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Abstract

The theory of thermodynamic phase transitions has played a central role both in theoretical physics

and in dynamical systems for several decades. One of its fundamental results is the classification

of various physical models into equivalence classes with respect to the scaling behavior of solu-

tions near the critical manifold. From that point of view, systems characterized by the same set

of critical exponents are equivalent, regardless of how different the original physical models might

be. For non equilibrium phase transitions, the current theoretical framework is much less devel-

oped. In particular, an equivalent classification criterion is not available, thus requiring a specific

analysis of each model individually. In this thesis, we propose a potential classification method

for time-dependent dynamical systems, namely comparing the possible deformations of the original

problem, and identifying dynamical systems which share the same deformation space. The specific

model on which this procedure is developed is the Kuramoto model for interacting, disordered

oscillators. Studied in the mean-field limit by a variety of methods, its associated synchronization

phase transition appears as an appropriate model for cooperative phenomena ranging from coupled

Josephson junctions to self-ordering patterns in biological and social systems. We investigate the

geometric deformation of the dynamical system into the space of univalent maps of the unit disk,

related to the Douady-Earle extension and the Denjoy-Wolff theory, and separately the algebraic

deformation into the space of nonlinear sigma models for unitary operators. The results indicate

that the Kuramoto model is representative for a large class of non equilibrium synchronization

models, with a rich phase-space diagram.

iv



Chapter 1

The Kuramoto Model

1.1 Introduction

Synchronization of a large population of mutually coupled oscillators is an ubiquitous phenomenon

in the universe. It is observed in many complex biological, chemical, physical, and sociological

systems with different origins of periodical activity and different mechanisms of coupling. This

phenomenon brings up many mathematical and physical challenges to our understanding of col-

lective phenomena, as they emerge in complex systems, either at equilibrium or dynamical. The

Kuramoto model [1] is successful in describing how coherency emerges in complex systems. The

model is based on several assumptions, including, that the oscillators are coupled, that they are

identical or closely identical, and that the interactions depend sinusoidally on the phase difference

between each pair of the oscillators. Note that, depending on the field, the term oscillator may

refer to different systems, such as a neuron in the neural system, a cell in yeast cells, a Cooper pair

in superconducting Josephson junctions, etc [2]. The model can describe many synchronization

phenomena. Also, it has proved to be useful in designing artificially networked systems capable

of self-organization in the absence of any centralized control mechanism, such as wireless sensor

networks, and smart power grids [3–6].

1.2 Kuramoto’s Model

The Kuramoto model [1] consists of N coupled oscillators, θi, i = 1, 2, ..., N , with natural frequen-

cies ωi ∈ R and whose dynamics is given by the system of coupled, ordinary differential equations

θ̇i = ωi + K

N

N∑
j=1

sin(θj − θi), where i = 1, 2, ..., N. (1.1)

Kuramoto assumed that the frequencies, ωi, are distributed according to some probability distri-

bution density g(ω). He further assumed that g(ω) is unimodal and symmetric about its mean
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frequency Ω, i.e. g(Ω − ω) = g(Ω + ω) where the domain of definition of g, is symmetric with

respect to Ω [7]. Due to the rotational symmetry of the model, we can set the mean frequency

Ω = 0 by redefining θi → θi + Ωt ∀i, this is equivalent to a rotating frame with frequency Ω which

leaves g(ω) = g(−ω).

1.2.1 Mean-Field Approach

Eq(1.1) can be rewritten in a more convenient way by introducing the order parameter r(t) defined

as

r(t) exp iψ(t) = 1
N

N∑
j=1

exp (iθj). (1.2)

where ψ(t) is the phase of the complex order parameter. Multiplying both sides by exp (−iθi) we

get

r(t) exp i(ψ(t)− θi) = 1
N

N∑
j=1

exp (i(θj − θi)), (1.3)

equating the imaginary parts, one gets

r(t) sin (ψ(t)− θi) = 1
N

N∑
j=1

sin ((θj − θi)), (1.4)

therefore we can rewrite Eq(1.1) as

θ̇i = ωi +Kr(t) sin(ψ(t)− θi), (1.5)

where Kr is the effective coupling, and r by itself is proportional to the coherency of the oscillators.

We can assume without loss of generality that the average phase, ψ, is equal to zero, therefore

Eq(1.5) can be written as

θ̇i = ωi −Kr(t) sin(θi), (1.6)

where the mean field signature is superficial, and the collective effect of the coupled oscillators is

represented by two parameters r and ψ. Each oscillator appears to be uncoupled from the other

oscillators. Notice that r is a measure of the coherency of the system. The interplay between

the coupling and coherency creates a self-driven process, meaning, as the oscillators become more

coherent, r grows and the effective Kr(t) coupling increases which leads to more oscillators to join

the synchronized oscillators. If the coherence is increased by a new oscillator, the process will
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continue, or it becomes self-limiting [8].

1.2.2 Kuramoto’s Analysis

We can write the order parameter equation in Eq(1.2) as

r exp (iψ) =
∫ π

−π
exp(iθ)

∑N

j=1 δ(θ−θj)
N dθ, (1.7)

one way of thinking about the Dirac delta function is that it is is a Gaussian random variable

centered at θj , with infinitely small standard deviation. Then, in the limit N → ∞, the order

parameter amplitude r(t) and phase ψ(t), defined by Eq(1.2), can be written as

r exp (iψ) =
∫ π

−π

∫ ∞
−∞

eiθρ(θ, ω, t)g(ω)dθdω. (1.8)

This equation explicitly shows that the order parameter r is a measure of the oscillator synchroniza-

tion (phase coherence), and the interaction between oscillators of different frequencies occurs solely

through the order parameter. Note that, when K → 0, Eq(1.5) yields θi = ωt+ θi(0) which means

the oscillators rotate at angular frequency equal to their own natural frequencies. On other hand,

if θ = ωt then, in Eq(1.8) the integral
∫∞
−∞ eiθρ(θ, ω, t)dω → 0 as t → ∞ by Riemann-Lebesgue

lemma (the extension of this result to the case K > 0 still questionable), therefore when r → 0

the oscillators become less and less synchronized [9]. In the case of strong coupling, K → ∞, the

oscillators are synchronized to their average phase and Eq(1.8) implies r → 1. Now the question is

when the oscillators start to synchronize? In other words, at what value of the coupling parame-

ter, K, the system started to experience phase transition from the completely random to partially

synchronized oscillators? In Eq(1.1) the oscillators density, ρ(θ, ω, t) can be found by noting that

the oscillators rotate with angular velocity θ̇i. Therefore, the one-oscillator density must satisfy the

continuity equation
∂ρ

∂t
+ ∂

∂θ

(
[ω +Kr sin(ψ − θ)]ρ

)
= 0, (1.9)

subject to normalization condition

∫ π

−π
ρ(θ, ω, t)dθ = 1, ∀ ω, t. (1.10)
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In the long term, the system converges to a steady state system. Therefore, the first term in Eq(1.9)

vanishes, and we get

ρ(θ, ω) = C

|ω −Kr sin(θ)| , (1.11)

which is the density of incoherent oscillators, conventionally called drift group. Eq(1.10) determines

the normalization constant

C = 1
2π

√
ω2 − (Kr)2. (1.12)

Also, it follows from Eq(1.6) that the dynamics of oscillators with |ω| ≤ Kr approaches ωi =

Kr sin(θi) as t→∞, where |θi| ≤ π
2 . This group of oscillators is ”locked” or synchronized, and has

distribution

ρ(θ, ω) = δ[Kr sin(θ)− ω)]H(cos(θ)) where |ω| < Kr, (1.13)

where H(x) is Heaviside step function. By using Eq(1.8,1.11& 1.13) we can calculate the order

parameter r. Using Dirac’s bra-ket notation, we can rewrite Eq(1.8) as

< exp iθ >= r exp iψ =< exp iθ >lock + < exp iθ >drift, (1.14)

the drift group term

< exp iθ >drift=
∫ π

−π

∫
|ω|>Kr

ρ(θ, ω)g(ω)dωdθ = 0

vanishes, since g(ω) = g(−ω). From Eq(1.11), we have ρ(θ, ω) = ρ(θ+ π,−ω). In the lock term, or

synchronization term, the imaginary part disappears; since ρ(θ, ω) = ρ(−θ,−ω) and g(ω) = g(−ω),

< exp(iθ) >lock=
∫ π

2

−π2

∫ ∞
−∞

cos(θ)δ[ω −Kr sin(θ)]g(ω)dθdω,

r =
∫ π

2

−π2
cos(θ)g(Kr sin(θ))Kr cos(θ)dθ, (1.15)

this equation has the trivial solution at r = 0 valid for any value of K, corresponding to incoherent

phase with

ρ(θ, ω) = 1
2π ∀ θ and ω, (1.16)

which has a second branch of solutions, when r 6= 0, corresponding to partially synchronized phase

Eq(1.13), therefore
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1 =
∫ π

2

−π2
K cos2(θ)g(Kr sin(θ))dθ. (1.17)

This solution bifurcates continuously from r = 0 at the value K = Kc obtained by setting r → 0+

in Eq(1.17), thus

1 = Kg(0)
∫ π

2

−π2
cos2(θ)dθ,

and

Kc = 2
πg(0) . (1.18)

This formula and the arguments leading to it were suggested by Kuramoto [1]. The system when

K < Kc is in incoherent state in which the oscillators exhibit independent oscillations, while when

K > Kc is in coherent state in which part of oscillators population is synchronized. By expanding

the integral in Eq(1.17) with respect to r,

1 = K

∫ π
2

−π2
cos2(θ)

(
g(0) + g

′(0)Kr sin θ
1! + g

′′(0)(Kr sin θ)2

2! + ...

)
dθ, (1.19)

after taking the integral,

1 ' K
( 1
Kc

+ g
′′(0)(Kcr)2π

16

)
, (1.20)

we can rearrange the terms,

Kc −K
Kc

= µ ' g
′′(0)K3

c r
2π

16 . (1.21)

For the Lorentzian distribution (smooth, unimodal, and even) densities, g(ω) = γ2

π(ω2 + γ2) , g′(0) =

0 and g
′′(0) = − 16

πK3
c

< 0. For all K > Kc = 2γ we get

r ' √µ =

√
K −Kc

K
. (1.22)

Thus, the system bifurcation is supper-critical for K > Kc if g′′(0) < 0 and sub-critical for K < Kc

if g′′(0) > 0.
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1.3 Stability of Solutions and Open Problems

Notice that Kuramoto’s calculations for partially synchronized phase does not indicate whether

this phase is stable, either globally or locally. The linear stability theory of incoherence has been

investigated by Strogatz [8].

1.3.1 Synchronization as N Approaches Infinity

Strogatz [10–12], presents the first rigorous stability analysis of the incoherent solution for the

infinite oscillators system. When the order parameter r = 0 the system is incoherent, linearly

stable, and non-unique (there is an infinite number of K ′s that satisfy Eq(1.15)). The state is

neutrally stable if K < Kc and has equiprobability Eq(1.16). When K = Kc a new stationary

solution (the partially synchronized state) bifurcates from Eq(1.16). If the coupling exceeds the

critical value, K > Kc, the incoherent state becomes unstable and a synchronization state bifurcates

from it [13].

1.3.2 Synchronization at Finite N

The finite size effect is an issue with a kinetic equation that describes populations of infinitely many

elements, which exists in Kuramoto’s model. The Lyapunov function argument was used to point

out that a population of finitely many Kuramoto oscillators reach a stationary state as t → ∞

[14]. In this work, we present a rigorous analysis for large finite-N of Eq(1.1), and then prove

the convergence as N → ∞. However, [7, 15, 16] have investigated the problem using computer

simulation and physical arguments. It appears that the fluctuations are indeed O(N−
1
2 ) except

very close to Kc. To the best of our knowledge, no progress has been made in this problem at the

time of writing this paper.

1.4 Noisy Kuramoto Models

Kuramoto’s analysis of the infinite-N limit is successful in many ways, but it has peculiarities

that have been discussed earlier. The Kuramoto model does not have phase transition such as

phase transition occurs in thermodynamics or statistical physics in which fluctuations play a major

rule. However, for noisy dynamics, a phase transition has its usual meaning as in thermodynamics

[17, 18]. The effect of noise on the collective properties of phase oscillators can be modeled by
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adding stochastic fluctuations (white noise to each oscillator) to Eq(1.6) [19],

dθi = (ωi +Kr sin(θi))dt+ dWi(t) (1.23)

where dWi = ξi(t)dt is the increment of Wiener process and < ξi(t) >= 0, < ξi(t)ξi(t′) >=

2Dδ(t − t′), where D is the noise strength. Such noise can be interpreted as thermal fluctuations

or rapid fluctuations of interstice, closely spaced, frequencies of the oscillators [13]. This model

was suggested first by [19] and later used by Strogatz ([10]) to explain anomalous properties of

Kuramoto model. The probability density of the process Eq(1.23) is a solution of one-dimensional

Fokker-Planck equation:

∂ρ

∂t
= − ∂

∂θ

(
(ωi +Kr sin(θi))ρ

)
+D

∂2ρ

∂θ2 . (1.24)

Note that Eq(1.8, 1.24) govern the evolution of the density ρ(θ, t, ω). The stationary solution of

Eq(1.24) satisfying the periodic boundary condition ρ(θ, ω) = ρ(θ + 2π, ω) is given by [19]

ρ(θ, ω) = exp
(−Kr + ωθ +Kr cos θ

D

)
ρ(0;ω)(

1 + (e−2πω/D − 1)
∫ θ

0 e(−ωθ′−Kr cos θ′)/Ddθ′∫ 2π
0 e(−ωθ′−Kr cos θ′)/Ddθ′

)
,

(1.25)

where ρ(0, ω) is determined by the normalization condition Eq(1.10). Substituting of Eq(1.25) into

Eq(1.8) we obtain

r =
∫ ∞
−∞

g(ω)dω
∫ π

−π
ρ(θ, ω) exp iθdθ, (1.26)

to find the critical coupling Kc and a small amplitude solution near Kc. Since g(ω) is symmetric

about ω = 0, the imaginary part on the right-hand side of Eq(1.26) is always zero. The real part

on the right-hand side may be expanded in powers of Kr/D as [19]

r = Kr

2D

(
1
2

∫ ∞
−∞

g(ω)
1 + ω2/D2 −

K2r2

2D2

∫ ∞
−∞

dω
1− 2ω2/D2

(1 + ω2/D2)2(4 + ω2/D2)g(ω)+

O(r4)
)
,

(1.27)
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according to the implicit function theorem, r = 0, the critical strength coupling as a function of D

is determined from Eq(1.27), and we obtain [19]

Kc = 2
(∫ ∞
−∞

g(ω) dω

ω2 + 1

)−1
. (1.28)

As K increases, a nontrivial solution branches off the trivial zero solution at K = Kc.

1.4.1 Incoherent Solution

We would like to analyze the evolution of the probability density ρ(θ, t, ω) in the neighborhood of

the incoherent solution, namely

ρ0 = 1
2π ∀ θ, t, and ω, (1.29)

This solution corresponds to a state in which, for each ω, all the oscillators are uniformly distributed

around the circle. Note that, this solution is a solution to Fokker-Planck Eq(1.29).

1.4.2 Linear Stability Analysis of the Incoherent Stationary State

The stability analysis of the incoherent state Eq(1.29) is done by investigating the linearized Fokker-

Planck equation obtained from Eq(1.24) as

ρ(θ, ω, t) = 1
2π + δη(θ, ω, t); |δ| � 1, (1.30)

the normalization condition Eq(1.10) suggests that η(θ, ω, t) satisfies

∫ π

−π
η(θ, ω, t)dθ = 0; ∀ ω, t, (1.31)

and Fokker-Planck Eq(1.24) implies

δ
∂η

∂t
= δD

∂2η

∂θ2 −
∂

∂θ

(( 1
2π + δη

)
vi

)
, (1.32)

where vi = ωi +Kr sin θi. Thus, the order parameter becomes

r exp iφ = δ

∫ π

−π

∫ ∞
−∞

eiθη(θ, ω, t)g(ω)dθdω = δr′ exp iφ (1.33)
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where

r′ exp iφ =
∫ π

−π

∫ ∞
−∞

eiθη(θ, ω, t)g(ω)dθdω, (1.34)

substitute Eqs(1.5,1.30, and 1.34 ) into Eq(1.9), we obtain its linearized form

∂η

∂t
= ∂2η

∂θ2 − ω
∂η

∂θ
+ Kr′ cos(φ− θ)

2π (1.35)

to analyze Eq(1.35) it is convenient to use Fourier series. Since the function η(θ, ω, t) is real and

2π-periodic in θ, we look for a solution of the form

η(θ, ω, t) = c(ω, t) exp(iθ) + c∗(ω, t) exp(−iθ) + η⊥(θ, ω, t), (1.36)

where η⊥(θ, ω, t) represents the higher Fourier harmonics. By combining Eq(1.34) and Eq(1.36),

one gets

r′ exp i(φ− θ) = exp(−iθ)
∫ π

−π

∫ ∞
−∞

eixη(x, ω, t)g(ω)dωdx = 2πe−iθ
∫ ∞
−∞

c∗(ω, t)g(ω)dω, (1.37)

similarly

r′ exp i(φ+ θ) = 2πeiθ
∫ ∞
−∞

c(ω, t)g(ω)dω. (1.38)

Combining Eq(1.37) and Eq(1.38) we get

r′ cos(φ− θ) = π

(
e−iθ

∫ ∞
−∞

c∗(ω, t)g(ω)dω + eiθ
∫ ∞
−∞

c(ω, t)g(ω)dω
)
, (1.39)

the amplitude equation for c(ω, t) is obtained by substituting Eq(1.36), Eq(1.37) into Eq(1.35), and

comparing the coefficients of term eiθ, one gets

∂c(ω, t)
∂t

= −(D + iω)c(ω, t) + K

2

∫ ∞
−∞

c(v, t)g(v)dv. (1.40)

Note that, c∗ is the complex conjugate of Eq(1.40), and r(t) is determined by c via Eq(1.38).

1.4.3 Discrete Spectrum

Eq(1.40) has both discrete and continuous spectra. To find the discrete spectrum, we can seek a

type of solution of the form

c(t, ω) = b(ω)eλt, (1.41)
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where λ is independent of ω, then Eq(1.41) becomes

λb(ω) = −(D + iω)b(ω) + K

2

∫ ∞
−∞

b(v)g(v)dv. (1.42)

Eq(1.42) can be solved in a self-consistent way. Let A = K

2
∫∞
−∞ b(v)g(v)dv, solving Eq(1.42) for

b(ω) we get

b(ω) = A

λ+D + iω
, (1.43)

substituting this back into the expression of A, we obtain

1 = K

2

∫ ∞
−∞

g(v)
λ+D + iv

dv. (1.44)

Note that Eq(1.44) relates λ to the coupling strength K. Then Eq(1.44) can be transformed into

1 = K

2

∫ ∞
−∞

λ+D

(λ+D)2 + v2 g(v)dv, (1.45)

which shows how the eigenvalue λ depends on the noise strength D, the coupling strength K,

and the frequency density g(ω). If g(ω) is even, we further assume that g(ω) is non-increasing on

[0,∞) in the sense that g(ω) ≤ g(v) ∀ω ≥ v which holds for Gaussian, Lorentzian, and uniform

distributions. Therefore Eq(1.44) has at most one solution for λ > −D, and if such a solution

exists, it must be real [20]. Obviously, Kc correspond to λ = 0. When λ > 0 the fundamental mode

is unstable, and the coherence grows like r(t) ≈ roeλt[10]. By using Eq(1.27) the critical condition

r = 0, implies

Kc = 2
(∫ ∞
−∞

D

D2 + v2 g(v)dv
)−1

, (1.46)

Eq(1.46) is the same as Eq(1.28), thus Kc corresponding to λ. For the noise-free case, the incoherent

solution goes unstable for K > Kc = 2/
(
πg(0)

)
as suggested by Kuramoto. To prove this, let us

consider D = 0 in Eq(1.46) and take the limit λ → 0+. The kernel function λ/(λ2 + v2) becomes

more and more sharply peaked about v = 0, simply we can write πδ(0) = limλ→0+ λ/(λ2 + v2).

Thus Eq(1.46) becomes Kc = 2/
(
πg(0)

)
so we recover the results in Eq(1.18).
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1.5 Continuous Spectrum

To find the continuous spectra we apply the operator L to the Eq(1.41) as follows

Lb = −(D + iω)b+ K
2

∫ ∞
−∞

b(v)g(v)dv, (1.47)

the continuous spectra of L is defined as the set of complex numbers λ such that the operator

L− λI is not surjective, i.e. det |L − λI| = 0. Now, adding −λb at each side of the equality we get

−(D + λ+ iω)b+ K
2

∫ ∞
−∞

b(v)g(v)dv = f(ω), (1.48)

where f(ω) is an arbitrary function that satisfies (L − λI) = f(ω). If λ+D + iω = 0 for ω in the

support of g(ω), then the equation is not solvable in general [10]. Hence, the continuous spectra

contains the set

{−D − iω : ω ∈ support(g(ω))}, (1.49)

the last set is all of the continuous spectra just assuming that λ is not in the support of g(ω). Then

Eq(1.48) is solvable

b(ω) = A− f(ω)
λ+D + iω

, (1.50)

where A is the integral in Eq(1.48) isolating b(ω) and replacing again in the A equation we get

A

(
K

2

∫ ∞
−∞

g(ω)
λ+D + iω

dω

)
= K

2

∫ ∞
−∞

g(ω)f(ω)
λ+D + iω

dω. (1.51)

By assumption, λ is not in the discrete spectrum, and A 6= 0 (we do not consider the trivial

solution). Thus, Eq(1.51) can be solved for A. Hence, the set considered before is the continuous

spectrum. We notice that for D = 0, noise-free case, the spectrum lies in the imaginary axis, the

fundamental mode for K > Kc is unstable and for K > Kc is neutrally stable. Continuous and

discrete spectrum for the linear operator Eq(1.47), for the noisy case D > 0, can be summarized as

follows: when K > Kc the fundamental mode is unstable since λ > 0, and the continuous spectrum

lies in the left-plane. When K = Kc, we are at the critical point, so λ = 0. When K∗ < K < Kc
1,

the fundamental mode is stable since λ < 0. When K∗ ≤ K, the discrete value is absorbed by the

continuous spectrum.

1K∗ is the value of K when λ = −D
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1.6 Non-Uniform Coupling Constant

Daido has considered the general mean-field model [21]

θ̇i = ωi +
N∑
i=1

Kij sin(θj − θi +Aij) + ξi(t), i = 1, ..., N, (1.52)

where N is the size of the system, Aij ∈ [−π π] is a random phase shift, disorder factor, acting

like potential vector differences between sites which is assumed to produce frustration. ω′is have

g(ω)−distribution and ξ is Gaussian noise. Kij = Kji are independent random variables with

normal distribution, N(0,K2/N) where K is control parameter, denoted by P (Kij) and is given

by

P (Kij) =
(2πK2

N

)− 1
2 exp(−NK2

ij

2K2 ). (1.53)

The interest of this model lies in the fact that the coupling term in Eq(1.53) vanishes when θi−θj 6=

0, i.e. the system is in an incoherent state which is called frustration. The model when Aij = 0 in

Eq(1.53) has been subject to a recent work [21, 22]. The model equation is

θ̇i = ωi +
N∑
i=1

Kij sin(θj − θi) + ξi(t), i = 1, ..., N, (1.54)

where Kij are given by Eq(1.53). Kirkpatrick & Sherrington [23] have studied the model, Eq(1.54),

when ωi = 0 to mimic the behavior of frustrated magnets. Most studies were done without noise

and for Gaussian frequency distribution g(ω). In two different studies, Daido [21] and Stiller [24]

have conducted numerical analysis but, unfortunately, with contradicting results.

1.7 Numerical Simulations

In part for pedagogical reasons we have conducted a numerical investigation for Kuramoto model.

The language used is C++ 1. A sample of 1500 oscillators is implemented in this numerical

simulation. The oscillators frequencies are randomized using a function that generates normally

distributed random numbers from a built-in uniform random generator, centered at zero with a

user-defined standard deviation. The oscillators phases are initialized with uniform phases over

a unit circle. A numerical integration of equation Eq(1.5) has been performed by implementing

Euler’s method. The order parameter versus coupling constant are recorded and plotted in Fig(1),
1Please see Appendix
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which shows a clear signature of phase transition, below K = 3 no significant synchronization is

noticed, and the predicted critical coupling is Kc = 4.
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Figure 1.: The bifurcation diagram of Kuramoto model with 1500 oscillators
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Chapter 2

Stochastic Dynamics

2.1 Brownian Motion

1 A probabilistic model is often used when the problem of interest lacks sufficient information

to determine how the system behaves, or the system is so complex that an exact description of

it becomes impossible. Many important real-world systems are subject to random events, which

could be referred to as noise or fluctuations caused by the interaction between the system and its

environment. Such systems are best understood in the context of Stochastic Dynamics. In the

real world there is no noise-free system. Deterministic dynamics works very well if the noise scale

is negligible compared to the scale of the system. Yet the interactions that are eliminated from

large-scale (macroscopic) models make themselves felt in other ways: The most famous example of

observable fluctuations in a physical system is Brownian motion where a continuous random mean-

dering of a pollen grain suspended in a fluid. In 1827, R. Brown discovered under the microscope

the continuous and irregular motion of small pollen particles suspended in water. He also remarked

that small mineral particles behave exactly in the same way (such an observation is important

since it excludes the biological nature of the motion). In a general way, a particle in suspension

in a fluid performs a Brownian motion when its mass is much larger than the mass of one of the

fluid’s molecules. The idea according to which the motion of a Brownian particle is a result of the

motion of the lighter molecules of the surrounding fluid became popular during the second half of

the nineteenth century. This explanation was introduced by A. Einstein in 1905, which marked the

beginning of the theory of stochastic processes.

2.2 Basic Concepts on Stochastic Processes

A stochastic process is a term that refers to any collection of random variables {X(t, ω)}1 depending

on time t, defined on the same probability space (Ω,F ,P). For fixed ω ∈ Ω, X(t, .) is a sample
1The discussion of this chapter follows the chapters (1-4)[25], (1-5)[26],(1-3)[27], and (1-6)[28].
1X(t, ω) and Xt(ω) will be used in the text interchangeably
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path of the process. At a fixed time t, properties of the random variable X(., ω) are described by

the probability distribution of X(., ω).

Definition 2.2.1 [Stochastic Process] Suppose that for each t ∈ R+ there is a random variable

Xt : Ω → R defined on (Ω,F ,P). The function Xt : T × Ω → R defined by X(t, ω) = Xt(ω) is

called a stochastic process with indexing set t and written as X = {Xt, t ∈ T}.

2.2.1 Gaussian Process

A stochastic process determines a probability distribution of the form

P(Xt1(ω) ≤ x1, Xt2(ω) ≤ x2, ..., Xtn(ω) ≤ xn) (2.1)

where n ∈ N, t1 < t2, ..., < tn, and x1, x2, ..., xn ∈ R. If the probability distribution is Gaussian

(multivariate distributions), then the process is called a Gaussian process with mean given by

m(t) = E(Xt) and covariance function γ(t, s) = cov{Xt, Xs}.

Definition 2.2.2 The stochastic process is Gaussian {Xt}t≥0 if it is Gaussian for any choice of

{ti}.

2.3 Brownian Motion

Brownian motion is the most fundamental stochastic process in continuous space and time. Much

of the stochastic dynamics Mathematics was developed for studying Brownian motion. It is merely

a simple mathematical illustration and formalism that provides a direct and concrete connection

to physical reality. However, in its own right is not physical 2 but it can be used to model physical

systems by employing assumptions that suited for each phenomenon. The limitations of the various

assumptions, employed in the modeling of physical phenomena, are made obvious due to simplicity

of the Brownian motion. The first mathematical construction for Brownian motion was proposed by

N. Wiener in 1923. He used a random Fourier series to construct Brownian motion. Our treatment

follows later ideas of Lévy and Kolmogorov. We start by giving a formal definition of the stochastic

process.

2Since the energy of such system diverges as the time goes to infinity.
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Definition 2.3.1 [Wiener Process] Let W = (Wt)t≥0 be a stochastic process in RN . We say that

W is a Wiener process in RN if

• W (0) = 0 a.s.

• W has independent increment for any finite time sequence 0 ≤ t0 < t1 < t2 < ... < tn, the

increments Wt1−Wt0 ,Wt2−Wt1 ,Wt3−Wt2 , ...,Wtn−Wtn−1 are independent random variables.

• Wt −Ws ∼ N(0, (t− s)), for all s < t.

• The sample path Wt(ω) are a.s. continuous for t ≥ 0

Theorem 2.3.1 (Wiener Theorem) There exists a Brownian motion on some probability space.

We will show that such a process exists by explicitly constructing one.

2.4 Mathematical Construction of Brownian Motion

2.4.1 The L2−space Theory

We need to show that Brownian motion âĂŸexistsâĂŹ in the sense that we have a Gaussian process

W (t)1 with the right covariance function. Let {φi} be a complete orthonormal basis of L2[0, 1] and

X1, X2, ... be a sequence of independent identically distributed random functions defined on the

probability space (Ω,F ,P), with Xi ∼ N(0, 1). For n = 1, 2, ... define

Wn
t =

n∑
i=1

Xi

∫ t

0
φi(s)ds (2.2)

Theorem 2.4.1 For each t,Wn
t is a Cauchy sequence in L2(Ω,F ,P) whose limit, Wt, is a normal

random variable with mean zero and variance t. For any two times t, s,E[WtWs] = t∧s,where t∧s ≡

min(t, s).

Proof. Define

It(s) =


1 , x < t

0 , s ≥ t

Then ∫ t

0
φi(s)ds =< It, φi >, It =

∞∑
i

< It, φi > φiand ||It||2 =
∞∑
1
< It, φi >

2 . (2.3)

1W (t) and Wt are used interchangeably.
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since φi is a complete orthonormal basis. Thus for n > m

E(Wn
t −Wm

t )2 = E
( n∑
i=m+1

Xi

∫ t

0
φi(s)ds

)2 =
n∑

i=m+1
< It, φi >

2→ 0 as m,n→∞

Thus Wn
t is a Cauchy sequence in L2(Ω,F ,P). From Eq(2.3) we obtain

Var(W (t)) = lim
n→∞

Var(Wn
t ) = t.

We have

E[WtWs] =
∞∑
1
< It, φi >< Is, φi >=< It, Is >= t ∧ s.

�

2.5 Properties of Brownian Motion

The following properties of Brownian motion will be used a lot

• Continuous-time Brownian motion is a martingale.

• Any sample path of a Brownian motion is nowhere differentiable.

• Law of asymptotic sub-linear limit, limt→∞
W (t)
t

= 0 almost surely.

• Law of iterated logarithms lim supt→∞
W (t)√
2t ln ln t

= 1.a.s. lim inft→∞
W (t)√
2t ln ln t

= −1 almost

surely.

• Local Hölder continuity for any 0 < α < 1
2 , supn≤t,s≤n+1

|W (t)−W (s)|
|t− s|α

<∞, n = 0, 1, 2, ...

• N-dimensional Brownian Motion W (t) ∼ N(0, tIN ), the probability density function the density

of the Gaussian random vector W(t)−W(s) is

P (x, t) = 1
(2πt))N/2

exp(−x
2
1 + x2

2 + ...+ x2
N

2t ). (2.4)

• A Brownian motion is almost surely not a path-wise monotone on any time interval.

Let us step back and look at some technical points. We have defined Brownian motion as a stochastic

process W (t) : t ≥ 0 which is merely a collection of uncountably many random variables ω 7−→
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W (t, ω) defined on a probability space (ΩÂŋ;F ;P). At the same time, a stochastic process can also

be interpreted as a random function, normally called a sample path defined by t 7−→W (t, ω). The

sample path properties of a stochastic process are the properties of these random functions.

Definition 2.5.1 If W (t)t≥0 is a Wiener process, fixing ω ∈ Ω, we get a function of time Xt(ω) =

X(t, ω), called a sample path of the process.

2.5.1 Wt is Gaussian

If the process is started at x, then Wt ∼ N(x, t). This can be written as

Px(W (t) ∈ (a, b)) =
∫ b

a

1√
2πt

e−
(y−x)2

2t dy,

consequently, Brownian motion is a Gaussian process where cov(Wt−Ws) = t∧s for s, t ≥ 0. Now

we need to show that Wt is normal. Note that Wn
t is a finite sum of normal random variables and

is therefore normal, with variance σ2 =
∑n

1 < It, φi >
2. Hence the characteristic function of Wn

t

is χn(u) = E(exp(iuWn
t )) = exp(−σ2u2/2), which converges as n → ∞ to χ(u) ≡ exp(âĹŠtu2/2).

Now Wn
t →Wt in L2 implies that there is a sub-sequence Wnk

t such that Wnk
t →Wt almost surely

as k →∞. It follows from the bounded convergence theorem that E(exp(iuWnk
t ))→ E(exp(iuWt))

and hence that E(exp(iuWt)) = χ(u). Thus Wt ∼ N(0, t).

2.5.2 Wt is Continuous

Our next step to construct the Brownian motion is to define a special orthogonal normal basis. We

will make use of Haar wavelets to construct Wiener process. The idea is to construct a standard

Brownian motion on [0, 1], so that for each 0 ≤ t <∞, we can get W (t) by setting

W (t) = W
(n+1)
t−n +

n∑
k=1

W (k)(1) for t ∈ [n, n+ 1).

We define the Haar functions as

H0(x) = 1,

H1(x) =


1, 0 ≤ x < 1

2
−1, 1

2 < x ≤ 1,
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if 2n ≤ k < 2n+1, where n = 1, 2, ..., then, we get

Hk(t) =


2n/2, k−2n

2n ≤ t < k−22+1/2
2n

−2n/2, k−2n+1/2
2n < t ≤ k−2n+1/2

2n

0, elsewhere,

(2.5)

then from this H(t), we define a sequence of functions

ψj,k(t) = H(2jt− k) for 0 ≤ j, 0 ≤ k < 2j .

The sequence ψj,k is called Haar wavelet and from the wavelet we define the Haar function


H0(t) = 1

Hn(t) = 2
j
2ψj,k(t), n = 2j + k where j ≥ 0 and 0 ≤ k < 2j .

The set {Hn} forms a complete set in L2, and we are going to use this fact to construct the Brownian

motion.

Theorem 2.5.1 The Haar functions are a complete orthonormal basis in L2[0, 1].

First, we prove that the set is orthonormal and then we prove that it is complete.

Proof. Let [tj , tj∗] be the interval on which Hj(x) is nonzero. For j < i the interval [ti, ti∗] is

either disjoint from [ti, ti∗] which implies Hj(x)Hi(x) = 0 or contained in it, which is equal to

constant Hj(x), thus ∫ 1

0
Hi(x)Hj(x)dx = 0

when i = j we get ∫ 1

0
Hi(x)Hj(x)dx = 2n( 1

2n+1 + 1
2n+1 ) = 1.

�

Thus, the Haar function forms an orthonormal system of functions. Now we have to show that

they are complete, i.e. that if f ∈ L2[0, 1] we have < f,Hk >= 0 for all k then f = 0 almost

everywhere. Suppose f satisfies these conditions,

Proof. If n = 0, we have
∫ 1
0 fdx = 0. Let n = 1,

∫ 1
0 fHk(x)dx = 0. Then

∫ 1/2
0 fdx =

∫ 1
1/2 fdx

and both are equal to zero, since
∫ 1

0 fdx =
∫ 1/2
0 fdx +

∫ 1
1/2 fdx = 0. Continuing in this way, we
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deduce
∫ k+1

2n+1
k

2n+1
fdx = 0 for all 0 ≤ k < 2n+1. Thus

∫ r
s fdx = 0 for all dyadic rationals 0 ≤ s ≤ r ≤ 1.

Since for any real number r there is a sequence rn of dyadic rational numbers rn converging to r,∫ r
s fdx = 0 for all real numbers r, s. This completes the proof. �

We define another sequence of functions, {Ψj,k(t)} by

Ψj,k(t) =
∫ t

0
ψj,k(s)ds

similar to the way we constructed {ψj,k(t)}, this sequence can also be represented as the wavelet

by defining a tent wavelet and constructing another function from the tent wavelet. Let us denote

the tent function Ψ(t) defined as

Ψ(t) =


2t 0 ≤ t < 1

2 ,

2(1− t) 1
2 ≤ t ≤ 1, 0 elsewhere

and from the tent wavelet function we define another sequence of functions

Ψj,k(t) = Ψ(2jt− k) for 0 ≤ j, 0 ≤ k < 2j

Now, let us define {∆n(t)} as ∆2j+k(t) = Ψj,k(t) and {λn} as


λ0 = 1

λn = 2−j/2
2 where n ≥ 1 and n = 2j + k with 0 ≤ k < 2.

Then we can define,

Definition 2.5.2 [Schauder function] For k = 0, 1, 2, ..., sn(t) = λn∆n =
∫ t
0 Hn(s)ds.

The Schauder functions are ”little tents” of height max0≤t≤1 |sk(t)| = 2−(n+2)/2, lying above

the interval [k−2n
2n , k−2n

2n , k−2n+1
2n ], as shown in Figure (2). Now, we have all necessary background

material to construct a standard Brownian motion for t ∈ [0, 1]. The idea is to show that Wn
t →Wt

uniformly almost surely when we take the orthonormal basis to be the Haar functions.

Lemma 2.5.1 Suppose that, for n = 1, 2, ..., fn : [0, 1]→ R is a continuous function, and that fn(t)

converges uniformly to a function f i.e. given ε > 0 there is a number N such that n ≥ N implies

|fn(t)− f(t)| < ε for any t ∈ [0, 1]. Then f is continuous function.
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Figure 2.: Schrauder Function

Proof. For any t, s ∈ [0, 1] we can write |f(t)−f(s)| ≤ |f(t)−fn(t)|+ |fn(t)−fn(s)|+ |fn(s)−f(s)|.

Given ε > 0 we can find n such that the first and third terms on the right are each less that

ε/3 (whatever t, s). Now fn is continuous, so for fixed t we can choose δ so that the second term

is less than ε/3 for all s such that |t− s| < δ. Consequently, f is continuous at t. �

We define

W (t) =
∞∑
n=0

λnZnsn(t)

for t ∈ [0, 1], where the coefficients {Zn}∞n=0 are independent, normally distributed, N(0, 1), random

variables defined on some probability space. We will prove the lemma by showing that W (t) satisfies

the required properties of a standard Brownian motion. First, we have to check whether this series

converges. To do that, we first prove the following lemma,

Lemma 2.5.2 Let {Zn : 0 ≤ n <∞} be a sequence of independent Gaussian random variables with

mean 0 and variance 1, then there is a random variable C which is finite with probability one and

|Zn| ≤ C
√

logn for all n ≥ 2.

Proof. For all x > 0 and n ≥ 2, we have

P (|Zn| ≥ x) = 1√
2π

∫ ∞
x

exp(−u
2

2 )du ≤
√

2
π

∫ ∞
x

u exp(−u
2

2 )du = exp(−x
2

2 )
√

2
π

Thus, for any α > 1, we have

P (|Zn| ≥
√

2α logn) ≤ exp(−α logn)
√

2
π

= n−α
√

2
π
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Note that for α > 1, we have
∞∑
n=1

n−α <∞

Using Borel-Cantelli lemma, we get

P (|Zn| ≥
√

2α logn i.o.) = 0.

Therefore, the random variable defined by

sup
2≤n<∞

|Zn|
logn = C

is finite with probability one. �

Now we are ready to prove that W (t) converges uniformly on [0, 1] with probability one. Notice

that for n ∈ [2j , 2j+1] the function sn(t) has disjoint support and logn < j+1. From Lemma(2.5.2)

|Zn| ≤ C
√

logn where C is a finite random variable and n ≥ 2, therefore, for any J ≥ 1, if we let

M ≥ 2J , we obtain

∞∑
n=M

λn|Zn|sn(t) ≤ C
∞∑

n=M
λn
√

lognsn(t) ≤ C
∞∑
j=J

2j−1∑
k=0

2−j/2

2
√
j + 1s2j+k(t) ≤

C
∞∑
j=J

2−j/2

2
√
j + 1,

and note that
∑∞
j=1

2−j/2
2
√
j + 1 <∞. Therefore, we have

lim
J→∞

C
∞∑
j=J

2−j/2

2
√
j + 1 = 0.

Since λnsn(t) is a bounded continuous function on [0, 1], W (t) converges uniformly on [0, 1] with

probability one, and since sn(t) is a continuous function then W (t) is also continuous with prob-

ability one. We have proven that W (t) is continuous and also we have proven that the Brownian

motion does exist by constructing it. Now, we need to prove that W (t) has independent increments.

We begin by proving the following Lemma,

Lemma 2.5.3
∑∞
n=0 λ

2
nsn(s)sn(t) = t ∧ s.
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Proof. Let s ∈ [0, 1],

φs(τ) =


1 0 ≤ τ ≤ s

0 s < τ ≤ 1.

Then if s ≤ t, the completeness and the orthonormality of Haar function, Theorem (2.5.1), implies

s =
1∫

0

φtφsdτ =
∞∑
k=0

akbk,

and, if t ≤ s

t =
1∫

0

φtφsdτ =
∞∑
k=0

akbk,

Then, we have
∞∑
n=0

λ2
nsn(s)sn(t) = t ∧ s,

where

ak =
1∫

0

φtHkdτ =
t∫

0

Hkdτ = sk(t), bk =
1∫

0

φsHkdτ = sk(s)

�

Next will show that W (t) has independent increments by proving that W (t) satisfies

cov(W (t),W (s)) = t ∧ s for all 0 ≤ s, t ≤ T.

Lemma 2.5.4 If a process {W (t), 0 ≤ t ≤ T} is Gaussian and has E(W (t)) = 0 for all 0 ≤ t ≤ T

and if cov(W (t),W (s)) = s ∧ t for all 0 ≤ s, t ≤ T, then {W (t)} has independent increments, and

if this process has continuous paths and W (0) = 0, then it is a standard Brownian motion on [0, T ].

Proof.

E(W (t)W (s)) = E
( ∞∑
n=0

λnZnsn(t)
∞∑
n=0

λmZmsm(t)
)

=
∞∑
n=0

λ2
nsn(t)sn(s) = t ∧ s,

We make use of Lemma (2.5.3) and Theorem (2.5.1) for the second part of above equation.

It is sufficient to show that the characteristic function of the multivariate (Xt1 , Xt2 , Xt3 , ..., Xtn)

matches the characteristic function of a multivariate Gaussian with mean zero and covariance
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matrix, Σ = min(ti, tj)

E
(

exp(i
n∑
j=1

θjW (tj))
)

= E
(

exp(i
n∑
j=1

θj

∞∑
k=0

λkZksk(tj))
)

=
∞∏
k=0

E
[
exp(iλkZk

n∑
j=1

θjsk(tj))
]

=
∞∏
k=0

exp(−1
2λ

2
k(

n∑
j=1

θjsk(tj))2)

= exp(−1
2

∞∑
k=0

λ2
k(

n∑
j=1

θjsk(tj))2) = exp(−1
2

∞∑
k=0

λ2
k

n∑
i=1

n∑
j=1

θjθisk(ti)sk(tj))

Using Lemma (2.5.3) we get

E
(

exp(i
n∑
j=1

θjW (tj))
)

= exp
(
− 1

2

n∑
j=1

n∑
k=1

θiθj min(tj , tk)
)

and the last expression is the characteristic function of a multivariate function of a multivariate

Gaussian with mean zero and covariance matrix, Σ = (min(ti, tj)), and, therefore, by uniqueness

of characteristic functions, W (t) is indeed a standard Brownian motion. �

2.6 Properties of Brownian motion

2.6.1 Invariance Properties

Lemma 2.6.1 (Scaling Lemma) If Wt is a Brownian motion and c > 0 then Xt = 1
cW ( 1

c2 t), for t ≥

0, is a Brownian motion.

Proof. Xt is a continuous function of a Brownian motion; obviously, it has continuous paths.

E(Xt) = 1
cE(W (c2t)) = 0 since W is a Brownian motion. Let s < t, then

E(XsXt) = E(1
c
W (c2s)1

c
W (c2t)) = 1

c2E(W (c2s)W (c2t)) = 1
c2 c

2t ∧ s = t,

N∑
k=1

λkXtk =
N∑
k=1

λk
c
W (c2tk)

which is a sum of Gaussian random variables, hence it is a Gaussian. �
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Lemma 2.6.2 (Time Inversion) If Wt is a standard Brownian motion then the process

Xt =


tW (1

t ) t 6= 0

0 t = 0

is also a standard Brownian motion.

Proof. For any finite 0 ≤ t1 < t2, ... < tn, the marginal random variable W (t1),W (t2), ...,W (tn) is

a Gaussian multivariate random variable with

W(ti) = 0 and E(W (ti)W (tj)) = cov(W (ti)W (tj)) = ti ∧ tj .

We can check X(0) = 0, X(t)−X(s) is still a normal random variable with mean zero and variance

E|X(t)−X(t+h)|2 = E|X(t)|2+E|X(t+h)|2−2E|X(t)X(t+h)| = t2(1
t )+(t+h)2 1

t+h−2t(t+h) 1
t+h =

2t + h − 2t = h for any t ≥ 0 and h > 0. Moreover, the independent increments condition is also

satisfied by X(t) and the sample paths are continuous on (0,∞) almost surely. Finally we need to

show that lim
t↓0

X(t) = 0 almost surely. This follows from the following asymptotic limit property

that lim
t→∞

W (t)
t = 0 almost surely. �

Lemma 2.6.3 (Translation Invariance Lemma) For any fixed t0 ≥ 0, the process

W̃ (t) = W (t+ t0)−W (t0)

is also a Brownian motion.

Proof. W̃ (t+ s)− W̃ (s) = W (t+ s+ t0)−W (t0)−W (s+ t0) +W (t0) = W (t+ s+ t0)−W (s+ t0)

which is by definition normally distributed with mean 0 and variance t. W̃ (tj+1) − W̃ (tj) =

W (tj+1 + t0) −W (tj + t0) are independent for all j = 0, 1, ..., by the property of independence

of disjoint increment of W (t). W̃ (0) = W (t0) −W (t0) = 0, as the composition and difference of

continuous functions, W̃ is continuous. The proof is completed. �

2.6.2 Asymptotic Limit Properties

Theorem 2.6.1 (Law of iterated logarithm) For a Brownian motion W (t) satisfies

lim
t→∞

sup W (t)√
2t log log t

= 1
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almost surely.

Before proving the theorem, we state an elementary lemma

Lemma 2.6.4 Let X ∼ N(0, 1) be standard normally distributed. Then, for any x > 0,

1√
2π

1
x+ 1

x

e−
x2
2 ≤ P[X ≥ x] ≤ 1

x
e−

x2
2 (2.6)

Proof. Let φ(t) = 1
√

2πe
x2
2

be the density of the standard normal distribution. Partial integration

yields the second inequality in Lemma (2.6.4),

P[X ≥ x] =
∫ ∞
x

1
t
(tφ(t))dt = −1

t
φ(t)|∞x −

∫ ∞
x

1
t2
φ(t)dt ≤ 1

x
φ(x).

Similarly,

P[X ≥ x] ≥ 1
x
φ(x)− 1

x2

∫ ∞
x

φ(t)dt = 1
x
φ(x)− 1

x2P[X ≥ x].

This implies the first inequality in Lemma 2.6.4. �

Lemma 2.6.5 (Reflection Principle) For m ≥ 0 we have that P(sup
s≤t

W (s) > m) = 2P(W (t) ≥ m).

Proof. Let {sups≤tW (s) ≥ m} be the event that the Brownian motion exceeds m before time t.

The sets {W (t) > m}, {W (t) = m}, {W (t) < m} from a partition so

P({sup
s≤t

W (s) ≥ m}) =

P({sup
s≤t

W (s)} ≥ m} ∩ {W (t) > m}) + P({sup
s≤t

W (s)} ≥ m} ∩ {W (t) = m})+

P({sup
s≤t

W (s) ≥ m} ∩ {W (t) < m})

But P({sup
s≤t

W (s)} ≥ m ∩ {W (t) = m}) = 0 and P({W (t) > m}|{sup
s≤t

W (s)} ≥ m) = P({W (t) <

m}|{sup
s≤t

W (s)} ≥ m) since there are the same number of paths ending above m as there are below

m, this gives us P({sup
s≤t

W (s)} ≥ m∩ {W (t) > m}) = P({sup
s≤t

W (s) ≥ m} ∩ {W (t) < m}) so indeed

we have that

P({sup
s≤t

W (s) ≥ m}) = 2P(W (t) ≥ m).

�
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Proof. [Law of the iterated logarithm]

Let ψ(t) =
√

2t log(log(t))), by symmetry of Wt it suffices to show just the first limit lim
t→∞

sup Wt
ψ(t) =

1. We will show that lim
t→∞

sup Wt
ψ ≤ 1 and then lim

t→∞
Wt
ψ(t) ≥ 1.

Step 1: lim
t→∞

sup Wt
ψ(t) ≤ 1.

This equivalent to say that for ε > 0 we have W (t)
ψ(t) ≤ 1 + ε for sufficiently large t. By using Lemma

(2.6.3) we have

P(W (t)) > (1 + ε)ψ(t)) =
∫ ∞

(1+ε)ψ(t)

e−
x2
2

√
2π
dx

≤ e−(1+ε)2 log(log(t))

(1 + ε)
√

4π log(log(t))

Let α > 1, and define tn = αnfor n ∈ N.

P(W (αn) > (1 + ε)ψ(αn) ≤ e−(1+ε) log(log(αn))

(1 + ε)
√

4π log(log(αn))
= e−(1+ε) log(n log(α))

(1 + ε)
√

4π log(log(nα))

≤ C(α, ε)n−(1+ε)2
,

where C is some constant depending on α, ε,
∞∑
n=1

C(α, ε)n−(1+ε) < ∞, by Borel-Cantelli we have

that P(W (αn) > (1+ ε)ψ(αn)i.o.) = 0, hence the Brownian motion will almost surely reach a last n

such that at αn it exceeds the bound. We need to show that the process will not exceed the bound

between αn, αn+1 for sufficiently large n.

P( sup
s≤αn

W (s) > (1 + ε)ψ(αn)) = 2P(W (αn) > (1 + ε)ψ(αn)) ≤ 2C(α, ε)n−(1+ε)2

So by Borel-Cantelli there are almost surely only finitely many intervals [αn, αn+1), for which the

Brownian exceeds the bound. We therefore have for t ∈ [αn, αn+1) :

W (t)
ψ(t) ≤ (1 + ε)ψ(αn+1)

ψ(αn) = (1 + ε)
√
αn+1 log((n+ 1) log(α))

αn log(n log(α)) = (1 + ε)
√
α

√
log((n+ 1) log(α))

log(n log(α))

and lim
n→∞

√
log((n+ 1) log(α))

log(n log(α)) = 1, we can choose ε arbitrarily small and α arbitrarily close to 1

hence indeed we have that W (t)
ψ(t) ≤ 1 almost surely.

Step 2: We need to show that lim
t→∞

W (t)
ψ(t) ≥ 1, similar to what we have done in step 1, the

inequality is equivalent to saying that for ε > 0 we have W (t)
ψ(t) ≥ 1− ε for sufficiently large t. Again
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let tn = αn, α > 1 then

P(W (αn)(1− ε) ≥ C(α, ε)n−(1−ε)2
.

Let An = {W (αn) −W (αn−1) ≥ ψ(αn − αn−1)}, which are independent by construction, also for

sufficiently large n

P(An) = P(Z ≥ αn − αn−1
√
αn − αn−1

) ≥ e− log(log(αn−αn−1))

2 log(log(αn − αn−1)) >
1

n log(n)

and, therefore,
∞∑
n=1

P(An) diverges, so for infinitely many n

W (αn) ≥W (αn−1) + ψ(αn − αn−1)

and from the upper bound (step 1) W (αn−1) ≤ 2ψ(αn−1) and symmetry of the standard Brownian

motion, we get W (αn−1) ≥ −2ψ(αn−1), therefore we can rewrite the above inequality as

W (αn) ≥W (αn−1) + ψ(αn − αn−1) ≥ −2ψ(αn−1) + ψ(αn − αn−1).

Thus, almost surely, for infinitely many n

W (αn)
ψ(αn) ≥

−2ψ(αn−1) + ψ(αn − αn−1)
ψ(αn) ≥ − 2√

α
+ αn − αn−1

αn
= 1− 2√

α
− 1
α

as ψ(t)√
t

is increasing in t for sufficiently large t, but ψ(t)
t is decreasing, and, therefore, we have

lim
t→∞

W (t)
ψ(t) ≥ 1− 2√

α
− 1
α

and since our choice of α > 1 was arbitrary, we get the almost sure lower bound lim sup
t→∞

W (t)
ψ(t) ≥ 1,

and combining it with the upper bound, we know that

lim sup
t→∞

W (t)
ψ(t) = 1.

�
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2.6.3 Nowhere Differentiability

Almost every sample path W (t), 0 ≤ t ≤ T is not differentiable at any point and this can be shown

by proving the following theorem,

Theorem 2.6.2 For every t0,

lim sup
t→t0

|W (t)−W (t0)
t− t0

| =∞ almost surely

which implies that for any t0, almost every sample path W (t) is not differentiable at this point.

Proof. Without loss of generality, we assume t0 = 0. If one considers the event

A(h, ω) =
{

sup
0<s≤h

|W (s)
s
| > D

}
,

where D is constant, then for any sequence {hn} decreasing to 0, we have

A(hn, ω) ⊃ A(hn+1, ω)

and

A(hn, ω) ⊃
{
|W (hn)

hn
| > D

}
.

So,

P(A(hn)) ≥ P
(
|W (hn)√

hn
| > D

√
hn
)

= P(|W (1)|) > D
√
hn)→ 1 as n→∞

Hence,

P
(
∩∞n=1 A(hn)

)
= lim

n→∞
P(A(hn)) = 1

It follows that

sup
0<s≤hn

|W (s)
s
| ≥ D almost surely for all n and D > 0

Hence

lim sup
t→t0

|W (t)−W (t0)
t− t0

| =∞ almost surely

�

It is worth to mention that the nowhere differentiability implies that the Brownian motion is not

monotone in any interval, no matter how small the interval is.
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2.7 Stochastic Calculus

2.7.1 The Itô Integral

Suppose that g ∈ L2[a, b](Ω) = L2([a, b],L2(Ω,F ,P)), which is a Hilbert space with the L2−norm,

||g||L2 =
( b∫
a

E|g(t, ω)|2dt
)1/2

Note that
b∫
a
g(s)dWs, g(s, ω), and the integrator Wt are stochastic processes. In order to define

T∫
0
g(t, ω)dW (t), we approximate g(t, ω) by simple processes.

Definition 2.7.1 [Simple Stochastic Processes] A simple stochastic process is defined by

g(t, ω) =
n∑
k=1

ξk−1(ω)1[tk−1,tk]

where ξk is Ftk measurable and E|ξk|2 <∞.

The stochastic integral of the simple stochastic process is given by

I(gn) =
b∫
a

g(t, ω)dWt =
n∑
k=1

ξk−1(ω)
(
Wtk −Wtk−1)

)
(2.7)

Lemma 2.7.1 The integral (2.7) has the following properties

E(
∫ b

a
g(t, ω)dW (t)) = 0

∫ b

a
g(t, ω)dW (t) is Fb −measurable random variable

E|
∫ b

a
g(t, ω)dW (t)|2 = ||g||2L2 =

∫ b

a
E|g(t, ω)|2dt.

The last property is often called Itô isometric identity.

30



Proof. The first property:

By using the tower property of conditional expectation, we get

E
(
ξk−1(W (tk)−W (tk−1)

)
= E

(
E
(
ξk−1(W (tk)−W (tk−1)|Ftk−1

))
and implementing the product property of conditional expectation

E
(
ξk−1(W (tk)−W (tk−1)

)
= E

(
ξk−1E

(
(W (tk)−W (tk−1)|Ftk−1

))

using the independent increment property of the Brownian motion

E
(
ξk−1(W (tk)−W (tk−1)

)
= E

(
ξk−1E

(
(W (tk)−W (tk−1)

))
= E(ξk−1)− 0.

The second property:

I(g) =
b∫
a

g(t, ω)dW (t) =
n∑
k=1

ξk−1(ω)
(
W (tk −W (tk−1)

)

for k < n, ξkW (tk) is Ftn = Ft measurable. Thus I(g) is Ft measurable.

The third property:

E|
b∫
a

g(t, ω)dW (t)|2 =
n∑
k=1

n∑
j=1

E
(
ξk−1ξj−1(W (tk)−W (tk−1))(W (tj)−W (tj−1))

)

for any k < j, by the tower and product properties of the conventional expectation, and by the

mean-zero property of the Brownian motion as treated before, E
(
ξk−1ξj−1(W (tk)−W (tk−1)(W (tj)−

W (tj−1)
)

= 0

n∑
k=1

E
(
ξk−1ξj−1(W (tk)−W (tk−1))2) =

n∑
k=1

E(ξk−1)(tk − tk−1) =
∫ b

a
E|g(t, ω)|2dt

�

We denote by S2
T the subset of all step functions in L2((0, T ),L2(Ω,F ,P)) = L2

T , which is a Hilbert

space with the L2−norm

||g||2,T = ||g||L2
T

=

√∫ T

0
E(f(t, ω)2)dt. (2.8)

Therefore, we can approximate any function in L2
T by step functions in S2

T to any desired degree of
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accuracy. Thus, it is possible to choose a sequence gn(t, ω) of simple processes such that as n→∞

these processes converge to continuously varying g(t, ω) ∈ L2
T .

Lemma 2.7.2 S2
T is dense in

(
L2
T , ||.||L2

T

)

Proof. Let us consider the partition of [0, T ] of the form 0 = t0 < t1 < ... < tn = T with

tj − tj−1 → 0 as n→∞. when E(f(t, ω))2 is mean-square continuous, we define a sequence of step

functions fn by fn(t, ω) = f(tn, ω), w.p.1, in tnj ≤ t ≤ tnj+1 for j = 1, 2, ..., n and n = 1, 2, 3, ....

Clearly then fn ∈ S2
T for each n = 1, 2, 3, ... and

E
(
|fn(t, ω)− f(t, ω)|2

)
→ 0 as n→∞

for each t ∈ [0, T ]. Hence by the Lebesgue Dominated Convergence Theorem4 applied to

L1
(
[0, T ],F,P

)
we have

∫ T

0
E
(
|fn(t, ω)− f(t, ω|2

)
dt→ 0 as n→∞

In general, since f ∈ L2
T is not mean-square continuous, we can approximate it arbitrarily closely

in the norm Eq(2.8). We approximate g by a bounded function gN ∈ L2
T defined by

gN (t, ω) = max{−N,min{g(t, ω), N}}

for some N > 0. gn(t, ω) = g(t, ω) when gN (t, ω) = g(t, ω). Moreover

T∫
0

E
(
|gN (t, ω)− g(t, ω)|2

)
dt ≤ 4

T∫
0

E
(
|g(t, ω)|2

)
dt <∞,

so by the Dominated Convergence Theorem applied to the function E
(
|gN (t, ω) − g(t, ω)|2

)
∈

L1([0, T ],F,P) consequently

∫ T

0
E
(
|gN (t, ω)− g(t, ω)|2

)
dt→ 0 as N →∞

4Suppose that f, g ∈ L1(Ω,F ,P) where P <∞ and that f1, f2, ... is a sequence of F− measurable functions with
|fn(ω)| ≤ |g(ω)| for almost all ω ∈ Ω and n=1,2,3,....Then lim

n→∞

∫
Ω
fn(ω)dP =

∫
Ω fdP if lim

n→∞
fn = f(ω) for

almost all ω ∈ Ω and n = 1, 2, 3, ....
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Then for such an fk(t, ω) = ke−kt
∫ t

0 eksgN (s, ω)ds from the integral above it follows that fk is

jointly measurable F×F , and that f(t, .) is Ft−measurable for each t ∈ [0, T ], then

|fk(t, ω)| ≤ ke−kt
T∫

0

eks|gN (s, ω)|dt ≤ Nke−kt
T∫

0

eksdt

Thus,

|fk(t, ω)| ≤ N(1− e−kt)

therefore E(fk(t, ω)2) < ∞ and integrable over 0 < t < T ; hence gk ∈ L2
T . It is straightforward to

see that

|fk(t, ω)− fk(s, ω)| ≤ 2Nk|t− s|

which implies that gk is continuous. In fact this bound also implies that E(fk(t, ω)) is continuous.

Therefore we can approximate it by step function gn ∈ S2
T . Thus, for any ε > 0 we can choose

gN , fk and gn successively so that

||g − gN ||L2
T
<
ε

3 , ||gN − fk||L2
T
<
ε

3

||fk − gn||L2
T
<
ε

3

Then by the triangle inequality we have

||g − gn||L2
T
< ε

what was required to prove. �

Thus, Lemma (2.7.2) provides a sequence of step function, gn ∈ L2
step dense in L2

(0,T ) such that:

lim
n→∞

E
T∫

0

|g(t, ω)− gn(t, ω)|2 = 0

Note that for any given g ∈ L2
T , by the Itô isometry, the simple stochastic process {gn}∞n as an

approximate of g on L2
T (Ω) are such that {

T∫
0
gn(t)dW (t)}∞0 is a Cauchy sequence in the Hilbert
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space L2(Ω,F ,P). Therefore, we define the Itô integral

T∫
0

g(t)dW (t) = lim
n→∞

T∫
0

gn(t)dW (t)

which is well-defined.

2.7.2 Stochastic Integral Properties

Theorem 2.7.1 For any g ∈ L2
(loc)(Ω), the Itô integral driven by the standard Brownian motion,

X(t) =
T∫

0

g(s)dW (s), T ≥ 0

is a mean-zero stochastic process and a martingale with respect to the filtration {Ft}t≥0. The Itô

isometric identity holds,

E|X(t)|2 =
t∫

0

E|X(s)|2ds = ||g||2L2
(0,t)(Ω), t ≥ 0. (2.9)

Here L2
loc(Ω) = L2(loc)([0,∞),L2(Ω,F,P)). Linear properties and additivity hold for the integral.

Proof. Let {gm} be sn approximate sequence of simple process so that Xm(t) =
t∫

0
gm(s)dW (s)→

X(t) in L2(Ω,F,P). Then Eq(2.9) holds because

||X(t)||L2(Ω)2 = lim
m→∞

||Xm(t)||2L2(Ω) = lim
m→∞

||gm||2L2
loc

(Ω) = ||g||2L2
loc

(Ω).

�

To prove that {X(t) =
t∫

0
g(s)dW (s)}t≥0 is a martingale, we can verify three conditions 1- X(t)

is adapted to Ft, t ≥ 0, because Xm(t) =
∫ t

0 gm(s)dW (s) is adapted to Ft and σ−algebra F is

closed with respect to the pointwise limit operation. Hence Xm(t) → X(t) in L2(Ω,F,P) implies

that there is a subsequence of Xm(t), which converges to X(t) pointwise with probability almost

everywhere in Ω.

2-E|X(t)| <∞ meaning X(t) is integrable due to the Cauchy inequality,

E|X(t)| ≤
√
E(1)E|X(t)|2 = (E|X(t)|2)

1
2 <∞
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3-The martingale property: E(X(t)|Fs) = X(s), almost surely for 0 ≤ s < t,

I(s) = E(
t∫

0
g(u)dW (u)|Fs) for s < t, I(s) = 0 and I(s) = E(

s∫
0
g(u)dW (u)|Fs) =

E(
s∫
0
g(u)dW (u)) = X(s) for s > t. Then, we can define the Itô integral for the continuously varying

integrand g(t, ω)

t∫
0

g(s, ω)dW (s) = lim
n→∞

t∫
0

gn(u, ω)dW (u).

This integral will have the same properties of Itô integral of simple process.

Definition 2.7.2 Let W (t), t ≥ 0, be a Brownian motion, and let F(t), t ≥ 0 be an associate

filtration. An Itô process is a stochastic process of the form

X(t) = X(0) +
∫ t

0
µ(s)ds+

∫ t

0
σ(s)dW (s)

where X(0) is nonrandom and µ and σ are adapted stochastic processes, and unique almost surely.

Proof.

X(t) = x0 +
t∫

0

µ(s)ds+
t∫

0

σ(s)dW (s) = x′0 +
t∫

0

µ′(s)ds+
t∫

0

σ′(s)dW (s)

since x0 = x′0 we get
t∫

0

(µ(s)− µ′(s)ds =
t∫

0

(σ(s)− σ′(s))dW (s)

let M(t) =
t∫

0
(µ(s)− µ′(s))ds. It follows that M is a martingale with finite variation since

2n∑
i=1
|M(tni )−M(tni−1)| ≤

T∫
0

|µ′(s)|ds+
T∫

0

|µ(s)|ds <∞

where tni = (i−1)t
2n , i = 1, 2, ..., 2n. Note that for 0 ≤ s < t <∞

E[(M(t)−M(s))2] = E[M2(t)]− 2E[M(s)M(t)] + E[M2(s)]

= E[M2(t)]− 2E[M(s)M(t)|Fs] + E[M2(s)] = E[M2(t)]− E[M2(s)]
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using the last result and the monotone convergence,

E[ lim
n→∞

∞∑
i=1
|M(tni )−M(t2i−1)|2],

= lim
n→∞

∞∑
i=1

E(|M(tni )−M(t2i−1)|2),

= lim
n→∞

∞∑
i=1

E(M(tni ))2 − E(M(t2i−1))2 = E[M2(T )] = 0,

it follows that M(T ) = 0 almost surely and M(t) = E(M(T )|Ft) = 0 almost everywhere for all t.

So µ = µ′ almost everywhere and it follows that
t∫

0
(σ(s)− σ′(s))dW (s) = 0 for all t. Hence

E
[( t∫

0

(σ(s)− σ′(s)
)
dW (s)

)2]
=

t∫
0

E
(
σ(s)− σ′(s)

)2
ds

and this implies σ = σ′. �

2.7.3 Itô Formula in Stochastic Calculus

If {X(t), t ≥ 0} is a real valued process, describing the state of a system at anytime. The stochastic

differential equation (SDE) governing the time evolution of this process Xt is given by

dX(t) = µ(X(t), t)dt+ σ(X(t), t)dW (t) (2.10)

or stochastic integral equation (SIE)

X(t) =
t∫

0

µ(X(s), s)ds+
t∫

0

σ(X(s), s)dW (s) (2.11)

here the first integral is pathwise Lebesgue integral and the second integral is interpreted as the itô

integral. Now our goal is to find a way to evaluate an SDE for a stochastic process f(X(t), t) and

if we have an SDE how to find the corresponding f(X(t), t) solution. The definition of Itô integrals

is not very useful when we try to evaluate a given integral. That is similar to the situation for

ordinary Riemann integrals, where we do not use the basic definition but rather the fundamental

theorem of calculus and the chain rule in the explicit continuations. We don’t have differentiation

theory, only integration theory. However, it turns out that it is possible to construct an Itô integral
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version of the chain rule, called the Itô formula.

Lemma 2.7.3 Let f : [0, T ]× R→ R have continuous partial derivatives ∂f
∂t ,

∂f
∂x , and∂

2f
∂x2 . Then for

any t, t+ ∆t ∈ [0, T ] and x, x+ ∆x ∈ R

f(t, t+ ∆t, x, x+ ∆x)− f(t, x) = ∂f

∂t
(t, x)∆t+ ∂f

∂x
(t, x)∆x+ 1

2
∂2f

∂x2 (∆x)2 (2.12)

Proof. The proof of the lemma is a direct result of Taylor’s expansion and ∂f
∂t ,

∂2f
∂x2 is continuous

w.p.1. �

Theorem 2.7.2 (The 1-dimensional Itô formula) Let Xt be an Itô process given by Eq(2.10). Let

f(t,Xt) ∈ C1,2([0,∞)× R). Then

df(t,Xt) = ∂f

∂t
(t,Xt)dt+ ∂f

∂x
(t,Xt)dX(t) + 1

2
∂2f

∂x2 (t,Xt)(t,Xt)(dXt)2

where (dXt)2 is computed according to the rules dt2 = dtdW (t) = 0, dW (t)2 = dt, therefore, we can

rewrite Itô formula for an autonomous system as follows

df(t,Xt) =
(
∂f

∂t
(t,Xt) + µ(Xt)

∂2f

∂x
(t,Xt) + 1

2σ
2(Xt)

∂f

∂x2 (t,Xt)
)
dt+ σ(Xt)

∂f

∂x
dWt

w.p.1 for any 0 ≤ s ≤ t ≤ T ,µ(Xt) ∈ L1
T and σ(Xt) ∈ L2

T , Xt is a separable, jointly measurable

version of Xt −Xs with almost surely continuous sample paths.

Proof.

Let s = t1 < t2 < ... < tn+1 = t with ∆tj = tj+1 − tj . Then f(t,Xt)− f(t,Xs) =
n∑
j=1

∆fj where

∆fj = f(tj+1, Xtj+1) − f(tj , Xtj ) for j = 1, 2, ..., n. Applying Lemma 2.7.3 on each time interval,

we obtain ∆fj = ∂f
∂t (tj , xj)∆tj + ∂f

∂xj
(tj , xj)∆xj + 1

2
∂2f
∂x2
j
(∆xj)2 w.p.1, where ∆Xj = Xtj+1−Xtj and

∆Wj = Wtj+1 −Wtj . As n→∞ and using the rules (∆t)2 = 0,∆Wt∆t = 0, and(∆Wt)2 = ∆t, we

get

df(t,Xt) =
(
∂f

∂t
(t,Xt) + µ(Xt)

∂2f

∂x
(t,Xt) + 1

2σ
2(Xt)

∂f

∂x2 (t,Xt)
)
dt+ σ(Xt)

∂f

∂x
dWt

�
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2.7.4 Itô formula in Vector Case

Let W = Wt = (W 1
t ,W

2
2 , ...,W

m
t ) ≥ 0, where m = 1, 2, ..., with independent components associ-

ated with increasing family of σ-algebra {Ft, t ≥ 0}. Thus each W i
t is Ft-measurable with,

E(W i
t |F0) = 0, E(W j

t −W j
s |Fs) = 0

w.p.1, for 0 ≤ s ≤ t and j = 1, 2, ...,m. In addition,

E
(
(W i

t −W i
s)(W

j
t −W

j
t )|Ft

)
= (t− s)δi,j

w.p.1, for 0 ≤ s ≤ t and i, j = 1, 2, ...,m,. Let b : [0, T ]×Ω→ Rd be d-dimensional vector function

and bi ∈ L2
T , and σ : [0, T ]×Ω→ Rd×m with components σi,j ∈ L2

T . Thus a multidimensional SDE

in Rn can be written as

dX(t) = b(X)dt+ σ(X)dW. (2.13)

Let f(t, x) be a give C1,2 function. Let the Hessian matrix be denoted by

D2(f) =
( ∂2f

∂xi∂xj

)
n×n

the generator of the solution process of 2.13 is then A : D(A) = C2
0 (Rn)→ Cb(Rn),

Af =
n∑
i=1

bi(x)∂f
∂x

+ 1
2

n∑
i,j=1

(σ(x)σT (x))i,j
∂2f

∂xi∂xj
(2.14)

= µ(x).∇f + 1
2Tr(σ(x)σT (x)D2f), (2.15)

the multidimensional Itô formula

df(t,Xt) =
(
∂f

∂t
+ b(Xt).∇f + 1

2Tr(σ(Xt)σT (Xt)D2f

)
dt+∇f.σ(Xt)dWt

df(t,Xt) =
(
∂f

∂t
+Af(t,Xt)

)
dt+∇f(t,Xt).σ(Xt)dWt.

2.7.5 The Stochastic Rule and the Stochastic Integration by Parts

An application for Itô formula is integration by parts. Let Xt, Yt be respectively solutions of two

scalar SDE. Applying the vector Itô formula to g(x, y) = xy, we get the stochastic product rule
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d(XtYt) = ∂g

∂x
dXt + ∂g

∂y
dYt + 1

2
∂2g

∂x2 (dXt)2 + ∂2g

∂x∂y
dXtdYt + 1

2
∂2g

∂y2 (dYt)2

= XtdYt + YtdXt + dXtdYt,

then, the corresponding integral by parts is the in the form

∫ T

0
XtdYt = X(T )Y (T )−X(0)Y (0)−

∫ T

0
YtdXt −

∫ T

0
dXtdYt

39



Chapter 3

Complex Deformations of The Kuramoto Model

3.1 Complex Deformations and Embedding of Dynamical Systems

This section is concerned with the core result of our investigation, namely the embedding of the

original stochastic Kuramoto model (regarded simply as a system of coupled nonlinear stochastic

differential equations) into a larger class of dynamical systems, for the purpose of a more complete

characterization of the nonequilibrium synchronization phase transition.

We start from the first-order Kuramoto model with uniform coupling and generic frequency

distribution in the presence of external driving (including the stochastic case). The (classical)

dynamical system is given by:

dθk = ωkdt+ 2λ
n∑
j=1

sin(θj − θk)dt+ dWk, λ ∈ R, θk ∈ T, k = 1, 2, . . . , n, (3.1)

where the proper frequencies ωk are characterized by a probability distribution g(ω), and the

external driving Wk(t) can be chosen to be either deterministic or stochastic. In the latter case,

it is assumed to consist of n independent, identical Wiener processes, with correlation functions

E[ηj(t)ηk(t′)] ∼ σ2δjkδ(t− t′), where dWk = ηkdt. The (complex) order parameter of the model is

provided by the collective mode

r(t) ≡ 1
n

n∑
k=1

eiθk , (3.2)

with the fully-synchronized state and the unsynchronized state corresponding to |r| = O(1) and

|r| = O(1/n), respectively. Characterizing the phase transition |r|(n, λ, σ2, g) beyond the mean-field

approximation is the main goal of this study.

We introduce the complex variables

zk(t) ≡ rk(t)eiθk(t), (3.3)

and <(zk) ≡ qk,=(zk) = pk, with the obvious constraints rk(t) = 1 = p2
k + q2

k, k = 1, 2, . . . , n. The
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system (3.1) can then be written as

dzk = i(ωk + ηk)zkdt+ iλ
n∑
j=1

[z2
k z̄j − zj ]dt. (3.4)

As explained in the preceding chapters, when taking the limit n → ∞, λ → λc, the onset of

the phase transition is signaled by the non-analytic behavior of the function |r|/n(λ). However,

for a full characterization of the critical behavior, what is truly required is the proper limit of the

counting measure

dmt ≡ lim
n→∞

1
n

n∑
k=1

δzk(t), (3.5)

where δzk(t)(z) is the singleton supported at zk(t) ∈ ∂D. Then for any properly chosen function

f : D→ C, we have

Emt(f) =
∫
∂D
f(z)dmt(z) = lim

n→∞
1
n

n∑
k=1

f(zk(t)),

in particular r(t) = Emt(z) is the first moment of the measure mt.

We mention here an observation which will be discussed in much more detail later in this section.

Denote by B(T) the set of probability measures defined on T = ∂D. Then to each element µ ∈ B(T)

we can associate a vector field Vµ on D, defined by

Vµ(ζ) = (1− |ζ|2)
∫
T

z − ζ
z̄ − ζ̄

dµ(z)
z

,

so that Vµ(0) = Eµ(z). The conformal barycenter of the measure µ, B(µ), is then defined by

Vµ(B(µ)) = 0. Douady and Earle have shown [29] that if µ has no strong atoms (i.e. no singletons

with mass at least 1/2), then the conformal barycenter is uniquely defined.

Using this notion, Douady and Earle [29] discovered a naturally conformal extension of any

circle homeomorphism f : T→ T to a disk homeomorphism Φ : D→ D, which is furthermore real-

analytic on D. The Douady-Earle map f → Φ is conformally natural and preserves quasi-conformal

extensions of the circle homemorphism.

The Douady-Earle extension is given through the conformal barycenter of the harmonic measure

associated to the homomorphism f , µz[f ](A) = ωz(f−1(A)), for any Borel set A ⊂ T, where z ∈ D

and ωz is the harmonic measure with source at z. The disk homomorphism is given by

Φ[f ](z) ≡ B(µz[f ]).
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The connection to the original Kuramoto model has its origin in the iterative algorithm developed

by Milnor and (independently) by Abikoff and Ye [30], [31], known as the MAY algorithm, which

computes the conformal barycenter by iterative compositions of self-maps of the unit disk. In recent

works, Jacimovic [32] and Chen et. al [33] have linked the infinite-size limit of the Kuramoto model

to fixed points of iterative compositions of maps under hyperbolic geometry of the unit disk. The

limit behavior of this iterative scheme is described by the classification of iterative compositions of

unit disk univalent maps, and rests on the theorem of Denjoy and Wolff. We present a summary

of this theory in the next section, which follows closely the exposition given in [34].

3.2 Evolution Families and Herglotz Vector Fields

We start with the notion of an evolution family. Let us consider a semigroup P of conformal

univalent maps from the unit disk D into itself with superposition as a semigroup operation. This

makes P a topological semigroup with respect of the topology of local uniform convergence on D.

Definition 3.2.1 An evolution family of order d ∈ [1,+∞] is a two-parameter family

(φs,t)0≤s≤t<+∞ of holomorphic endomorphisms of the unit disk from P, such that the following

three conditions are satisfied.

• φs,s = idD;

• φs,t = φu,t ◦ φs,u for all 0 ≤ s ≤ u ≤ t < +∞;

• for any z ∈ D and T > 0 there is a function kz,T ∈ Ld([0, T ],R) such that

|φs,u(z)− φs,t(z)| ≤
∫ t

u
kz,T (ξ)dξ,

for all 0 ≤ s ≤ u ≤ t ≤ T.

An infinitesimal description of an evolution family is given in terms of a Herglotz vector field.

Definition 3.2.2 A (generalized) Herglotz vector field of order d is a function G : D×[0,+∞)→ C

satisfying the following conditions:

• the function [0,+∞) 3 t 7→ G(z, t) is measurable for all z ∈ D;

• the function z 7→ G(z, t) is holomorphic in the unit disc for t ∈ [0,+∞);
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• for any compact set K ⊂ D and for all T > 0 there exists a non-negative function kK,T ∈

Ld([0, T ],R) such that

|G(z, t)| ≤ kK,T (t)

for all z ∈ K and almost every t ∈ [0, T ];

• for almost every t ∈ [0,+∞) the vector field G(·, t) is semicomplete.

By semicompleteness we mean that the solution to the problem


dx(τ)
dτ

= G(x(τ), t),

x(s) = z

is defined for all times τ ∈ [s,+∞), for any fixed s ≥ 0, fixed t ≥ 0 and fixed z ∈ D.

An important result of general Löwner-Kufarev theory is the fact that the evolution families can

be put into a one-to-one correspondence with the Herglotz vector fields by means of the so-called

generalized Löwner-Kufarev ODE. This can be formulated as the following theorem.

Theorem 3.2.1 ([35]) For any evolution family (φs,t) of order d ≥ 1 in the unit disk there exists

an essentially unique Herglotz vector field G(z, t) of order d, such that for all z ∈ D and for almost

all t ∈ [0,+∞)
∂φs,t(z)
∂t

= G(φs,t(z), t).

Conversely, for any Herglotz vector field G(z, t) of order d ≥ 1 in the unit disk there exists a unique

evolution family of order d, such that the equation above is satisfied.

Herglotz vector fields admit a convenient representation using so-called Herglotz functions.

Definition 3.2.3 A Herglotz function of order d ∈ [1,+∞) is a function p : D× [0,+∞)→ C such

that

• the function t 7→ p(z, t) belongs to Ldloc([0,+∞),C) for all z ∈ D;

• the function z 7→ p(z, t) is holomorphic in D for each fixed t ∈ [0,+∞);

• <p(z, t) ≥ 0 for all z ∈ D and for all t ∈ [0,+∞).

Now, the representation of Herglotz vector fields is given in the following theorem.
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Theorem 3.2.2 ([35, Theorem 1.2]) Given a Herglotz vector field of order d ≥ 1 in the unit disk,

there exists an essentially unique (i.e., defined uniquely for almost all t for which G(·, t) 6= 0)

measurable function τ : [0,+∞) → D and a Herglotz function p(z, t) of order d, such that for all

z ∈ D and almost all t ∈ [0,+∞)

G(z, t) = (z − τ(t))(τ(t)z − 1)p(z, t). (3.6)

Conversely, given a measurable function τ : [0,+∞) → D and a Herglotz function p(z, t) of order

d ≥ 1, the vector field defined by the formula above is a Herglotz vector field of order d.

According to Theorem 3.2.1, to every evolution family (φs,t) one can associate an essentially unique

Herglotz vector field G(z, t). The pair of functions (p, τ) representing the vector field G(z, t) is

called the Berkson-Porta data of the evolution family (φs,t).

To explain the geometrical meaning of the function τ(t) we need first to remind of the notion of

the Denjoy-Wolff point of a unit disk endomorphism.

A classical result by Denjoy and Wolff states that for a holomorphic self-map f of the unit disk D

other than a (hyperbolic) rotation, there exists a unique fixed point τ in the closure of D, such that

the sequence of iterates (fn(z)) converges locally uniformly on D to τ as n → ∞. This point τ is

called the Denjoy-Wolff point of f and it is also characterized as the only fixed point of f satisfying

f ′(τ) ∈ D. In other words, τ is the only attractive fixed point of f in the above multiplier sense.

It follows from the hyperbolic metric principle that, if f is not the identity, there can be no other

fixed points in D except the Denjoy-Wolff point but, nevertheless, f can have many other repulsive

or non-regular boundary fixed points.

If τ ∈ D, then the endomorphism f is called elliptic. Otherwise, the angular limit ∠ limz→τ f(z)

= τ exists as well as the angular derivative ∠ limz→τ f
′(z) = αf . If the value αf ∈ (0, 1], then the

map f in this case is said to be either hyperbolic (if αf < 1) or parabolic (if αf = 1) (for details and

proofs see, e. g., [36]).

Now, let (φs,t) be an evolution family with Berkson-Porta data (p, τ). In the simplest case when

neither p, nor τ changes in time (i. e., the corresponding Herglotz vector field G(z, t) is time-

independent), τ turns out to be precisely the Denjoy-Wolff point of every endomorphism in the

family (φs,t). Moreover, for any 0 ≤ s < +∞, we have that φs,t(z) → τ uniformly on compacts

subsets of D, as t → +∞. By this reason, we call τ the attractive point of the evolution family

(φs,t).
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In the case when the Herglotz field G(z, t) is time-dependent, the meaning of τ is explained in

the following theorem.

Theorem 3.2.3 ([35, Theorem 6.7]) Let (φs,t) be an evolution family of order d ≥ 1 in the unit

disk, and let G(z, t) = (z − τ(t))(τ(t)z − 1)p(z, t) be the corresponding Herglotz vector field. Then

for almost every s ∈ [0,+∞), such that G(z, s) 6= 0, there exists a decreasing sequence {tn(s)}

converging to s, such that φs,tn(s) 6= idD and

τ(s) = lim
n→∞

τ(s, n),

where τ(s, n) denotes the Denjoy-Wolff point of φs,tn(s).

3.2.1 Generalization of Löwner chains and Löwner-Kufarev PDE

We follow now the exposition [37] of the generalization of the classical notion of Löwner chains.

Definition 3.2.4 A family (ft)0≤t<+∞ of holomorphic maps of the unit disk is called a Löwner

chain of order d ∈ [1,+∞] if

• each function ft : D→ C is univalent,

• fs(D) ⊂ ft(D) for 0 ≤ s < t < +∞,

• for any compact set K ⊂ D and all T > 0 there exists a non-negative function kK,T ∈

Ld([0, T ],R) such that

|fs(z)− ft(z)| ≤
∫ t

s
kK,T (ξ)dξ

for all z ∈ K and all 0 ≤ s ≤ t ≤ T.

Every Löwner chain (ft)0≤t<+∞ of order d generates an evolution family φs,t of the same order

d defined by φs,t = f−1
t ◦ fs. This correspondence is, however, not one-to one, there may be many

different Löwner chains associated to the given evolution family. Fortunately, they are unique up

to normalization and composition with a univalent function, as the following theorem states.

Theorem 3.2.4 ([37, Theorems 1.6-1.7]) For any evolution family (φs,t) of order d, there exists a

unique Löwner chain (ft) of the same order d, such that

(i) φs,t = f−1
t ◦ fs for any 0 ≤ s ≤ t;
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(ii) f(0) = 0 and f ′(0) = 1;

(iii) Ω := ∪t≥0ft(D) = {z : |z| < R}, where R ∈ (0,+∞].

Any other Löwner chain satisfying the condition (i) is of the form (gt) = (F ◦ft), where F : Ω→ C

is univalent.

The number R is equal to 1/β0, where

β0 = lim
t→+∞

|φ′0,t(0)|
1− |φ0,t(z)|2

.

It was also shown [37] that every Löwner chain (ft) of order d satisfies the generalized Löwner

PDE
∂fs(z)
∂s

= −G(z, s)f ′s(z) (for almost all s ≥ 0),

where G(z, s) is the Herglotz vector field generating the associated evolution family (φs,t).

3.2.2 Generalized Löwner-Kufarev Stochastic Evolution

In order to extend this formalism to the case of stochastic maps, we consider a setup [38] in which

the sample paths are represented by the trajectories of a point (e.g., the origin) in the unit disk

D evolving randomly under the generalized Löwner equation. The driving mechanism differs from

the famous Stochastic Löwner Equation (SLE). In the SLE case the Denjoy-Wolff attracting point

(∞ in the chordal case or a boundary point of the unit disk in the radial case) is fixed. In our case,

the attracting point is the driving mechanism and the Denjoy-Wolff point is different from it.

Let us consider the generalized Löwner evolution driven by a Brownian particle on the unit circle.

In other words, we study the following initial value problem.


d
dtφt(z, ω) = (τ(t,ω)−φt(z,ω))2

τ(t,ω) p(φt(z, ω), t, ω),

φ0(z, ω) = z,

t ≥ 0, z ∈ D, ω ∈ Ω. (3.7)

The function p(z, t, ω) is a Herglotz function for each fixed ω ∈ Ω. In order for φt(z, ω) to be an

Itô process adapted to the Brownian filtration, we require that the function p(z, t, ω) is adapted to

the Brownian filtration for each z ∈ D. Even though the driving mechanism in our case differs from

that of SLE, the generated families of conformal maps still possess the important time-homogeneous

Markov property.
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For each fixed ω ∈ Ω, equation (3.7) similarly to SLE, may be considered as a deterministic

generalized Löwner equation with the Berkson-Porta data (τ(·, ω), p(·, ·, ω)). In particular, the so-

lution φt(z, ω) exists, is unique for each t > 0 and ω ∈ Ω, and moreover, is a family of holomorphic

self-maps of the unit disk.

In order to give an explicitly solvable example let p(z, t, ω) = τ(t,ω)
τ(t,ω)−z = eikBt(ω)

eikBt(ω)−z . It makes

equation (3.7) linear:
d

dt
φt(z, ω) = eikBt(ω) − φt(z, ω),

and a well-known formula from the theory of ordinary differential equation yields

φt(z, ω) = e−t
(
z +

∫ t

0
eseikBs(ω)ds

)
.

Taking into account the fact that EeikBt(ω) = e−
1
2 tk

2
, we can also write the expression for the

mean function Eφt(z, ω)

Eφt(z, ω) =


e−t(z + t), k2 = 2,

e−tz + e−tk
2/2−e−t

1−k2/2 , otherwise.
(3.8)

Thus, in this example all maps φt and Eφt are affine transformations (compositions of a scaling

and a translation).

In general, solving the random differential equation (3.7) is much more complicated than solving

its deterministic counterpart, mostly because of the fact that for almost all ω the function t 7→

τ(t, ω) is nowhere differentiable.

If we assume that the Herglotz function has the form p(z, t, ω) = p̃(z/τ(t, ω)), then it turns out

that the process φt(z, ω) has an important invariance property.

Let s > 0 and introduce the notation

φ̃t(z) = φs+t(z)
τ(s) .

Then φ̃t(z) is the solution to the initial-value problem


d
dt φ̃t(z, ω) = (τ̃(t,ω)−φ̃t(z,ω))2

τ̃(t,ω) p̃
(
φ̃t(z, ω)/τ̃(t)

)
,

φ̃0(z, ω) = φs(z, ω)/τ̃(s),
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where τ̃(t) = τ(s+t)/τ(s) = eik(Bs+t−Bs) is again a Brownian motion on T (because B̃t = Bs+t−Bs

is a standard Brownian motion). In other words, the conditional distribution of φ̃t given φr, r ∈ [0, s]

is the same as the distribution of φt.

By the complex Itô formula, the process 1
τ(t,ω) = e−ikBt satisfies the equation

de−ikBt = −ike−ikBtdBt −
k2

2 e
−ikBtdt.

Let us denote φt(z,ω)
τ(t,ω) by Ψt(z, ω). Applying the integration by parts formula to Ψt, we arrive at the

following initial value problem for the Itô stochastic differential equation


dΨt = −ikΨtdBt +

(
−k2

2 Ψt + (Ψt − 1)2p(Ψte
ikBt(ω), t, ω)

)
dt,

Ψ0(z) = z.

(3.9)

Analyzing the process φt(z,ω)
τ(t,ω) instead of the original process φt(z, ω) is in many ways similar to

one of the approaches used in SLE theory.

The image domains Ψt(D, ω) differ from φt(D, ω) only by rotation. Due to the fact that |Ψt(z, ω)|

= |φt(z, ω)|, if we compare the processes φt(0, ω) and Ψt(0, ω), we note that their first hit times of

the circle Tr with radius r < 1 coincide, i. e.,

inf{t ≥ 0, |φt(0, ω)| = r} = inf{t ≥ 0, |Ψt(0, ω)| = r}.

In other words, the answers to probabilistic questions about the expected time of hitting the circle

Tr, the probability of exit from the disk Dr = {z : |z| < r}, etc. are the same for φt(0, ω) and

Ψt(0, ω).

If the Herglotz function has the form p(z, t, ω) = p̃(z/τ(t, ω)), then the equation (3.9) becomes


dΨt = −ikΨtdBt +

(
−k2

2 Ψt + (Ψt − 1)2p̃(Ψt)
)
dt,

Ψ0(z) = z,

(3.10)

and may be regarded as an equation of a 2-dimensional time-homogeneous real diffusion written in

complex form. This implies, in particular, that Ψt is a time-homogeneous strong Markov process.

By construction, Ψt(z) always stays in the unit disk.

We now have a family of stochastic dynamical processes of maps on the unit disk, which is the
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proper setting for an embedding of the original Kuramoto model, in the limit n → ∞. Before

describing this embedding, we make a few considerations on possible Poisson structures compatible

with the model.

3.3 Constrained Hamiltonian Structure of the Kuramoto Model

As a dynamical system, the Kuramoto model can be represented as the nonlinear restriction of a

quadratic Hamiltonian system. For the purpose of characterizing stochastic perturbations of the

deterministic model, this allows a canonical approach and provides a purely geometric interpretation

of the synchronized state, in the infinite-time limit.

Consider the Hamiltonian dynamical system on R2n, given by the Hamilton function

H({pk, qk}) ≡ −
1
2

n∑
k=1

ωkzkz̄k + λ
∑
j 6=k

[
(z̄j z̄−1

k + zj z̄k) + c.c.
] , (3.11)

for which the Hamilton equations

q̇k = ∂H

∂pk
, ṗk = −∂H

∂qk
(3.12)

are equivalent to

żk = −2i∂H
∂z̄k

, ˙̄zk = 2i∂H
∂zk

. (3.13)

Obviously, the system (3.4) is equivalent to (3.13), subject to the nonlinear constraints zkz̄k = 1,

and in the presence of Langevin forces driven by the stochastic terms dWk(t) = ηk(t)dt.

3.4 Embedding Into the Boundary of the Polydisk and Collective Variables

The mechanical state of the original Kuramoto model, {zk(t)}nk=1 is a point on the n−dimensional

torus Tn, or the boundary of the polydisk ∂Dn. Topologically, this is equivalent to the direct

product of compact groups U(1)n ⊂ U(n). In this section, we investigate the embedding of the

Kuramoto model into the unitary group U(n), and formulate the synchronization phase transition

through symmetric homogenous polynomials of eigenvalues of a matrix U ∈ U(n).

Introducing the matrix-valued function U(t), with diagonal elements Ujj(t) = zj(t) and vanishing

off-diagonal elements, and denoting by D the diagonal n × n “gauge” matrix Djj = ωj + ηj , the
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Kuramoto model (3.1) can be expressed as

∇U = iλ[U2Tr(Ū)− Tr(U)I], ∇ = I
d

dt
− iD, (3.14)

Introduce the homogenous symmetric variables

φk ≡ TrUk, k ∈ Z, (3.15)

and use (3.14) to derive the evolution equations in collective variables space:

−idφk
dt

= k[D ? φk + λ(φ−1a
† − φ1a)φk] ≡ [H, φk]D, k ∈ N, (3.16)

where D ? φk ≡ Tr (D · Uk), H is a Hamilton operator (generator of time shifts), and a, a† are the

lowering and raising shift operators,

aφk ≡ φk−1, a†φk ≡ φk+1. (3.17)

Equations (3.15) provide an embedding of the original model into the algebra of homogenous

trigonometric polynomials on T1. The dynamical system is governed by a Hamilton operator and

commutator as shown in (3.16). In this formulation, full synchronization is equivalent to

d

dt
[φ−k1 φk] = 0, ∀ k ∈ Z. (3.18)

3.4.1 Time Evolution and Generators of Möbius Group

Using the fact that z̄k = z−1
k , we obtain for any differentiable function f({zk(t)}) the following

form of the generator of time evolution:

−idf
dt

=
n∑
k=1

[ωkL
(k)
0 + λ(r̄L(k)

− + rL
(k)
+ )]f, (3.19)

where L(k)
0,−,+ are the generators of the Lie algebra s`(2,C), in differential operator form for the

variable zk, in the absence of randomness. Since we assume the stochastic terms to be independent

Wiener processes, by applying the Feynman-Kac theorem, we can identify the correlation functions

for the solutions of the stochastic Kuramoto model to expectation values of normal-ordered operator

products of polynomials in (non-commutative) variables {zk, z̄k}, k = 1, 2, . . . , n. This happens to
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be entirely consistent with the identification z̄ → ∂
∂z provided by (3.19), which means we have the

following result:

Theorem 3.4.1 Let ρ : s`(2,C) → L(H) be a Lie algebra representation into the space of linear

operators on a Hilbert space with inner product 〈, 〉. Denote by tαk = ρ(L(k)
α ), where α = 0,+,−,

such that

[t0i , t±j ] = ±δijt±j , [t+i , t
−
j ] = 2δijt0j , i, j = 1, 2, . . . , n. (3.20)

Then the expectation value of the operator ⊕nk=1t
−
k , J− ≡ 〈v| ⊕nk=1 t

−
k |v〉, where v is a cyclic vector

for the representation ρ, minimizing the energy functional

v = arg{ inf
||Ψ||=1

〈ΨHΨ〉}, H =
∑
k

2ωkt0k − λ
∑
k,j

t+k t
−
j ,

satisfies J−(t) = nr(t), where r(t) is the Kuramoto order parameter defined in (3.2).

The averaged dynamical system is obtained by replacing the commutators by canonical Poisson

brackets,

{Sαi , S
β
j } = 2εαβγSγi δij , (3.21)

where Sl = 2〈tl〉 are smooth functions of time. In this limit, the problem can analyzed with tools

of classical integrable systems, and the solution is known to be exact as n → ∞. This problem

was solved [39] by Sklyanin algebra techniques, and the solution provides us with the following

dynamical phase transition picture:

Richardson showed [40] that the exact eigenvectors of his Hamiltonian is given by application

of operators b†k =
∑
l

t†
l

2ωl−ek to the cyclic vector v. The unnormalized n−pair eigenvector reads

ΨR(εi) =
∏n
k=1 b

†
k|v〉. The eigenvalues ek satisfy the self-consistent (algebraic Bethe Ansatz) equa-

tions
1
λ

=
∑
p 6=k

2
ek − ep

+
∑
l

1
2ωl − ek

, (3.22)

and =(ek) 6= 0. Notice that the onset of synchronization corresponds to a single eigenvalue pair

e0 = −ē0 = 2iD, and therefore we retrieve equation (1.44), where we have replaced summation

over the frequencies ωk by distribution average with distribution function g(ω).

The solutions found in [39] and later expanded upon include the uniform solution |r(t)| =const.

(which corresponds to the mean-field solution of Kuramoto), but also time-dependent solutions
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expressed through hyperelliptic theta functions, and which we identify to the “chimera” states

observed in experiments.
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1012., 01 2010.

[38] Georgy Ivanov and Alexander VasilâĂŹev. 01 2012.

[39] J. Dukelsky, S. Pittel, and G. Sierra. Colloquium: Exactly solvable richardson-gaudin models

for many-body quantum systems. Rev. Mod. Phys., 76:643–662, Aug 2004.

[40] R.W. Richardson and N. Sherman. Exact eigenstates of the pairing-force hamiltonian. Nuclear

Physics, 52:221 – 238, 1964.

56



Appendix A

Kuramoto Model Simulation

// This program c a l c u l a t e s the order parameter vs

// the coup l ing constant f o r Kuramoto Model

// Written by Wael Al−Sawai , 04−03−2017

#inc lude <c s t d l i b>

#inc lude <iostream>

#inc lude <math . h>

#inc lude <f stream>

us ing namespace std ;

const i n t N=1500;

double theta [N ] ;

double t h e t a I n i t [N ] ;

double omega [N ] ;

double Pi =3.14159265;

i n t nstep =7000;

double dt =0.01;// time step

// Coupling constant

double p s i =0.0 ;

double r =0.0;// coherence c o e f f i c i e n t

void Sum( double theta [ ] , double & , double &);

double mu=0.0;

double sigma =2.0;

double gSampler ( double , double ) ;

// i n t main ( i n t argc , char ∗argv [ ] )

i n t main ( )

{
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double K=0.0;

srand ( ( unsigned ) time (NULL) ) ;

o f stream myf i l e ;

// generate t h e t a I n i t & omega

f o r ( i n t i =0; i<N; i ++){

// I n i t i a l i z e o s c i l l a t o r s phases

t h e t a I n i t [ i ]=( Pi )∗ double ( i /(N−1)) ;

theta [ i ]= t h e t a I n i t [ i ] ; / / i n t i a l c ond i t i on

//omega [ i ]=1+2∗(( double ) rand ( ) / ( double )RAND MAX) ;

omega [ i ]=gSampler (mu, sigma ) ;

}//end i n i t i a l i z i n g for−loop

myf i l e . open (” Kuramoto . txt ” ) ;

whi l e (K<8.6){

// I n t e g r a t e the d i f f e r e n t a i l equat ions

f o r ( i n t i =0; i<N; i ++){

f o r ( i n t j =0; j<nstep ; j ++){

theta [ i ]+=(omega [ i ]+(K∗ r )∗ s i n ( ps i−theta [ i ] ) ) ∗ dt ;

} // nstep loop

}//N loop

Sum( theta , r , p s i ) ;

my f i l e << K<<” ”<<r<<’\n ’ ;

cout<<K<<’ ’<<r<<endl ;

// Copy the i n i t i a l a r rays

f o r ( i n t i =0; i<N; i ++){

theta [ i ]= t h e t a I n i t [ i ] ;

}//
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K+=0.1;

}// While loop

myf i l e . c l o s e ( ) ;

system (”PAUSE” ) ;

r e turn EXIT SUCCESS ;

}

//

void Sum( double theta [ ] , double & r , double & p s i ){

double r r ;

double sumcos=0;

double sumsin =0;

//

f o r ( i n t i =0; i<N; i ++){

sumcos+=cos ( theta [ i ] ) ;

sumsin+=s i n ( theta [ i ] ) ;

}//sum loop

//

r r=pow( sumcos ,2 .0 )+pow( sumsin , 2 . 0 ) ;

r=pow( rr , 0 . 5 ) /N;

//

p s i=atan ( sumcos/ sumsin ) ;

i f ( sumcos<0){

p s i=p s i+Pi ;

}//end i f statement

} //end func t i on Sum

59



// Normally d i s t r i b u t e d random number

// generated us ing the Polar method

double gSampler ( double mu, double sigma ){

double U1 , U2 , W, mult ;

//The v a r i a b l e s X1 and X2 are made s t a t i c so that i t

// can hold the va lue s from the prev ious c a l l

s t a t i c double X1 , X2 ;

s t a t i c i n t f l a g = 0 ;

i f ( f l a g == 1)

{

f l a g = ! f l a g ;

r e turn (mu + sigma ∗ ( double ) X2 ) ;

}

do

{

U1 = −1 + ( ( double ) rand ( ) / RAND MAX) ∗ 2 ;

U2 = −1 + ( ( double ) rand ( ) / RAND MAX) ∗ 2 ;

W = pow (U1 , 2) + pow (U2 , 2 ) ;

}

whi le (W>= 1 | | W == 0 ) ;

mult = s q r t ((−2 ∗ l og (W) ) / W) ;

X1 = U1 ∗ mult ;

X2 = U2 ∗ mult ;

f l a g = ! f l a g ;

r e turn (mu + sigma ∗ ( double ) X1 ) ;
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}// End o f gsampler func t i on
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