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Abstract

In the survival and reliability data analysis, parametric and nonparametric methods are used to estimate

the hazard/risk rate and survival functions. A parametric approach is based on the assumption that the

underlying survival distribution belongs to some specific family of closed form distributions (normal, Weibull,

exponential, etc.). On the other hand, a nonparametric approach is centered around the best-fitting member

of a class of survival distribution functions. Moreover, the Kaplan-Meier and Nelson-Aalen type nonparamet-

ric approach do not assume either distribution class or closed-form distributions. Historically, well-known

time-to-event processes are death of living specie in populations and failure of component in engineering

systems. Recently, the human mobility, electronic communications, technological changes, advancements in

engineering, medical, and social sciences have further diversified the role and scope of time-to-event processes

in cultural, epidemiological, financial, military, and social sciences. To incorporate extensions, generaliza-

tions and minimize scope of existing methods, we initiate an innovative alternative modeling approach for

time-to-event dynamic processes. The innovative approach is composed of the following basic components:

(1) development of continuous-time state of dynamic process, (2) introduction of discrete-time dynamic inter-

vention process, (3) formulation of continuous and discrete-time interconnected dynamic system, (4) utilizing

Euler-type discretized schemes, developing theoretical dynamic algorithms, and (5) introduction of concep-

tual and computational state and parameter estimation procedures. The presented approach is motivated

by state and parameter estimation of time-to-event processes in biological, chemical, engineering, epidemio-

logical, medical, military, multiple-markets and social dynamic processes under the influence of discrete-time

intervention processes. We initiate (1) a time-to-event process to be a probabilistic dynamic process with

unitary state. Action, normal, operational, radical, survival, susceptible, etc. and its complementary states,

reaction, abnormal, nonoperational, non-radical, failure, infective and so on (quantitative and qualitative

variables), are considered to be illustrations of a unitary state of time-to-event dynamic processes. A unitary

state is measured by a probability distribution function. Employing Newtonian dynamic modeling approach

and observing the definition of hazard rate as a specific rate, survival or failure probabilistic state dynamic

model is developed. This dynamic model is further extended to incorporate internal or external discrete-time

dynamic intervention processes acting on unitary state time-to-event processes (2). This further demanded

a formulation and development of an interconnected continuous-discrete-time hybrid, and totally discrete-

time dynamic models for time-to-event processes (3). Employing the developed hybrid model, Euler-type
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discretized schemes, a very general fundamental conceptual analytic algorithm is outlined (4). Using the de-

veloped theoretical computational procedure in (4), a general conceptual computational data organizational

and simulation schemes are presented (5) for state and parameter estimation problems in unitary state time-

to-event dynamic processes. The well-known theoretical existing results in the literature are exhibited as

special cases in a systematic and unified manner (6). In fact, the Kaplan-Meier and Nelson-Aalen type non-

parametric estimation approaches are systematically analyzed by the developed totally discrete-time hybrid

dynamic modeling process. The developed approach is applied to two data sets. Moreover, this approach

does not require a knowledge of either a closed-form solution distribution or a class of distributions functions.

A hazard rate need not be constant. The procedure is dynamic. In the existing literature, the failure and

survival distribution functions are treated to be evolving/progressing mutually exclusively with respect to

corresponding to two mutually exclusive time varying events. We refer to these two functions (failure and

survival) as cumulative distributions of two mutually disjoint state output processes with respect to two

mutually exclusive time-varying complementary unitary states of a time-to-event processes in any discipline

of interest (7). This kind of time-to-event process can be thought of as a Bernoulli-type of determinis-

tic/stochastic process. Corresponding to these two complementary output processes of the Bernoulli-type

of stochastic process, we associate two unitary dynamic states corresponding to a binary choice option-

s/actions (8), namely, ({action, reaction}, {normal, abnormal}, {survival, failure}, {susceptible, infective},

{operational, nonoperational}, {radical, non-radical}, and so on.) Under this consideration, we extend uni-

tary state time-to-event dynamic model to binary state time-to-event dynamic model. Using basic tools in

mathematical sciences, we initiate a Newtonian-type dynamic approach for binary state time-to-event pro-

cesses in the sciences, technologies, and engineering (9). Introducing an innovative concept of “survival state

dynamic principle”, an innovative interconnected nonlinear non-stationary large-scale hybrid dynamic model

for number of units/species and its unitary survival state corresponding to binary state time-to-event process

is formulated (10). The developed model in (10) includes dynamic model (3) as a special case. The developed

approach is directly applicable to binary state time-to-event dynamic processes in biological, chemical, engi-

neering, financial, medical, physical, military, and social sciences in a coherent manner. A by-product of this

is a transformed interconnected nonlinear hybrid dynamic model with a theoretical discrete-time conceptual

computational dynamic process (11). Employing the transformed discrete-time conceptual computational

dynamic process, we introduce notions of data coordination, state data decomposition and aggregation, the-

oretical conceptual iterative processes, conceptual and computational parameter estimation and simulation

schemes, conceptual and computational state simulation schemes in a systematic way (12). The usefulness

of the developed interconnected algorithm is validated by using three real world data sets (13). We note

that the presented algorithm does not need a closed-form representation of distribution/likelihood function.
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In fact, it is free from any required assumptions of the “Classical Maximum Likelihood Function Approach”

in the “Survival and Reliability Analysis.”

The rapid electronic communication and human mobility processes have facilitated to transform informa-

tion, knowledge, and ideas almost instantly around the globe. This indeed generates heterogeneity, and it

causes to form nonlinear and non-stationary dynamic processes. Moreover, the heterogeneity, nonlinear-

ity, non-stationarity, further generates two types of uncertainties, namely, deterministic, and stochastic. In

view of this, it is obvious that nothing is deterministic. In short, the 21st century problems are highly

nonlinear, non-stationary and under the influence of internal and external random perturbations. Using

tools in stochastic analysis, interconnected deterministic models in (3) and (10) are extended to intercon-

nected stochastic hybrid dynamic model for binary state time-to-event processes (14). The developed model

is described by a large-scale nonlinear and non-stationary stochastic differential equations. Moreover, a

stochastic version of a survival function is also introduced (15). Analytical, computational, statistical, and

simulation algorithms/procedures are also extended and analyzed in a systematic and unified way (16). The

presented interconnected stochastic model is motivated to initiate conceptual computational parameter and

state estimation schemes for time-to-event statistical data (17). Again, stochastic version of computational

algorithms are validated in the context of three real world data sets. The obtained parameter and state

estimates show that the algorithm is independent of the choice of nonlinear transformation (18).

Utilizing the developed alternative innovative procedure and the recently modified deterministic version of

Local Lagged Adapted Generalized Method of Moments (LLGMM) is also extended to stochastic version

in a natural way (19). This approach provides a degree of measure of confidence, prediction, and planning

assessments (20). In addition, it initiates a conceptual computational parameter and state estimation and

simulation schemes that is suitable for the usage of mean square sub-optimal procedure (21). The usefulness

and the significance of the approach is illustrated by applying to three data sets (22). The approach provides

insight for investigating various type of invariant sets, namely, sustainable/unsustainable, survival/failure,

reliable/unreliable (23), and qualitative properties such as sustainability versus unsustainability, reliability

versus unreliability, etc. (24) Once again, the presented algorithm is independent of any form of survival

distribution functions or data sets. Moreover, it does not require a closed form survival function distribution.

We also note that the introduction of intervention processes provides a measure of influence and confidence

for the usage of new tools/procedures/approaches in continuous-time binary state time-to-event dynamic

process (25). Moreover, the presented dynamic modeling is more feasible for its usage of investigating a more

complex time-to-event dynamic process (26). The developed procedure is dynamic and indeed nonparametric

(27). The dynamic approach adapts with current changes and updates statistic process (28). The dynamic

nature is natural rather than the existing static and single-shot techniques (29).
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Chapter 1

Linear Hybrid Deterministic Dynamic Modeling for Time-to-event Processes

1.1 Introduction

In the survival and reliability data analysis, the main interest is focused on a nonnegative random variable,

say T which describes a time-to-event process characterizing an occurrence of time until a certain event.

Historically, well-known time-to-event processes are deaths in population dynamic and component failures

in mechanical systems [25]. The human mobility, electronic communications, technological changes, ad-

vancements in engineering, medical, and social sciences have diversified the role and scope of time-to-event

processes in cultural, epidemiological, financial, military and social sciences [2, 11, 32, 34, 50].

The study of survival analysis rests on the concept of time-to-event. The mathematical statistics devel-

opment of time-to-event analysis is based on the probabilistic approach and the concept of hazard rate.

Moreover, the time-to-event is described by the closed form expressions of survival function that is deter-

mined by the concept of hazard rate [25, 37, 39]. We note that in general, hazard rate is unknown. This

leads to a problem of determining hazard rate function. This is based on a feasible approach of collect-

ing data set for the time-to-event processes in biological, chemical, engineering, epidemiological, medical,

multiple-markets and social sciences. The hazard/risk rate and survival function estimation problems in

the survival and reliability analysis are centered around the idea of “right censored data” [39]. In fact,

the common conventional understanding for resolving ties between censored and uncensored observations is

adopted by shifting the censored observations slightly to the left of uncensored observations [51]. In short,

the items/individuals/objects in a given sample are decomposed into two mutually exclusive groups, namely,

(a) deaths/failure/removal/non-operational/inactive, and (b) censored/losses/withdrawals.

In the survival and reliability data analysis, parametric and nonparametric methods are applied to estimate

the hazard/risk rate and survival functions [25, 37]. A parametric approach is based on the assumption that

the underlying survival distribution belongs to some specific family of distributions (e.g. normal, Weibull,

exponential). On the other hand, a nonparametric approach is centered around the best-fitting member of

a class of survival distribution functions [26]. Moreover, Kaplan-Meier(KME) [26] and Nelson-Aalen [1, 41]

type nonparametric approach do not assume either distribution class or closed-form distributions. In fact,

it just depends on a data. The Kaplan-Meier and Nelson-Aalen type nonparametric estimation approaches

are systematically analyzed by our totally discrete-time hybrid dynamic modeling process.

In the existing literature [25, 37], the closed-form expression for a survival function is based on the usage

of probabilistic analysis approach. The closed-form representation of the survival function coupled with
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mathematical statistics method (parametric approach) is used to estimate both survival and hazard/risk rate

functions. In fact, the parametric approach/model has advantages of simplicity, the availability of likelihood

based inference procedures and the ease of use for a description, comparison, prediction, or decision [37]. In

this work, we initiate an innovative alternative approach for modeling time-to-event dynamic processes. This

approach leads to the development for estimating survival and hazard/risk rate functions. The presented

approach is motivated by a simple observation regarding the probabilistic definition of the survival function

[25]. Moreover, this approach does not require a knowledge of either a closed-form solution distribution or

a class of distributions.

Historically, exponential distributions have been widely used in analyzing survival/reliability data [14, 37].

This was partly due to the mathematical simplicity and the availability of simple statistical methods. An

application of the exponential model with covariates to medical survival data was initiated in Feigl and

Zelen (1965). The assumption of a constant hazard/risk rate function is very restrictive. In fact, it is

often violated. This is due to the fact that in some real life applications, sudden changes in the hazard

rate at unknown times can be encountered due to a major maintenance in a mechanical system or a new

treatment procedure in medical sciences [2]. For example, usually a machine component functions with

a constant hazard/risk rate function λ1, until it suffers a shock. After this shock, the component may

continue to operate but with a different constant hazard/risk rate function λ2. In the medical field, there

is usually a high initial risk after a major operation which settles down to a lower constant long-term risk

rate (Anis, 2009). This type of change could occur in multiple times. In view of this, one is often interested

in detecting the locations of such changes and estimating the size of the detected changes. Recently, several

authors [17, 19–21] have proposed estimators based on change point hazard models. A Bayesian approach

for estimating the piecewise exponential distribution [18] and estimating the grid of time-points [15] for

the piecewise exponential model are also available in the literature. In order to incorporate these types of

sudden changes (intervention process) in the hazard rate function, we modify the developed continuous state

dynamic model to an interconnected hybrid dynamic model that is composed of both continuous time state

and discrete time state (intervention process) dynamic processes.

Employing the total time on test (TTT) for undefined censored data beyond the last observation, the

idea of Piecewise Exponential Estimator (PEXE) of a survival function was introduced by [28] and applied

for estimating life distribution from incomplete data. The PEXE has been modified to address the issues

regarding the presence of ties in the data by Whittemore and Keller [51].

The comparison of the PEXE with the KME [27] exhibits the advantage of the PEXE over the KME. For

example, the PEXE is a continuous survival function. Moreover, it exhibits the complete information that

is coming from the censored data. Using a total time test and the PEXE based approach, the estimators

of the hazard/risk rate and cumulative distribution functions on the left closed pairwise consecutive failure

time intervals are determined in Kulasekera and White [30]. The PEXE is further extended by Malla and

Mukerjee [38] with an exponential tail extension in the framework of the Kaplan and Meier [26] nonparametric
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estimator approach. Under the presented dynamic framework, we develop the PEXE and new PEXE of Malla

and Mukerjee [38] types in a systematic and unified way. In short, the presented novel approach incorporates

all the existing features such as: incomplete data, issues regarding the ties, exponential tail extensions in the

framework of Kaplan and Meier [26], and so on in a coherent manner.

The organization of this chapter is as follows. In Section 1.2, recognizing the classical probabilistic analysis

model of time-to-event as a dynamic process, we initiate a linear hybrid deterministic dynamic model for time-

to-event processes. Moreover, a fundamental mathematical result that provides a basis for interconnected

continuous-discrete-time and totally discrete-time dynamic processes, is developed. Utilizing the dynamic

model and the main result developed in Section 1.2, basic conceptual analytic algorithms and its special

cases for interconnected continuous-discrete-time and totally discrete-time linear hybrid dynamic models for

time-to-event processes are presented in Section 1.3. In Section 1.4, we outline theoretical and computational

procedures and results for parameter and state estimations for time-to-event processes. Moreover, several

well-known results are exhibited as special cases. In Section 1.5, we present a very general conceptual and

computational algorithm for estimating a hazard/risk rate function for multiple censoring times between

consecutive failure times. These general results include the presented results in Section 1.4 as special cases.

1.2 Linear Hybrid Dynamic Modeling of Time-to-event Process

In this section, based on the probabilistic definition of the survival function, we develop a model for time-to-

event dynamic processes. From the probabilistic definition of the survival function [25, 37, 39] and differential

calculus [3], we recognize that

λ(t)∆t ≈ S(t)− S(t+ ∆t)
S(t) , (1.2.1)

where S and λ are survival and hazard/risk rate functions, respectively. Moreover, from (1.2.1) and differ-

ential calculus [3], we have

dS = −λ(t)Sdt , S(t0) = S0 , t ∈ [t0,∞) , (1.2.2)

where dS is a differential of a survival function S. In fact, (1.2.2) is a differential equation, and it is an initial

value problem (IVP) [32]. Based on continuous-time dynamic modeling [32], (1.2.2) represents a continuous-

time linear dynamic model of time-to-event processes. In fact, we consider time-to-event processes to be prob-

abilistic dynamic processes. The state of the process is represented by survival/infective/operational/radical

and its complementary state, failure/removal/death/non-operational/normal, and it is measured by a prob-

ability distribution function. Employing Newtonian modeling approach, the instantaneous rate of change of

survival state is directly proportional to the magnitude of the survival. The negative sign in (1.2.2) signifies

that the state of survival is decaying/diminishing/decreasing. λ is a positive constant of proportionality. In

general, it is a function of time. This is because of the fact that in general, the time-to-event processes are
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non-stationary. The solution of (1.2.2) on the interval [t0,∞) is given by

S(t) = S0 exp [−Λ(t)] , (1.2.3)

where

Λ(t) =
∫ t

0
λ(u)du , (1.2.4)

and it is the cumulative hazard/risk rate function.

Remark 1.2.1 If λ(t) = λ for t ≥ 0, t0 = 0 , S(0) = 1, then (1.2.3) reduces to the following well-known

exponential distribution function:

S(t) = exp[−λt] , t ∈ [0,∞) , (1.2.5)

and a complementary state of the survival state of time-to-event process is represented by

F (t) = 1− S(t) = 1− exp[−λt] , t ∈ [0,∞) ,

and it is referred as a failure distribution function. Furthermore, we note that survival state dynamic model

(1.2.2) signifies that the time-to-event process is closed (Rosen, 1970), that is, S(t)+F (t) = 1. It is analogous

to epidemiological dynamic modeling process without removal [32, 50].

The presented motivational observation coupled with the introduction of the idea of continuous-time state

dynamic process (1.2.2) operating under the discrete-time intervention processes further leads to a develop-

ment of a linear hybrid dynamic model [32] for time-to-event processes. It is known [32] that many real world

time-to-event dynamic processes are subject to intervention processes (internal or external). Therefore, it

is natural that time-to-event dynamic processes undergo state adjustment processes. This causes a modifi-

cation of the presented state dynamic processes that are described by simple state dynamic model (1.2.2).

We note that the dynamic state adjustment processes are caused by periodic changes in science, technology,

medicine, culture, socio-economic, environmental conditions and general behavior.

In the following, we introduce a type of hazard/risk rate function. Moreover, using dynamic approach, we

present a development of PEXE [27, 28] in a systematic and unified way.

Definition 1.2.1 Let t0 < t1 < t2 < . . . < tk < tk+1 be a given partition of a time interval [t0,T], with t0 = 0

and tk+1 = ∞. Let λ1, λ2, . . . , λk+1 be model parameters. A hazard/risk rate function for a nonnegative

random variable T that characterizes time-to-event processes, is of the following form:

λ(t) =
k+1∑
i=1

= λjI[tj−1,tj)(t) , t ∈ R+ = [0,∞) , (1.2.6)

where λj are positive real numbers for j ∈ I(1, k + 1), (I(1, l) = {1, 2, . . . , l}); I[tj−1,tj) is the characteristic

function with respect to [tj−1, tj). Moreover, T is said to have a piecewise constant hazard function.
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Definition 1.2.2
∏

i|tj≤t
denotes the symbol for a product of objects for all positive integers i ∈ I(1,∞) that

satisfy the conditions ti ≤ tj and tj ≤ t < tj+1 for some j ∈ I(1, n) and for ti, tj−1, tj+1, t ∈ [t0,T].

From Definition 1.2.1, we recognize that the sudden changes in the hazard/risk rate function are encoun-

tered due to various types of intervention processes (internal or external) [32]. This causes to interrupt the

current continuous-time state dynamic process (1.2.2). Following the linear hybrid dynamic model [32], a

modified version of time-to-event dynamic model (1.2.2) is represented by:

dS = −λ(t)Sdt , S(tj−1) = Sj−1 , t ∈ [tj−1, tj) ,

Sj = S(t−j , tj−1, Sj−1) , S(t0) = S0 , j ∈ I(1, k + 1) ,
(1.2.7)

where S(t−j ) = S(t−j |λ, tj−1, Sj−1) describes a very simple form of intervention process generated at an

intervention time tj ; t−j stands for t ∈ [tj−1, tj), that is less than tj and very close to tj . We note that

System (1.2.7) is interconnected hybrid dynamic system composed of both continuous and discrete time

state dynamic systems. Imitating the procedure described in Ladde and Ladde [32], the solution process of

the IVP (1.2.7) is as follows:

S(t, tj−1, Sj−1|λ) = Sj−1 exp
[
−
∫ t

tj−1

λ(u)du
]
, for all t ∈ [tj−1, tj) . (1.2.8)

Furthermore, the solution process of the overall time-to-event dynamic process (1.2.7) on [t0,T) is

S(t, tj−1, S0|λ) = S0

j−1∏
m=1

exp
[
−
∫ tm

tm−1

λ(u)du
]

exp
[
−
∫ t

tj−1

λ(u)du
]
, t ∈ [t0,T) , j ∈ I(1, k + 1) . (1.2.9)

Remark 1.2.2 From (1.2.7) and (1.2.8), we note that the solution process (1.2.8) is indeed PEXE [27, 28].

In the following, we present a very simple fundamental auxiliary result that would be used, subsequently.

Moreover, it exhibits an analytic unified bridge and basis for (1.2.7) and its complete discrete-time version.

Theorem 1.2.1 Let {tj}n0 be a partition of [0,T] and let β be a monotonic nondecreasing function defined

by

β(t) =

0, t ∈ [tj−1, tj) ,

1, t = tj ,

(1.2.10)

for each j ∈ I(1, n). Let x be a state dynamic process in biological, engineering, epidemiological, human,

medical, military, physical and social sciences under the influence of time-to-event processes. Let x be

described by:

5



dx = [−α(t)x+ γ(t)] dβ(t), t ∈ [tj−1, tj) ,

xj = (1− αj)x(t−j , tj−1, xj−1) + γj , x(t0) = x0 ,

(1.2.11)

where α and γ are real-valued continuous functions defined on [0,∞); αj = α(tj) and γj = γ(tj). Then

x(t) =
∏
k|tj≤t

(1− αk)x0 +
j−1∑
i=1

Φ(t, ti)γi + γj , for t ≥ t0 , (1.2.12)

where j is the largest integer so that tj ≤ t < tj+1, tk ≤ tj and

Φ(t, ti) =
∏

ti≤tj≤t

(1− αi) , Φ(ti, ti) = 1 for i ∈ I(0, n).

Proof. The theorem is proved by the principle of mathematical induction (PMI) [32]. From (1.2.11), for

j = 1, we have

dx = [−α(t)x+ γ(t)]dβ(t), x(t0) = x0, t ∈ [t0, t1) .

From (1.2.10) and the definition of Riemann-Stieltjes integral [4], we have

x(t)− x(t0) =
∫ t

t0

[−α(s)x(s) + γ(s)]dβ(s) = 0, for t ∈ [t0, t1). (1.2.13)

We define

x(t) = x(t, t0, x0) = x0(t, t0, x0) , x0(t0) = x0 for t ∈ [t0, t1). (1.2.14)

From (1.2.10), (1.2.11), (1.2.13), and x0(t, t0, x0) = x0(t−1 , t0, x0) for t ∈ [t0, t−], we have

x0(t1)− x0(t0) = 0 +
∫ t

t−1

[−α(s)x(s) + γ(s)] dβ(s), for t ∈ [t0, t1].

From this, the continuity of α and γ, the definitions of Riemann-Stieltjes integral [4] and the initial value

problem [32], we have

x0(t1, t0, x0) = x0(t0) + β(t1)[−α(t∗1)x(t∗1) + γ(t∗1)]− β(t∗1)[−α(t∗1)x(t∗1) + γ(t∗1)]

= x0(t0)− α1x0(t−1 , t0, x0) + γ1 , (1.2.15)

for t∗1 ∈ [t−1 , t1]. From (1.2.15) and x0(t1, t0, x0) = x(t1) = x1 and again x(t−1 , t0, x0) = x0, we obtain

x1 = x(t−1 , t0, x0)− α1x(t−1 , t0, x0) + γ1

= (1− α1)x0 + γ1. (1.2.16)
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Continuing the above argument, we can establish the induction hypothesis [32] as:

xj = Φ(tj , t0)x0 +
j∑
i=1

Φ(tj , ti)γi for x(tj) = xj ,

where

Φ(tj , ti) =
j∏
k=i

(1− αk) ,Φ(ti, ti) = 1 for i ∈ I(0, n).

Now, we consider

dx = [−α(t)x+ γ(t)] dβ(t), x(tj) = xj , t ∈ [tj , tj+1).

From the definitions of xj and Φ, and using the above argument, one can establish the following:

xj(t) = x(t, tj , xj) =
j∏

k=1
(1− αk)x0 +

j−1∑
i=1

Φ(tj , ti)γi + γj for t ∈ [tj , tj+1) . (1.2.17)

Hence 
x(t−j+1, tj , xj) =

j∏
k=1

(1− αk)x0 +
j∑
i=1

Φ(tj , ti)γi ,

xj+1(tj+1, tj , xj) = (1− αj+1)xj + γj+1 .

(1.2.18)

Therefore, from (1.2.17) and (1.2.18), we have

xj+1 = (1− αj+1)xj + γj+1

=
j+1∏
k=1

(1− αk)x0 +
j+1∑
i=1

Φ(tj+1, ti)γi .

By the application of PMI and the definition of the IVP regarding hybrid dynamic systems [32], we have

x(t) =
∏
k|tj≤t

(1− αk)x0 +
j−1∑
i=1

Φ(t, ti)γi + γj ,

for t ≥ t0 and t ∈ [tj−1, tj+1) . This establishes the Theorem. 2

Remark 1.2.3 From (1.2.10), the hybrid dynamic system (1.2.11), is equivalent to the hybrid dynamic

system dx = 0 dt , x(tj−1) = xj−1 , t ∈ [tj−1, ti) ,

xj = (1− αj)x(t−j , tj−1, xj−1) + γj , x(t0) = x0 ,

(1.2.19)

for j ∈ I(1, n). The solution process of (1.2.19) is represented in (1.2.12).

In the following, we present a couple of special cases of Theorem 1.2.1. These special cases illustrate a

systematic way for exhibiting the existing results in Kaplan and Meier [26], Nelson [41], Aalen [1] and Malla
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and Mukerjee [38] in the framework of presented innovative dynamic approach.

Corollary 1.2.1 If functions α and γ in Theorem 1.2.1 are replaced by functions λ and γ = 0, then (1.2.12)

reduces to

x(t) =
∏
j|tj≤t

(1− λj)x0 , t ≥ t0 . (1.2.20)

Corollary 1.2.2 If α = 0 = x0 in Theorem 1.2.1, then the conclusion of Theorem 1.2.1 reduces to

x(t) =
∑

i|tj−1≤t

γi , t ≥ t0 and t ∈ [tj−1, tj) . (1.2.21)

In the following, we present a definition of cumulative jump process [38] in the framework of hybrid

dynamic model.

Example 1.2.1 Let T1, T2, . . . , Tn be discrete failure times for the discrete-time event process, and 0 = a0 <

a1 ≤ a2 ≤ . . . ≤ am be jumps of a survival function in magnitude. Then the dynamic for the cumulative

jump process is as described in Corollary 1.2.2, and its solution process is exhibited in (1.2.21).

In this example, applying Corollary 1.2.2 in the context of γ0 = 0, γi = ai, the cumulative jump process is

represented by

x(t) =


Aj−1 =

j−1∑
i=1

ai , for t ∈ [tj−1, tj) ,

Aj =
j∑
i=1

ai , t = tj .

(1.2.22)

From (1.2.22), we recognize that the cumulative jump defined in Malla and Mukerjee [38] is indeed recast

as the discrete time intervention process described by the hybrid dynamic system illustrated in Corollary

1.2.2 at the discrete time tj for j ∈ I(1,m) with γ0 = a0 = 0 and γi = ai.

Example 1.2.2 Under the conditions of Example 1.2.1, the magnitude of the survival function at the failure

times is represented by

S(t) =

1−Aj−1 , for t ∈ [tj−1, tj) ,

1−Aj , t = tj , j ∈ I(1,m) ,
(1.2.23)

where γ0 = 1 and x(tj) = Aj . The S(t) in (1.2.23) is the magnitude of the survival function determined by

the cumulative jump [38] process described in Example 1.2.1.

Remark 1.2.4 We remark that the continuous-time dynamic model can be exhibited by the cumulative

hazard/risk rate function. In fact, from (1.2.2), we have

d lnS = −λ(t)dt , lnS(t0) = S0 . (1.2.24)
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Based on the solution processes of (1.2.2) and (1.2.7), the solution process of (1.2.24) can be represented as:

− ln
[
S(t)
S(t0)

]
= Λ(t, t0, S0|λ) =

∫ t

t0

λ(u)du . (1.2.25)

and

− ln
[
S(t)
S(t0)

]
= Λ(t, t0|λ) =

j−1∑
m=1

∫ tm

tm−1

λ(u)du+
∫ t

tj−1

λ(u)du, t ∈ [tj−1, tj) . (1.2.26)

respectively. Furthermore, we set x = lnS , S0 = 1 and γ(t) = −λ(t) where S and λ are defined in (1.2.24).

From Corollary 1.2.2, we have

lnS(t) = −Λ(t) , (1.2.27)

where Λ(t) =
∑
i|ti≤t λi is a cumulative hazard function.

Remark 1.2.5 We remark that if x is replaced by survival function, S in Corollary 1.2.1, and x and γ are

replaced by S and λ in Corollary 1.2.2, then (1.2.20) and (1.2.21) are replaced by:

S(t) =
∏
j|tj≤t

(1− λj)S0 , t ≥ t0 (1.2.28)

and

S(t) =
∑
i|ti≤t

λi , t ≥ t0 , (1.2.29)

respectively. Moreover, (1.2.28) is the solution process of the discrete-time dynamic system described by

Corollary 1.2.1. Furthermore, dynamic system outlined in Corollary 1.2.1 provides an innovative alternative

approach for finding the discrete-time survival function (Kaplan & Meier, 1958) in a systematic manner.

We utilize the above presented concepts and results in subsequent sections in a systematic and unified

way.

1.3 Fundamental Results for Continuous and Discrete-Time to Event Dynamic Processes

In this section, we utilize hybrid dynamic model (1.2.7) and fundamental analytic Theorem 1.2.1 for time-

to-event process to develop a general fundamental result. The developed result provides basic analytic and

computational tools for estimating survival state and parameters. The presented approach also provides a

systematic and unified way of estimating the parameters and survival functions.

Let x(t) be the total number of units/individuals operating/alive (or survivals) at time t, for t ∈ [t0,T]. It

is described by (1.2.11). Let λ and S be hazard/risk rate and survival functions of the units/patients/infec-

tives/species/individuals, respectively. Employing a dynamic model for number of units/species/ individuals

coupled with survival state dynamic model (1.2.2) or (1.2.7), we present an interconnected hybrid dynamic

model below.
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Following the argument used in developing dynamic models (Ladde & Ladde, 2012), we introduce the

following interconnected system of differential equations:



dS = −λ(t)Sdt , t ∈ [tj−1, tj) ,

Sj = (1− βj)S(t−j , tj−1, Sj−1) , S(t0) = 1 ,

dx = (−α(t)x+ γ(t))dβ(t) , x(t0) = x0 , t ∈ [tj−1, tj) ,

xj = (1− αj)x(t−j , tj−1, xj−1) + γj ,

(1.3.1)

Remark 1.3.1 We outline a few important observations that exhibit the role and scope of dynamic approach

to illustrate the existing results [20, 26–28, 49] as special cases.

(i) Dynamic system (1.3.1) in the context of (1.2.19) (Remark 1.2.3) is reduced to



dS = −λ(t)Sdt , t ∈ [tj−1, tj) ,

Sj = (1− βj)S(t−j , tj − 1, Sj−1) , S(t0) = 1 ,

dx = 0 dt , x(t0) = x0 , t ∈ [tj−1, tj) ,

xj = (1− αj)x(t−j , tj−1, xj−1) + γj .

(1.3.2)

(ii) From Corollary 1.2.1 in the context of Remark 1.2.5, in particular (1.2.28), system (1.3.1) becomes:



dS = 0 dt , t ∈ [tj−1, tj) ,

Sj = (1− λj)Sj−1 ,

dx = 0 dt , x(t0) = x0 ,

xj = (1− αj)xj−1 + γj .

(1.3.3)

We note that (1.3.3) is a special version of (1.3.1). In addition, we refer to system (1.3.3) as a totally

discrete-time hybrid dynamic system.

Now, we are ready to present a basic result regarding continuous and discrete time interconnected dynamic

of survival species or objects or thoughts operating under the time-to-event intervention processes. Prior to

the formulation of the fundamental result, we introduce a concept of number of survivals.

Definition 1.3.1 Let z be a function defied by z(t) = x(t)S(t), where S and x are solution process of (1.3.1)

for t ∈ [t0,T]. Moreover, for each t ∈ [t0,T], z(t) stands for the number of survivals at t under an influence

of time-to-event process.

Theorem 1.3.1 Let (x, S) be a solution process of (1.3.1). Then the interconnected hybrid dynamic popu-

lation model for time-to-event process (1.3.1) and corresponding intervention iterative process are described
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by: dz = −λ(t)zdt , z(tj−1) = zj−1 , for t ∈ [tj−1, tj) , j ∈ I(1, k) ,

z(tj) = (1− αj)(1− βj)z(t−j ) + γj(1− βj) ,
(1.3.4)

and

z(tj) = (1− λ(tj)∆tj)(1− αj)(1− βj)z(tj−1) + γj(1− βj), (1.3.5)

respectively, where z is defined in Definition 1.3.1 and ∆tj = tj − tj−1 for j ∈ I(1, k).

Proof. For t ∈ [tj−1, tj), j ≥ 1, from Definition 1.3.1, Remark 1.3.1 and the nature of S, we have

dz(t) = −λ(t)z(t)dt . (1.3.6)

This establishes the continuous-time dynamic equation in (1.3.4). The proof of the discrete-time dynamic

part in (1.3.4) and iterative process in (1.3.5) are outlined below. Multiplying the discrete-time iterative

process in (1.3.1) by S(t−j ) and noting the fact that S(tj) = S(t−j ), we obtain

x(tj)S(tj) = (1− αj)(1− βj)x(t−j )S(tj−) + γj(1− βj)S(t−j ) . (1.3.7)

Moreover, using the definition of z, (1.3.7) reduces to

z(tj) = (1− αj)(1− βj)z(t−j ) + γj(1− βj) . (1.3.8)

This establishes (1.3.4).

Applying the Euler-type numerical scheme [8] to (1.3.6) over an interval [tj−1, t
−
j ], we obtain

z(t−j )− z(tj−1) = −λ(tj−1)z(tj−1)∆tj . (1.3.9)

From (1.3.8) and (1.3.9) , we have

z(tj) = (1− λ(tj)∆tj)(1− αj)(1− βj)z(tj−1) + γj(1− βj) . (1.3.10)

(1.3.10) exhibits the discrete time dynamic for survival process corresponding to the continuous-time dynamic

process described in (1.3.4) and the discrete-time intervention process. Moreover, (1.3.10) exhibits the

validity of (1.3.5). This establishes proof of Theorem 1.3.1. 2

In the following, we present a few special/trivial cases that exhibit existing results in the framework of

hybrid dynamic of time-to-event interconnected system.

Corollary 1.3.1 Let us consider a very special/trivial case of Theorem 1.3.1 as follows:
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
dS = −λ(t)Sdt , t ≥ t0 ,

dx = 0 dt , t ≥ t0 ,

x(tj) = x(t−j , tj−1, xj−1) , x(t0) = x0 , j ∈ I(1, k) .

(1.3.11)

Applying Theorem 1.3.1 and using (1.3.4) and (1.3.5), (1.3.11) reduces to

dz = −λ(t)zdt , z(tj−1) = zj−1 , t ∈ [tj−1, tj) ,

z(tj) = z(t−j , tj−1, zj−1) = z(tj−1) , j ∈ I(1, k) ,
(1.3.12)

and

z(tj) = (1− λ(tj)∆tj) z(tj−1) . (1.3.13)

Corollary 1.3.2 Let us consider a special case of (1.3.1) as follows:

dS = −λ(t)Sdt , S(tj−1) = Sj−1 , t ∈ [tj−1, tj) ,

S(tj) = S(t−j , tj−1, Sj−1) ,
(1.3.14)

where aj is defined in Example 1.2.1. Then applying Euler-type discretization scheme [8] on [tj−1, t
−
j ], yields

S(t−j )− S(tj−1) = −λ(tj−1)S(tj−1)∆tj . (1.3.15)

Moreover, from (1.3.14) and (1.3.15), we have

S(tj)− S(tj−1) = −λ(tj)S(tj−1)∆tj . (1.3.16)

Corollary 1.3.3 Under the assumptions of Theorem 1.3.1 in the context of Remark 1.3.1(ii), (1.3.3) be-

comes: dz = 0 dt , z(tj−1) = zj−1 , t ∈ [tj−1, tj) ,

z(tj) = (1− λj)(1− αj)zj−1 + γj ,

(1.3.17)

and

z(tj) = (1− λj)(1− αj)z(tj−1) + γj . (1.3.18)

This corollary is indeed a totally discrete-time version of hybrid dynamic system operating under discrete-

time intervention process.

Using Definition 1.3.1 and the discrete-time iterative process (1.3.5), we introduce a couple of definitions.

Definition 1.3.2 Let tj−1 and tj be a pair of consecutive observation times belonging to [0,T]. z(tj−1)

stands for the number of survivals at the time tj−1 for each j ∈ I(1, k). Moreover, z(tj−1) is the number of
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survivals under observation over the sub-interval of time [tj−1, tj). z(tj−1)∆tj is the amount of time spent

under observation/testing/evaluation by z(tj−1) survivals over the length ∆tj of time interval [tj−1, tj).

Definition 1.3.3 For j ∈ I(1, k), z(tj−1) − z(tj) stands for the change in number of survivals over the

interval of time [tj−1, tj ] of length ∆tj .

Remark 1.3.2 The discrete-time processes (1.3.5), (1.3.13), (1.3.16) and (1.3.18) are referred as our nu-

merical schemes with respect to interconnected hybrid dynamic models for a survival population dynamic

processes. Moreover, from (1.3.5), we will introduce three more special numerical schemes, namely, time-

to-event: (i) failure/death/removal/infective, (ii) censored/withdrawn, and (iii) admission/joining/suscepti-

ble/relapsed processes. We further note that the presented numerical schemes allow “ties” with deaths/failure

or censored/quiting process. In addition, the population under the presented observation/supervision process

includes the patient/objects population as a special case.

(i) For each j ∈ I(1, k), let us assume that either tj−1 and tj are consecutive failure/death/removal/infective

times of individual/machine/species, or tj−1 and tj are censored and failure times, respectively. For

αj = γj = βj = 0, the numerical scheme (1.3.5) for failure/death/removal/infective/etc process data set

is described by

z(tj) = (1− λ(tj)∆tj)z(tj−1) , (1.3.19)

and hence

z(tj)− z(tj−1) = −λ(tj)z(tj−1)∆tj , (1.3.20)

where tj−1 is either the failure or censored time.

Moreover, αj = γj = βj = 0 in (1.3.5) coupled with (1.3.9) is equivalent to the Kaplan and Meier (1958)

assumption, namely,

x(t−j )− x(tj) = the number of deaths at tj .

That is

z(tj−1)− z(t−j ) = 0 and z(tj) = z(t+j ) .

This implies that z(t) is left discontinuous and right continuous at tj .

(ii) Let us assume that either tj−1 and tj are consecutive censored times, or tj−1 and tj are failure and

censored times, respectively. For αj = βj = 0, and γcj stands for the number of censored objects/infec-

tives/etc at a time tj . The numerical scheme (1.3.5) for censored/listed/identified process data set is

described by

z(tj) = (1− λ(tj)∆tj) z(tj−1)− γcj , (1.3.21)

where tj−1 is either a failure or censored time.
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Thus

z(tj)− z(tj−1) = −λ(tj)z(tj−1)∆tj − γcj (1.3.22)

Again, we note that αj = βj = 0, γcj , in the context of (1.3.9) is equivalent to the Kaplan and Meier

(1958) assumption, namely,

z(tj) = z(t−j ) and z(tj)− z(t+j ) = γcj .

This implies that z(t) is left continuous and right discontinuous at tj .

(iii) Let us assume that tj−1 is either failure or censored time, and tj is a joining/admitting/relapsing time.

For αj = 0 and γaj denoting the number of objects/infectives that joined the observation process at time

tj . The numerical scheme (1.3.5) for admission/joining/sustainable/recruiting/relapsing process is

z(tj) = (1− λ(tj)∆tj) z(tj−1) + γaj . (1.3.23)

The scheme determined by αj = 0 in (1.3.5) with (1.3.9) and the addition γaj in (1.3.23) is equivalent to

z(tj)− z(t−j ) = γaj and z(tj) = z(t+j ).

(iv) Remarks (i), (ii) and (iii) remain valid for the iterative processes (1.3.5), (1.3.13) and (1.3.18).

(I) For αj = 0 = βj = γj in (1.3.5), (1.3.16) reduces to (1.3.20); for αj = 0 = βj = γj , (1.3.18) reduces

to z(tj) = (1− λj)z(tj−1).

(II) For αj = 0 = βj and γj = −γcj in (1.3.5), (1.3.5) reduces to (1.3.22); for αj = 0 = λj and γj = −γcj ,

(1.3.18) becomes

z(tj)− z(tj−1) = (1− λj)z(tj−1)− γcj . (1.3.24)

(III) For αj = 0 = βj and γj = γaj in (1.3.5), and αj = 0 and γj = γaj in (1.3.18), (1.3.5) reduces to

(1.3.23), and (1.3.18) reduces to

z(tj)− z(tj−1) = (1− λj)z(tj−1) + γaj . (1.3.25)

1.4 Estimations of Risk Rate and Survival Functions

Now, we are ready to find an estimate for the hazard/risk rate and survival functions for interconnected

continuous and discrete-time survival state dynamic processes. For the sake of completeness and clarity, we

first introduce a couple of definitions.

Definition 1.4.1 For j ∈ I(1, k), let tj−1 and tj be consecutive change times under continuous-time state

survival dynamic process. The parameter estimate at tj is defined by the quotient of change of objects over

the consecutive time change interval [tj−1, tj) and the total time spent by the objects under observation over
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the time interval of length ∆tj .

Definition 1.4.2 For j ∈ I(1, k), let tj−1 and tj be consecutive change times for discrete-time state survival

dynamic process. The parameter estimate at tj is defined by the quotient of the relative frequency of the

change in the number of survival state over the consecutive time change interval [tj−1, tj) and the number

of objects at the immediate past time, that is, either the change time or the censored time.

Remark 1.4.1 We observe that the Definitions 1.4.1 and 1.4.2 are consistent with each other. This statement

can be justified in the context of discrete-time iterative scheme (1.3.10) and the continuous and discrete-time

hybrid-type descriptions of survival state dynamic model (1.3.2) and totally discrete-time hybrid dynamic

system (1.3.3).

Now, we are ready to present a main result regarding parameter and survival state estimation problems.

This result includes several existing results as special cases. In the following, we simply state a conceptual

computational algorithm. The detailed proof is given in the supplementary section.

Theorem 1.4.1 Let us assume that the conditions of Theorem 1.3.1 in the context of Remarks 1.3.1 and

1.3.2(i),(ii) are satisfied.

(a) For j ∈ I(1, k), if tj−1 and tj are consecutive risk/failure/removal/death/non-operational times in [t0,T]

then an estimate for the hazard/risk rate function at tj is determined by:

λ̂(tj) = z(tj−1)− z(tj)
z(tj−1)∆tj

, (1.4.1)

and an estimate for the hazard/risk rate function is

λ̂(t) = λ̂(tj) , for t ∈ [tj−1, tj) and j ∈ I(1, k). (1.4.2)

(b) For j ∈ I(1, k), if tj−1 < tcj < tj, and tcj is censored time between a pair of consecutive failure times tj−1

and tj in [t0,T), then

(i) a change in the number of items/subjects/thoughts that are under observation over the subinterval

[tj−1, tj) of the time interval of study [t0,T] is

z(tj−1)− z(tj)− γcj ; (1.4.3)

(ii) a total amount of time spent under the observation/testing/evaluation of z(tj−1)− z(tj)− γcj
items/patients/infectives/radicals/subjects over the time interval [tj−1, tj) is

z(tj−1)∆tcj + z(tcj)∆tjc , ∆tjc = tj − tcj . (1.4.4)
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(iii) an estimate for the hazard/risk rate function at tj is defined as:

λ̂(tj) =
z(tj−1)− z(tj)− γcj

z(tj−1)∆tcj + z(tcj)∆tjc
, (1.4.5)

and an estimate for the hazard/risk rate function is

λ̂(t) = λ̂(tj) , for t ∈ [tj−1, tj) and j ∈ I(1, k) . (1.4.6)

(iv) Moreover, an estimate for the survival function in (1.3.1) is

Ŝ(t) = S0 exp
[
j−1∑
m=1

λ̂m(tm − tm−1) + λ̂j (t− tj−1)
]
, t ∈ [tj−1, tj). (1.4.7)

Proof.

(a) Using the discrete-time iterative scheme (1.3.5), Remark 1.3.2(i) and Definitions 1.3.2, 1.3.3 and 1.4.1,

we have

λ(t) = λ̂(tj) = z(tj−1)− z(tj)
z(tj−1)∆tj

for t ∈ [tj−1, tj) and j ∈ I(1, k). This establishes (a).

(b) Let tcj be a censoring time between two consecutive risk/failure times, tj−1 and tj . We consider a

partition of [tj−1, tj ] : tj−1 < tcj < tj .

Employing iterative processes in (1.3.22) and (1.3.20) on respective subintervals [tj−1, t
c
j ] and [tcj , tj ], we

have

z(tj)− z(tj−1) = z(tcj)− z(tj−1) + z(tj)− z(tcj)

= −λ(tj−1)∆tcj − γcj − λ(tj)z(tcj)∆tjc

= −λ(tj)
[
z(tj−1)∆tcj + z(tcj)∆tjc

]
− γcj . (1.4.8)

From (1.4.8), we obtain:

z(tj−1)− z(tj)− γcj = λ(tj)
[
z(tj−1)∆tcj + z(tcj)∆tjc

]
. (1.4.9)

From (1.4.9) and knowing that λ(tj) is the hazard/risk rate of change per unit time per unit objec-

t/subject, we conclude that z(tj−1) − z(tj) − γcj is the number of failure/non-operating objects and

z(tj−1)∆tcj + z(tcj)∆tjc denotes the total amount of time spent by z(tj−1) − z(tj) − γcj over the the

interval [tj−1, tj). This establishes (i) and (ii).
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To complete the proofs of (iii) and (iv), we utilize Definition 1.4.1 and (1.4.9), and obtain

λ̂(tj) =
z(tj−1)− z(tj)− γcj

z(tj−1)∆tcj + z(tcj)∆tjc
for j ∈ I(1, k) .

and hence

λ(t) = λ̂(tj), t ∈ [tj−1, tj) , j ∈ I(1, k) .

This establishes proof of the theorem.

2

Remark 1.4.2 We note that if tcj = tj in Theorem 1.4.1(b), then we have “ties” between censored and failure

times. In this case, ∆tcj = ∆tj and ∆tjc = 0. From this, (1.4.4) and (1.4.5) reduce to

z(tj−1)∆tj , (1.4.10)

and

λ̂(tj) =
z(tj−1)− z(tj)− γcj

z(tj−1)∆tj
for j ∈ I(1, k). (1.4.11)

This observation justifies Remark 1.3.2 regarding the mixed “ties.”

In the following, we exhibit the role and scope of Theorem 1.4.1. This is achieved by presenting the

well-known hazard/risk rate and survival functions as special cases.

Corollary 1.4.1 Assume that conditions of Corollary 1.3.3 in the context of Remark 1.3.2(iv)(I) are sat-

isfied.

(a) For j ∈ I(1, k), if tj−1 and tj are consecutive risk/failure times in [t0,T], then employing Definitions

1.3.2, 1.3.3 and 1.4.2, an estimate for the risk/hazard rate function at tj is determined by:

λ̂(tj) = z(tj−1)− z(tj)
z(tj−1) , (1.4.12)

and

λ(t) = λ̂(tj) , t ∈ [tj−1, tj). (1.4.13)

Substituting (1.4.12) into (1.2.28), an estimate for the survival function is obtained as:

S(t) =
∏

i|tj−1≤t

(
1− λ̂i

)
=

∏
i|tj−1≤t

(
1− z(ti−1)− z(ti)

z(ti−1)

)

=
∏

i|tj−1≤t

(
1− di

z(ti−1)

)
, t ≥ t0 , (1.4.14)
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where di = z(ti−1)−z(ti) is the number of deaths over the consecutive risk/failure time interval [ti−1, ti),

ti ≤ tj−1 ≤ t < tj for some j ∈ I(1, k).

(b) For j ∈ I(1, k), if tj−1 < tcj < tj, and tcj is censored time between a pair of consecutive risk/failure times

tj−1 and tj in [t0,T), then, employing Definitions 1.3.2, 1.3.3 and 1.4.2, an estimate for the risk/hazard

rate function at tj is determined by:

λ̂(tj) =
z(tj−1)− z(tj)− γcj

z(tcj)
, (1.4.15)

and

λ(t) = λ̂(tj) , t ∈ [tj−1, tj) . (1.4.16)

Substituting (1.4.15) into (1.2.28), an estimate for the survival function when tcj is a censored time

between consecutive failure times, tj−1 and tj is given by:

S(t) =
∏

i|tj−1≤t

(
1− λ̂i

)
=

∏
i|tj−1≤t

(
1− z(ti−1)− z(ti)− γci

z(tci )

)

=
∏

i|tj−1≤t

(
1− di

z(tci )

)
, t ≥ t0 , (1.4.17)

where i runs over the positive integers for which ti ≤ tj−1, tj−1 ≤ t < t for some j ∈ I(1, k); ti−1, ti are

consecutive failure times for i ∈ I(1, j), and di = z(ti−1) − z(ti) − γci is the number of deaths over the

consecutive failure time interval [tj−1, tj).

Remark 1.4.3 (a) We remark that (1.4.14) and (1.4.17) are indeed the Kaplan and Meier (1958)-type

survival estimate functions.

(b) In the literature [25, 37], the numbers in the denominator of (1.4.14) and (1.4.17) are referred to as the

number of individuals at risk at tj−1 and tcj respectively. Denoting this by nj , we can write both (1.4.14)

and (1.4.17) as:

S(t) =
∏

i|tj−1≤t

(
ni − di
ni

)
. (1.4.18)

This is the well-known formula cited in the literature [25, 37].

(c) From Remark 1.2.4, we obtain

Λ̂(t) =
∑
tj≤t

λ̂j =
∑
tj≤t

dj
nj

, t ≥ t0 , (1.4.19)
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where

nj =

z(tj−1) if there are no censors in [tj−1, tj) ,

z(tcj) if tcj is a censored time in [tj−1, tj) .
(1.4.20)

This is the estimator introduced by Nelson [41] and [1]. These special cases exhibit the role and scope

of the presented innovative alternative dynamic approach.

In the following, we state a corollary that further illustrates the role and scope of our dynamic approach.

Further details regarding the proof is outlined in the supplementary section.

Corollary 1.4.2 Let us assume that the conditions of Corollary 1.3.2 and Example 1.2.2 in the context of

Remark 1.3.2(iii) are satisfied. For j ∈ I(1, n), if tj−1 and tj are consecutive risk/failure times in [t0,T],

then employing Definitions 1.3.2, 1.3.3 and 1.4.2, an estimate for the risk/hazard rate function at tj is

determined by:

λ̂(tj) = aj
(1−Aj−1)∆tj

, (1.4.21)

and

λ̂(t) = λ̂(tj) , t ∈ [tj−1, tj) , (1.4.22)

where aj and Aj−1 are defined in Example 1.2.1.

Moreover, an estimate for the survival function is represented by

Ŝ(t) = Sj−1 exp
[
−λ̂j(t− tj−1)

]
for t ∈ [tj−1, tj) . (1.4.23)

Proof. Under the conditions of Example 1.2.1 and using the relationship between S, the cumulative jumps

in Example 1.2.2, Corollary 1.3.2(in particular (1.3.16)), an estimate for the risk/hazard rate function at tj
is obtained as:

λ̂(tj) = aj
(1−Aj−1)∆tj

, (1.4.24)

and an estimate for the risk/hazard rate function is

λ̂(t) = λ̂(tj) , for t ∈ [tj−1, tj) and j ∈ I(1,m) (1.4.25)

From (1.3.14), using (1.2.8) and (1.4.25), an estimate for the survival function is given by:

Ŝ(t) = exp(−Λj−1) exp
(

−aj(t− tj−1)
(1−Aj−1)(tj − tj−1)

)
, tj−1 ≤ t < tj , (1.4.26)

where

Λj =
j∑
i=1

ai
1−Ai−1

, 1 ≤ j ≤ m, Λ0 := 0,
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and Λj is the cumulative hazard function. This establishes the proof of the corollary. 2

Remark 1.4.4 The PEXE of Kitchin et al. [28], as well as Kim and Proschan [27] is undefined beyond the

last observed failure time. To rectify that, Malla and Mukerjee [38] provided the following exponential tail

hazard/risk rate estimate:

λ̂tail = exp(−Λ̂m)
m∑
i=1

(Ij − Jj)
, (1.4.27)

where

Ij =
∫ tj

tj−1

ŜKM (t)dt = (1−Aj−1)(tj − tj−1)

and

Jj =
∫ tj

tj−1

ŜMN (t) = exp(−Λ̂j−1) (1−Aj−1)(tj − tj−1)
aj

[
1− exp

(
− aj

1−Aj−1

)]
.

Thus, under the following assumptions: (i) no ties among the failure times, (ii) the last observation is

uncensored, a new PEXE of Malla and Mukerjee [38] is given by

S(t) =

exp(−Λj−1) exp
(

−aj(t−tj−1)
(1−Aj−1)(tj−tj−1)

)
, tj−1 ≤ t < tj , j ∈ I(1,m)

exp(−Λ̂m) exp(−λ̂tail(t− tm)) , tm ≤ t <∞ .

(1.4.28)

We further note that the presented dynamic approach does not require the failure function to be invertible.

1.5 Multiple Censored Times Between Consecutive Failure Times

In this section, we further apply the conceptual dynamic results developed in Sections 1.2 and 1.3 to multiple

censored times between consecutive failure times. We present a result that provides a very general algorithm

for estimating a hazard rate function for multiple censoring times between consecutive failure times tj−1

and tj with tj−1, tj ∈ [t0,T). We further note that the presented results in this section extend the results of

Section 1.4 in a systematic and unified manner.

Theorem 1.5.1 Let the hypotheses of Theorem 1.3.1 in the context of Remarks 1.3.1, 1.3.2(i) and 1.3.2(ii)

be satisfied. For each j ∈ I(1,m), let tj−1 and tj be consecutive failure times. Let {tj−1l}
kj

l=1 be a finite

sequence of censored time observations over a time interval [tj−1, tj ]. Let γlj be the number of objects censored

at time tj−1l, for l ∈ I(1, kj) and {γlj}
kj

l=1 be a corresponding sequence of observed number of objects/species/-

patients/etc. Then

1. z(tj−1) − z(tj) −
kj∑
l=1

γlj is a change in the number of items/subjects that is under the observation over

the sub-interval [tj−1, tj ] of the time interval of study [t0,T].

2.
kj+1∑
l=1

z(tj−1l−1)∆(tj−1l) is a total amount of time spent under the observation/testing/evaluation/moni-

toring of z(tj−1l−1)
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items/patients/ infectives/subjects on the interval [tj−1l−1, tj−1l) for l ∈ I(1, kj)) and j ∈ I(1, n).

3. an estimate for the hazard rate function at tj is determined by

λ̂(tj) =
z(tj−1)− z(tj)−

kj∑
l=1

γlj

kj+1∑
l=1

z(tj−1l−1)∆(tj−1l)
, (1.5.1)

and an estimate for the hazard rate function is

λ̂(t) = λ̂(tj) , for t ∈ [tj−1, tj) and j ∈ I(1, n). (1.5.2)

Proof. For each j ∈ I(1, n) and tj−1, tj ∈ PT
0 , objects/subjects are censored kj times over a partition of

[tj−1, tj ] of consecutive failure times. Let Pj be a partition corresponding to a given finite sequence of

censored times over the failure time interval [tj−1, tj), and let it be represented by

Pj : tj−1 = tj−10 < tj−11 < . . . < tj−1l−1 < tj−1l < . . . < tj−1kj−1 < tj−1kj
. (1.5.3)

where Pj is a partition of [tj−1, tj ].

For each j ∈ I(1, n), using the iterative schemes (1.3.20) and (1.3.22) we have

z(tj)− z(tj−1) =
kj∑
l=1

[z(tj−1l)− z(tj−1l−1)] + [z(tj)− z(tj−1kj
)]

= −λ(tj)

kj+1∑
l=1

z(tj−1l−1)∆tj−1l

− kj∑
l=1

γlj , (1.5.4)

and hence

z(tj−1)− z(tj)−
kj∑
l=1

γlj = λ(tj)
kj+1∑
l=1

z(tj−1l−1)∆(tj−1l) . (1.5.5)

Thus, z(tj−1)−z(tj)−
kj∑
l=1

γlj is a change in the number of items/subjects that are under observation over the

subinterval [tj−1, tj ], and
kj+1∑
l=1

z(tj−1l−1)∆(tj−1l) is a total amount of time spent under the observation/test-

ing/evaluation/monitoring of z(tj−1l) items/patients/infectives/subjects on the interval [tj−1l−1, tj−1l) for

l ∈ I(1, kj)) and j ∈ I(1, n). These statements establish conclusions 1 and 2 of Theorem 1.5.1.

Finally, from Definition 1.4.1, we obtain an estimate for a hazard rate function at tj ∈ [t0,T) as:

λ̂(tj) =
z(tj−1)− z(tj)−

kj∑
l=1

γlj

kj+1∑
l=1

z(tj−1l−1)∆(tj−1l)
.
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This establishes (1.5.1).

Moreover,

λ̂(t) = λ̂(tj) , for t ∈ [tj−1, tj) and j ∈ I(1, n) . (1.5.6)

This completes the proof of the theorem. 2

Corollary 1.5.1 Under the conditions of Theorem 1.5.1 and assumptions of Corollary 1.3.3 in the context

of Remark 1.3.2(iv), an estimate for the hazard rate function at tj is determined by

λ̂(tj) =
z(tj−1)− z(tj)−

kj∑
l=1

γlj

z(tj−1kj
) , (1.5.7)

and an estimate for the hazard rate function is λ̂(t) = λ̂(tj), for t ∈ [tj−1, tj) and j ∈ I(1, n). An estimate

for the survival function is thus given by

Ŝ(t) =
∏

i|tj−1<t

(1− λ̂(ti)), t ≥ t0, ti ≤ tj−1 ≤ t < tj for some j ∈ I(1, n). (1.5.8)

Corollary 1.5.2 Under the conditions of Theorem 1.5.1 and estimate for the cumulative hazard/risk rate

and survival functions are respectively represented by:

Λ̂(t, t0) =
j−1∑
m=1

λ̂m(tm − tm−1) + λ̂j (t− tj−1) , t ∈ [tj−1, tj)

and

Ŝ(t, t0) = S0 exp
[
j−1∑
m=1

λ̂m(tm − tm−1) + λ̂j (t− tj−1)
]
, t ∈ [tj−1, tj)

for t ≥ t0, tj−1 ≤ t < tj for some j ∈ I(1, n).

Remark 1.5.1 (a) We remark that the innovative dynamic approach for the development of computational

parameter estimation algorithm (1.5.1) is an alternative approach for the algorithm proposed Kim and

Proschan [27].

(b) The estimates (1.5.1) in the context of (1.2.26) yields the estimate obtained by Kulasekera and White

[30] as special cases.

(c) For continuous-time interconnected hybrid state survival dynamic process, if kj = 0, for some j ∈ I(1, n),

then l = 0 and γ0
j = 0 and (1.5.1) reduces to (1.4.1). On the other hand, if kj = 1 for some j ∈ I(1, n),

then l = 0 and γ1
j = γcj and (1.5.1) implies (1.4.5).

(d) For discrete-time interconnected hybrid state survival dynamic process, if kj = 0, for some j ∈ I(1, n),

then l = 0 and γ0
j = 0 and (1.5.7) reduces to (1.4.12). On the other hand, if kj = 1, for some j ∈ I(1, n),

then l = 0 and γ1
j = γcj and (1.5.7) implies (1.4.15).
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The presented innovative approach of parameter and state estimation includes the Thaler [49]-type hazard

rate estimation problem as a particular case. To justify this statement, we first introduce a concept of

hazard/risk rate function for responder and non-responder states. In addition, we state a corollary of

Theorem 1.5.1 without its proof. The proof is outlined in the supplementary section.

Definition 1.5.1 For i ∈ I(0, 1), Let λ0(t) and λ1(t) represent the hazard/risk rate functions in the non-

responder and responder states, respectively, at time t [49] .

Corollary 1.5.3 Let us assume that the conditions of Corollary 1.3.1 in the context of Remark 1.3.2(i) are

satisfied. For j ∈ I(1, n0), let tj−1 and tj be consecutive risk/failure times in state 0. For j′ ∈ (1, n1), let

tj′−1 and tj′ be consecutive failure times in state 1. Let z0(tj) be the number of survivals at tj in state 0.

Let z1(tj′) be the number of survivals at tj′ in state 1. Then an estimate for the hazard/risk rate function

at tj is determined by:

λ̂0(tj) =

j∑
m=1

[z0(tm−1)− z0(tm)]

j∑
m=1

z0(tm−1)∆tm
=

j∑
m=1

d0j

j∑
m=1

z0(tm−1)∆tm
, (1.5.9)

where d0j is the number of deaths/failures at the jth distinct failure time in state i, and an estimate for the

hazard rate function is

λ̂0(t) = λ̂0(tj) , for t ∈ [tj−1, tj) and j ∈ I(1, n0) . (1.5.10)

An estimate for the hazard/risk rate function at tj′ is determined by:

λ̂1(tj′) =

j′∑
m=1

[z1(tm−1)− z1(tm)]

j′∑
m=1

z1(tm−1)∆tm
=

j∑
m=1

d1j′

j∑
m=1

z1(tm−1)∆tm
, (1.5.11)

where d1j′ is the number of deaths/failures at the j′th distinct failure time in state 1, and an estimate for

the hazard rate function is

λ̂1(t) = λ̂1(tj′) , for t ∈ [tj′−1, tj′) and j′ ∈ I(1, n1) . (1.5.12)

The hazard/risk ratio rate function estimate is given by: λ̂0(tj)
λ̂1(tj′ )

. The corresponding estimate of the log

hazard/risk rate ratio function for patients currently in a response compared to a nonresponse state is given

by:

ρ̂(t) = ln
[
λ̂0(tj)
λ̂1(tj′)

]
for , tj−1 < t ≤ tj and tj′−1 ≤ t < tj′ . (1.5.13)

Proof. Let t0 < t1 < . . . < tm−1 < tm < . . . < tj−1 < tj < . . . < tn = T be a partition of [t0,T]. Using
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(1.3.13), for fixed i = 0 and j ∈ I(1, n0), we have

z0(tm)− z0(tm−1) = −λ0(tm)z0(tm−1)∆tm . (1.5.14)

Summing (1.5.14) from m = 1 to j, we obtain

j∑
m=1

[z0(tm)− z0(tm−1)] =
j∑

m=1
−λ0(tm)z0(tm−1)∆m

= −λ0(tj)
j∑

m=1
z0(tm−1)∆tm . (1.5.15)

Rearranging (1.5.15) establishes (1.5.9). The proof of (1.5.11) is similar to the proof of (1.5.9). (1.5.13)

is obtained by taking the natural log of the ratio of (1.5.9) and (1.5.11) . This establishes the proof of the

corollary. 2

Remark 1.5.2 We remark that (1.5.9), (1.5.11) and (1.5.13) are identical to the result obtained in Thaler

[49]. Moreover, the estimates in (1.5.9), (1.5.11) and (1.5.13) were obtained in the framework of an innovative

dynamic approach.

In the following, we state a general theorem that provides a theoretical estimate for the hazard/risk rate

function between two successive change point times, tj−1 and tj .

Theorem 1.5.2 Let the hypothesis of Theorem 1.5.1 be satisfied. Let {T ji }ni=1 be a sequence of times(failure/

censor/arrival) that fall between the change point times tj−1 and tj for j = I(1, k). Then an estimate for

the hazard rate function at tj is determined by

λ̂(tj) =
z(tj−1)− z(tj)−

l∑
m=1

ηjm

l+1∑
m=1

z(T jm)∆(T jm)
, j ∈ I(1, k + 1) . (1.5.16)

where

ηjm =


0 if T jm is failure time

γjcm if T jm is censored time

−γjam if T jm is arrival time

; (1.5.17)

γjcm is the number of objects/items/individuals censored at time T jm; γjam is the number of objects/items/in-

dividuals joining/arriving at time T jm, and an estimate for the hazard rate function is λ(t) = λ̂(tj) for

t ∈ [tj−1, tj).

Proof. Let 0 = t0 < t1 < t2 < . . . < tj−1 < tj < . . . < tk be the partition of [t0,T) corresponding to change

point times.
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For j = 1, 2, . . . , k, we consider a partition of [tj−1, tj ] as follows:

Ptj : tj−1 = T j0 < T j1 < T j2 < T j3 < . . . < T jl−1 < T jl < . . . < T jn−1 < T jn < T jn+1 = tj . (1.5.18)

Imitating the proof of Theorem 1.5.1, we have

z(tj)− z(tj−1) =
l∑

m=1

[
z(T jm)− z(T jm−1)

]
+ [z(tj)− z(T jl )]

=
l∑

m=1

[
−λ(T jm−1)z(T jm−1)∆T jm − ηjm

]
+ [−λ(T jl )z(T jl )∆tj ]

− λ(tj)
[

l∑
m=1

z(T jm−1)∆T jm

]
−

l∑
m=1

ηjm − λ(tj)z(tjl )∆tj

= −λ(tj)
[
l+1∑
m=1

z(T jm−1)∆T jm

]
−

l∑
m=1

ηjm , (1.5.19)

and hence

z(tj−1)− z(tj)−
l∑

m=1
ηjm = λ(tj)

l+1∑
m=1

z(T jm−1)∆T jm (1.5.20)

Thus, z(tj−1)− z(tj)−
l∑

m=1
ηjm is a change in the number of items/subjects that is under the observation

over the subinterval [tj−1, tj ] of the time interval of study [t0,T] and
l+1∑
m=1

z(T jm)∆T jm is a total amount of time

spent under the observation/testing/evaluation of z(T jm) items/patients/infectives/subjects on the interval

[T jm−1, T
j
m) for m ∈ I(1, l)) and j ∈ I(1, k). Finally, from Definition 1.4.1, we obtain an estimate for a hazard

rate function at tj ∈ [t0,T) as:

λ̂(tj) =
z(tj−1)− z(tj)−

l∑
m=1

ηjm

l+1∑
m=1

z(T jm−1)∆T jm
,

Moreover,

λ̂(t) = λ̂(tj) , for t ∈ [tj−1, tj) and j ∈ I(1, k) . (1.5.21)

This establishes the proof of the theorem.

2
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Chapter 2

Conceptual Computational Algorithms

2.1 Introduction

In this chapter, we outline very general conceptual computational, data organizational and simulation

schemes. The computational and simulation algorithms are based on the fundamental theoretical result

(Theorem 1.5.1) developed in Section 1.5. In Section 2.2, conceptual computational parameter and state

estimation schemes are developed. Conceptual and computational simulation algorithms are given in Section

2.3. The developed computational schemes are applied time-to-event datasets to estimate hazard/risk rate

and survival functions in a systematic and unified way in Section 2.4.

2.2 Conceptual Computational Parameter and State Estimation Scheme

The theoretical computational algorithm for interconnected continuous-time hybrid dynamic process (1.3.1),

is as follows:

z(tj−1)− z(tj)−
kj∑
l=1

γlj = λ̂(tj)
kj+1∑
l=1

z(tj−1l−1)∆(tj−1l), (2.2.1)

and the conceptual computational algorithm for totally discrete-time hybrid dynamic process (1.3.3) is

z(tj−1)− z(tj)−
kj∑
l=1

γlj = λ̂(tj)z(tj−1kj
) . (2.2.2)

Here PT
0 : t0 < t1 < . . . < tj−1 < tj < . . . < tn is a partition of failure times over the time interval [0,T). Let

Pj be a partition corresponding to a given finite sequence of censored times over the failure time interval

[tj−1, tj), and let it be represented by

Pj : tj−1 = tj−10 < tj−11 < . . . < tj−1l−1 < tj−1l < . . . < tj−1kj−1 < tj−1kj
. (2.2.3)

For j ∈ I(1, n), λ is the hazard rate function; z(t) stands for the number of survivals at time t; γlj denotes

the number of objects censored at the time tj−1l, j ∈ I(1,m) and l ∈ I(0, kj), kj ∈ I(0,∞). For the

continuous-time hybrid dynamic process (1.3.1), an estimate of the survival function is represented by

Ŝ(t, t0) = S0 exp
[
j−1∑
m=1

λ̂m(tm − tm−1) + λ̂j (t− tj−1)
]
, t ∈ [tj−1, tj) for t ≥ t0 . (2.2.4)
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For the totally discrete-time hybrid dynamic process (1.3.3), an estimate of the survival function is repre-

sented by

Ŝ(t) =
∏

i|tj−1<t

(1− λ̂(ti)), t ≥ t0. (2.2.5)

First, we construct a detailed flowchart for the general conceptual computational algorithm developed in

Section 1.5.

A partition PT
0 of [0,T] of data

observation time

Formation of consecutive failure subintervals
of [0,T]: [tj−1, tj ], tj−1, tj ∈ PT

0

Data set ContinuousDiscrete

A check for censored times:
tcj−1l ∈ [tj−1, tj), l ∈ I(0, kj)

A check for censored times:
tcj−1l ∈ [tj−1, tj), l ∈ I(0, kj)

Estimate λ̂(tj)
(2.2.2) with γl

j = 0

Estimate λ̂(tj)
(2.2.2)

Estimate λ̂(tj)
(2.2.1) with γl

j = 0

Estimate λ̂(tj)
(2.2.1)

Estimate Ŝ(t) for
t ∈ [tj−1, tj) (2.2.5)

Estimate Ŝ(t) for
t ∈ [tj−1, tj) (2.2.4)

no

yes

no

yes

Flowchart 1.: Conceptual Computational Algorithm

We observe that the conceptual computational algorithm (Flowchart 1) is composed of two sub-conceptual

computational algorithms, namely, continuous-time and discrete-time hybrid dynamic processes.

2.3 Conceptual and Computational Simulation Algorithms

A pseudocode for a simulation scheme for both interconnected continuous-time and totally discrete-time

hybrid dynamic processes are outlined below:
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for j = 1 to N do

Compute kj , z(tj−1), z(tj)
if kj = 0 then

Compute z(tj−1)∆tj
else

Compute
kj∑

l=1

γl
j ,

kj +1∑
l=1

z(tj−1l−1)∆(tj−1l)

end if

Compute λ̂(tj), Ŝ(t)
end for

Simulation Scheme 2a.: Pseudocode for interconnected
continuous-time hybrid dynamic process

for j = 1 to N do

Compute kj , z(tj−1), z(tj)
if kj = 0 then

Compute z(tj−1)
else

Compute
kj∑

l=1

γl
j , z(tj−1kj

)

end if

Compute λ̂(tj), Ŝ(t)
end for

Simulation Scheme 2b.: Pseudocode for totally discrete-time
hybrid dynamic process

Moreover, a flowchart for the simulation algorithm for parameter and state estimation problems for intercon-

nected continuous-time (1.3.1) and discrete-time (1.3.3) hybrid dynamic processes are provided in Flowchart

3.

Start

Input data

Data setDiscrete Continuous

Censored times? Censored times? Estimate λ(tj) (2.2.1)

Estimate λ̂(tj) (2.2.1) with γl
j = 0

Estimate Ŝ(t), t ∈ [tj−1, tj) (2.2.4)

Estimate λ̂(tj) (2.2.2)

Estimate λ̂(tj) (2.2.2) with γl
j = 0

Estimate Ŝ(t), t ∈ [tj−1, tj) (2.2.5)

Stop

yes

no

yes

no

Flowchart 3.: Simulation Algorithm for interconnected hybrid dynamic processes
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We note that flowchart for simulation algorithm (Flowchart 3) is composed of two sub-simulation algo-

rithms, namely, continuous-time and totally discrete-time hybrid dynamic processes.

2.4 Applications to Time-to-event Datasets

In the following, using the conceptual computational algorithm, we exemplify our theoretical procedure by

estimating hazard rate and survival functions of two data sets in a systematic and unified way. The first

data set can be found in [26].

Illustration 2.4.1 Suppose that out of a sample of 8 items the following are observed:

Table 1: Dataset used by Kaplan and Meier [26]

Order of

Observation

Time of Cessation

of Observation

Cause of

Cessation
Time Notation

1 0.8 Failure t1

2 1.0 Censored t11

3 2.7 Censored t12

4 3.1 Failure t2

5 5.4 Failure t3

6 7.0 Censored t31

7 9.2 Failure t4

8 12.1 Censored

We note that the data set in Table 1 is for the totally discrete-time hybrid time-to-event dynamic process

(1.3.3). In view of this, we apply the totally discrete-time parameter and state estimation schemes (2.2.2) and

(2.2.5). In short, we utilize the discrete-time conceptual computational sub-algorithm (Simulation Scheme

2b) “pseudocode” and simulation sub-algorithm (Flowchart 3).

For t ∈ [t0, t1), there are no censored times between [t0, t1). Therefore, kj = 0, and from Remark 1.5.1(d)

and hence using (2.2.2) we have

λ̂(t1) = λ̂1 = z(t0)− z(t1)
z(t0) = 1

8 .

Utilizing (2.2.5), the corresponding survival function is given by

Ŝ(t) =

1 , for t ∈ [t0, t1) ,

1− λ1 = 7
8 , for t = t1 .
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For t ∈ [t1, t2), we note that there are two censored times between t1 and t2. So, kj = k2 = 2. Hence

2∑
l=1

γl2 = γ1
2 + γ2

2 = 1 + 1 = 2 .

Also, z(tj−1kj
) = z(t12) = 5. Thus, from Remark 1.5.1(d) and hence applying (2.2.2), we have

λ̂(t2) = λ̂2 =
z(t1)− z(t2)−

2∑
l=1

γl2

z(t12) = 1
5 .

Utilizing (2.2.5), the corresponding survival function is thus given by

Ŝ(t) =


7
8 , for t ∈ [t1, t2) ,∏
k|tj≤t

(1− λ̂j) =
2∏
j=1

(1− λ̂j) = 7
10 , for t = t2 .

There is no censoring time between the interval [t2, t3) = [3.1, 5.4). Therefore, kj = 0, and from Remark

1.5.1(d) and hence using (2.2.2) we obtain

λ̂(t3) = z(t2)− z(t3)
z(t2) = 1

4 .

Once again, utilizing (2.2.5), the corresponding survival function is thus given by

Ŝ(t) =


7
10 , for t ∈ [t2, t3) ,
3∏
j=1

(1− λ̂j) = 21
40 , for t = t3 .

Continuing in this manner, we record the estimates for hazard rate and survival functions in the following

table with the last column exhibiting the survival function estimate as obtained by Kaplan and Meier [26].

Table 2: Kaplan and Meier Survival estimates for data set given in [26].

Failure Times

tj

Survivals

z(tj)

Hazard Rate Function

λ̂(tj)

Survival Function

Ŝ(tj)

0.8 7 1/8 7/8

3.1 4 1/5 7/10

5.4 3 1/4 21/40

9.2 1 1/2 21/80

(12.1) 0 1/2 21/80

Using the dataset in [27] and theoretical computational algorithm, Theorem 1.5.1, we illustrate the esti-
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mation of hazard rate and survival functions, systematically.

Illustration 2.4.2 Suppose that seven items (new) are put on test at time 0. Each item is observed until

it fails or until it is withdrawn, whichever occurs first. The resulting set of observation [27] is shown in Table

3 in order of occurrence.

Table 3: Data from Kim and Proschan [27]

Order of

Observation

Time of Cessation

of Observation

Cause of

Cessation
Time Notation

Finite sequence

of censored Time

Size of

sequence

Number of

Censored

0 0

1 2.0 Failure t1 = t01 = t10

2 3.5 Censored t11
{tj−1l}2l=1 k2 = 2 {γl2}2l=13 4.5 Censored t12

4 6.2 Failure t2 = t13 = t20

5 8.0 Censored t21 {tj−1l}1l=1 k3 = 1 {γl3}2l=1

6 8.8 Failure t3 = t22

7 11.3 Failure t4

The data set in Table 3 is for the interconnected continuous-time hybrid dynamic time-to-event dynamic

process (1.3.1). In view of this, we apply the continuous-time parameter and state estimation schemes (2.2.1)

and (2.2.4). In short, we utilize the continuous-time conceptual computational sub-algorithm (Simulation

Scheme 2a) “pseudocode” and simulation sub-algorithm (Flowchart 3).

For [0, t1) , since there are no censored times in between [0, t1), kj = k1 = 0. Thus from Remark 1.5.1(c)

and using (2.2.1) we have

λ̂(t1) = z(t0)− z(t1)
z(t0)(t01 − t0) = 1

14 .

Thus λ̂(t) = 1
14 ≈ 0.0714 for t ∈ [t0, t1) = [0, 2.0).

For the estimate on [t1, t2) = [2.0, 6.2), we note that there are two censoring times between [t1, t2), hence

kj = k2 = 2 and
2∑
l=1

γl2 = γ1
2 + γ2

2 = 1 + 1 = 2.

Thus from Remark 1.5.1(c) and thus applying (2.2.1), we have

λ̂(t2) =
z(t1)− z(t2)−

k2∑
l=1

γl2

k2+1∑
l=1

z(t1l−1)∆t1l
=
z(t1)− z(t2)−

2∑
l=1

γl2

3∑
l=1

z(t1l−1)∆t1l
= 1

20.8 .

Thus, λ̂(t) = 1
20.8 , for t ∈ [2.0, 6.2).
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On the interval [t2, t3) = [6.2, 8.8), we have only one censoring time in between the two failure times. So,

kj = k3 = 1. Thus from Remark 1.5.1(c) and hence, using (1.5.1), we obtain

λ̂(t3) =
z(t2)− z(t3)−

1∑
l=1

γl3

2∑
l=1

z(t2l−1)∆t2l
= 3− 1− 1
z(t20)∆t21 + z(t21)∆t22

= 1
7 .

Hence, λ̂(t) = 1
7 , for t ∈ [6.2, 8.0).

There is no censoring in the interval [t3, t4). Thus,

λ̂(t4) = z(t3)− z(t4)
z(t3)∆t4

= 1
2.5 ,

which implies that λ̂(t) = 1
2.5 = 0.4, for t ∈ [8.0, 11.3). Following this estimation procedure we have

λ̂(t) =



0.0714 0 ≤ t < t1 = 2

0.0481 t1 ≤ t < t2 = 6.2

0.1429 t2 ≤ t < t3 = 8.8

0.4 t3 ≤ t < t4 = 11.3 .

(2.4.1)

To obtain the estimate of survival function, we use (2.2.4) or we apply the solution process described in

Section 1.2 regarding (1.2.7) and obtain exponential pieces on successive intervals between failure times that

are joined to form a continuous function. Thus,

Ŝ(t) =



exp(−0.0714t) , 0 ≤ t < 2

exp [−0.1429− 0.0481(t− 2)] , 2 ≤ t < 6.2

exp [0.3448− 0.1429(t− 6.2)] , 6.2 ≤ t < 8.8

exp [0.4591− 0.4(t− 8.8)] , 8.8 ≤ t < 11.3

no estimator, t ≥ 11.3

(2.4.2)

Remark 2.4.1 These are the same results obtained by using the method proposed by Kim and Proschan

[27].
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Chapter 3

Interconnected Nonlinear Hybrid Dynamic Modeling for Time-to-event Processes

3.1 Introduction

In survival and reliability analysis, parametric methods are often applied to estimate the hazard/risk rate

and survival functions [37]. A parametric approach is based on the assumption that the underlying survival

distribution belongs to some specific family of distributions (e.g. Weibull, log-logistic, exponential etc).

Mostly, classical likelihood-based models, methods and its extensions/generalizations are developed and

utilized [9, 25, 36, 37].

The log-logistic distribution [9, 12, 24, 36, 43] has played a significant role in the survival data analysis. In

this chapter, we present an alternative approach for modeling nonlinear time-to-event processes in biological,

chemical, engineering, epidemiological, medical, military, multiple-markets and social dynamic processes.

This approach does not require any knowledge of either a closed form solution distribution or a class of

distributions. Our innovative approach leads to development of a nonlinear dynamic model for time-to-event

processes.

The human mobility, electronic communications, technological changes, advancements in engineering,

medical, and social sciences have diversified and extended the role and scope of time-to-event processes in

biological, cultural, epidemiological, financial, military and social sciences [2, 11, 33, 34, 50]. It is known that

sudden changes in the hazard rate/risk at unspecified or specified times are frequently encountered in engi-

neering and medical sciences [2]. These changes could occur multiple times. As a result of this, investigators

[17, 19, 21] are often interested in (a) detecting the location of the changes, and (b) estimating the sizes of the

detected changes. For incorporating intervention processes, we transform a continuous nonlinear state dy-

namic model into an interconnected nonlinear hybrid dynamic model composed of both continuous-time and

discrete-time state (intervention) dynamic processes. The presented approach is motivated by parameter and

state estimation problems of continuous-time time-to-event processes. The developed approach us directly

applicable to time-to-event dynamic processes in biological, chemical, engineering, financial, medical, physi-

cal, military and social sciences. A by-product of the transformed interconnected nonlinear hybrid dynamic

model is derivation of theoretical discrete-time conceptual computational dynamic process. Employing the

transformed discrete-time conceptual computational dynamic process, we introduce notions of data coordi-

nation, state data decomposition and aggregation, theoretical conceptual iterative processes, conceptual and

computational parameter estimation and simulation schemes, conceptual and computational state simulation

schemes.
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The organization of the presented work in this chapter is as follows. A few basic existing concepts and

observations are outlined in Section 3.2. Recognizing the rapid growth and increased efficiency and speed in

communication, science and technology in the 21st century, we develop a nonlinear dynamic model for time-

to-event process in Section 3.3. Fundamental theoretical results for nonlinear hybrid dynamic processes are

outlined in Section 3.4. In fact, interconnected transformed nonlinear hybrid dynamic survival state system

and transformed discrete-time conceptual computational interconnected dynamic algorithm are developed.

The approach is motivated by the preliminary work initiated in [5]. In Section 3.5, we develop very general

theoretical and computational procedures and results for parameter and state estimations for the time-to-

event dynamic process.

3.2 Basic Existing Concepts and Observations

For the better understanding of the development of nonlinear and non-stationary dynamic algorithm of

time-to-event data analysis, we outline a few existing features and ideas in the theory of survival analysis,

as well as make some observations.

Historically, it is known [25] that the study of time-to-event processes is centered around the medical and

engineering sciences. Mostly, classical likelihood based models, methods and its extensions/generalizations

are developed and utilized [25]. The study is based on the concepts in the theory of probability and stochas-

tic processes. In particular, probabilistic concepts of hazard rate function λ and survival/failure probability

distributions of a random time variable T form a core of concepts. We note that for t ∈ R, F (t) is a

cumulative probability distribution of T , and S(t) is a survival function of time-to-event process. Moreover,

S(t)+F (t) = 1. In the existing literature, these probabilistic functions are treated to be evolving/progressing

mutually exclusively corresponding to two mutually exclusive time varying events. We refer to S and F as

cumulative distributions of two mutually disjoint output processes with respect to two mutually exclusive

time-varying events of a random dynamic process in any discipline. This kind of random dynamic process

can be thought of as the Bernoulli-type of stochastic process. Corresponding to these two output processes

of the Bernoulli-type of stochastic process, we associate two dynamic states of a binary choice/option/ac-

tion. Indeed, a stochastic binary-state dynamic process ({ action, reaction}, {normal, abnormal}, {survival,

failure}, {susceptible, infective}, {operational, non-operational}, {radical, non-radical}, and so on) exhibits

abstractions and generalizations of Newton’s 3rd law of dynamic motion process ({reaction}).

A Logistic-type survival distribution function has been introduced through a random time transformation.

Moreover, the logistic distribution was introduced by recognizing the properties of the solution of logistic

population dynamic model in the literature [25, 37]. We further note that the hazard rate function satisfies

the conditions: λ ≥ 0, and limt→∞

[∫ t
0 λ(s)ds

]
=∞. This is a very restrictive assumption. In the following,

using basic tools in mathematical sciences, we initiate a Newtonian-type dynamic approach for time-to-event

processes in sciences, technologies, and engineering.
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3.3 Motivations and Model Formulation

We recognize the rapid growth and increased efficiency and speed [2, 33, 34, 45, 46, 50] in communication,

science, engineering and technology in the 21st century. Under continuous advancements in science and

technology, the study of time-to-event processes in medical and engineering sciences have been significantly

improved, and can be easily extended to other disciplines that are conceptually similar but apparently differ-

ent. In fact, the scientific and technological changes are playing a role for extension to dynamic processes in

business, economic, management, military and social sciences [11, 33, 34, 45, 46, 50]. It is known that clas-

sical likelihood based models and methods of time-to-event models are very restrictive. For example, most

of the time-to-event processes studied in the literature [25, 37] are focused on exclusively either failure or

survival state dynamic of time-to-event processes. In fact, in economic/financial/social sciences, the group of

human beings are interacting with a fellow human consumer/associate or a user of similar goods/services/in-

formation/knowledge/background/entities easily and more frequently for making a decision choice. Recently

[46], introducing the concept of network externality process and its dynamic principle, the consumer group

network influence has led to the definition of network externality value. Moreover, network good value is

determined by a current market share/size. It has been further remarked that the collection of network

externality functions includes sub-classes of survival/failure functions with finite domain of operation. We

associate two mutually time-to-events in sciences and technologies with respect to two mutually exclusive

dynamic states operating/functioning in the sciences, engineering and technologies to develop a dynamic

model.

In this chapter, we initiate a nonlinear dynamic model for time-to-event processes in biological, medical,

business, economic, management, military and social sciences as a binary-state probabilistic dynamic process

interacting or influencing simultaneously instead of mutually exclusively (isolated manner). Let survival/op-

erating/susceptible/action/normal and failure/non-operating/infective/ inaction/abnormal be probabilistic

states of a time-to-event dynamic process in sciences, engineering, financial, medical, military, technological

and social disciplines. Let us denote the probabilistic measures of these two dynamic states by S and F ,

respectively.

For this purpose, we introduce a dynamic principle for a binary state time-to-event process as:

Survival Principle: A specific survival state probability measure differential rate over an interval of time

[t, t + ∆t] of a time-to-event binary-state dynamic process is directly proportional to the product of failure

state probability measure and the length of the interval ∆t:

dS
S
∝ Fdt ,
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that is

dS = −λ(t)SFdt

= −λ(t)S(1− S)dt , (3.3.1)

where λ is a nonnegative function of proportionality; dS stands for a differential of survival state proba-

bility measure over an interval of length ∆t ≡ dt; dS
S denotes a specific survival state probability measure

differential rate over the length of time interval ∆t; negative sign in (3.3.1) signifies that survival state prob-

ability decreases as t increases; and 1 − S represents a potential of failure; in addition, 1 − S characterizes

instantaneous effects of the failure state on the dynamic of survival state. Moreover, the differential of S in

(3.3.1) is directly proportional to the product of the variance SF of binary state dynamic of time-to-event

process and time ∆t. The function of proportionality may depend on time, probabilistic measure states of

Bernoulli-type dynamic process, and parameters of time-to-event process.

The development of nonlinear survival state dynamic model (3.3.1) motivates to study a very general

survival state dynamic model of time-to-event process described by

dS = −Sλ(t, S) dt , S(t0) = S0 , (3.3.2)

where λ is a continuous function defined on R× R into R, and it is smooth enough to assure the existence,

uniqueness, and the non-negativity of solution process of (3.3.2) with 0 ≤ S ≤ 1, whenever 0 ≤ S0 ≤ 1.

Moreover, the solution process S(t, t0, S0) is increasing in S0 for each (t, t0) ∈ R× R.

In the following, we present an example that exhibits the role and scope of the presented dynamic modeling

approach.

Example 3.3.1 We consider the following very simple dynamic model for the binary state time-to-event

dynamic process. We considerdS = (−βsS + αs)dt, S(t0) = S0, 0 < S0 < 1,

dF = (−βFF + αF )dt, F (t0) = F0, 0 < F0 < 1,
(3.3.3)

where βs, αs, βF and αF are positive real numbers; these positive parameters satisfy the following conditions:

0 < αs < βs and αF < βF . S(t) = exp[−βs(t − t0)]S0 + αs

βs
(1 − exp[−βs(t − t0)]) and F (t) = exp[−βF (t −

t0)]F0 + αF

βF
(1−exp[−βF (t− t0)]) are solution processes of (3.3.3). Moreover, 0 < F (t) ≤ 1 and 0 < S(t) ≤ 1.

In addition, F (t) + S(t) = 1, provided β ≡ βs = βF and αs + αF = β.

Remark 3.3.1 As of now, we do not have any real world data to justify the validity of its usage. In

fact, this opens a new avenue to undertake a study of time-to-event process. We note that this example
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provides a theoretical illustration for the measure of sustainability/unsustainability, stability/unstability,

sustainable/unsustainable invariant sets, and attainable/unattainable sets.

Remark 3.3.2 Let (t0, S0) be a given initial condition. The initial data (t0, S0) together with (3.3.1) is

referred to as the initial value problem (IVP)[33]. Employing an elementary technique, the initial value

problem

dS = −λ(t)S(1− S) dt , S(t0) = S0 t ∈ [t0,∞) , (3.3.4)

has a unique non-negative solution.

Moreover, the closed form solution process of (3.3.4) is represented by

S(t) =
S(t0) exp

[
−
∫ t
t0
λ(s) ds

]
1− S(t0) + S(t0) exp

[
−
∫ t
t0
λ(s) ds

] . (3.3.5)

The solution representation in (3.3.5) can be rewritten as

S(t) = 1
1 + exp [H(t)− α(t0)] , S(t0) = 1

1 + exp[−α(t0)] , (3.3.6)

where H(t) = H(t0) +
∫ t
t0
λ(s)ds and α(t0) = H(t0)− ln

[
1−S(t0)
S(t0)

]
.

From (3.3.6), we further note that

F (t) = 1
1 + exp [α(t0)−H(t)] . (3.3.7)

F in (3.3.7) can be referred as a generalized logistic distribution.

In the following, we exhibit a well-known log-logistic distribution as a special case of (3.3.4).

Example 3.3.2 Let us consider a transformation,

Y = lnT = α+ σX (3.3.8)

where α ∈ R, σ > 0, and a random variable X has the standard logistic cumulative distribution [25]. Under

the transformation (3.3.8), (3.3.4) reduces to

dS = − 1
σt
S(1− S)dt , S(t0) = S0 ,

with λ = 1
σt , H(t) = ln t

σ and α(t0) = − ln
[

1−S0
S0

]
+ ln t0

σ .

The nonlinear survival dynamic model described by (3.3.2) is too restrictive. It does not address the

problems of external intervention processes generated by the usage of modern scientific, engineering, medical

and technological tools/products/procedures/etc. In order to incorporate updated tools for the betterment
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of services/results/benefits, dynamic model (3.3.2) needs to be modified. For this purpose, we introduce a

definition and modify dynamic model (3.3.2).

Definition 3.3.1 Let t0 < t1 < t2 < . . . < tk < tk+1 be a given partition (P) of a time interval [t0,T], and

tk+1 ≤ ∞. Let λ1, λ2, . . . , λk+1 be model parameters. We associate a finite increasing sequence {tj−1}k+1
j=1 of

intervention process corresponding to the partition (P) of the overall time interval [t0,T] of study. Moreover,

we decompose [t0,T] by the finite sequence of subintervals {[tj−1, tj)}k+1
j=1 of [t0,T]. A hazard/risk rate

function for a nonnegative random variable T that characterizes time-to-event processes is of the following

form:

λ(t) =



λ1 0 ≤ t < t1

λ2 t1 ≤ t < t2
...

λk+1 t ≥ tk ,

(3.3.9)

where λj are positive real numbers for j ∈ I(1, k + 1), (I(1, l) = {1, 2, . . . , l}).

From Definition 3.3.1, we recognize that the sudden changes in λ(t) are encountered due to various types

of intervention processes (internal or external) [33]. It is known [33] that many real world time-to-event

dynamic processes undergo state adjustment processes, periodically. Due to constant changes in science,

technology, medicine, cultural, environmental, educational, financial and socio-economic changes/behavior,

continuous-time dynamic processes are frequently interrupted by discrete-time events. This results in a

modification of (3.3.2) under the influence of intervention process. Following the nonlinear hybrid dynamic

model [33], a modified version of the time-to-event dynamic model (3.3.2) is described by

dS = −Sλ(t, S)dt , S(tj−1) = Sj−1 , t ∈ [tj−1, tj) ,

Sj = Λ(t−j , S(t−j , tj−1, Sj−1)) , S(t0) = S0, j ∈ I(1, k) ,
(3.3.10)

where λ is defined in (3.3.2); Λ is a Borel-measurable survival state discrete-time intervention rate function;

S(t−j ) = S(t−j , tj−1, Sj−1) represents the left-hand limit of survival state function at time tj . We note that

System (3.3.10) is an interconnected nonlinear hybrid dynamic system composed of both continuous and

discrete time survival state dynamic systems.

Remark 3.3.3 The hybrid dynamic model corresponding to (3.3.4) is as:

dS = −λ(t)S(1− S)dt , S(tj−1) = Sj−1 , t ∈ [tj−1, tj) ,

Sj = S(t−j , tj−1, Sj−1) , S(t0) = S0, j ∈ I(1, k) .
(3.3.11)
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Imitating the procedure described in [33], the solution process of the initial value problem (IVP) (3.3.11)

is as follows:

S(t, tj−1, Sj−1) = 1
1 + 1−Sj−1

Sj−1
exp

[∫ t
tj−1

λ(s) ds
] , t ∈ [tj−1, tj). (3.3.12)

Furthermore, the solution process of the overall time-to-event dynamic process (3.3.11) on [t0,T] is

S(t, tj−1, Sj−1) = 1
1 + 1−Sj−1

Sj−1
exp

[∫ t
tj−1

λ(s) ds
] , t ∈ [t0,T), (3.3.13)

where

Sj−1 = 1

1 + 1−S0
S0

j−1∏
m=1

exp
[∫ tm
tm−1

λ(s) ds
] , for j ∈ I(1, k). (3.3.14)

Moreover, from (3.3.13), we obtain that

ln
[

1− S(t, tj−1, Sj−1)
S(t, tj−1, Sj−1)

]
= ln

[
1− Sj−1

Sj−1

]
+
∫ t

tj−1

λ(s) ds , t ∈ [t0,T], (3.3.15)

is the log odds of survival at time t.

In the following, we develop basic theoretical results that lay down a foundation for the development

of an innovative approach for state and parameter estimation of time-to-event dynamic process. Most

of the parameter estimation methods in the survival analysis literature are centered around the closed

form representation of likelihood functions, whereby, the entire data set has been utilized to estimate the

parameters on the overall interval [t0,T] of study.

3.4 Fundamental Results for Nonlinear Hybrid Dynamic Process

In this section, we employ dynamic model (3.3.10) and Euler-type discretization scheme [8] to develop a fun-

damental theoretical results. The presented analytic results provide the basis for conceptual computational

tools for survival state and parameter estimation problems in time-to-event data analysis processes.

Let x(t) be total number of units/individuals operating/alive (or survivals) at time t for t ∈ [t0,T). Let

λ and S be the hazard rate and survival state functions of units/patients/infectives/species/individuals

described by (3.3.2), respectively. Using a dynamic model for number of units/species/individuals/infectives

coupled with hybrid survival state dynamic model (3.3.10) that forms a large-scale dynamic system, we

present an interconnected nonlinear hybrid dynamic model of time-to-event process (INHDMTTEP).

Following the argument outlined in developing dynamic models in [5, 33], we introduce the following

systems of nonlinear and non-stationary differential equations:
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

dx = W (t, Sx)dη(t) , x(t0) = x0 , t ∈ [tj−1, tj) ,

xj = xj−1 + J(t−j , S(t−j , tj−1, Sj−1)x(t−j , tj−1, xj−1), xj−1) ,

dS = −Sλ(t, S)dt, t ≥ 0, S(t0) = S0 ,

Sj = Sj−1 + Λ(t−j , S(t−j , tj−1, Sj−1)), S(t0) = S0 ,

(3.4.1)

where S is a survival state function;the finite sequence of subintervals {[tj−1, tj)}k+1
j=1 is defined in Def-

inition 3.3.1; λ is defined in (3.3.2); W is a continuous function defined on [tj−1, tj) × R into R for

j ∈ I(1, k); J(t−j , S(t−j , tj−1, Sj−1)x(t−j , tj−1, xj−1), xj−1) = η−j W (t−j , S(t−j , tj−1, Sj−1)x(t−j , tj−1, Sj−1)) −

η+
j−1W (tj−1, Sj−1xj−1); η−j and η+

j−1 are positive constants; η is a function of bounded variation defined on

[tj−1, tj) into R; Λ is defined in (3.3.10). In addition, it is assumed that (3.4.1) has a solution process [33].

It is denoted by (x, S). The Flowchart-4 exhibits the structural and operational dynamic of INHDMTTEP.

Flowchart 4.: Structural and Operational Dynamic of INHDMTTEP

Remark 3.4.1 In addition to the conditions on (3.4.1), if W and λ are non-negative functions (i.e. W,λ ≥ 0),

and if

η(t) =

0, t ∈ [tj−1, tj) ,

1, t = tj ,

then (3.4.1) reduces to a partially discrete-time interconnected nonlinear hybrid dynamic system:



dx = 0 dt , x(t0) = x0 , t ∈ [tj−1, tj) ,

xj = xj−1 + J(t−j , S(t−j , tj−1, Sj−1)x(t−j , tj−1, xj−1), xj−1) ,

dS = −Sλ(t, S)dt , t ∈ [tj−1, tj) ,

Sj = Sj−1 + Λ(t−j , S(t−j , tj−1, Sj−1)), S(t0) = S0 .

(3.4.2)

Example 3.4.1 Sλ(t, S) = λ(t)S(1− S) is an admissible function in (3.4.1) and (3.4.2).

Employing the interconnected hybrid dynamic model for time-to-event process described in (3.4.1), we

present a fundamental result regarding continuous and discrete-time dynamic of survival species or operating
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objects or thoughts and survival state. Prior to this result, we introduce a few concepts that will be utilized,

subsequently.

Definition 3.4.1 Let z be a function defined by z(t) = x(t)S(t), where S and x are solution processes of

(3.4.1) for t ∈ [t0,T). Moreover, for each t ∈ [t0,T), z(t) stands for the number of survivals/operating units

at t.

Definition 3.4.2 The sequence {tj−1}kj=1 defined in Definition 3.3.1 is referred to as the conceptual data

collection/observation/intervention sequence over the interval of time [t0,T), and sequence of subinterval

{[tj−1, tj)}kj=1 is called a continuous-time hybrid system operating subinterval sequence with its right-end-

point as a conceptual data observation time.

Now, we are ready to present a fundamental theoretical result. The presented result provides a foundation

for the development of survival data analysis of time-to-event processes in any field of interest that are

conceptually similar but apparently different [33].

Theorem 3.4.1 Let (x, S) be a solution process of (3.4.1), and let tj−1 and tj be any pair of consecutive

conceptual data observation times in a given interval of time [t0,T). Then the transformed interconnected

nonlinear hybrid dynamic model of survival species and state of time-to-event dynamic process described by

(3.4.1) is reduced to:


dz = −zλ(t, S)dt+ SW (t, z)dη(t) , z(tj−1) = zj−1 , for t ∈ [tj−1, tj) , and j ∈ I(1, k),

dS = −Sλ(t, S)dt, S(t0) = S0,

zj = zj−1 + xj−1Λ(t−j , S(t−j , tj−1, Sj−1)) + SjJ(t−j , z(t
−
j , tj−1, xj−1), xj−1) , z(t0) = z0 ,

(3.4.3)

and corresponding transformed discrete-time conceptual computational interconnected dynamic algorithmz(tj) = z(tj−1)− λ(tj−1, S(tj−1))z(tj−1)∆tj + γj , z(t0) = z0 ,

S(tj) = S(tj−1)− λ(tj−1, S(tj−1))S(tj−1)∆tj , S(t0) = S0, j ∈ I(1, k),
(3.4.4)

where z is defined in Definition 3.4.1; γj = S(t−j )W (t−j , z
−
j )) − S(tj−1)W (tj−1, zj−1), and it represents

change in survivals due to either failure/censored/admitted or change-point process; and ∆tj = tj − tj−1 for

j ∈ I(1, k).

Proof.

For t ∈ [tj−1, tj), j ≥ 1, from Definition 3.4.1 and the nature of S, we have

dz(t) = x(t)dS + S(t)dx(t)

= x(t) [−S(t)λ(t, S(t))dt] + S(t)W (t, S(t)x)dη(t)

= −z(t)λ(t, S(t))dt+ S(t)W (t, z(t))dη(t). (3.4.5)
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This establishes the continuous-time dynamic subsystem in (3.4.3). The proofs of the discrete-time dynamic

subsystem in (3.4.3) and iterative process (3.4.4) are outlined below.

From the discrete-time dynamic of population/species state x and survival state intervention process in

(3.4.1), we have

zj = zj−1 + xj−1Λ(t−j , S(t−j , tj−1, Sj−1)) + SjJ(t−j , z(t
−
j , tj−1, xj−1), xj−1) (3.4.6)

This establishes the discrete-time dynamic subsystem in (3.4.3).

Now, applying the Euler-type numerical scheme [8] to (3.4.5) over an interval [tj−1, tj ], we obtain

z(tj)− z(tj−1) = −λ(tj−1, S(tj−1))z(tj−1)∆tj +
∫ tj

tj−1

S(s)W (s, z(s))dη(s). (3.4.7)

By applying the Riemann-Stieltjes integral property [4], we approximate (3.4.7) as:

z(tj)− z(tj−1) = −λ(tj−1, S(tj−1))z(tj−1)∆tj + S(t−j )W (t−j , z(t
−
j ))− S(tj−1)W (tj−1, zj−1). (3.4.8)

From (3.4.8), we have

z(tj) = [1− λ(tj−1, S(tj−1))∆tj ] z(tj−1) + γj , for j ∈ I(1, k) , (3.4.9)

where γj = S(t−j )W (t−j , z(t
−
j ))− S(tj−1)W (tj−1, zj−1) is a jump at tj , and it represents change in survivals

due to an intervention process. Applying the Euler numerical scheme to the continuous-time dynamic in

(3.4.1) over the interval [tj−1, tj ] yields

S(tj) = S(tj−1)− λ(tj−1, S(tj−1))S(tj−1)∆tj (3.4.10)

(3.4.9) and (3.4.10) establishes the discrete time conceptual theoretical dynamic for joint survival state

process in the context of joint continuous-time interconnected nonlinear dynamic and the discrete-time in-

tervention component processes (3.4.3). Moreover, (3.4.9) and (3.4.10) exhibits the derivation of (3.4.4). This

establishes the proof of Theorem 3.4.1. Furthermore (3.4.4) is an approximation of transformed intervention

process in (3.4.3). 2

Remark 3.4.2 The transformed theoretical discrete-time computational dynamic process (3.4.4) provides a

basis for the discrete-time conceptual computational and simulation dynamic processes. The Flowchart-4

exhibits the structural and discrete-time operational dynamic of interconnected discrete-time algorithm of

time-to-event data statistic.
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Flowchart 5.: Structural and Operational Dynamic of IDATTEDS

Now, using (3.4.2), we present a result that is jointly totally discrete-time interconnected nonlinear hybrid

system.

Corollary 3.4.1 Let us consider a very special case of (3.4.2) as follows:



dx = 0 dt , x(t0) = x0 , t ∈ [tj−1, tj) ,

xj = xj−1 + J(t−j , S(t−j , tj−1, Sj−1)x(t−j , tj−1, xj−1), xj−1) ,

dS = 0, t ∈ [tj−1, tj) ,

Sj = Sj−1 + Λ(t−j , S(t−j , tj−1, Sj−1)), S(t0) = S0 .

(3.4.11)

Then under the assumptions of Theorem 1.3.1, (3.4.11) reduces to

dz = 0 dt , z(tj−1) = zj−1, t ∈ [tj−1, tj),

zj = zj−1 + xj−1Λ(t−j , S(t−j , tj−1, Sj−1)) + SjJ(t−j , z(t
−
j , tj−1, xj−1), xj−1) , z(t0) = z0, ,

(3.4.12)

and z(tj) = z(tj−1)− λ(tj−1, S(tj−1))z(tj−1) + γj , z(t0) = S0x0 ,

S(tj) = S(tj−1)− λ(tj−1, S(tj−1))S(tj−1), S(t0) = S0, j ∈ I(1, k)
(3.4.13)

We remark that this corollary is transformed totally discrete-time version of nonlinear hybrid dynamic

system operating under discrete-time intervention component processes.

In the following section, we establish theoretical discrete-time conceptual computational parameter and

state estimation algorithms.

3.5 Theoretical/Conceptual Parameter and State Estimations

Using Definition 3.4.1 and the transformed theoretical discrete-time iterative process (3.4.4), we develop

conceptual computational parameter dynamic estimation algorithms. In addition, parameter and state

estimations are determined conceptually. For this purpose, we introduce a few definitions and notations.
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Definition 3.5.1 Let tj−1 and tj be a pair of consecutive conceptual data collection/observation times on

[t0,T), and let z(t) be as defined in Definition 3.4.1. z(tj−1) stands for the number of survivals at the time

tj−1 for each j ∈ I(1, k). Moreover, the number of survivals z(tj−1) are under observation/supervision over

the sub-interval of time [tj−1, tj) of length ∆tj . z(tj−1)∆tj is the amount of time spent by z(tj−1) survivals

under observation/testing/evaluation over the length ∆tj of time interval [tj−1, tj).

Definition 3.5.2 For j ∈ I(1, k), let tj−1 and tj be consecutive data observation/supervision times of joint

population/objects/entities and state survival dynamic process. The parameter estimate at tj is defined by

the quotient of change of entities/objects over the consecutive change time subinterval [tj−1, tj) and the total

time spent by the entities/objects under observation/supervision over the subinterval [tj−1, tj) of length ∆tj .

Definition 3.5.3 Let {zj−1}kj=1 be an overall sequence of transformed conceptual state data set with re-

spect to the conceptual state data collection/observation time sequence {tj−1}kj=1 , and let {tfj−1i−1}
kf

i=1 ,

{tcj−1l−1}
kc

l=1 and {taj−1m−1}
ka
m=1 be overall conceptual failure, censored and admitted increasing subsequences

of the overall conceptual data collection time sequence {tj−1}kj=1 , respectively. Three subsequences of the

overall conceptual state data sequence {zj−1}kj=1 associated with the three overall conceptual subsequences

of failure, censored and admitted time subsequences are represented by:

{zfj−1i−1}
kf

i=1, {zcj−1l−1}
kc

l=1, and {zaj−1m−1}
ka
m=1 , (3.5.1)

respectively. These conceptual state data subsequences are called conceptual failure, censored and admitted

state subsequences of {zj−1}kj=1, respectively. We note that kf + kc + ka = k.

Definition 3.5.4 The union of the boundary point set of the interval [t0,T) and the range of the overall

failure, subsequence {tfj−1i−1}
kf +1
i=1 constitutes a partition of the interval [t0,T),T ≤ ∞. This partition of

[t0,T),T ≤ ∞ is termed as overall conceptual failure-time partition of [t0,T), and it is denoted by (P f ).

Moreover, P f ⊆ P in Definition 3.3.1.

Definition 3.5.5 For j ∈ I(1, k) and any consecutive pair (tfj−1i−1, t
f
j−1i) of conceptual failure-times for

i ∈ I(1, kf ) under the notations tfj−100 = tfj−1 for i = 1 and either l = 1 or m = 1; furthermore, tf000 = t0

if i = j = 1; either tfj−1ikci
+1 = tfj−1i−1l = tfj−1i or tfj−1i−1m = tfj−1ikai

+1 = tfj−1i depending on whether

l = kci
+ 1 or m = kai

+ 1; a ji-th consecutive conceptual failure-time subinterval is [tfj−1i−1, t
f
j−1i) for

i ∈ I(1, kf ); tfj−1kf
. In addition, the conceptual transformed state data associated with the consecutive

conceptual initial failure-times is denoted by zfj−100 = zfj−1 and for j = 1, zf1−10 = zf000 = zf0 .

Definition 3.5.6 Let {zcj−1l−1}
kc

l=1 and {zaj−1m−1}
ka
m=1 be overall censored and admitted conceptual trans-

formed state data subsequences defined in Definition 3.5.3. Let {tcj−1i−1p}
kci
p=1 and {taj−1i−1q}

kai
q=1 be concep-

tual subsequences restricted to the j−1i-th consecutive conceptual failure-time subinterval [tfj−1i−1, t
f
j−1i) of

overall conceptual censored and admitted subsequences {tcj−1l−1}
kc

l=1 and {taj−1m−1}
ka
m=1 of times of the over-

all sequence {tj−1}kj=1 of times, respectively. Moreover, the union of the boundary points of [tfj−1i−1, t
f
j−1i)
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and the range of subsequences {tcj−1i−1p}
kci
p=1 and {tcj−1i−1q}

kai
q=1 form a sub-partition P fj−1 of P f and the

partition of j − 1-th subinterval [tfj−1i−1, t
f
j−1i) . Two subsequences of the overall censored and/or admitted

conceptual transformed state data subsequences {zcj−1l−1}
kc

l=1 and/or {zaj−1m−1}
ka
m=1 with respect to the two

overall conceptual censored and admitted time subsequences of the overall sequence of times {[tj−1, tj)}kj=1

restricted to the j − 1i-th consecutive conceptual failure-time subinterval [tfj−1i−1, t
f
j−1i) are represented by:

{zcj−1i−1p−1}
kci
p=1 and {zaj−1i−1q−1}

kai
q=1 , (3.5.2)

respectively. These conceptual transformed state data subsequences are called subsequences of the overall

censored and admitted conceptual state data subsequences {zcj−1l−1}
kc

l=1 and {zaj−1m−1}
ka

l=1 of the overall

conceptual sequence {zj−1}kj=1 of data set, respectively. We note that kc =
kc∑
l=1

kcl
and ka =

ka∑
m=1

kam
.

Moreover, for p = 1 and q = 1, (3.5.2) reduces to zcj−1i−10 = zcj−1i−1 and zaj−1i−10 = zaj−1i−1 respectively;

for p = kci + 2, and q = kai + 2, we have zcj−1i−1kci
+1 = zcji and zaj−1i−1kai

+1 = zaji respectively.

Remark 3.5.1 The transformed discrete-time dynamic process (3.4.4) is referred as conceptual compu-

tational interconnected dynamic algorithm for time-to-event data statistic (IDATTEDS). Moreover, from

(3.4.4), we introduce three more special transformed theoretical numerical dynamic schemes for time-to-event

dynamic processes, namely: (i) abnormal/failure/death/removal/infective/etc species or objects, (ii) cen-

sored/quitting/withdrawn/etc species or objects, and (iii) admitted/joining/relapsed/susceptible/etc species

or objects. We further note that the presented numerical dynamic schemes allow “ties” with deaths/failure or

censored/quiting or admitted/susceptible process. In addition, the population/species under the presented

observation/supervision process includes the abnormal/species/patient/objects/infectives population as a

special case.

(i) For each j ∈ I(1, k), let tfcaj−1 be either failure, censored or admitting time at tj−1. For γfj = 0,

the transformed discrete-time dynamic component (3.4.4) at tfj for failure/death/removal/infective/etc

process data set is described by

z(tfj ) =
[
1− λ(tfcaj−1, S(tfcaj−1))∆tfj

]
z(tfcaj−1) for j ∈ I(1, k) . (3.5.3)

This together with (3.4.4), one obtains

z(t
f
j )− z(tfcaj−1) = −λ(tj−1, S(tj−1))z(tfcaj−1)∆tfj , z(t0) = z0 ,

S(tj−1) = S(tj−2)− λ(tfj−2, S(tfj−2))S(tfj−2)∆tfj−1 , S(t0) = S0 ,

(3.5.4)

where a pair (tfcaj−1, t
f
j ) stands for either (tfj−1, t

f
j ), or (tcj−1, t

f
j ) or (taj−1, t

f
j ); tfj , tcj−1 and taj−1 stand for

failure, censored and admitting times, respectively; ∆tfj = tfj − t
fca
j−1.

(ii) For each j ∈ I(1, k), let tcafj−1 be either censored, admitting or failure time at tj−1. γcj stands for the
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conceptual number of censored objects/infectives/quitting/withdrawn/etc at a time tcj . The transformed

discrete-time component (3.4.4) at tcj for censored/listed/identified process data set is reduced to

z(tcj) =
[
1− λ(tcafj−1, S(tcafj−1))∆tcj

]
z(tcafj−1)− γcj for j ∈ I(1, k) , (3.5.5)

where a pair (tcafj−1, t
c
j) stands for either (tcj−1, t

c
j), (taj−1, t

c
j) or (tfj−1, t

c
j); ∆tcj = tcj − t

caf
j−1. Thus

z(t
c
j)− z(t

caf
j−1) = −λ(tj−1, S(tj−1))z(tcafj−1)∆tcj − γcj , z(t0) = z0 ,

S(tj−1) = S(tj−2)− λ(tfj−2, S(tfj−2))S(tfj−2)∆tfj−1 , S(t0) = S0 .

(3.5.6)

(iii) For each j ∈ I(1, k), let tacfj−1 be either admitting, censored or failure time at tj−1. γaj stands for the

conceptual number of objects/infectives/etc arriving/joining at a time taj . The transformed discrete-

time dynamic component (3.4.4) at taj for admitting/joining/sustainable/recruiting/etc process data set

is represented by

z(taj ) =
[
1− λ(tacfj−1, S(tacfj−1))∆taj

]
z(tacfj−1) + γaj for j ∈ I(1, k) , (3.5.7)

where a pair (tacfj−1, t
a
j ) belongs to a set: (tacfj−1, t

a
j ) ∈ {(taj−1, t

a
j ), (tcj−1, t

a
j ), (tfj−1, t

a
j )}; ∆taj = taj − t

acf
j−1.

Hence z(t
a
j )− z(tacfj−1) = −λ(tj−1, S(tj−1))z(tacfj−1)∆taj + γaj , z(t0) = z0 ,

S(tj−1) = S(tj−2)− λ(tfj−2, S(tfj−2))S(tfj−2)∆tfj−1 , S(t0) = S0 .

(3.5.8)

(iv) Remarks (i), (ii) and (iii) remain valid for the iterative process (3.4.13).

(I) For γfj = 0, (3.4.13) reduces to

z(t
f
j )− z(tfcaj−1) = −λ(tj−1, S(tj−1))z(tfcaj−1), z(t0) = z0 ,

S(tj−1) = S(tj−2)− λ(tfj−2, S(tfj−2))S(tfj−2)∆tfj−1, S(t0) = S0 .

(3.5.9)

(II) For γj = γcj in (3.4.13), (3.4.13) reduces to

z(t
c
j)− z(t

caf
j−1) = −λ(tj−1, S(tj−1))z(tcafj−1)− γcj , z(t0) = z0 ,

S(tj−1) = S(tj−2)− λ(tfj−2, S(tfj−2))S(tfj−2)∆tfj−1, S(t0) = S0 .

(3.5.10)

(III) For γj = γaj in (3.4.13), (3.4.13) reduces to

z(t
a
j )− z(tacfj−1) = −λ(tj−1, S(tj−1))z(tacfj−1) + γaj , z(t0) = z0 ,

S(tj−1) = S(tj−2)− λ(tfj−2, S(tfj−2))S(tfj−2)∆tfj−1, S(t0) = S0 .

(3.5.11)

46



In the following, we present very simple result that provides an insight for the understanding of the

discrete-time dynamic of state and parameter estimation problems. Moreover, the result provides one of the

assumptions of the Principle of Mathematical Induction.

Theorem 3.5.1 Assume that the conditions of Theorem 3.4.1 in the context of Remarks 3.5.1(i),(ii) and

(iii) and Definitions 3.5.5 and 3.5.6 are satisfied.

(a) For j ∈ I(1, k), if tfj−1 and tfj are consecutive risk/failure/removal/death/non-operational times in

[t0,T),T ≤ ∞. Then the theoretical/computational estimation algorithm and parameter estimation for

λ(t, S(t)) at tfj are described by (i) and (ii) below.

(i) z(t
f
j ) = z(tfj−1)− λ(tfj−1, S(tfj−1))z(tfj−1)∆tfj , z(t0) = z0 ,

S(tfj−1) = S(tj−2)− λ(tfj−2, S(tfj−2))S(tfj−2)∆tfj−1, S(t0) = S0 .

(3.5.12)

(ii)

λ̂(tfj−1, S(tfj−1)) =
z(tfj−1)− z(tfj )
z(tfj−1)∆tfj

, ∆tfj = tfj − t
f
j−1 . (3.5.13)

Moreover an overall conceptual computational estimate for z(t), S(t) and λ(t, S(t)) on the time-

interval of study [t0,T),T ≤ ∞ is


λ̂(t, Ŝ(tj−1)) = λ̂(tfj−1, Ŝ(tfj−1)) , for t ∈ [tfj−1, t

f
j ) and j ∈ I(1, k),

Ŝ(t, tj−1, Ŝj−1), Ŝ(tj−1) = Ŝj−1,

ẑ(t, tj−1, ẑj−1), ẑ(tj−1) = ẑj−1.

(3.5.14)

(b) For j ∈ I(1, k), if tfj−1 < tcj < tfj , and tcj is censored time between a pair of consecutive failure times

tfj−1 and tfj in [t0,T),T ≤ ∞. Then the theoretical/computational estimation algorithm and parameter

estimation for λ(t, S(t)) at tfj are respectively determined by :

(i)

z(t
f
j ) = z(tfj−1)− λ(tfj−1, S(tfj−1))

[
z(tfj−1)∆tcfj + z(tcj)∆t

fc
j

]
− γcj , z(t0) = z0 ,

S(tfj−1) = S(tj−2)− λ(tfj−2, S(tfj−2))S(tfj−2)∆tfj−1, S(t0) = S0 .

(3.5.15)

(ii)

λ̂(tj−1, Ŝ(tj−1)) =
z(tfj−1)− z(tfj )− γcj[

z(tfj−1)∆tfcj + z(tcj)∆t
cf
j

] , (3.5.16)

where ∆tfcj = tcj − t
f
j−1 , ∆tcfj1 = tfj − tcj . Moreover an overall conceptual computational estimate
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for z(t), S(t) and λ(t, S(t)) on the time-interval of study [t0,T),T ≤ ∞ is


λ̂(t, Ŝ(tj−1)) = λ̂(tfj−1, Ŝ(tfj−1)) , for t ∈ [tfj−1, t

f
j ) and j ∈ I(1, k),

Ŝ(t, tj−1, Ŝj−1), Ŝ(tj−1) = Ŝj−1,

ẑ(t, tj−1, ẑj−1), ẑ(tj−1) = ẑj−1.

(3.5.17)

(c) For j ∈ I(1, k), if tfj−1 < taj < tfj , and taj is joining/admitting time between a pair of consecutive failure

times tfj−1 and tfj in [t0,T),T ≤ ∞ . Then the theoretical/computational estimation algorithm and

parameter estimation for λ(t, S(t)) at tfj are determined by

(i)

z(t
f
j ) = z(tfj−1)− λ(tfj−1, S(tfj−1))

[
z(tfj−1)∆tafj + z(tfaj )∆tafj

]
+ γaj , z(t0) = z0

S(tfj−1) = S(tj−2)− λ(tfj−2, S(tfj−2))S(tfj−2)∆tfj−1 , S(t0) = S0

(3.5.18)

and

(ii)

λ̂(tfj−1, Ŝ(tfj−1)) =
z(tfj−1)− z(tfj ) + γaj[

z(tfj−1)∆tfaj1 + z(tafj1 )∆tafj1
] , (3.5.19)

where ∆tafj = taj − t
f
j−1 , ∆tfaj = tfj − taj . Moreover an overall conceptual computational estimate

for z(t), S(t) and λ(t, S(t)) on the time-interval of study [t0,T),T ≤ ∞ is


λ̂(t, Ŝ(tj−1)) = λ̂(tfj−1, Ŝ(tfj−1)) , for t ∈ [tfj−1, t

f
j ) and j ∈ I(1, k),

Ŝ(t, tj−1, Ŝj−1), Ŝ(tj−1) = Ŝj−1,

ẑ(t, tj−1, ẑj−1), ẑ(tj−1) = ẑj−1.

(3.5.20)

Proof. (a) Let tfj−1 and tfj be two consecutive conceptual failure times. In this case, kci = kai = 0. From

Definition 3.5.5, here i = 1, therefore, for the subinterval [tfj−1i−1l−1, t
f
j−1i), l = i = 1, and tfj1 = tfj ; tfj−1 =

tfj−100. Using the theoretical discrete-time iterative scheme (3.4.4) and Remark 3.5.1(i)(1.3.20), we have

z(t
f
j ) = z(tfj−1)− λ(tfj−1, S(tfj−1))z(tfj−1)∆tfj , z(t0) = z0

S(tfj−1) = S(tj−2)− λ(tfj−2, S(tfj−2))S(tfj−2)∆tfj−1 , S(t0) = S0

This establishes a(i). For the validity of a(ii), from Definition 3.5.1, backward substitution, and using
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Definition 3.5.2, we obtain
λ̂(t, Ŝ(tj−1)) = λ̂(tfj−1, S(tfj−1)) = z(tf

j−1)−z(tf
j
)

z(tf
j−1)∆tf

j

, ∆tfj = tfj − t
f
j−1 ,

Ŝ(t, tj−1, Ŝj−1), Ŝ(tj−1) = Ŝj−1,

ẑ(t, tj−1, ẑj−1), ẑ(tj−1) = ẑj−1.

for t ∈ [tfj−1, t
f
j ) and j ∈ I(1, k). This establishes (a)(ii). This completes the proof of (a).

(b) Let tcj be a censoring time between two consecutive conceptual risk/failure times, tfj−1 and tfj . We

consider a partition of subinterval [tfj−1, t
f
j ) to be P fji = [tfj−1, t

f
j ] : tj−1 < tcj−1 < tj . In addition, from

Definitions 3.5.5 and 3.5.6, kai = 0, kci = 1, and 0 + kci + 2 = 3. Thus, the size of P fji is 3. We note that

i = 1, since tfj−1 = tfj−10 and tfj = tfj2 = tj−1kci
+1.

Employing Remark 3.5.1(ii) in the context of [tfj−1, t
c
j) and [tcj , t

f
j ), respectively, and algebraic simplifica-

tions, we have

z(tcj)− z(t
f
j−1) = −λ(tfj−1, S(tfj−1))z(tfj−1)∆tcfj−1 − γ

c
j

and

z(tfj )− z(tcj−1) = −λ(tcj−1, S(tcj−1))z(tcj−1)∆tfcj−1 = −λ(tfj−1, S(tfj−1))z(tfj−1)∆tfcj−1 .

Adding and simplifying, we obtain

z(tfj )− z(tfj−1) = −λ(tfj−1, S(tfj−1))
[
z(tfj−1)∆tcfj−1 + z(tcj−1)∆tfcj−1

]
− γcj ,

and hencez(t
f
j ) = z(tfj−1)− λ(tfj−1, S(tfj−1))

[
z(tfj−1)∆tcfj−1 + z(tcj−1)∆tfcj−1

]
− γcj , z(t0) = z0 ,

S(tfj−1) = S(tj−2)− λ(tfj−2, S(tfj−2))S(tfj−2)∆tfj−1, S(t0) = S0.

(3.5.21)

This establishes (b)(i).

From (3.5.21) and the backward substitution, we conclude that z(tfj−1) − z(tfj ) − γcj is the number of

failure/non-operating objects and z(tfj−1)∆tcfj−1 + z(tcj)∆t
fc
j1 denotes the total amount of time spent by

z(tfj−1)− z(tfj )− γcj over the the interval [tj−1, tj). Hence, solving for λ(tfj−1, S(tfj−1)) establishes (b)(ii).

(c) The proof of (c) can be constructed by slightly modifying the argument for the proof of (b). This

establishes proof of the theorem. 2

In the following, we extend Theorem 3.5.1, for multiple censored and admitting times between two con-

secutive failure times.

Theorem 3.5.2 Let the hypotheses of Theorem 1.3.1 in the context of Remarks 3.5.1(i), 3.5.1(ii), and
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3.5.1(iii) and Definitions 3.5.5 and 3.5.6 be satisfied. For each j ∈ I(1, k), and each i ∈ I(1, kf ), let

tfj−1i−1 and tfj−1i be consecutive failure times. Let {tcj−1i−1p−1}
kci

+1
p=1 , {taj−1i−1q−1}

kai
+1

q=1 be a finite subse-

quences of censored and admitted time observations, respectively, over a consecutive failure-time subinterval

[tfj−1i−1, t
f
j−1i), where kci

is the total number of censored objects/species/infective/quitting covered over the

subinterval [tfj−1i−1, t
f
j−1i); kai is the the total number of admitting/entering/joining/susceptible/etc covered

over the subinterval [tfj−1i−1, t
f
j−1i). Then the theoretical transformed/computational estimation algorithm

and parameter estimation for λ(t, S(t)) at tfj−1i are respectively determined by :

(i)


z(tfj−1i) = z(tfj−1i−1)− λ(tfj−1i−1, S(tfj−1i−1))

[
kbi

+1∑
l=1

, z(tc/aj−1i−1l−1)∆(tc/aj−1i−1l)
]
− kci + kai , z(t0) = z0 ,

S(tfj−1i−1) = S(tj−2)− λ(tfj−2i−2, S(tfj−2i−2))S(tfj−2i−2)∆tfj−1i−2, S(t0) = S0.

(3.5.22)

for i ∈ I(1, kf ), j ∈ I(1, k) and

(ii)

λ̂(tfj−1i−1, Ŝ(tfj−1i−1)) =
z(tfj−1i−1)− z(tfj−1i)− kci

+ kai

kbi
+1∑

l=1
z(tc/aj−1i−1l−1)∆(tc/aj−1i−1l)

, t ∈ [tfj−1i−1, t
f
j−1i) , (3.5.23)

where kbi = kci + kai .

Moreover an overall conceptual parameter estimate for z(t), S(t) and λ(t, S(t)) on the time-interval of study

[t0,T) are determined by


λ̂(t, Ŝ(tfj−1i−1)) = λ̂(tfj−1i−1, Ŝ(tfj−1i−1)) for t ∈ [tfj−1i−1, t

f
j−1i), j ∈ I(1, k) and i ∈ I(1, kf ) ,

Ŝ(t) = Ŝ(t, tfj−1i−1, Ŝ(tfj−1i−1)), Ŝ(tfj−1i−1) = Sj−1i−1,

ẑ(t) = ẑ(t, tfj−1i−1, ẑ(t
f
j−1i−1)).

(3.5.24)

Proof. From Definitions 3.5.5 and 3.5.6, l = p = j = i = 1, tf000 = t0 and tf0i−1kbi
+1 = tf01 and the applica-

tion of Theorem 3.5.1, we note that one of the fundamental assumptions of the Principle of Mathematical

Induction(PMI) [33] is satisfied. For the validity of the application of PMI, we assume that (3.5.22) is valid

for j − 1 ∈ I(1, k), and then need to show that (3.5.22) is satisfied for j ∈ I(1, k). For this purpose, we note

that for j ∈ I(1, k), each i ∈ I(1, kf ), and tfj−1i−1, t
f
j−1i ∈ [t0,T], kci and kai objects/species/subjects are

censored and admitted over the subinterval [tfj−1i−1, t
f
j ] of consecutive failure times, respectively. Let P

f
ji be

a partition corresponding to the union of the range of two finite subsequences of censored and admitted times

over the consecutive failure-time subinterval [tfj−1i−1, t
f
ji), and let it be represented by

P
f
j−1i : tfj−1i−11−1 = tfj−1i−10 = tfj−1i−1 < t

c/a
j−1i−11 < . . . < t

c/a
j−1i−1l−1 < t

c/a
j−1i−1l < . . .

< t
c/a
j−1i−1kbi

< t
c/a
j−1i−1kbi

+1 = tfj−1i .
(3.5.25)
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In short, Pfji is a partition of [tfj−1i−1, t
f
j−1i] with the size of the partition kbi + 2, and kbi = kci + kai .

For j ∈ I(1, k) and i ∈ I(1, kf ), using the iterative schemes (1.3.20), (3.5.6) and (3.5.8) and noting the

nature of the process λ(tc/aj−1i−1l−1, S(tc/aj−1i−1l−1)) = λ(tfj−1i−i, S(tfj−1i−1)) in the context of Definitions 3.5.5

and 3.5.6 for l ∈ I(1, kbi), we have

z(tfj−1i)− z(t
f
j−1i−1) =− λ(tfj−1i−1, S(tfj−1i−1))z(tfc/aj−1i−1)∆tfc/aj−1i−1 + γ

c/a
j−1i−1

−
kbi∑
m=2

[
λ(tc/aj−1i−1m−1, S(tc/aj−1i−1m−1))z(tc/aj−1i−1m−1)∆tc/aj−1i−1m + γ

c/a
j−1i−1m−1

]
+ λ(tc/aj−1i−1kbi

, S(tc/aj−1i−1kbi
))z(tc/aj−1i−1kbi

)∆tfjikbi
+1

= −λ(tfj−1i−1, S(tfj−1i−1))

kbi
+1∑

l=1
z(tc/aj−1i−1l−1)∆tc/aj−1i−1l

− kbi
.

Hence,


z(tfj−1i) = z(tfj−1i−1)− λ(tfj−1i−1, S(tfj−1i−1))

[
kbi

+1∑
l=1

z(tc/aj−1i−1l−1)∆tc/aj−1i−1l

]
− kcj

+ kaj
, z(t0) = z0

S(tfj−1i−1) = S(tfj−2i−2)− λ(tfj−2i−2, S(tfj−2i−2i−2))S(tfj−2i−2)∆tfj−1i−1 , S(t0) = S0.

(3.5.26)

This establishes (i).

From (3.5.26), we note that z(tfj−1i−1)− z(tfji)−kci
+kai

is a change in the number of items/subjects that

are under observation over the subinterval [tfj−1i−1, t
f
ji], and

kbi
+1∑

l=1
z(tc/aj−1i−1l−1)∆(tc/aj−1i−1l) is a total amount

of time spent under the observation/testing/evaluation/monitoring of z(tc/aji−1l) items/patients/infectives/-

subjects on the interval [tc/aj−1i−1l−1, t
c/a
j−1i−1l) for l ∈ I(1, kbj

), j ∈ I(1, n) and i ∈ I(1, kf ). From this and

Definition 3.5.2, and the backward substitution, we obtain

λ̂(tfj−1i−1, Ŝ(tfj−1i−1)) =
z(tfj−1i−1)− z(tfj−1i)− kcj + kaj

kbj
+1∑

l=1
z(tc/aj−1i−1l−1)∆(tc/aj−1i−1l)

, t ∈ [tfj−1i−1, t
f
ji) for i ∈ I(1, kf )and , j ∈ I(1, k).

This establishes (3.5.23). Moreover,


λ̂(t, Ŝ(tfj−1i−1)) = λ̂(tfj−1i−1, Ŝ(tfj−1i−1)), for t ∈ [tfj−1i−1, t

f
j−1i), j ∈ I(1, k) and i ∈ I(1, kf )

Ŝ(t) = Ŝ(t, tfj−1i−1, Ŝ(tfj−1i−1)), Ŝ(tfj−1i−1) = Sj−1i−1,

ẑ(t) = ẑ(t, tfj−1i−1, ẑ(t
f
j−1i−1)).

This completes the proof of the theorem.

2
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In the following, we present a special case, when λ(t, S) takes a specific form.

Example 3.5.1 For λ(t, S) = λ(t)(1− S), (3.5.23) reduces to

λ̂(tfj−1i−1) =
z(tfj−1i−1)− z(tfj−1i)− kci

+ kai

(1− S(tfj−1i−1))
[
kbi

+1∑
l=1

z(tc/aj−1i−1l−1)∆(tc/aj−1i−1l)
] , t ∈ [tfj−1i−1, t

f
ji) , (3.5.27)

for i ∈ I(1, kf ) and j ∈ I(1, k).

Example 3.5.2 Let λ(t) = 1
σt , where σ is a parameter to be estimated from empirical data. Then applying

Theorem 3.5.2, we obtain

1
σ̂(tfj−1i−1)

=
z(tfj−1i−1)− z(tfj−1i)− kci + kai

(1− S(tfj−1i−1))
[
kbi

+1∑
l=1

z(tc/aj−1i−1l−1)∆(tc/a

j−1i−1l
)

t
c/a

j−1i−1l−1

] , t ∈ [tfj−1i−1, t
f
ji) , (3.5.28)

for i ∈ I(1, kf ) and j ∈ I(1, k).

In the following, we present a few results that are very special cases of Theorem 3.5.2.

Corollary 3.5.1 Let the hypotheses of Theorem 3.5.2 be satisfied except ka = 0. Then the theoretical/-

conceptual estimation algorithm and parameter estimation for λ(t, S(t)) at tfji are respectively determined

by:

(i)


z(tfji) = z(tfj−1i−1)− λ(tfj−1i−1, S(tfj−1i−1))

[
kci

+1∑
p=1

, z(tcj−1i−1p−1)∆(tcj−1i−1p)
]
− kci

, z(t0) = z0 ,

S(tfj−1i−1) = S(tfj−2i−2)− λ(tfj−2i−2, S(tfj−2i−2))S(tfj−2i−2)∆tfj−1i−1, S(t0) = S0 .

(3.5.29)

(ii)

λ̂(tfj−1i−1, Ŝ(tfj−1i−1)) =
z(tfj−1i−1)− z(tfj−1i)− kci

kci
+1∑

p=1
z(tcj−1i−1p−1)∆(tcj−1i−1p)

, t ∈ [tfj−1i−1, t
f
j−1i) (3.5.30)

for i ∈ I(1, kf ) and j ∈ I(1, k). Moreover an overall conceptual computational estimate for z(t), S(t)

and λ(t, S(t)) on the time-interval of study [t0,T) is


λ̂(t, Ŝ(tfj−1i−1)) = λ̂(tfj−1i−1, Ŝ(tfj−1i−1)), for t ∈ [tfj−1i−1, t

f
j−1i), j ∈ I(1, k) and i ∈ I(1, kf )

Ŝ(t) = Ŝ(t, tfj−1i−1, Ŝ(tfj−1i−1)), Ŝ(tfj−1i−1) = Sj−1i−1,

ẑ(t) = ẑ(t, tfj−1i−1, ẑ(t
f
j−1i−1)).
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Corollary 3.5.2 Let the hypotheses of Theorem 3.5.2 be satisfied except kc = 0. Then the theoretical/-

conceptual estimation algorithm and parameter estimation for λ(t, S(t)) at tfj−1i are respectively determined

by:

(i)


z(tfji) = z(tfj−1i−1)− λ(tfj−1i−1, S(tfj−1i−1))

[
kai

+1∑
p=1

, z(taj−1i−1q−1)∆(taj−1i−1q)
]

+ kai , z(t0) = z0

S(tfj−1i−1) = S(tfj−2i−2)− λ(tfj−2i−2, S(tfj−2i−2))S(tfj−2i−2)∆tfj−1i−1, S(t0) = S0.

(3.5.31)

and

(ii)

λ̂(tfj−1i−1, Ŝ(tfj−1i−1)) =
z(tfj−1i−1)− z(tfj−1i) + kai

kai
+1∑

q=1
z(taj−1i−1q−1)∆(taj−1i−1q)

, t ∈ [tfj−1i−1, t
f
ji) (3.5.32)

for i ∈ I(1, kf ) and j ∈ I(1, k). Moreover an overall conceptual computational estimate for z(t), S(t)

and λ(t, S(t)) on the time-interval of study [t0,T] is


λ̂(t, Ŝ(tfj−1i−1)) = λ̂(tfj−1i−1, Ŝ(tfj−1i−1)), for t ∈ [tfj−1i−1, t

f
j−1i), j ∈ I(1, k) and i ∈ I(1, kf ),

Ŝ(t) = Ŝ(t, tfj−1i−1, Ŝ(tfj−1i−1)), Ŝ(tfj−1i−1) = Sj−1i−1,

ẑ(t) = ẑ(t, tfj−1i−1, ẑ(t
f
j−1i−1)).

The following special case of Theorem 3.5.2 is with respect to the totally discrete-time hybrid dynamic

model for time-to-event dynamic process.

Corollary 3.5.3 Let us assume that the conditions of Corollary (3.4.1) in the context of Definitions 3.5.5

and 3.5.6 and Remarks 3.5.1(iv) (I),(II), and (III) are satisfied. For each j ∈ I(1, k), and each i ∈ I(1, kf ),

let tfj−1i−1 and tfj−1i be consecutive failure times. Let {tcj−1i−1p}
kcj

p=1, {taj−1i−1q}
kai
q=1 be a finite subse-

quences of censored and admitted time observations, respectively, over a consecutive failure-time subinterval

[tfj−1i−1, t
f
j−1i), where kci

is the total number of censored objects/species/infective/quitting covered over the

subinterval [tfj−1i−1, t
f
j−1i); kai is the the total number of admitting/entering/joining/susceptible/etc covered

over the subinterval [tfj−1i−1, t
f
j−1i). Then the theoretical/conceptual estimation algorithm and parameter

estimation for λ(t, S(t)) at tfj−1i are determined by :

(i)


z(tfj−1i) = z(tfj−1i−1)− λ(tfj−1i−1, S(tfj−1i−1))

[
kbi

+1∑
l=1

z(tc/aj−1i−1l−1)
]
− kci

+ kai
, z(t0) = z0

S(tfj−1i−1) = S(tfj−2i−2)− λ(tfj−2i−2, S(tfj−2i−2))S(tfj−2i−2) , S(t0) = S0.

(3.5.33)
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and

(ii)

λ̂(tfj−1i−1, Ŝ(tfj−1i−1)) =
z(tfj−1i−1)− z(tfj−1i)− kci + kai

kbi
+1∑

l=1
z(tc/aj−1i−1l−1)

, t ∈ [tfj−1i−1, t
f
j−1i) (3.5.34)

respectively for i ∈ I(1, kf ) and j ∈ I(1, k).

Moreover an overall conceptual computational estimate z(t), S(t) and for λ(t, S(t)) on the time-interval of

study [t0,T] is


λ̂(t, Ŝ(tfj−1i−1)) = λ̂(tfj−1i−1, Ŝ(tfj−1i−1)), for t ∈ [tfj−1i−1, t

f
j−1i), j ∈ I(1, k) and i ∈ I(1, kf ),

Ŝ(t) = Ŝ(t, tfj−1i−1, Ŝ(tfj−1i−1)), Ŝ(tfj−1i−1) = Sj−1i−1,

ẑ(t) = ẑ(t, tfj−1i−1, ẑ(t
f
j−1i−1)).

(3.5.35)

Now, we state a very general theorem that provides a theoretical estimate for λ(t, S) between two consec-

utive change point times, tcpj−1r−1 and tcpj−1r.

Theorem 3.5.3 Let the hypotheses of Theorem 1.3.1 in the context of Definitions 3.5.5 and 3.5.6 and Re-

marks 3.4.1, 3.5.1(i), 3.5.1(ii), and 3.5.1(iii) be satisfied. For each j ∈ I(1, k) and each r ∈ I(1, n), let

tcpj−1r−1 and tcpj−1r be consecutive change point times. Let {tfj−1r−1i−1}
kfr
i=1, {tcj−1r−1p−1}

kcr
p=1, and {taj−1r−1q−1}

kar
q=1

be the a sequence of failure, censored and admission times respectively in the interval [tcpj−1r−1, t
cp
j−1r). kfr , kcr ,

and kar
are respectively, the total number of failures, censored and admitting items/objects/species/etc in the

consecutive change-point subinterval [tcpj−1r−1, t
cp
j−1r). Then the theoretical/conceptual estimation algorithm

and parameter estimation for λ(t, S(t)) at tcpj−1r are determined by:

(i)


z(tcpj−1r) = z(tcpj−1r−1)− λ(tcpj−1r−1, S(tcpj−1r−1))

[
kbr +1∑
l=1

z(tf/c/aj−1r−1l−1)∆(tf/c/aj−1r−1l)
]

−kfr − kcr + kar , z(t0) = z0,

S(tcpj−1r−1) = S(tcpj−2r−2)− λ(tcpj−2r−2, S(tcpj−2r−2))S(tcpj−2r−2)∆tcpj−1r−1 , S(t0) = S0.

(3.5.36)

and

λ̂(tcpj−1r−1, Ŝ(tcpj−1r−1)) =
z(tcpj−1r−1)− z(tcpj−1r)− kfr − kcr + kar

kbr +1∑
l=1

z(tf/c/aj−1r−1l−1)∆(tf/c/aj−1r−1l)
, t ∈ [tcpj−1r−1, t

cp
j−1r) , (3.5.37)

respectively for r ∈ I(1, n) and j ∈ I(1, k). kbr = kfr + kcr + kar . Moreover an overall conceptual estimate
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for z(t), S(t) and λ(t, S(t)) on the time-interval of study [t0,T) is


λ̂(t, Ŝ(tcpj−1r−1)) = λ̂(tcpj−1r−1, Ŝ(tcpj−1r−1)), for t ∈ [tcpj−1r−1, t

cp
j−1r), r ∈ I(1, n) and j ∈ I(1, k),

Ŝ(t) = Ŝ(t, tcpj−1r−1, Ŝ(tcpj−1r−1)), Ŝ(tcpj−1i−1) = Sj−1i−1,

ẑ(t) = ẑ(t, tcpj−1r−1, ẑ(t
cp
j−1r−1)).

(3.5.38)

Proof. Imitating the proof of Theorem 3.5.2, one can establish the proof of the Theorem 3.5.3. 2

Remark 3.5.2 Corollaries parallel to Corollaries 3.5.1 and 3.5.2 can be formulated.

The following special case of Theorem 3.5.3 is with respect to the totally discrete-time hybrid dynamic model

for time-to-event dynamic process.

Corollary 3.5.4 Let us assume that all conditions of Corollary (3.4.1) in the context of Definitions 3.5.5

and 3.5.6 and Remarks 3.5.1(iv) (I),(II), and (III) are satisfied. For each j ∈ I(1, k) and each r ∈

I(1, n), let tcpj−1r−1 and tcpjr be consecutive change point times. Let {tfj−1r−1i−1}
kfr
i=1, {tcj−1r−1p−1}

kcr
p=1, and

{taj−1r−1q−1}
kar
q=1 be the a sequence of failure, censored and admission times respectively in the interval

[tcpj−1r−1, t
cp
jr). kfr

, kcr
, and kar

are respectively, the total number of failures, censored and admitting items/ob-

jects/species/etc in the consecutive change-point subinterval [tcpj−1r−1, t
cp
jr). Then the theoretical/conceptual

estimation algorithm and parameter estimation for λ(t, S(t)) at tcpjr are determined by:

(i)


z(tcpj−1r) = z(tcpj−1r−1)− λ(tcpj−1r−1, S(tcpj−1r−1))

[
kbr +1∑
l=1

z(tf/c/aj−1r−1l−1)
]
− kfr − kcr + kar , z(t0) = z0,

S(tcpj−1r−1) = S(tcpj−2r−2)− λ(tcpj−2r−2, S(tcpj−2r−2))S(tcpj−2r−2), S(t0) = S0 ,

(3.5.39)

and

λ̂(tcpj−1r−1, Ŝ(tcpj−1r−1)) =
z(tcpj−1r−1)− z(tcpj−1r)− kfr

− kcr
+ kar

kbr +1∑
l=1

z(tf/c/aj−1r−1l−1)
, t ∈ [tcpj−1r−1, t

cp
j−1r) , (3.5.40)

respectively. Moreover an overall conceptual estimate for z(t), S(t) and λ(t, S(t)) on the time-interval of

study [t0,T) is


λ̂(t, Ŝ(tcpj−1r−1)) = λ̂(tcpj−1r−1, Ŝ(tcpj−1r−1)), for t ∈ [tcpj−1r−1, t

cp
j−1r), r ∈ I(1, n) and j ∈ I(1, k),

Ŝ(t) = Ŝ(t, tcpj−1r−1, Ŝ(tcpj−1r−1)), Ŝ(tcpj−1i−1) = Sj−1i−1,

ẑ(t) = ẑ(t, tcpj−1r−1, ẑ(t
cp
j−1r−1)).

(3.5.41)
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Chapter 4

Conceptual Computational and Simulation Algorithms

4.1 Introduction

In this chapter, we outline a conceptual computational dynamic algorithm that includes both (a) survival

state and (b) change point survival state and parameter estimation problems in a systematic and unified

way. For the undertaking of this task, we need to conceptually coordinate the data collection, numerical

scheme and simulation times with theoretical discrete-time dynamic algorithm. In addition, it is essential

to decompose, to reorganize, and re-aggregate a given overall data set in a suitable manner to meet the

overall goal(s). Prior to the development of the scheme, we define, introduce notations and reorganize the

observed data set for the usage of a conceptual computational dynamic algorithm in Sections 4.2 and 4.3.

We outline conceptual computational dynamical algorithms for survival state and change-point survival state

and parameter estimation problems in Sections 4.4 and 4.5. The developed computational algorithms are

then applied to three data sets in Section 4.6. In Section 4.7, the recently developed LLGMM method [44, 45]

is extended and applied to three data sets and results are compared. In fact, LLGMM method provides the

measure of confidence, prediction and planning assessments.

4.2 Data Collection Coordination with Iterative Processes

Without loss of generality, we assume that the real data observation/collection schedule is indeed a finite

sequence {tj−1}kj=1 corresponding to the partition P of [t0,T) defined in Section 3.3. Moreover, the real

world data set and its data observation/collection times are coordinated with conceptual data set sequence

and data collection sequence of times.

4.3 Data Decomposition, Reorganization and Aggregation

Based on our research, we recognize that there are two major problems of interests in a time-to-event dynamic

process, namely: (1) Survival state and (2) change point state estimation analysis problems. For the study

of these problems, we decompose, reorganize and re-aggregate the original real world data set in a respective

framework of (1) Survival state and (2) change point study in a time-to-event process. The original data is

coordinated, decomposed, reorganized, and aggregated with reference to the conceptual data coordination,

decomposition, reorganization and aggregation in the manner analogous to Definitions 3.5.3–3.5.6.
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4.4 Conceptual Computational Parameter and State Estimations Scheme

For the conceptual computational parameter estimation, we use nonlinear discrete-time conceptual com-

putational interconnected dynamic algorithm (3.4.4) for time-to-event data statistic (Flowchart- 1b). The

original state data subsequences are associated with conceptual data set. The decomposition of the original

real world data set into three types of subsequences of data is as defined in the context of Definition 3.5.3.

We consider the original data set as the real data set. For i ∈ (1, kf ), conceptual computational dynamic

estimation algorithms in (3.5.22) and (3.5.33) are used for continuous and totally discrete-time real world

data sets, respectively. The parameter and state estimates at tfj−1i are determined using (3.5.23) and (3.5.34)

for continuous and totally discrete-time real world data sets, respectively. Finally, employing the Principle

of Mathematical Induction [33], an overall parameter and state estimations for z(t), S(t) and λ(t, S(t)) over

the time interval [t0,T) of study are determined from (3.5.24) and (3.5.35).

4.5 Conceptual Computational State Simulation Scheme

We utilize the common sense ideas, namely, range of finite sequence of data collection time, the initial relative

frequency of the survival and the range of relative frequency. In addition, we employ the fundamental prop-

erties of solution process of initial value problems in the theory of differential equations [33], in particular, the

continuous dependence of solutions with respect to initial data and other properties. We identify the initial

data (t0, S0, z0) for various choices of S0. The best estimates are obtained when near optimal convergence

is achieved for a particular choice of initial survival state, S0. In summary, the Conceptual Computational

Algorithm consists of three-step nested processes.

4.5.1 Change Point Data Analysis Problem

In this subsection, we address the usage of the study of time-to-event process. A Change-point process in the

time-to-event process measures the effects of intervention process. Here, again the overall pair of sequence

of discrete-time interconnected state dynamic data set is characterized by single right-end point data set

with two consecutive change point dynamic process. A sequence of two consecutive change point times is

assumed to be a single subsequence of overall sequence {tj−1}kj=1 of conceptual state data observation times.

The sequence of two consecutive change point times is denoted by {tcpj−1r−1}nr=1 for r ∈ I(1, n) with n ≤ k.

Generally, using the time-to-event state dynamic data set, the change point sequence of times is estimated.

A change point process in the time-to-event process measures the effects of intervention process. The rest of

the data collection coordination with conceptual iterative process is parallel to the survival state problem,

except notations. Except for notational changes (for example, replacing [tfj−1i−1, t
f
j−1i) by [tcpj−1r−1, t

cp
j−1r)),

entire conceptual computational procedure regarding the survival state data analysis problem is imitated

for the change-point problem analogously. For i ∈ I(1, n) the conceptual computational dynamic algorithms

in (3.5.36) and (3.5.39) are used for continuous and totally discrete-time real world data sets, respectively.
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The parameter and state estimates at tcpj−1r are determined using (3.5.37) and (3.5.40) for continuous and

totally discrete-time real world data sets, respectively. Finally, employing the Principle of Mathematical

Induction, an overall parameter and state estimation for z(t), S(t) and λ(t, S(t)) over the time interval [t0,T)

of study are determined from (3.5.38) and (3.5.41). In summary, the Conceptual Computational Algorithm

is outlined in Flowchart 6.
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A partition PT
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Flowchart 6.: Conceptual Computational Algorithm



We present an algorithm and a flowchart for the simulation schemes described above.

Given t0, S0 and z0

for j = 1 to k do

if Failure time then

for i = 1 to kf do

Compute kci , kai , z(t
f
j−1i−1), z(tfji)

if Continuous then

Compute
kbi

+1∑
l=1

z(tc/aj−1i−1l−1)∆(tc/aj−1i−1l)

else

Compute
kbi

+1∑
l=1

z(tc/aj−1i−1l−1)

end if

Compute λ̂, ẑ and Ŝ

end for

else

Change point analysis
...

end if

end for

Algorithm 7.: Simulation Scheme
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4.6 Applications to Time-to-event Datasets

In this section, using the conceptual computational algorithm, we exemplify our theoretical algorithms and

procedures for estimating parameters and survival state for three datasets. 96 locomotive control failure data

set in number of thousand miles [37, 47], a follow-up time and vital status of 100 subjects in the Worcester

heart attack study [23] and data set describing time (in months) of death and losses of a sample of 8 items

found in [26] that was analyzed by[38].

Illustration 4.6.1 The data in Table 4 was discussed in [37, 47] regarding the number of thousand miles at

which different locomotive controls failed in a life test involving ninety-six controls. The test was terminated

after 135, 000 miles, by which time thirty-seven failures had occurred. Fifty-nine locomotive controls were

censored at 135, 000 miles.

We apply the developed conceptual computational algorithm. Employing (3.5.28) with ka = 0, we demon-

strate our innovative alternative approach for finding parameter and survival function estimates on consec-

utive failure time intervals.

Table 4: Locomotive control Life-test Dataset [37, 47]

Data
Observation

per 1000 miles

Failure/
Censor Time

Frequency
of

Failure
or

Censors
at ti

Survival
or

Operating
units at ti:

z(ti)

t0 = 1.0 Initial 96
t1 = 22.5 Failure 1 95
t2 = 37.5 Failure 1 94
t3 = 46.5 Failure 1 93
t4 = 48.5 Failure 1 92
t5 = 51.5 Failure 1 91
t6 = 53.5 Failure 1 90
t7 = 54.5 Failure 1 89
t8 = 57.5 Failure 1 88
t9 = 66.5 Failure 1 87
t10 = 68.0 Failure 1 86
t11 = 69.5 Failure 1 85
t12 = 76.5 Failure 1 84
t13 = 77.0 Failure 1 83
t14 = 78.5 Failure 1 82
t15 = 80.0 Failure 1 81
t16 = 81.5 Failure 1 80
t17 = 82.5 Failure 1 79
t18 = 83.0 Failure 1 78
t19 = 84.0 Failure 1 77

Data
Observation

per 1000 miles

Failure
or

Censor Time

Frequency
of

Failure
or

Censors
at ti

Survival
or

Operating
units at ti:

z(ti)

t20 = 91.5 Failure 1 76
t21 = 93.5 Failure 1 75
t22 = 102.5 Failure 1 74
t23 = 107.0 Failure 1 73
t24 = 108.5 Failure 1 72
t25 = 112.5 Failure 1 71
t26 = 113.5 Failure 1 70
t27 = 116.0 Failure 1 69
t28 = 117.0 Failure 1 68
t29 = 118.5 Failure 1 67
t30 = 119.0 Failure 1 66
t31 = 120.0 Failure 1 65
t32 = 122.5 Failure 1 64
t33 = 123.0 Failure 1 63
t34 = 127.5 Failure 1 62
t35 = 131.0 Failure 1 61
t36 = 132.5 Failure 1 60
t37 = 134.0 Failure 1 59
t38 = 135.0 Censored 59 0

We utilize the range of finite sequence of data collection time. We note the initial relative frequency of

the survival locomotive control to be 95
96 . In fact the range of relative frequency is [0.6146, 0.9896]. We

chose initial survival probability to be S0 = 0.985, 0.989, 0.99, 0.999, 0.9999, 0.99999, 0.999999 and applied
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the conceptual computational simulation algorithm for consecutive failure-time subintervals. The results are

recorded in Table 5. The simulation results exhibits the almost optimal convergence of survival state proba-

bility estimates for S0 = 0.99999. We then conclude that the best survival state estimate is for S0 = 0.99999

for the locomotive control data set. This was further reaffirmed by the application of the modified version of

LLGMM method that assures a certain degree of confidence in the survival state estimates. In addition, the

modified version of LLGMM method provides a test for the best optimality of state and parameter estimates.

Moreover, it provides a confidence interval for the survival state estimates. Furthermore, it also provides the

measure of significance for the usage of new procedures/tools/etc.
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Table 5: Estimates σ̂(tj−1i) ≡ σ̂j−1i and Ŝ(tj−1i−1) ≡ Ŝj−1i−1 using S0 = 0.985, 0.98900, 0.99000, 0.99900, 0.99990, 0.99999, 0.999999 using (3.5.28)
with ka = 0 and the procedure outlined in Chapter 4

Consecutive

Failure time

interval,

[tj−1i−1, tj−1i)

S0 = 0.985 S0 = 0.98900 S0 = 0.99000 S0 = 0.99900 S0 = 0.9999 S0 = 0.99999 S0 = 0.999999

σ̂j−1i Ŝj−1i−1 σ̂j−1i Ŝj−1i−1 σ̂j−1i Ŝj−1 σ̂j Ŝj−1i−1 σ̂j−1i Ŝj−1i−1 σ̂j−1i Ŝj−1i−1 σ̂j−1i Ŝj−1i−1

[1, 22.5) 30.9600 0.9850 22.7040 0.9890 20.6400 0.9900 2.0640 0.9990 0.2064 0.9999 0.0206 0.99999 0.0021 0.999999

[22.5, 37.5) 1.5998 0.9747 1.3491 0.9787 1.2865 0.9797 0.7224 0.9886 0.6660 0.9895 0.6603 0.9896 0.6598 0.9896

[37.5, 46.5) 0.8014 0.9645 0.7130 0.9684 0.6909 0.9694 0.4921 0.9782 0.4722 0.9791 0.4702 0.9792 0.4700 0.9792

[46.5, 48.5) 0.1831 0.9542 0.1676 0.9581 0.1637 0.9591 0.1289 0.9678 0.1254 0.9687 0.1250 0.9687 0.1250 0.9687

[48.5, 51.5) 0.3189 0.9440 0.2971 0.9478 0.2916 0.9488 0.2426 0.9574 0.2377 0.9582 0.2372 0.9583 0.2371 0.9583

[51.5, 53.5) 0.2343 0.9337 0.2209 0.9375 0.2176 0.9384 0.1874 0.9470 0.1844 0.9478 0.1841 0.9479 0.1841 0.9479

[53.5, 54.5) 0.1288 0.9234 0.1225 0.9272 0.1209 0.9281 0.1067 0.9366 0.1053 0.9374 0.1052 0.9375 0.1051 0.9375

[54.5, 57.5) 0.4254 0.9132 0.4072 0.9169 0.4026 0.9178 0.3618 0.9262 0.3577 0.9270 0.3573 0.9271 0.3572 0.9271

[57.5, 66.5) 1.3372 0.9029 1.2867 0.9066 1.2741 0.9075 1.1605 0.9158 1.1491 0.9166 1.1480 0.9167 1.1478 0.9167

[66.5, 68.0) 0.2107 0.8927 0.2035 0.8963 0.2018 0.8972 0.1858 0.9053 0.1842 0.9062 0.1840 0.9062 0.1840 0.9062

[68.0, 69.5) 0.2231 0.8824 0.2163 0.8860 0.2146 0.8869 0.1993 0.8949 0.1978 0.8957 0.1976 0.8958 0.1976 0.8958

[69.5, 76.5) 1.0947 0.8721 1.0643 0.8757 1.0568 0.8766 0.9885 0.8845 0.9817 0.8853 0.9810 0.8854 0.9810 0.8854

[76.5, 77.0) 0.0758 0.8619 0.0739 0.8654 0.0734 0.8663 0.0691 0.8741 0.0687 0.8749 0.0686 0.8750 0.0686 0.8750

[77.0, 78.5) 0.2399 0.8516 0.2343 0.8551 0.2329 0.8559 0.2204 0.8637 0.2191 0.8645 0.2190 0.8646 0.2190 0.8646

[78.5, 80.0) 0.2486 0.8414 0.2432 0.8448 0.2419 0.8456 0.2298 0.8533 0.2286 0.8541 0.2285 0.8542 0.2285 0.8542

[80.0, 81.5) 0.2565 0.8311 0.2514 0.8345 0.2501 0.8353 0.2386 0.8429 0.2374 0.8437 0.2373 0.8437 0.2373 0.8437

[81.5, 82.5) 0.1759 0.8208 0.1726 0.8242 0.1718 0.8250 0.1644 0.8325 0.1637 0.8332 0.1636 0.8333 0.1636 0.8333

[82.5, 83.0) 0.0907 0.8106 0.0891 0.8139 0.0887 0.8147 0.0852 0.8221 0.0848 0.8228 0.0848 0.8229 0.0848 0.8229

[83.0, 84.0) 0.1877 0.8003 0.1846 0.8036 0.1838 0.8044 0.1770 0.8117 0.1763 0.8124 0.1762 0.8125 0.1762 0.8125

[84.0, 91.5) 1.4434 0.7901 1.4213 0.7933 1.4158 0.7941 1.3662 0.8013 1.3612 0.8020 1.3607 0.8021 1.3607 0.8021

[91.5, 93.5) 0.3658 0.7798 0.3606 0.7830 0.3592 0.7838 0.3474 0.7909 0.3462 0.7916 0.3461 0.7917 0.3461 0.7917

[93.5, 102.5) 1.6638 0.7695 1.6413 0.7727 1.6356 0.7734 1.5849 0.7805 1.5798 0.7812 1.5793 0.7812 1.5792 0.7812

[102.5, 107.0) 0.7821 0.7593 0.7721 0.7624 0.7696 0.7631 0.7470 0.7701 0.7448 0.7708 0.7445 0.7708 0.7445 0.7708

continued on next page
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Table 5 – continued from previous page

Consecutive

Failure time

interval,

[tj−1i−1, tj−1i)

S0 = 0.985 S0 = 0.98900 S0 = 0.99000 S0 = 0.99900 S0 = 0.9999 S0 = 0.99999 S0 = 0.999999

σ̂j−1i Ŝj−1i−1 σ̂j−1i Ŝj−1i−1 σ̂j−1i Ŝj−1 σ̂j Ŝj−1i−1 σ̂j−1i Ŝj−1i−1 σ̂j−1i Ŝj−1i−1 σ̂j−1i Ŝj−1i−1

[107.0, 108.5) 0.2569 0.7490 0.2537 0.7521 0.2530 0.7528 0.2460 0.7597 0.2453 0.7603 0.2452 0.7604 0.2452 0.7604

[108.5, 112.5) 0.6935 0.7388 0.6855 0.7417 0.6835 0.7425 0.6656 0.7493 0.6638 0.7499 0.6636 0.7500 0.6636 0.7500

[112.5, 113.5) 0.1714 0.7285 0.1695 0.7314 0.1690 0.7322 0.1648 0.7388 0.1644 0.7395 0.1644 0.7396 0.1644 0.7396

[113.5, 116.0) 0.4344 0.7182 0.4300 0.7211 0.4288 0.7219 0.4187 0.7284 0.4177 0.7291 0.4176 0.7292 0.4176 0.7292

[116.0, 117.0) 0.1737 0.7080 0.1720 0.7108 0.1716 0.7116 0.1677 0.7180 0.1673 0.7187 0.1673 0.7187 0.1673 0.7187

[117.0, 118.5) 0.2635 0.6977 0.2611 0.7005 0.2604 0.7013 0.2549 0.7076 0.2543 0.7083 0.2543 0.7083 0.2543 0.7083

[118.5, 119.0) 0.0884 0.6874 0.0876 0.6902 0.0874 0.6909 0.0856 0.6972 0.0854 0.6978 0.0854 0.6979 0.0854 0.6979

[119.0, 120.0) 0.1790 0.6772 0.1775 0.6799 0.1771 0.6806 0.1737 0.6868 0.1734 0.6874 0.1733 0.6875 0.1733 0.6875

[120.0, 122.5) 0.4510 0.6669 0.4474 0.6696 0.4465 0.6703 0.4382 0.6764 0.4374 0.6770 0.4373 0.6771 0.4373 0.6771

[122.5, 123.0) 0.0897 0.6567 0.0890 0.6593 0.0888 0.6600 0.0872 0.6660 0.0871 0.6666 0.0871 0.6667 0.0871 0.6667

[123.0, 127.5) 0.8150 0.6464 0.8089 0.6490 0.8074 0.6497 0.7938 0.6556 0.7925 0.6562 0.7923 0.6562 0.7923 0.6562

[127.5, 131.0) 0.6193 0.6361 0.6149 0.6387 0.6138 0.6394 0.6039 0.6452 0.6029 0.6458 0.6028 0.6458 0.6028 0.6458

[131.0, 132.5) 0.2613 0.6259 0.2595 0.6284 0.2591 0.6291 0.2551 0.6348 0.2547 0.6354 0.2547 0.6354 0.2547 0.6354

[132.5, 134.0) 0.2611 0.6156 0.2594 0.6181 0.2590 0.6188 0.2551 0.6244 0.2548 0.6249 0.2547 0.6250 0.2547 0.6250

(134) 0.6054 0.6078 0.6084 0.6140 0.6145 0.6146 0.6146



In the following illustration, we apply the developed algorithm to a follow-up time and vital status of 100

patients in the Worcester heart attack study [23].

Illustration 4.6.2 The data in Table 6 below shows follow-up time and vital status(failure or censored)

for 100 subjects in the Worcester Heart Attack Study [23]. We note that there are multiple censored times

occurring between any two consecutive failure times unlike the data set in Table 4, where all censored

times occurred after the last failure time. We note that the initial relative frequency of the survival of

patient data is 0.98. In fact the range of relative frequency is [0.51, 0.98]. Here also, we chose initial

survival probability to be S0 = 0.985, 0.989, 0.99, 0.999, 0.9999, 0.99999, 0.999999 and applied the conceptual

computational simulation algorithm (3.5.28) with ka = 0 for consecutive failure-time subintervals. The

results are recorded in Table 7. The simulation results exhibits the optimal convergence of survival state

probability estimates for S0 = 0.99999. We conclude that the almost best survival state estimate is for

S0 = 0.99999 for the Worcester Heart Attack Study data set. This was also confirmed by the application

of the modified version of LLGMM method that assures a certain degree of confidence in the survival state

estimates.
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Table 6: A follow-up time of 100 Worcester Heart Attack study Dataset [23].

Data
Observation

Failure
or

Censor Time

Frequency
of

Failure/
Censors

at ti

Survival
or

Operating
units at ti:

z(ti)

t0 = 1.0 Initial 100
t1 = 6 Failure 2 98
t2 = 14 Failure 1 97
t3 = 44 Failure 1 96
t4 = 62 Failure 1 95
t5 = 89 Failure 1 94
t6 = 98 Failure 1 93
t7 = 104 Failure 1 92
t8 = 107 Failure 1 91
t9 = 114 Failure 1 90
t10 = 123 Failure 1 89
t11 = 128 Failure 1 88
t12 = 148 Failure 1 87
t13 = 182 Failure 1 86
t14 = 187 Failure 1 85
t15 = 189 Failure 1 84
t16 = 274 Failure 2 82
t17 = 302 Failure 1 81
t18 = 363 Failure 1 80
t19 = 374 Failure 1 79
t20 = 451 Failure 1 78
t21 = 461 Failure 1 77
t22 = 492 Failure 1 76
t23 = 538 Failure 1 75
t24 = 774 Failure 1 74
t25 = 841 Failure 1 73
t26 = 936 Failure 1 72
t27 = 1002 Failure 1 71
t28 = 1011 Failure 1 70
t29 = 1048 Failure 1 69
t30 = 1054 Failure 1 68
t31 = 1172 Failure 1 67
t32 = 1205 Failure 1 66
t33 = 1278 Failure 1 65
t34 = 1401 Failure 1 64
t35 = 1497 Failure 1 63
t36 = 1557 Failure 1 62
t37 = 1577 Failure 1 61
t38 = 1624 Failure 1 60
t39 = 1669 Failure 1 59
t40 = 1806 Failure 1 58
t41 = 1836 Censored/Alive 2 56
t42 = 1846 Censored/Alive 1 55
t43 = 1859 Censored/Alive 1 54
t44 = 1860 Censored/Alive 1 53
t45 = 1870 Censored/Alive 1 52
t46 = 1874 Failure 1 51
t47 = 1876 Censored/Alive 1 50

Data
Observation

Failure
or

Censor Time

Frequency
of

Failure/
Censors

at ti

Survival
or

Operating
units at ti:

z(ti)

t48 = 1879 Censored 1 49
t49 = 1883 Censored 1 48
t50 = 1889 Censored 1 47
t51 = 1907 Failure 1 46
t52 = 1912 Censored 1 45
t53 = 1916 Censored 1 44
t54 = 1922 Censored 1 43
t55 = 1923 Censored 1 42
t56 = 1929 Censored 1 41
t57 = 1934 Censored 1 40
t58 = 1939 Censored 2 38
t59 = 1969 Censored 1 37
t60 = 1984 Censored 1 36
t61 = 1993 Censored 1 35
t62 = 2003 Censored 1 34
t63 = 2012 Failure 1 33
t64 = 2013 Censored 1 32
t65 = 2031 Failure 1 31
t66 = 2052 Censored 1 30
t67 = 2054 Censored 1 29
t68 = 2061 Censored 1 28
t69 = 2065 Failure 1 27
t70 = 2072 Censored 1 26
t71 = 2074 Censored 1 25
t72 = 2084 Censored 1 24
t73 = 2114 Censored 1 23
t74 = 2124 Censored 1 22
t75 = 2137 Censored 2 20
t76 = 2145 Censored 1 19
t77 = 2157 Censored 1 18
t78 = 2173 Censored 1 17
t79 = 2174 Censored 1 16
t80 = 2183 Censored 1 15
t81 = 2190 Censored 1 14
t82 = 2201 Failure 1 13
t83 = 2421 Failure 1 12
t84 = 2573 Censored 1 11
t85 = 2574 Censored 1 10
t86 = 2578 Censored 1 9
t87 = 2595 Censored 1 8
t88 = 2610 Censored 1 7
t89 = 2613 Censored 1 6
t90 = 2624 Failure 1 5
t91 = 2631 Censored 1 4
t92 = 2638 Censored 1 3
t93 = 2641 Censored 1 2
t94 = 2710 Failure 1 1
t95 = 2719 Censored 1 0
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Table 7: Estimates σ̂(tj−1i) ≡ σ̂j−1i and Ŝ(tj−1i−1) ≡ Ŝj−1i−1 using S0 = 0.985, 0.98900, 0.99000, 0.99900, 0.99990, 0.99999, 0.999999 using (3.5.28)
with ka = 0 and the procedure outlined in Chapter 4

Consecutive

Failure time

interval,

[tj−1i−1, tj−1i)

S0 = 0.985 S0 = 0.98900 S0 = 0.99000 S0 = 0.99900 S0 = 0.9999 S0 = 0.99999 S0 = 0.999999

σ̂j−1i Ŝj−1i−1 σ̂j−1i Ŝj−1i−1 σ̂j−1i Ŝj−1 σ̂j Ŝj−1i−1 σ̂j−1i Ŝj−1i−1 σ̂j−1i Ŝj−1i−1 σ̂j−1i Ŝj−1i−1

[1.0, 6.0] 3.7500 0.9850 2.7500 0.9890 2.5000 0.9900 0.2500 0.9990 0.0250 0.9999 0.0025 0.99999 0.0003 0.999999

[6.0, 14.0) 4.5341 0.9653 4.0219 0.9692 3.8939 0.9702 2.7414 0.9790 2.6261 0.9799 2.6146 0.9800 2.6135 0.9800

[14.0, 44.0) 9.2600 0.9554 8.4535 0.9593 8.2519 0.9603 6.4373 0.9690 6.2559 0.9699 6.2377 0.9700 6.2359 0.9700

[44.0, 62.0) 2.1364 0.9456 1.9856 0.9494 1.9479 0.9504 1.6086 0.9590 1.5747 0.9599 1.5713 0.9600 1.5709 0.9600

[62.0, 89.0) 2.6581 0.9357 2.5009 0.9396 2.4616 0.9405 2.1079 0.9490 2.0725 0.9499 2.0689 0.9500 2.0686 0.9500

[89.0, 98.0) 0.7044 0.9259 0.6686 0.9297 0.6597 0.9306 0.5793 0.9391 0.5712 0.9399 0.5704 0.9400 0.5703 0.9400

[98.0, 104.0) 0.4780 0.9160 0.4568 0.9198 0.4515 0.9207 0.4039 0.9291 0.3991 0.9299 0.3986 0.9300 0.3986 0.9300

[104.0, 107.0) 0.2489 0.9062 0.2392 0.9099 0.2367 0.9108 0.2147 0.9191 0.2126 0.9199 0.2123 0.9200 0.2123 0.9200

[107.0, 114.0) 0.6171 0.8963 0.5954 0.9000 0.5900 0.9009 0.5412 0.9091 0.5363 0.9099 0.5358 0.9100 0.5358 0.9100

[114.0, 123.0) 0.8064 0.8865 0.7809 0.8901 0.7745 0.8910 0.7169 0.8991 0.7112 0.8999 0.7106 0.9000 0.7105 0.9000

[123.0, 128.0) 0.4463 0.8766 0.4334 0.8802 0.4302 0.8811 0.4012 0.8891 0.3983 0.8899 0.3980 0.8900 0.3980 0.8900

[128.0, 148.0) 1.8315 0.8668 1.7831 0.8703 1.7710 0.8712 1.6621 0.8791 1.6512 0.8799 1.6501 0.8800 1.6500 0.8800

[148.0, 182.0) 2.8591 0.8569 2.7895 0.8604 2.7721 0.8613 2.6156 0.8691 2.6000 0.8699 2.5984 0.8700 2.5983 0.8700

[182.0, 187.0) 0.3612 0.8471 0.3531 0.8505 0.3511 0.8514 0.3328 0.8591 0.3310 0.8599 0.3308 0.8600 0.3308 0.8600

[187.0, 189.0) 0.1480 0.8372 0.1449 0.8407 0.1441 0.8415 0.1371 0.8491 0.1364 0.8499 0.1364 0.8500 0.1364 0.8500

[189.0, 274.0) 3.2602 0.8274 3.1968 0.8308 3.1809 0.8316 3.0381 0.8392 3.0238 0.8399 3.0224 0.8400 3.0222 0.8400

[274.0, 302.0) 1.6114 0.8077 1.5839 0.8110 1.5770 0.8118 1.5152 0.8192 1.5090 0.8199 1.5084 0.8200 1.5083 0.8200

[302.0, 363.0) 3.3074 0.7978 3.2544 0.8011 3.2411 0.8019 3.1218 0.8092 3.1099 0.8099 3.1087 0.8100 3.1086 0.8100

[363.0, 374.0) 0.5139 0.7880 0.5062 0.7912 0.5042 0.7920 0.4868 0.7992 0.4850 0.7999 0.4849 0.8000 0.4849 0.8000

[374.0, 451.0) 3.6083 0.7781 3.5569 0.7813 3.5441 0.7821 3.4284 0.7892 3.4169 0.7899 3.4157 0.7900 3.4156 0.7900

[451.0, 461.0) 0.4007 0.7683 0.3953 0.7714 0.3940 0.7722 0.3818 0.7792 0.3806 0.7799 0.3805 0.7800 0.3805 0.7800

[461.0, 492.0) 1.2507 0.7584 1.2348 0.7615 1.2308 0.7623 1.1949 0.7692 1.1913 0.7699 1.1910 0.7700 1.1909 0.7700

[492.0, 538.0) 1.7864 0.7486 1.7648 0.7516 1.7594 0.7524 1.7108 0.7592 1.7059 0.7599 1.7054 0.7600 1.7054 0.7600
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Table 7 – continued from previous page

Consecutive

Failure time

interval,

[tj−1i−1, tj−1i)

S0 = 0.985 S0 = 0.98900 S0 = 0.99000 S0 = 0.99900 S0 = 0.9999 S0 = 0.99999 S0 = 0.999999

σ̂j−1i Ŝj−1i−1 σ̂j−1i Ŝj−1i−1 σ̂j−1i Ŝj−1 σ̂j Ŝj−1i−1 σ̂j−1i Ŝj−1i−1 σ̂j−1i Ŝj−1i−1 σ̂j−1i Ŝj−1i−1

[538.0, 774.0) 8.5950 0.7387 8.4963 0.7418 8.4717 0.7425 8.2496 0.7492 8.2274 0.7499 8.2252 0.7500 8.2249 0.7500

[774.0, 841.0) 1.7366 0.7289 1.7176 0.7319 1.7129 0.7326 1.6702 0.7393 1.6660 0.7399 1.6655 0.7400 1.6655 0.7400

[841.0, 936.0) 2.3168 0.7190 2.2927 0.7220 2.2867 0.7227 2.2325 0.7293 2.2271 0.7299 2.2265 0.7300 2.2265 0.7300

[936.0, 1002.0) 1.4764 0.7092 1.4617 0.7121 1.4581 0.7128 1.4252 0.7193 1.4219 0.7199 1.4216 0.7200 1.4215 0.7200

[1002.0, 1011.0) 0.1917 0.6993 0.1899 0.7022 0.1895 0.7029 0.1854 0.7093 0.1850 0.7099 0.1849 0.7100 0.1849 0.7100

[1011.0, 1048.0) 0.7954 0.6895 0.7883 0.6923 0.7865 0.6930 0.7703 0.6993 0.7687 0.6999 0.7686 0.7000 0.7685 0.7000

[1048.0, 1054.0) 0.1266 0.6796 0.1255 0.6824 0.1252 0.6831 0.1227 0.6893 0.1225 0.6899 0.1225 0.6900 0.1225 0.6900

[1054.0, 1172.0) 2.5138 0.6698 2.4931 0.6725 2.4879 0.6732 2.4413 0.6793 2.4366 0.6799 2.4362 0.6800 2.4361 0.6800

[1172.0, 1205.0) 0.6415 0.6599 0.6365 0.6626 0.6352 0.6633 0.6238 0.6693 0.6227 0.6699 0.6226 0.6700 0.6226 0.6700

[1205.0, 1278.0) 1.3990 0.6501 1.3885 0.6527 1.3858 0.6534 1.3621 0.6593 1.3597 0.6599 1.3595 0.6600 1.3594 0.6600

[1278.0, 1401.0) 2.2505 0.6402 2.2343 0.6429 2.2302 0.6435 2.1936 0.6493 2.1900 0.6499 2.1896 0.6500 2.1896 0.6500

[1401.0, 1497.0) 1.6209 0.6304 1.6096 0.6330 1.6068 0.6336 1.5816 0.6394 1.5790 0.6399 1.5788 0.6400 1.5788 0.6400

[1497.0, 1557.0) 0.9581 0.6205 0.9518 0.6231 0.9502 0.6237 0.9359 0.6294 0.9344 0.6299 0.9343 0.6300 0.9343 0.6300

[1557.0, 1577.0) 0.3100 0.6107 0.3081 0.6132 0.3076 0.6138 0.3031 0.6194 0.3027 0.6199 0.3026 0.6200 0.3026 0.6200

[1577.0, 1624.0) 0.7257 0.6008 0.7212 0.6033 0.7201 0.6039 0.7101 0.6094 0.7091 0.6099 0.7090 0.6100 0.7090 0.6100

[1624.0, 1669.0) 0.6800 0.5910 0.6760 0.5934 0.6750 0.5940 0.6660 0.5994 0.6651 0.5999 0.6650 0.6000 0.6650 0.6000

[1669.0, 1806.0) 2.0285 0.5811 2.0171 0.5835 2.0142 0.5841 1.9885 0.5894 1.9859 0.5899 1.9857 0.5900 1.9856 0.5900

[1806.0, 1874.0) 0.8921 0.5713 0.8873 0.5736 0.8861 0.5742 0.8752 0.5794 0.8741 0.5799 0.8740 0.5800 0.8740 0.5800

[1874.0, 1907.0) 0.3686 0.5610 0.3667 0.5632 0.3662 0.5638 0.3619 0.5689 0.3614 0.5694 0.3614 0.5695 0.3614 0.5695

[1907.0, 2012.0) 0.9364 0.5492 0.9317 0.5514 0.9306 0.5520 0.9202 0.5570 0.9191 0.5575 0.9190 0.5576 0.9190 0.5576

[2012.0, 2031.0) 0.1408 0.5346 0.1401 0.5368 0.1400 0.5374 0.1385 0.5422 0.1383 0.5427 0.1383 0.5428 0.1383 0.5428

[2031.0, 2065.0) 0.2424 0.5180 0.2414 0.5201 0.2411 0.5206 0.2387 0.5253 0.2385 0.5258 0.2385 0.5258 0.2385 0.5258

[2065.0, 2201.0) 0.6657 0.5007 0.6630 0.5027 0.6623 0.5033 0.6562 0.5078 0.6556 0.5083 0.6555 0.5083 0.6555 0.5083

[2201.0, 2421.0) 0.6809 0.4760 0.6784 0.4779 0.6778 0.4784 0.6721 0.4827 0.6716 0.4832 0.6715 0.4832 0.6715 0.4832

[2421.0, 2624.0) 0.5114 0.4394 0.5097 0.4411 0.5093 0.4416 0.5057 0.4456 0.5053 0.4460 0.5053 0.4460 0.5053 0.4461

continued on next page
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Table 7 – continued from previous page

Consecutive

Failure time

interval,

[tj−1i−1, tj−1i)

S0 = 0.985 S0 = 0.98900 S0 = 0.99000 S0 = 0.99900 S0 = 0.9999 S0 = 0.99999 S0 = 0.999999

σ̂j−1i Ŝj−1i−1 σ̂j−1i Ŝj−1i−1 σ̂j−1i Ŝj−1 σ̂j Ŝj−1i−1 σ̂j−1i Ŝj−1i−1 σ̂j−1i Ŝj−1i−1 σ̂j−1i Ŝj−1i−1

[2624.0, 2710.0) 0.0479 0.3990 0.0477 0.4006 0.0477 0.4010 0.0474 0.4046 0.0474 0.4050 0.0474 0.4050 0.0474 0.4050

(2710.0) 0.2348 0.2357 0.2360 0.2381 0.2383 0.2384 0.2384



Table 8: Data set describing time(in months) to death(failure) and losses(censored) [38]

Data
Observation

Failure
or

Censor Time

Frequency of
Failure/
Censors

at ti

Survival or
Operating
units at ti:

z(ti)

t0 = 0 Initial 8
t1 = 0.8 Failure 1 7
t2 = 1.0 Censored 1 6
t3 = 2.7 Censored 1 5
t4 = 3.1 Failure 1 4
t5 = 5.4 Failure 1 3
t6 = 7.0 Censored 1 2
t7 = 9.2 Failure 1 1
t8 = 12.1 Censored 1 0

In the following illustration, we apply the developed alternative innovative algorithm to a data set used by

[38].

Illustration 4.6.3 The data set in Table 8 is originally from [26]. Malla et al. used the data set to

exemplify their approach. Malla et al. assumed that the largest observation 12.1 is uncensored. They also

assumed that 0 = a0 ≤ a1 ≤ a2 < . . . ≤ am are jumps of the Kaplan Meier [26] survival estimator in

magnitude, and thus obtained a1 = 0.125, a2 = 0.175, a3 = 0.175, a4 = 0.2625, a5 = 0.2625. They then

proceeded to calculate the hazard rate function using the following:

λ̂(t) = ak
1−Ak−1 ·∆dk

, (4.6.1)

where dk is distinct failure time and A0 = 0, Ak =
∑k
i=1 ai for dk−1 ≤ t < dk, 1 ≤ k ≤ m. The survival

estimate on [0, dm] was defined as follows:

Ŝ(t) = Ŝ(dk−1) exp
[
−
∫ t

dk−1

ak
(1−Ak−1)∆dk

du
]
, dk−1 ≤ t < dk, 1 ≤ k ≤ m. (4.6.2)

Utilizing (4.6.1) and (4.6.2), the following estimates summarized in Table 9 were obtained.

Table 9: Estimates λ̂(tj) and Ŝ(tj−1) using sing the procedure outlined in [38]

Consecutive Failure time

interval, [tj−1i−1, tj−1i)
λ̂(tj−1i) Ŝ(tj−1i−1)

[0, 0.8) 0.1563 1.0000

[0.8, 3.1) 0.0870 0.8824

[3.1, 5.4) 0.1087 0.7224

[5.4, 9.2) 0.1316 0.5626

[9.2, 12.1) 0.3448 0.3412
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In the following, we apply our innovative alternative algorithm to the data set in Table 8. Specifically, we

used (3.5.27) in Example 3.5.1 with kai
= 0 for all i for parameter estimation. Additionally, survival state

estimates at the failure times were estimated using the Euler scheme:

S(tfji) = S(tfj−1i−1)− λ̂(tfj−1i−1)S(tfj−1i−1)(1− S(tfj−1i−1))∆tfji . (4.6.3)

We used initial survival probability to be S0 = 0.999, 0.9999, 0.99999, 0.999999 and applied the conceptual

computational simulation algorithm (3.5.27) for consecutive failure-time subintervals. Optimal convergence

of survival state probability estimates was obtained for S0 = 0.9999. Thus, we conclude that the best survival

state estimate is for S0 = 0.9999 for the data set in Table 8. The results are summarized in Table 10. Again,

these results were confirmed by the application of the modified version of LLGMM method that assures a

certain degree of confidence in the survival state estimates as compared to the estimates obtained in Table

9.

Table 10: Estimates λ̂(tj−1i) and Ŝ(tj−1i−1) using S0 = 0.99900, 0.99990, 0.99999, 0.999999

Consecutive

Failure time

interval,

[tj−1i−1, tj−1i−1)

S0 = 0.99900 S0 = 0.9999 S0 = 0.99999 S0 = 0.999999

λ̂(tj−1i) Ŝ(tj−1i−1) λ̂(tj−1i) Ŝ(tj−1i−1) λ̂(tj−1i) Ŝ(tj−1i−1) λ̂(tj−1i) Ŝ(tj−1i−1)

[0, 0.8) 156.25 0.9990 1562.5 0.9999 15625.0 0.99999 156250.0 0. 999999
[0.8, 3.1) 0.5841 0.8741 0.5878 0.8749 0.5882 0.8750 0.5882 0.8750
[3.1, 5.4) 0.3971 0.7263 0.3981 0.7269 0.3982 0.7270 0.3982 0.7270
[5.4, 9.2) 0.2387 0.5447 0.2390 0.5452 0.2390 0.5453 0.2390 0.5453
[9.2, 12.1) 0.5069 0.3197 0.5071 0.3200 0.5071 0.3200 0.5071 0.3200

4.7 Statistical Comparative Analysis with Existing Methods

In the following we exhibit an innovative alternative procedure for finding the parameter and state estimates

at each failure points by using a modification of the Local Lagged Adapted adapted Generalized Method of

Moments (LLGMM) [44].

4.7.1 Modified LLGMM Parameter and State Estimation

In this section, we develop a modified version of the Local Lagged Adapted adapted Generalized Method

of Moments (LLGMM) [44]. This is achieved by by utlizing the developed alternative procedure in Section

3.5 and the LLGMM method. We also make an attempt to coordinate and compare the developed innova-

tive approach for parameter and state estimation of time-to-event process with recently developed LLGMM

approach. We note that the transformed conceptual computational interconnected dynamic algorithm for
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time-to-event data statistic (IDATTEDS) is local. It is centered around each consecutive pair of failure

or change time ordered subinterval [tfj−1i−1, t
f
j−1i) or [tcpj−1i−1, t

cp
j−1i) with its right-end-point data observa-

tion/collection process for i ∈ I(1, kf ) or i ∈ I(1, kcp). Moreover, parameter and state estimation of the

time-to-event process is relative to each consecutive pair of failure or change time subinterval operation of

the time-to-event dynamic process. This type of parameter and state estimation problem in time-to-event

processes can be characterized by the local single-shot procedure identified by the right-end point of the

j − 1i-th consecutive failure or change point subinterval for each i ∈ I(1, kf ) or i ∈ (1, kcp).

These observations motivates to extend this single-shot parameter and state estimation problem to a

finite multi-choice local lagged consecutive failure or change time subintervals with right-end-point data

observation/collection process. For this, we introduce a couple of definitions that form a bridge to connect

IDATTEDS approach with the LLGMM approach. From Definitions 3.5.1-3.5.6, we recall that {tfj−1i−1}
kf

i=1,

{[tfj−1i−1, t
f
j−1i)}

kf

i=1 , P fj−1, {zj−1i−1}
kf

i=1, {P fj−1i}
kf

i=1, are increasing sequences of overall consecutive failure-

times, consecutive failure-time subintervals, failure-time partition of [t0,T), conceptual data sequence at

failure-time, sequence of sub-partition of consecutive time subinterval [tfj−1i−1, t
f
j−1i), respectively for i ∈

I(1, kf ).

Definition 4.7.1 For each i ∈ I(1, kf ) and each mi ∈ I(1, i), a partition of closed interval [tfj−1i−mi
, tfj−1i]

is called local at a failure-time tfj−1i , and it is defined by

P fj−1i−mi
:= tfj−1i−mi

< tfj−1i−mi+1 < . . . < tfj−1i−1 < tfj−1i . (4.7.1)

A mi-size consecutive failure time subinterval subsequence {[tfj−1i+l, t
f
j−1i+l+1)}−1

l=−mi
of the overall con-

secutive failure time subinterval sequence {[tfj−1i−1, t
f
j−1i)}

kf

i=1 is called local lagged moving failure-time

subsequence at tfj−1i that is a cover of [tfj−1i−mi
, tfj−1i):

−1⋃
l=−mi

[tfj−1i+l, t
f
j−1i+l+1) = [tfj−1i−mi

, tfj−1i) . (4.7.2)

P fj−1i−mi
is a sub-partition of the partition P f .

Definition 4.7.2 For each i ∈ I(1, kf ) and each mi ∈ I1(1, i), a local lagged moving consecutive failure

time subsequence of subintervals, {[tfj−1i+l, t
f
j−1i+l+1)}−1

l=−mi
at failure time tfj−1i of the size mi is identified

by the restriction of overall failure time state data subsequence {zj−1i−1}
kf

i=1 to P fj−1i−mi
in (4.7.1), and it

is defined by

smi,j−1i := {F lzj−1i}0l=−mi
. (4.7.3)

Here F is a forward-shift operator, and F−1 = B, B is the backward shift operator. mi varies from 1 to i;

the corresponding local sequence smi,i at tfj−1i varies from {F lzj−1i}0l=−1 to {F lzj−1i}0l=−i+1. As a result
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of this, the sequence defined in (4.7.3) is also called a mi-local moving sequence of failure-time state data

associated with mi-local lagged finite sequence of subintervals at a failure-time tfj−1i for each i ∈ I(1, kf ).

In the following, we outline computational scheme for the survival state data analysis problem. Using the

concept of mi-moving sequence of failure-time state data at a failure time tfj−1i, computational schemes for

the change point problem can be developed analogously.

Hereafter, we utilize Definitions 4.7.1 and 4.7.2, and recast the LLGMM algorithm [44, 45]. For each

mi ∈ I(1, i − 1), using (3.5.23) and l ∈ I(−mi,−1), we determine estimates of λ at each failure time tfj−1i

for the special case of Sλ(t, S) = Sλ(t)(1− S) (without loss of generality), as follows:

λ̂mi,i =

−1∑
l=−mi

[
z(tj−1i+l)− z(tj−1i+l+1)− kci+l

+ kai+l

]
−1∑

l=−mi

(1− F lS(tfj−1i))
kbi+l

+1∑
n=1

z(tc/aj−1i+ln−1)∆tc/aj−1i+1n

, (4.7.4)

where λ(t, S) = λ(t)(1 − S); mi ∈ I(1, i − 1); kci+l
is the total number of censored objects/species/infec-

tive/quitting covered over the subinterval [tfj−1i+l, t
f
j−1i+l+1); kai+l

is the the total number of admitting/en-

tering/joining/susceptible/etc covered over the subinterval [tfj−1i+l, t
f
j−1i+l+1); kbi+l

= kci+l
+ kai+l

.

Remark 4.7.1 For the special case of λ(t) = 1
σt , (4.7.4) reduces to

σ̂mi,i =

−1∑
l=−mi

(1− F lS(tj−1i))
kbi+l

+1∑
n=1

z(tc/aj−1i+ln−1) ∆tc/a

j−1i+ln

t
c/a

j−1i+ln−1

−1∑
l=−mi

[
z(tj−1i+1)− z(tj−1i+l+1)− kci+l

+ kai+l

] . (4.7.5)

In short, the usage of the transformed continuous-time deterministic dynamic hybrid model for time-to-

event process, and discrete-time interconnected hybrid dynamic algorithm of local sample mean lead to an

innovative alternative method for parameter and state estimation problems for continuous-time dynamic

models described by both linear and nonlinear deterministic differential equations.

4.7.2 Computational Algorithm

The numerical approximation and simulation processes need to be synchronized with the existing data

collection process in the context of the partition of [t0,T]. For each i ∈ I(1, kf ), we assume that tfj−1i is

the scheduled time clock for the j − 1i-th collected data of the state of the system under investigation. The

iterative and simulation time processes are both tfj−1i. For each mi ∈ OSj−1i = I(1, i − 1) at tfj−1i, from

Definition 4.7.2, we pick a mi local admissible sequence {F lzj−1i}0l=−mi
. Using the terms of this sequence

and (4.7.4), we compute the state and parameter estimates of the continuous-time dynamic equation. These

estimates form a local finite sequence of parameter estimates at tfj−1i corresponding to ASj−1i = {smi,j−1i :
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mi ∈ I(1, i)} for each i ∈ I(1, kf ). The Principle of Mathematical Induction is employed for the development

of a conceptual computational scheme.

For each admissible sequence in ASj−1i, let zsmi,j−1i be a simulated value of smi,j−1i at tfj−1i. This

engenders an mi local sequence of simulated data {zsmi,j−1i}mi∈OSj−1,i
. The simulated zsmi,j−1i satisfies the

following scheme:

zsj−1i = zsj−1i−1 − λ̂j−1i−1 z
s
j−1i−1(1− Ssj−1i−1)∆tj−1i − kci

+ kai
. (4.7.6)

To find the best estimate of z(tj−1i), let us define

Ξmi,j−1i,zj−1i =
∣∣z(tj−1i)− zsmi,j−1i

∣∣ (4.7.7)

to be the absolute error of z(tfj−1i) relative to each member of the term of local admissible sequences

{zsmi,j−1i}mi∈OSj−1,i
of simulated values. For any preassigned arbitrary small positive number ε and for

each time tfj−1i, to find the best estimate from admissible simulated values, we determine the following

sub-optimal admissible set of data at tfj−1i as:

Mj−1i = {mi : Ξmi,j−1i,zj−1i
< ε for mi ∈ OSj−1i}. (4.7.8)

Among these collected sub-optimal set of values, the value that gives the minimum Ξmi,j−1i,zj−1i
is recorded

as m̂i. The parameters corresponding to m̂i is referred as the ε-level sub-optimal estimates of the true

parameters. These sub-optimal estimates are estimated at time tfj−1i with m̂i. The simulated value zsm̂i,j−1i

at tfj−1i corresponding to m̂i is recored as the best estimate for z(tj−1i) at tfj−1i. Having obtained the best

estimate for λ, we then proceed to find the optimal/best estimate for the survival function at tfj−1i via the

following:

Ŝ(tj−1i) = Ŝ(tj−1i−1)− λ̂(tj−1i, m̂i)Ŝ(tj−1i−1)(1− Ŝ(tj−1i−1))∆tj−1i . (4.7.9)

Finally, an estimate of Sm̂i,j−1i at tfj−1i corresponding to m̂i is also recorded as the best estimate for

S(tj−1i) at tfj−1i. Moreover, to summarize the computation, a modified LLGMM Conceptual Computational

Algorithm is outlined in Flowchart 9.

Remark 4.7.2 Equation (4.7.6) specializes to

zsmij−1i = zsmi−1j−1i−1 −
1

σ̂mi−1j−1i−1
zsmi−1j−1i−1(1− Ssmi−1j−1i−1) ∆tj−1i

tj−1i−1
− kci

+ kai
, (4.7.10)

and (4.7.9) reduces to

Ŝ(tj−1i) = Ŝ(tj−1i−1)− 1
σ̂(tj−1i, m̂i)

Ŝ(tj−1i−1)(1− Ŝ(tj−1i−1)) ∆tj−1i

tj−1i−1
. (4.7.11)
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Initials: T0,

z0, S0 ≥ RF

For each admissible

mi ∈ OSj−1i at failure

time T fj−1i

mi-local admissible

adapted finite sequence

{smi,j−1i}0l=−mi
at T fj−1i

mi- local parameter

estimates λ̂mi,j−1i,

at T fj−1i

Simulated estimate

for z at T fj−1i is

zsmi,j−1i

Test for ε-sub

optimality m̂i

For Mj−1i 6= ∅,

mi ∈Mj−1i

For Mm 6= ∅, and

OSj−1i −M, Delete

For Mj−1i = ∅

ε-suboptimal

m̂i = min
mi∈M

Ξ ?

ε-suboptimal

estimate

zsm̂i,j−1i for z

Choose the largest mi

yesyes

no

no

no

no

Flowchart 9.: Modified LLGMM Conceptual Computational Algorithm



We present an algorithm and flowchart for the simulation scheme described above.

Given initials t0, S0, z0, ε,

for i = 1 to kf do

for mi = 1 to i do

Compute λ̂mi,j−1i

for mi = 0 to i do

Compute zsmi,j−1i , Ξmi,j−1i,zj−1i

end for

end for

end for

if Ξmi,i,zj−1i < ε then

Save m̂i

else

Find m̂i that minimizes Ξmi,j−1i,zj−1i

end if

Compute λm̂i,j−1i, z
s
m̂i,j−1i , Sm̂i,j−1i.

Algorigthm 10.: Simulation scheme
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Start

Input data, ε

Initial T0, z0, S0 ≥ RF

λ̂mi,j−1i, ,mi ∈ I(1, i)

zsmi,j−1i ,Ξmi,j−1i,zj−1i

Is Ξmi,j−1i,zj−1i < ε?Repeat for each j

Save mi as m̂i

Choose mi with

min Ξmi,i,zj−1i

as m̂i

Update S0

λm̂i,i

λm̂i,j−1i , Sm̂i,j−1i, zm̂i,j−1i

Stop

Record

yes

no

yes

no

Flowchart 11.: Modified LLGMM Simulation Algorithm

We note that the above presented innovative algorithm is valid for state and parameter estimation problems
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for continuous-time dynamic models described by linear hybrid deterministic differential equations for time-

to-event processes. We further note that algorithm also allows for the admission/joining of individuals/items.

Remark 4.7.3 We remark that intervention processes provide a measure of influence of new tools/proce-

dures/approaches in continuous time states of time-to-event dynamic process. In particular, it generates

a measure of the degree of sustainability, survivability, reliability of the system. This further leads to

sustainable/unsustainable, survivable/failure, reliable/unreliable binary state invariant sets. In addition,

intervention processes provides the comparison between the past and currently used tools/procedures/ap-

proaches/attitudes/etc.

Illustration 4.7.1 [Application of LLGMM-type Conceptual Computational Algorithm to the datasets in

Tables 4, 6 and 8]

We apply the above procedure to the three datasets in Tables 4, 6 and 8 by utilizing (4.7.5), (4.7.10), and

(4.7.11) with ε = 0.001. The results are summarized in Tables 33, 34 and 11, respectively.

Table 11: LLGMM Based Estimates using S0 = 0.99900, 0.99990, 0.99999, 0.999999 using procedure outlined
in Subsection 4.7.2

S0 = 0.99900 S0 = 0.9999 S0 = 0.99999 S0 = 0.999999

tfj−1i m̂i λj−1i,m̂i
Sj−1,m̂i

λj−1i,m̂i
Sj−1,m̂i

λj−1i,m̂i
Sj−1,m̂i

λj−1i,m̂i
Sj−1,m̂i

0.8 1 156.25 0.8741 1562.5 0.8749 15625.0 0.8750 156250.0 0.8750
3.1 1 0.5841 0.7263 0.5878 0.7269 0.5882 0.7270 0.5882 0.7270
5.4 1 0.3971 0.5447 0.3981 0.5452 0.3982 0.5453 0.3982 0.5453
9.2 1 0.2387 0.3197 0.2390 0.3200 0.2390 0.3200 0.2390 0.3200
12.1 1 0.5069 0.0000 0.5071 0.0000 0.5071 0.0000 0.5071 0.0000

Remark 4.7.4 We remark that using the LLGMM-type estimation approach yields the almost close simu-

lation results as the estimation procedure outlined in Illustrations 4.6.1 and 4.6.2 with the added bonus of

survival estimates at the last failure time for both data sets in Tables 4 and 6.

In the following, we compare the IDATTEDS and modified LLGMM results with the existing methods,

namely, Maximum Likelihood and Kaplan-Meier approach.

4.7.3 Overall Statistical Comparison with Existing Approaches

In this subsection, the presented simulation results is compared with the existing methods, namely, Maximum

Likelihood [25] and Kaplan-Meier [26] estimates. The simulation results are recored in Tables 12 and 13. In

Table 14, we compare our results with Kaplan-Meier and Malla et al. estimates.
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Table 12: Comparison of survival function estimates for data set in Table 4

Failure
Time:

tj−1i

I
D
A
T
T
E
D
S

Ŝ(tj−1i)

L
L
G
M
M

Based

Sj−1i, m̂i

Maximum
Likelihood
Method:

ŜML(tj−1i)

Kaplan-
Meier-
type

Estimate

ŜKM (tj−1i)
22.5 0.9896 0.9896 0.9941 0.9896
37.5 0.9792 0.9792 0.9781 0.9792
46.5 0.9687 0.9687 0.9623 0.9686
48.5 0.9583 0.9583 0.9581 0.9583
51.5 0.9479 0.9479 0.9513 0.9473
53.5 0.9375 0.9375 0.9465 0.9375
54.5 0.9271 0.9271 0.9440 0.9271
57.5 0.9167 0.9167 0.9362 0.9167
66.5 0.9062 0.9062 0.9094 0.9063
68.0 0.8958 0.8958 0.9045 0.8958
69.5 0.8854 0.8854 0.8995 0.8854
76.5 0.8750 0.8750 0.8746 0.8750
77.0 0.8646 0.8646 0.8727 0.8646
78.5 0.8542 0.8542 0.8670 0.8542
80.0 0.8437 0.8437 0.8612 0.8438
81.5 0.8333 0.8333 0.8553 0.8333
82.5 0.8229 0.8229 0.8514 0.8229
83.0 0.8125 0.8125 0.8494 0.8125
84.0 0.8021 0.8021 0.8453 0.8021

Failure
Time:

tj−1i

I
D
A
T
T
E
D
S

Ŝ(tj−1i)

L
L
G
M
M

Based

Sj−1i, m̂i

Maximum
Likelihood
Method:

ŜML(tj−1i)

Kaplan-
Meier-
type

Estimate

ŜKM (tj−1i)
91.5 0.7917 0.7917 0.8139 0.7917
93.5 0.7812 0.7812 0.8052 0.7813
102.5 0.7708 0.7708 0.7650 0.7708
107.0 0.7604 0.7604 0.7442 0.7604
108.5 0.7500 0.7500 0.7373 0.7500
112.5 0.7396 0.7396 0.7186 0.7396
113.5 0.7292 0.7292 0.7139 0.7292
116.0 0.7187 0.7187 0.7022 0.7188
117.0 0.7083 0.7083 0.6975 0.7083
118.5 0.6979 0.6979 0.6905 0.6979
119.0 0.6875 0.6875 0.6881 0.6875
120.0 0.6771 0.6771 0.6834 0.6771
122.5 0.6667 0.6667 0.6717 0.6667
123.0 0.6562 0.6562 0.6694 0.6563
127.5 0.6458 0.6458 0.6483 0.6458
131.0 0.6354 0.6354 0.6321 0.6354
132.5 0.6250 0.6250 0.6252 0.6250
134.0 0.6146 0.6146 0.6183 0.6146

Table 13: Comparison of survival function estimates for data set in Table 6

Failure
Time:

tj−1i

I
D
A
T
T
E
D
S

Ŝ(tj−1i)

L
L
G
M
M

Based

Sj−1i, m̂i

Maximum
Likelihood
Method:

ŜML(tj−1i)

Kaplan-
Meier-
type

Estimate

ŜKM (tj−1i)
6.0 0.9800 0.9800 0.9928 0.98
14.0 0.9700 0.9700 0.9856 0.97
44.0 0.9600 0.9600 0.9636 0.96
62.0 0.9500 0.9500 0.9521 0.95
89.0 0.9400 0.9400 0.9364 0.94
98.0 0.9300 0.9300 0.9314 0.93
104.0 0.9200 0.9200 0.9282 0.92
107.0 0.9100 0.9100 0.9266 0.91
114.0 0.9000 0.9000 0.9230 0.90
123.0 0.8900 0.8900 0.9183 0.89
128.0 0.8800 0.8800 0.9158 0.88
148.0 0.8700 0.8700 0.9060 0.87
182.0 0.8600 0.8600 0.8903 0.86
187.0 0.8500 0.8500 0.8881 0.85
189.0 0.8400 0.8400 0.8872 0.84
274.0 0.8200 0.8200 0.8524 0.82
302.0 0.8100 0.8100 0.8420 0.81
363.0 0.8000 0.8000 0.8205 0.80
374.0 0.7900 0.7900 0.8169 0.79
451.0 0.7800 0.7800 0.7924 0.78
461.0 0.7700 0.7700 0.7894 0.77
492.0 0.7600 0.7600 0.7802 0.76
538.0 0.7500 0.7500 0.7672 0.75
774.0 0.7400 0.7400 0.7089 0.74
841.0 0.7300 0.7300 0.6945 0.73

Failure
Time:

tj−1i

I
D
A
T
T
E
D
S

Ŝ(tj−1i)

L
L
G
M
M

Based

Sj−1i, m̂i

Maximum
Likelihood
Method:

ŜML(tj−1i)

Kaplan-
Meier-
type

Estimate

ŜKM (tj−1i)
936.0 0.7200 0.7200 0.6753 0.72
1002.0 0.7100 0.7100 0.6627 0.71
1011.0 0.7000 0.7000 0.6611 0.70
1048.0 0.6900 0.6900 0.6543 0.69
1054.0 0.6800 0.6800 0.6533 0.68
1172.0 0.6700 0.6700 0.6330 0.67
1205.0 0.6600 0.6600 0.6276 0.66
1278.0 0.6500 0.6500 0.6161 0.65
1401.0 0.6400 0.6400 0.5979 0.64
1497.0 0.6300 0.6300 0.5846 0.63
1557.0 0.6200 0.6200 0.5766 0.62
1577.0 0.6100 0.6100 0.5740 0.61
1624.0 0.6000 0.6000 0.5681 0.60
1669.0 0.5900 0.5900 0.5625 0.59
1806.0 0.5800 0.5800 0.5463 0.58
1874.0 0.5696 0.5699 0.5386 0.5688
1907.0 0.5576 0.5580 0.5350 0.5566
2012.0 0.5428 0.5459 0.5239 0.5402
2031.0 0.5258 0.5288 0.5220 0.5233
2065.0 0.5083 0.5112 0.5185 0.5046
2201.0 0.4832 0.4927 0.5053 0.4685
2421.0 0.4461 0.4548 0.4855 0.4325
2624.0 0.4050 0.4164 0.4688 0.3604
2710.0 0.2384 0.3871 0.46208 0.1802
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Table 14: Comparison of survival function estimates for data set in Table 6

Failure

Time:

tj−1i

I

D

A

T

T

E

D

S

Ŝ(tj−1i)

L

L

G

M

M

Based

Sj−1i, m̂i

Maximum

Likelihood

Method:

ŜML(tj−1i)

Kaplan-Meier-

type

Estimate

ŜKM (tj−1i)

0.8 0.8741 0.8741 0.8824 0.8750
3.1 0.7263 0.7623 0.7224 0.7000
5.4 0.5447 0.5447 0.5626 0.525
9.2 0.3197 0.3197 0.3412 0.2625
12.1 0.0000 0.0000 0.126 0.2625
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Chapter 5

Stochastic Hybrid Dynamic Modeling for Time-to-event Processes

5.1 Introduction

Parametric and nonparametric methods are often applied to estimate the hazard/risk rate and survival

functions in the study of survival and reliability data analysis [25, 37]. A parametric approach is based

on the assumption that an underlying survival distribution function belongs to some specific family of

distributions (e.g. exponential, loglogistic, lognormal, Weibull, etc). Mostly, classical likelihood based

models, methods and its extensions/generalizations are developed and utilized [9, 25, 37]. On the other

hand, a nonparametric approach is centered around the best-fitting member of a class of survival distribution

functions [26]. Moreover, Kaplan [26] and Nelson-Aalen [1, 41] type nonparametric approaches assume neither

distribution class nor closed-form distributions.

The human mobility, electronic communications, technological changes, advancements in engineering,

medical, and social sciences have diversified and extended the role and scope of time-to-event processes in

biological, cultural, epidemiological, financial, military and social sciences [2, 11, 33, 34, 50]. It is known

that sudden changes in the hazard rate/risk at unspecified or specified times are frequently encountered

in engineering and medical sciences [2]. These changes could occur multiple times. As a result of this,

investigators [17, 19, 21] are often interested in (a) detecting the location of the changes, and (b) estimating

the sizes of the detected changes. For incorporating intervention processes, we transform a continuous

state dynamic model into an interconnected hybrid dynamic model composed of both continuous-time and

discrete-time state(intervention) dynamic processes.

In this work, we present an alternative approach for modeling time-to-event processes in biological, chem-

ical, engineering, epidemiological, medical, military, multiple-markets, and social dynamic processes. This

approach does not require any knowledge of either a closed-form solution distribution or a class of distribu-

tions. Our innovative approach leads to the development of a stochastic dynamic model for time-to-event

processes.

The developed approach is directly applicable to time-to-event dynamic processes in biological, chemi-

cal, engineering, financial, medical, physical, military and social sciences. A by-product of the transformed

interconnected stochastic hybrid dynamic model is a mixture of theoretical continuous-discrete-time concep-

tual computational dynamic process. Employing the transformed discrete-time conceptual computational

dynamic process, we introduce notions of data coordination, state data decomposition and aggregation, the-

oretical conceptual iterative processes, conceptual and computational parameter estimation and simulation
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schemes, conceptual and computational state simulation schemes.

The organization of the presented work is as follows. Recognizing the rapid growth, increased efficiency

and speed in communication, science and technology in the 21st century, we develop a stochastic dynamic

model for time-to-event process in Section 5.2. Fundamental theoretical results for stochastic hybrid dynamic

processes are also presented in Section 5.3. In fact, interconnected transformed stochastic hybrid survival

state dynamic system and transformed discrete-time conceptual computational interconnected dynamic al-

gorithm are developed. The approach is a continuation of the recently initiated work in [5, 6]. In Section

5.4, we present very general theoretical and computational procedures and results for parameter and state

estimations for a time-to-event dynamic process.

5.2 Motivation and Model Development

The rapid electronic communication and human mobility processes have facilitated to transform the infor-

mation, knowledge and ideas almost instantly around the globe. This indeed generates heterogeneity that

engenders nonlinear and non-stationary dynamic processes. Moreover, the heterogeneity, nonlinearity, non-

stationarity, further generate uncertainties both deterministic and stochastic. In view of this, it is obvious

that nothing is deterministic. In short, the 21st century problems are highly nonlinear, non-stationary and

under the influence of internal and external random perturbations.

The mathematical models of dynamic processes under randomly varying environmental perturbations are

described by two major approaches: (a) Newtonian mechanics and (b) random flow characterized by proba-

bilistic models [31]. The random flow approach under a probabilistic law leads to deterministic differential

equation known as Kolmogorov’s backward (master) equation. The Newtonian approach generates stochas-

tic/random differential equations. Using these methods, one determines distribution and moment functions

[25]. In general, the flows are described by explanatory or covariate variables or functions of explanatory/-

covariate variables. Dynamic flows are described by dynamic equations. Certain flows depend on either its

deterministic or random parameters that may be subject to vary by explanatory variables. The dynamic

flows can be visualized by either a family of curves or a single unique curve. For a covariate dependent pa-

rameter varying smooth dynamic flow u(α(t, x)), the rate of Du(α(t, x)) in the direction of covariate variate

variables (t, x) is described by du
dt
[
∂
∂tα(t, x) + ∂

∂xα(t, x)
]
.

In the following, we present an illustration that motivates to develop dynamic models of time-to-event pro-

cesses in engineering, medical, economic, social and technological sciences. This dynamic model can be con-

sidered as stochastic and deterministic parametric variation of a flow described by u
(∫ t

0 α(s)ds,
∫ t

0 σ(s)dw(s)
)

.

Moreover, the rate of u in the direction of Λ(t) =
∫ t

0 α(s)dt and E =
∫ t

0 σ(s)dw(s) is represented by

du = ∂
∂Λu(Λ, E)α(t)dt+ ∂

∂E u(Λ, E)σ(t)dw. We present a few illustrations to exhibit this idea.
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Illustration 5.2.1 Let us consider a linear stochastic differential equation of Itô-Doob -type [33]

dx = −α(t)xdt+ σ(t)xdw, x(t0) = x0, (5.2.1)

where x is a generic state of dynamic process; α and σ are univariate dynamic rate parameters that are

referred to as drift and diffusion time-varying rate functions. w is a standard Wiener (Brownian motion)

process. For a detailed justification, see [33].

We note that the following stochastic process [33],

x(t, t0, x0) = x0 exp
[∫ t

t0

−
[
α(s) + 1

2σ
2(s)

]
ds+

∫ t

t0

σ(s)dw(s)
]

(5.2.2)

is the unique solution process of (5.2.1) for the given initial data (t0, x0), that is, x(t, t0, x0) satisfies stochastic

differential equation (5.2.1). We further note that the solution process (5.2.2) is non-negative, whenever the

initial state x0 = x(t0, t0, x0) is a non-negative random variable defined on a complete probability space,

(Ω,F , P ) that is independent of the Wiener process. In addition, if 0 ≤ x0 ≤ 1 and α is a positive function,

then

0 ≤ x0 exp
[∫ t

t0

−
[
α(s) + 1

2σ
2(s)

]
ds+

∫ t

t0

σ(s)dw(s)
]
≤ 1, for t ≥ t0 . (5.2.3)

Under the above specified conditions, we have

lim
∆→0

1
∆t E[x(t+ ∆t)− x(t)| F t] = −α(t)x(t) ≤ 0 for t ≥ t0 , (5.2.4)

where F t is a sub-σ-algebra of F under which x(t) is measurable. Hence (x(t),F t) is non-negative su-

permartingale [35, 42]. Furthermore, for x0 = 0, x(t, t0, x0) ≡ 0, for all t ≥ t0; for x0 = 1, x(t, t0, x0) =

exp
[∫ t
t0
−
[
α(s) + 1

2σ
2(s)

]
ds+

∫ t
t0
σ(s)dw(s)

]
. We further assume that, as t→∞,

[∫ t

t0

(
1
2σ

2(s) + α(s)
)

ds
]
→∞ . (5.2.5)

We note that

y(t) =
(

1− x0 exp
[∫ t

t0

−
[
α(s) + 1

2σ
2(s)

]
ds+

∫ t

t0

σ(s)dw(s)
])

, y(t0) = 1− x0, (5.2.6)

for t ≥ t0, and 0 ≤ x0 ≤ 1; Moreover, y in (5.2.6) is a solution process [33] of the following differential

equation:

dy = α(t)(1− y(t))dt− σ(t)(1− y(t))dw, y(t0) = 1− x0 . (5.2.7)

From (5.2.2) and (5.2.7), we have

x(t) + y(t) = 1 for t ≥ t0. (5.2.8)
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From (5.2.3) and (5.2.8), we conclude that x(t) and y(t) are indeed stochastic versions of survival and

failure functions, respectively. Furthermore, it is known [33] that x(t, t0, x0) has log-normal probability dis-

tribution function with mean, E [ln x(t, t0, x0)] = E [ln x0] +
∫ t
t0
−[α(s)]ds and variance, Var [ln x(t, t0, x0)] =

Var(ln x0) +
∫ t
t0
σ2(t)ds for each t ≥ t0.

From (5.2.7), we define a differential of hazard rate function as:

d(λ(t, w(t))) = dy
1− y = α(t)dt− σ(t)dw(t) . (5.2.9)

We present another illustration that provides a stochastic version of survival function.

Illustration 5.2.2 We consider a following stochastic differential equation

dx = αx(1− x)dt+ σxdw , x(t0) = x0. (5.2.10)

The solution process of (5.2.10) for constant functions α and σ is

x(t, t0, x0) =
x0

Φ(t,t0)

1 + x0
∫ t
t0

Φ−1(s, t0)ds
=

x0 exp
[
(α− 1

2σ
2)(t− t0) + σ(w(t)− w(t0))

]
1 + αx0

∫ t
t0

exp
[
(α− 1

2σ
2)(s− t0) + σ(w(s)− w(t0))

]
ds

, (5.2.11)

where

Φ(t, t0) = exp
[
−
(
α− 1

2σ
2
)

(t− t0)− σ(t− t0)
]
, (5.2.12)

and

Φ−1(t, t0) = exp
[(
α− 1

2σ
2
)

(t− t0) + σ(t− t0)
]
. (5.2.13)

For α > 0, if x0 > 0, then x(t) = x(t, t0, x0) > 0, for t ≥ t0. Moreover, if α < 1
2σ

2, then 0 ≤ x(t) ≤ 1, and

x(t) + y(t) = 1, for t ≥ t0 whenever

y(t) = 1− x0Φ−1(t, t0)
1 + αx0

∫ t
t0

exp
[
(α− 1

2σ
2)(s− t0) + σ(w(s)− w(t0))

]
ds

. (5.2.14)

Further, we note that y(t) satisfies:

dy = αy(1− y)dt− σ(1− y)dw(t) , y0 = 1− x0 . (5.2.15)

This justifies that x determined by (5.2.10) with 0 < x0 < 1 is a stochastic version of the survival function.

Let us assume that there are k individuals/items under a study having independent random failure times.

Let Tj be a time to failure of the j-th subject/entity, j = 1, . . . , k. In general, failure times T1, . . . , Tk are not

completely observable. In fact, one only observes (T̃j , δj), j ∈ {1, . . . , k} = I(1, k), where δj is a censoring
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indicator, describing whether Tj or only a lower bound to Tj is observed. Thus

Tj = T̃j if δj = 1 ,

Tj > T̃j if δj = 0 , j ∈ I(1, k).
(5.2.16)

We remark that each T̃j is a random time. At T̃j , the value of the corresponding δj is available. In addition,

and we know whether the corresponding event is either a failure or a censoring.

In the following, we imitate the argument used in developing dynamic models in [5, 6, 33]. We then intro-

duce an interconnected stochastic hybrid dynamic model of a time-to-event process described by following a

large-scale nonlinear and non-stationary stochastic differential equations:



dx = xW (t−, Sx)dη(t) , x(T0) = x0, t ∈ [Tj−1, Tj), j ∈ I(1, k) ,

xj = x(T−j ) +
∫ T+

j

T−
j

x(u)W (u−, S(u)x(u))dη(u), x(Tj) = xj ,

dS = −Sλ(t, S)dt+ Sσ(t, S)dw(t), t ≥ 0, S(T0) = S0,

Sj = S(T−j , Tj−1, Sj−1) ,

(5.2.17)

where x(t) is the total number of units/individuals operating/living under the study at time t, for

t ∈ [T0,T]; t− and t+ stand for t− < t < t+ and they are very close to t; Tj−1, Tj are consecutive ob-

servation/study/evaluation times in [T0,T); S is a survival state function; x(T−j ) and S(T−j ) stands for

x(T−j , Tj−1, xj−1) and S(T−j , Tj−1, Sj−1) respectively; for each j ∈ I(1, k), Tj , (Tj , δj), x0 and w are inde-

pendent stochastic processes defined on a complete probability space (Ω,F , P ) and F t measurable ; w is a

standard Wiener process, and F t is a sub-σ-algebra of F ; λ is a continuous function defined on R+×R into

R; η is a function of bounded variation; W is defined on R+ × R into R, and is a continuous function on

(tj+1, tj), where tj−1, tj ∈ [t0,T), and are consecutive points of discontinuities of η; W satisfies conditions at

tj ’s so that the initial value problem of Riemann-Stieltjes differential equation has unique solution [48]. It is

assumed that (5.2.17) has a solution process [33].

5.3 Fundamental Results for Stochastic Hybrid Dynamic Process

In this section, we develop a fundamental theoretical results. The presented analytic results provide the basis

for conceptual computational tools for survival state and parameter estimation problems in time-to-event

data analysis processes.

Definition 5.3.1 Let z be a stochastic process defined by z(t) = x(t)S(t), where S and x are solution process

of (5.2.17) for t ∈ [t0,T). Moreover, for each t ∈ [t0,T), z(t) stands for the number of survivals/operating

units/entities at t.
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In the following, imitating the definition given in [25], we define an appropriate conditioning event using

the concept of history or filtration.

Definition 5.3.2 [7] Let the history process (Gt) be defined by Gt = {(Tj , δj) : Tj ≤ t}. Then Gt ⊆ F t.

This means that all Gt measurable processes are F t measurable and independent of intervention/observation

processes. Furthermore, Gt = GTj−1 for all Tj−1 ≤ t < T+
j . This implies that Gt− = GTj−1 for Tj−1 < t ≤ Tj .

For easy reference, we present a couple of results that provides a basis for the development of theoretical

and computational dynamic results, subsequently.

Lemma 5.3.1 [33] Let V be a function defined on R+ × R, and suppose ∂V
∂t ,

∂V
∂y and ∂2V

∂y2 exist and are

continuous for (t, y) ∈ R+ × R into R. Let us consider a system of stochastic differential equations:

dy = g(t, y)dt+ Λ(t, y)dw . (5.3.1)

Then

dV (t, y) = LV (t, y)dt+ ∂

∂y
V (t, y)Λ(t, y)dw , (5.3.2)

where

L(t, V ) = ∂

∂t
V (t, y) + g(t, y) ∂

∂y
V (t, y) + 1

2tr
(
∂2

∂y2V (t, y)Λ(t, y)ΛT (t, y)
)
. (5.3.3)

In the following, we present a result that provides a foundation for the development of the study of time-

to-event dynamic processes in any field of interest. We present a general result that sheds light and insight

on the solution process of Riemann-Stieltjes type ordinary differential equation [48].

Lemma 5.3.2 Let tk−1 and tk be a pair of ordered consecutive points of discontinuities of η in the time

interval [t0,T). Let us assume that the initial value problem described by the Riemann-Stieltjes type ordinary

differential equation in (5.2.17) has a solution, x(t) ≡ x(t, t0, x0) for t ≥ t0. Then the structure of solution

has a following representation:


dx = xW (t−, Sx) dα(t) ,

x(t, t0, x0) = x(t, tk−1, xk−1) for t ∈ [tk−1, tk) , k ∈ I(1,∞)

xk = x(t−k , tk−1, xk−1) + γk, for t = tk , x(t0) = x0 ,

(5.3.4)

where γk = x(t+k )− x(t−k , tk−1, xk−1) is a jump size of x(t, tk−1, xk−1) at tk for k ∈ I(1,∞), x(t0) = x0; α is

a continuous function of finite variation, and η = α+ s; s is a Saltus function [4, 22, 40].

Proof. We recall that in the theory of differential equations, the solution of initial value problem is right-hand

continuous at an initial time, t0. Furthermore, every function of bounded variation [4, 22, 40]:

(a) is the difference of two monotonic increasing functions (α, β), and also the sum of its Saltus function, s,

and continuous function of bounded variation, α: η = α+ s;
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(b) is differentiable almost everywhere; its derivative is integrable; its points of discontinuities are of the

following type: η(t+) = limu→t+ η(u), η(t−) = limu→t− η(u), and a jump of η at t is ∆η(t) = η(t+) −

η(t−).

In view of the above observations, in general, the qualitative behavior of initial value problem (5.3.4) at t0
is described by

x(t+0 ) = x(t0) + lim
t→t+0

∫ t

t0

x(u)W (u, x(u))dη(u) .

Hence

x(t+0 ) =

x0 + x(t+0 )W (t+0 , x0(t+0 ))[η(t+0 )− η(t0)], if jump ∆η(t+0 ) 6= 0 ,

x0, if jump ∆η(t+0 ) = 0 .
(5.3.5)

We set x0 = x(t0) = x(t−0 ). From this, we rewrite (5.3.5) as:

x(t+0 ) = x(t−0 ) + x(t−0 )W (t−0 , x(t−0 ))∆η(t0), ∆η(t0) 6= 0 ,

x(t+0 ) = x(t−0 ), jump ∆η(t0) = 0 .
(5.3.6)

Obviously, x(t+0 ) = x(t−0 )+∆x(t0), where ∆x(t0) = x(t−0 )W (t−0 , x(t−0 ))∆η(t−0 ) is a jump of x at t0. Moreover,

x(t+0 ) is considered to be an initial value of x at t = t0, and it depends on an immediate past knowledge/his-

tory of x. In the light of this observation, the initial value problem in (5.3.4) can be considered as initial

value problem of generalized ordinary functional differential equations [48].

Using this initial data in (5.3.6), we define a solution as follows:


dx = xW (t−, Sx)dα(t) ,

x(t, t0, x0) = x(t, t0, x0) for t ∈ [t0, t1) ,

x1 = x(t−1 , t0, x0) + γ1, for t = t1 , x(t0) = x0 ,

(5.3.7)

where γ1 = x(t+1 ) − x(t−1 , t0, x0) is a jump of x at t = t1. We continue this process, and then apply the

principle of mathematical induction [32] to conclude that (5.3.4) is valid for any k ∈ (1,∞). 2

Corollary 5.3.1 Let Tj and Tj−1 be a pair of consecutive data observation/collection/failure/censored

times; let {tjkl
}∞l=1 be a subsequence of the sequence {tk}∞k=1 in Lemma 5.3.2, and tjkl

∈ [Tj−1, Tj ] for

j ∈ I(1, n) and l ∈ I(1,∞). Then from Lemma 5.3.2, we have


dx = xW (t−, Sx)dα(t) ,

x(t, T0, x0) = x(t, T0, xj−1) for t ∈ [Tj−1, Tj), j ∈ I(1, n) ,

xj = x(T−j , Tj−1, xj−1) +
∑∞
l=1 γjkl

+ γoj , for t = Tj , x(T0) = x0 .

(5.3.8)

88



where γoj denotes jump size at observation/study time Tj, and γnoj =
∑∞
l=1 γjkl

stands for total jump size

currently not under observable/study time sub-sequence {Tjkl
}∞l=1 over a jth-consecutive pair of observation

time interval [Tj−1, Tj); moreover, due to the finite variation nature of η and the nature of W , γoj and γnoj

are finite over the interval [Tj−1, Tj ].

Remark 5.3.1 We remark that under the assumptions of Lemma 5.3.2, for k ∈ I(1,∞), t−k < tk < t+k , we

have left-hand x(tk)−s(t−k , tk−1, xk−1) and right-hand jumps of solution process x(t, tk−1, xk−1) at tk. More-

over, if a solution process x(t, tk−1, xk−1) is continuous from the left or/and right, then x(tk, tk−1, xk−1) =

x(t−k , tk−1, xk−1) or/and x(t+k , tk, xk) = x(tk, tk, xk), respectively.

Remark 5.3.2 We further remark that the Riemann-Stieltjes type ordinary differential equation in (5.2.17)

can be reformulated by the following system of hybrid dynamic system:dx = xWk−1(t−, Sx)dα(t), t ∈ [tk−1, tk), k ∈ I(1,∞) ,

xk = xk−1 + x(t−k )Wk−1(t−k , S(t−k )x(t−k ))∆α(tk) + γk ,

(5.3.9)

where ηk = αk+sk, γk and αk are defined in Lemma 5.3.2, accordingly; Wk−1 is a rate function corresponding

to a jump time tk−1.

Remark 5.3.3 A few additional features of Riemann-Stieltjes integrals with respect to a function of bound-

ed/finite variation η [4, 22, 40] are outlined . For t−k < tk < t+k , k ∈ I(0,∞); ∆η(t+k ) = η(t+k ) − η(tk),

∆η(t−k ) = η(tk)− η(t−k ),

x(t+k ) = xk+x(t+k )W (t+k , x(t+k ))∆η(t+k ) ⇐⇒ x(t+k )−xk = x(t+k )W (t+k , x(t+k ))∆(t+k ) = right-hand jump at tk

xk ≡ x(tk) = x(t−k ) + x(t−k )W (t−k , x(t−k ))∆η(t−k ) ⇐⇒ xk − x(t−k ) = x(t−k )W (t−k , x(t−k ))∆η(tk)

= left-hand-jump at tk.

Adding the above right-hand and left-hand jumps of x at tk, we obtain an overall jump size at tk in the

context of W and η:

x(t+k )− x(t−k ) = x(t+k )W (t+k , x(t+k ))∆η(t+k ) + x(t−k )W (t−k , x(t−k ))∆η(t−k ) = overall jump at tk. (5.3.10)

From (5.3.10), we draw a few special cases:

(1) x(t+k ) = x(t−k )+γk, where γk stands for the jump at tk, and γk = W (t+k , x(t+k ))∆η(t+k )+W (t−k , x(t−k ))∆η(t−k ).

We note that for k ∈ I(0,∞), x(t−k ) = x(t−k , tk−1, xk−1), t− ∈ [tk−1, tk).

(2) xk = xk−1 +
∫ t−

k

tk−1
x(s)W (s, x(s))dα(s) + γk for t = tk;

(3) γk = [x(t+k )W (t+k , x(t+k ))η(t+k )−x(t−k )W (t−k , x(t−k ))η(t−k )]+[x(t−k )W (t−k , x(t−k ))−x(t+k )W (t+k , x(t+k ))]η(tk);
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(4) γk = [x(t+k )W (t+k , x(t+k ))η(t+k )−x(t−k )W (t−k , x(t−k ))η(t−k )]−[x(t+k )W (t+k , x(t+k ))−x(t−k )W (t−k , x(t−k ))]η(tk).

We note that (3) and (4) are identical.

Furthermore, we observe that

(i) If W and η have left and right-hand limits and are discontinuous at (tk, x), then (3) is valid. This leads

to the development of a discrete-time iterative dynamic process at tk, for k ∈ I(1,∞). This iterative

process is called as “discrete-time intervention process.”

(ii) For k ∈ I(0,∞), if W is either left or/and right continuous on [tk−1, tk) × R and has both left and

right-hand limits in x at tk, then (3) remains valid. Here, the jump is due to the discontinuity of W

in x. Again, this discrete-time dynamic process is referred as impulse type response/impulsive process

[48]. The folowing two cases of (ii) are of great interest in the study of time-to-event dynamic processes:

1. Kaplan and Meier [26] type assumption: For k ∈ I(0,∞), if W is left discontinuous (W has left-hand

limit that is different from its value) and right-continuous.

2. Kaplan and Meier [26] type assumption: For k ∈ I(0,∞), if W is right discontinuous (W has

right-hand limit that is different from its value) and left-continuous.

(iii) If W is continuous in (tk, x) ∈ {tk} × R, η is discontinuous at tk, then (3) remains valid. Moreover,

γk = x(tk)W (tk, x(tk)∆η(tk)).

(iv) If η has either left or right continuity at tk and W has left-and right-hand limits at x, then x is left-hand

continuous at tk, and

(overall jump size at tk) = (either right or left-hand jump at tk) = x(t±k )W (t±k , x(t±k ))∆η(t±k )

= x(t±k )W (t±k , x(t±k ))(η(t±k )− η(tk))

= γk.

Moreover, if η is continuous at tk, then W is discontinuous at (tk, x).

(v) If η is continuous from the right at tk, then x has right continuity at tk, and

(overall jump size at tk) = (left-hand jump at tk) = x(t−k )W (t−k , x(t−k ))(η(tk)− η(t−k )) = γk.

Now, we are ready to present a fundamental result in the theory of time-to-event dynamic processes.

Theorem 5.3.1 Let (x, S) be a solution process of (5.2.17), and let Tj−1 and Tj be any pair of consecutive

conceptual data observation times in a given interval of time [T0,T). Let z be defined in Definition 5.3.1.

Then the transformed interconnected hybrid dynamic models of survival species and state of time-to-event

dynamic process described in (5.2.17) are as:
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

dz = −zλ(t, S)dt+ zσ(t, S)dw + zW (t, z)dα , z(Tj−1) = zj−1 ,

zj = z(T−j ) + znoj + zoj , z(T0) = z0 ,

dV (t, z) = LV (t, z)dt+ zσ(t, S) ∂∂zV (t, z)dw + LαV (t, z)dα ,

V (Tj , zj) = V (T−j , z(T
−
j , Tj−1, zj−1)) + ∂V

∂z V (T−j , z(T
−
j ),∆z(Tj))∆z(Tj) ,

dS = −Sλ(t, S)dt+ Sσ(t, S)dw, S(T0) = S0, t ∈ [Tj−1, Tj) , j ∈ I(1, k),

(5.3.11)

where z(T−j ) = z(T−j , Tj−1, zj−1) and



∂V
∂z (T−j , z(T

−
j ),∆z) =

∫ 1
0

∂
∂zV (T−j , z(T

−
j ) + θ∆z(Tj))dθ and ∆z(Tj) = z(T+

j )− z(T−j ) ,

LV (t, z) = LdV (t, z) + 1
2z

2σ2(t, S) ∂
2

∂z2V (t, z) ,

LdV (t, z) = ∂
∂tV (t, z)− zλ(t, S) ∂∂zV (t, z) ,

LαV (t, z) = zW (t, z) ∂∂zV (t, z) .

(5.3.12)

Proof. For t ∈ [Tj−1, Tj), j ≥ 1, from Definition 5.3.1, the nature of S and x in (5.2.17), and applying the

Itô-Doob stochastic differential formula to z [33] and Corollary 5.3.1, we have

dz = d(xS) = xdS + Sdx+ (dx)(dS)

= x
[
−Sλ(t−, S)dt+ Sσ(t, S)dw

]
+ SxW (t−, Sx)dη + xW (t−, (Sx))dη[−Sλ(t, S)dt+ Sσ(t, S)dw]

= −zλ(t, S)dt+ zσ(t, S)dw + zW (t−, z)dα, for (t, z) ∈ [Tj−1, Tj)× R. (5.3.13)

This establishes the first component of the continuous-time dynamic subsystems in (5.3.11). The proof of

the iterative processes z in (5.3.11) is outlined below.

Employing Definition 5.3.1, Remark 5.3.2, and (5.3.8), we have z(T−j ) = x(T−j , Tj−1, zj−1)S(T−j , Tj−1, Sj−1)

and z(T+
j ) = S(T+

j )x(T+
j ). x(T−j ) and S(T−j ) are as defined in (5.2.17). From the discrete-time dy-

namic of population/species x, (5.3.10), survival state process S in (5.2.17) and its continuity together with

S(T−j ) ≈ S(u) ≈ S(T+
j ) for T−j ≤ u ≤ T

+
j , we have

xjSj = S(T−j )
[
x(T−j ) + γnoj + γoj

]
= z(T−j ) + γnoj + γoj . (5.3.14)

Using Lemma 5.3.1, the proofs of continuous and discrete-time dynamic process z in (5.3.11), the proofs of

continuous and discrete time generalized transformed dynamic processes V (t, z) in (5.3.11) can be formulated,

analogously [31].

This completes the proof of Theorem 5.3.1. 2
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Example 5.3.1 For V (t, z) = z2, (5.3.11) reduces to:

d(z2) = −[2z2λ(t, S)− z2σ2(t, S)]dt+ 2z2σ(t, S)dw + z2W (t−, z)dα ,

z2
j = (z(T−j , Tj−1, zj−1))2 + ∂V

∂z (T−j , z(T
−
j ),∆z(Tj))∆z(Tj) ,

(5.3.15)

where ∂V
∂z (T−j , z(T

−
j ),∆z(Tj)) = 2(z(T−j ) + 1

2∆z(Tj)).

Example 5.3.2 For V (t, z) = ln z, (5.3.11) becomes:

d(ln z) = [−λ(t, S)− 1
2σ

2(t, S)]dt+ σ(t, S)dw +W (t−, z)dα ,

ln zj = ln z(T−j , Tj−1, zj−1) + ∂V
∂z (T−j , z(Tj),∆z(Tj))∆z(T

−
j ) ,

(5.3.16)

where ∂V
∂z (T−j , z(T

−
j ),∆z(Tj)) =

∫ 1
0

dθ
z(T−

j
)+θ∆z(Tj) .

In the following, we develop a very general result that provides a theoretical computational tool to de-

termine theoretical algebraic observation equations for a conceptual computation of state and parameter

estimates. The proof of the result follows by using the standard mathematical reasoning [34, 35, 42].

Theorem 5.3.2 Let us assume that the conditions of Theorem 5.3.1 are satisfied. Then transformed discrete-

time interconnected theoretical computational dynamic algorithm is described by:


∆zj = −zj−1λ(Tj−1, Sj−1)∆Tj + zj−1σ(Tj−1, Sj−1)∆w(Tj) + Γnoj + γoj , z(T0) = z0 ,

∆V (Tj , zj) = LV (Tj−1, zj−1)∆Tj + z(Tj−1)σ(Tj−1, Sj−1) ∂∂zV (Tj−1, zj−1)∆w(Tj) + Γnovj + γovj ,

∆Sj = −Sj−1λ(Tj−1, Sj−1)∆Tj + Sj−1σ(Tj−1, Sj−1)∆w(Tj), S(T0) = S0, j ∈ I(1, k) ,
(5.3.17)

and moreover

E(∆zj | Gj−1) = −zj−1λ(Tj−1, Sj−1)∆Tj + Γnoj + γoj , z(T0) = z0 ,

E
[
(∆zj − E(∆zj | Gj−1))2 | Gj−1

]
= σ2(Tj−1, Sj−1)z2

j−1∆Tj ,

E[∆V (Tj , zj) | Gj−1] = LV (Tj−1, zj−1)∆Tj + Γnovj + γovj ,

E
[
(∆V (Tj , zj)− E(∆V (Tj , zj) | Gj−1))2 | Gj−1

]
= σ2

j−1z
2
j−1

(
∂
∂zV (Tj−1, zj−1)

)2 ∆Tj ,

(5.3.18)

where ∆zj = zj − zj−1; ∆z(Tjkl
) = z(T+

jkl
) − z(T−jkl

) = γnojkl
and ∆z(Tj) = z(T+

j ) − z(T−j ) = γnoj + γoj are

jumps at Tjkl
for Tjkl

∈ (Tj−1, Tj ] and Tj, respectively; the total jump
∑∞
l=1 ∆z(Tjkl

) and a continuous-time

change of survivals, zj−1W (Tj−1, zj−1)∆α(Tj) over the j-th interval of observation [Tj−1, Tj) are given by:

Γnoj + γoj =
∫ T−

j

Tj−1

z(s)W (s, z(s))dα(s) + γnoj + γoj =
∞∑
l=1

∆z(Tjkl
) + zj−1W (Tj−1, zj−1)∆α(Tj), (5.3.19)
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where γnojkl
, Γnoj denote number of survivals not currently under observation; γoj stands for number of sur-

vivals under observation; moreover, Γnoj +γoj represents a change in survival state due to either censored/ad-

mitted/birth/natural death/ immigration/emigration process and their combinations; for Tjkl
∈ (Tj−1, Tj),

∆V (Tjkl
) = V (T+

jkl
, z(T+

jkl
))− V (T−jkl

, z(T−jkl
)) = γnovjkl

and ∆V (Tj) = V (T+
j , z(T

+
j ))− V (T−j , z(T

−
j )) = γovj

stand for a jumps of V at Tjkl
and Tj, respectively; the overall jump of V and a continuous-time change of

survivals on the j-th interval of observation [Tj−1, Tj) is as:

Γnovj + γnovj =
∫ Tj

T−
j

1
LαV (s, z(s))dα(s) +

∞∑
l=1

γnovjkl
+ γovj =

∞∑
l=1

∆V (Tjkl
) + Lα(Tj−1, zj−1)∆α(Tj), (5.3.20)

where γnovjkl
and γovj stand for number of survivals not observed under the transformation V and γovj denotes

the number of observed survivals; furthermore, Γnovj + γovj represents the transformed change in survival

state due to either censored/admitted/birth/natural death/immigration /emigration process and their combi-

nations; ∆Tj = Tj − Tj−1, ∆w(Tj) = w(Tj)−w(Tj−1) for j ∈ I(1, k); GTj−1 = Gj−1 is the joint filtration of

dynamic process up to time Tj−1 and intervention/observation processes at T+
j .

Proof. Using The Euler-Maruyama-type numerical schemes [29] for survival state interconnected large-scale

dynamic system (5.3.11) over the j-th observation time interval [Tj−1, Tj), Corollary 5.3.1 and employing

the standard arguments, we obtain



∆zj = −zj−1λ(Tj−1, Sj−1)∆Tj + zj−1σ(Tj−1, Sj−1)∆w(Tj) + zj−1W (Tj−1, zj−1)∆α(Tj) + γnoj + γoj ,

z(T0) = z0 ,

∆V (Tj , zj) = LV (Tj−1, zj−1)∆Tj + z(Tj−1)σ(Tj−1, Sj−1) ∂∂zV (Tj−1, zj−1)∆w(Tj)

+Lα(Tj−1, zj−1)∆α(Tj) + γnovj + γovj ,

∆Sj = −Sj−1λ(Tj−1, Sj−1)∆Tj + Sj−1σ(Tj−1, Sj−1)∆w(Tj), S(T0) = S0, j ∈ I(1, k) .
(5.3.21)

From (5.3.19) and (5.3.20), (5.3.21) reduces to (5.3.17). Moreover, from (5.3.17), (5.3.18) follows, imme-

diately. This completes the proof of the theorem.

2

In the following, we apply Theorem 5.3.2 to Examples 5.3.1 and 5.3.2. The developed results will be used,

subsequently.

Example 5.3.3 For V in Example 5.3.1, using (5.3.15), the discrete-time system (5.3.18) reduces to:
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

E(∆zj | Gj−1) = −zj−1λ(Tj−1, Sj−1)∆Tj + Γnoj + γoj , z(T0) = z0 ,

E
[
(∆zj − E(∆zj | Gj−1))2 | Gj−1

]
= σ2(Tj−1, Sj−1)z2

j−1∆Tj ,

E[∆(z2
j ) | Gj−1] =

[
−2λ(Tj−1, Sj−1) + σ2(Tj−1, Sj−1)

]
z2
j−1∆Tj + Γnovj + γovj ,

E
[(

∆z2
j − E(∆z2

j ) | Gj−1)
)2 | Gj−1

]
= 4σ2(Tj−1, Sj−1)z4

j−1∆Tj ,

(5.3.22)

where Γnovj ,Γnoj , γovj , and γoj are defined in (5.3.19) and (5.3.20) in the context of V in Example 5.3.1.

Example 5.3.4 For V in Example 5.3.2, the system of observation equations in (5.3.18) becomes:



E(∆zj | Gj−1) = −zj−1λ(Tj−1, Sj−1)∆Tj + Γnoj + γoj , z(T0) = z0 ,

E
[
(∆zj − E(∆zj | Gj−1))2 | Gj−1

]
= σ2(Tj−1, Sj−1)z2

j−1∆Tj ,

E[∆ ln(zj) | Gj−1] = −
[
λ(Tj−1, Sj−1) + 1

2σ
2(Tj−1, Sj−1)

]
∆Tj + Γnovj + γovj ,

E
[
(∆ ln(zj)− E(∆ ln(zj) | Gj−1))2 | Gj−1

]
= σ2(Tj−1, Sj−1)∆Tj ,

(5.3.23)

where Γnovj ,Γnoj , γovj , and γoj are determined by (5.3.19) and (5.3.20) in the context of V in Example 5.3.2.

Remark 5.3.4 (i) In order to identify and illustrate the role and scope of our presented study, we specify

the following structure of Riemann-Stieltjes ordinary differential equation in (5.2.17):

dz = zWa(t, z)dηa+zWb(t, z)dηb+zWi(t, z)dηi+zWd(t, z)dηd+zWe(t, z)dηe+zWl(t, z)dηl+zWo(t, z)dηo ,

(5.3.24)

where a, b, i, d, e, l, and o stand for arrivals/admitted, natural birth, immigration, natural death, emigration,

leaving and observation, respectively; Wa,Wb,Wi,Wd,We,Wl, and Wo are corresponding rate functions;

ηa, ηb, ηi, ηd, ηe, ηl, and ηo are corresponding cumulative probability distribution or increasing functions.

Under this type of structural considerations, the structure of γj in Lemma 5.3.2 and in general under

transformation γvj are represented by γj = γaj + γbj + γij − γdj − γej − γlj − γoj and γvj = γavj + γbvj + γivj − γdvj −

γevj − γlvj − γovj , where γaj , γbj , γij , γdj , γej , γlj , γoj , γavj , γbvj , γ
iv
j , γ

dv
j , γevj , γ

lv
j , and γovj are non-negative integers.

(ii) Moreover, for the comparison of the presented approach with the existing methods in the time-to-event

statistical data analysis, we further represent the structure of γj and γvj as follows: γj = γnoj + γoj and

γvj = γnovj + γvoj , where γaj = γnaj + γoaj ; γavj = γnavj + γoavj ; γnoj and γnovj denote the total number of

data sizes that are not under the observation/study corresponding to the overall γj and γvj data sizes,

respectively; γaj and γavj are composed of non-observed γnaj , γnovj and observed γoaj , γ
oav
j data, respectively;

γooj = γoaj −γoj and γoovj = γoavj −γovj ; γoj is composed of failure or right-censored data representing of number

of failure γfj and censored γcj data. It is hoped that in the 21-st century and beyond, this type of structural

representation would play a very significant role in studying time-to-event dynamic processes. In fact, this

representation allows one to investigate the effectiveness, efficiency, measure, change, etc of treatments, and

taking administrative actions or making intervention processes.
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In the following section, we establish theoretical discrete-time conceptual computational parameter and

state estimation algorithms.

5.4 Theoretical/Conceptual Parameter and State Estimations

For the sake of completeness, we recall a few definitions [6]. These definitions will be utilized for developing

the conceptual parameter and state estimations. The presented work is not limited to a particular pool of

objects/subjects in time-to-event dynamic processes in biological, chemical, engineering, medical, economic,

financial, and social sciences. Moreover, the current study of time-to-event dynamic processes is treated

as open dynamic processes. This allows us to expand the role and scope of time-to-event dynamic pro-

cesses beyond the processes in engineering and medical sciences. In the light of this, the population under

consideration of study is grouped into two categories, namely, (1) the sub-population under study/observa-

tion/supervision, and (2) a remaining part of population not currently considered under study/observations.

The study allows the members of these sub-population groups to move from one group into the other. It is

assumed that the overall size of the population of time-to-event dynamic process is n = n0 + nn, where no
and nn stand for the total overall sizes of the sub-populations under observation/study and not under obser-

vation/study at an initial time T0, respectively. The study is considered to be over an interval of time [T0,T).

Now, for the sake of completeness, we outline a few definitions [6] that will be used, subsequently.

Definition 5.4.1 For j ∈ I(1, k), let Tj−1 and Tj be consecutive data observation/supervision times of joint

population/objects/entities and state survival dynamic process. A parameter estimate at Tj is defined by the

quotient of change of entities/objects over the consecutive change time subinterval [Tj−1, Tj) and the total

time spent by the entities/objects under observation/supervision over the subinterval [Tj−1, Tj) of length

∆Tj = Tj − Tj−1.

Definition 5.4.2 Let {zj−1}kj=1 be an overall sequence of transformed conceptual state data set with re-

spect to the conceptual state data collection/observation time sequence {Tj−1}kj=1 , and let {T fj−1i−1}
kf

i=1 ,

{T cj−1l−1}
kc

l=1 and {T aj−1m−1}
ka
m=1 be overall increasing conceptual failure, censored and admitted subse-

quences of the overall conceptual data collection time sequence {Tj−1}kj=1 , respectively. Three subsequences

of the overall conceptual state data sequence {zj−1}kj=1 associated with the three overall conceptual subse-

quences of failure, censored and admitted time subsequences are represented by:

{zfj−1i−1}
kf

i=1, {zcj−1l−1}
kc

l=1, and {zaj−1m−1}
ka
m=1 , (5.4.1)

respectively. These conceptual state data subsequences are called conceptual failure, censored and admitted

state subsequences of {zj−1}kj=1, respectively. We note that kf + kc + ka = k.

95



Definition 5.4.3 The union of the boundary point set of the interval [t0,T) and the range of the overall

failure subsequence {T fj−1i−1}
kf +1
i=1 constitutes a partition of the interval [t0,T),T ≤ ∞. This partition of

[t0,T),T ≤ ∞ is termed as the overall conceptual failure-time partition of [t0,T), and it is denoted by (P f ).

Definition 5.4.4 For j ∈ I(1, k) and any consecutive pair (T fj−1i−1, T
f
j−1i) of conceptual failure-times for

i ∈ I(1, kf ) under the notations T fj−100 = T fj−1 for i = 1 and either l = 1 or m = 1; furthermore, T f000 = T0 if

i = j = 1; either T fj−1kci
= T fj−1i for l = 1+kci

, i = 2 or T fj−1kai
= T fj−1i depending on whether l = kci

+1 and

i = 2 or m = kai + 1 and i = 2; a ji-th consecutive conceptual failure-time subinterval is [T fj−1i−1, T
f
j−1i) for

i ∈ I(1, kf ). In addition, the conceptual transformed state data associated with the consecutive conceptual

initial failure-times is denoted by zfj−100 = zfj−1 and for j = 1, zf1−10 = zf000 = zf0 .

Definition 5.4.5 Let {zcj−1l−1}
kc

l=1 and {zaj−1m−1}
ka
m=1 be overall censored and admitted conceptual trans-

formed state data subsequences defined in Definition 5.4.2. Let {T cj−1i−1p}
kci
p=1 and {T aj−1i−1q}

kai
q=1 be concep-

tual subsequences restricted to the j−1i-th consecutive conceptual failure-time subinterval [T fj−1i−1, T
f
j−1i) of

overall conceptual censored and admitted subsequences {T cj−1l−1}
kc

l=1 and {T aj−1m−1}
ka
m=1 of times of the over-

all sequence {Tj−1}kj=1 of times, respectively. Moreover, the union of the boundary points of [T fj−1i−1, T
f
j−1i)

and the range of subsequences {T cj−1i−1p}
kci
p=1 and {tcj−1i−1q}

kai
q=1 form a sub-partition P fj−1 of P f and the

partition of j−1i-th subinterval [T fj−1i−1, T
f
j−1i) . Two subsequences of the overall censored and/or admitted

conceptual transformed state data subsequences {zcj−1l−1}
kc

l=1 and/or {zaj−1m−1}
ka
m=1 with respect to the two

overall conceptual censored and admitted time subsequences of the overall sequence of times {[Tj−1, Tj)}kj=1

restricted to the j−1i-th consecutive conceptual failure-time subinterval [T fj−1i−1, T
f
j−1i) are represented by:

{zcj−1i−1p−1}
kci
p=1 and {zaj−1i−1q−1}

kai
q=1 , (5.4.2)

respectively. These conceptual transformed state data subsequences are called subsequences of the overall

censored and admitted conceptual state data subsequences {zcj−1l−1}
kc

l=1 and {zaj−1m−1}
ka

l=1 of the overall

conceptual sequence {zj−1}kj=1 of data set, respectively. We note that kc =
kc∑
l=1

kcl
and ka =

ka∑
m=1

kam
.

Moreover, for p = 1 and q = 1, (5.4.2) reduces to zcj−1i−10 = zcj−1i−1 and zaj−1i−10 = zaj−1i−1, respectively;

for p = kci
+ 2, and q = kai

+ 2, we have zcj−1i−1kci
+1 = zcji and zaj−1i−1kai

+1 = zaji, respectively.

In the following, we outline a very general fundamental conceptual results for the development of state

data observation system. Observation of dynamic systems are in the frame-work of right-censored data

observation process conceptual setting [25, 37].

Lemma 5.4.1 Let the hypotheses of Theorem 5.3.2 and Remark 5.3.4 be satisfied. From (5.3.17), the trans-

formed discrete-time dynamic observation components are developed below:

(a) For each j ∈ I(1, k), let T fcaj−1 be either failure, censored or admitting time, and T fj is the failure/death/re-

96



moval/ infective/etc observation time. Then γoaj = γoj = γovj = γoavj = 0(that is γooj = 0), and



E(∆zj | Gj−1) = −zj−1λ(T fcaj−1, Sj−1)∆T fj + Γnoj , z(T0) = z0 , j ∈ I(1, k) ,

E
[
(∆zj − E(∆zj | Gj−1))2 | Gj−1

]
= σ2(T fcaj−1, Sj−1)z2

j−1∆T fj ,

E[∆V (T fj , zj) | Gj−1] = LV (T fj−1, zj−1)∆T fj + Γnovj ,

E
[(

∆V (T fj , zj)− E(∆V (T fj , zj) | Gj−1)
)2
| Gj−1

]
= σ2(T fcaj−1, Sj−1)z2

j−1
(
∂
∂zV (Tj−1, zj−1)

)2 ∆T fj ,

∆Sj = −Sj−1λ(T fj−1, Sj−1)∆T fj + Sj−1σ(T fj−1, Sj−1)∆w(T fj ) , S(T0) = S0 ,

(5.4.3)

where a pair (T fcaj−1, T
f
j ) stands for either (T fj−1, T

f
j ), or (T cj−1, T

f
j ) or (T aj−1, T

f
j ); T fj , T cj−1 and T aj−1

stand for failure, censored and admitting observation times, respectively; ∆T fj = T fj − T
fca
j−1; ∆w(T fj ) =

w(T fj )− w(T fcaj−1);

(b) For each j ∈ I(1, k), let T cafj−1 be either censored, admitting or failure observation time, and T cj is a

censored/listed observation time. Then γooj = γcj , γoovj = γcvj , and



E(∆zj | Gj−1) = −zj−1λ(T cafj−1, Sj−1)∆T cj + Γnoj − γcj , z(T0) = z0 ,

E
[
(∆zj − E(∆zj | Gj−1))2 | Gj−1

]
= (σ(T cafj−1, Sj−1)zj−1)2∆T cj ,

E[∆V (T cj , zj) | Gj−1] = LV (T cafj−1, zj−1)∆T cj + Γnovj − γcvj ,

E
[(

∆V (T cj , zj)− E(∆V (T cj , zj)) | Gj−1)
)2 | Gj−1

]
= σ2(T cafj−1, Sj−1)z2

j−1
(
∂
∂zV (Tj−1, zj−1)

)2 ∆T cj ,

∆Sj = −Sj−1λ(T fj−1, Sj−1)∆T fj + Sj−1σ(T fj−1, Sj−1)∆w(T fj ) , S(T0) = S0 ,

(5.4.4)

where a pair (T cafj−1, T
c
j ) stands for either (T cj−1, T

c
j ), (T aj−1, T

c
j ) or (T fj−1, T

c
j ); ∆T cj = T cj − T cafj−1; γcj

stands for the number of censored objects/infectives/quitting/withdrawn/etc observation time T cj ;

(c) For each j ∈ I(1, k), let T acfj−1 be either admitting, censored or failure observation time, and T aj is a

admitting/joining/ recruiting/etc observation time. Then γooj = γoaj , γ
oov
j = γoavj , and



E(∆zj | Gj−1) = −zj−1λ(T acfj−1, Sj−1)∆T aj + Γnoj + γoaj , z(T0) = z0 ,

E
[
(∆zj − E(∆zj | Gj−1))2 | Gj−1

]
= (σ(T acfj−1, Sj−1)zj−1)2∆T aj ,

E[∆V (T aj , zj) | Gj−1] = LV (T acfj−1, zj−1)∆T cj + Γnovj + γoavj ,

E
[(

∆V (T aj , zj)− E(∆V (T aj , zj) | Gj−1)
)2 | Gj−1

]
= σ2(T acfj−1, Sj−1)z2

j−1
(
∂
∂zV (Tj−1, zj−1)

)2 ∆T aj ,

∆Sj = −Sj−1λ(T fj−1, Sj−1)∆T fj + Sj−1σ(T fj−1, Sj−1))∆w(T fj ) , S(T0) = S0 ,

(5.4.5)

where a pair (T acfj−1, T
a
j ) belongs to a set: (T acfj−1, T

a
j ) ∈ {(T aj−1, T

a
j ), (T cj−1, T

a
j ), (T fj−1, T

a
j )}; ∆T aj =

T aj − T
acf
j−1; γaj stands for the conceptual number of objects/infectives/etc arriving/joining observation

time T aj .
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Proof. Employing (5.3.17), (5.3.18) and Remark 5.3.4 in the context of right-censored data collection process,

the proofs of (a), (b), and (c) can be easily constructed. The details are left to the reader. 2

Using Examples 5.3.1 and 5.3.2, the developed conceptual results in Lemma 5.4.1 are illustrated.

Example 5.4.1 For V in Example 5.3.1, the systems of observation equations (5.4.3), (5.4.4), and (5.4.5)

reduces to:



E(∆zj | Gj−1) = −zj−1λ(T fcaj−1, Sj−1)∆T fj + Γnoj , z(T0) = z0 ,

E
[
(∆zj − E(∆zj | Gj−1))2 | Gj−1

]
= σ2(T fcaj−1, Sj−1)z2

j−1∆T fj ,

E[∆z2
j | Gj−1] =

[
−2λ(T fcaj−1, Sj−1) + σ2(T fcaj−1, Sj−1)

]
z2
j−1∆T fj + Γnovj ,

E
[(

∆z2
j − E(∆z2

j | Gj−1)
)2 | Gj−1

]
= 4σ2(T fcaj−1, Sj−1)z4

j−1∆T fj ,

∆Sj = −Sj−1λ(T fj−1, Sj−1)∆T fj + Sj−1σ(T fj−1, Sj−1)∆w(T fj ) , S(T0) = S0 ,

(5.4.6)



E(∆zj | Gj−1) = −zj−1λ(T cafj−1, Sj−1)∆T cj + Γnoj − γcj , z(T0) = z0 ,

E
[
(∆zj − E(∆zj | Gj−1))2 | Gj−1

]
= σ2(T cafj−1, Sj−1)z2

j−1∆T cj ,

E[∆z2
j | Gj−1] =

[
−2λ(T cafj−1, Sj−1) + σ2(T cafj−1, Sj−1)

]
z2
j−1∆T cj + Γnovj − γcvj ,

E
[(

∆z2
j − E(∆z2

j | Gj−1)
)2 | Gj−1

]
= 4σ2(T cafj−1, Sj−1)z4

j−1∆T cj ,

∆Sj = −Sj−1λ(T fj−1, Sj−1)∆T fj + Sj−1σ(T fj−1, Sj−1)∆w(T fj ) , S(T0) = S0 ,

(5.4.7)

and



E(∆zj | Gj−1) = −zj−1λ(T acfj−1, Sj−1)∆T cj + Γnoj + γoaj , z(T0) = z0 ,

E
[
(∆zj − E(∆zj | Gj−1))2 | Gj−1

]
= σ2(T acfj−1, Sj−1)z2

j−1∆T aj ,

E[∆z2
j | Gj−1] =

[
−2λ(T acfj−1, Sj−1) + σ2(T acfj−1, Sj−1)

]
z2
j−1∆T aj + Γnovj + γoavj ,

E
[(

∆z2
j − E(∆z2

j ) | Gj−1)
)2 | Gj−1

]
= 4σ2(T acfj−1, Sj−1)z4

j−1∆T aj ,

∆Sj = −Sj−1λ(T fj−1, Sj−1)∆T fj + Sj−1σ(T fj−1, Sj−1)∆w(T fj ) , S(T0) = S0 ,

(5.4.8)

respectively.

Example 5.4.2 For V in Example 5.3.2, the systems of observation equations (5.4.3), (5.4.4), and (5.4.5)

becomes
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

E(∆zj | Gj−1) = −zj−1λ(T fcaj−1, Sj−1)∆T fj + Γnoj , z(T0) = z0 ,

E
[
(∆zj − E(∆zj | Gj−1))2 | Gj−1

]
= σ2(T fcaj−1, Sj−1)z2

j−1∆T fj ,

E[∆ ln(zj) | Gj−1] = −
[
λ(T fcaj−1, Sj−1) + 1

2σ
2(T fcaj−1, Sj−1)

]
∆T fj + Γnovj ,

E
[
(∆ ln(zj)− E(∆ ln(zj) | Gj−1))2 | Gj−1

]
= σ2(T fcaj−1, Sj−1)∆T fj ,

∆Sj = −Sj−1λ(T fj−1, Sj−1)∆T fj + Sj−1σ(T fj−1, Sj−1)∆w(T fj ) , S(T0) = S0 ,

(5.4.9)



E(∆zj | Gj−1) = −zj−1λ(T cafj−1, Sj−1)∆T cj + Γnoj − γcj , z(T0) = z0 ,

E
[
(∆zj − E(∆zj | Gj−1))2 | Gj−1

]
= σ2(T cafj−1, Sj−1)z2

j−1∆T cj ,

E[∆ ln(zj) | Gj−1] = −
[
λ(T cafj−1, Sj−1) + 1

2σ
2(T cafj−1, Sj−1)

]
∆T cj + Γnovj − γcvj ,

E
[
(∆ ln(zj)− E(∆ ln(zj) | Gj−1))2 | Gj−1

]
= σ2(T cafj−1, Sj−1)∆T cj ,

∆Sj = −Sj−1λ(T fj−1, Sj−1)∆T fj + Sj−1σ(T fj−1, Sj−1)∆w(T fj ) , S(T0) = S0 ,

(5.4.10)

and 

E(∆zj | Gj−1) = −zj−1λ(T acfj−1, Sj−1)∆T aj + Γnoj + γoaj , z(T0) = z0 ,

E
[
(∆zj − E(∆zj | Gj−1))2 | Gj−1

]
= σ2(T acfj−1, Sj−1)z2

j−1∆T aj ,

E[∆ ln(zj) | Gj−1] = −
[
λ(T acfj−1, Sj−1) + 1

2σ
2(T acfj−1, Sj−1)

]
∆T aj + Γnovj + γoavj ,

E
[
(∆ ln(zj)− E(∆ ln(zj) | Gj−1))2 | Gj−1

]
= σ2(T acfj−1, Sj−1)∆T aj ,

∆Sj = −Sj−1λ(T fj−1, Sj−1)∆T fj + Sj−1σ(T fj−1, Sj−1)∆w(T fj ) , S(T0) = S0 ,

(5.4.11)

respectively.

On the basis of the above discussions, we present a very simple result that provides an insight for the

understanding of the development of discrete-time conceptual computational dynamic of state and parameter

estimation problems. Moreover, the results provide a systematic mathematical basis for the usage of the

assumptions of the Principle of Mathematical Induction [32].

Lemma 5.4.2 Assume that the conditions of Lemma 5.4.1 are satisfied and let T fj−1 and T fj be a pair of

consecutive failure/risk/death/etc observation times.

(a) For j ∈ I(1, k), T fj−1 and T fj are consecutive risk/failure/removal/death/non-operational observation

times in [T0,T),T ≤ ∞. Then the theoretical/computational parameter estimation algorithm is given by


E(∆zj | Gj−1) = −zj−1λ(T fj−1, Sj−1)∆T fj + Γnoj , z(T0) = z0 ,

E[∆V (T fj , zj | Gj−1] =
[
LdV (T fj−1, zj−1) + 1

2z
2
j−1σ

2(T fj−1, Sj−1) ∂
2

∂z2V (T fj−1, zj−1)
]

∆T fj + Γnovj

∆Sj = −Sj−1λ(T fj−1, Sj−1)∆T fj + Sj−1σ(T fj−1, Sj−1)∆w(T fj ) , S(T0) = S0 ;
(5.4.12)
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parameter estimations at T fj are determined by:



λ̂(T fj−1, Sj−1) =
−E(∆zj | Gj−1) + Γnoj

zj−1∆T fj
, ∆T fj = T fj − T

f
j−1 ,

σ̂2(T fj−1, Sj−1) = 2
[
E[∆V (T fj , zj) | Gj−1]− Γnovj − LdV (T fj−1, zj−1)∆T fj

z2
j−1

∂2

∂z2V (Tj−1, zj−1)∆T fj

]
,

(5.4.13)

where LdV (t, z) is defined in (5.3.12).

Using parameter estimates in (5.4.13), local state estimations on [T fj−1, T
f
j ) are determined by:

∆Sj = −Ŝj−1λ̂(T fj−1, Ŝj−1)∆T fj + Ŝj−1σ̂(T fj−1, Ŝj−1)∆w(T fj ) , Ŝ(T0) = Ŝ0 , j ∈ I(1, k),

∆zj = −ẑj−1λ̂(T fj−1, Ŝj−1)∆T fj + ẑj−1σ̂(T fj−1, Ŝj−1)∆w(T fj ) + γj , ẑ(T0) = ẑ0 .

(5.4.14)

Moreover, estimate of solution process (S, z) of interconnected dynamic system (5.3.11) is represented

by: Ŝ(t, Tj−1, Ŝj−1), Ŝ(Tj−1) = Ŝj−1, Ŝ0 = S(T0) for t ∈ [T fj−1, T
f
j ) ,

ẑ(t, Tj−1, ẑj−1), ẑ(Tj−1) = ẑj−1, ẑ0 = z(T0).
(5.4.15)

(b) For j ∈ I(1, k) and T fj−1 < T cj < T fj , where T cj is censored time between a pair of consecutive fail-

ure observation times T fj−1 and T fj in [T0,T),T ≤ ∞. Then the theoretical/computational parameter

estimation algorithm is described by:



E(∆zj | Gj−1) = −λ(T fj−1, Sj−1)
[
zj−1∆T fcj + z(T cj )∆T cfj

]
+ Γnoj − γcj , z(T0) = z0 ,

E[∆V (T fj , zj) | Gj−1] = LdV (T fj−1, zj−1)∆T fcj + LdV (T cj , z(T cj ))∆T cfj + Γnovj − γcvj +

1
2σ

2(Tj−1, Sj−1)
[
z2
j−1

∂2

∂z2V (T fj−1, zj−1)∆T fcj + z2(T cj ) ∂
2

∂z2V (T cj , z(T cj ))∆T cfj
]
,

∆Sj = −Sj−1λ(T fj−1, Sj−1)∆T fj + Sj−1σ(T fj−1, Sj−1)∆w(T fj ) , S(T0) = S0 ;
(5.4.16)

parameter estimations at T fj are described by;



λ̂(T fj−1, Sj−1) =
−E(∆zj | Gj−1) + Γnoj − γcj[
zj−1∆T fcj + z(T cj )∆T cfj

] ,

σ̂2(T fj−1, Sj−1) =

2

E[∆V (T fj , zj) | Gj−1]−
(
LdV (T fj−1, zj−1)∆T fcj + LdV (T cj , z(T cj ))∆T cfj + Γnovj − γcvj

)
z2
j−1

∂2

∂z2V (Tj−1, zj−1)∆T cfj + z2(T cj ) ∂2

∂z2V (T cj , z(T cj ))∆T fcj

 ,
(5.4.17)
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where ∆T fcj = T cj − T
f
j−1 , ∆T cfj = T fj − T cj ; LdV (t, z) is defined in (5.3.12).

Using the local parameter estimates in (5.4.17), local state estimates of (5.4.14) on [T fj−1, T
f
j ) are deter-

mined. Again, solution process (S, z) of (5.3.11) are represented as in (5.4.15).

(c) For j ∈ I(1, k) and T fj−1 < T aj < T fj , where T aj is joining/admitting time between a pair of consecutive

failure observation times T fj−1 and T fj in [t0,T),T ≤ ∞. Then the theoretical/computational parameter

estimation algorithm is given by:



E(∆zj | Gj−1) = −λ(T fj−1, Sj−1)
[
zj−1∆T afj + z(T aj )∆T faj

]
+ Γnoj + γoaj , z(T0) = z0 ,

E[∆V (T fj , zj) | Gj−1] = LdV (T fj−1, zj−1)∆T faj + LdV (T aj , z(T aj ))∆T afj + Γnovj + γoavj +

1
2σ

2(Tj−1, Sj−1)
[
z2
j−1

∂2

∂z2V (T fj−1, zj−1)∆T faj + z2(T aj ) ∂
2

∂z2V (T aj , z(T aj ))∆T afj
]
,

∆Sj = −Sj−1λ(T fj−1, Sj−1)∆T fj + Sj−1σ(T fj−1, Sj−1)∆w(T fj ) , S(T0) = S0 ;
(5.4.18)

parameter estimation are given below:

λ̂(T fj−1, Sj−1) =
−E

[
∆z(T aj )| Gj−1

]
+ Γnoj + γoaj[

zj−1∆T faj + z(T aj )∆T afj
] ,

σ̂2(T fj−1, Sj−1) =

2

E[∆V (T fj , z(T
f
j )) | Gj−1]−

(
LdV (T fj−1, zj−1)∆T faj + LdV (T aj , z(T aj ))∆T afj + Γnovj + γoavj

)
z2
j−1

∂2

∂z2V (T fj−1, zj−1)∆T faj + z2(T aj ) ∂2

∂z2V (T aj , z(T aj ))∆T afj

 ,
(5.4.19)

where ∆T afj = T aj − T
f
j−1 , ∆T faj = T fj − T aj ;LdV (t, z) is defined in (5.3.12).

Using the parameter estimates in (5.4.19), local state estimates on [T fj−1, T
f
j ) are computed from (5.4.14).

In addition, state estimates are as described in (5.4.15):

Proof.

(a) Let T fj−1 and T fj be two consecutive conceptual failure times. In this case, kci = kai = 0. From Definition

5.4.4, here i = 1. Therefore, for the subinterval [T fj−1i−1l−1, T
f
j−1i), l = i = 1, and T fj−11 = T fj ;T fj−1 =

T fj−100. Using the theoretical discrete-time iterative scheme (5.3.17), (5.3.12) and (5.4.3), we have


E(∆zj | Gj−1) = −zj−1λ(T fj−1, Sj−1)∆T fj + Γnoj , z(T0) = z0 ,

E[∆V (T fj , zj) | Gj−1] =
[
LdV (T fj−1, zj−1) + 1

2z
2
j−1σ

2(T fj−1, Sj−1) ∂
2

∂z2V (T fj−1, zj−1)
]

∆T fj + Γnovj

∆Sj = −Sj−1λ(T fj−1, Sj−1)∆T fj + Sj−1σ(T fj−1, Sj−1)∆w(T fj ) , S(T0) = S0 .

(5.4.20)

From Definition 5.4.1, the validity of (5.4.12) is then established. Solving for λ and using backward

substitution process, the validity of (5.4.13) follows immediately.
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Now, we use λ = λ̂ and σ = σ̂ determined by (5.4.13) to solve the system in (5.4.14). Moreover, the

solution processes S and z in (5.3.11) are estimated by using an initial data and estimated parameters

(5.4.15). This completes the proof of (a).

(b) Let T cj be a censoring time between two consecutive conceptual risk/failure times, T fj−1 and T fj . We

consider a partition of a subinterval [T fj−1, T
f
j ) to be P fji = [T fj−1, T

f
j ] : Tj−1 < T cj−1 < Tj . In addition,

from Definitions 5.4.4 and 5.4.5,kai
= 0, kci

= 1, and 0 + kci
+ 2 = 3. Thus, the size of P fji is 3. We note

that i = 1, since T fj−1 = T fj−10 and T fj = T fj2 = Tj−1kci
+1. Employing Lemma 5.4.1(b) and (a) in the

context of [T fj−1, T
c
j ) and [T cj , T

f
j ), respectively. We note the fact that [T fj−1, T

f
j ) = [T fj−1, T

c
j )∪ [T cj , T

f
j ),

we have

E(∆zfcj | Gj−1) + E(∆zcfj | Gj−1) = −zj−1λ(T fj−1, Sj−1)∆T fcj + Γnoj − γcj − λ(T cj−1, Sj−1)z(T cj )∆T cfj

E(∆zj | Gj−1) = −λ(T fj−1, Sj−1)
[
zj−1∆T fcj + z(T cj )∆T cfj

]
+ Γnoj − γcj . (5.4.21)

By repeating the above argument and using Lemma 5.4.1 (b) and (a), we obtain

E[∆V (T fj , zj) | Gj−1] =
[
LdV (T fj−1, zj−1)∆T fcj + LdV (T cj , z(T cj ))∆T cfj

]
+

1
2σ

2(Tj−1, Sj−1)
[
z2
j−1

∂2

∂z2V (T fj−1, zj−1)∆T fcj + z2(T cj ) ∂
2

∂z2V (T cj , z(T cj ))∆T cfj
]

+ Γnovj − γcvj . (5.4.22)

Hence

E(∆zj | Gj−1) = −λ(T fj−1, Sj−1)
[
zj−1∆T fcj + z(T cj )∆T cfj

]
+ Γnoj − γcj , z(T0) = z0 ,

E[∆V (T fj , zj) | Gj−1] = LdV (T fj−1, zj−1)∆T fcj + LdV (T aj , z(T cj ))∆T cfj + Γnovj − γcvj +

1
2σ

2(Tj−1, Sj−1)
[
z2
j−1

∂2

∂z2V (T fj−1, zj−1)∆T fcj + z2(T cj ) ∂
2

∂z2V (T cj , z(T cj ))∆T cfj
]

∆Sj = −Sj−1λ(T fj−1, Sj−1)∆T fj + Sj−1σ(T fj−1, Sj−1)∆w(T fj ) , S(T0) = S0 .

(5.4.23)

First, solving for λ and then using backward substitution process, we determine σ2. Hence, this es-

tablishes (5.4.17). Now, substituting the estimates of λ and σ into the third equation in (5.4.23), the

survival state estimate is obtained. This establishes (b). Moreover, using parameters in (5.4.17), solution

process (S, z) of (5.3.11) are estimated.

(c) The proof of (c) can be constructed by emulating the proof of (b) with slight modifications.

This establishes proof of the theorem. 2
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Example 5.4.3 For V (t, z) = z2, (5.4.13), (5.4.17) and (5.4.19) reduce to



λ̂(T fj−1, Sj−1) =
−E(∆zj | Gj−1) + Γnoj

zj−1∆T fj
, ∆T fj = T fj − T

f
j−1 ,

σ̂2(T fj−1, Sj−1) =
E[∆(z2

j ) | Gj−1]− Γnovj

z2
j−1∆T fj

+ 2λ̂(T fj−1, Sj−1) ,

(5.4.24)



λ̂(Tj−1, Sj−1) =
−E(∆zj | Gj−1) + Γnoj − γcj[
zj−1∆T fcj + z(T cj )∆T cfj

] ,

σ̂2(T fj−1, Sj−1) =
E[∆(z2

j ) | Gj−1]− Γnovj + γcvj[
z2
j−1∆T cfj + z2(T cj )∆T fcj

] + 2λ̂(Tj−1, Sj−1) ,

(5.4.25)

and 

λ̂(T fj−1, Sj−1) =
−E [∆zj | Gj−1] + Γnoj + γoaj[
zj−1∆T faj + z(T afj )∆T afj

] ,

σ̂2(T fj−1, Sj−1) =
E[∆(z2

j ) | Gj−1]− Γnovj − γoavj[
z2
j−1∆T faj + z2(T afj )∆T afj

] + 2λ̂(Tj−1, Sj−1) ,

(5.4.26)

respectively. We note that the parameter estimates in (5.4.24) to (5.4.26) are valid under an approximation

assumption of ∂V
∂z (t−, z,∆z) ≈ z.

Example 5.4.4 For V (t, z) = ln z, (5.4.13), (5.4.17), and (5.4.19) reduce to



λ̂(T fj−1, Sj−1) =
−E(∆zj | Gj−1) + Γnoj

zj−1∆T fj
, ∆T fj = T fj − T

f
j−1 ,

σ̂2(Tj−1, Sj−1) = −2
[E[∆ ln(zj) | Gj−1]− Γnovj

∆Tj
+ λ̂(T fj−1, Sj−1)

]
,

(5.4.27)



λ̂(Tj−1, Ŝ(Tj−1)) =
−E(∆zj | Gj−1) + Γnoj − γcj[
zj−1∆T fcj + z(T cj )∆T cfj

] ,

σ̂2(Tj−1, Ŝ(Tj−1) = −2
[
E[∆ ln(zj) | Gj−1]− Γnovj + γcvj

∆T fj
+ λ̂(T fj−1, Ŝ(T fj−1))

]
,

(5.4.28)
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and 

λ̂(T fj−1, Sj−1) =
−E [∆ ln zj | Gj−1] + Γnoj + γoaj[
zj−1∆T faj + z(T afj )∆T afj

] ,

σ̂2(Tj−1, Sj−1) = −2
[
E[∆ ln(zj) | Gj−1]− Γnovj − γoavj

∆T fj
+ λ̂(T fj−1, Sj−1)

]
,

(5.4.29)

respectively. Again, we note that the parameter estimates in (5.4.27) to (5.4.29) are valid under an approx-

imation assumption of ∂V
∂z (t−, z,∆z) = 1

∆z ln(z + ∆z
z ) ≈ 1

z .

In the following, we extend Lemma 5.4.2, for multiple censoring and admitting times between two consecutive

failure times.

Theorem 5.4.1 Let the hypotheses of Lemma 5.4.2 be satisfied. For each j ∈ I(1, k), and each i ∈ I(1, kf ),

let T fj−1i−1 and T fj−1i be consecutive failure times. Let {T cj−1i−1p−1}
kci

+1
p=1 , {T aj−1i−1q−1}

kai
+1

q=1 be a finite

subsequences of censored and admitted time observations, respectively, over a consecutive failure-time obser-

vation subinterval [T fj−1i−1, T
f
j−1i), where kci

is the total number of censored objects/species/infective/quitting

over the subinterval [T fj−1i−1, T
f
j−1i); kai

is the total number of admitting/entering/ joining/susceptible/etc

over the subinterval [T fj−1i−1, T
f
j−1i). Γnoji is the total number of objects/entities not under observation in

the study over the subinterval [T fj−1i−1, T
f
j−1i). Then the theoretical transformed/computational estimation

algorithm and parameter estimation for λ(t, S(t)) and σ2(t, S(t)) at T fj−1i are determined by :



E [∆zj−1i | Gj−1i−1] = −λ(T fj−1i−1, Sj−1i−1)
[
kbi

+1∑
l=1

z(T c/aj−1i−1l−1)∆T c/aj−1i−1l

]
+ Γnoji − kci

+ kai
, z(t0) = z0 ,

E[∆V (T fj−1i, zj−1i) | Gj−1i−1] =
kbi

+1∑
l=1

∂
∂tV (T c/aj−1i−1l−1, z(T

c/a
j−1i−1l−1))∆T c/aj−1i−1l−

λ(T fj−1i−1, Sj−1i−1)
[
kbi

+1∑
l=1

z(T c/aj−1i−1l−1) ∂∂zV (T c/aj−1i−1l−1, z(T
c/a
j−1i−1l−1))∆T c/aj−1i−1l

]
+

1
2σ

2(T fj−1i−1, Sj−1i−1)
[
kbi

+1∑
l=1

z2(T c/aj−1i−1l−1) ∂
2

∂z2V (T c/aj−1i−1l−1, z(T
c/a
j−1i−1l−1))∆T c/aj−1i−1l

]
+

Γnovji − kcvci
+ kavai

,

∆Sj−1i = −Sj−1i−1λ(T fj−1i−1, Sj−1i−1)∆T fj−1i + Sj−1i−1σ(T fj−1i−1, Sj−1i−1)∆w(T fj−1i) , S(T0) = S0 ,

(5.4.30)

for i ∈ I(1, kf ), j ∈ I(1, k) ;

parameter estimates are represented as:
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

λ̂(T fj−1i−1, Sj−1i−1) =
−E [∆zj−1i| Gj−1i−1] + Γnoj−1i − kci

+ kai

kbi
+1∑

l=1
z(T c/aj−1i−1l−1)∆T c/aj−1i−1l

, t ∈ [T fj−1i−1, T
f
j−1i)

σ̂2(T fj−1i−1, Sj−1i−1) =

2



E[∆V (T fj−1i, zj−1i) | Gj−1i−1]− Γnovj−1i + kvci
− kvai

−
kbi

+1∑
l=1

∂
∂tV (T c/aj−1i−1l−1, z(T

c/a
j−1i−1l−1))∆T c/aj−1i−1l

− λ(T fj−1i−1, Sj−1i−1)
[
kbi

+1∑
l=1

z(T c/aj−1i−1l−1) ∂∂zV (T c/aj−1i−1l−1, z(T
c/a
j−1i−1l−1))∆T c/aj−1i−1l

]
kbi

+1∑
l=1

z2(T c/aj−1i−1l−1) ∂2

∂z2V (T c/aj−1i−1l−1, z(T
c/a
j−1i−1l−1))∆T c/aj−1i−1l


,

(5.4.31)

where kbi
= kci

+ kai
.

Moreover an overall conceptual state and parameter estimates for z(t), S(t), λ(t, S(t)) and σ(t, S(t)) in

(5.3.11) on the time-interval of study [t0,T) are determined by



λ̂(t, Ŝj−1i−1) = λ̂(T fj−1i−1, Ŝj−1i−1), for t ∈ [T fj−1i−1, T
f
j−1i), j ∈ I(1, k) and i ∈ I(1, kf ) ,

σ̂(t, Ŝj−1i−1) = σ̂(T fj−1i−1, Ŝj−1i−1) ,

Ŝ(t) = Ŝ(t, Tj−1i−1, Ŝj−1i−1) , S(Tj−1i−1) = Ŝj−1i−1 ,

ẑ(t) = ẑ(t, T fj−1i−1, ẑ(T
f
j−1i−1)).

(5.4.32)

Proof. From Definitions 5.4.4 and 5.4.5, l = p = j = i = 1, T f000 = T0 and T f0i−1kbi
+1 = T f01 = T f1 , for

i = 1, and the application of Lemma 5.4.2, we note that one of the fundamental assumptions of the Principle

of Mathematical Induction(PMI) [33] is satisfied. For the validity of the application of PMI, we assume

that (5.4.30) and (5.4.31) are valid for some j − 1 ∈ I(1, k). We need to justify the induction hypothesis,

that is (5.4.30) and (5.4.31) are satisfied for j ∈ I(1, k). For this purpose, we note that for j ∈ I(1, k),

each i ∈ I(1, kf ), and T fj−1i−1, T
f
j−1i ∈ [T0,T] with kci

and kai
being number of censored and admitted

objects/species/subjects over the subinterval [T fj−1i−1, T
f
j ] of consecutive failure times, respectively. Let P

f
ji

be a partition of [T fj−1i−1, T
f
j ] corresponding to the union of the range of two finite subsequences (censored

and admitted times) over the consecutive failure-time subinterval [T fj−1i−1, T
f
ji). These subsequences are

represented by

P
f
j−1i : T fj−1i−11−1 = T fj−1i−10 = T fj−1i−1 < T

c/a
j−1i−11 < . . . < T

c/a
j−1i−1l−1 < T

c/a
j−1i−1l < . . .

< T
c/a
j−1i−1kbi

< T
c/a
j−1i−1kbi

+1 = T fj−1i . (5.4.33)
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In short, P
f
ji is a partition of [T fj−1i−1, T

f
j−1i] with the size of the partition kbi + 2, and kbi = kci + kai .

For j ∈ I(1, k) and i ∈ I(1, kf ), using the iterative schemes (5.4.12), (5.4.16), and (5.4.18) and noting the

nature of the processes λ(T c/aj−1i−1l−1, S(T c/aj−1i−1l−1)) = λ(T fj−1i−i, Sj−1i−1), σ2(T c/aj−1i−1l−1, S(T c/aj−1i−1l−1)) =

σ2(T fj−1i−i, Sj−1i−1) in the context of Definitions 5.4.4 and 5.4.5 for l ∈ I(1, kbi), we have

E [∆zj−1i | Gj−1] = −λ(T fj−1i−1, Sj−1i−1)z(T fj−1i−1)∆T fc/aj−1i−10 + Γnoj−10i
∓ γc/aj−1i−10

−
kbi∑
m=2

[
λ(T c/aj−1i−1m−1, S(T c/aj−1i−1m−1))z(T c/aj−1i−1m−1)∆T c/aj−1i−1m

]
+

kbi∑
l=1

Γnoj−10i
∓

kbi∑
l=1

γ
c/a
j−1i−10

− λ(T c/aj−1i−1kbi
, S(T c/aj−1i−1kbi

))z(T c/aj−1i−1kbi
)∆T fjikbi

+1

= −λ(T fj−1i−1, Sj−1i−1)

kbi
+1∑

l=1
z(T c/aj−1i−1l−1)∆T c/aj−1i−1l

+
kbi∑
l=1

Γnoj−1i−1l−1 ∓
kbi∑
l=1

γ
c/a
j−1i−1l−1

= −λ(T fj−1i−1, Sj−1i−1)

kbi
+1∑

l=1
z(T c/aj−1i−1l−1)∆T c/aj−1i−1l−1

+ Γnoj−1i ∓ γ
c/a
j−1i

= −λ(T fj−1i−1, Sj−1i−1)

kbi
+1∑

l=1
z(T c/aj−1i−1l−1)∆T c/aj−1i−1l−1

+ Γnoj−1i − kci
+ kai

.

Similarly, we find that

E[∆V (T fj−1i, zj−1i) | Gj−1i−1] =
kbi

+1∑
l=1

∂

∂t
V (T c/aj−1i−1l−1, z(T

c/a
j−1i−1l−1))∆T c/aj−1i−1l−

λ(T fj−1i−1, Sj−1i−1)

kbi
+1∑

l=1
z(T c/aj−1i−1l−1) ∂

∂z
V (T c/aj−1i−1l−1, z(T

c/a
j−1i−1l−1))∆T c/aj−1i−1l

+

1
2σ

2(T fj−1i−1, Sj−1i−1)

kbi
+1∑

l=1
z2(T c/aj−1i−1l−1) ∂

2

∂z2V (T c/aj−1i−1l−1, z(T
c/a
j−1i−1l−1))∆T c/aj−1i−1l

+

kbi∑
l=1

Γnovj−1i−1l−1 ∓
kbi∑
l=1

γ
c/a
j−1i−1l−1 .
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Hence,



E [∆zj−1i | Gj−1i−1] = −λ(T fj−1i−1, Sj−1i−1)
[
kbi

+1∑
l=1

z(T c/aj−1i−1l−1)∆T c/aj−1i−1l

]
+ Γnoji

− kci
+ kai

, z(t0) = z0 ,

E[∆V (T fj−1i, zj−1i) | Gj−1i−1] =
kbi

+1∑
l=1

∂
∂tV (T c/aj−1i−1l−1, z(T

c/a
j−1i−1l−1))∆T c/aj−1i−1l−

λ(T fj−1i−1, Sj−1i−1)
[
kbi

+1∑
l=1

z(T c/aj−1i−1l−1) ∂∂zV (T c/aj−1i−1l−1, z(T
c/a
j−1i−1l−1))∆T c/aj−1i−1l

]
+

1
2σ

2(T fj−1i−1, Sj−1i−1)
[
kbi

+1∑
l=1

z2(T c/aj−1i−1l−1) ∂
2

∂z2V (T c/aj−1i−1l−1, z(T
c/a
j−1i−1l−1))∆T c/aj−1i−1l

]
+

Γnovji
− kcvci

+ kavai
,

∆Sj−1i = −Sj−1i−1λ(T fj−1i−1, Sj−1i−1)∆T fj−1i + Sj−1i−1σ(T fj−i−1, Sj−1i−1)∆w(T fj−1i) , S(T0) = S0 ,

(5.4.34)

This establishes (5.4.30).

Using the backward substitution approach and solving for λ and σ2 establishes (5.4.31). Moreover,



λ̂(t, Sj−1i−1) = λ̂(T fj−1i−1, Ŝj−1i−1), for t ∈ [T fj−1i−1, T
f
j−1i), j ∈ I(1, k) and i ∈ I(1, kf ) ,

σ̂(t, Ŝj−1i−1) = σ̂(T fj−1i−1, Ŝj−1i−1) ,

Ŝ(t) = (t, T fj−1i−1, Ŝj−1i−1) , S(T fj−1i−1) = Ŝj−1i−1 ,

ẑ(t) = ẑ(t, T fj−1i−1, ẑj−1i−1).

(5.4.35)

This concludes the proof of the theorem. 2

Corollary 5.4.1 Let the hypotheses of Theorem 5.4.1 be satisfied except ka = 0 = kc. Then the theoreti-

cal/conceptual estimation algorithm, parameters, λ(t, S(t)), σ2(t, S(t)), state and solution process estimates

are determined by (5.4.12), (5.4.13), (5.4.14) and (5.4.15) respectively, as a special case of Theorem 5.4.1.

Example 5.4.5 From Lemma 5.4.2, Examples 5.4.1 and 5.4.3, the theoretical transformed/computational

estimation algorithms, parameter and state estimations determined by :

E [∆zj−1i | Gj−1i−1] = −λ(T fj−1i−1, Sj−1i−1)
[
kbi

+1∑
l=1

z(T c/aj−1i−1l−1)∆T c/aj−1i−1l

]
+ Γnoji − kci

+ kai
, z(t0) = z0 ,

E[∆(z2
j−1i) | Gj−1i−1] =

[
−2λ(T fj−1i−1, Sj−1i−1) + σ2(T fj−1i−1, Sj−1i−1)

] [kbi
+1∑

l=1
z2(T c/aj−1i−1l−1)∆T c/aj−1i−1l

]
+Γnovji − kcvci

+ kavai
,

∆Sj−1i = −Sj−1i−1λ(T fj−1i−1, Sj−1i−1)∆T fj−1i + Sj−1i−1σ(T fj−1i−1, Sj−1i−1)∆w(T fj−1i) , S(T0) = S0 ,

(5.4.36)

for i ∈ I(1, kf ), j ∈ I(1, k);
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parameter estimates are given by:



λ̂(T fj−1i−1, Ŝj−1i−1) =
−E [∆zj−1i| Gj−1] + Γnoji − kci

+ kai

kbi
+1∑

l=1
z(T c/aj−1i−1l−1)∆T c/aj−1i−1l

, t ∈ [T fj−1i−1, T
f
j−1i) ,

σ̂2(T fj−1i−1, Ŝj−1i−1) =
E[∆(z2

j−1i) | Gj−1i−1] + Γnovji + kcvci
− kavai

kbi
+1∑

l=1
z2(T c/aj−1i−1l−1)∆T c/aj−1i−1l

+ 2λ̂(T fj−1i−1, Ŝj−1i−1) , t ∈ [T fj−1i−1, T
f
j−1i) .

(5.4.37)

Moreover, if ka = 0 = kc then the theoretical/conceptual estimation algorithm and parameter estimation for

λ(t, S(t)) and σ(t, S(t)) at T fji = T fj reduces to (5.4.12) and (5.4.24) as special cases. An overall conceptual

parameter estimate for z(t), S(t), λ(t, S(t))and σ(t, S(t)) on the time-interval of study [T0,T) are determined

by (5.4.35).

Example 5.4.6 From Lemma 5.4.2 and Examples 5.4.2 and 5.4.4, the theoretical transformed/computational

estimation algorithm and parameter estimation for λ(t, S(t)) and σ(t, S(t)) at T fj−1i are determined by :



E [∆zj−1i | Gj−1i−1] = −λ(T fj−1i−1, Sj−1i−1)
[
kbi

+1∑
l=1

z(T c/aj−1i−1l−1)∆T c/aj−1i−1l

]
+ Γnoji

− kci + kai , z(T0) = z0 ,

E[∆ ln(zj−1i) | Gj−1i−1] =
[
λ(T fj−1, Sj−1i−1)− 1

2σ
2(T fj−1, Sj−1i−1)

] [kbi
+1∑

l=1
∆T c/aj−1i−1l

]
+Γnovji − kcvci

+ kavai
,

∆Sj−1i = −Sj−1i−1λ(T fj−1i−1, Sj−1i−1)∆T fj−1i + Sj−1i−1σ(T fj−1i−1, Sj−1i−1)∆w(T fj−1i) , S(T0) = S0 ,

(5.4.38)

and parameter estimates are as:



λ̂(T fj−1i−1, Ŝj−1i−1) = −
E [∆zj−1i| Gj−1] + Γnovji

+ kci
− kai

kbi
+1∑

l=1
z(T c/aj−1i−1l−1)∆(T c/aj−1i−1l)

, T ∈ [T fj−1i−1, T
f
j−1i) ,

σ̂2(Tj−1i−1, Ŝj−1i−1) = −2

E[∆ ln(zj−1i) | Gj−1i−1] + Γnovji
+ kcvci

− kavai

kbi
+1∑

l=1
∆T c/aj−1i−1l

+ λ̂(T fj−1i−1, Ŝj−1i−1)

 ,
(5.4.39)

for i ∈ I(1, kf ), j ∈ I(1, k), and t ∈ [T fj−1i−1, T
f
j−1i), where kbi = kci + kai . Moreover, if ka = 0 = kc. Then

the theoretical/conceptual estimation algorithm and parameter estimation for λ and σ at T fji = T fj reduces

to (5.4.12) and (5.4.27). An overall conceptual parameter estimate for z(t), S(t), λ(t, S(t))and σ(t, S(t)) on
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the time-interval of study [T0,T) are determined by (5.4.35).

Now, we state a very general theorem that provides a theoretical estimate for λ(t, S) and σ(t, S) between

two consecutive change point times, T cpj−1r−1 and T cpj−1r.

Theorem 5.4.2 Let the hypotheses of Lemmas 5.4.1 and 5.4.2 be satisfied. For each j ∈ I(1, k) and each

r ∈ I(1, n), let T cpj−1r−1 and T cpj−1r be consecutive change point times. Let {T fj−1r−1i−1}
kfr
i=1, {T cj−1r−1p−1}

kcr
p=1,

and {T aj−1r−1q−1}
kar
q=1 be the a sequence of failure, censored and admission times, respectively, in the j − 1r-

th change point time interval [T cpj−1r−1, t
cp
j−1r). kfr

, kcr
, and kar

are the total number of failures, censored

and admitting items/objects/species/etc in the consecutive change-point subinterval [T cpj−1r−1, T
cp
j−1r), respec-

tively. Γnojr is the total number of objects/entities not under observation in the study over the subinterval

[T cpj−1r−1, T
cp
j−1r). Then the theoretical transformed/computational estimation algorithm and parameter esti-

mation for λ(t, S(t)) and σ2(t, S) at T cpj−1r are determined by:



E [∆zj−1r | Gj−1r−1] = −λ(T cpj−1r−1, Sj−1r−1)
[
kbr +1∑
l=1

z(T f/c/aj−1r−1l−1)∆T f/c/aj−1r−1l

]
+ Γnojr − kfr

− kcr
+ kar

,

z(T0) = z0 ,

E[∆V (T cpj−1r, zj−1r) | Gj−1r−1] =
kbr +1∑
l=1

∂
∂tV (T f/c/aj−1r−1l−1, z(T

f/c/a
j−1r−1l−1))∆T f/c/aj−1r−1l−

λ(T cpj−1r−1, Sj−1r−1)
[
kbr +1∑
l=1

z(T f/c/aj−1r−1l−1) ∂∂zV (T f/c/aj−1r−1l−1, z(T
f/c/a
j−1r−1l−1))∆T f/c/aj−1i−1l

]
+

1
2σ

2(T cpj−1r−1, Sj−1r−1)
[
kbr +1∑
l=1

z2(T c/aj−1r−1l−1) ∂
2

∂z2V (T f/c/aj−1i−1l−1, z(T
f/c/a
j−1r−1l−1))∆T f/c/aj−1r−1l

]
+

Γnovjr − k
fv
fr
− kcvcr

+ kavar

∆Sj−1r = −Sj−1r−1λ(T cpj−1r−1, Sj−1r−1)∆T cpj−1r + Sj−1r−1σ(T cpj−1r−1, Sj−1r−1)∆w(T cpj−1r) , S(T0) = S0 ,

(5.4.40)

for r ∈ I(1, r), j ∈ I(1, k) ; and parameter estimates are as follows:
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

λ̂(T cpj−1r−1, Ŝj−1r−1) = −
E [∆zj−1i| Gj−1i−1] + Γnojr + kcr

− kar

kbi
+1∑

l=1
z(T f/c/aj−1i−1l−1)∆T f/c/aj−1i−1l

, t ∈ [T cpj−1r−1, T
cp
j−1r) ,

σ̂2(T cpj−1r−1, Sj−1r−1) =

2



E[∆V (T cpj−1r, zj−1r) | Gj−1r−1]− Γnovjr + kfvfr
+ kcvcr

− kavar

−
kbr +1∑
l=1

∂
∂tV (T f/c/aj−1r−1l−1, z(T

f/c/a
j−1r−1l−1))∆T f/c/aj−1r−1l

− λ(T cpj−1r−1, Sj−1r−1)
[
kbr +1∑
l=1

z(T f/c/aj−1r−1l−1) ∂∂zV (T f/c/aj−1i−1l−1, z(T
f/c/a
j−1r−1l−1))∆T f/c/aj−1i−1l

]
kbr +1∑
l=1

z2(T f/c/aj−1r−1l−1) ∂2

∂z2V (T f/c/aj−1r−1l−1, z(T
f/c/a
j−1r−1l−1))∆T f/c/aj−1r−1l



,

(5.4.41)

for t ∈ [T cpj−1r−1, T
cp
j−1r) , where kvbr

= kvfr
+ kvcr

+ kvar
.

Moreover an overall conceptual parameter estimate for z(t), S(t), λ(t, S(t)) and σ(t, S) in (5.3.11) on the

time-interval of study [t0,T) are determined by



λ̂(t, Ŝj−1r−1) = λ̂(T cpj−1r−1, Ŝj−1r−1), for t ∈ [T cpj−1r−1, T
cp
j−1r), j ∈ I(1, k) and r ∈ I(1, n) ,

σ̂(t, Ŝj−1r−1) = σ̂(T cpj−1r−1, Ŝj−1r−1) ,

Ŝ(t) = Ŝ(t, T cpj−1r−1, Ŝj−1r−1), Ŝ(T cpj−1r−1) = Sj−1r−1,

ẑ(t) = ẑ(t, T cpj−1r−1, ẑj−1r−1).

(5.4.42)

Proof. The proof of the theorem follows from the proof of Theorem 5.4.2 with appropriate modifications. 2
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Chapter 6

Conceptual Computational Algorithms

6.1 Introduction

In this chapter, we outline a conceptual computational dynamic algorithm that includes both (a) survival

state and (b) change point state and parameter estimation problems in a systematic and unified way. We

develop conceptual computational dynamic algorithms for survival state and parameter estimation problems.

Prior to the development of the scheme, we define, introduce notations and reorganize the observed data set

for the usage of a conceptual computational dynamic algorithm in Sections 6.2 and 6.3. We outline concep-

tual computational dynamical algorithms for survival state and change-point survival state and parameter

estimation problems in Section 6.4. The developed computational algorithms are illustrated by applying to

three real world data sets in Section 6.5. In Section 6.6, the recently developed LLGMM method [44, 45] is

extended and applied to three time-to-event data sets. The computational results are compared with existing

methods in Section 6.7. The modified LLGMM method provides the measure of confidence, prediction and

planning assessments in Section 6.8.

6.2 Data Collection Coordination with Iterative Processes

Without loss of generality, we assume that the real data observation/collection schedule is indeed a finite

sequence {Tj−1}kj=1 corresponding to a partition P of [T0,T). Moreover, the real world data set and its data

observation/collection times are coordinated with conceptual data set sequence and data collection sequence

of times.

6.3 Data Decomposition, Reorganization and Aggregation

Based on our research [5, 6], we recognize and present tools for solving two major problems of interests in

a time-to-event dynamic process, namely: (1) survival state and (2) change point state estimation analysis.

For the study of these problems, we decompose, reorganize and re-aggregate the original real world data

set in a respective framework for (1) survival state and (2) change point study in a time-to-event process.

The original data is coordinated, decomposed, reorganized, and aggregated with reference to the conceptual

data coordination, decomposition, reorganization and aggregation in the manner analogous to Definitions

5.4.2–5.4.5 and earlier work [6].
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6.4 Conceptual Computational Parameter and State Estimations Scheme

For the conceptual computational parameter estimation, we use discrete-time conceptual computational

interconnected dynamic algorithms (5.3.17) and (5.3.18) for time-to-event data statistic. The original state

dynamic data subsequences are associated with conceptual data set. The decomposition of the original real

world data set into three types of subsequences of data is reorganized in the context of Definition 5.4.2.

We consider the original dynamic data set as the real data set, and organize/coordinate in the context of

conceptual data set. For i ∈ (1, kf ), conceptual computational dynamic estimation algorithms in (5.4.30) are

used for continuous and discrete-time real world data sets, respectively. The parameter and state estimates

at T fj−1i are determined using (5.4.31) for continuous and discrete-time real world data sets and a choice of

initial value S(T0) = S0. Knowing the continuous dependence of solution process of continuous-time dynamic

system (5.3.11) and using an initial relative frequency of a given data set, a choice of initial time and initial

value S0 is made. In fact, the solution of (5.3.11) is increasing with respect to S0. In view of this, the optimal

choice of initial value S0 is based on the stability of the mean-square deviation of the states corresponding

to the choice of the closest two initial values S0. Finally, employing the Principle of Mathematical Induction

[32], an overall parameter and state estimations of z(t), S(t), λ(t, S(t)) and σ over the time interval [t0,T)

of study are determined from (5.4.32).

6.4.1 Change Point Data Analysis Problem

In this subsection, we address the scope of the study of a time-to-event process. A change-point process in the

time-to-event process measures the effects of intervention process. Here, again the overall pair of sequence of

discrete-time interconnected state dynamic data set is characterized by single right-end point data set with

two consecutive change point dynamic process. A sequence of two consecutive change point times is assumed

to be a single subsequence of overall sequence {Tj−1}kj=1 of conceptual state dynamic data observation times.

The sequence of two consecutive change point times is denoted by {T cpj−1r−1}nr=1 for r ∈ I(1, n) with n ≤ k.

Generally, using the time-to-event state dynamic data set, the change point sequence of times is estimated. A

change point process in the time-to-event process measures the effects of intervention process. The rest of the

data collection coordination, decomposition/aggregation and organization with conceptual iterative process

is parallel to the survival state problem, except notations. Except for notational changes (for example,

replacing [T fj−1i−1, T
f
j−1i) by [T cpj−1r−1, T

cp
j−1r)) , entire conceptual computational procedure regarding the

survival state data analysis problem is imitated for the change-point problem, analogously. For i ∈ I(1, n),

the conceptual computational dynamic algorithms in (5.4.40) are used for continuous and discrete-time real

world data sets. The parameter and state estimates at T cpj−1r are determined using (5.4.41) for continuous

and totally discrete-time real world data sets, respectively. Finally, employing the Principle of Mathematical

Induction, an overall parameter and state estimation for z(t), S(t), λ(t, S(t)) and σ(t, S(t)) over the time

interval [t0,T) of study are determined from (5.4.32) and (5.4.42). In summary, a flowchart that depicts the
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estimation procedure is exhibited in Flowchart 12. Here, we choose T0, S0, and z0 so that S0 ≥ RF , where

RF denotes a relative frequency at the initial time T0. A similar flowchart incorporates the study of the

change-point problem.
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A partition PT
0 of [T0, T] of data observation time and

initial data: T0, z0, S0 ≥ RF

Failure time or
Change points

Each j ∈ I(1, k), i ∈ I(1, kf ),
consecutive failure subintervals
[T f

j−1i−1, T
f
ji)

Each j ∈ I(1, k), i ∈ I(1, kf ),
consecutive change point subintervals
[T f

j−1r−1, T
f
jr)

Data set

Discrete Continuous

Both censored
and addmitted
times?

Both censored
and addmitted
times?

Either kci = 0
or kai = 0

Optimality test for
λ̂, ẑ, Ŝ

Optimality test for
λ̂, σ̂, ẑ, Ŝ

kci = 0
Deterministic

or
Stochastic

kai = 0

Either kci = 0
or kai = 0

kci = 0

kai = 0

Deterministic
or

Stochastic

Optimality test for
λ̂, ẑ, Ŝ

Optimality test for
λ̂, σ̂, ẑ, Ŝ

Update S0Update S0

stop stop

no

yes

no

yes

no

no

no

no

yes

yes

yes

yes

Flowchart 12.: Conceptual Computational Algorithm



Given T0, S0 and z0

for j = 1 to k do
if Failure time then

for i = 1 to kf do
Compute kci

, kai
, z(T fj−1i−1), z(T fji)

if Continuous then

Compute
kbi

+1∑
l=1

z(T c/aj−1i−1l−1)∆(T c/aj−1i−1l)

else

Compute
kbi

+1∑
l=1

z(T c/aj−1i−1l−1)

end if
Compute λ̂, ẑ, σ̂2 and Ŝ

end for
else

Change point analysis
...

end if
end for

Algorithm 13.: Simulation Scheme

We present an algorithm for the simulation schemes described above.
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Flowchart 14.: Simulation Algorithm for Survival and Change point Data Analysis Problems



6.5 Illustrations

In this section, using the conceptual computational algorithm, we exemplify our theoretical algorithms

and procedures for estimating parameters and survival state for three data sets: (i) the number of million

revolutions failure times for each of 23 ball bearings [37], (ii) the length of remission in weeks for control group

of leukemia patients, and (iii) the length or remission in weeks for the treated group of leukemia patients. The

leukemia control and treated groups of patients were analyzed by Cox in his original proportional hazards

paper [13]. This was based on the method of proportional hazards.

Illustration 6.5.1 The data below show the length of remission in weeks for control group of leukemia

patients that was analyzed by Cox in his original proportional hazards paper [13].

Table 15: Control Group Dataset [13]

Data
Observation

in weeks

Failure/
Censor Time

Frequency of
Failure/
Censors

at ti

Survival/
Operating
units at ti:

z(ti)
t0 = 0 Initial 21
t1 = 1 Failure 2 19
t2 = 2 Failure 2 17
t3 = 3 Failure 1 16
t4 = 4 Failure 2 14
t5 = 5 Failure 2 12
t6 = 8 Failure 4 8
t7 = 11 Failure 2 6
t8 = 12 Failure 2 4
t9 = 15 Failure 1 3
t10 = 17 Failure 1 2
t11 = 22 Failure 1 1
t12 = 23 Failure 1 0

We note that data set has no censored or arrival times. Thus, ka = 0 = kc. We demonstrate our innova-

tive alternative approach for finding parameter and survival function estimates on consecutive failure time

intervals (locally) by employing computational scheme outlined in Section 6.2. We note the initial relative

frequency of the survival locomotive control to be 19
21 . Employing the initial relative survival state frequency,

we chose an initial survival probability to be S0 = 0.99, 0.999, 0.9999, 0.99999, 0.999999. First, we choose

V (t, z) = z2. We then apply conceptual computational algorithms (5.4.24). The simulation/computational

results are recoded in Table 16. Second, making a choice of V (t, z) = ln z, we apply conceptual computa-

tional algorithms (5.4.27) for consecutive failure time intervals. The computational results are exhibited in

Table 17 . The simulation results in Tables 16 and 17 show that the estimates are stabilized for S0 ≥ 0.9999.

This justifies the almost certain optimal convergence of survival state probability estimates for S0 ≥ 0.9999.

Thus for the leukemia data set, we conclude that the best survival state estimate is assured at S0 = 0.99999.

Moreover, the results in Tables 16 and 17 indicate that our innovative approach is independent of the choice

of nonlinear transformation V (t, z) so far as the obtained system of algebraic equations can be solved.
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Table 16: Estimates using S0 = 0.99000, 0.99900, 0.99990, 0.99999, 0.999999 by employing conceptual computational algorithm (5.4.24)

Consecutive

Failure time

interval,

[Tj−1, Tj)

S0 = 0.99000 S0 = 0.99900 S0 = 0.9999 S0 = 0.99999 S0 = 0.999999

λ̂j σ̂j Ŝj−1 λ̂j σ̂j Ŝj−1 λ̂j σ̂j Ŝj−1 λ̂j σ̂j Ŝj−1 λ̂j σ̂j Ŝj−1

[0, 1) 0.0952 0.0952 0.9900 0.0952 0.0952 0.9990 0.0952 0.0952 0.9999 0.0952 0.0952 0.99999 0.0952 0.0952 0.999999
[1, 2) 0.1053 0.1053 0.8958 0.1053 0.1053 0.9040 0.1053 0.1053 0.9048 0.1053 0.1053 0.9049 0.1053 0.1053 0.9049
[2, 3) 0.0588 0.0588 0.8017 0.0588 0.0588 0.8090 0.0588 0.0588 0.8097 0.0588 0.0588 0.8098 0.0588 0.0588 0.8098
[3, 4) 0.1250 0.1250 0.7546 0.1250 0.1250 0.7614 0.1250 0.1250 0.7621 0.1250 0.1250 0.7622 0.1250 0.1250 0.7622
[4, 5) 0.1429 0.1429 0.6604 0.1429 0.1429 0.6664 0.1429 0.1429 0.6670 0.1429 0.1429 0.6670 0.1429 0.1429 0.6670
[5, 8) 0.1111 0.1925 0.5662 0.1111 0.1925 0.5713 0.1111 0.1925 0.5718 0.1111 0.1925 0.5719 0.1111 0.1925 0.5719
[8, 11) 0.0833 0.1443 0.3776 0.0833 0.1443 0.3810 0.0833 0.1443 0.3814 0.0833 0.1443 0.3814 0.0833 0.1443 0.3814
[11, 12) 0.3333 0.3333 0.2833 0.3333 0.3333 0.2858 0.3333 0.3333 0.2861 0.3333 0.3333 0.2861 0.3333 0.3333 0.2861
[12, 15) 0.0833 0.1443 0.1890 0.0833 0.1443 0.1907 0.0833 0.1443 0.1909 0.0833 0.1443 0.1909 0.0833 0.1443 0.1909
[15, 17) 0.1667 0.2357 0.1418 0.1667 0.2357 0.1430 0.1667 0.2357 0.1432 0.1667 0.2357 0.1432 0.1667 0.2357 0.1432
[17, 22) 0.1000 0.2236 0.0945 0.1000 0.2236 0.0954 0.1000 0.2236 0.0955 0.1000 0.2236 0.0955 0.1000 0.2236 0.0955
[22, 23) 1.0000 1.0000 0.0473 1.0000 1.0000 0.0477 1.0000 1.0000 0.0478 1.0000 1.0000 0.0478 1.0000 1.0000 0.0478
(23) 0.0001 0.0001 0.0001 0.0001 0.0001

Table 17: Estimates using S0 = 0.99000, 0.99900, 0.99990, 0.99999, 0.999999 by employing conceptual computational algorithm (5.4.27)

Consecutive

Failure time

interval,

[Tj−1, Tj)

S0 = 0.99000 S0 = 0.99900 S0 = 0.9999 S0 = 0.99999 S0 = 0.999999

λ̂j σ̂j Ŝj−1 λ̂j σ̂j Ŝj−1 λ̂j σ̂j Ŝj−1 λ̂j σ̂j Ŝj−1 λ̂j σ̂j Ŝj−1

[0, 1] 0.0952 0.0952 0.9900 0.0952 0.0952 0.9990 0.0952 0.0952 0.9999 0.0952 0.0952 1.0000 0.0952 0.0952 1.0000
[1, 2) 0.1053 0.1053 0.8958 0.1053 0.1053 0.9040 0.1053 0.1053 0.9048 0.1053 0.1053 0.9049 0.1053 0.1053 0.9049
[2, 3) 0.0588 0.0588 0.8017 0.0588 0.0588 0.8090 0.0588 0.0588 0.8097 0.0588 0.0588 0.8098 0.0588 0.0588 0.8098
[3, 4) 0.1250 0.1250 0.7546 0.1250 0.1250 0.7614 0.1250 0.1250 0.7621 0.1250 0.1250 0.7622 0.1250 0.1250 0.7622
[4, 5) 0.1429 0.1429 0.6604 0.1429 0.1429 0.6664 0.1429 0.1429 0.6670 0.1429 0.1429 0.6670 0.1429 0.1429 0.6671
[5, 8) 0.1111 0.1925 0.5662 0.1111 0.1925 0.5713 0.1111 0.1925 0.5718 0.1111 0.1925 0.5719 0.1111 0.1925 0.5719
[8, 11) 0.0833 0.1443 0.3776 0.0833 0.1443 0.3810 0.0833 0.1443 0.3814 0.0833 0.1443 0.3814 0.0833 0.1443 0.3814
[11, 12) 0.3333 0.3333 0.2833 0.3333 0.3333 0.2859 0.3333 0.3333 0.2861 0.3333 0.3333 0.2861 0.3333 0.3333 0.2862
[12, 15) 0.0833 0.1443 0.1890 0.0833 0.1443 0.1907 0.0833 0.1443 0.1909 0.0833 0.1443 0.1909 0.0833 0.1443 0.1909
[15, 17) 0.1667 0.2357 0.1418 0.1667 0.2357 0.1431 0.1667 0.2357 0.1432 0.1667 0.2357 0.1432 0.1667 0.2357 0.1432
[17, 22) 0.1000 0.2236 0.0946 0.1000 0.2236 0.0954 0.1000 0.2236 0.0955 0.1000 0.2236 0.0955 0.1000 0.2236 0.0955
[22, 23) 1.0000 1.0000 0.0473 1.0000 1.0000 0.0478 1.0000 1.0000 0.0478 1.0000 1.0000 0.0478 1.0000 1.0000 0.0478
(23) 0.0001 Inf Inf Inf Inf
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Illustration 6.5.2 The data below are number of million revolutions failure times for each of 23 ball bear-

ings. The data was analyzed in Lawless[37].

Table 18: Ball Bearings Dataset [37]

Data
Observation

in weeks

Failure/
Censor Time

Frequency of
Failure/
Censors

at ti

Survival/
Operating
units at ti:

z(ti)
t0 = 0 Initial 23
t1 = 17.88 Failure 1 22
t2 = 28.92 Failure 1 21
t3 = 33.00 Failure 1 20
t4 = 41.52 Failure 1 19
t5 = 42.12 Failure 1 18
t6 = 45.60 Failure 1 17
t7 = 48.40 Failure 1 16
t8 = 51.84 Failure 1 15
t9 = 51.96 Failure 1 14
t10 = 54.12 Failure 1 13
t11 = 55.56 Failure 1 12
t12 = 67.80 Failure 1 11
t13 = 68.64 Failure 2 9
t14 = 68.88 Failure 1 8
t15 = 84.12 Failure 1 7
t16 = 93.12 Failure 1 6
t17 = 98.64 Failure 1 5
t18 = 105.12 Failure 1 4
t19 = 105.84 Failure 1 3
t20 = 127.92 Failure 1 2
t21 = 128.04 Failure 1 1
t22 = 173.40 Failure 1 0

Again, we note that data set has no censored or arrival times. Thus, ka = 0 = kc. We also note that the

initial relative frequency of the survival of ball bearing data is 0.9565. Using the initial relative frequency

of ball bearing dataset, we chose initial survival probability to be S0 = 0.99, 0.999, 0.9999, 0.99999, 0.999999.

We demonstrate our approach by picking two choices of V (t, z) to construct observation equations. First,

choosing V (t, z) = z2 and applying the conceptual computational simulation algorithms (5.4.24) for consec-

utive failure-time intervals, the simulation results are summarized in Table 19. Choosing V (t, z) = ln z and

then applying conceptual computational simulation algorithms (5.4.27) for consecutive failure-time subinter-

vals. The results are recored in Table 20. The simulation results in Tables 19 and 20 show that estimates are

stabilized for S0 ≥ 0.9999. In other words, optimal convergence of survival state probability estimates are

reached for S0 ≥ 0.9999. We then conclude that the almost best survival state estimate is for S0 = 0.99999

for the ball bearings data set. Moreover, the results in Tables 19 and 20 also confirm the parameter and

survival state estimates are independent of the choice of V (t, z).
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Table 19: Estimates using S0 = 0.99000, 0.99900, 0.99990, 0.99999, 0.999999 by employing conceptual computational simulation algorithm (5.4.24)

Consecutive

Failure time

interval,

[Tj−1, Tj)

S0 = 0.99000 S0 = 0.99900 S0 = 0.9999 S0 = 0.99999 S0 = 0.999999

λ̂j σ̂j Ŝj−1 λ̂j σ̂j Ŝj−1 λ̂j σ̂j Ŝj−1 λ̂j σ̂j Ŝj−1 λ̂j σ̂j Ŝj−1

[0, 17.88) 0.0024 0.0103 0.9900 0.0024 0.0103 0.9990 0.0024 0.0103 0.9999 0.0024 0.0103 0.99999 0.0024 0.0103 0.999999
[17.88, 28.92) 0.0041 0.0137 0.9470 0.0041 0.0137 0.9556 0.0041 0.0137 0.9564 0.0041 0.0137 0.9565 0.0041 0.0137 0.9565
[28.92, 33.00) 0.0117 0.0236 0.9039 0.0117 0.0236 0.9122 0.0117 0.0236 0.9130 0.0117 0.0236 0.9131 0.0117 0.0236 0.9131
[33.00, 41.52) 0.0059 0.0171 0.8609 0.0059 0.0171 0.8688 0.0059 0.0171 0.8695 0.0059 0.0171 0.8696 0.0059 0.0171 0.8696
[41.52, 42.12) 0.0877 0.0679 0.8179 0.0877 0.0679 0.8253 0.0877 0.0679 0.8261 0.0877 0.0679 0.8262 0.0877 0.0679 0.8262
[42.12, 45.60) 0.0160 0.0298 0.7749 0.0160 0.0298 0.7820 0.0160 0.0298 0.7827 0.0160 0.0298 0.7827 0.0160 0.0298 0.7828
[45.60, 48.40) 0.0210 0.0352 0.7319 0.0210 0.0352 0.7386 0.0210 0.0352 0.7392 0.0210 0.0352 0.7393 0.0210 0.0352 0.7393
[48.40, 51.84) 0.0182 0.0337 0.6889 0.0182 0.0337 0.6951 0.0182 0.0337 0.6958 0.0182 0.0337 0.6958 0.0182 0.0337 0.6958
[51.84, 51.96) 0.5556 0.1925 0.6459 0.5556 0.1925 0.6517 0.5556 0.1925 0.6523 0.5556 0.1925 0.6524 0.5556 0.1925 0.6524
[51.96, 54.12) 0.0331 0.0486 0.6030 0.0331 0.0486 0.6084 0.0331 0.0486 0.6090 0.0331 0.0486 0.6091 0.0331 0.0486 0.6091
[54.12, 55.56) 0.0534 0.0641 0.5599 0.0534 0.0641 0.5650 0.0534 0.0641 0.5655 0.0534 0.0641 0.5656 0.0534 0.0641 0.5656
[55.56, 67.80) 0.0068 0.0238 0.5169 0.0068 0.0238 0.5216 0.0068 0.0238 0.5221 0.0068 0.0238 0.5221 0.0068 0.0238 0.5221
[67.80, 68.64) 0.2165 0.1984 0.4739 0.2165 0.1984 0.4782 0.2165 0.1984 0.4786 0.2165 0.1984 0.4786 0.2165 0.1984 0.4786
[68.64, 68.88) 0.4630 0.2268 0.3878 0.4630 0.2268 0.3913 0.4630 0.2268 0.3917 0.4630 0.2268 0.3917 0.4630 0.2268 0.3917
[68.88, 84.12) 0.0082 0.0320 0.3448 0.0082 0.0320 0.3480 0.0082 0.0320 0.3483 0.0082 0.0320 0.3483 0.0082 0.0320 0.3483
[84.12, 93.12) 0.0159 0.0476 0.3018 0.0159 0.0476 0.3045 0.0159 0.0476 0.3048 0.0159 0.0476 0.3048 0.0159 0.0476 0.3048
[93.12, 98.64) 0.0302 0.0709 0.2587 0.0302 0.0709 0.2610 0.0302 0.0709 0.2613 0.0302 0.0709 0.2613 0.0302 0.0709 0.2613
[98.64, 105.12) 0.0309 0.0786 0.2156 0.0309 0.0786 0.2175 0.0309 0.0786 0.2177 0.0309 0.0786 0.2178 0.0309 0.0786 0.2178
[105.12, 105.84) 0.3472 0.2946 0.1725 0.3472 0.2946 0.1741 0.3472 0.2946 0.1742 0.3472 0.2946 0.1742 0.3472 0.2946 0.1742
[105.84, 127.92) 0.0151 0.0709 0.1294 0.0151 0.0709 0.1306 0.0151 0.0709 0.1307 0.0151 0.0709 0.1307 0.0151 0.0709 0.1307
[127.92, 128.04) 4.1667 1.4434 0.0863 4.1667 1.4434 0.0871 4.1667 1.4434 0.0872 4.1667 1.4434 0.0872 4.1667 1.4434 0.0872
[128.04, 173.40) 0.0220 0.1485 0.0433 0.0220 0.1485 0.0437 0.0220 0.1485 0.0437 0.0220 0.1485 0.0438 0.0220 0.1485 0.0438
(173.40) 0.0000 0.0000 0.0000 0.0000 0.0000
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Table 20: Estimates using S0 = 0.99000, 0.99900, 0.99990, 0.99999, 0.999999 using conceptual computational simulation algorithm (5.4.27)

Consecutive

Failure time

interval,

[Tj−1, Tj)

S0 = 0.99000 S0 = 0.99900 S0 = 0.9999 S0 = 0.99999 S0 = 0.999999

λ̂j σ̂j Ŝj−1 λ̂j σ̂j Ŝj−1 λ̂j σ̂j Ŝj−1 λ̂j σ̂j Ŝj−1 λ̂j σ̂j Ŝj−1

[0, 17.88) 0.0024 0.0103 0.9900 0.0024 0.0103 0.9990 0.0024 0.0103 0.9999 0.0024 0.0103 1.0000 0.0024 0.0103 1.0000
[17.88, 28.92) 0.0041 0.0137 0.9470 0.0041 0.0137 0.9556 0.0041 0.0137 0.9564 0.0041 0.0137 0.9565 0.0041 0.0137 0.9565
[28.92, 33.00) 0.0117 0.0236 0.9039 0.0117 0.0236 0.9122 0.0117 0.0236 0.9130 0.0117 0.0236 0.9131 0.0117 0.0236 0.9131
[33.00, 41.52) 0.0059 0.0171 0.8609 0.0059 0.0171 0.8688 0.0059 0.0171 0.8695 0.0059 0.0171 0.8696 0.0059 0.0171 0.8696
[41.52, 42.12) 0.0877 0.0679 0.8179 0.0877 0.0679 0.8253 0.0877 0.0679 0.8261 0.0877 0.0679 0.8262 0.0877 0.0679 0.8262
[42.12, 45.60) 0.0160 0.0298 0.7749 0.0160 0.0298 0.7820 0.0160 0.0298 0.7827 0.0160 0.0298 0.7827 0.0160 0.0298 0.7828
[45.60, 48.40) 0.0210 0.0352 0.7319 0.0210 0.0352 0.7386 0.0210 0.0352 0.7392 0.0210 0.0352 0.7393 0.0210 0.0352 0.7393
[48.40, 51.84) 0.0182 0.0337 0.6889 0.0182 0.0337 0.6952 0.0182 0.0337 0.6958 0.0182 0.0337 0.6958 0.0182 0.0337 0.6958
[51.84, 51.96) 0.5556 0.1925 0.6459 0.5556 0.1925 0.6517 0.5556 0.1925 0.6523 0.5556 0.1925 0.6524 0.5556 0.1925 0.6524
[51.96, 54.12) 0.0331 0.0486 0.6030 0.0331 0.0486 0.6085 0.0331 0.0486 0.6090 0.0331 0.0486 0.6091 0.0331 0.0486 0.6091
[54.12, 55.56) 0.0534 0.0641 0.5599 0.0534 0.0641 0.5650 0.0534 0.0641 0.5655 0.0534 0.0641 0.5656 0.0534 0.0641 0.5656
[55.56, 67.80) 0.0068 0.0238 0.5169 0.0068 0.0238 0.5216 0.0068 0.0238 0.5221 0.0068 0.0238 0.5221 0.0068 0.0238 0.5221
[67.80, 68.64) 0.2165 0.1984 0.4739 0.2165 0.1984 0.4782 0.2165 0.1984 0.4786 0.2165 0.1984 0.4786 0.2165 0.1984 0.4786
[68.64, 68.88) 0.4630 0.2268 0.3878 0.4630 0.2268 0.3914 0.4630 0.2268 0.3917 0.4630 0.2268 0.3917 0.4630 0.2268 0.3918
[68.88, 84.12) 0.0082 0.0320 0.3449 0.0082 0.0320 0.3480 0.0082 0.0320 0.3483 0.0082 0.0320 0.3483 0.0082 0.0320 0.3483
[84.12, 93.12) 0.0159 0.0476 0.3018 0.0159 0.0476 0.3045 0.0159 0.0476 0.3048 0.0159 0.0476 0.3048 0.0159 0.0476 0.3048
[93.12, 98.64) 0.0302 0.0709 0.2587 0.0302 0.0709 0.2610 0.0302 0.0709 0.2613 0.0302 0.0709 0.2613 0.0302 0.0709 0.2613
[98.64, 105.12) 0.0309 0.0786 0.2156 0.0309 0.0786 0.2176 0.0309 0.0786 0.2177 0.0309 0.0786 0.2178 0.0309 0.0786 0.2178
[105.12, 105.84) 0.3472 0.2946 0.1725 0.3472 0.2946 0.1741 0.3472 0.2946 0.1742 0.3472 0.2946 0.1742 0.3472 0.2946 0.1742
[105.84, 127.92) 0.0151 0.0709 0.1294 0.0151 0.0709 0.1306 0.0151 0.0709 0.1307 0.0151 0.0709 0.1308 0.0151 0.0709 0.1308
[127.92, 128.04) 4.1667 1.4434 0.0863 4.1667 1.4434 0.0871 4.1667 1.4434 0.0872 4.1667 1.4434 0.0872 4.1667 1.4434 0.0872
[128.04, 173.40) 0.0220 0.1485 0.0434 0.0220 0.1485 0.0438 0.0220 0.1485 0.0438 0.0220 0.1485 0.0438 0.0220 0.1485 0.0438
(173.40) Inf Inf Inf Inf 0.0000



In the following illustration, we apply our innovative alternative algorithm to a data set consisting of multiple

censored times between consecutive failure times.

Illustration 6.5.3 The data in Table 21 below show the length of remission in weeks leukemia patients

under the influence of treatment study [13]. We note that there are multiple censored times occurring between

any two consecutive failure times unlike the data sets in Tables 15 and 18. Here also, we exemplify our

approach by picking two choices of V (t, z) to construct observation equations. First, we choose V (t, z) = z2

and apply (5.4.37) with ka = 0 for consecutive failure time intervals. The results are recorded in Table 22.

Choosing V (t, z) = ln z and applying conceptual computational simulation algorithm (5.4.39), we obtain

estimates that are summarized in Table 23. The computational results in Tables 22 and 23 show that the

estimates are stabilized for S0 ≥ 0.9999. Thus for the data set in Table 21, we conclude that the best survival

state estimate is attained at the initial value for S0 = 0.99999. In addition, the results in Tables 22 and

23 indicate that our alternative approach is independent of the choice of nonlinear transformation V (t, z)

provided that the obtained system of algebraic equations can be solved.

Table 21: Treated Group Dataset [13]

Data
Observation

in weeks

Failure/
Censor Time

Frequency of
Failure/
Censors

at ti

Survival/
Operating
units at ti:

z(ti)
t0 = 0 Initial 21
t1 = 6 Failure 3 18
t2 = 6 Censored 1 17
t3 = 7 Failure 1 16
t4 = 9 Censored 1 15
t5 = 10 Failure 1 14
t6 = 10 Censored 1 13
t7 = 11 Failure 1 12
t8 = 13 Censored 1 11
t9 = 16 Failure 1 10
t10 = 17 Censored 1 9
t11 = 19 Censored 1 8
t12 = 20 Censored 1 7
t13 = 22 Failure 1 6
t14 = 23 Failure 1 5
t15 = 25 Censored 1 4
t16 = 32 Censored 2 2
t17 = 34 Censored 1 1
t18 = 35 Censored 1 0

122



123

Table 22: Estimates using S0 = 0.99000, 0.99900, 0.99990, 0.99999, 0.999999 by employing conceptual computational algorithm (5.4.37)

Consecutive

Failure time

interval,

[Tj−1, Tj)

S0 = 0.99000 S0 = 0.99900 S0 = 0.9999 S0 = 0.99999 S0 = 0.999999

λ̂j σ̂j Ŝj−1 λ̂j σ̂j Ŝj−1 λ̂j σ̂j Ŝj−1 λ̂j σ̂j Ŝj−1 λ̂j σ̂j Ŝj−1

[0, 6) 0.0238 0.0583 0.9900 0.0238 0.0583 0.9990 0.0238 0.0583 0.9999 0.0238 0.0583 1.0000 0.0238 0.0583 1.0000
[6, 7) 0.0588 0.0588 0.8486 0.0588 0.0588 0.8564 0.0588 0.0588 0.8571 0.0588 0.0588 0.8572 0.0588 0.0588 0.8572
[7, 10) 0.0213 0.0566 0.7988 0.0213 0.0566 0.8061 0.0213 0.0566 0.8068 0.0213 0.0566 0.8069 0.0213 0.0566 0.8069
[10, 11) 0.0769 0.0769 0.7479 0.0769 0.0769 0.7547 0.0769 0.0769 0.7553 0.0769 0.0769 0.7554 0.0769 0.0769 0.7554
[11, 16) 0.0175 0.0532 0.6904 0.0175 0.0532 0.6967 0.0175 0.0532 0.6973 0.0175 0.0532 0.6974 0.0175 0.0532 0.6974
[16, 22) 0.0200 0.0966 0.6299 0.0200 0.0966 0.6356 0.0200 0.0966 0.6362 0.0200 0.0966 0.6363 0.0200 0.0966 0.6363
[22, 23) 0.0204 0.3065 0.5544 0.0204 0.3065 0.5594 0.0204 0.3065 0.5599 0.0204 0.3065 0.5600 0.0204 0.3065 0.5600
(23) 0.5450 0.5499 0.5504 0.5505 0.5505

Table 23: Estimates using S0 = 0.99000, 0.99900, 0.99990, 0.99999, 0.999999 by employing conceptual computational algorithm (5.4.39)

Consecutive

Failure time

interval,

[Tj−1, Tj)

S0 = 0.99000 S0 = 0.99900 S0 = 0.9999 S0 = 0.99999 S0 = 0.999999

λ̂j σ̂j Ŝj−1 λ̂j σ̂j Ŝj−1 λ̂j σ̂j Ŝj−1 λ̂j σ̂j Ŝj−1 λ̂j σ̂j Ŝj−1

[0, 6) 0.0238 0.0583 0.9900 0.0238 0.0583 0.9990 0.0238 0.0583 0.9999 0.0238 0.0583 1.0000 0.0238 0.0583 1.0000
[6, 7) 0.0588 0.0588 0.8487 0.0588 0.0588 0.8564 0.0588 0.0588 0.8571 0.0588 0.0588 0.8572 0.0588 0.0588 0.8572
[7, 10) 0.0213 0.0566 0.7988 0.0213 0.0566 0.8061 0.0213 0.0566 0.8068 0.0213 0.0566 0.8069 0.0213 0.0566 0.8069
[10, 11) 0.0769 0.0769 0.7479 0.0769 0.0769 0.7547 0.0769 0.0769 0.7554 0.0769 0.0769 0.7554 0.0769 0.0769 0.7554
[11, 16) 0.0175 0.0532 0.6904 0.0175 0.0532 0.6967 0.0175 0.0532 0.6973 0.0175 0.0532 0.6974 0.0175 0.0532 0.6974
[16, 22) 0.0200 0.0966 0.6299 0.0200 0.0966 0.6356 0.0200 0.0966 0.6362 0.0200 0.0966 0.6363 0.0200 0.0966 0.6363
[22, 23) 0.0204 0.3065 0.5544 0.0204 0.3065 0.5594 0.0204 0.3065 0.5600 0.0204 0.3065 0.5600 0.0204 0.3065 0.5600
(23) 0.5450 0.5499 0.5505 0.5505 0.5505



6.6 Modified LLGMM Parameter and State Estimation

In this section, we develop a modified version of the Local Lagged Adapted Generalized Method of Mo-

ments(LLGMM) [44, 45]. This is achieved by utilizing the developed alternative procedure in Section 5.4

and the LLGMM method. We note that the transformed conceptual computational interconnected dynamic

algorithm for time-to-event data statistic process is local. It is centered around each consecutive pair of

ordered failure time subinterval [T fj−1i−1, T
f
j−1i) with its right-end-point data observation/collection process

for i ∈ I(1, kf ), and j ∈ I(1, n). Moreover, parameter and state estimations of the time-to-event process

is relative to each consecutive pair of ordered failure or change time subinterval of operation of the time-

to-event dynamic process. This type of parameter and state estimation problem in time-to-event processes

can be characterized by the local single-shot procedure identified by the right-end point of the j − 1i-th

consecutive failure or change point subinterval for each i ∈ I(1, kf ).

These observations motivate the extension of the presented local single-shot innovative parameter and

state dynamic estimation procedure developed in Section 5.4 to a finite multi-choice local lagged consecutive

failure or change time subintervals with right-end-point data observation/collection process. For this, we

recall [6] a couple of definitions that form a bridge to connect our developed innovative approach with the

LLGMM approach. For easy reference, we present some of the useful definitions.

Definition 6.6.1 For each i ∈ I(1, kf ) and each mi ∈ I(1, i), a partition of closed interval [T fj−1i−mi
, T fj−1i]

is called local lagged at a failure-time T fj−1i, and it is defined by:

P fj−1i−mi
:= T fj−1i−mi

< T fj−1i−mi+1 < . . . < T fj−1i−1 < T fj−1i . (6.6.1)

A mi-size consecutive ordered failure time subinterval subsequence {[T fj−1i+l, T
f
j−1i+l+1)}−1

l=−mi
of the overall

consecutive ordered failure time subinterval sequence {[T fj−1i−1, T
f
j−1i)}

kf

i=1 is called local lagged moving

failure-time subinterval subsequence at T fj−1i that forms a cover [16] of [T fj−1i−mi
, T fj−1i):

−1⋃
l=−mi

[T fj−1i+l, T
f
j−1i+l+1) = [T fj−1i−mi

, T fj−1i) . (6.6.2)

P fj−1i−mi
is a sub-partition of the overall partition P f in Definition 5.4.3.

Definition 6.6.2 For each i ∈ I(1, kf ) and each mi ∈ I1(1, i), a local lagged moving consecutive ordered

failure time subsequence of subintervals, {[T fj−1i+l, T
f
j−1i+l+1)}−1

l=−mi
at failure time T fj−1i of the size mi is

identified by the restriction of overall failure time state data subsequence {zj−1i−1}
kf

i=1 with P fj−1i−mi
in

(6.6.1), and it is defined by:

smi,j−1i := {F lzj−1i}0l=−mi
. (6.6.3)
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Here F is a forward-shift operator, and F−1 = B, where B is the backward shift operator [10]. mi varies

from 1 to i, so also the corresponding local sequence smi,i at T fj−1i in (6.6.3) varies from {F lzj−1i}0l=−1 to

{F lzj−1i}0l=−i+1. As a result of this, the sequence defined in (6.6.3) is also called a mi-local moving sequence

of consecutive failure-time state data associated with mi-local lagged finite sequence of subintervals at a

failure-time T fj−1i for each i ∈ I(1, kf ).

In the following, we outline computational scheme for the survival state data analysis problems. Using

the concept of mi-moving sequence of failure-time state data at a failure time T fj−1i, computational schemes

for the change point problem can also be formulated and developed, analogously.

Hereafter, we utilize Definitions 6.6.1 and 6.6.2, and recast the LLGMM algorithm [44, 45]. For each

mi ∈ I(1, i+ 1), and l ∈ I(−mi,−1), using (5.4.31) we determine estimates of λ and σ2 at each failure time

T fj−1i as follows:



λ̂i,mi
=

−1∑
l=−mi

[
−E(∆zj−1i+l+1| Gj−1i+l) + Γnoj−1i+l − kci+l

+ kai+l

]
−1∑

l=−mi

kbi+l
+1∑

n=1
z(T c/aj−1i+ln−1)∆T c/aj−1i+ln

,

σ̂2
i,mi

=

2



−1∑
l=−mi


E[∆V (T fj−1i+l+1, zj−1i+l+1) | Gj−1i+l] + Γnovj−1i+l + kvbi

−
kbi+l

+1∑
n=1

∂
∂tV (T c/aj−1i+ln−1, z(T

c/a
j−1i−1+ln−1))∆T c/aj−1i+ln

− λ(T fj−1i−1, Sj−1i−1)
[
kbi

+1∑
n=1

z(T c/aj−1i+ln−1) ∂∂zV (T c/aj−1i+ln−1, z(T
c/a
j−1i−1+ln−1))∆T c/aj−1i+ln

]


−1∑

l=−mi

kbi
+1∑

n=1
z2(T c/aj−1i+ln−1) ∂2

∂z2V (T c/aj−1i+ln−1, z(T
c/a
j−1i−1+ln−1))∆T c/aj−1i+ln



,

(6.6.4)

where kvbi
= kcvci+l

− koavai+l
; mi ∈ I(1, i− 1); kci+l

stands for the total number of censored objects/species/in-

fective/quitting covered over the subinterval [T fj−1i+l, T
f
j−1i+l+1); kai+l

denotes the total number of ad-

mitting/entering/joining/susceptible/etc covered over the subinterval [T fj−1i+l, T
f
j−1i+l+1); kfi+l

is the total

number of failures covered over the subinterval [T fj−1i+l, T
f
j−1i+l+1); kbi+l

= kci+l
+ kai+l

.
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Remark 6.6.1 In the case where kb = 0, Then (6.6.4) reduces to



λ̂j,mj =

−1∑
l=−mi

[
−E(∆zj+l+1| Gj+l) + Γnoj−1i+l

]
−1∑

l=−mj

zj+l∆T fj+1+1

,

σ̂2
j,mj

= 2


−1∑

l=−mi

(
E[∆V (T fj+l+1, zj+l+1) | Gj+l] + Γnovj−1i+l − ∂

∂tV (T fj+l, zj+l)∆T
f
j+l+1+

zj+lλj,mj

∂
∂zV (T fj+l, zj+l)∆T

f
j+l+1

)
−1∑

l=−mi

z2
j+l

∂2

∂z2V (T fj+l, zj+l)∆T
f
j+l+1

 .
(6.6.5)

In short, the usage of the transformed continuous-time stochastic dynamic hybrid model for time-to-event

process (5.3.11) and discrete-time interconnected hybrid dynamic algorithms of local sample mean lead to

an innovative alternative method for parameter and state estimation problems for continuous-time dynamic

models described by both linear and nonlinear stochastic differential equations.

Example 6.6.1 Using the parameter estimates in Example 5.4.5, (6.6.4) becomes:



λ̂i,mi
=

−1∑
l=−mi

[
−E(∆zj−1i+l+1| Gj−1i+l) + Γnoj−1i+l − kci+l

+ kai+l

]
−1∑

l=−mi

kbi+l
+1∑

n=1
z(T c/aj−1i+ln−1)∆T c/aj−1i+ln

,

σ̂2
j,mj

=

−1∑
l=mi

[
E(∆z2

j+l+1| Gj+l)− Γnoj−1i+l + kci+l
− kai+l

]
−1∑

l=−mi

z(T c/aj+l+1)2∆T c/aj+l+1

+ 2λ̂j,mj .

(6.6.6)

If in addition, kb = 0, then (6.6.6) reduces to:



λ̂j,mj
= −

−1∑
l=−mi

[
E(∆zj+l+1| Gj+l) + Γnoj−1i+l

]
−1∑

l=−mj

zj+l∆T fj+1+1

,

σ̂2
j,mj

=

−1∑
l=−mi

[
E(∆z2

j+l+1| Gj+l)− Γnovj−1i+l

]
−1∑

l=−mi

z2
j+l+1∆T fj+l+1

+ 2λ̂j,mj
.

(6.6.7)
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Example 6.6.2 Employing the parameter estimates in Example 5.4.6, (6.6.4) reduces to:



λ̂i,mi =

−1∑
l=−mi

[
−E(∆zj−1i+l+1| Gj−1i+l) + Γnoj−1i+l − kci+l

+ kai+l

]
−1∑

l=−mi

kbi+l
+1∑

n=1
z(T c/aj−1i+ln−1)∆T c/aj−1i+ln

,

σ̂2
j,mj

= −2

λ̂j,mj
+

∑−1
l=−mj

[
E[∆ ln(∆zj+l+1) | Gj+l]− Γnovj−1i+l + kci+l

− kai+l

]
∑−1
l=−mj

∆T c/aj+l+1

 .
(6.6.8)

If in addition, kb = 0, then (6.6.8) becomes:



λ̂j,mj =

−1∑
l=−mi

[
−E(∆zj+l+1| Gj+l) + Γnoj−1i+l

]
−1∑

l=−mj

z(T fj+l)∆Tj+1+1

,

σ̂2
j,mj

= −2

λ̂j,mj
+

∑−1
l=−mj

[
E[∆ ln(∆zj+l+1) | Gj+l]− Γnovj−1i+l

]
∑−1
l=−mj

∆T fj+l+1

 .
(6.6.9)

6.6.1 Computational Algorithm

The numerical approximation and simulation processes need to be synchronized with the existing data

collection schedule process in the context of the partition of [t0,T]. For each i ∈ I(1, kf ) and j ∈ I(1, n),

we assume that T fj−1i is a failure scheduled time clock for the j − 1i-th collected data of the failure state

of a system under investigation. From Definition 6.6.2, for each mi ∈ OSj−1i = I(1, i) at T fj−1i, we pick

a mi local admissible sequence {F lzj−1i}0l=−mi
. Using the terms of this sequence and (6.6.4), we compute

the state and parameter estimates of the continuous-time dynamic model (5.3.11) for a choice of initial

values S(T0) = S0 specified in Sub-section 6.4. These estimates form a local finite sequence of parameter

estimates at T fj−1i corresponding to ASj−1i = {zmi,j−1i : mi ∈ I(1, i)} for each i ∈ I(1, kf ). The Principle

of Mathematical Induction [33] is employed for the development of a conceptual computational scheme.

For each admissible sequence in ASj−1i, let zsmi,j−1i be a simulated value of zmi,j−1i at T fj−1i. This

engenders an mi local sequence of simulated data {zsmi,j−1i}mi∈OSj−1,i . The simulated zsmi,j−1i value satisfies

the following scheme:

zsj−1i = zsj−1i−1 − λ̂j−1i−1 z
s
j−1i−1∆Tj−1i + σ̂j−1i−1 z

s
j−1i−1∆wj−1i − kci

+ kai
. (6.6.10)

To find the best estimate of z(T fj−1i) with a best choice of initial state (Section 6.4), let us define a mean-
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square estimate error of z(T fj−1i) to be

Ξmi,j−1i,zj−1i
=
(
z(T fj−1i)− z

s
mi,j−1i

)2
(6.6.11)

relative to each member of the term of local admissible sequences {zsmi,j−1i}mi∈OSj−1,i
of simulated values.

For any preassigned arbitrary small positive number ε and for each failure time T fj−1i, we find the best

estimate from admissible simulated values. We determine the following sub-optimal admissible set of size of

moving average at T fj−1i as:

Mj−1i = {mi : Ξmi,j−1i,zj−1i
< ε for mi ∈ OSj−1i}. (6.6.12)

Among these collected sub-optimal set of values, the value that gives the minimum Ξmi,j−1i,zj−1i is recorded

as m̂i. The parameters corresponding to m̂i is referred as the ε-level sub-optimal estimates of the true

parameters. These sub-optimal estimates are estimated at time T fj−1i with m̂i. The simulated value zsm̂i,j−1i

at T fj−1i corresponding to m̂i is recored as the best sub-optimal estimate for dynamic state z(Tj−1i) at T fj−1i.

Having obtained the best estimate for λ and σ2, we then proceed to find the best sub-optimal estimate for

the survival state function at T fj−1i via the following discrete-time simulation dynamic process:

Ŝ(Tj−1i) = Ŝ(Tj−1i−1)− Ŝ(Tj−1i−1)λ̂(Tj−1i−1, Sj−1i−1)∆Tj−1i + Ŝ(Tj−1i)σ̂(Tj−1i−1, Sj−1i−1)∆w(Tj−1i)

(6.6.13)

Finally, an estimate of Sm̂i,j−1i at T fj−1i corresponding to m̂i is also recorded as the best estimate for survival

state S(Tj−1i) at T fj−1i. Moreover, a conceptual computational modified LLGMM algorithm is outlined in

Flowchart 15. Here, we choose T0, S0, and z0 so that S0 ≥ RF , where RF denotes a relative frequency at

the initial time T0.
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Initials: T0,

z0, S0 ≥ RF

For each admissible

mi ∈ OSj−1i at failure

time T fj−1i

mi-local admissible

adapted finite sequence

{smi,j−1i}0l=−mi
at T fj−1i

mi- local parameter

estimates λ̂mi,j−1i,

σ̂mi,j−1i at T fj−1i

Simulated estimate

for z at T fj−1i is

zsmi,j−1i

Test for ε-sub

optimality m̂i

For Mj−1i 6= ∅,

mi ∈Mj−1i

For Mm 6= ∅, and

OSj−1i −M, Delete

For Mj−1i = ∅

ε-suboptimal

m̂i = min
mi∈M

Ξ ?
ε-suboptimal estimate

zsm̂i,j−1i for z

Choose the largest mi

yesyes

no

no

no

no

Flowchart 15.: LLGMM-type Conceptual Computational Algorithm



We present an algorithm and flowchart for the simulation scheme described above.

Given initials T0, S0, z0, ε,

for i = 1 to kf do

for mi = 1 to i do

Compute λ̂mi,j−1i, σ̂mi,j−1i

for mi = 0 to i do

Compute zsmi,j−1i , Ξmi,j−1i,zj−1i

end for

end for

end for

if Ξmi,i,zj−1i < ε then

Save m̂i

else

Find m̂i that minimizes Ξmi,j−1i,zj−1i

end if

Compute λm̂i,j−1i, σm̂i,j−1i , z
s
m̂i,j−1i , Sm̂i,j−1i.

Algorigthm 16.: Simulation scheme
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Start

Input data, ε

Initial T0, z0, S0 ≥ RF

λ̂mi,j−1i, σ̂mi,j−1i ,mi ∈ I(1, i− 1)

zsmi,j−1i ,Ξmi,j−1i,zj−1i

Is Ξmi,j−1i,zj−1i < ε?Repeat for each j

Save mi as m̂i

Choose mi with

min Ξmi,i,zj−1i

as m̂i

Update S0

λm̂i,i, σm̂i,i

λm̂i,j−1i , σm̂i,j−1i, Sm̂i,j−1i, zm̂i,j−1i

Stop

Record

yes

no

yes

no

Flowchart 17.: LLGMM-type Simulation Algorithm
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In the following, we give illustrations on how to apply modified LLGMM method to three data sets in

Tables 15, 18 and 21.

Illustration 6.6.1 [Application of LLGMM-type Conceptual Computational Algorithm to the datasets in

Table 15 ]

We apply the modified LLGMM procedure to the dataset in Table 15. Using (6.6.7), (6.6.10), and (6.6.13)

with ε = 0.001, the results are summarized in Table 24. Utilizing (6.6.9), (6.6.10), and (6.6.13) with ε = 0.001,

the results are exhibited in Table 25.

Illustration 6.6.2 [Application of LLGMM-type Conceptual Computational Algorithm to the datasets in

Table 18 ]

We apply the above procedure to the dataset in Table 18. Employing (6.6.7), (6.6.10), and (6.6.13) with

ε = 0.001, the results are summarized in Table 26. Utilizing (6.6.9), (6.6.10), and (6.6.13) with ε = 0.001,

the simulation results are recorded in Table 27.

Illustration 6.6.3 [Application of LLGMM-type Conceptual Computational Algorithm to the datasets in

Table 21 ]

We apply the above procedure to the dataset in Table 21. Using (6.6.6), (6.6.10), and (6.6.13) with ε = 0.001,

the results are recorded in Table 28. Utilizing (6.6.8), (6.6.10), and (6.6.13) with ε = 0.001, the simulation

results are summarized in Table 29 .
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Table 24: Modified LLGMM Based Estimates using S0 = 0.99000, 0.99900, 0.99990, 0.99999, 0.999999 by by utilizing (6.6.7), (6.6.10), and (6.6.13) with ε = 0.001

S0 = 0.99000 S0 = 0.99900 S0 = 0.9999 S0 = 0.99999 S0 = 0.999999

T f
j m̂j λj,m̂j

σj,m̂j
Sj,m̂j

λj,m̂j
σj,m̂j

Sj,m̂j
λj,m̂j

σj,m̂j
Sj,m̂j

λj,m̂j
σj,m̂j

Sj,m̂j
λj,m̂j

σj,m̂j
Sj,m̂j

0 0.0952 0.0952 0.9900 0.0952 0.0952 0.9990 0.0952 0.0952 0.9999 0.0952 0.0952 0.99999 0.0952 0.0952 0.999999
1.00 1 0.0952 0.0952 0.8958 0.0952 0.0952 0.9040 0.0952 0.0952 0.9048 0.0952 0.0952 0.9049 0.0952 0.0952 0.9049
2.00 1 0.1053 0.1053 0.8017 0.1053 0.1053 0.8090 0.1053 0.1053 0.8097 0.1053 0.1053 0.8098 0.1053 0.1053 0.8098
3.00 1 0.0588 0.0588 0.7546 0.0588 0.0588 0.7614 0.0588 0.0588 0.7621 0.0588 0.0588 0.7622 0.0588 0.0588 0.7622
4.00 1 0.1250 0.1250 0.6604 0.1250 0.1250 0.6664 0.1250 0.1250 0.6670 0.1250 0.1250 0.6670 0.1250 0.1250 0.6670
5.00 1 0.1429 0.1429 0.5662 0.1429 0.1429 0.5713 0.1429 0.1429 0.5718 0.1429 0.1429 0.5719 0.1429 0.1429 0.5719
8.00 1 0.1111 0.1925 0.3776 0.1111 0.1925 0.3810 0.1111 0.1925 0.3814 0.1111 0.1925 0.3814 0.1111 0.1925 0.3814
11.00 1 0.0833 0.1443 0.2833 0.0833 0.1443 0.2858 0.0833 0.1443 0.2861 0.0833 0.1443 0.2861 0.0833 0.1443 0.2861
12.00 1 0.3333 0.3333 0.1890 0.3333 0.3333 0.1907 0.3333 0.3333 0.1909 0.3333 0.3333 0.1909 0.3333 0.3333 0.1909
15.00 1 0.0833 0.1443 0.1418 0.0833 0.1443 0.1430 0.0833 0.1443 0.1432 0.0833 0.1443 0.1432 0.0833 0.1443 0.1432
17.00 1 0.1667 0.2357 0.0945 0.1667 0.2357 0.0954 0.1667 0.2357 0.0955 0.1667 0.2357 0.0955 0.1667 0.2357 0.0955
22.00 1 0.1000 0.2236 0.0473 0.1000 0.2236 0.0477 0.1000 0.2236 0.0478 0.1000 0.2236 0.0478 0.1000 0.2236 0.0478
23.00 1 1.0000 1.0000 0.0001 1.0000 1.0000 0.0001 1.0000 1.0000 0.0001 1.0000 1.0000 0.0001 1.0000 1.0000 0.0001

Table 25: Modified LLGMM Based Estimates using S0 = 0.99000, 0.99900, 0.99990, 0.99999, 0.999999 by utilizing (6.6.9), (6.6.10), and (6.6.13) with ε = 0.001

S0 = 0.99000 S0 = 0.99900 S0 = 0.9999 S0 = 0.99999 S0 = 0.999999

T f
j m̂j λj,m̂j

σj,m̂j
Sj,m̂j

λj,m̂j
σj,m̂j

Sj,m̂j
λj,m̂j

σj,m̂j
Sj,m̂j

λj,m̂j
σj,m̂j

Sj,m̂j
λj,m̂j

σj,m̂j
Sj,m̂j

0 0.0952 0.0984 0.9900 0.0952 0.0984 0.9990 0.0952 0.0984 0.9999 0.0952 0.0984 0.99999 0.0952 0.0984 0.999999
1.00 1 0.0952 0.0984 0.8958 0.0952 0.0984 0.9040 0.0952 0.0984 0.9048 0.0952 0.0984 0.9049 0.0952 0.0984 0.9049
2.00 1 0.1053 0.1092 0.8017 0.1053 0.1092 0.8090 0.1053 0.1092 0.8097 0.1053 0.1092 0.8098 0.1053 0.1092 0.8098
3.00 1 0.0588 0.0600 0.7546 0.0588 0.0600 0.7614 0.0588 0.0600 0.7621 0.0588 0.0600 0.7622 0.0588 0.0600 0.7622
4.00 1 0.1250 0.1306 0.6604 0.1250 0.1306 0.6664 0.1250 0.1306 0.6670 0.1250 0.1306 0.6670 0.1250 0.1306 0.6670
5.00 1 0.1429 0.1503 0.5662 0.1429 0.1503 0.5713 0.1429 0.1503 0.5718 0.1429 0.1503 0.5719 0.1429 0.1503 0.5719
8.00 1 0.1111 0.2193 0.3776 0.1111 0.2193 0.3810 0.1111 0.2193 0.3814 0.1111 0.2193 0.3814 0.1111 0.2193 0.3814
11.00 1 0.0833 0.1585 0.2833 0.0833 0.1585 0.2859 0.0833 0.1585 0.2861 0.0833 0.1585 0.2861 0.0833 0.1585 0.2861
12.00 1 0.3333 0.3798 0.1890 0.3333 0.3798 0.1907 0.3333 0.3798 0.1909 0.3333 0.3798 0.1909 0.3333 0.3798 0.1909
15.00 1 0.0833 0.1585 0.1418 0.0833 0.1585 0.1431 0.0833 0.1585 0.1432 0.0833 0.1585 0.1432 0.0833 0.1585 0.1432
17.00 1 0.1667 0.2686 0.0946 0.1667 0.2686 0.0954 0.1667 0.2686 0.0955 0.1667 0.2686 0.0955 0.1667 0.2686 0.0955
22.00 1 0.1000 0.2780 0.0473 0.1000 0.2780 0.0478 0.1000 0.2780 0.0478 0.1000 0.2780 0.0478 0.1000 0.2780 0.0478
23.00 1 1.0000 Inf Inf 1.0000 Inf Inf 1.0000 Inf Inf 1.0000 Inf Inf 1.0000 Inf Inf
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Table 26: Modified LLGMM Based Estimates using S0 = 0.99000, 0.99900, 0.99990, 0.99999, 0.999999 by utilizing (6.6.7), (6.6.10), and (6.6.13) with ε = 0.001

S0 = 0.99000 S0 = 0.99900 S0 = 0.9999 S0 = 0.99999 S0 = 0.999999

T f
j m̂j λj,m̂j

σj,m̂j
Sj,m̂j

λj,m̂j
σj,m̂j

Sj,m̂j
λj,m̂j

σj,m̂j
Sj,m̂j

λj,m̂j
σj,m̂j

Sj,m̂j
λj,m̂j

σj,m̂j
Sj,m̂j

0 0.0024 0.0103 0.99 0.0024 0.0103 0.999 0.0024 0.0103 0.9999 0.0024 0.0103 0.999999 0.0024 0.0103 0.999999
17.88 1 0.0024 0.0103 0.9470 0.0024 0.0103 0.9556 0.0024 0.0103 0.9564 0.0024 0.0103 0.9565 0.0024 0.0103 0.9565
28.92 1 0.0041 0.0137 0.9039 0.0041 0.0137 0.9122 0.0041 0.0137 0.9130 0.0041 0.0137 0.9131 0.0041 0.0137 0.9131
33.00 1 0.0117 0.0236 0.8609 0.0117 0.0236 0.8688 0.0117 0.0236 0.8695 0.0117 0.0236 0.8696 0.0117 0.0236 0.8696
41.52 1 0.0059 0.0171 0.8179 0.0059 0.0171 0.8253 0.0059 0.0171 0.8261 0.0059 0.0171 0.8262 0.0059 0.0171 0.8262
42.12 1 0.0877 0.0679 0.7749 0.0877 0.0679 0.7820 0.0877 0.0679 0.7827 0.0877 0.0679 0.7827 0.0877 0.0679 0.7827
45.60 1 0.0160 0.0298 0.7319 0.0160 0.0298 0.7386 0.0160 0.0298 0.7392 0.0160 0.0298 0.7393 0.0160 0.0298 0.7393
48.40 1 0.0210 0.0352 0.6889 0.0210 0.0352 0.6951 0.0210 0.0352 0.6958 0.0210 0.0352 0.6958 0.0210 0.0352 0.6958
51.84 1 0.0182 0.0337 0.6459 0.0182 0.0337 0.6517 0.0182 0.0337 0.6523 0.0182 0.0337 0.6524 0.0182 0.0337 0.6524
51.96 1 0.5556 0.1925 0.6030 0.5556 0.1925 0.6084 0.5556 0.1925 0.6090 0.5556 0.1925 0.6091 0.5556 0.1925 0.6091
54.12 1 0.0331 0.0486 0.5599 0.0331 0.0486 0.5650 0.0331 0.0486 0.5655 0.0331 0.0486 0.5656 0.0331 0.0486 0.5656
55.56 1 0.0534 0.0641 0.5169 0.0534 0.0641 0.5216 0.0534 0.0641 0.5221 0.0534 0.0641 0.5221 0.0534 0.0641 0.5221
67.80 1 0.0068 0.0238 0.4739 0.0068 0.0238 0.4782 0.0068 0.0238 0.4786 0.0068 0.0238 0.4786 0.0068 0.0238 0.4786
68.64 1 0.2165 0.1984 0.3878 0.2165 0.1984 0.3913 0.2165 0.1984 0.3917 0.2165 0.1984 0.3917 0.2165 0.1984 0.3917
68.88 1 0.4630 0.2268 0.3448 0.4630 0.2268 0.3480 0.4630 0.2268 0.3483 0.4630 0.2268 0.3483 0.4630 0.2268 0.3483
84.12 1 0.0082 0.0320 0.3018 0.0082 0.0320 0.3045 0.0082 0.0320 0.3048 0.0082 0.0320 0.3048 0.0082 0.0320 0.3048
93.12 1 0.0159 0.0476 0.2587 0.0159 0.0476 0.2610 0.0159 0.0476 0.2613 0.0159 0.0476 0.2613 0.0159 0.0476 0.2613
98.64 1 0.0302 0.0709 0.2156 0.0302 0.0709 0.2175 0.0302 0.0709 0.2177 0.0302 0.0709 0.2178 0.0302 0.0709 0.2178
105.12 1 0.0309 0.0786 0.1725 0.0309 0.0786 0.1741 0.0309 0.0786 0.1742 0.0309 0.0786 0.1742 0.0309 0.0786 0.1742
105.84 1 0.3472 0.2946 0.1294 0.3472 0.2946 0.1306 0.3472 0.2946 0.1307 0.3472 0.2946 0.1307 0.3472 0.2946 0.1307
127.92 1 0.0151 0.0709 0.0863 0.0151 0.0709 0.0871 0.0151 0.0709 0.0872 0.0151 0.0709 0.0872 0.0151 0.0709 0.0872
128.04 1 4.1667 1.4434 0.0433 4.1667 1.4434 0.0437 4.1667 1.4434 0.0437 4.1667 1.4434 0.0438 4.1667 1.4434 0.0438
173.40 1 0.0220 0.1485 0.0000 0.0220 0.1485 0.0000 0.0220 0.1485 0.0000 0.0220 0.1485 0.0000 0.0220 0.1485 0.0000
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Table 27: Modified LLGMM Based Estimates using S0 = 0.99000, 0.99900, 0.99990, 0.99999, 0.999999 by employing (6.6.9), (6.6.10), and (6.6.13) with ε = 0.001

S0 = 0.99000 S0 = 0.99900 S0 = 0.9999 S0 = 0.99999 S0 = 0.999999

T f
j m̂j λj,m̂j

σj,m̂j
Sj,m̂j

λj,m̂j
σj,m̂j

Sj,m̂j
λj,m̂j

σj,m̂j
Sj,m̂j

λj,m̂j
σj,m̂j

Sj,m̂j
λj,m̂j

σj,m̂j
Sj,m̂j

0 0.0024 0.0104 0.99 0.0024 0.0104 0.9990 0.0024 0.0104 0.9999 0.0024 0.0104 0.99999 0.0024 0.0104 0.999999
17.88 1 0.0024 0.0104 0.9470 0.0024 0.0104 0.9556 0.0024 0.0104 0.9564 0.0024 0.0104 0.9565 0.0024 0.0104 0.9565
28.92 1 0.0041 0.0139 0.9039 0.0041 0.0139 0.9122 0.0041 0.0139 0.9130 0.0041 0.0139 0.9131 0.0041 0.0139 0.9131
33.00 1 0.0117 0.0240 0.8609 0.0117 0.0240 0.8688 0.0117 0.0240 0.8695 0.0117 0.0240 0.8696 0.0117 0.0240 0.8696
41.52 1 0.0059 0.0174 0.8179 0.0059 0.0174 0.8253 0.0059 0.0174 0.8261 0.0059 0.0174 0.8262 0.0059 0.0174 0.8262
42.12 1 0.0877 0.0692 0.7749 0.0877 0.0692 0.7820 0.0877 0.0692 0.7827 0.0877 0.0692 0.7827 0.0877 0.0692 0.7827
45.60 1 0.0160 0.0304 0.7319 0.0160 0.0304 0.7386 0.0160 0.0304 0.7392 0.0160 0.0304 0.7393 0.0160 0.0304 0.7393
48.40 1 0.0210 0.0359 0.6889 0.0210 0.0359 0.6952 0.0210 0.0359 0.6958 0.0210 0.0359 0.6958 0.0210 0.0359 0.6958
51.84 1 0.0182 0.0344 0.6459 0.0182 0.0344 0.6517 0.0182 0.0344 0.6523 0.0182 0.0344 0.6524 0.0182 0.0344 0.6524
51.96 1 0.5556 0.1969 0.6030 0.5556 0.1969 0.6085 0.5556 0.1969 0.6090 0.5556 0.1969 0.6091 0.5556 0.1969 0.6091
54.12 1 0.0331 0.0498 0.5599 0.0331 0.0498 0.5650 0.0331 0.0498 0.5655 0.0331 0.0498 0.5656 0.0331 0.0498 0.5656
55.56 1 0.0534 0.0658 0.5169 0.0534 0.0658 0.5216 0.0534 0.0658 0.5221 0.0534 0.0658 0.5221 0.0534 0.0658 0.5221
67.80 1 0.0068 0.0245 0.4739 0.0068 0.0245 0.4782 0.0068 0.0245 0.4786 0.0068 0.0245 0.4786 0.0068 0.0245 0.4786
68.64 1 0.2165 0.2119 0.3878 0.2165 0.2119 0.3914 0.2165 0.2119 0.3917 0.2165 0.2119 0.3917 0.2165 0.2119 0.3917
68.88 1 0.4630 0.2358 0.3449 0.4630 0.2358 0.3480 0.4630 0.2358 0.3483 0.4630 0.2358 0.3483 0.4630 0.2358 0.3483
84.12 1 0.0082 0.0335 0.3018 0.0082 0.0335 0.3045 0.0082 0.0335 0.3048 0.0082 0.0335 0.3048 0.0082 0.0335 0.3048
93.12 1 0.0159 0.0501 0.2587 0.0159 0.0501 0.2610 0.0159 0.0501 0.2613 0.0159 0.0501 0.2613 0.0159 0.0501 0.2613
98.64 1 0.0302 0.0753 0.2156 0.0302 0.0753 0.2176 0.0302 0.0753 0.2177 0.0302 0.0753 0.2178 0.0302 0.0753 0.2178
105.12 1 0.0309 0.0845 0.1725 0.0309 0.0845 0.1741 0.0309 0.0845 0.1742 0.0309 0.0845 0.1742 0.0309 0.0845 0.1742
105.84 1 0.3472 0.3235 0.1294 0.3472 0.3235 0.1306 0.3472 0.3235 0.1307 0.3472 0.3235 0.1308 0.3472 0.3235 0.1308
127.92 1 0.0151 0.0808 0.0863 0.0151 0.0808 0.0871 0.0151 0.0808 0.0872 0.0151 0.0808 0.0872 0.0151 0.0808 0.0872
128.04 1 4.1667 1.7942 0.0434 4.1667 1.7942 0.0438 4.1667 1.7942 0.0438 4.1667 1.7942 0.0438 4.1667 1.7942 0.0438
173.40 1 0.0220 Inf Inf 0.0220 Inf Inf 0.0220 Inf Inf 0.0220 Inf Inf 0.0220 Inf Inf
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Table 28: Modified LLGMM Based Estimates using S0 = 0.99000, 0.99900, 0.99990, 0.99999, 0.999999 by by utilizing (6.6.6), (6.6.10), and (6.6.13) with ε = 0.001

S0 = 0.99000 S0 = 0.99900 S0 = 0.9999 S0 = 0.99999 S0 = 0.999999

T f
j m̂j λj,m̂j

σj,m̂j
Sj,m̂j

λj,m̂j
σj,m̂j

Sj,m̂j
λj,m̂j

σj,m̂j
Sj,m̂j

λj,m̂j
σj,m̂j

Sj,m̂j
λj,m̂j

σj,m̂j
Sj,m̂j

0 0.0238 0.0583 0.9900 0.0238 0.0583 0.9990 0.0238 0.0583 0.9999 0.0238 0.0583 0.99999 0.0238 0.0583 0.999999
6.00 1 0.0238 0.0583 0.8486 0.0238 0.0583 0.8564 0.0238 0.0583 0.8571 0.0238 0.0583 0.8572 0.0238 0.0583 0.8572
7.00 1 0.0588 0.0588 0.7988 0.0588 0.0588 0.8061 0.0588 0.0588 0.8068 0.0588 0.0588 0.8069 0.0588 0.0588 0.8069
10.00 1 0.0213 0.0566 0.7479 0.0213 0.0566 0.7547 0.0213 0.0566 0.7553 0.0213 0.0566 0.7554 0.0213 0.0566 0.7554
11.00 1 0.0769 0.0769 0.6904 0.0769 0.0769 0.6967 0.0769 0.0769 0.6973 0.0769 0.0769 0.6974 0.0769 0.0769 0.6974
16.00 1 0.0175 0.0532 0.6299 0.0175 0.0532 0.6356 0.0175 0.0532 0.6362 0.0175 0.0532 0.6363 0.0175 0.0532 0.6363
22.00 2 0.0187 0.0759 0.5593 0.0187 0.0759 0.5644 0.0187 0.0759 0.5649 0.0187 0.0759 0.5650 0.0187 0.0759 0.5650
23.00 6 0.0258 0.0842 0.5450 0.0258 0.0842 0.5499 0.0258 0.0842 0.5504 0.0258 0.0842 0.5505 0.0258 0.0842 0.5505

Table 29: Modified LLGMM Based Estimates using S0 = 0.99000, 0.99900, 0.99990, 0.99999, 0.999999 by by utilizing (6.6.8), (6.6.10), and (6.6.13) with ε = 0.001

S0 = 0.99000 S0 = 0.99900 S0 = 0.9999 S0 = 0.99999 S0 = 0.999999

T f
j m̂j λj,m̂j

σj,m̂j
Sj,m̂j

λj,m̂j
σj,m̂j

Sj,m̂j
λj,m̂j

σj,m̂j
Sj,m̂j

λj,m̂j
σj,m̂j

Sj,m̂j
λj,m̂j

σj,m̂j
Sj,m̂j

0 0.0238 0.0614 0.9900 0.0238 0.0614 0.9990 0.0238 0.0614 0.9999 0.0238 0.0614 0.99999 0.0238 0.0614 0.999999
6.00 1 0.0238 0.0614 0.8487 0.0238 0.0614 0.8564 0.0238 0.0614 0.8571 0.0238 0.0614 0.8572 0.0238 0.0614 0.8572
7.00 1 0.0588 0.0600 0.7988 0.0588 0.0600 0.8061 0.0588 0.0600 0.8068 0.0588 0.0600 0.8069 0.0588 0.0600 0.8069
10.00 1 0.0213 0.0587 0.7479 0.0213 0.0587 0.7547 0.0213 0.0587 0.7554 0.0213 0.0587 0.7554 0.0213 0.0587 0.7554
11.00 1 0.0769 0.0790 0.6904 0.0769 0.0790 0.6967 0.0769 0.0790 0.6973 0.0769 0.0790 0.6974 0.0769 0.0790 0.6974
16.00 1 0.0175 0.0551 0.6299 0.0175 0.0551 0.6356 0.0175 0.0551 0.6362 0.0175 0.0551 0.6363 0.0175 0.0551 0.6363
22.00 2 0.0187 0.0893 0.5593 0.0187 0.0893 0.5644 0.0187 0.0893 0.5649 0.0187 0.0893 0.5650 0.0187 0.0893 0.5650
23.00 6 0.0258 0.1548 0.5450 0.0258 0.1548 0.5500 0.0258 0.1548 0.5505 0.0258 0.1548 0.5505 0.0258 0.1548 0.5505



Remark 6.6.2 We remark that using the LLGMM-type estimation approach yields the almost close simu-

lation results as the estimation procedure outlined in Illustrations 6.5.1, 6.5.2, and 6.5.3 for both data sets

in Tables 15, 18, and 21.

In the following, we compare alternative innovative approach and modified LLGMM results with the well-

known existing methods, namely, Maximum Likelihood and Kaplan-Meier approach.

6.7 Statistical Comparative Analysis with Existing Methods

In this subsection, the presented simulation results (with optimal initial data choice S0 = 0.99999) is com-

pared with the existing methods, namely, Maximum Likelihood [25] (by fitting a lognormal distribution to

the data sets) and Kaplan-Meier [26] estimates. The simulation results are recored in Tables 30, 31, and 32.

Table 30: Comparison of survival function estimates for leukemia data set in Table 15

Failure Time:

Tj

Innovative Approach

Ŝ(Tj)

Modified LLGMM

Sj,m̂j

Maximum

Likelihood

Method:

ŜML(Tj)

Kaplan-Meier-

type

Estimate

ŜKM (Tj)

0 0.99999 0.99999 1 1
1 0.9049 0.9049 0.9783 0.9048
2 0.8098 0.8098 0.8950 0.8095
3 0.7622 0.7622 0.7894 0.7619
4 0.6670 0.6670 0.6865 0.6667
5 0.5719 0.5719 0.5943 0.5714
8 0.3814 0.3814 0.3891 0.3810
11 0.2861 0.2861 0.2629 0.2857
12 0.1909 0.1909 0.2325 0.1905
15 0.1432 0.1432 0.1641 0.1429
17 0.0955 0.0955 0.1321 0.0952
22 0.0478 0.0478 0.0805 0.0476
23 0.0001 0.0001 0.0734 0.0000
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Table 31: Comparison of survival function estimates for ball bearings data set in Table 18

Failure Time:

Tj

Innovative Approach

Ŝ(Tj)

Modified LLGMM

Sj,m̂j

Maximum

Likelihood

Method:

ŜML(Tj)

Kaplan-Meier-

type

Estimate

ŜKM (Tj)

0.00 0.99999 0.99999 1 1
17.88 0.9565 0.9565 0.9924 0.9565
28.92 0.9131 0.9131 0.9938 0.9130
33.00 0.8696 0.8696 0.8947 0.8696
41.52 0.8262 0.8262 0.7916 0.8261
42.12 0.7827 0.7827 0.7836 0.7826
45.60 0.7393 0.7393 0.7364 0.7391
48.40 0.6958 0.6958 0.6978 0.6975
51.84 0.6524 0.6524 0.6500 0.6522
51.96 0.6091 0.6091 0.6489 0.6087
54.12 0.5656 0.5656 0.6195 0.5652
55.56 0.5221 0.5221 0.6002 0.5217
67.80 0.4786 0.4786 0.4493 0.4783
68.64 0.3917 0.3917 0.4399 0.3913
68.88 0.3483 0.3483 0.4373 0.3478
84.12 0.3048 0.3048 0.2940 0.3043
93.12 0.2613 0.2613 0.2310 0.2609
98.64 0.2178 0.2178 0.1988 0.2174
105.12 0.1742 0.1742 0.1666 0.1739
105.84 0.1307 0.1307 0.1634 0.1304
127.92 0.0872 0.0872 0.0895 0.0870
128.04 0.0438 0.0438 0.0892 0.0435
173.40 0.0000 0.0000 0.0270 0.0000

Table 32: Comparison of survival function estimates for leukemia data set in Table 21

Failure Time:

Tj

Innovative Approach

Ŝ(Tj)

Modified LLGMM

Sj,m̂j

Maximum

Likelihood

Method:

ŜML(Tj)

Kaplan-Meier-

type

Estimate

ŜKM (Tj)

0 0.99999 0.99999 1 1
6 0.8572 0.8572 0.9228 0.8571
7 0.8069 0.8069 0.8978 0.8067
10 0.7554 0.7554 0.8184 0.7529
11 0.6974 0.6974 0.7920 0.6950
16 0.6363 0.6363 0.6684 0.6318
22 0.5650 0.5650 0.5456 0.5416
23 0.5505 0.5505 0.5278 0.4513
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6.8 Forecasting

In this section, we sketch an outline of a forecasting problem. An ε-sub-optimal simulated value Ssj,m̂j
at

time T fj is used to define a forecast Sfj,m̂j
for Sj at a time T fj .

Imitating the computational procedure outlined in Section 6.6, we find the estimate of the forecast Sfj,m̂j

at time Tj as follows:

Sfj,m̂j
= Ssj−1,m̂j−1

− λj−1,m̂j−1S
s
j−1,m̂j−1

∆Tj + σj−1,m̂j−1S
s
j−1,m̂j−1

∆Wj , (6.8.1)

where the estimates λj−1,m̂j−1 and σ2
j−1,m̂j−1

are determined by using (6.6.5), respectively. We note that

Sfj,m̂j
is the ε-sub estimate for Sj at time Tj .

To determine Sfj+1,m̂j+1
, we need λj,m̂j and σ2

j,m̂j
. The forecasted estimate Sfj,m̂j

is used as the estimate of

Sj at time T fj and also to estimate λj,m̂j
and σ2

j,m̂j
. Hence, we write λj,m̂j

≡ λSj−m̂j+1 ,Sj−m̂j+2 ,...,Sj−1,S
f
j,m̂j

,m̂j
.

Similarly, we write σ2
j,m̂j
≡ σ2

Sj−m̂j+1 ,Sj−m̂j+2 ,...,Sj−1,S
f
j,m̂j

,m̂j
. To find Sfj+1,m̂j

, we use the following estimates:

λj+1,m̂j+1 ≡ λSj−m̂j +2,Sj−m̂j +3,...Sj−1,S
f
j,m̂j

,Sf
j+1,m̂j+1

,m̂j+1

σ2
j+1,m̂j+1

≡ σ2
Sj−m̂j +2,Sj−m̂j +3,...Sj−1,S

f
j,m̂j

,Sf
j+1,m̂j+1

,m̂j+1
.

Continuing this process in this manner, we use the estimates

λj+n−1,m̂j+n−1 ≡ λSj−m̂j +n,Sj−m̂j +n+1,...Sj−1,S
f
j,m̂j

,Sf
j+1,m̂j+1

,...Sf
j+n−1,m̂j+1

m̂j+1
,

σ2
j+n−1,m̂j+n−1

≡ σ2
Sj−m̂j +n,Sj−m̂j +n+1,...Sj−1,S

f
j,m̂j

,Sf
j+1,m̂j+1

,...Sf
j+n−1,m̂j+1

m̂j+1
.

to estimate Sfj+n,m̂j+n
.

6.8.1 Prediction/Confidence Intervals

To be able to assess the future uncertainty, we now discuss the prediction/confidence interval. We define the

100(1−α)% confidence interval for the forecast of the state Sfj,m̂j
at time Tj as Sfj,m̂j

±z1−α/2σj−1,m̂j−1S
f
j−1,m̂j−1

.

The 95% confidence interval for the forecast at time T fj is given by

(
Sfj,m̂j

− 1.96σj−1,m̂j−1S
f
j−1,m̂j−1

, Sfj,m̂j
+ 1.96σj−1,m̂j−1S

f
j−1,m̂j−1

)
, (6.8.2)

where the lower end denotes the lower bound of the state estimate and the upper end denotes the upper

bound of the state estimate.
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Figure 18.: Simulated and forecasted survival function estimates for Table 15
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Figure 19.: Simulated and forecasted survival function estimates for Table 18
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Figure 20.: Simulated and forecasted survival function estimates for Table 21
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Chapter 7

Conclusions and Future work

In the area of survival/reliability analysis, most of the research work is centered around the probabilistic

analysis approach. In general, a closed-form probability distribution is not feasible. The presented dynamic

modeling is more appropriate for complex and more diversified time-to-event processes. This alternative

approach does not require knowledge of either a closed-form probability distribution or a class of distribu-

tions. It does not require restrictive conditions on hazard rate functions. The time domain of a survival

function need not be positively infinite. The influence of human mobility, rapid electronic communication

devices, frequent technological changes, the rapidly growing knowledge, tools and procedures, advancements

in biological, engineering, medical, military, physical and social sciences have generated a greater influence

for the expansion of time-to-event processes beyond engineering and medical sciences. Naturally, these ideas

motivated to initiate, formulate and develop an innovative interconnected dynamic modeling approach for

generalized version of time-to-event processes under randomly varying environments in biological, chemical,

engineering, epidemiological, medical, multiple-markets and social dynamic processes through discrete-time

intervention processes under deterministic perturbations. The presented innovative alternative modeling

approach enhances our motivation to develop parameter and state estimation procedures. Moreover, the

parameter and state estimation approach is dynamic. The dynamic nature is more natural rather than

the existing static and single-shot approach. Moreover, it is a nonparametric approach. The dynamic ap-

proach adapts with current changes and updates the statistic process. This plays a very significant role in

parameter and state estimation problems in a systematic and unifying way. Recently developed LLGMM

approach is extended to the problems in the time-to-event dynamic processes in a systematic and unified

way. On the other hand, the MLE is centered on the parameter and state estimates using the entire data.

In addition, the LLGMM stabilizes the parameter and state estimation procedure with a finite and small

size data set. On the contrary, the MLE, does not have this flexibility. Intervention processes provide a

measure of influence of new tools/procedures/approaches in continuous-time states of time-to-event dynamic

process. In particular, it generates a measure of the degree of sustainability, survivability, reliability of the

system. This further leads to sustainable/unsustainable, survivable/failure, reliable/unreliable binary state

invariant sets. Moreover, intervention processes provide the comparison between the past and currently used

tools/procedures/approaches/attitudes/etc. In fact, the full force of the role and scope of our innovative

modeling approach for time-to-event processes is currently under investigation.

The procedures developed in this work provides insights, tips, and tools for undertaking similar tasks

in context of stochastic framework. In fact, it allows to have a time-varying covariate state influence on
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the dynamic of a complex survival/reliability of systems. This is the basis for future work in modeling

time-to-event processes. Moreover, the parameter and state estimation approach is dynamic. The dynamic

nature rather than the existing algebraic approach plays a very significant role in state and parameter

estimation problems in a systematic and unifying way. In the future, we plan to introduce time dependent

covariates(external and internal) in the developed models and consider more complex time-to-event dynamic

studies. Furthermore, we also plan to extend the developed models and algorithms to include recurrent

events and competing risks events.
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Appendix A

Modified LLGMM Estimates Corresponding to Datasets in Tables 4 and 6
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Table 33: LLGMM Based Estimates using S0 = 0.985, 0.98900, 0.99000, 0.99900, 0.99990, 0.99999, 0.999999 using using procedure outlined in
Subsection 4.7.2.

S0 = 0.985 S0 = 0.98900 S0 = 0.99000 S0 = 0.99900 S0 = 0.9999 S0 = 0.99999 S0 = 0.999999

tfj−1i m̂i σj−1i, m̂i Sj−1i, m̂i σj−1i, m̂i Stj−1i, m̂i σj−1i, m̂i Sj−1i, m̂i σj−1i, m̂i Sj−1i, m̂i σj−1i, m̂i Sj−1i, m̂i σj−1i, m̂i Sj−1i, m̂i σj−1i, m̂i Sj−1i, m̂i

22.5 1 30.9600 0.9747 30.9600 0.9787 20.6400 0.9797 2.0640 0.9886 0.2064 0.9895 0.0206 0.9896 0.0021 0.9896
37.5 1 1.5998 0.9645 1.5998 0.9684 1.2865 0.9694 0.7224 0.9782 0.6660 0.9791 0.6603 0.9792 0.6598 0.9792
46.5 1 0.8013 0.9542 0.8013 0.9581 0.6909 0.9591 0.4921 0.9678 0.4722 0.9687 0.4702 0.9687 0.4700 0.9687
48.5 1 0.1831 0.9440 0.1831 0.9478 0.1637 0.9488 0.1289 0.9574 0.1254 0.9582 0.1250 0.9583 0.1250 0.9583
51.5 1 0.3189 0.9337 0.3189 0.9375 0.2916 0.9384 0.2426 0.9470 0.2377 0.9478 0.2372 0.9479 0.2371 0.9479
53.5 1 0.2343 0.9234 0.2343 0.9272 0.2176 0.9281 0.1874 0.9366 0.1844 0.9374 0.1841 0.9375 0.1841 0.9375
54.5 1 0.1288 0.9132 0.1288 0.9169 0.1209 0.9178 0.1067 0.9262 0.1053 0.9270 0.1052 0.9271 0.1051 0.9271
57.5 1 0.4254 0.9029 0.4254 0.9066 0.4026 0.9075 0.3618 0.9158 0.3577 0.9166 0.3573 0.9167 0.3572 0.9167
66.5 1 1.3372 0.8927 1.3372 0.8963 1.2741 0.8972 1.1605 0.9053 1.1491 0.9062 1.1480 0.9062 1.1478 0.9062
68.0 1 0.2107 0.8824 0.2107 0.8860 0.2018 0.8869 0.1858 0.8949 0.1842 0.8957 0.1840 0.8958 0.1840 0.8958
69.5 1 0.2231 0.8721 0.2231 0.8757 0.2146 0.8766 0.1993 0.8845 0.1978 0.8853 0.1976 0.8854 0.1976 0.8854
76.5 1 1.0947 0.8619 1.0947 0.8654 1.0568 0.8663 0.9885 0.8741 0.9817 0.8749 0.9810 0.8750 0.9810 0.8750
77.0 1 0.0758 0.8516 0.0758 0.8551 0.0734 0.8559 0.0691 0.8637 0.0687 0.8645 0.0686 0.8646 0.0686 0.8646
78.5 1 0.2399 0.8414 0.2399 0.8448 0.2329 0.8456 0.2204 0.8533 0.2191 0.8541 0.2190 0.8542 0.2190 0.8542
80.0 1 0.2486 0.8311 0.2486 0.8345 0.2419 0.8353 0.2298 0.8429 0.2286 0.8437 0.2285 0.8437 0.2285 0.8437
81.5 1 0.2565 0.8208 0.2565 0.8242 0.2501 0.8250 0.2386 0.8325 0.2374 0.8332 0.2373 0.8333 0.2373 0.8333
82.5 1 0.1759 0.8106 0.1759 0.8139 0.1718 0.8147 0.1644 0.8221 0.1637 0.8228 0.1636 0.8229 0.1636 0.8229
83.0 1 0.0907 0.8003 0.0907 0.8036 0.0887 0.8044 0.0852 0.8117 0.0848 0.8124 0.0848 0.8125 0.0848 0.8125
84.0 1 0.1877 0.7901 0.1877 0.7933 0.1838 0.7941 0.1770 0.8013 0.1763 0.8020 0.1762 0.8021 0.1762 0.8021
91.5 1 1.4434 0.7798 1.4434 0.7830 1.4158 0.7838 1.3662 0.7909 1.3612 0.7916 1.3607 0.7917 1.3607 0.7917
93.5 1 0.3658 0.7695 0.3658 0.7727 0.3592 0.7734 0.3474 0.7805 0.3462 0.7812 0.3461 0.7812 0.3461 0.7812
102.5 1 1.6638 0.7593 1.6638 0.7624 1.6356 0.7631 1.5849 0.7701 1.5798 0.7708 1.5793 0.7708 1.5792 0.7708
107.0 1 0.7821 0.7490 0.7821 0.7521 0.7696 0.7528 0.7470 0.7597 0.7448 0.7603 0.7445 0.7604 0.7445 0.7604
108.5 1 0.2569 0.7388 0.2569 0.7417 0.2530 0.7425 0.2460 0.7493 0.2453 0.7499 0.2452 0.7500 0.2452 0.7500
112.5 1 0.6935 0.7285 0.6935 0.7314 0.6835 0.7322 0.6656 0.7388 0.6638 0.7395 0.6636 0.7396 0.6636 0.7396
113.5 1 0.1714 0.7182 0.1714 0.7211 0.1690 0.7219 0.1648 0.7284 0.1644 0.7291 0.1644 0.7292 0.1644 0.7292
116.0 1 0.4344 0.7080 0.4344 0.7108 0.4288 0.7116 0.4187 0.7180 0.4177 0.7187 0.4176 0.7187 0.4176 0.7187
117.0 1 0.1737 0.6977 0.1737 0.7005 0.1716 0.7013 0.1677 0.7076 0.1673 0.7083 0.1673 0.7083 0.1673 0.7083
118.5 1 0.2635 0.6874 0.2635 0.6902 0.2604 0.6909 0.2549 0.6972 0.2543 0.6978 0.2543 0.6979 0.2543 0.6979
119.0 1 0.0884 0.6772 0.0884 0.6799 0.0874 0.6806 0.0856 0.6868 0.0854 0.6874 0.0854 0.6875 0.0854 0.6875
120.0 1 0.1790 0.6669 0.1790 0.6696 0.1771 0.6703 0.1737 0.6764 0.1734 0.6770 0.1733 0.6771 0.1733 0.6771
122.5 1 0.4510 0.6567 0.4510 0.6593 0.4465 0.6600 0.4382 0.6660 0.4374 0.6666 0.4373 0.6667 0.4373 0.6667
123.0 1 0.0897 0.6464 0.0897 0.6490 0.0888 0.6497 0.0872 0.6556 0.0871 0.6562 0.0871 0.6562 0.0871 0.6562
127.5 1 0.8150 0.6361 0.8150 0.6387 0.8074 0.6394 0.7938 0.6452 0.7925 0.6458 0.7923 0.6458 0.7923 0.6458
131.0 1 0.6193 0.6259 0.6193 0.6284 0.6138 0.6291 0.6039 0.6348 0.6029 0.6354 0.6028 0.6354 0.6028 0.6354
132.5 1 0.2613 0.6156 0.2613 0.6181 0.2591 0.6188 0.2551 0.6244 0.2547 0.6249 0.2547 0.6250 0.2547 0.6250
134.0 1 0.2611 0.6054 0.2611 0.6078 0.2590 0.6084 0.2551 0.6140 0.2548 0.6145 0.2547 0.6146 0.2547 0.6146
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Table 34: LLGMM Based Estimates using S0 = 0.985, 0.98900, 0.99000, 0.99900, 0.99990, 0.99999, 0.999999 using procedure outlined in Subsection
4.7.2

S0 = 0.985 S0 = 0.98900 S0 = 0.99000 S0 = 0.99900 S0 = 0.9999 S0 = 0.99999 S0 = 0.999999

tfj−1i m̂i σj−1i, m̂i Sj−1i, m̂i σj−1i, m̂i Sj−1i, m̂i σj−1i, m̂i Sj−1i, m̂i σj−1i, m̂i Sj−1i, m̂i σj−1i, m̂i Sj−1i, m̂i σj−1i, m̂i Sj−1i, m̂i σj−1i, m̂i Sj−1i, m̂i

S0 = 0.985 S0 = 0.98900 S0 = 0.99000 S0 = 0.99900 S0 = 0.9999 S0 = 0.99999 S0 = 0.999999

tfj−1i m̂i σj−1i, m̂i Sj−1i, m̂i σj−1i, m̂i Stj−1i, m̂i σj−1i, m̂i Sj−1i, m̂i σj−1i, m̂i Sj−1i, m̂i σj−1i, m̂i Sj−1i, m̂i σj−1i, m̂i Sj−1i, m̂i σj−1i, m̂i Sj−1i, m̂i

6.0 1 3.7500 0.9653 2.7500 0.9692 2.5000 0.9702 0.2500 0.9790 0.0250 0.9799 0.0025 0.9800 0.0003 0.9800
14.0 1 4.5341 0.9554 4.0219 0.9593 3.8939 0.9603 2.7414 0.9690 2.6261 0.9699 2.6146 0.9700 2.6135 0.9700
44.0 1 9.2600 0.9456 8.4535 0.9494 8.2519 0.9504 6.4373 0.9590 6.2559 0.9599 6.2377 0.9600 6.2359 0.9600
62.0 1 2.1364 0.9357 1.9856 0.9396 1.9479 0.9405 1.6086 0.9490 1.5747 0.9499 1.5713 0.9500 1.5709 0.9500
89.0 1 2.6581 0.9259 2.5009 0.9297 2.4616 0.9306 2.1079 0.9391 2.0725 0.9399 2.0689 0.9400 2.0686 0.9400
98.0 1 0.7044 0.9160 0.6686 0.9198 0.6597 0.9207 0.5793 0.9291 0.5712 0.9299 0.5704 0.9300 0.5703 0.9300
104.0 1 0.4780 0.9062 0.4568 0.9099 0.4515 0.9108 0.4039 0.9191 0.3991 0.9199 0.3986 0.9200 0.3986 0.9200
107.0 1 0.2489 0.8963 0.2392 0.9000 0.2367 0.9009 0.2147 0.9091 0.2126 0.9099 0.2123 0.9100 0.2123 0.9100
114.0 1 0.6171 0.8865 0.5954 0.8901 0.5900 0.8910 0.5412 0.8991 0.5363 0.8999 0.5358 0.9000 0.5358 0.9000
123.0 1 0.8064 0.8766 0.7809 0.8802 0.7745 0.8811 0.7169 0.8891 0.7112 0.8899 0.7106 0.8900 0.7105 0.8900
128.0 1 0.4463 0.8668 0.4334 0.8703 0.4302 0.8712 0.4012 0.8791 0.3983 0.8799 0.3980 0.8800 0.3980 0.8800
148.0 1 1.8315 0.8569 1.7831 0.8604 1.7710 0.8613 1.6621 0.8691 1.6512 0.8699 1.6501 0.8700 1.6500 0.8700
182.0 1 2.8591 0.8471 2.7895 0.8505 2.7721 0.8514 2.6156 0.8591 2.6000 0.8599 2.5984 0.8600 2.5983 0.8600
187.0 1 0.3612 0.8372 0.3531 0.8407 0.3511 0.8415 0.3328 0.8491 0.3310 0.8499 0.3308 0.8500 0.3308 0.8500
189.0 1 0.1480 0.8274 0.1449 0.8308 0.1441 0.8316 0.1371 0.8392 0.1364 0.8399 0.1364 0.8400 0.1364 0.8400
274.0 1 3.2602 0.8077 3.1968 0.8110 3.1809 0.8118 3.0381 0.8192 3.0238 0.8199 3.0224 0.8200 3.0222 0.8200
302.0 1 1.6114 0.7978 1.5839 0.8011 1.5770 0.8019 1.5152 0.8092 1.5090 0.8099 1.5084 0.8100 1.5083 0.8100
363.0 1 3.3074 0.7880 3.2544 0.7912 3.2411 0.7920 3.1218 0.7992 3.1099 0.7999 3.1087 0.8000 3.1086 0.8000
374.0 1 0.5139 0.7781 0.5062 0.7813 0.5042 0.7821 0.4868 0.7892 0.4850 0.7899 0.4849 0.7900 0.4849 0.7900
451.0 1 3.6083 0.7683 3.5569 0.7714 3.5441 0.7722 3.4284 0.7792 3.4169 0.7799 3.4157 0.7800 3.4156 0.7800
461.0 1 0.4007 0.7584 0.3953 0.7615 0.3940 0.7623 0.3818 0.7692 0.3806 0.7699 0.3805 0.7700 0.3805 0.7700
492.0 1 1.2507 0.7486 1.2348 0.7516 1.2308 0.7524 1.1949 0.7592 1.1913 0.7599 1.1910 0.7600 1.1909 0.7600
538.0 1 1.7864 0.7387 1.7648 0.7418 1.7594 0.7425 1.7108 0.7492 1.7059 0.7499 1.7054 0.7500 1.7054 0.7500
774.0 1 8.5950 0.7289 8.4963 0.7319 8.4717 0.7326 8.2496 0.7393 8.2274 0.7399 8.2252 0.7400 8.2249 0.7400
841.0 1 1.7366 0.7190 1.7176 0.7220 1.7129 0.7227 1.6702 0.7293 1.6660 0.7299 1.6655 0.7300 1.6655 0.7300
936.0 1 2.3168 0.7092 2.2927 0.7121 2.2867 0.7128 2.2325 0.7193 2.2271 0.7199 2.2265 0.7200 2.2265 0.7200
1002.0 1 1.4764 0.6993 1.4617 0.7022 1.4581 0.7029 1.4252 0.7093 1.4219 0.7099 1.4216 0.7100 1.4215 0.7100
1011.0 1 0.1917 0.6895 0.1899 0.6923 0.1895 0.6930 0.1854 0.6993 0.1850 0.6999 0.1849 0.7000 0.1849 0.7000
1048.0 1 0.7954 0.6796 0.7883 0.6824 0.7865 0.6831 0.7703 0.6893 0.7687 0.6899 0.7686 0.6900 0.7685 0.6900
1054.0 1 0.1266 0.6698 0.1255 0.6725 0.1252 0.6732 0.1227 0.6793 0.1225 0.6799 0.1225 0.6800 0.1225 0.6800
1172.0 1 2.5138 0.6599 2.4931 0.6626 2.4879 0.6633 2.4413 0.6693 2.4366 0.6699 2.4362 0.6700 2.4361 0.6700
1205.0 1 0.6415 0.6501 0.6365 0.6527 0.6352 0.6534 0.6238 0.6593 0.6227 0.6599 0.6226 0.6600 0.6226 0.6600
1278.0 1 1.3990 0.6402 1.3885 0.6429 1.3858 0.6435 1.3621 0.6493 1.3597 0.6499 1.3595 0.6500 1.3594 0.6500
1401.0 1 2.2505 0.6304 2.2343 0.6330 2.2302 0.6336 2.1936 0.6394 2.1900 0.6399 2.1896 0.6400 2.1896 0.6400

continued on next page
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Table 34 – continued from previous page

S0 = 0.985 S0 = 0.98900 S0 = 0.99000 S0 = 0.99900 S0 = 0.9999 S0 = 0.99999 S0 = 0.999999

tfj−1i m̂i σj−1i, m̂i Sj−1i, m̂i σj−1i, m̂i Stj−1i, m̂i σj−1i, m̂i Sj−1i, m̂i σj−1i, m̂i Sj−1i, m̂i σj−1i, m̂i Sj−1i, m̂i σj−1i, m̂i Sj−1i, m̂i σj−1i, m̂i Sj−1i, m̂i

1497.0 1 1.6209 0.6205 1.6096 0.6231 1.6068 0.6237 1.5816 0.6294 1.5790 0.6299 1.5788 0.6300 1.5788 0.6300
1557.0 1 0.9581 0.6107 0.9518 0.6132 0.9502 0.6138 0.9359 0.6194 0.9344 0.6199 0.9343 0.6200 0.9343 0.6200
1577.0 1 0.3100 0.6008 0.3081 0.6033 0.3076 0.6039 0.3031 0.6094 0.3027 0.6099 0.3026 0.6100 0.3026 0.6100
1624.0 1 0.7257 0.5910 0.7212 0.5934 0.7201 0.5940 0.7101 0.5994 0.7091 0.5999 0.7090 0.6000 0.7090 0.6000
1669.0 1 0.6800 0.5811 0.6760 0.5835 0.6750 0.5841 0.6660 0.5894 0.6651 0.5899 0.6650 0.5900 0.6650 0.5900
1806.0 1 2.0285 0.5713 2.0171 0.5736 2.0142 0.5742 1.9885 0.5794 1.9859 0.5799 1.9857 0.5800 1.9856 0.5800
1874.0 6 0.9324 0.5614 0.9269 0.5637 0.9255 0.5643 0.9131 0.5694 0.9119 0.5699 0.9118 0.5699 0.9118 0.5699
1907.0 1 0.3682 0.5496 0.3663 0.5519 0.3658 0.5524 0.3615 0.5574 0.3611 0.5579 0.3610 0.5576 0.3610 0.5580
2012.0 19 1.1562 0.5378 1.1472 0.5400 1.1449 0.5405 1.1247 0.5454 1.1226 0.5458 0.1342 0.5580 1.1224 0.5459
2031.0 1 0.1398 0.5211 0.1392 0.5231 0.1390 0.5237 0.1376 0.5283 0.1374 0.5288 1.1224 0.5459 0.1374 0.5288
2065.0 1 0.2409 0.5037 0.2398 0.5057 0.2396 0.5062 0.2372 0.5107 0.2370 0.5112 0.2370 0.5112 0.2370 0.5112
2201.0 13 0.9086 0.4856 0.9031 0.4875 0.9017 0.4880 0.8894 0.4922 0.8881 0.4927 0.8880 0.4927 0.8880 0.4927
2421.0 1 0.6684 0.4482 0.6660 0.4500 0.6653 0.4504 0.6598 0.4544 0.6592 0.4548 0.6592 0.4548 0.6592 0.4548
2624.0 8 0.5512 0.4106 0.5488 0.4122 0.5481 0.4126 0.5426 0.4161 0.5420 0.3961 0.5420 0.4164 0.5420 0.4164
2710.0 2 0.2751 0.3818 0.2742 0.3832 0.2740 0.3836 0.2721 0.3868 0.2719 0.3871 0.2719 0.3871 0.2719 0.3872
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