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Abstract 

The gut microbiome is a complex ecosystem of bacteria, viruses, and fungi that strongly 

influences animal health. The bacterial component, for example, contributes orders of magnitude 

more gene products to host physiology than the host genome; thus, changes to the composition of 

these bacterial communities can have profound influences on the health of the animal. By 

infecting and lysing their hosts, viruses (particularly viruses infecting bacteria or phages) can 

affect critical functions in these environments, yet the consequences of these infections remain to 

be fully described. Most studies investigating gut viromes to date have focused on double-

stranded DNA (dsDNA) phages and, consequently, little is known about the smaller single-

stranded DNA (ssDNA) phages, which also inhabit gut environments. In this study, we 

investigated ssDNA phages of the Microviridae family within the gut of an invertebrate 

organism, Ciona robusta, used as a model system to better understand gut microbial interactions. 

As a filter feeder, Ciona concentrates dissolved organics and microbes as part of its diet, yet 

maintains a microbiome distinct from the surrounding water column. We identified 258 unique 

ssDNA phage genomes representing a diversity of Microviridae subgroups including novel 

members of the established Gokushovirinae subfamily and several proposed phylogenetic groups 

(Alpavirinae, Aravirinae, Group D, Parabacteroides prophages, and Pequeñovirus). Over 70% of 

the genomes belonged to the Gokushovirinae; however, 155 of these genomes did not group with 

previously described sequences. Our results highlight an unprecedented diversity of ssDNA 

phages from an animal gut.  Furthermore, comparative analysis between samples collected from 

Ciona specimens with full and cleared guts as well as the surrounding water indicated that Ciona 
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retains a unique and highly diverse community of ssDNA phages. The present study significantly 

expands the known diversity within the Microviridae family and suggests that Ciona is a 

promising system for studying the role of ssDNA phages within animal guts.  
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Introduction 

Recent studies of host-microbe interactions have recognized the importance of the 

holobiont, which acknowledges the complex partnerships between an animal and the entirety of 

its associated microbial communities (Theis et al. 2016). These host-microbial network-type 

interactions form a complex dynamic relationship impacting host physiology, including the 

procurement of nutrients and metabolic output (Nicholson et al. 2012, Bordenstein and Theis 

2015). One such complex, bacteria-rich, ecosystem is the nutrient- and mucus-rich gut of animals 

where the microbiome is known to contribute orders of magnitude more gene products to host 

physiology than the host genome itself (Turnbaugh et al. 2007). Although many of the metabolic 

contributions are predicted from the cellular component of the microbiome (i.e., bacteria, fungi 

and archaea), it is now recognized that viruses also play an important role in microbiome 

dynamics.  

Viruses present in gut communities are dominated by bacteriophages (phages), which are 

viruses that infect bacteria (Breitbart et al. 2003, Reyes et al. 2010, Minot et al. 2011, Manrique 

et al. 2016, Manrique et al. 2017, Mirzaei and Maurice 2017, Yutin et al. 2018). Phages are 

thought to be in a 1:1 ratio with bacteria in the human intestine (Reyes et al. 2010, Kim et al. 

2011, Minot et al. 2011), which contrasts with ratios observed in environmental samples  (e.g., 

10:1 in sea water (Suttle 2007)). Since phages can have dramatic influences on the structure and 

function of microbial communities, through lysis of bacteria and horizontal gene transfer (Suttle 

2007, Shapiro et al. 2010, Koskella and Brockhurst 2014), , phage-bacterial interactions appear 

crucial in all environments studied to date (Rohwer and Thurber 2009, Shapiro et al. 2010, 
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Breitbart 2011, Scarpellini et al. 2015, Thurber et al. 2017), including microbial communities 

that are found in close association with animals (Turnbaugh et al. 2007, Dishaw et al. 2014 

Isaacson, 2012 #335, Sanders et al. 2015, Soverini et al. 2016). While phage dynamics likely 

have dramatic influences on the physiology of the animal host, very little is known about the role 

of viromes (the cumulative viral community associated with a given host) or their impact within 

the gut environment (Reyes et al. 2010, Mills et al. 2013, Lim et al. 2015, Ogilvie and Jones 

2015, Carding et al. 2017, Mirzaei and Maurice 2017).  

Although a variety of factors may influence the abundance, diversity, and ecological roles 

of phages in a complex microcosm like the gut (Yatsunenko et al. 2012, O’Toole and Jeffery 

2015), the complete diversity of phages in  the gut is difficult to determine due to a lack of 

universal gene markers within their genomes (Rohwer and Thurber 2009). Viral metagenomics, 

where the collective viral nucleic acids from a given sample are sequenced, is an efficient 

alternative approach to exploring the phage fraction of the gut virome (Breitbart et al. 2003, Kim 

et al. 2011). Although both single- (ss) and double-stranded (ds) DNA phages have been 

identified in animal guts (Lim et al. 2015, Reyes et al. 2015), the diversity of dsDNA phages 

remains the best characterized due to methodological biases towards them. Early viromic studies 

used linker-amplified shotgun sequencing approaches that biased against ssDNA viruses (Roux 

et al. 2016); however, the implementation of rolling circle amplification (RCA) to obtain enough 

DNA for sequencing has revealed a large diversity of genomes from ssDNA viruses in  the guts 

of humans and other animals (Reyes et al. 2010, Kim et al. 2011, Krupovic and Forterre 2011, 

Minot et al. 2011, Roux et al. 2012, Reyes et al. 2013, Waller et al. 2014, Reyes et al. 2015, Guo 

et al. 2017, Moreno et al. 2017, Tikhe and Husseneder 2017, D’arc et al. 2018).  
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Studies investigating microbial communities in the human gut have shown that the 

microbiome structure seen in healthy newborns develops and changes within the first 2-3 years 

of life from a nearly sterile gut environment to a dynamic community maintained throughout 

adulthood (Lim et al. 2015). Human gut communities are dominated by the dsDNA phage from 

the order Caudovirales and the ssDNA phage family Microviridae (Breitbart et al. 2008, Minot 

et al. 2013, Lim et al. 2015). A recent study looking into the early life virome in infants found 

the phage richness and diversity is greatest at 0 months and proceeds to decrease with age (Lim 

et al. 2015). Around 24 months of age the phage community shifts to an increased richness in 

Microviridae showing early infant development is marked by a decrease in overall phage 

richness and diversity along with a shift in phage community towards predominately 

Microviridae. These gut communities can be affected through diseased states, such as 

inflammatory bowel disease, and can be correlated with a decrease in the 

Microviridae:Caudovirales ratio, with an increase towards Caudovirales (Norman et al. 2015). 

These recent studies have highlighted Microviridae phages as important members within the gut 

system that may be associated with an individual’s  health state (Kim et al. 2011, Roux et al. 

2012, Lim et al. 2015, Norman et al. 2015, Reyes et al. 2015). However, little is known about 

the potential roles of members of the Microviridae in the gut microbiome. 

Studies leveraging simpler model systems to characterize the virome can help lead to 

hypothesis-driven experimental approaches to dissect these multifaceted biological and 

ecological processes. We have been developing a marine cosmopolitan sea squirt species, Ciona 

robusta (formerly Ciona intestinalis subtype A), in efforts to interrogate gut microbiome 

dynamics. This sessile, invertebrate chordate is a well-studied developmental model (Satoh et al. 

2003) with a sequenced genome (Dehal et al. 2002). Because Ciona is a filter feeding organism, 
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its gut is a microcosm of microbial interactions that experience vast and continuous exposures to 

the large microbial and viral diversity found in seawater. Previous efforts identified remarkable 

stability among some elements of the microbiome, which are distinct from surrounding seawater 

(Dishaw et al. 2014, Leigh et al. 2018). Ciona has structurally distinct gut compartments 

(stomach, midgut, hindgut) and maintains core bacterial species, some of which exhibit 

compartmentalization (Dishaw et al. 2014). A recent effort characterizing the Ciona gut virome 

revealed a viral community encompassing 23 different families within the Order Caudovirales. 

There was also evidence that some of the viruses (with genomes >5 kilobases (kb)) were 

restricted to some gut compartments, an observation also noted among some bacterial 

communities (Leigh et al. 2018). Together, these findings suggest that strong selective pressures 

operate within the gut of this simple model organism. However, additional viral groups such as 

ssDNA viruses have yet to be characterized within Ciona, a finding that would support the use of 

this model system in studies to investigate the role of ssDNA phages in animal guts.  

The main objectives of the current study were to: 1) characterize the diversity of 

complete circular genomes related to the Microviridae, the most widely detected ssDNA phages 

among animals, from the Ciona gut, 2) evaluate if identified ssDNA phages were unique to 

Ciona or if they could also be identified in water samples, and 3) evaluate if there were unique 

ssDNA phage assemblages in the different gut compartments. We show that Ciona harbors a 

diverse community of small ssDNA phages that is distinct from the water column and report 

novel viral genomes that significantly expand the known diversity of the Microviridae family.  
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Methods 

Sample collections and library preparations 

Sequences described in this manuscript are derived from viromes generated by Leigh 

et.al. (2018), which focused on analysis of dsDNA diversity. Animal guts were sampled from 

Ciona robusta harvested near San Diego, CA (M-Rep, Carlsbad, CA, USA). Ten animals were 

selected at random; five specimens were placed into virus-free 100kD-filtered artificial seawater 

(Grzenia et al. 2008) to clear guts of dietary contents (water changed every 4 hours for 24 hours). 

These samples are referred to as ‘cleared guts.’ The remaining five animals were dissected with 

full gut contents. All animal guts, full (F) or cleared (C), were tri-sected (stomach (S), midgut 

(M), hindgut (H)) and snap-frozen in liquid nitrogen. Collected tissues from each gut type (n = 5) 

were disrupted in 3 mL of sterile suspension buffer using the GentleMACS dissociator (Miltenyi 

Biotec, Bergisch Gladbach, Germany). Tissue fragments were pelleted (6,000 xg for 10 minutes) 

and the supernatant consisting of the cellular fraction was filtered a 0.22 µm Sterivex filter 

(Merck Millipore) and the filtrate containing virus-like particles (VLPs) was collected. In 

addition to the viral fraction from Ciona guts, viruses from surrounding seawater in Mission Bay 

(MB), as well as the flow-through holding-tank water (CB), were processed to determine if 

viruses detected in Ciona guts could be detected in the surrounding water. For this purpose, one 

liter of seawater was filtered through a 0.22 µm Sterivex filter and VLPs in the filtrate were 

concentrated to 1 mL using a 100 kDa Amicon Centrifugal filter (EMD, Merck Millipore).  

VLPs were purified and further concentrated via cesium chloride (CsCl) gradient centrifugation 

(Thurber et al. 2009) and collecting the 1.2-1.5 g/mL fraction with sterile syringe and needle into 
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a 2 mL sterile tube. To remove potential bacteria or vesicles still present in the sample, 

chloroform (final concentration 20% vol/vol) was added to the viral fraction and incubated at 

room temperature for 10 minutes. Samples were then centrifuged for 30 seconds at maximum 

speed (20,000 xg) and the top aqueous layer was recovered. Unencapsidated, free nucleic acids 

were then removed by treating with DNase I (2.5 U/µL final concentration) for 3 h at 37°C with 

frequent vortexing; the nuclease was inactivated by treating with 0.5M EDTA pH 8.0 (final 

concentration 20 mM). Purified VLP samples were tested to rule out bacterial contamination by 

PCR amplification of the 16S rRNA gene using primers 27F and 1492R (Weisburg et al. 1991) 

and epifluorescence microscopy. Viral DNA was then extracted from 200 µl of the viral 

concentrate using the Qiagen MinElute Virus Spin Kit (Qiagen, Inc., Valencia, CA, USA) and 

amplified via rolling circle amplification (RCA) using the GenomiPhi V2 DNA Amplification 

Kit (GE Healthcare Life Sciences, Pittsburgh, PA, USA), resulting in ~1 µg viral DNA per 

sample. Three identical RCA reactions per sample were prepared and pooled for sequencing. 

Qubit (Thermo Fisher Scientific, Waltham, MA, USA) was used to obtain viral DNA 

concentration and amplification was verified with 1% agarose gel electrophoresis. Final, 

amplified products were cleaned via MinElute PCR Purification Kit (Qiagen, Inc.). DNA quality 

and quantity were assessed using the BioAnalyzer 2100 (Agilent Technologies, Santa Clara, 

CA). Sequencing was performed on an Illumina MiSeq platform generating mate-pair (2x250 

bp) libraries (Operon, Eurofins MWG Operon LLC, Huntsville, AL). Sequences were analyzed 

in the CyVerse Cyberinfrastructure using different bioinformatics applications (Apps) (Goff et 

al. 2011). Briefly, raw sequences were trimmed based on quality scores using the Trimmomatic 

App version 0.35.0 (Bolger et al. 2014) and quality-filtered sequences were then assembled 

using the SPAdes App version 3.6.0 (Bankevich et al. 2012). Contigs were screened with the 
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VirSorter App to detect potential viral sequences. VirSorter outputs were uploaded to MetaVir 

(Roux et al. 2014) (IDs 7811 (SF), 8143 (SC), 7815 (MF), 7814 (MC), 7812 (HF), 7910 (HC), 

7816 (CB), 7819 (MB)) (Leigh, et.al. 2018).  

Analysis of Microviridae 

Identification and annotation of Microviridae genomes  

Since members of the Microviridae have circular genomes, circular contig sequences were 

identified using MetaVir (Roux et al. 2011). Circular contig sequences ranging from 1 kb to 8 kb 

in length were compared (BLASTx, e-value < 0.0001) against a curated database of 4120 

Microviridae major capsid protein (MCP) amino acid sequences (Vincent et al., unpublished). 

Contig sequences with significant matches in the Microviridae MCP database were then 

compared (BLASTx, e-value < 0.001) against the Genbank non-redundant (nr) database to 

eliminate contig sequences that had better matches to cellular organisms (i.e., false positives). 

BLASTx outputs were explored using the MEGAN community edition software v6.8.9 (Huson 

et al. 2016) to identify sequences related to the Microviridae. Microviridae-related sequences 

were then trimmed to unit length genomes manually by identifying repeated sequences. Unit-

length genomes were annotated using Geneious v10.1.3 (Kearse et al. 2012). For this purpose, 

open reading frames (ORFs) encoding putative proteins >80 amino acids (aa) were compared 

against the Genbank nr database using BLASTp (e-value <0.001). All genomes were manually 

edited to start at the start codon of the MCP in subsequent alignments. Genome-wide and MCP 

pairwise identities were calculated using the sequence demarcation tool (SDT) v1.2 (Muhire et 

al. 2014). Genomes and MCP were dereplicated at 95% nucleic acid and amino acid identity, 

respectively.  
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Genome comparisons and phylogenetic analysis  

Reference MCP amino acid sequences, including VP1 (Gokushovirinae) and Protein F 

(Bullavirinae), were collected from GenBank. These reference sequences also contained select 

Microviridae-like sequences identified from metagenomes (Rosario et al. 2012, Roux et al. 

2012, Roux et al. 2012, Labonté and Suttle 2013, Bryson et al. 2015, Quaiser et al. 2015, 

Walters et al. 2017) and those integrated into bacterial genomes (Krupovic and Forterre 2011) 

(see Supplementary Table 1 for details). Reference MCP sequences were aligned with sequences 

identified in Ciona guts using MUSCLE (Edgar 2004) as implemented in Geneious v10.1.3 

(Kearse et al. 2012) and manually edited. A maximum likelihood tree was then created using 

PhyML with aLRT-like probabilities for branch support (Lefort et al. 2017) and visualized with 

FigTree v1.4.3 (http://tree.bio.ed.ac.uk/software/figtree/). Branches with probability values less 

than 0.70 were collapsed via TreeGraph 2 (Stöver and Müller 2010).  

 To evaluate the diversity of Microviridae in different Ciona gut compartments, a 

recruitment analysis was performed following the pipeline suggested for analysis of viral 

abundance and distribution through iVirus as implemented in the CyVerse Cyberinfrastructure 

(Bolduc et al. 2017). For this purpose, The Bowtiebatch v1.0.0 and Read2Ref v1.0.1 Apps were 

used with default parameters to map overlapping genomes between the gut compartments 

(Bolduc et al. 2017). The output table displaying relative abundances was converted to a binary 

matrix and used to assess the number of shared Microviridae genomes in the different 

compartments based on presence and absence. This information was summarized using the Venn 

Diagram package (Chen and Boutros 2011) with community indexes calculated using a binary 

matrix and visualized as a dendrogram using the Vegan package (Oksanen et al. 2007) created in 

R v3.3.2 (Team 2014). The binary data was analyzed with three methods (Bray-Curtis index, 
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Jaccard index, Euclidian dissimilarity), each resulting in congruent tree topologies. Note that the 

number of reads recruiting to a given genome was not considered either in this study or in 

comparing these genomes to the dsDNA phages (Leigh et al. 2018), since there are known biases 

created by RCA that lead to overrepresentation of ssDNA circular genomes (Kim et al. 2008, 

Kim and Bae 2011, Roux et al. 2016). 

 

 

Results 

Diversity of Microviridae-like genomes in Ciona gut compartments 

Analysis of the Ciona gut viromes, which included six libraries representing viral 

sequences from three gut compartments (stomach, midgut, and hindgut) from cleared and full 

guts, revealed 488 circular contig sequences (1 – 8 kb in length) with BLAST similarity to 

Microviridae-related genomes. A total of 258 unique genomes were identified after de-

replicating these sequences based on 95% genome-wide pairwise identities. Unique genomes 

were then named with the prefix, Ciona gut microphage (CGM), followed by a number 

(Supplementary Table 2). The average size of the identified CGM genomes was ~ 4.3 kb with a 

range from 3.9 kb to 5.8 kb, which is consistent with previously described members of the 

Microviridae family (Doore and Fane 2016).  

To assess diversity, each CGM genome was annotated and MCP amino acid sequences 

were used for phylogenetic analysis (Fig. 1). Based on this analysis, the vast majority (n=188) of 

CGM sequences grouped with the established subfamily Gokushovirinae (Lefkowitz et al. 2017), 

followed by sequences closely related to the proposed Group D microviruses (n=33) (Quaiser et 

al. 2015) and the subfamily Pichovirinae (n=19) (Roux et al. 2012). A smaller proportion of 
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CGM sequences were related to Parabacteroides prophages (n=7) (Sakamoto and Benno 2006, 

Quaiser et al. 2015), and members of the proposed Aravirinae (n=1) (Quaiser et al. 2015) and 

Alpavirinae (n=8) subfamilies (Krupovic and Forterre 2011, Roux et al. 2012). Six of the CGM 

MCP sequences (CGM_251, CGM_223, CGM_252, CGM_222, CGM_249, CGM_250) within 

the Alpavirinae are grouping paraphyletically and seem distinct from known sequences from this 

subgroup. No CGM MCPs were found to group with the Stokavirinae (Quaiser et al. 2015) or 

Bullavirinae (Lefkowitz et al. 2017) subgroups. However, two CGM sequences were most  
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Figure 1. Maximum likelihood phylogenetic tree of predicted major capsid protein (MCP) 
sequences from the Ciona gut Microviridae (CGM, n = 258) along with representative sequences 
from previously described (proposed) subfamilies (n = 96). The tree was created using PhyML with 
aLRT-probabilities. Branches with probability values less than 0.7 were collapsed. Values greater 
than 0.7 are indicated at nodes. Suggested subfamily demarcations are delineated with dashed lines 
and colors based on previously classified sequences. Subfamilies for which CGM sequences were 
not identified are highlighted in grey color. Note: Gokushovirinae sub-tree is displayed in Figure 2. 
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closely related to a sister clade of the Bullavirinae subfamily, the Pequeñovirus group (Bryson et 

al. 2015).  

Since 73% of the CGM genomes group within the Gokushovirinae subfamily, this 

subfamily is presented in a separate tree (Fig. 2). The majority (82%, n=155) of the CGM MCP 

sequences group within the Gokushovirinae subfamily do not associate with previously reported 

sequences and share less than 70% aa identify with known Gokushovirinae. The gene synteny 

among reported Microviridae and CGM genome sequences were compared to evaluate if CGM 

genomes possess novel genome organizations (Fig. 3). The CGM genomes expand upon 

previously identified gene synteny, yet many sequences share syntenic similarity with 

representative or published sequences. The most diverse group, in terms of genome organization, 

was Group D with 10 different gene synteny patterns. 

Structure of Microviridae-like communities 

Richness of Microviridae-like genomes within gut compartments was compared among 

animals with either full or cleared guts. Stomach clear (SC) and midgut clear (MC) contained the 

highest number of unique genomes within the gut; these two compartments also share the largest 

number of genomes (Fig. 4). Both water samples (MB & CB) group separately from the gut 

compartments (Fig. 4), but all CGM sequences found in the water samples are also found 

throughout the gut compartments and all belong to the Gokushovirinae subgroup (Supplementary 

Table 1). Both the full and clear hindgut samples share similarity with the midgut full (MF); 

however, the HF and MF share 88 genomes, the highest degree of overlap between the full gut 

compartments. The SC contained 211 Microviridae genomes; the largest number seen in any 

cleared gut compartment, while the HC had the lowest number of genomes (n=123) of the  
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cleared compartments, only 8 of which were unique. Interestingly, despite being full of dietary 

material, the full gut compartments have a lower overall richness than the cleared. Four of the 

sequences that fall within the Alpavirinae subfamily (CGM_251, CGM_223, CGM_250, 

CGM_257) were only found in the hindgut full (Supplementary Table 2), and not seen in any 

other gut compartments. MF has the highest richness within the full gut, with a total of 132 

genomes and 23 unique to that compartment. The lowest richness among the full compartments 

was found in the stomach, with 107 genomes and only 19 unique. For details on 

compartmentalization, see Supplementary Table 2. 

	

	

Discussion 

The gut microbiome of animals is rich in diverse microbial communities (Turnbaugh et al. 2007, 

Dishaw et al. 2014). Most microbiome research has focused on the bacterial communities, with 

descriptions of the virome now gaining traction (Reyes et al. 2012, Lim et al. 2015, Ogilvie and 

Jones 2015). Understanding the gut virome is relevant to both the host and the cellular 

microbiome because viruses, whether infecting eukaryotic, bacterial or archaeal hosts, can have 

profound influences in shaping gut homeostasis (Scarpellini et al. 2015, Carding et al. 2017, 

Dahiya 2017). Here, we described ssDNA phages found in the Ciona gut in an effort to further 

characterize the virome of this invertebrate model organism. Leveraging recent applications of	
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Figure 2. Maximum likelihood phylogenetic tree of predicted major capsid protein (MCP) 
sequences from the Ciona gut Microviridae (CGM, n = 188) that clustered within the 
established Gokushovirinae subfamily. MCP sequences representing Alpavirinae were used 
as an outgroup. The tree was created via PhyML with aLRT-probabilities. Branches with 
probability values less than 0.7 were collapsed. Values greater than 0.7 are indicated at 
nodes. Clades highlighted in grey represent those where CGM sequences do not group with 
any previous described MCP sequences. 
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Figure 3. Gene synteny comparisons between previously described Microviridae genomes (left) 
and those discovered in the Ciona gut (right; CGM). All genomes were manually annotated to 
start at the major capsid protein (MCP) and open reading frames (ORFs) > 80 aa are shown in 
linear fashion (i.e., overlapping genes are shown in order based on the position of the start 
codon). ORFs are color-coded based on PHA (phage protein subset of the Entrez protein cluster 
(PRK) database. One representative of each gene order known to exist within a given (proposed) 
subfamily is shown, and the numbers of CGM genomes containing a particular gene order are 
specified on the far right. 
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RCA in virome studies has dramatically increased our discovery of smaller, ssDNA 

viruses including the Microviridae phages. These viruses have now been described in a variety 

of diverse habitats, including animal guts (Jørgensen et al. 2014, Moreno et al. 2017, Tikhe and 

Husseneder 2017, Walters et al. 2017, D’arc et al. 2018), human guts (Zhang et al. 2005, 

Breitbart et al. 2008, Reyes et al. 2010, Kim et al. 2011, Minot et al. 2011, Reyes et al. 2013, 

Waller et al. 2014, Lim et al. 2015, Reyes et al. 2015, Santiago-Rodriguez et al. 2015, Guo et al. 

2017, McCann et al. 2018), reclaimed water (Rosario et al. 2009), sewage (Hopkins et al. 2014, 

Pearson et al. 2016), fresh water systems (Kim et al. 2008, López-Bueno et al. 2009, Roux et al. 

2012, Hopkins et al. 2014, Zhong et al. 2015), marine systems (Breitbart et al. 2002, Angly et al. 

2006, Bench et al. 2007, Tucker et al. 2011, Labonté and Suttle 2013, Labonté et al. 2015, 

Yoshida et al. 2018, Yu et al. 2018), methane seeps (Bryson et al. 2015), modern stromatolites 

(Desnues et al. 2008), confined aquifers (Smith et al. 2013), sediments (Kim et al. 2008, 

Yoshida et al. 2013, Reavy et al. 2015, Han et al. 2017, Yoshida et al. 2018) dragonflies 

(Rosario et al. 2012), and fruit trees (Basso et al. 2015). Despite this rapid increase in sequence 

information for ssDNA viruses, their identification in such diverse environments has yet to 

reveal information about their functions in these systems. Now that a diversity of Microviridae 

phages has been identified in Ciona, future experiments using this model organism will aim to 

define the role of these viruses in an animal gut. 

In characterizing the diversity of Microviridae-like contigs, we found 258 unique viral 

genomes within the Ciona gut, expanding the total diversity of Microviridae described for any 

single animal gut study (Reyes et al. 2010, Roux et al. 2012, Waller et al. 2014, Reyes et al. 

2015, Guo et al. 2017, Tikhe and Husseneder 2017, D’arc et al. 2018, McCann et al. 2018). 

Although these studies identified Microviridae- like sequences, the diversity of these sequences 
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is often overlooked. When diversity is assessed, Gokushovirinae is the most readily identified 

subfamily. Based on the MCP phylogenetic analysis, which is typically used as a phylogentic 

marker for this viral group (Desnues et al. 2008, Roux et al. 2012, Labonté and Suttle 2013, 

Hopkins et al. 2014), we found a variety of novel Microviridae groups. The CGM diversity 

encompassed the recognized subfamily Gokushovirinae and 6 of the 9 proposed subfamilies in 

the literature, with Pichovirinae, Group D, Parabacteroides having the largest expansion.  
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Figure 4. Cluster dendogram showing the relatedness among the CGM phage communities in 
the Ciona gut compartments and the surrounding water. The three-way Venn diagrams specify 
shared and unique genomes detected in each of the compared groups. The diagrams were 
created based on the presence/absence of CGM genomes alone. The dendogram was created 
using the Bray-Curtis dissimilarity index and the scale bar represents the dissimilarity values. 
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Interestingly, out of the 188 CGM Gokushovirinae genomes, 82% of those form their own clades 

(Fig. 2), without any representatives from other systems examined to date. Recent studies have 

discovered novel Gokushovirinae diversity (Kim et al. 2011, Roux et al. 2012, Waller et al. 

2014, Bryson et al. 2015, Labonté et al. 2015, Reyes et al. 2015, Zhong et al. 2015, Guo et al. 

2017, Yu et al. 2018), with CGM genomes being no exception. This subfamily appears 

predominant throughout many environments. Gokushovirinae are only known to infect obligate 

intercellular bacteria (Cherwa and Fane 2001) and have been isolated from Bdellovibrio 

(Bdellomicrovirus), Chlamydia (Chlamydiamicrovirus) and Spiroplasmas (Spiromicrovirus) 

(Doore and Fane 2016). The 16S ribosomal RNA gene data from a previous study done on the 

Ciona gut (Dishaw et al. 2014) found representatives from each of the families of bacteria  

gokushoviruses are known to infect. A limited known-host range (i.e., intracellular parasitic 

bacteria) paired with these findings, suggests that Ciona could be concentrating hosts for 

members of the Gokushovirinae, providing a model for further studies into these dynamics.  

Many of the CGMs were found to share a significant degree of synteny, containing 

previously recognized genomic arrangements (Fig. 3). However, unique genome organizations 

were observed for several of the CGMs. The largest number of unique genome organizations was 

noted for Gokushovirinae and Group D viruses. In general, the observed genomic features are 

consistent with what is known from other previously characterized Microviridae. Bullavirinae 

and Gokushovirinae subfamilies, which are clearly distinguished by their MCP and scaffolding 

proteins. While most small viruses (T≤3) do not encode scaffolding proteins, larger viruses 

generally utilize at least one. Bullavirinae uniquely utilizes 2 scaffolding proteins, internal 

scaffolding protein (protein B) and a external scaffolding protein (protein D). The external 

scaffolding protein lattice is comprised of 4 protein D molecules and are in contact with 60 major 
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capsid proteins (protein F/VP1), along with the major spike proteins (protein G) interacting 

within an asymmetric arrangement. These interactions keep the procapsid together (Doore and 

Fane 2016). Gokushovirinae genomes do not encode an external scaffolding (protein D) or a 

major spike protein (protein G). Based on this, the vast majority of the CGM genomes belong to 

the Gokushovirinae subfamily. Noted exceptions are with the CGM genomes grouping with the 

Bullavirinae sister clade, Pequeñovirus, which have an external scaffolding protein. This feature 

is not seen among other CGM genomes or subfamiles and correlates with the known syteny from 

the Pequeñovirus genomes (Bryson et al. 2015).  

Surprisingly, the large diversity of CGMs was mostly absent from the surrounding 

seawater. The MB and CB water samples only contain 2 and 21 unique ssDNA phage genomes, 

respectively, all of which were present in the Ciona gut. The CB water originates from the 

holding tanks the animals are placed in after field collections, before shipping. Though the 

animals spend less than 8 hours in these waters, they are passing water through their siphons and 

feeding and releasing stool pellets, which could potentially contribute to the increased number of 

CGM genomes seen in this sample. While it is possible that some Microviridae virions are too 

small to be captured (and concentrated) on a 100kDa filter, the more likely explanation is that 

these viruses are less prevalent in seawater than the Ciona guts. While the animals were 

harvested from the MB waters, nearly all the viruses (235 viral genomes) were unique to the 

Ciona gut (Fig. 4). The previously described dsDNA phages from the Ciona gut were also 

significantly different from those in the water column (Leigh et al. 2018). No significant 

correlation was noted between taxonomic classification of Microviridae and gut 

compartmentalization in this study; diverse environmental factors may influence the structure of 

these systems but none appear to influence how these viruses are dispersed. However, distinct 
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viral signatures are still found among the stomach, midgut and hindgut compartments that can 

inform us of similarity among these unique niches and may provide clues as to how some of 

these specific viruses and/or their hosts are distributed. For example, while a large number of 

viruses are predominately found in the stomach, the midgut clear compartment is more closely 

related to the stomach (clear and full) while the midgut full more closely resembles the hindgut 

(clear of full) (Fig. 4). These findings suggest that the midgut is likely an intermediate reservoir 

of viruses and that some level of compartmentalization exists among a portion of the viral 

communities.  

 Clearing of animals is a process used to void the gut of dietary and fecal material, but this 

process is inherently stressful to a filter feeder because food is restricted from their diet. This 

stress could, in part, account for the higher number of diverse viral types recovered from the SC, 

suggesting that the process of clearing liberates viruses from the mucosal lining of the gut that 

otherwise would be under-sampled when the gut is full of dietary material. Retention seems to 

vary from the stomach to the hindgut as the numbers of unique Microviridae genomes 

dramatically diminishes as one reaches the most distal areas of the gut. This trend is not seen 

within the full compartments, where the rapid transit of dietary and fecal material through the gut 

likely impacts the distribution and/or compartmentalization of some viruses; e.g., laboratory 

feeding experiments performed with fluorescently tagged food particles and/or bacteria reveals 

food pellets exiting the animals within 45min-1hr (Dishaw et al. unpublished). This rapid transit 

is hypothesized to impact the stability of some of these niches and likely diminishes 

compartmentalization of viral communities. The stress of clearing could also induce prophages. 

It was hypothesized previously that an increased prevalence of temperate phages may be due to 

prophage induction caused by the stress of clearing (Leigh et al. 2018).  Although originally 
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thought to be strictly lytic, the discovery of Microviridae with the likelihood of integrating into 

bacterial genomes was noted in an in silico study that identified MCP-coding genes and other 

sequences related to the subfamily, Gokushovirinae, within bacterial genome sequences from 

various Bacteroidetes species common in the human mouth and gut (Krupovic and Forterre 

2011). These Bacteroidetes prophages are classified within the proposed parabacteroides 

prophage subfamily. In addition, parabacteroides prophages related to the Microviridae have 

been identified (Ref). Here we identified 7 CGM genomes similar to the parabacteroides 

prophage representative sequences, suggesting the possibility that ssDNA prophages exist in this 

system. Although these sequences are in the minority in regards to the overall CGM diversity, it 

suggests that lysogeny may be possible if not common in the Ciona gut. It is possible that some 

Microviridae phages become temperate (integrating into a bacterial host genome) in the Ciona 

gut and that gut clearing may result in prophage induction, though further studies are necessary.  

There remains a dearth of knowledge concerning the distribution and structure of viral 

communities among microbiomes over time. Many studies focus on the structure of the gut 

virome in response to disease (Kramná et al. 2015, Reyes et al. 2015, Guo et al. 2017, Zhao et 

al. 2017) though fewer studies have assessed normal changes of a healthy virome (Reyes et al. 

2010, Lim et al. 2015). The Ciona gut also has more Microviridae diversity than any 

environmental (Tucker et al. 2011, Labonté and Suttle 2013, Labonté and Suttle 2013, Hopkins 

et al. 2014, Bryson et al. 2015, Labonté et al. 2015, Quaiser et al. 2015, Zhong et al. 2015, Yu et 

al. 2018) or gut study (Reyes et al. 2010, Krupovic et al. 2011, Roux et al. 2012, Reyes et al. 

2013, Waller et al. 2014, Lim et al. 2015, Reyes et al. 2015, Tikhe and Husseneder 2017, D’arc 

et al. 2018, McCann et al. 2018) to date. Many of the studies examining animal guts have 

defined the structure of the viral community but have not probed the diversity of ssDNA phages 
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present. A few recent studies have looked at Microviridae diversity in human feces. For 

example, one in depth study looking at patients with coronary heart disease found 12 

Gokushovirinae genomes and 2 Microviridae genomes that did not group with any known 

subfamily (Guo et al. 2017). Other studies using human feces have identified the presence of 

Gokushovirinae; however, these were all done as part of larger studies and not explored deeply 

(Waller et al. 2014, Reyes et al. 2015). Microviridae diversity has recently been assessed in the 

gut of termites. This study found 12 Microviridae genomes, 2 of which were Gokushovirinae, 3 

did not group with any reference genomes and 7 were proposed to belong to a new subfamily 

Sukshmavirinae (Tikhe and Husseneder 2017).  

The 258 unique Microviridae genomes described in this study of Ciona guts originate 

from only 5 clear animals and 5 full animals, which is a remarkable diversity for any single 

study. These findings suggest that at least some of these phages, some of which may be infecting 

intracellular bacteria, could have native hosts colonizing or infecting the Ciona gut. As a filter-

feeding organism that concentrates organic material from seawater, Ciona provides unique 

opportunities to explore questions about Microviridae within the gut environment. This is 

particularly true as the microbiome (Dishaw et al. 2014) can be manipulated and tightly 

controlled by rearing the animals germ-free (Leigh et al. 2016). Juvenile Ciona are small enough 

that dozens to hundreds of transparent juveniles can be reared on small tissue culture dishes 

facilitating experimental manipulations. Some straightforward hypotheses to explore are that 

some of these viruses may be vertically transferred or could be induced through starvation. A 

filter-feeding system like Ciona affords unique opportunities to address hypothesis-driven 

questions and possibly develop the first model for understanding the host distribution and 

biology of the Microviridae in animal guts.  
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