based on invertebrate analyses (Chapter 3 Dornberger). The hockey-stick shape 

produces higher effect values at higher concentrations. Hence, in order to scale growth down 

from 100% to a reduced rate as oil exposure increases, the growth response modifier Gt is 

subtracted from 1. The growth threshold for both water and sediment exposure was estimated to 

be 2.94 ppb for fishes. Sensitivity analysis of this threshold would be of little value since it is a 

very low oil concentration. No growth modifier was applied to invertebrates. 

Since some organisms are not constrained exclusively to the sediment or water column, a 

weighted response modifier is calculated for each group accounting for relative benthic 

association of the group. The total modifier Roil for both growth and mortality at a given time 

step takes the relative modifiers for the water column Rpelagic and sediment Rbenthic, scaling them 
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by the proportion B of the affected group’s diet that comes from benthic food sources. Note the 

symbol change, e.g. that Rt = R𝑝𝑒𝑙𝑎𝑔𝑖𝑐 at time t when the exposure medium is the water column. 

R𝑜𝑖𝑙 = R𝑝𝑒𝑙𝑎𝑔𝑖𝑐 * (1−𝐵) + R𝑏𝑒𝑛𝑡ℎ𝑖𝑐 * 𝐵        Eq. 4.3 

The more heavily a group’s diet depends on a pelagic or benthic food source, the more its 

response modifier will reflect the pelagic or benthic medium, respectively. The mortality 

modifier Moil is then applied in M1, which summarizes natural mortality from non-predation 

sources as 

𝑀1=𝑚𝑙+𝑚𝑞+M𝑜𝑖𝑙          Eq. 4.4 

where 𝑚𝑙 and 𝑚𝑞 are linear and quadratic mortality, which are regular tuning parameters in 

Atlantis. The growth modifier Goil and M1 are both applied to equation 4, the instantaneous rate 

of change of biomass (B, in mg N) for each polygon, depth layer and age class of functional 

group i. 

𝑑𝐵𝑖

𝑑𝑡
= [ 𝑅𝑒𝑐𝑖 +  𝑇𝐼𝑀𝑀,𝑖 −  𝑇𝐸𝑀,𝑖 − 𝑀1𝑖 −  ∑ 𝑃𝑖,𝑗𝑗 −  𝐹𝑖  ] ∗  𝐺𝑜𝑖𝑙[ 𝐺𝑖,𝑠 +  𝐺𝑖,𝑟 ]    Eq. 4.5 

Reci is recruitment of new individuals into the age class. TIMM,i is immigration of group i and 

TEM,i is emigration, Fi is fisheries mortality, and Pi,j is predation term of predator j on group i. Gi,s 

is growth in structural nitrogen per individual and Gi,r is growth in reserve nitrogen per 

individual, which are functions of consumption, growth rate, and assimilation efficiency. No oil 

avoidance behavior modifier was applied.  

Recruitment impacts were also included following the methods of Ainsworth et al. 

(2018). They used the results of a larval distribution map and surface oil comparison from DwH 

conducted by Chancellor (2015) to approximate the net recruitment impact from loss of larvae. 

They assumed that all larvae exposed to oil were killed. 
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The oil spill emergency fishery closures were implemented as spatiotemporally dynamic 

marine protected areas. The timing of the closures was reported by the National Centers for 

Environmental Information (2016). In Atlantis, the proportion of each polygon that overlapped a 

closure during the scheduled period was closed to the appropriate fishing fleet(s). This 

effectively simulates the local emergency closures; however, it does not include reallocation of 

fishing effort elsewhere. The closure dynamics were updated on a daily time step, and were 

included for the full duration of the emergency fisheries closures. 

To determine the effects of a toxic oil spill combined with theoretical varied fishing 

mortalities, the sensitivity of the system stressed by oil was also simulated by varying fishing 

mortality in three additional worst case sensitivity scenarios. In these scenarios, the fleet specific 

relative Fishing mortality F of each functional group was scaled by 0.5, 2, and 10. These varied 

F values were in combination with the worst case sensitivity scenario parameters of 1000 K, fish 

mortality threshold of 362, and invertebrate mortality threshold of 1000. Fishing mortality F by 

functional group and fleet was originally fit to historical catch as described in Ainsworth et al. 

(2015). All scenario parameters are listed in Table 4.1. 

Table 4.1 List of all parameter values used in Atlantis sensitivity and modified fishing simulations. The number following the 

column title is the total number of simulations run using a combination of the below parameter values. K is the sediment to water 

column ratio. [oil]thresh is the oil concentration where mortality for that type of organism begins based on the hockey-stick dose-

response model. The fishing morality modifier is the scalar used to adjust MFC matrices in theoretical fishing simulations 

Parameters Sensitivity Analyses (18) Fishing Mortality and Oil (3) 

K 400, 700, 1000 1000 

Fish [oil]thresh 362, 635, 907 362 

Benthic invertebrate [oil]thresh 1000, 3000 1000 

Fishing mortality modifier - 0.5, 2, 10 
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4.2.4 Analysis 

For consistency and cross comparison, analytical grouping by polygon and guild matched 

that of Ainsworth et al. (2018). All results presented here are averaged across 13 highly impacted 

polygons (Figure 4.1) unless stated otherwise. These 13 polygons roughly correspond to the area 

targeted for injury assessment efforts (Deepwater Horizon Natural Resource Damage 

Assessment Trustees, 2016). Results from Atlantis functional groups were averaged into nine 

guilds: snappers (Family: Lutjanidae), groupers (Family: Serranidae), Sciaenidae, 

elasmobranchs, large pelagic fish, small pelagic fish, small demersal and reef fish, large 

demersal fish, and invertebrates. The composition of these guilds are listed in Table 4.2. Guilds 

were used for clarity in assessing impacts across a broader range of species in the ecosystem than 

specific functional groups. In Atlantis, functional group is the term used to track pre-defined 

populations and can be either species specific or multiple related species. The Atlantis functional 

groups’ species compositions are presented in Ainsworth et al. (2015).  

Table 4.2 List of Atlantis functional groups contained within each guild. 

Guilds Atlantis Functional Group Names 

Snappers Red snapper, Vermilion snapper, Lutjanidae 

Groupers Gag grouper, Red grouper, Scamp, Shallow Serranidae, Deep 

Serranidae 

Large pelagics Yellowfin tuna, Bluefin tuna, Little tunny, Other tuna, Swordfish, White 

marlin, Blue marlin, Other billfish, Greater amberjack, Jacks, King 

mackerel, Spanish mackerel 

Small pelagics Spanish sardine, Menhaden, Pinfish, Small pelagic fish 

Small demersal & 

reef 

Small reef fish, Small demersal fish 

Sciaenidae Black drum, Red drum, Sciaenidae 

Elasmobranchs Blacktip shark, Benthic feeding sharks, Large sharks, Filter feeding 

sharks, Small sharks, Skates and rays 

Large demersal Flatfish, Other demersal fish 

Invertebrates Brown shrimp, White shrimp, Pink shrimp, Other shrimp, Blue crab, 

Stone crab, Crabs and lobsters, Stony corals, Octocorals, Sponges, 

Carnivorous macrobenthos, Infaunal meiobenthos, Herbivorous 

echinoderms, Oysters, Bivalves, Sessile filter feeders 
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Outputs from Atlantis were analyzed across sensitivity analyses and compared to the results of 

Ainsworth et al. (2018) to determine the effects of including invertebrate mortality, MOSSFA 

detrital loading, and varying fishing mortality. 

 

 

4.3 Results 

4.3.1 Population impacts 

In Figure 4.2, guild biomass divided by (relative to) control no oil spill simulation guild 

biomass is shown over the course of the 50-year simulations. The average biomass across all 

sensitivity simulations, with K and [oil]thresh variation, is shown as the solid black line. The 

shaded area represents the range of outcomes from sensitivity analysis on sediment concentration 

factor K and mortality [oil]thresh for fishes and invertebrates. The results for snappers, groupers, 

Sciaenidae, and large demersal fishes agree with the trends from the oil spill simulations 

Figure 4.1 Polygon geometry for Atlantis GoM. Shaded polygons represent the polygons used 

for oil spill analysis. The star is the relative location of the Deepwater Horizon site. 
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observed in Ainsworth et al. (2018), though the relative declines vary slightly. Relative changes 

qualitatively match remotely operated vehicle observations (W. Patterson, Pers. Comm.) in 

Ainsworth et al. (2018), which indicated as much as a 75% decrease in small reef fish and a 70% 

decrease in some large reef fish post spill. Small pelagics, small demersal and reef fish, and 

Sciaenidae exhibit declines during the spill period followed closely by recovery. However, the 

responses begin to differ around years 5 to 10. Small demersal & reef fishes and Sciaenidae 

average above the no spill scenario from about year 2016 on, while the small pelagics guild 

declines again and maintains biomass at roughly half the no spill scenario. This trend in small 

pelagics is driven by the “small pelagic” functional group within the guild. The small pelagic 

Figure 4.2 Relative biomass trajectories of Atlantis guilds. Biomasses were averaged across 12 impacted polygons and 

divided by the biomass from the no oil scenario. The shaded area represents the range of outcomes from sensitivity analysis 

on sediment concentration factor K and mortality [oil]thresh for fishes and benthic invertebrates. The solid black line 

shows the average biomass across f all 18 sensitivity runs. 
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functional group goes virtually extinct after roughly 20 years due to fishing and increased 

predation pressure. In the small pelagic guild, species specific functional groups menhaden and 

pinfish recover in 20 and 5 years, respectively. 

When including oil effects on both fishes and benthic invertebrates, increased benthic 

invertebrate abundance is no longer evident at the invertebrate guild and polygon level in 

October 2010 (6 months after first spill), across all sensitivity analyses. However, a few 

functional groups within the benthic invertebrate guild do exhibit both increases and declines at 

the polygon level during the window of greatest impact (7-16 months): infaunal meiobenthos, 

sponges, sessile filter feeders, carnivorous macrobenthos, and blue crab. 

Including benthic invertebrate mortality and MOSSFA forcings changes the recovery 

dynamics of functional groups in the worst case scenario compared to previous simulations seen 

in Ainsworth et al. (2018). However, there is still no distinguishable relationship between guild 

biomass minima and recovery time (Figure 4.3). Of the functional groups included in the guild 

analysis within the highly impacted polygons, 27 did not recover to within 99% of original 

biomass levels in the worst case scenario, roughly 51% of groups examined. In the best case 

scenario, 10 functional groups did not recover.  

A B 

Figure 4.3 Best case and worst case functional group recovery time and biomass minimum. A) The “best case” scenario, with 

sediment concentration factor K of 400, fish mortality threshold at 907ppb, and invertebrate mortality threshold at 3000ppb. A) 

The “best case” scenario, with sediment concentration factor K of 1000, fish mortality threshold at 362ppb, and invertebrate 

mortality threshold at 1000ppb. All functional groups that constitute a guild are shown. The count of functional groups by 

recovery time are shown in the count graph above. 
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4.3.2 Diet changes 

For six of the eight fish guilds, per capita consumption rate declined in the worst case oil 

scenario (Figure 4.4). For seven of the eight guilds, the benthic invertebrate proportion of the 

predators’ diet increased in the oiled scenario, though only five of the predator guilds’ diet 

constitutes at least 1% invertebrates (Figure 4.4). Of the guilds whose diets shifted to contain a 

Figure 4.4 Guild per capita consumption rate on prey. The area of each graph is proportional to the predator’s per capita 

consumption rate. Only prey groups constituting >1% of the predator guild’s diet are shown. The diet snapshot is taken from day 

300 of the simulation, when oil effects were pronounced. Labels: Large demersal fish (LDF), Sciaendiae (SCI), Elasmobranchs 

(ELA), Large pelagic fish (LPF), Groupers (GRP), Snappers (SNP), Small demersal and reef fish (SDR), Small pelagic fish 

(SPL), Invertebrates (INV), other prey items (OTH). 
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higher proportion of invertebrates, three guilds also reduced the proportion of their diet 

dependent on small pelagic fish.  

4.3.2 Combined oil and varied fishing mortality scenarios 

Relative biomass differences in the varied F scenarios from the base fishing scenario, for 

the nine guilds averaged across the 13 heavily impacted polygons, are shown in Figure 4.5. The 

guilds most sensitive to fishing changes combined with “worst case” scenario oil were snappers, 

groupers, and small demersal & reef fish. Snappers were most affected in the F x 10 scenario. 

Groupers had the largest positive response to a release of fishing pressure. The guilds least 

affected by changes in F were small pelagics and benthic invertebrates. 

 

Figure 4.5 Average relative biomass changes from the base F scenario for Atlantis exploited guilds across three varied F 

scenarios. F x 10, F x 2, and F x 0.5 means increasing fishing mortality on all exploited groups by 10, 2, and 0.5 times, 

respectively. All scenarios have MOSSFA detritus forcing and the “worst case” oil parameters of K = 1000, fish threshold = 

363, and benthic invertebrate mortality threshold = 1000. 

  F x 10      F x 2 

      F x 0.5 
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In general, snappers, groupers, large pelagics, small pelagics, small demersal & reef, and 

Sciaenidae all exhibited lower biomass minima when F was increased during the oil spill 

simulation. Representative example guilds from this list are shown in Figure 4.6. All guilds had 

different biomass trajectories with varied F relative to the no oil scenario, and some reached 

Figure 4.6 Example groups of functional group relative biomass changes from no oil across three varied F and one base F 

scenarios. F x 10, F x 2, and F x 0.5 means increasing fishing mortality F by a factor of 10, 2 and 0.5 across all fishing gears and 

species, respectively. Snappers and Groupers are both guilds, Shrimps are a sub-guild within the Invertebrate guild, and Blue 

crab is a functional group. The Blue crab F x 0.5 relative biomass reached 70 times that of no oil, so the y-axis was limited to 2.5 

for visibility of other scenarios’ relative biomass. 
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reduced or elevated equilibrium states from the base F scenario. Snapper biomass oscillated 

around 0.35 relative to no oil for the F x 10 scenario, and 1.5 for the 0.5 F scenario (Figure 4.6). 

Groupers reached a new equilibrium around 1.2 relative to no oil for the 0.5 F scenario (Figure 

4.6). Both guilds indicate that while the oil spill had an initial effect on biomass, the long-term 

biomass stabilization was dependent upon fishing effort, not magnitude of decline from the oil 

spill. 

As a guild, benthic invertebrates indicated minor shifts in varied F scenarios. However, 

shrimps (brown shrimp, pink shrimp, white shrimp, other shrimps), blue crab, and lobsters were 

more heavily impacted by changes in F (Figure 4.6). In the F x 10 scenario, blue crab and 

lobsters exhibit similar trends, and go extinct after 8-10 years. Shrimps eventually reach a new 

reduced equilibrium about 0.75 relative to no oil, though in al scenarios they initially indicate a 

severe decline in biomass. The long-term trends in shrimps indicate that while F plays a role in 

biomass stabilization, other food web dynamics the occur as a result of the oil spill allow the 

biomass to grow larger than in the control scenario for all scenarios except F x 10. 

4.4 Discussion 

 The addition of benthic invertebrate mortality and MOSSFA detrital loading induces a 

few significant changes in projections from previous Atlantis DwH simulations (Ainsworth et al., 

2018). In the “worst case” scenario, where fishes and invertebrates are most heavily impacted by 

the oil spill, over half of the examined functional groups never recover to pre-spill biomass in the 

targeted polygons Although 10 functional groups do not recover in the “best case” scenario, the 

majority of these are less affected than in the “worst case” scenario. Most of these groups have a 

biomass minimum between 60% and 90% of the control no-oil scenario. This suggests that less 
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severe oil spills cause fewer heavily reduced populations, and proportionally more functional 

groups reach a new stable state biomass that is slightly reduced from pre-spill conditions.  

Across scenarios, the most heavily impacted guilds are large demersal fishes (including 

elasmobranchs). The loss of these fishes is similar to that found in Ainsworth et al. (2018), but 

the magnitude of the biomass declines are more severe. This indicates that despite organic 

enrichment resulting from MOSSFA, toxic effects and starvation from prey population declines 

in demersal and reef-associated predators are still a concern. The combined effects of 

commercial fishing efforts and toxic effects from the oil spill prevent recovery in these groups. 

Further, Ainsworth et al. (2018) indicated that the most affected species were small bodied reef 

and demersal fishes, not the large demersal fishes found in this study. While the initial trends for 

the small demersal & reef fish guild match across studies, they diverge around the year 2020. 

In this study, small demersal & reef fishes, though initially hit hard, increase in biomass after 

2020 and maintain an elevated population size. This is possibly due to a combination of top-

down and bottom-up impacts: initial benthic MOSSFA organic supplementation allowed their 

prey resource biomass to grow, and reduction of large fish predation pressure due to oil toxicity 

(e.g., the loss of large demersal fishes). The loss of these large predators could account for the 

rebound of small demersal & reef fishes.  

Atlantis projections for large pelagic fish have not been realized in observations and 

sampling. Atlantis predicts large population declines in this guild due to the overlap of the sub-

surface plume with migration corridors. However, oil avoidance is an important behavior in 

vertebrates (Rice et al., 1976; Gray, 1990; Martin, 2017; Ainsworth et al., 2018) that is currently 

not taken into account. Therefore, the results here likely overestimate the effect on migratory 

fishes like the large pelagic guild. Developing the ability to influence migration among Atlantis 
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polygons temporarily during large biologically-significant events could improve upon this and 

would provide better insights for this guild. Species-specific oil uptake rates (equation 1), 

limiting the maximum exposure a functional group would experience, could effectively 

differentiate species’ abilities to avoid contaminated areas.  

The diet of several guilds relies more on benthic invertebrate prey sources in the oiled 

scenario target polygons. This could also be a result of MOSSFA-driven benthic enrichment, 

which would indicate that the detrital forcing behavior is capturing the pathway of organic matter 

to the benthic community. Overall, benthic invertebrates are less affected in the oil simulations 

than fish guilds, though the benthic invertebrate guild never recovers to pre-spill biomass in any 

of the sensitivity scenarios. Some benthic invertebrate functional groups show the domed 

relationship of MOSSFA enrichment vs. toxicity at the polygon level, but the loss of this 

relationship at the guild level could be due to polygon resolution. It is possible on a smaller scale 

this relationship exists, but when combined with all oil forcings and averaged over such a large 

area and across functional groups the effect is lost. There are other benthic and MOSSFA related 

parameters not included here that could also play an important role. Notably, the uptake-

depuration model used here was developed based on a single species of fish exposed to oil in 

water tanks. The representation of impacts on the benthos would be better described if an uptake-

depuration model could be developed based on sediment exposure, and separately for different 

fishes and invertebrates. The other environmental MOSSFA factors that could be explored in 

future simulations include benthic smothering (hypoxia), changing redox conditions, and 

resuspension of contaminated sediments during storm events.  

The combination of benthic invertebrate and fish forcings has resolved one issue seen in the 

benthic invertebrate only simulations (Chapter 3 Dornberger). For those MOSSFA simulations, 
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the oyster functional group was removed as an extreme outlier based on enrichment compared to 

a control scenario, as their population exploded in targeted polygons. In this work, with the 

combined vertebrate and invertebrate simulations, oyster behavior responds similarly to other 

invertebrate groups. There is a decline during the oil spill followed by gradual recovery in most 

50-year sensitivity simulations. This aligns with the initial documented loss of oysters that 

occurred immediately after the oil spill and response efforts (Powers et al. 2017). I note here that 

Powers and his colleagues attributed the decline to low salinity from Mississippi flushing as a 

method to purge oil from the delta after the spill, which is not directly forced here. Oyster 

dynamics likely stabilized in the combined forcing scenario due to a combination of improved 

detritus dynamics and food web interactions. Detritus inputs were adjusted to stabilize long-term 

model dynamics, building up to target detritus values, and the trophic cascade from toxic effects 

on large demersal fishes increased pressure on oysters. De Mutsert et al. (2017) modeled oyster 

dynamics in the GoM post-DWH, with outputs fitting catch data well but not biomass. They note 

that successful modeling of oysters requires additional environmental data, and used a new 

spatiotemporal environmental model in Ecopath with Ecosim.  

The other significant findings of this study are related to the synergistic effects of fishing and 

oil. A change in fishing pressure can make the difference between recovering post-spill, or not. 

Atlantis suggests that in targeted polygons, some of the affected guilds (e.g. snappers and 

groupers) will not recover without release from pre-spill fishing pressures. In fact, some guilds’ 

long-term biomass is determined by the relative F value, not the magnitude of the decline due to 

the oil spill event. This is an important topic to explore, especially relative to red snapper 

population and management in the eastern GoM. The recent stock assessment (Southeast Data, 

Assessment, and Review, 2018) indicated that a population decline in this region was possible 
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and that the stock should be monitored closely, although the authors noted that the predicted 

decline could be due to poor model parameterization. Additionally, groupers show more 

resilience to release from fishing pressure in the presence of oil than do other guilds and exhibit 

the largest net gain in biomass compared to the baseline fishing scenario. This indicates a non-

linear relationship between the combined effects of fishing and oil on grouper abundance.  

Shrimps and crabs were also significantly affected by changes in fishing pressure. 

Surprisingly, the rate of recovery for the shrimp group was relatively similar across scenarios, 

but stabilized at different biomass levels. Shrimps dynamic indicates that while the oil spill and 

fishing have an effect on biomass, other food web dynamics resulting from the oil spill and 

fishing efforts allow shrimps to grow in biomass relative to the control. Conversely, crabs were 

very sensitive to changes in fishing mortality, experiencing population explosions when fishing 

pressure was reduced, or crashed when pressure was increased. Sensitivity to small changes in F 

could be a model artifact acting though impacts on age class bottlenecks. 

Some fish groups are minimally affected by changes in fishing. Across the three fishing 

sensitivity scenarios, the least responsive to changes in F was small pelagics. This could be due 

to their large natural mortality as prey items for fish guilds in this region. When fishing pressure 

is reduced, top-down effects of predation pressure could be keeping the small pelagic fish from 

growing in biomass. When fishing is increased, the small pelagic fish are harvested but the 

corresponding release from predation pressure minimizes the relative biomass lost. While the 

emergency fisheries closures were included in these simulations, subsequent spatial reallocation 

of fishing effort was not. This has implications for the results of this study. The impact of fishing 

mortality F might be underestimated, or the impact of increased F in the sensitivity analyses. If 

fishermen moved outside of the closures to fish in areas that are not their normal target regions, 
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this would not be captured in simulation. If that were included, biomass impacts and catch 

estimates could differ. 

 This study provides additional important insights into the potential long-term 

implications of the DwH oil spill. The combined forcing of fish and benthic invertebrate health 

effects and MOSSFA detrital loading have proven to have a significant effect on Atlantis 

outputs. Since 1.8-14% of oil released is estimated to have reached the benthos (Valentine et al., 

2014), and a key pathway of that oil transport has been identified in MOSSFA (Brooks et al., 

2014, Daly et al., 2016), accurate representation of benthic organisms and environmental 

forcings are important to capturing the dynamics of this habitat. Additionally, the potential 

combined effects of changes in fishing effort and oil spill scenarios could be important for 

fisheries management. This study also suggests that for heavily affected areas, decreasing fishing 

pressure by 50% for a few years could allow some populations to return to pre-spill levels in that 

same time span, while continued fishing results in no recovery over a 50-year simulation. While 

the economic impacts of this type of policy decision are not examined here, it is a concept worth 

exploring in future research and considering as a mitigation response for future spills. Indirect 

food web and synergistic effects have significance both for injury assessment and recovery 

planning in large scale ecosystem disturbances like DwH. 
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Chapter Five: Conclusion 

The research conducted for this dissertation aimed to describe methods for incorporating 

observed oil spill impacts into an end-to-end ecosystem model, Atlantis, and test their efficacy. 

Ecosystem-based assessment tools like Atlantis are currently underutilized in relation to 

predicting impacts of oil spills. However, ecosystem-based fisheries management (EBFM) is the 

way forward for fisheries management (Knecht & Cicin-Sain, 1993; Grumbine, 1994; Griffis & 

Kimball, 1996; Costanza et al., 1998; Link & Browman, 2014; Levin et al. 2018; Marshall et al. 

2017). Thus, it is imperative that we gain the ability to use ecosystem-based assessments of 

anthropogenic events to support holistic management. I effectively created a basic conceptual 

framework for implementing oil spill effects into any ecosystem-based assessment model. I 

successfully integrated this framework into Atlantis, a spatially explicit trophodynamic 

ecosystem model, to project potential long term impacts of the Deepwater Horizon (DwH) oil 

spill in the Gulf of Mexico (GoM). My DwH work informs potential research focuses of future 

efforts in the GoM, as well as the implications of future oil spills and their corresponding 

mitigation efforts.  

In Chapter 2, I developed a dose-response model to describe the population level health 

effects of oil exposure on fishes (Dornberger et al., 2016). Multi-species data were gathered from 

a literature review of studies assessing two facets of fish health: growth and the development of 

lesions & tumors. While not necessarily a direct cause of mortality, lesions and tumors are 

indicative of an overall decline in health. I used this as a proxy for mortality based on the 

association between reduced health or behavioral changes and the increased risk of mortality 
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from predation, disease, parasitism, or competition (Moore & Dywer, 1974; Moles & Norcross, 

1988). Exposure medium was also considered and tested, indicating for lesion data that all 

mediums produced similarly proportional responses, but for growth, food based exposure was 

significantly different from water or sediment and had to be treated separately. These lesion and 

growth data sets were then compared to oil exposure levels, and a continuous dose-response 

model generated for each to specify the population level impact at any given exposure. The 

identified best fit model for all data sets, a “hockey-stick” model with an effect threshold and log 

linear response (Dornberger et al., 2016), matches models previously built to describe single-

species lesion frequency (Johnson et al., 2002). The “hockey-stick” shape of the identified dose-

response model is also qualitatively informative, as it indicates there is a threshold of exposure 

below which there is no detectable population level response. This is supported by early 

toxicological studies into the effects of oil on marine organisms (summarized in Moore & 

Dwyer, 1974). This dose-response model provides an important foundation with which to predict 

growth and mortality population level responses, and can be used in any ecosystem-based 

modeling efforts of an oil spill scenario. 

In Chapter 3, I assessed the relationship between benthic invertebrate abundances and oil 

exposure in the GoM from sediment cores collected in 2010. This work confirmed the previously 

defined benthic invertebrate abundance domed response to oil (Montagna & Spies, 1985; 

Montagna et al., 1986, 1987; Spies et al., 1988; Olsgard & Gray, 1995; Steichen et al., 1996; 

Peterson et al., 1996; Jewett et al.; 1999) existed in the GoM after the DwH oil spill for 

meiofauna and macrofauna. Once confirmed, to drive this relationship for the DwH oil spill I 

tested potential external forcings in Atlantis. Driving this response in Atlantis was a novel 

concept, so three potential abundance stimulating scenarios were chosen: 1) Mississippi nutrient 
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loading from the flushing mitigation efforts (Bianchi et al., 2011), stimulating primary 

productivity as a pathway to benthic invertebrate abundance increases; 2) increased detritus from 

MOSSFA (Brooks et al., 2015; Romero et al., 2015) stimulating the detritus based food web as a 

pathway to benthic invertebrate abundance increases; 3) predators altering their behavior to 

avoid oil exposure (Rice et al., 1976; Gray, 1990; Martin, 2017; Ainsworth et al., in 2018) 

reducing top-down pressure from predation as a means of benthic invertebrate abundance 

increases. These scenarios were combined with an invertebrate mortality dose-response model to 

create the domed relationship of increased abundance at low-moderate oil levels and decreased 

abundance at high oil levels. The results indicated that at the resolution of Atlantis polygons, 

only scenario 2 (MOSSFA) was able to drive the domed relationship. This is an important 

finding for future oil spill modeling efforts, as it identifies a key environmental contributor to 

food web dynamics, and also supports the results post-DwH identifying MOSSFA as an 

important component of this oil spill (Daly et al., 2016). 

In Chapter 4, I combined the results from Chapters 2 & 3 to run integrated modeling 

efforts with effects on vertebrates and benthic invertebrates in the Atlantis framework. I also 

tested the combined effects of fishing mortality and oil spill impacts to determine potential 

compounding effects. This advances upon the work of Ainsworth et al. (2018) and provides 

important insights into the potential impacts and synergies in the system. Adding MOSSFA and 

benthic invertebrate toxicity forcings had an effect on the diet of a few guilds of fishes. Several 

guilds had a proportional increase of invertebrates in their diet during the peak impact period of 

the oil spill. With the addition of MOSSFA and benthic invertebrate toxicity, Atlantis indicates 

DwH has the potential to significantly impact biomass in the region for over 50 years. In the 

“worst case” sensitivity scenario, over half of the assessed functional groups do not recover in 50 
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years. Optimistically, in the “best case” sensitivity scenario with minimal oil impacts, fewer 

functional groups do not recover. In this scenario, the majority of functional groups that do not 

recover in the 50 year period have a higher biomass minimum than in the “worst case” scenario. 

This would indicate that in a “best case” scenario, many unrecovered groups have equilibrated at 

a new steady state slightly reduced from a control level, compared to the “worst case” scenario 

where many groups have severe biomass reductions. Also, these simulations captured the 

documented decline in oyster populations (Powers et al., 2017), and projections for eastern GoM 

red snapper populations match the recent stock assessment (Southeast Data, Assessment, and 

Review, 2018). Overall, I suggest that the most affected guilds by biomass in the oil spill region 

are large demersal fishes and elasmobranchs.  

This work also emphasizes the importance of fishing mortality, F, during oil spill 

recovery. The ability to jointly test the effects of fishing pressure and oil spill impacts at an 

ecosystem level supports the call to move towards EBFM. In Atlantis, a reduction in fishing 

effort allows for the recovery of guilds that would otherwise not recover. Both fishes and 

commercially targeted invertebrates indicate the potential for this interaction. This indicates that, 

in some cases, the combined pressures of an oil spill and continued fishing efforts may be too 

daunting an obstacle for the population to independently overcome. When a targeted species is 

struggling to recover after an oil spill, whether it is DwH or a future event, these findings suggest 

that reducing fishing pressure has the potential to aid in generating species recovery.  

 Overall, in this dissertation I have successfully used an ecosystem-based assessment 

model to incorporate data from the DwH oil spill and conduct an ecosystem assessment. As 

suggested by many international fisheries policy recommendations (Ministry of the 

Environment, 1997; Ecosystem Principles Advisory Panel, 1999; World Summit on Sustainable 
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Development, 2002; United Nations Environment Programme, 2006), EBFM should be utilized 

where possible to manage fish stocks. The ability to implement anthropogenic impact events, 

like oil spills, into ecosystem-based assessment models to support EBFM is an additional step 

towards providing holistic, consistent insights into managed systems. The results of this research 

provide a basis for further ecosystem-based oil spill modeling efforts, highlight the importance of 

including secondary effects of a spill, like MOSSFA, and indicate potential long-term impacts of 

DwH. 
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1. Introduction

As the quantity and type of chemicals humans introduce into aquatic
environments grows, a better understanding of species responses to ex-
posures and factors that modulate it must be developed. As the number
of oil extraction operations and corresponding oil spills increase, the
specific need to understand how oil can impact organisms, especially
fish, has become evenmore acute. The intensity of crude oil toxicity de-
pends on the species or life stages involved, as well as the concentration
and composition of the oil (Mosbech, 2002; McCay et al., 2004;
Incardona et al., 2011a; McKenna et al., 2013). Exposure effects are fur-
ther modified by the local climate, habitat, currents, and oil spill re-
sponse efforts (Moore and Dwyer, 1974; Tjeerdema et al., 2013;
Almeda et al., 2014).

Understanding both lethal and sub-lethal exposure effects is impor-
tant to building a comprehensive view of the impacts from an oil spill.
Direct mortality from hydrocarbons in oil is observed across a range of
species (Rice et al., 1984; Lee and Page, 1997; Carls et al., 1999;
Brown-Peterson et al., 2015), and sub-lethal effects are observed in
some organisms (Moore and Dwyer, 1974; Lee and Page, 1997;
Brown-Peterson et al., 2015). These toxic sub-lethal effects can include
changes in behavior and predator-prey dynamics, growth impediment,
and increased susceptibility to disease and parasitism (Moore and

Dwyer, 1974). Sub-lethal effects may interact and persist after acute
toxicological impacts have subsided. Exposure to oil can slow growth,
decrease recruitment to the fishery, and increase susceptibility to pre-
dation (Moles & Norcross, 1998). The size-spectrum theory suggests
that at a given age, larger individuals have a higher chance of survival
due to lower predatory densities (Hare and Cowen, 1997), thus even a
small decline in the ability of a juvenile fish to grow or store lipids can
have a severe impact on their chance of survival (Meador et al., 2006).
This suggests that growth reduction can have an indirect mortality ef-
fect on a population. Fecundity may also be affected by a decline in
growth, as larger females produce larger eggs with larger yolk sacs,
leading to faster larval growth (Kennedy et al., 2007).

Within the oil exposure literature, a large body of research has fo-
cused on the effects of polycyclic aromatic hydrocarbons (PAHs), key
components of oil, on certain fish species. PAHs are thought to be
major components in the toxicity of oil, partially because their metabo-
lites have oxidative and carcinogenic properties (Moore and Dwyer,
1974; Lin and Tjeerdema, 2008; Incardona et al., 2011a). Brown et al.
(1973) found a higher prevalence of stomach, skin, and liver tumors, es-
pecially hepatic neoplasms, in 16 species of fishes correlated with the
presence of two PAHs (naphthalene and benzanthracene), crude oil,
and other toxicants (e.g. chlorinated hydrocarbons) in the water col-
umn of the Fox River in Wisconsin. There is also strong evidence
supporting a causal relationship between exposure to sediment PAHs
and liver neoplasms and other liver lesions in marine species (Myers
et al., 1991). A statistical analysis of these lesions supports a
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morphologically identifiable progression ultimately leading to hepatic
neoplasms, or liver tumors (Myers et al., 1991). The most supported
causative PAHs for liver lesions are higher in weight, often pyrogenic
(Vethaak et al., 1996; Myers et al., 1998). Burning oil in response to a
spill increases the relative amount of higher weight PAHs in the system,
increasing the risk of these lethal impacts.

Predicting the impacts of oil spills on fish populations is further com-
plicated by the lack of data relating direct exposure concentrations to
changes in life rates. Many studies, dating back to Moore and Dwyer
(1974) have approximated the oil threshold at which a risk of health
impacts begins, but not the shape of the organismal or population re-
sponse. Some studies only compare oiled with non-oiled sites, and do
not consider the degree of exposure (Khan and Nag, 1993; Jewett et
al., 1995; Marty et al., 2003). Others use biliary fluorescent aromatic
compounds (FACs) as an indicator of oil exposure, which have been
documented in the laboratory to have a positive correlation with expo-
sure dose (Collier and Varanasi, 1991). However, there aremany factors
that influence these FAC concentrations and caution should be used
when interpreting these results from field investigations (Lee and
Anderson, 2005). These examples highlight the difficulty in defining
the relationship between oil exposure concentration and organismal
response.

Dose-response curves, which predict how organisms and popula-
tions respond to increasing toxin exposure, offer a chance to connect le-
thal and sub-lethal impacts of oil. They also may be integrated into
ecosystem models in order to predict long-term changes in food webs
due to spills. The goal of this article is to parameterize best fit dose re-
sponsemodels relating petrogenic PAH or oil exposure values to growth
and mortality rates, which can then be used to predict responses of or-
ganisms to oil spills. Developing dose-response curves will allow direct
estimates of oil impacts on organisms to be developed and tested. How-
ever, dose-response curvesmay takemultiple shapes. To assess our cur-
rent knowledge of how oil exposure may impact species, we gathered
data on petrogenic PAH exposure and impacts on fish species from the
literature and tested best fits against several common response models.
This assessment and modeling exercise will also aid in identifying gaps
in current empirical studies and target future work.

2. Methods

2.1. Literature search

Given the paucity of data related directly to oil exposure on juveniles
and adults, we conducted a literature search to identify studies where
an impact on organismhealth or growthwas correlatedwith PAH expo-
sure.We recognize the existence of literature on oil effects on larvae and
embryos (e.g. Incardona et al., 2005, 2008, 2011b, 2015; Carls et al.,
2008), however they were not included in this study as there is a differ-
ence in response during this stage aswell asmany ecosystemmodels do
not explicitlymodel this life stage. Our searchwas initially guided by the
review of PAH impacts on fishes by Collier et al. (2013), however many
of the studies reviewed were pyrogenic in nature, therefore the search
was expanded upon to locate other relevant studies focused on
petrogenic sources. Lee and Page (1997) provide another review of oil
spill impacts on sub-tidal regions, however many field studies relating
to the Exxon Valdez spill are unable to quantify oil exposure. While
we originally intended to develop different dose-response curves for ju-
venile and adult fishes, and for pelagic, demersal and epibenthic habitat
use, it is not possible at this time due to limited ecotoxicological data.
Thus, we grouped all relevant data found in the literature search into
one general fish grouping for the purpose of establishing the shape of
the dose-response curve (although we note that the overall magnitude
of effect is established through other means andmay reflect differential
PAH uptake rates due to habitat use). Ecotoxicological studies in prog-
ress by Gulf of Mexico Research Initiatives (GOMRI) researchers (see

http://gulfresearchinitiative.org/consortia/), may soon provide data
necessary to discriminate between different life stages and habitat use.

From the results of our literature review, we tested the relationship
between PAH exposure and lesion and tumor frequency (a proxy for
mortality) as well as growth for several reported species. Lesion
frequency was chosen as a proxy for mortality due to the documented
progression from lesions to tumors (Myers et al., 1991), indicating an
overall decline in the health of thefish.Wedo not assumedirectmortal-
ity from this decline in health, but rather an increase in likelihood of
mortality from any source due to reduced health and behavioral chang-
es (Moore and Dwyer, 1974; Moles & Norcross, 1988). Overall, four
studies were used relating to lesion or similar pathology frequency
data, located on the liver, pancreas, gills, or externally, and seven
studies were used relating to growth reduction. To examine the
growth response after PAH exposure, the species included were
Pink Salmon (Oncorhynchus gorbuscha), Inland Silversides (Menidia
beryllina), Yellowfin Sole (Limanda aspera), Rock Sole (Lepidopsetta
bilineata), Pacific Halibut (Hippoglossus stenolepis), Chinook Salmon
(Oncorhynchus tshawytscha), Turbot (Scophthalmus maximus),
Zebrafish (Danio rerio), Southern Flounder (Paralichthys lethostigma)
(Moles and Rice, 1983; Gundersen et al., 1996; Moles and Norcross,
1998; Meador et al., 2006; Morales-Nin et al., 2007; Vignet et al.,
2014; Brown-Peterson et al., 2015). Literature growth values were
not uniform in units reported, so available data were converted to re-
flect a proportional reduction in biomass growth rate. This was done
through a data transformation, which divided each individual
growth response by a reference rate (which is represented by the
growth rate under the lowest PAH concentration tested). This result-
ed in a low value for organisms exhibiting slow growth. All values
were then subtracted from one to represent the proportional differ-
ence in growth from the reference rate. Using this method, all
growth rate data points fall between 0 and 1, where a value of 0
would be no reduction in growth relative to the reference rate and
0.5 would be 50% reduction in growth. Exposure concentrations
were also not uniform, and included petrogenic hydrocarbons, total
PAH, fuel oil concentration, total aromatic hydrocarbons, and
tPAH50 (sum of 50 aromatic hydrocarbons). Units were converted
to μg/L water, μg/kg wet sediment, or μg/kg food pellet.

For lesion frequency some of the species included were Zebrafish
(Danio rerio), Southern Flounder (Paralichthys lethostigma), and Alligator
Gar (Atractosteus spatula) (Larcher et al., 2014; Brown-Peterson et al.,
2015; Omar-Ali et al., 2015). The final data set included came from a

Fig. 1. All literature data used in the analyses relating PAH exposure to growth reduction.
The x-axis is shown on a log scale of toxicant concentration in ppb for different exposure
mediums (μg/L water, μg/kg wet sediment, or μg/kg food). Toxicant concentrations were
reported as total petrogenic hydrocarbons, total PAH, fuel oil concentration, total
aromatic hydrocarbons, or tPAH50 (total concentration of 50 PAH) (Moles and Rice,
1983; Gundersen et al., 1996; Moles and Norcross, 1998; Meador et al., 2006; Morales-
Nin et al., 2007; Vignet et al., 2014; Brown-Peterson et al., 2015). The y-axis is a
proportional reduction in growth for each data point, obtained by comparing it to the
control or lowest-exposure data point in that study. The legend illustrates the exposure
medium.
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combination of Murawski et al.'s (2014) report on external lesions in a
suite of 103 species caught via long-lining with Paris et al. (2012) far-
field oil plume model to predict oil exposure at catch locations. These
values from the oil plume model were reported in ppb in the water col-
umn; the other studies used had different exposure concentration reports
of total PAH, oil concentration, and tPAH50, and the units were converted
to either μg/L water, μg/kg wet sediment, or μg/kg food pellet. The lesion
frequency data were reported as a proportion of the population with le-
sions at various exposure values. Pathologies included in this analysis
were fin rot, external skin lesions, duct carcinoma, hepatocellular

necrosis, hepatopancreatic necrosis, eosinophilic inclusions in exocrine
pancreas, reduced exocrine pancreas, epithelial proliferation of the gills,
and swollen or fused lamellae of the gills.

We also attempted to use a red snapper growth data set (Herdter,
2014) collected from the GOM in relation to the Deepwater Horizon
blowout. Initially these data were compared to predicted water col-
umn oil concentrations provided by the far-field oil plume model
created by Paris et al. (2012), however after analysis no relationship
existed. At this time, the data are not applicable, but ongoing analysis
is underway to compare the fish data sets to sediment core PAH con-
centrations (Romero et al., 2014) and may be added to future work.

2.2. Analysis of exposure route

Due to the limited availability of studies describing both an organis-
mal impact correlated with an exposure dose, we were unable to in-
clude only one route of oil exposure in this analysis. Doing so would
severely limit the breadth of our work and the already limited applica-
ble data.We recognize that there are different bioavailabilities of toxins
from oil depending on the exposure medium, however we considered
the possibility that the broad range of exposure values and the large
number of fish used in this analysis might minimize the effect of differ-
ing bioavailabilities. To assess if the different exposure mediums result-
ed in different intensities of effect, the ratio of the effect observed to the
log of the exposure value for that effect was calculated for each data
point in both the growth and lesion data sets. The exposure values
were log transformed to reduce the effect of the large variability present
in exposure values. The impacts of exposure medium on these data
were assessed using a mixed-effects model that included exposure me-
dium as a categorical, fixed variable. Since given studies may have con-
tributed multiple data points, a random effect for study was also

Fig. 3.Growth data from literature data sets for different exposuremediumswith fittedmodels. The fourmodels are a linear model, exponential, step-wise, and hockey-stick model using
log transformed PAH data. Three of themodels are shown in a for water and sediment exposure and c for food exposure (exposuremedium indicated bymarker type). Since the hockey-
stick model uses log transformed data, it is shown on a separate graph in b for water and sediment exposure and d for food exposure with a log-scale PAH concentration axis.

Fig. 2. All literature data used in the analyses relating PAH exposure to lesion frequency.
The x-axis is shown on a log scale of PAH concentration in ppb for different exposure
mediums (μg/L water, μg/kg wet sediment, or μg/kg food). Toxicant concentrations were
reported as total PAH, oil concentration, tPAH50 (total concentration of 50 PAH), or oil
in ppb for water (Paris et al., 2012; Larcher et al., 2014; Murawski et al., 2014; Brown-
Peterson et al., 2015; Omar-Ali et al., 2015). The legend illustrates the exposure medium.
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included in the model. The effect of source was considered by compar-
ing nested models (each fit by maximum likelihood) using X2 tests
(Zuur et al., 2009) in the lme4 package in R (Bates, 2010). If the model
results were insignificant, it supported that the medium of exposure
did not significantly change the organismal response, and thus the dif-
ferent types of data were combined for dose-response model analysis.
If responseswere found to differ significantly among exposuremedium,
we carried out posthoc tests using Holm's correction in the multcomp
package in R (Hothorn et al., 2008) to determine which mediums sub-
stantially differed from others. Significantly different exposure me-
diums were assessed separately for dose-response models.

2.3. Dose-response models

We evaluated four possible shapes using model-selection proce-
dures to describe the relationship between PAH concentration and or-
ganism mortality and growth. The four models are:

1. a general linear model (Gad, 1998)

R ¼ m � PAH½ � þ Rθ ð1Þ

2. an exponential function (Gad, 1998):

R ¼ PAH½ �a−Rθ ð2Þ

3. a step-wise function (Gad, 1998) when

R ¼ Rθ
RI

�
if PAH½ �b PAH½ �thresh

otherwise ð3Þ

4. a “hockey stick” function (Horness et al., 1998; Johnson et al., 2002)
when

R ¼ Rθ
Rθ þm� log PAH½ �= PAH½ �thresh

� ��
if PAH½ �≤ PAH½ �thresh

otherwise
ð4Þ

Table 1
Fitted parameters values (with standard error in parentheses) for each growth model based on Reduced Gradient Algorithm solutions using Solver.

Growth data analyses

Model Equation Parameter 1 Parameter 2 Parameter 3

Water and sediment exposure
Linear R=m∗[PAH]+Rθ m = 1.34E−7 (1.84E−8) Rθ = 0.1783 (0.0354) –
Exponential R=[PAH]a−Rθ a = 0.00397 (0.03922) Rθ = 0.5510 (0.113) –
Step-wise

R ¼ Rθ if ½PAH�b½PAH�thresh
R1 otherwise

Threshold = 255,416 (490–806,000a) Rθ = 0.15606 (0.03517) RI = 0.62877 (0.04974)

Hockey-stick
R ¼

Rθ if ½PAH�≤ ½PAH�thresh
Rθ þm� ; logð½PAH�=½PAH�threshÞ

otherwise

Threshold = 2.942 (4.132) Rθ = 3.57E−8 (0.0422) m = 0.1051 (0.011)

Food exposure
Linear R=m∗[PAH]+Rθ m = 7.91E−9 (2.15E−9) Rθ = 0.0104 (0.0259) –
Exponential R=[PAH]a−Rθ a = 0.00328 (0.0098) Rθ = 0.8514 (0.1049) –
Step-wise

R ¼ Rθ if ½PAH�b½PAH�thresh
R1 otherwise

Threshold = 203,407 (1309.5–4,000,000a) Rθ = 0.10047 (0.02997) RI = 0.2789 (0.05842)

Hockey-stick
R ¼

Rθ if ½PAH�≤ ½PAH�thresh
Rθ þm� ; logð½PAH�=½PAH�threshÞ

otherwise

Threshold = 28.422 (148.7) Rθ = −1.19E−6 (0.113) m = 0.0531 (0.0122)

a Indicates a 95% confidence interval was calculated and is reported in the parentheses instead of standard error.

Fig. 4. Lesion frequency data from literature data sets for all exposure mediums with fitted models (exposure medium indicated by marker type). The four models are a linear model,
exponential, step-wise, and hockey-stick model using log transformed PAH data. Since the hockey-stick model uses log transformed data, it is shown on a separate graph in b with a
log-scale PAH concentration axis.
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where R represents a generic organismal response (either a change in
growth or mortality), Rθ is the background concentration at which pop-
ulations exhibit this response, and RI is the constant affected population
response above the PAH threshold. [PAH]thresh is the PAH concentration
at which the response of the population changes, and m is the rate of
change in the population response. The linear model (1) assumes a lin-
ear increase in population-level effect proportional to PAH concentra-
tion, while the exponential function (2) assumes that physiological
stresses compound in a multiplicative way leading to increased effects
at higher PAH concentrations. The step-wise function (3) assumes the
organism can process low concentrations of oil withminimal or low im-
pact but that above a threshold PAH concentration there is a higher con-
stant population-level effect. The hockey stick function (4) assumes that
the organism can process low concentrations of oil with minimal im-
pact, and above a threshold PAH concentration, population-level effects
increase log-linearly (Horness et al., 1998; Johnson et al., 2002). We
used a Generalized Reduced Gradient algorithm in Solver to fit each of
the four models to the growth data set (separated into just food expo-
sure and a combined sediment andwater exposure). Upon graphical in-
spection, the lesion data set had two data points that were three orders
of magnitude larger in exposure value than the next largest exposure,
and these were removed from further analysis before models were
fitted following the growth data set methods. These fits were refined
and standard error calculated using nonlinear least squares in R for
Eqs. (1), (2), and (4). Eq. (3), the step-wise model, was refined using
the rpart package in R, and through bootstrapping the 95% confidence
interval (95% CI) for the step-wise thresholds were calculated
(Felsenstein, 1985). We then used the Akaike Information Criterion
(AIC) to assess model fit (Akaike, 1973, 1974).

3. Results

The results of the literature search conducted for growth and lesion
frequency are shown in Figs. 1 and 2 respectively. Analysis of the im-
pacts of medium indicated that there was a significant difference in ex-
posure medium for the growth data (Χ2

2 = 16.154, p = −0.0003).

Post-hoc analysis revealed a significant difference between food expo-
sure and both sediment and water (z = −3.393, p = 0.00208;
z = −3.160, p = 0.0032 respectively). There was no significant differ-
ence between exposure via water or sediment for growth (z = 0.043
p= 0.96). Therefore, the sediment andwater exposure data were com-
bined, and the food exposure data analyzed separately. For the lesion
data set, the analysis indicated that there was no significant difference
between exposure mediums based on the average lesion rate per log
unit exposure in each medium (Χ2

2 = 0.0317, p = 0.86). Therefore,
all exposure mediums were combined for the lesion data set dose-re-
sponse analysis.

After the four dose-response models were fitted to the combined le-
sion and separated growth data, they were plotted over the data points
as shown in Figs. 3 and 4. Eq. (4), the hockey-stickmodel, is shown on a
separate, log scaled graph as it log transforms the data, while the other
four models are not on a log scaled axis so the true shape of the curve is
displayed. The fitted parameter estimates are shown in Tables 1 and 2,
along with their standard error or 95% CI.

The results from the Generalized Reduced Gradient algorithm and
nonlinear least squares for both growth reduction and lesion frequency
show that Eq. (4), the hockey-stickmodel, is the best fit with the lowest
sum of squared residuals for all data sets (Tables 3 and 4). It is also the
most parsimonious based on the AIC results for all data sets, the com-
bined lesion and separated growth sets.

4. Discussion

It is clear that of the fourmodels assessed, for these data, the hockey-
stick model is both the best fit and most parsimonious regardless of ex-
posuremedium. For growth effects, the selection based on fit and parsi-
mony of the hockey-stick model suggests that there is a decline in
growth after a threshold is met, though our analysis suggests this
threshold occurs at low toxin concentrations. For mortality effects, the
selection of the hockey-stick relationship suggests that fish are able to
tolerate low concentrations of PAHs in the environment without
exhibiting a visible mortality impact. The implications of this are that

Table 3
Sum of squared residuals (SS) and Akaike Information Criterion (AIC) results for past literature obtained growth data for both exposuremedium groupings. K is the number of parameters
included in each model. ΔAIC is the difference between the AIC value of the current model and that of the lowest AIC value of all tested models. ωAIC is the Akaike weight, a normalized
relative likelihood for themodel. Akaikeweights can be interpreted as the probability that under repeated sampling and testing, themodelwith a value of 1would be the bestfit among the
models considered (Pechenik, 1987).

Model SS K AIC ΔAIC ωAIC

Sediment and water based exposure
Linear 0.478081772 2 −84.49 18.94 7.71E−05
Exponential 2.44036734 2 −46.997 56.433 5.57E−13
Step-wise 0.435358403 3 −83.98 19.45 5.98E−05
Hockey-stick 0.186889223 3 −103.43 0 1

Food based exposure
Linear 0.356497425 2 −94.408 0.708 0.701875
Exponential 1.18927207 2 −63.714 31.402 1.52E−07
Step-wise 0.375429365 3 −87.386 7.73 0.020963
Hockey-stick 0.268269217 3 −95.116 0 1

Table 2
Fitted parameters values (with standard error in parentheses) for each lesion model based on Reduced Gradient Algorithm solutions using Solver.

Lesion data analysis

Model Equation Parameter 1 Parameter 2 Parameter 3

Linear R=m∗[PAH]+Rθ m = 7.174E−6 (4.859E−7) Rθ = 0.04344 (0.01286) –
Exponential R=[PAH]a−Rθ a = 0.004793 (0.010321) Rθ = 0.754541 (0.050793) –
Step-wise

R ¼ Rθ if ½PAH�b½PAH�thresh
R1 otherwise

Threshold = 20,340.99 (3617.5–36,787a) Rθ = 0.04308 (0.01187) RI = 0.78 (0.03792)

Hockey-stick
R ¼

Rθ if ½PAH�≤ ½PAH�thresh
Rθ þm� ; logð½PAH�=½PAH�threshÞ

otherwise

Threshold = 3521 (836.3) Rθ = 0.02812 (0.01118) m = 0.5297 (0.05212)

a Indicates a 95% confidence interval was calculated and is reported in the parentheses instead of standard error.
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they are able tometabolize and excrete toxins that are at low concentra-
tions in the environmental, up until a certain saturation concentration
when there begins to be an increasing health impact. Within this analy-
sis, exponential models are the least representative of growth andmor-
tality effects on fishes, which suggests that low levels of exposure do not
induce a rapidly increasing organismal response. Themodels are limited
based on the available data used to run the analyses, and could be im-
proved upon with the addition of more data. As these data continue to
become available from research being done related to the Deepwater
Horizon oil spill, this relationship will continue to be tested and validat-
ed. This will also improve our certainty in parameter estimates, and
allow for the possible separation of different lifestyles offishes (e.g. ben-
thic, pelagic, reef).

We recognize that the combination of different exposure mediums
with different bioavailabilities is not ideal, and that this effect could
also be minimized as more data become available and each exposure
medium can be assessed separately. Currently available data sources
are not robust enough to analyze thesemediums separately to ascertain
significant results. Within the growth analysis, more data pertaining to
juvenile or young adult growth effects ofwater or sediment based expo-
surewould be beneficial. For the lesion analysis, additional data is need-
ed on histopathology of the liver or gills for all mediums. A limitation of
our analysis of this data was the required use of estimated oil exposure
values (Paris et al., 2012) for one study's samples (Murawski et al.,
2014), as opposed to direct in-situ measurements. The mobility of
wild caught fishes makes these estimates susceptible to error in our ex-
posure approximations, and assumes the fish caughtwere only exposed
to oil in thewater column (andnot in their food orwith contactwith the
sediment). Some of the species sampled included demersal and benthic
lifestyles, which could be missing a large portion of their exposure
through these mediums. However, while demonstrating the surprising
lack of comparable data these initial analyses also indicate that fish ap-
pear to tolerate various low levels of oil exposure before responding to
contamination in both growth and mortality, suggesting a generalized
response to exposure.

Understanding the relationship betweenoil exposure andhealth im-
pacts on fishes is critical to both understanding the impacts of oil on the
environment and responding accordingly (Incardona et al., 2011a;
Tjeerdema et al., 2013). Determining which lifestyles increase the im-
pact on an organism will also help to highlight the more sensitive as-
pects of an ecosystem to oil spills. There is a need for sampling non-
benthic species, and even benthic species with different behavioral pat-
terns, to have a more robust understanding of impacts throughout the
system. The lack of available data defining lifestyle-specific sub-lethal
impacts is evident; however, as oil spills occur and funding is made
available, researchers are actively working to fill in these gaps. Baseline
data to determine the normal state of a system prior to an oil spill is also
vital to understanding if and how the systemhas changed in response to
an oil spill.

We considered creating a dose-response relationship between oil
exposure and adult fecundity, however there exists a more direct
route of estimating larval effects and survivorship. Larval mortality
and sub-lethal impacts arewell documented even at low concentrations
of PAH exposure (Moore and Dwyer, 1974; Rice et al., 1984; Carls et al.,
1999; Heintz et al., 1999; Incardona et al., 2012, 2015; Sørhus et al.,

2015). A combination of the results of this paper's estimates on the im-
pacts on growth and mortality with future recruitment impact esti-
mates will be used to model the spill event and run long-term
simulations in both an entire GOM Atlantis model (Ainsworth et al.,
2015) and an Atlantis model of the northeastern GOM (Gosnell unpub-
lished data). We can compare the projections of Atlantis against data
such as before/after reef fish community surveys discussed in
Patterson et al. (2014) for validation.

5. Conclusions

The results of this paper rely heavily on literature published data sets
of laboratory exposure studies with various exposuremeans.We recog-
nize that ongoing and future studies yet to be published regarding tox-
icity of oil will greatly improve our ability to simulate the relative
impacts of oil spills once these results have beenmade available. Specif-
ically, field studies documenting impacts on fish health, growth, and re-
production coupled with in situ oil measurements would be ideal.
Additional data across all exposure mediums would allow for these
data to be analyzed separately, to confirm that the hockey-stick rela-
tionship is supported for each individualmode of exposure. Of the stud-
ies examining biomarkers of exposure or liver enzyme activity in
organisms, a coupled data set involving growth or toxicity impacts on
overall health would strengthen the assumption that sampled organ-
ismswere both exposed to PAHs and had health impacts from the expo-
sure. A broader species base would be required to test the applicability
of a hockey-stick response to different lifestyles of fishes. Large data
sets encompassing numerous species of various ecological lifestyles
with direct exposure values would allow for this distinction of impact
by lifestyle, as it appears the more frequently documented impacted
benthic speciesmay be themost heavily impacted in contaminated sed-
iments (Harshbarger and Clark, 1990). In addition, adding in other
stressors to the benthos may be vital in capturing the cumulative im-
pact, as there has been shown to be an oxygen depletion in the benthic
layer due to increasedmarine oil snow sedimentation and flocculent ac-
cumulation following oil spills (Hastings et al., 2014).

The selection of the hockey-stick model of juvenile and adult organ-
ismal response to petrogenic PAH exposure has implications beyond
this case study scenario. This allows for an approximation of popula-
tion-level effects given oil concentrations using ecosystem simulations
for future scenarios. It also provides a tool to focus mitigation and re-
search efforts in future spills, highlighting at which concentrations the
risk of population-level response is high. This framework can be applied
in many simulation scenarios globally, and updated by fitting the hock-
ey-stick model with appropriate site-specific data as needed.

Beyond creating a roadmap for toxicant exposure response on fish
health and growth, this project is also the first step towards modeling
sub-lethal oil spill impacts on fishes using Atlantis ecosystem modeling
(Fulton 2001; Fulton et al. 2004a,b, 2005, 2007). For simulation purposes
in Atlantis, thefitted hockey-stick and exponential equations provide an
initial starting point using the new routines. Future modifications of
these routines will feature an uptake-depuration model similar to
Baussant et al. (2001). This will allow for organismal uptake of oil prod-
ucts and time-dependent excretion or detoxification in lieu of an instan-
taneous equilibration with the ambient concentration.

Table 4
Sum of squared residuals (SS) and Akaike Information Criterion (AIC) results for literature obtained lesion data. K is the number of parameters included in each model. ΔAIC is the differ-
ence between the AIC value of the current model and that of the lowest AIC value of all tested models. ωAIC is the Akaike weight, a normalized relative likelihood for the model. Akaike
weights can be interpreted as the probability that under repeated sampling and testing this model would be the best fit among the models considered (Pechenik, 1987).

Model SS K AIC ΔAIC ωAIC

Linear 1.813785951 2 −447.44 38.12 5.28E−09
Exponential 18.71181147 2 −190.73 294.83 9.52E−65
Step-wise 1.581918425 3 −466.14 19.42 6.07E−05
Hockey-stick 1.258172445 3 −485.56 0 1
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