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Abstract 
 
 
 

Background: Response bias can distort treatment effect estimates and inferences in clinical 

trials. Although prevention, quantification, and adjustments have been developed, current 

methods are not applicable when subject-level reliability is used as the measure of response 

bias. Thus, the objective of the current study is to develop, test, and recommend a series of bias 

correction strategies for use in these cases. Methods: Monte Carlo simulation and logistic 

regression modeling were used to develop the strategies, examining the collective impact of 

sample size (N), effect size (ES), reliability distribution, and response style on estimating the 

treatment effect size in a series of hypothetical clinical trials. The strategies included a linear 

(LW), quadratic (QW), or cubic weight (CW) applied to the subject-level reliability; a reliability 

threshold (%); or a combination of the two (W-%). Bias and percent relative root mean square 

error (RRMSE (%)) were calculated for each treatment effect estimate and RRMSE (%) was 

compared to inform the bias correction recommendations. Results: The following 

recommendations are made for each N and ES combination: N=200/ES=small: no adjustment, 

N=200/ES=medium: 40%-LW, N=200/ES=large: 40%-QW, N=2000/ES=small: 40%-LW, 

N=2000/ES=medium: 55%-CW, N=2000/ES=large: 75%-CW, N=20000/ES=small: 70%-CW, 

N=20000/ES=medium: 85%-CW, N=20000/ES=large: 95%-CW. Conclusion: Employing these bias 

correction strategies in clinical trials where subject-level reliability can be calculated will 

decrease error and increase accuracy of estimates and validity of inferences.  
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Chapter 1: Overview of Bias 

 

Bias is a systematic error that results in a sample statistic over- or underestimating a 

population parameter (Wackerly, Mendenhall, & Scheaffer, 2008), potentially leading to 

distorted results and inaccurate inferences. Statistically, bias is defined as: 

𝐵(𝜃) = 𝐸(𝜃) −  𝜃                      (1) 

where 𝜃 is the point estimate (i.e., sample statistic estimating the population parameter), 𝐵(𝜃) 

is the bias of the point estimate, 𝐸(𝜃) is the expected value (i.e., mean) of the point estimate, 

and 𝜃 is the population parameter; with positive 𝐵(𝜃) indicating overestimation and negative 

𝐵(𝜃) indicating underestimation (Wackerly et al., 2008).  

 Several types of bias exist and can be introduced by a myriad of practices throughout 

the research process, typically in the design phase, during data collection, and/or during the 

analysis phase. In the sections that follow, various biases will be reviewed within each of these 

study phases. 

Bias in the Design Phase    

The primary bias introduced during the design phase of a study is selection bias, wherein 

the study sample differs from the population that they are intended to represent, potentially 

leading to results that struggle with generalization (L. K. Alexander, B. Lopes, K. Ricchetti-

Masterson, & K. B. Yeatts, 2015a; Berk, 1983; Hultsch, MacDonald, Hunter, Maitland, & Dixon, 

2002; Pruchno et al., 2008). More specifically, selection bias occurs when certain groups have a 
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higher probability of being chosen to participate in the study than others (Berk, 1983). 

Convenience samples are particularly prone to this bias, as subjects are chosen from 

populations that researchers have easy access to such as students at a particular university or 

patients from local hospitals in a single metropolitan area. Indeed, these subjects often share 

similar traits as a consequence of being clustered within a shared environment (Hultsch et al., 

2002; Pruchno et al., 2008). Case-control studies are also vulnerable to selection bias wherein 

different procedures are used to select cases than are used to select controls, resulting in 

differing selection probabilities for each group (L. K. Alexander et al., 2015a).  

Self-selection bias is a special case of selection bias, wherein some individuals are more 

likely to participate in research studies compared to others, potentially resulting in differing 

underlying characteristics between those who participate and those who do not. This 

phenomenon is also known as volunteer bias (L. K. Alexander et al., 2015a; Heckman, 1979; 

Krishna, Maithreyi, & Surpaneni, 2010). Self-selection bias also occurs when rates of attrition 

differ among sample groups; that is, some subjects are more likely to dropout of a study 

compared to others (L. K. Alexander et al., 2015a).   

Non-respondent bias is another subtype of selection bias, which acutally occurs during 

data collection, where subjects who fail to respond to a question or to a survey significantly 

differ from subjects who do respond to the question/survey (Krishna et al., 2010). For example, 

research has shown that questions regarding subject income are vulnerable to item non-

response, such that subjects at each end of the socioeconomic status distribution may be less 

likely to report their income compared to subjects in the middle (Juster & Kuester, 1991; Pfeffer 

& Griffin, 2017; Riphahn & Serfling, 2005; Turrell, 2000).  
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Bias in the Data Collection Phase 

Several biases occur during the data collection phase, with most falling under the 

category of information bias, or measurement bias, which arises when data are measured or 

classified inaccurately (L. K. Alexander, Brettania Lopes, Kristen Ricchetti-Masterson, & Karin B. 

Yeatts, 2015b). Some specific subtypes of information bias are misclassification, interviewer, 

contamination, co-intervention, compliance, and response biases (L. K. Alexander et al., 2015b; 

Cox et al., 2009; Delgado-Rodriguez & Llorca, 2004; Krishna et al., 2010; Pannucci & Wilkins, 

2010; Sackett, 2007; Tripepi, Jager, Dekker, Wanner, & Zoccali, 2008).  

Misclassification bias is the inaccurate collection and utilization of classification data 

that results in subjects in a non-randomized study being incorrectly assigned to a specific 

subgroup (e.g., exposed or non-exposed; diseased or non-diseased). Furthermore, 

misclassification bias can be either differential or non-differential. Differential misclassification 

occurs when subjects in one subgroup are misclassified more frequently than those in another, 

but this occurs equally among subgroups under non-differential misclassification (L. K. 

Alexander et al., 2015b; Cox et al., 2009; Tripepi et al., 2008).  

Interviewer bias occurs when the researcher collecting the data subconsciously 

influences the subject’s responses (Tripepi et al., 2008) or when differences in obtaining, 

recording, or interpreting information between groups occurs (L. K. Alexander et al., 2015b; 

Pannucci & Wilkins, 2010). Blinding, or withholding group status from the interviewer is the 

best approach to avoid this type of bias (Tripepi et al., 2008).  

Contamination bias results from the control group unintentionally receiving the 

experimental intervention, thus contaminating their control status and potentially decreasing 
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the difference in outcomes for the experimental and control groups (Krishna et al., 2010). 

Although cluster randomization – wherein groups of subjects are randomized to a treatment 

arm, as opposed to individual randomization – has been suggested to minimize contamination 

bias, many researchers have reported significant flaws with this method (Giraudeau & Ravaud, 

2009; Hahn, Puffer, Torgerson, & Watson, 2005; Keogh-Brown et al., 2007; Torgerson, 2001).  

Cointervention bias occurs when a study participant is receiving additional care outside 

of the study that other subjects are not receiving, as this can impact the study intervention. This 

often occurs for control subjects who have other clinicians or caregivers providing additional 

care, knowing that the subject is a control in the study, to ensure that their condition improves 

(Krishna et al., 2010; Sackett, 2007, 2011). Blinding subjects to treatment condition is one way 

to prevent cointervention bias (Schulz & Grimes, 2002).  

Compliance bias is when some subjects in an intervention study adhere to the treatment 

regimen more strictly than others, potentially distorting estimates of intervention efficacy 

(Delgado-Rodriguez & Llorca, 2004; Krishna et al., 2010). This is typically evidenced when 

subjects drop out of a study before they complete the entire intervention or when subjects fail 

to complete portions of the intervention that they are instructed to complete. Clearly, non-

compliance can result in substantial missing data, which can have negative impacts if not 

handled properly, including decreased statistical power (Melnikow & Kiefe, 1994), inaccurate 

conclusions on drug dosage or safety (Little et al., 2012), or other inaccurate inferences of 

treatment comparisons (Myers, 2000).  

Response bias, otherwise known as respondent bias or self-reporting bias, is a broad 

area of biases wherein the subject provides unreliable responses to questions, which may be 
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due to a variety of factors, both conscious and subconscious (Althubaiti, 2016; Lavrakas, 2008b; 

Szklo & Nieto, 2014). Indeed, response bias consists of several subtypes of biases, including 

social desirability, demand characteristics, extreme responding, acquiescence, careless/random 

responding, and recall bias (Althubaiti, 2016; Fadnes, Taube, & Tylleskar, 2009), all of which will 

be discussed and elaborated on in Chapter 2. 

Bias in the Analysis Phase 

During the analysis phase of a study, the primary bias to emerge is confounding, where a 

certain variable is associated with both the exposure (i.e., predictor) and the outcome, and so 

appears to be influencing the exposure-outcome relationship, but does not actually serve a 

relational purpose (Cox et al., 2009; Grimes & Schulz, 2002; Pannucci & Wilkins, 2010). Indeed, 

confounding distorts the observed relationship between an exposure and an outcome, such 

that an association is detected where one does not truly exist, an association fails to be 

detected when one does truly exist, or the association appears to be weaker or stronger than 

truly exists (Braga, Farrokhyar, & Bhandari, 2012). A confounding variable has three defining 

characteristics: (1) predictive of outcome but not caused by exposure or outcome variables (i.e., 

serves as a risk/predictive factor for outcome); (2) associated with exposure, such that rates of 

the confounder differ among exposed and unexposed groups; and (3) not an intermediate step 

on the causal pathway between exposure and outcome (Skelly, Dettori, & Brodt, 2012). The 

effects of confounding are alleviated by randomization since the covariate will, theoretically, be 

equally distributed among each group, given a large enough sample size, and thus primarily 

affects observational designs (Braga et al., 2012; Pourhoseingholi, Baghestani, & Vahedi, 2012). 

However, methods are available for observational studies that aim to reduce the impact of 
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confounding, such as the use of propensity scores (D'Agostino, 1998); setting inclusion criteria 

that limit the range of the confounding variable (e.g., certain age group or specific gender); 

using stratified analyses, which allow results to be compared for the subgroups corresponding 

to the various levels of the confounder; and by using multivariate models, wherein the 

confounding variable is controlled for during statistical modeling (Skelly et al., 2012).  

Publication bias also appears at the end of a study and occurs when significant results 

are published, and insignificant results fail to be published (Joober, Schmitz, Annable, & Boksa, 

2012; Tripepi et al., 2008). This type of bias occurs on the part of both researchers and journal 

editors. For researchers, obtaining grant funding and academic career promotions are both 

highly competitive and often depend upon publishing studies with significant results. For 

journal editors, obtaining a high citation index is also highly competitive and depends on 

publishing significant results, since studies with insignificant results are less likely to be cited by 

researchers than significant ones (Joober et al., 2012).  

Conclusion 

Although this chapter reviews the primary biases encountered in clinical and 

epidemiological research, it by no means serves as a comprehensive review. For a more 

exhaustive review of bias in research, please refer to Delgado-Rodriguez and Llorca (2004), 

Krishna et al. (2010), and Tripepi et al. (2008).  

Each aforementioned bias poses a risk to statistical analyses and inferences, individually 

or in a compounded fashion. That is, some biases may cause or contribute to one or more other 

biases, potentially exponentiating the distorted estimates.  Response bias, for instance, can 

contribute to misclassification bias, which can, in turn, lead to the emergence of confounding. 
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Indeed, each type of bias, or combination of biases, has the potential to skew the estimated 

value either closer to or further from the true value. That is, estimates of associations, 

treatment effects, drug doses, etc. can either under- or overestimate their true values, resulting 

in distorted estimates that can lead to inaccurate interpretations and inferences. These 

misleading conclusions have the potential to cause adverse events, especially in the case of 

drug safety if a dosing regimen is set too low (i.e., drug may be ineffective) or too high (i.e., 

toxicity), or if side effects are not accurately reported. Furthermore, resources, namely grant 

funding, may not be distributed in a way that produces the best outcomes if the true effects are 

not evident due to biased results and/or reporting. Thus, it is vital to minimize bias by selecting 

the appropriate study design; implementing randomization and blinding when possible; and 

utilizing proper statistical techniques to adjust for missing data, confounders, and other bias-

inducing factors during the analysis phase.  
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Chapter 2: A Closer Look at Response Bias 

 

As briefly discussed in Chapter 1, response bias, otherwise known as respondent bias or 

self-reporting bias, is a broad area of biases wherein a subject provides unreliable, inaccurate, 

or dishonest responses to questions, resulting in statistical estimates either over- or 

underestimating population parameters (Althubaiti, 2016; Lavrakas, 2008b; Szklo & Nieto, 

2014; Wackerly et al., 2008).  

Sources 

The specific biases included under the umbrella term of response bias are social 

desirability, demand characteristics, extreme responding, acquiescence, careless/random 

responding, and recall bias (Althubaiti, 2016; Fadnes et al., 2009; Meyer, Faust, Faust, Baker, & 

Cook, 2013).  

Social desirability is one of the most common types of response bias (Nederhof, 1985) 

and is typically observed in the context of attitudes, beliefs, and behaviors regarding sensitive 

issues such as sex, drugs, crime, racism, obesity, and many others (Elgar, Roberts, Tudor-Smith, 

& Moore, 2005; Krumpal, 2013). Indeed, social desirability occurs when subjects respond to a 

question according to social norms, which typically paints the subjects in a favorable light (van 

de Mortel, 2008). That is, subjects often overreport socially accepted beliefs/behaviors and 

underreport socially undesirable ones (Krumpal, 2013).   
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Similarly, demand characteristics, or the good-subject effect, arise when subjects 

respond/behave in a manner that they perceive the researcher to expect from them. That is, 

the characteristics of the researcher demand a specific response/behavior from the subject 

(Nichols & Maner, 2008; Orne, 1962).  

Extreme responding has two forms, categorial and continuous. In the categorical form, 

this type of bias is characterized by a subject using only the end response options on a rating 

scale, failing to utilize the middle options (Batchelor & Miao, 2016). In the continuous form, this 

bias appears as values that are highly improbable or impossible. Acquiescence is a special case 

of extreme responding that occurs when a subject provides positive/affirmative answers to 

questions, regardless of their content (Hinz, Michalski, Schwarz, & Herzberg, 2007; Lavrakas, 

2008a).  

Careless responding occurs when subjects provide random answers to questions, 

regardless of directionality (affirmative, contradictory, or neutral), without considering the 

question content (Meyer et al., 2013).  

Recall bias is one that may occur subconsciously and results from the subject’s inability 

to accurately recall a past event. This type of bias is more frequently observed in epidemiologic 

studies, particularly within case-control or retrospective cohort designs (Althubaiti, 2016), 

which require respondents to recall prior exposure histories that may have occurred several 

years or even decades in the past. Indeed, recall bias is known to increase as time between 

assessment and recalled event increase (Fadnes et al., 2009).  

In addition to these specific types of biases, response bias can also result from question 

wording and response format. For instance, Brener, Grunbaum, Kann, McManus, and Ross 
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(2004) conducted a study on question wording and found that nearly 40% of question sets – 

where two questions ask the same thing, but one is phrased differently from the other – 

experienced significantly different prevalence estimates. Additionally, Cabooter, Weijters, 

Geuens, and Vermeir (2016) evaluated the effect of scale formats on subject responses and 

found that subjects interpret scales differently depending on whether labels are used at one or 

both ends (polarity) and whether only positive numbers are used, or both positive and negative 

numbers. Cross-cultural differences can also contribute to response bias (e.g., T. Johnson, 

Kulesa, Cho, & Shavitt, 2005; Lai, Cummins, & Lau, 2013) since questions are not necessarily 

interpreted or responded to the same way across cultures (Iwata, 2014).   

Unfortunately, unreliable responses within self-reports are common and the impacts on 

statistical estimates are well documented (Adams, Soumerai, Lomas, & Ross-Degnan, 1999; 

Hebert et al., 2002; Krumpal, 2013; Mazor, Clauser, Field, Yood, & Gurwitz, 2002; Meyer et al., 

2013; Navarro-González, Lorenzo-Seva, & Vigil-Colet, 2016; Preston, Fishman, & Stokes, 2015; 

Shields, Gorber, & Tremblay, 2008; van de Mortel, 2008).  

Prevention 

Many methods have been utilized to prevent response bias from occurring, or at least to 

reduce its impact on statistical estimates. For instance, Nederhof (1985) recommends using 

neutral questions and Wouters, Maesschalck, Peeters, and Roosen (2014) recommend using 

anchors at each end of a categorical response spectrum rather than at each response option. 

Although this latter option seems counterintuitive, studies have shown that subjects may 

interpret the labels differently, thus introducing bias (Wouters et al., 2014).   
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Another approach to preventing response bias is the use of survey administration 

modes that foster subject anonymity, as research has shown these modalities to result in 

decreased bias as compared to others. For example, one study administered psychological 

surveys face-to-face, over the phone, or on a computer (online and offline) and found that 

responses differed significantly between computer and face-to-face surveys, computer and 

phone surveys, and face-to-face and phone surveys (Zhang, Kuchinke, Woud, Velten, & 

Margraf, 2017). Another study found that surveys completed by mail had a wider range of 

responses compared to surveys completed via phone (Hall, 1995). Conversely, a meta-analysis 

conducted on paper versus online surveys found no significant differences in responses across 

survey modalities (Dodou & Winter, 2014), but this may be because both modes (paper and 

online) allow privacy/anonymity while completing the survey. Indeed, a study by Ong and Weiss 

(2000) showed that prevalence estimates of sensitive behaviors were significantly greater when 

anonymity was provided compared to offering only confidentiality, and a review by Tourangeau 

and Yan (2007) discussed the advantage of self-administered surveys in a private setting 

producing less biased responses.  

The bogus pipeline is also used to prevent response bias, where a fake polygraph-type 

device is connected to the subject and he/she is told that it will detect dishonest responses, 

even though it is not actually collecting any data. In this context, subjects must choose between 

offering a potentially socially undesirable response or looking like a liar (also socially 

undesirable; Aguinis, Pierce, & Quigley, 1993; Nederhof, 1985; Roese & Jamieson, 1993).  

The randomized response technique (RRT) is another approach that is used in attempts 

to reduce or eliminate response bias due to social desirability (Greenberg, Kuebler, Abernathy, 
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& Horvitz, 1971; Hsieh, Lee, Li, & Tu, 2016; Nederhof, 1985; Warner, 1965). In this approach, 

the subject uses a randomization device, such as a coin toss, to determine which of two 

questions to answer (one about the sensitive topic, the other being non-sensitive), with the 

interviewer being blinded to the question being answered. See Warner (1965) and Greenberg 

et al. (1971) for details.  

Regarding recall bias, using short recall periods and recalling events that occur 

infrequently are likely to result in decreased bias as opposed to longer recall periods and recall 

of more frequent events. Indeed, research has shown that recall accuracy deteriorates as the 

recall period increases and subjects have difficulty pinpointing exactly when a specific instance 

of an event occurred if the event itself occurred several times (Althubaiti, 2016).  

Detection and Quantification 

Even with a variety of methods available to prevent/reduce response bias, they are not 

always feasible to implement, and even if they are, no approach is perfect, so it is vital to be 

able to detect and quantify response bias. Several methods have been developed for this 

purpose that are implemented either during the data collection phase or the analysis phase of 

the study. 

Data Collection Phase 

During the data collection phase, certain types of response bias can be measured by 

using a social desirability detection scale (Lambert, Arbuckle, & Holden, 2016; O'Leary, Diller, & 

Recklitis, 2007), with two of the most common being the Balanced Inventory of Desirability 

Responding (Lanyon & Carle, 2007; Paulhus, 1998) and the Marlowe-Crowne Social Desirability 

Scale (MCSDS; Crowne & Marlowe, 1960; Loo & Loewen, 2004). 
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Another common approach is to ask the subject to rate his/her level of honesty, either 

overall, or for a specific question or survey. For example, some researchers have asked subjects 

“Overall, how honest would you say you were in answering this questionnaire?” with a 5- to 7-

point Likert scale ranging from 1 = completely honest to 5/7 = not honest at all (Siegel, Aten, & 

Roghmann, 1998; Wiederman, 1997; Zimmerman & Langer, 1995).  

Similarly, survey questions can be designed to detect careless/random responding (e.g., 

“I read this item before answering”) and inserted into a given questionnaire. Placing these 

items intermittently throughout the survey, rather than all at the end, allows for more accurate 

detection of when the careless responding began (Meyer et al., 2013).  

Analysis Phase 

Perhaps the most commonly used approach to detect and quantify response bias during 

the analysis phase is identifying inconsistent reporting across question sets (Zimmerman & 

Langer, 1995), time points (Langeland et al., 2015; Toneatto, Sobell, & Sobell, 1992; 

Zimmerman & Langer, 1995), or data collection methods (Elgar et al., 2005; Griesler, Kandel, 

Schaffran, Hu, & Davies, 2008; Hebert et al., 2002; Shields et al., 2008). For example, significant 

differences between self-reported weight and objectively measured weight would indicate 

inconsistent reporting across data collection methods. Identifying response bias in this manner 

is becoming common practice in the height/weight/BMI research area since it is a fairly simple 

process to measure height and weight to calculate BMI and to also collect this information via 

self-report surveys (e.g., Brault, Turcotte, Aimé, Côté, & Bégin, 2015; Clarke, Sastry, Duffy, & 

Ailshire, 2014; Gorber, Shields, Tremblay, & McDowell, 2008; Ward et al., 2016). 
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Another approach is to identify excessive or extreme reporting. For example, research 

has shown that men tend to report greater numbers of sexual experiences/partners compared 

to women (e.g., M. G. Alexander & Fisher, 2003; Beaussart & Kaufman, 2013; Smith, 1991; 

Wiederman, 1997). In the context of lifetime number of sex partners, Wiederman (1997) 

quantifies extreme reporting as values that fall outside of the statistically normal range (i.e., 10 

partners).  

Lastly, Hinz et al. (2007) identified and quantified response bias in their study by using 

an outcome measure that was equally balanced with positively and negatively phrased 

questions to create an acquiescence score. The scale was summed, without inverting negatively 

phrased items, and had a range from 0 to 100 with 50 as the median. Individuals scoring at 

either extreme evidenced strong acquiescence either positively or negatively.  

Adjustments 

Once response bias has been identified and quantified, adjustments can be made to 

reduce or eliminate the bias, resulting in more accurate statistical estimates. One approach is to 

simply identify predictors of biased responding and control for those variables during the 

modeling process. This approach has led to mixed results as its effectiveness depends on a 

sufficient number of bias predictors being adequately measured. That is, if too few bias 

predictors are identified and controlled for, or if the predictors are not measured accurately, 

the bias may only be reduced by a negligible amount, if at all, resulting in none to minimal 

improvements in estimator accuracy.  

Gorber et al. (2008) experienced significant bias reduction using this approach to adjust 

for differences in directly measured and self-reported height and weight in the 2005 Canadian 
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Community Health Survey sample. First, they calculated bias by subtracting the self-reported 

height/weight from the directly measured height/weight. Then, they determined the factors 

predictive of bias by using multiple regression models with demographic and health variables as 

predictors. Next, bias correction models were constructed by using the measured value of 

height/weight as the outcome with the self-reported value of height/weight and the significant 

predictive factors determined in the last step as the predictors. Indeed, the adjusted estimates 

using the bias correction models experienced significant improvement, as they were not 

statistically different from the directly measured values. See Gorber et al. (2008) for details. 

On the other hand, Lauritsen and Swicegood (1997), who investigated age at first sexual 

intercourse in a national sample of adolescents, did not experience improved estimator 

accuracy with this method. The researchers identified and controlled for the following variables 

as predictors of inconsistent reporting: age, gender, race, grade point average, family structure, 

household income, and neighborhood condition. Although several bias predictors were 

controlled for in their model, the estimate did not change significantly, indicating that this 

approach to bias-adjustment was ineffective in their study.  

Another approach to response bias correction was developed by Zimmerman and 

Langer (1995), who examined sexual behaviors in a sample of tenth grade students. The 

researchers collected information on subject-level reliability from each subject using the self-

reported honesty 5-point Likert scale discussed previously. Subjects were given a weight of 0.0 

if they claimed to be “not honest at all” or “not completely honest” and were dropped from the 

analyses. Subjects who reported that they were “fairly honest” received a weight of 0.33, “very 

honest” a weight of 0.67, and “completely honest” a weight of 1.0, indicating that their 
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responses had a minimal, moderate, and large influence on generating the estimate, 

respectively. However, the implementation of this weighting scheme did not result in a 

significant change in the estimates.  

Another response bias adjustment involves the use of an Expectation-Maximization-

Bayesian (EMB) algorithm, which was developed by researchers estimating the prevalence of 

rape and domestic violence using the National Crime Victimization Survey (Yu, Stasny, & Li, 

2008). The EMB model incorporates prior non-time-sensitive information into a model that 

accounts for factors that contribute to biased self-reports. In this study, the EMB model 

included type of crime, whether the spouse was present during the data collection interview, 

and whether the interview was over the phone or in person (researchers assume that presence 

of spouse and interview via phone increases response bias). Use of the Bayesian model 

significantly improved estimates compared to the frequentist model. See Yu et al. (2008) for 

details.  

The exponential decay model (EDM), which was used by researchers examining initial 

age of alcohol and marijuana use by adolescents in a nationwide sample, is another model that 

has been used for response bias correction (R. A. Johnson, Gerstein, & Rasinski, 1998). In their 

study, the researchers found that as time increased between first use and data collection 

period, estimates of alcohol/marijuana incidence decreased. Thus, an EDM was implemented to 

adjust for this response bias, statistically increasing accuracy of incidence estimates.  

Another study used a non-parametric statistical matching algorithm to adjust self-

reported height/weight in the Behavioral Risk Factor Surveillance System (BRFSS) using the 

relationship between self-reported and measured height/weight in the National Health and 



17 

 

Nutrition Examination Survey (NHANES; Ward et al., 2016). Subjects in each study were 

matched on height and weight percentiles within various demographic subgroups (age, gender, 

race, etc.) and the statistical matching algorithm was applied. This method resulted in 

significantly improved adjusted BRFSS height/weight estimates, as they did not significantly 

differ from the directly measured NHANES height/weight values. 

Score standardization has also been implemented to address bias from extreme 

responding (Brinker, 2002) and cross-cultural response bias (Fischer, 2004), resulting in more 

accurate estimates. On the subject-level, this method involves (1) transforming a subject’s raw 

scores across variables to z-scores by standardizing the distribution of their responses (Brinker, 

2002) or (2) using deviation scores, which are derived via ipsatization (Fischer, 2004). On the 

group level, this method involves group mean centering, or subtracting the group mean from 

the subject’s score, and on the cultural level, grand mean centering (Fischer, 2004).  

Conclusion  

Response bias is a significant problem in survey research and the impacts on statistical 

estimates can be highly influential, potentially leading to distorted results and inaccurate 

inferences. Understanding the various types of response bias and how they can be minimized is 

critical to obtaining and maintaining valid results in research studies. The objective of this 

chapter is to collect and synthesize information on the prevention, detection, quantification, 

and adjustment methods for various types of response bias in order to assist researchers 

utilizing self-report surveys in increasing the validity of their findings. Table 1 presents a 

summary of these various methods and each type of response bias to which they apply.    
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        Table 1: Summary of Response Bias Prevention, Detection/Quantification, and Adjustment Methods 

Method Type Method 
Applicable Response 

Bias Type 

Prevention Neutral questions Any 

 End anchors Any 

 Settings that permit anonymity Social desirability 

 Bogus Pipeline Social desirability 

 Randomized Response Technique (RRT) Social desirability 

 Short recall periods Recall bias 

 Recall infrequent events Recall bias 

Detection / 

Quantification 

Evaluate predictive factors for inconsistent reporting Any 

Self-reported honesty items Any 

Compare objective and subjective measures Any 

Social desirability scales Social desirability 

Item detection Careless responding 

Extreme values outside statistically normal range Extreme responding 

Do not invert negatively phrased items Extreme responding 

Acquiescence 

Adjustment Control for factors predictive of biased responding Any 

 Weights based on self-reported honesty Any 

 Statistical matching Any 

 Standardization Any 

 Expectation-Maximization-Bayesian (EMB) algorithm Social desirability 

 Exponential Decay Model (EDM) Recall bias 

 
 

Before designing a study, it is vital for researchers to assess the various types of bias 

that their study is vulnerable to, and methods to minimize, detect/quantify, and adjust for each 

of them individually. For example, case-control studies are particularly vulnerable to selection 

bias, observer bias, and misclassification bias (among others) and researchers should take every 

step they can to implement various methods to prevent and minimize the impacts of these 

potential biases in order to increase the validity of their findings.   

Implementing bias minimization efforts requires early planning and utilization of various 

methods through each stage of the research process (i.e., study design, data collection, data 

analysis, and publication). Although extra time and effort are required to effectively and 

efficiently implement these methods, generating minimally biased results will provide more 
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accurate findings, increasing the validity and integrity of the research produced. Indeed, 

investigators should exert the effort required to produce the most valid results, enhancing the 

quality of research disseminated to the scientific community.  
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Chapter 3: Simulation 

 

Introduction 

Self-report surveys are one of the most common methods of collecting data in research 

studies (Saczynski, McManus, & Goldberg, 2013) due to the relative ease of collecting 

information and the ability to assess experiences, attitudes, and beliefs that cannot be obtained 

from other data collection formats. However, self-reported data has a known vulnerability to 

response bias, which can lead to distorted estimates and misleading inferences (Adams et al., 

1999; Mazor et al., 2002; van de Mortel, 2008). Indeed, response bias, otherwise known as 

respondent bias or self-reporting bias, is a broad area of biases wherein a subject provides 

unreliable, inaccurate, or dishonest responses to questions, resulting in statistical estimates 

either over- or underestimating population parameters (Althubaiti, 2016; Lavrakas, 2008b; 

Szklo & Nieto, 2014; Wackerly et al., 2008).  

Perhaps the most commonly used approach to detecting response bias in self-report 

survey research is identifying inconsistent reporting across question sets (Zimmerman & 

Langer, 1995), time points (Langeland et al., 2015; Toneatto et al., 1992; Zimmerman & Langer, 

1995), or data collection methods (Elgar et al., 2005; Griesler et al., 2008; Hebert et al., 2002; 

Shields et al., 2008). For example, if a question asks, “Have you ever had sex before?” and the 

subject says “No,” but then answers “Yes” to another question that asks, “Have you ever been 

pregnant before?” this would indicate inconsistent reporting across question sets. If an item 
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asks, “Have you ever had sex before?” and the subject says “Yes” at baseline, but “No” at 

follow-up, this would constitute inconsistent reporting across time points. Or if a question asks, 

“Have you ever had sex before?” and the subject says “No,” but then a blood or urine test 

reveals that she is pregnant, this would be an example of response bias across data collection 

methods.  

Identifying response bias through inconsistent self-reports allows researchers to 

estimate subject- and sample-level reliability. Subject-level reliability can be estimated by 

calculating the proportion of inconsistent responses observed for each individual and 

subtracting this value from 1. For example, if there are 10 sets of questions where inconsistent 

reporting is possible, and a subject provides inconsistent reports in 2 of these question sets, 

then the proportion of inconsistent responses would be 
2

10
 = 0.20 or 20% and the subject-level 

reliability would be 1 – 0.20 = 0.80 or 80%. This can also be thought of as the subject’s 

probability of responding honestly. Sample reliability can then be calculated in one of two ways. 

The first option would be to compute the average subject-level reliability across the entire 

sample and the second option would be to calculate the proportion of reliable responders (i.e., 

subjects with 0 illogically inconsistent observations). For instance, if 25 out of 100 (0.25) 

subjects in a sample had at least one inconsistent response, then the sample-level reliability 

would be 1 – 0.25 = 0.75 or 75%. Response bias that is identifiable and quantifiable using the 

latter approach is part of the foundation for the current study.  

The impact of inconsistent reporting is evidenced in two school-based intervention 

studies aimed at reducing risky sexual behaviors in adolescents (Walsh-Buhi et al., 2016; 

Zimmerman & Langer, 1995). The first is the Teen Outreach Program (TOP), which was 
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conducted on two cohorts of high school freshman across 28 public schools throughout the 

state of Florida from 2012 – 2014, with a total sample size of 7,976. At each of three time 

points, subjects were asked if they had ever had sex, and if they had ever been pregnant 

(females) or if they had ever gotten someone else pregnant (males). For cohort one, 3,621 

subjects responded, with 105 subjects answering “Yes” at baseline to having ever had sex, but 

at a later time point answering “No.” Thus, 2.90% of subjects provided inconsistent responses 

to this item. Similarly, 19 subjects answered “Yes” to having ever been pregnant or gotten 

someone else pregnant but later answered “No,” resulting in 0.52% of the sample providing 

inconsistent responses to this item (Walsh-Buhi et al., 2016). A similar phenomenon was seen in 

the AIDS Education Program, which was conducted on 1,886 high school sophomores across 8 

schools in Miami-Dade, Florida during the early 1990s. During at least two of the four time 

points, subjects were asked if they had ever engaged in a variety of sexual and substance use-

related behaviors. The highest rate of inconsistent reporting in this study was regarding having 

ever engaged in sexual intercourse with a same-gender partner. Of those who said “Yes” to 

engaging in this behavior, nearly 50% later said they had never done so. The high level of 

inconsistent reporting in this example highlights the severe bias that can occur in the context of 

sensitive topics (i.e., those vulnerable to high levels of social desirability). Other items that 

evidenced illogically inconsistent reporting in this study: ever had sexual intercourse 

(approximately 10% of those who initially said “Yes,” later said “No”), ever used marijuana 

(14%), ever drank alcohol (8%), and ever used cigarettes (8%; Zimmerman & Langer, 1995). 

Please note that the rates of inconsistent reporting were calculated differently for each of these 

two studies. The former study calculated inconsistent reporters from the entire sample 
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(including those who said yes to the item at baseline and those who said no), whereas the latter 

study calculated inconsistent reporting from only subjects who said yes to the item at baseline 

(excluding subjects who said no).  

Reviewing the literature for relevant bias correction strategies reveals a gap that quickly 

needs to be filled. Indeed, many bias correction methods have been developed, as discussed in 

Chapter 2, but none apply to the specific situation of having inconsistent reporting as the 

method for measuring response bias or when historical data is present that provides 

information on subject-level reliability. Even for the latter school-based intervention example 

above, the authors, Zimmerman and Langer (1995), used self-reported honesty, not 

inconsistent reporting, to assign weights to subjects’ responses such that greater weights were 

given to respondents with higher levels of reported honesty. Indeed, their purpose for 

evaluating inconsistent reporting within their sample was to validate their self-reported 

honesty data.  

Consequently, the current study proposes adjustment methods that are applicable in 

situations where subject-level reliability is calculated through inconsistent reporting. 

Specifically, bias correction strategies were developed and tested using Monte Carlo simulation 

and logistic regression modeling. The models are a function of sample size, effect size, reliability 

distribution, and unreliable response style and, in the current study, were used to estimate the 

treatment effect for a series of hypothetical clinical trials. Bias and percent relative root mean 

square error (RRMSE (%)) were calculated for each treatment effect estimate and RRMSE (%) 

was compared among the various models to inform the selection of best strategies for a variety 

of study scenarios. Recommended strategies are proposed for clinical trials with various 
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combinations of sample and effect sizes, and the application of these strategies to real-world 

datasets are discussed.  

Methods 

Simulation was used to develop the bias correction strategies, which allows for the 

generation of “true” parameters in order to examine the accuracy of model estimates. Four 

factors that vary across research settings were investigated at various levels to assess their 

collective impact on the treatment effect estimates, including sample size, effect size, reliability 

distribution, and unreliable response style, each of which are discussed below.  

Sample Size 

Three samples were simulated of sizes N = 200, 2000, and 20000, each with half of the 

sample assigned to the treatment group and the other half, the control group. These sample 

sizes were chosen to reflect common real-world sample sizes and to evaluate how the bias 

correction models behave within a variety of sample sizes, which will help inform the 

corresponding bias correction recommendations.  

Model Parameters 

Bias correction models were developed using logistic regression modeling, with a binary 

outcome (0 = no, 1 = yes), a binary treatment condition (0 = control, 1 = treatment), and a 

binary covariate (0 = group A, 1 = group B). The simulated model is as follows: 

𝑙𝑜𝑔𝑖𝑡 [ 𝑃 (𝑌 = 1) ] =  𝛽0 + 𝛽1 (𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡) + 𝛽2 (𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒) 

where 𝑌 is the outcome of interest, 𝛽0 is the log odds of the outcome for the reference group 

(i.e., intercept), 𝛽1 is the difference in the log odds of the outcome between the treatment and 

control groups (i.e., treatment effect size) when the covariate is held constant, and 𝛽2 is the 



25 

 

difference in log odds of the outcome between groups A and B when treatment is held 

constant. The “true” intercept was simulated at -1.0, which corresponds to the outcome 

occurring in approximately 27% of the reference group (control, group A). The simulation of the 

“true” treatment effect and covariate parameters are discussed below. Once these parameters 

were simulated, they were linearly combined and set equal to the outcome variable, which was 

then run through the inverse logit function, resulting in the probability of outcome (𝑝). This 

probability was then used to simulate the “true” outcome via random generation from the 

binomial distribution:  

                       𝑝(𝑦) =
𝑛!

𝑦!(𝑛−𝑦)!
𝑝𝑦(1 − 𝑝)𝑛−𝑦                  𝑦 = 0, 1     𝑎𝑛𝑑    0 ≤ 𝑝 ≤ 1                (2) 

where 𝑦 is a specific level of the outcome (0 or 1), 𝑛 is the number of times the outcome was 

generated (1), and 𝑝(𝑦) is the probability of 𝑦. 

Treatment Effect 

The modeled treatment effect is an odds ratio (OR) that represents the difference in 

odds of saying “yes” to the outcome question for those in the treatment group versus those in 

the control group. Due to the logit nature of the model, log odds ratios were used. Specifically, 

log odds ratios of -0.3795 (OR = 0.6842), -0.9152 (OR = 0.4004), and -1.4204 (OR = 0.2416) were 

used in the simulation, with inverse ORs of 1.4615, 2.4972, and 4.1387. These inverse ORs 

correspond with Cohen’s d treatment effect sizes (ES) of 0.2 (small), 0.5 (medium), and 0.8 

(large) when the outcome of interest is present in 10% of the unexposed group (in this case, the 

control group). See Chen, Cohen, and Chen (2010) for a detailed comparison of and conversion 

between ORs and Cohen’s d effect sizes. 
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Covariate 

To mimic real-world differences in unreliable reporting, a binary self-reported covariate 

was generated wherein group A is more reliable than group B, which is controlled for in the 

model. This variable can be thought of as a predictor of bias and also as a risk factor that some 

people have at baseline and others do not (e.g., subjects who have drank alcohol before versus 

those who have not). A log odds ratio of 0.75 (OR = 2.12) was simulated for the covariate, 

suggesting that, when treatment is held constant, the odds of the outcome for subjects in the 

less reliable group (group B) are 2.12 times larger than the odds of the outcome for subjects in 

the more reliable group (group A).   

Reliability Distribution 

 The reliability distribution consists of the proportion of the sample that provides 

accurate, honest responses (i.e., reliable) and the proportion that provides inaccurate 

responses (i.e., unreliable). In this study, the reliability proportions were simulated at 

approximately 50% and 80% (making unreliable proportions equal to 50% and 20%, 

respectively). Another approach to generating the sample-level reliability would have been to 

simply calculate the average subject-level reliability. 

The first step in generating the reliability distributions was to randomly generate 

absolute values for each subject using the normal distribution: 

                                      𝑓(𝑦) =
1

𝜎√2𝜋
𝑒−(𝑦−𝜇)2/(2𝜎2)              − ∞ < 𝑦 < ∞                                        (3) 

where  𝑓(𝑦) is the absolute value to be generated, μ is the mean (M), and 𝜎 is the standard 

deviation (SD). Values M = 2 (for ~50% reliability) or M = 1 (for ~80% reliability) and SD = 1 were 

used. Then, subjects in group B had their reliability reduced by 25% by multiplying their 
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absolute values by 0.75. The next step consisted of reducing absolute values > 1 down to 1 so 

that all values were contained within the boundaries of probability (0 to 1). Lastly, the absolute 

values were converted to a binary scale (0 = unreliable and 1 = reliable) for each subject using 

the binomial distribution (random generation) with probability of an accurate response (𝑝) 

equal to the absolute value from the last step. That is, each subject’s value (0 or 1) categorizes 

them as either a reliable or unreliable reporter based on their probability of providing accurate 

responses.  

Unreliable Response Style 

Three response styles were simulated to reflect the nature of unreliable responding 

observed in survey research. These response styles are implemented in cases where the subject 

was categorized as an unreliable reporter, as just discussed, to incorporate biased self-reports. 

The model has two variables that are vulnerable to response bias, outcome and covariate, and 

the same unreliable response style was implemented for both variables.  

The first unreliable response style is social desirability, where the subject’s response 

(self-report) reflects the social norm for the context in question. Examples of questions 

vulnerable to social desirability include “Do you exercise regularly?” or “Have you ever been a 

victim of rape or incest?” In this study, unreliable responses under this response style are coded 

as 0, making the outcome (y = 1) a negative belief/behavior. The amount of bias that this 

unreliable response style contributes is dependent upon the prevalence of true 0 responses in 

the data (or 1 if that were the more socially desirable response). If the majority of subjects have 

a true response of 0, then socially desirable responding contributes relatively little bias since 

the data do not change very much by incorporating the biased self-reports. However, if most 
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true responses are 1, then more bias is contributed since more values will change from 1 to 0. 

In the current study, the prevalence of 0 in the data ranged from 56 – 73% in the control group, 

thus, socially desirable responding contributed relatively little bias overall.  

The second unreliable response style is arbitrary responding, otherwise known as 

careless responding. This occurs when a subject chooses an answer randomly, disregarding the 

question content. In this study, arbitrary responses were randomly generated at 0 or 1, with 

each having a 50% likelihood of generation. Therefore, arbitrary responding contributed a 

moderate amount of bias to the data.  

The final unreliable response style is opposite responding, where the subject chooses 

the answer that is opposite to the true response. For example, if the question is “Are you an 

only child?” and the true answer is Yes (code = 1), then the unreliable response is No (code = 0), 

and vice versa. Since responses were dichotomized, opposite response was coded as  

(1 – response) resulting in a 0 if the true response was 1, or a 1 if the true response was 0. Since 

opposite responding always provided an unreliable response, this response style contributed 

bias 100% of the time, and provided the greatest amount of bias of all three response styles. 

Bias Correction Strategies and Models 

Bias correction strategies were evaluated using three primary methods: reliability 

weights, reliability thresholds, and weight/threshold combinations. The weighting method 

provided larger weights for subjects with higher probabilities of honest responding, thus 

allowing reliable responses to have a larger influence on the treatment effect estimates than 

less-reliable responses. The subject’s probability of responding honestly (𝑝) was used as the 

weight such that weights ranged from 0 to 1. The specific weighting methods utilized consisted 
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of linear weighting (𝑝), quadratic weighting (𝑝2), and cubic weighting (𝑝3). If, for example,     

𝑝 = 1, then 𝑝2 = 1, and 𝑝3 = 1, but if 𝑝 = .5, then 𝑝2 = 0.25, and 𝑝3 = 0.125, showing that 

reliable responses have a consistently large influence on generating the estimate, but that 

unreliable responses have their level of influence minimized as the weighting method 

intensifies. Comparing these two reliabilities, it is clear the latter (𝑝 = .5) influences the 

estimate half as much as the former (𝑝 = 1) under linear weighting (LW), a quarter under 

quadratic weighting (QW), and only an eighth under cubic weighting (CW). If no weighting 

method were used, then all responses would contribute to the estimate of treatment effect 

equally, regardless of reliability level.   

The threshold method removed responses where the probability of honest responding 

(𝑝) fell below the reliability level indicated by the threshold. Simulated thresholds ranged from 

0.05 to 1.00 in increments of 0.05, with the additional inclusion of 0.99 (21 thresholds). As an 

example, for a threshold of 0.80, then only subjects with 𝑝 = 0.80 or greater would be included 

in the analyses and everyone with 𝑝 < 0.80 would be removed. Thresholds may be expressed 

either as a decimal or as a percentage (i.e., 0.80 or 80%).  

Lastly, the combined method generated every possible combination of the weighting 

and threshold methods at each level for a total of 63 combinations. As an example, for the 

combination of 0.80 threshold with a quadratic weight, then all subjects with 𝑝 < 0.80 would 

be removed from the data, then a quadratic weight would be imposed such that all remaining 

subjects would have their probability of responding reliably (𝑝) squared (𝑝2) to create their 

individual weight.   
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Model Comparison  

Organizational Structure  

Each of the aforementioned bias correction strategies (87 in total) were incorporated 

into logistic regression models and were applied to each of the three unreliable response styles 

discussed above, resulting in 261 bias correction models. An additional four unadjusted models 

were generated: the “true” model and one for each of the three unreliable response styles, 

resulting in 265 models. 

The 265 simulated models were generated for both sample reliability distributions  

(n = 2; ~50% and ~80%) resulting in 530 models. Further, these 530 models were implemented 

within each of the nine combinations of sample size (n = 3; N = 200, 2000, 20000) and 

treatment effect size (n = 3; ES = small, medium, large). Thus, a total of 4,770 models were 

generated for the current study. Consequently, the bias correction strategies are a function of 

sample size, effect size, reliability distribution, and unreliable response style. 

The model estimates were organized first by sample size (N), then by treatment effect 

size (ES), resulting in a total of nine scenarios, as listed in the first row of Figure 1. Each of these 

nine scenarios contained both sample reliabilities (RLB), listed in the second row; each of the 

sample reliabilities contained all three unreliable response styles (RS) listed in the third row; 

and each of the unreliable response styles contained all three bias correction methods, listed in 

the bottom row. Thus, this figure is constructed in a top-down fashion such that each cell 

contains all cells in the subsequent rows. Herein, the nine scenarios listed in the top row are 

referred to as N/ES combinations and each sample reliability and response style combination 
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(rows two and three) are referred to as RLB/RS combinations. Each N/ES combination contains 

all six RLB/RS combinations.   

 

 

 

Bias and RRMSE (%)  

 Bias and percent relative root mean square error (RRMSE (%)) were calculated for the 

estimated treatment effect for each of the 4,770 models using the following formulas:  

𝐵𝑖𝑎𝑠 = ( 
1

𝑅
 ∑  𝛽̂𝑖 )

𝑅
𝑖=1 − 𝛽                     (4) 

                  𝑅𝑅𝑀𝑆𝐸 (%) = 100 × √ 
1

𝑅
 ∑  ( 𝛽̂𝑖 − 𝛽 )

2𝑅
𝑖=1  | 𝛽 |⁄                        (5) 

where 𝑅 is the number of simulation replications, 𝛽̂𝑖 is the estimated treatment effect size 

produced in the 𝑖𝑡ℎ replication, and 𝛽 is the true treatment effect size. Furthermore, 

( 
1

𝑅
 ∑  𝛽̂𝑖 )

𝑅
𝑖=1  is the sample equivalent of 𝐸(𝛽̂) (see formula 1), which is the expected value 

(i.e., mean) of the sampling distribution of the estimated treatment effect size generated from 

the full set of replications. 
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Figure 1: Organizational Structure of Bias Correction Models 
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As indicated by formula (4), bias is the difference between the true treatment effect and 

the mean of the estimated treatment effects generated in a set of simulation replications. Bias 

is positive when the true value is overestimated and negative when underestimated. As 

indicated by formula (5), RRMSE (%) is the relative average distance between the true and 

individually estimated treatment effects and is calculated as relative rather than absolute in 

order to easily compare error across all models. 

Although bias and RRMSE (%) were both calculated, only RRMSE (%) was used in 

selecting the bias correction strategies since it accounts for both bias and variance. Indeed, 

RRMSE (%) can be reduced to MSE (i.e., mean square error), which is equivalent to the variance 

plus bias-squared and is statistically decomposed as such:   

𝑅𝑅𝑀𝑆𝐸 (%) = 100 × √ 
1

𝑅
 ∑  ( 𝛽̂𝑖 − 𝛽 )

2𝑅
𝑖=1  | 𝛽 |⁄                 (6) 

𝑀𝑆𝐸 =
1

𝑅
∑ [( 𝛽̂𝑖 − 𝛽 )

2
]𝑅

𝑖=1   

 

𝑀𝑆𝐸 =
1

𝑅
∑ [[( 𝛽̂𝑖 −

1

𝑅
∑ (𝛽̂𝑖)

𝑅
𝑖=1 ) + (

1

𝑅
∑ (𝛽̂𝑖)

𝑅
𝑖=1 − 𝛽)]

2

]𝑅
𝑖=1   

 

𝑀𝑆𝐸 =
1

𝑅
∑ [( 𝛽̂𝑖 −

1

𝑅
∑ (𝛽̂𝑖)

𝑅
𝑖=1 )

2

]𝑅
𝑖=1 +

1

𝑅
∑ [(

1

𝑅
∑ (𝛽̂𝑖) − 𝛽𝑅

𝑖=1 )
2

]𝑅
𝑖=1 +

1

𝑅
∑ [2 (𝛽̂𝑖 −

1

𝑅
∑ (𝛽̂𝑖)

𝑅
𝑖=1 ) (

1

𝑅
∑ (𝛽̂𝑖) − 𝛽𝑅

𝑖=1 )]𝑅
𝑖=1    

 

𝑀𝑆𝐸 = 𝑉(𝛽̂𝑖) + [𝐵(𝛽̂𝑖)]
2
 

 

where 𝑉(𝛽̂𝑖) is the variance and [𝐵(𝛽̂𝑖)]
2
 is the bias-squared.  

   Selecting the Best Strategy  

Within each N/ES combination, all RLB/RS combinations were examined, and the model, 

other than the “true” model, that provided the treatment effect estimate with the lowest 

RRMSE (%) was chosen as the index bias correction strategy. Since the index strategies 

appeared in a random pattern across the RLB/RS combinations, which did not allow for general  
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Table 2: RRMSE (%) Margins by Scenario 

N ES RLB 

RRMSE (%) 

Opposite  Arbitrary  Social Desirability 

Min Mgn Max  Min Mgn Max  Min Mgn Max 

200 S 50 93.453 3.5 96.953  87.375 3.5 90.875  98.997 3.5 102.497 

80 86.906 3.5 90.406  84.081 3.5 87.581  87.968 3.5 91.468 

M 50 46.085 2.5 48.585  43.132 2.5 45.632  44.537 2.5 47.037 

80 40.807 2.5 43.307  40.039 2.5 42.539  40.705 2.5 43.205 

L 50 34.609 2.0 36.609  32.764 2.0 34.764  51.434 2.0 53.434 

80 28.953 2.0 30.953   28.366 2.0 30.366   30.008 2.0 32.008 

2000 S 50 33.699 2.0 35.699  31.548 2.0 33.548  31.360 2.0 33.360 

80 26.452 2.0 28.452  25.937 2.0 27.937  26.387 2.0 28.387 

M 50 16.305 1.5 17.805  15.427 1.5 16.927  14.516 1.5 16.016 

80 12.458 1.5 13.958  12.198 1.5 13.698  12.107 1.5 13.607 

L 50 12.075 1.5 13.575  11.669 1.5 13.169  10.655 1.5 12.155 

80 9.376 1.5 10.876   9.187 1.5 10.687   8.991 1.5 10.491 

20000 S 50 11.781 1.0 12.781  11.353 1.0 12.353  10.042 1.0 11.042 

80 9.142 1.0 10.142  8.969 1.0 9.969  8.866 1.0 9.866 

M 50 5.614 0.5 6.114  5.482 0.5 5.982  4.877 0.5 5.377 

80 4.035 0.5 4.535  3.988 0.5 4.488  3.857 0.5 4.357 

L 50 3.990 0.5 4.490  3.968 0.5 4.468  3.468 0.5 3.968 

80 2.913 0.5 3.413   2.907 0.5 3.407   2.772 0.5 3.272 

Note: N = Sample Size, ES = Effect Size (S = Small, M = Medium, L = Large), RLB = Sample Reliability (%),  
Mgn = Margin. 

 

applicability, an RRMSE (%) margin was generated such that all strategies producing estimates 

within the margin were considered for recommendation. In order to increase applicability of 

the bias correction strategies, the RRMSE (%) margin was increased in 0.5 increments until at 

least one strategy covered all six RLB/RS combinations. That is, all six RLB/RS combinations 

within each of the nine N/ES combinations contained treatment effect estiamtes that fell within 

the RRMSE (%) margin, allowing for general applicability. The RRMSE (%) margins used in each 

scenario are presented in Table 2. In cases where multiple strategies covered all six RLB/RS 

combinations, the strategy that generated the estimate with the lowest RRMSE (%) for the 

majority of RLB/RS combinations was chosen as the recommended strategy. This selection 
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process resulted in a specific bias correction strategy recommendation for each of the nine 

N/ES combinations. 

Results 

Simulations were run in R version 3.3.2 and 1,000 replications were conducted to create 

the sampling distribution used to estimate the treatment effect size in each of the bias 

correction models, which are a function of sample size, effect size, reliability distribution, and 

unreliable response style.  

Prediction Equations 

Table 3 provides the prediction equations for the various combinations of treatment 

and covariate levels with the corresponding log odds and probability of outcome for each of 

these groups, by effect size. Baseline rates of the outcome are approximately 27% for group A 

and 44% for group B, with these rates decreasing after treatment to approximately 20% and 

35%, respectively, for the small effect size, 13% and 24% for the medium effect size, and 8% 

and 16% for the large effect size. 

 

        Table 3: Prediction Equations, Log Odds of Outcome, and Probability of Outcome  

Effect 
Size 

Group Prediction Equations 
Log Odds  

of Outcome 
Probability 
of Outcome 

𝑙𝑜𝑔𝑖𝑡[𝑃(𝑌 = 1)] = 𝛽0 + 𝛽1(𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡) + 𝛽2(𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒) 

None Control, A 𝑙𝑜𝑔𝑖𝑡[𝑃(𝑌 = 1)] = 𝛽0 + 𝛽1(0) + 𝛽2(0) -1.000 0.269 

 Control, B 𝑙𝑜𝑔𝑖𝑡[𝑃(𝑌 = 1)] = 𝛽0 + 𝛽1(0) + 𝛽2(1) -0.250 0.438 

Small Treat, A 𝑙𝑜𝑔𝑖𝑡[𝑃(𝑌 = 1)] = 𝛽0 + 𝛽1(1) + 𝛽2(0) -1.380 0.201 

 Treat, B 𝑙𝑜𝑔𝑖𝑡[𝑃(𝑌 = 1)] = 𝛽0 + 𝛽1(1) + 𝛽2(1) -0.630 0.348 

Medium Treat, A 𝑙𝑜𝑔𝑖𝑡[𝑃(𝑌 = 1)] = 𝛽0 + 𝛽1(1) + 𝛽2(0) -1.915 0.128 

 Treat, B 𝑙𝑜𝑔𝑖𝑡[𝑃(𝑌 = 1)] = 𝛽0 + 𝛽1(1) + 𝛽2(1) -1.165 0.238 

Large Treat, A 𝑙𝑜𝑔𝑖𝑡[𝑃(𝑌 = 1)] = 𝛽0 + 𝛽1(1) + 𝛽2(0) -2.420 0.082 

 Treat, B 𝑙𝑜𝑔𝑖𝑡[𝑃(𝑌 = 1)] = 𝛽0 + 𝛽1(1) + 𝛽2(1) -1.670 0.158 

         Note. A = group A; B = group B. 
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Subject- and Sample-Level Reliability 

Figure 2 presents the reliability distributions for the N = 20000 samples with the top two 

graphs representing the entire sample and the bottom two graphs representing only individuals 

where 𝑝 < 1. The 50% reliable sample is presented on the left and the 80% reliable sample on 

the right. The x-axis presents 𝑝 and the y-axis presents the relative frequency (i.e., percentage 

Figure 2: Reliability Distributions for 50% and 80% Reliable Samples (N = 20000) 
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of sample who falls in each category of 𝑝). Comparing the top graphs, the highest bar to the 

right represents the subjects where 𝑝 = 1 (i.e., reliable responders). It is evident that this group 

makes up about 50% of the sample in the upper-left panel and about 80% in the upper-right. In 

these graphs, the lower bars to the left represent subjects where 𝑝 < 1 (i.e., unreliable 

responders), which is highlighted in the lower graphs. Here, for the 50% reliable sample, each 

level of 𝑝 contains approximately 10% of the unreliable sample, showing a minimal amount of 

variance among the different levels of unreliability. However, for the 80% reliable sample, the 

distribution of unreliability is skewed such that the percentage of subjects in each level of 𝑝 

increases as 𝑝 increases. 

Supplementing Figure 2, Table 4 presents descriptives of subject-level reliability for each 

sample reliability. Intuitively, the 80% reliable sample will have higher mean and median 

subject-level reliabilities since the overall reliability is higher, which is evidenced across all 

sample sizes. The mean subject-level reliability for the 50% reliable sample is approximately 

70% whereas the mean for the 80% reliable sample is approximately 90%. Likewise, the median 

reliability for the 50% reliable sample is only around 90%, whereas it is consistently 100% in the 

80% reliable sample. 

 

    Table 4: Subject-Level Reliability for 50% and 80% Reliable Samples 

RLB N Min Mean Median Max 

50 200 0.003 0.712 0.884 1.000 

2000 0.001 0.714 0.893 1.000 

20000 0.000 0.719 0.898 1.000 

80 200 0.063 0.898 1.000 1.000 

2000 0.001 0.913 1.000 1.000 

20000 0.000 0.917 1.000 1.000 

          Note. RLB = Sample Reliability (%). 
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Comparison of Bias Correction Strategies  

Within each of the nine N/ES combinations, the index strategy was chosen for each 

RLB/RS combination, the RRMSE (%) margin was created to allow for increased applicability, 

and competing strategies that fell within the margin were compared. The bias correction 

strategy that produced estimates with the lowest RRMSE (%) for the majority of RLB/RS 

combinations was chosen as the best strategy for that N/ES combination.  

Figures 3 through 5 present a comparison of select competing bias correction strategies 

within each of the nine N/ES combinations, separated by unreliable response style, with the 

graph for opposite responding appearing first, following by arbitrary responding, then socially 

desirable responding. The x-axis presents the 50% and 80% reliable samples and the y-axis is 

the RRMSE (%). The graphs are paneled by sample size, shown on the top horizontal side, and 

by treatment effect size, shown on the right vertical side. 

The legend classifies levels of bias correction strategy by color and treatment effect size. 

Each color appears across all treatment effect sizes, but not necessarily across all sample sizes. 

The red points are the best bias correction strategies and the orange points represent the first 

alternate strategy, both of which appear across all sample sizes. The blue points represent the 

second alternate strategy and appear only for the N = 2000 and 20000 samples. Similarly, the 

green points represent the third alternate strategy and appear only for the N = 20000 sample. 

That is, N = 200 has one selected alternate strategy, N = 2000 has two alternates, and  

N = 20000 has three alternates.  

The treatment effect size that each level of bias correction strategy within the legend 

applies to is indicated by the letter S (small), M (medium), or L (large) at the beginning of the 
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 Figure 4: Comparison of RRMSE (%) for Competing Bias Correction  

 Strategies, Arbitrary Responding 

 

 Figure 3: Comparison of RRMSE (%) for Competing Bias Correction         

 Strategies, Opposite Responding 
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level name. For opposite and arbitrary responding, the red points (best strategy) have three 

levels for each of the small, medium, and large effect sizes, one for each sample size, listed in 

order of appearance (N = 200, N = 2000, then N = 20000), indicating that each sample size had a 

different best strategy for each level of effect size. For social desirability, only one level of bias 

correction strategy is listed for each effect size since the same strategy was used across all 

sample sizes. For all three unreliable response styles, the orange points (first alternate) each 

have three levels of bias correction strategy for each effect size, with one for each sample size; 

the blue points each have two levels for each effect size, one for N = 2000 and the other for  

N = 20000; and the green points have only one level for each effect size, for N = 20000.  

 

Figure 5: Comparison of RRMSE (%) for Competing Bias Correction    

Strategies, Socially Desirable Responding 
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As evidenced in the graphs, there is not much variation among estimates from the 

competing bias correction strategies as they appear to lie directly upon one another with few 

exceptions, primarily for N = 200. Here, the red point (best strategy) falls below the orange 

point (alternate strategy) for most of the response styles in the 50% and 80% samples across all 

effect sizes. The exception to this is opposite responding in the 50% reliable sample, wherein 

the alternate strategy produces slightly less error; however, this effect diminishes in the 80% 

sample and is a small cost for widely increased applicability. Evaluating these graphs 

collectively, the significant amount of overlap in the points highlights similar error among the 

strategies, suggesting that the RRMSE (%) margin used to select the best bias correction 

strategy is reasonable as substantial error was not introduced in the process of increasing 

applicability.  

 To supplement Figure 3 and provide a more detailed comparison, Tables 5 through 7 

present the bias and RRMSE (%) for the competing strategies for opposite, arbitrary, and 

socially desirable responding, respectively. These tables clearly show the number of alternate 

strategies that arose for each sample size and the strategies evaluated in each scenario. The 

sample size (N), effect size (ES), and sample reliabilities (RLB) are presented in the first three 

columns, defining each scenario, while the competing strategies are presented in the 

subsequent columns.   

Examining Tables 5 and 6, for scenario N = 200/ES = small, the best strategy is no 

adjustment, as the one alternate strategy (LW) increases RRMSE (%) for most of the RLB/RS 

combinations, rather than decreasing it. The one exception is opposite responding in the 50% 

sample, but as previously mentioned, this is the cost of increasing applicability of the bias 
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Table 5: Bias and RRMSE (%) for Competing Bias Correction Strategies, Opposite Responding 

N ES RLB 
Best Strategy Alternate 1 Alternate 2 Alternate 3 

Strategy Bias RRMSE(%) Strategy Bias RRMSE(%) Strategy Bias RRMSE(%) Strategy Bias RRMSE(%) 

200 S 50 None 0.243 101.307 LW 0.125 93.453 ------ ------ ------ ------ ------ ------ 

80 None 0.095 86.906 LW 0.044 87.128 ------ ------ ------ ------ ------ ------ 

M 50 40%-LW 0.242 48.451 QW 0.205 46.546 ------ ------ ------ ------ ------ ------ 

80 40%-LW 0.086 40.913 QW 0.065 41.038 ------ ------ ------ ------ ------ ------ 

L 50 40%-QW 0.302 36.425 CW 0.233 34.851 ------ ------ ------ ------ ------ ------ 

80 40%-QW 0.084 29.042 CW 0.054 29.238 ------ ------ ------ ------ ------ ------ 

2000 S 50 40%-LW 0.076 35.548 QW 0.063 34.505 25%-QW 0.060 34.277 ------ ------ ------ 

80 40%-LW 0.023 26.592 QW 0.017 26.453 25%-QW 0.016 26.452 ------ ------ ------ 

M 50 55%-CW 0.094 17.788 65%-QW 0.090 17.708 70%-LW 0.087 17.694 ------ ------ ------ 

80 55%-CW 0.032 12.544 65%-QW 0.032 12.576 70%-LW 0.032 12.635 ------ ------ ------ 

L 50 75%-CW 0.093 12.951 80%-LW 0.085 12.991 80%-QW 0.074 12.665 ------ ------ ------ 

80 75%-CW 0.037 9.436 80%-LW 0.035 9.510 80%-QW 0.031 9.441 ------ ------ ------ 

20000 S 50 70%-CW 0.025 12.465 85% 0.013 11.866 85%-LW 0.012 11.819 85%-QW 0.011 11.792 

80 70%-CW 0.009 9.186 85% 0.005 9.161 85%-LW 0.005 9.150 85%-QW 0.004 9.144 

M 50 85%-CW 0.028 6.056 90% 0.018 5.698 90%-LW 0.017 5.667 90%-QW 0.016 5.641 

80 85%-CW 0.010 4.103 90% 0.007 4.062 90%-LW 0.006 4.055 90%-QW 0.006 4.049 

L 50 95%-CW 0.009 3.990 95% 0.010 4.003 95%-LW 0.010 3.999 95%-QW 0.010 3.994 

80 95%-CW 0.003 2.914 95% 0.003 2.913 95%-LW 0.003 2.913 95%-QW 0.003 2.913 

Note. N = Sample Size, ES = Effect Size (S = Small, M = Medium, L = Large), RLB = Sample Reliability (%), LW = Linear Weight, QW = Quadratic Weight,  
CW = Cubic Weight. 
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Table 6: Bias and RRMSE (%) for Competing Bias Correction Strategies, Arbitrary Responding 

N ES RLB 
Best Strategy Alternate 1 Alternate 2 Alternate 3 

Strategy Bias RRMSE(%) Strategy Bias RRMSE(%) Strategy Bias RRMSE(%) Strategy Bias RRMSE(%) 

200 S 50 None 0.130 87.375 LW 0.064 90.87 ------ ------ ------ ------ ------ ------ 

80 None 0.052 84.081 LW 0.024 86.862 ------ ------ ------ ------ ------ ------ 

M 50 40%-LW 0.123 44.135 QW 0.101 44.012 ------ ------ ------ ------ ------ ------ 

80 40%-LW 0.043 40.587 QW 0.032 40.983 ------ ------ ------ ------ ------ ------ 

L 50 40%-QW 0.141 33.234 CW 0.098 33.751 ------ ------ ------ ------ ------ ------ 

80 40%-QW 0.026 29.082 CW 0.010 29.480 ------ ------ ------ ------ ------ ------ 

2000 S 50 40%-LW 0.037 31.548 QW 0.030 31.767 25%-QW 0.028 31.821 ------ ------ ------ 

80 40%-LW 0.010 26.133 QW 0.007 26.201 25%-QW 0.007 26.225 ------ ------ ------ 

M 50 55%-CW 0.045 15.450 65%-QW 0.042 15.579 70%-LW 0.041 15.666 ------ ------ ------ 

80 55%-CW 0.015 12.236 65%-QW 0.015 12.237 70%-LW 0.016 12.264 ------ ------ ------ 

L 50 75%-CW 0.042 11.669 80%-LW 0.038 11.751 80%-QW 0.032 11.716 ------ ------ ------ 

80 75%-CW 0.018 9.216 80%-LW 0.018 9.271 80%-QW 0.015 9.266 ------ ------ ------ 

20000 S 50 70%-CW 0.014 11.353 85% 0.008 11.618 85%-LW 0.007 11.621 85%-QW 0.007 11.635 

80 70%-CW 0.005 8.996 85% 0.003 9.080 85%-LW 0.003 9.081 85%-QW 0.002 9.086 

M 50 85%-CW 0.016 5.535 90% 0.011 5.501 90%-LW 0.010 5.492 90%-QW 0.010 5.486 

80 85%-CW 0.006 3.988 90% 0.004 4.007 90%-LW 0.004 4.006 90%-QW 0.003 4.006 

L 50 95%-CW 0.006 3.966 95% 0.006 3.973 95%-LW 0.006 3.970 95%-QW 0.006 3.968 

80 95%-CW 0.001 2.910 95% 0.001 2.907 95%-LW 0.001 2.908 95%-QW 0.001 2.909 

Note. N = Sample Size, ES = Effect Size (S = Small, M = Medium, L = Large), RLB = Sample Reliability (%), LW = Linear Weight, QW = Quadratic Weight,  
CW = Cubic Weight. 
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Table 7: Bias and RRMSE (%) for Competing Bias Correction Strategies, Socially Desirable Responding 

N ES RLB 
Best Strategy Alternate 1 Alternate 2 Alternate 3 

Strategy Bias RRMSE(%) Strategy Bias RRMSE(%) Strategy Bias RRMSE(%) Strategy Bias RRMSE(%) 

200 S 50 None -0.019 98.997 LW -0.014 101.964 ------ ------ ------ ------ ------ ------ 

80 None -0.002 87.968 LW 0.000 89.337 ------ ------ ------ ------ ------ ------ 

M 50 None -0.006 44.537 QW -0.016 47.866 ------ ------ ------ ------ ------ ------ 

80 None 0.000 40.705 QW -0.004 42.123 ------ ------ ------ ------ ------ ------ 

L 50 None -0.039 51.822 CW -0.071 53.695 ------ ------ ------ ------ ------ ------ 

80 None -0.031 30.008 CW -0.038 30.759 ------ ------ ------ ------ ------ ------ 

2000 S 50 None 0.033 31.360 QW 0.006 33.272 25%-QW 0.006 33.335 ------ ------ ------ 

80 None 0.012 26.439 QW 0.001 26.710 25%-QW 0.000 26.715 ------ ------ ------ 

M 50 None 0.046 14.623 65%-QW 0.000 15.615 70%-LW -0.001 15.655 ------ ------ ------ 

80 None 0.018 12.195 65%-QW 0.000 12.379 70%-LW 0.000 12.423 ------ ------ ------ 

L 50 None 0.052 10.740 80%-LW -0.008 11.780 80%-QW -0.009 11.826 ------ ------ ------ 

80 None 0.021 9.053 80%-LW 0.000 9.304 80%-QW 0.000 9.312 ------ ------ ------ 

20000 S 50 None 0.020 10.751 85% 0.003 11.529 85%-LW 0.003 11.553 85%-QW 0.003 11.584 

80 None 0.008 8.719 85% 0.001 9.058 85%-LW 0.001 9.065 85%-QW 0.001 9.073 

M 50 None 0.038 6.048 90% 0.003 5.394 90%-LW 0.003 5.398 90%-QW 0.003 5.402 

80 None 0.014 4.044 90% 0.001 3.995 90%-LW 0.001 3.997 90%-QW 0.001 3.999 

L 50 None 0.045 4.432 95% 0.002 3.959 95%-LW 0.002 3.958 95%-QW 0.002 3.957 

80 None 0.016 2.919 95% 0.000 2.908 95%-LW 0.000 2.909 95%-QW 0.000 2.910 

Note. N = Sample Size, ES = Effect Size (S = Small, M = Medium, L = Large), RLB = Sample Reliability (%), LW = Linear Weight, QW = Quadratic Weight,  
CW = Cubic Weight. 
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  Table 8: Bias and RRMSE (%) for Adjusted Social Desirability 

N ES Strategy 
       50% Sample        80% Sample 

Bias RRMSE(%) Bias RRMSE(%) 

200 S None ------ ------ ------ ------ 

M 40%-LW -0.013 46.895 -0.002 41.704 

L 40%-QW -0.065 52.991 -0.036 30.534 

2000 S 40%-LW 0.009 32.695 0.002 26.515 

M 55%-CW 0.000 15.526 0.000 12.392 

L 75%-CW -0.008 11.726 0.000 9.293 

20000 S 70%-CW 0.004 10.956 0.001 8.958 

M 85%-CW 0.004 5.307 0.001 3.963 

L 95%-CW 0.002 3.956 0.000 2.911 

   Note. N = Sample Size, ES = Effect Size (S = Small, M = Medium, L = Large),  
   LW = Linear Weight, QW = Quadratic Weight, CW = Cubic Weight. 

 

correction strategies. Reviewing the remainder of scenarios for opposite and arbitrary 

responding, results show that the best strategy produces estimes with lower RRMSE (%) than 

the alternative strategies. 

Table 7 shows that the best strategy for social desirability in all scenarios is no 

adjustment. When compared to the unadjusted estimates, the best bias correction strategy in 

each scenario resulted in an increase in RRMSE (%), rather than a decrease, when applied to 

socially desirable responses. Thus, making no adjustment to these responses minimizes error in 

the estimator. However, to prevent introducing extra error into the estimate should the bias 

correction strategy be inadvertently applied to socially desirable responses, the RRMSE (%) for 

this response style was still taken into consideration when selecting the best strategy for each 

scenario. That is, if the best strategy in a scenario were applied to socially desirable responses, 

the RRMSE (%) for this response style would still fall within the acceptable margin, thus 

preventing a substantial increase in estimator error. Table 8 presents the bias and RRMSE (%) 

for social desirability if this were to happen.  
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Recommendations  

 The best bias correction strategies listed in Tables 5 and 6 are the recommended 

strategies and are summarized in Table 9 for each of the nine N/ES combinations. Overall, as 

sample and effect sizes increase, the bias correction strategy becomes more aggressive, as 

evidenced by the increasing reliability thresholds and weights.  

                    

                   Table 9: Recommended Bias Correction Strategies 

N    ES 
 Strategy 

Threshold (%) Weight 

200a Small None None 

Medium 40 Linear 

Large 40 Quadratic 

2000a Small 40 Linear 

Medium 55 Cubic 

Large 75 Cubic 

20000a Small 70 Cubic 

Medium 85 Cubic 

Large 95 Cubic 

Note. a – social desirability: no adjustment, regardless 
of sample/effect sizes. 

 

For clinical trials with N = 200, when ES = small, no adjustment is the recommended 

strategy, but when ES = medium or ES = large, a 40% reliability threshold is recommended and 

should be combined with a linear or quadratic weight, respectively. For trials with N = 2000, 

when ES = small, a 40% threshold is recommended with a linear weight, but a cubic weight is 

recommended when ES = medium or ES = large with reliability thresholds of 55% and 75%, 

respectively. For trials with N = 20000, a cubic weight is recommended for all effect sizes, but 

reliability thresholds differ and are recommended at 70%, 85%, and 95% when ES = small, 

medium, and large, respectively.  
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Comparison of Unadjusted and Adjusted Estimates  

Figures 6 though 8 present a comparison of the unadjusted and adjusted estimates 

within each of the nine N/ES combinations (i.e., study scenarios) for opposite, arbitrary, and 

socially desirable responding, respectively. Note that the adjusted estimates incorporate the 

recommended bias correction strategies for the given study scenario. The x-axis presents the 

50% and 80% sample reliabilities and the y-axis is the RRMSE (%). The graphs are paneled by 

sample size, shown on the top horizontal side, and by treatment effect size, shown on the right 

vertical side. The red points represent the recommended bias correction strategies presented 

above and the orange points represent the unadjusted models. For scenarios where no 

adjustment is the recommended strategy (i.e., N = 200/ES = small and socially desirable 

responding) the adjusted and unadjusted models are one and the same, thus, there is no 

distinction between the red and orange points in these cases. 

Examining RRMSE (%) for the unadjusted models (orange points) across all three graphs, 

it is apparent that responding styles that introduce more bias into the model have higher error, 

just as expected, with this effect more pronounced in the 50% reliable samples. Comparing 

across the nine N/ES combinations, unadjusted RRMSE (%) remains relatively consistent across 

sample and effect sizes within each responding style. This trend is indicated by the orange 

points appearing in approximately the same location within each study scenario, although a 

little more variability is seen for the N = 200 trials compared to the other sample sizes, 

reflecting increased variation due to the small sample size.  

Inspecting RRMSE (%) for the recommended bias correction strategies (red points), 

results show that, within each study scenario, the amount of adjusted error is similar in both  
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Figure 6: Comparison of RRMSE (%) for Unadjusted and Adjusted 

Models, Opposite Responding 
Figure 7: Comparison of RRMSE (%) for Unadjusted and Adjusted 

Models, Arbitrary Responding 



48 

 

 

 
 

sample reliabilities, as indicated by the relative lack of slope in the red lines. However, steeper 

slopes do emerge for trials with N = 200 due to increased variance. Adjusted error is also similar 

across responding styles for a given study scenario, as indicated by the red points appearing in 

approximately the same location in each of their respective plots. Comparing across the nine 

N/ES combinations, RRMSE (%) decreases as both sample and effect sizes increase, evidenced 

by the red lines appearing closer and closer to the bottom of each plot as the graph progress 

from left to right in each row and from top to bottom in each column.  

The reduction in RRMSE (%) in the bias corrected estimates as sample and effect sizes 

increase, in conjunction with the consistency of the RRMSE (%) in the unadjusted estimates, 

          Figure 8: Comparison of RRMSE (%) for Unadjusted and Adjusted     

          Models, Socially Desirable Responding 
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suggests that the magnitude of the bias correction increases as sample and effect sizes 

increase. The magnitude is also larger for the less reliable scenarios; that is, responding styles 

that introduce higher bias and for the 50% reliable samples. Indeed, these magnitudes are 

evidenced by the increasing distance between the orange and red lines as sample and effect 

sizes increase (moving left to right across each row and from top to bottom in each colulmn) 

and as responding style moves from less biased (social desirability) to more biased (opposite), 

with these trends especially pronounced in the 50% reliable sample.  

Tables 10 and 11 present the bias and RRMSE (%) for estimates from the unadjusted and 

adjusted models for opposite and arbitrary responding, respectively, as well as the amount of 

bias and RRMSE (%) reduction, and the strategy used in the bias correction. When no 

adjustment was the recommended strategy, dashed lines were entered for the adjusted and 

reduction columns. For socially desiarability, Table 12 presents the bias and RRMSE (%) for 

estimates from the unadjusted models only since no bias corrections were applied. 

Although RRMSE (%) increased by 0.296 for arbitrary responding in the 80% reliable  

N = 200/ES = medium trial (Table 11, row 4), the increase is negligible and is a small price to pay 

for decreased error for the other RLB/RS combinations in this scenario (i.e., ranging from 4.357 

to 26.828). Other than that, all RRMSE (%) changes are reductions ranging from 1.430 to 39.562 

for arbitrary responding and from 4.357 to 65.937 for opposite responding across both 50% and 

80% reliable samples. These numbers correspond to the distance between the red and orange 

points in Figures 6 and 7, again showing that opposite responding experiences the largest 

reduction in error, followed by arbitrary responding, with the same trend seen for bias. Tables 

10 and 11 also show that bias and RRMSE (%) decrease as sample and effect sizes increase. 
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      Table 10: Bias and RRMSE (%) for Unadjusted and Adjusted Models, Opposite Responding 

N ES RS 
     Unadjusted               Adjusted                Reduction 

Strategy 
Bias RRMSE(%)         Bias RRMSE(%)         Bias RRMSE(%) 

200 S 50 0.243 101.307 ------ ------ ------ ------ None 

80 0.095 86.906 ------ ------ ------ ------ None 

M 50 0.619 75.279 0.242 48.451 0.377 26.828 40%-LW 

80 0.242 45.270 0.086 40.913 0.156 4.357 40%-LW 

L 50 1.001 73.687 0.302 36.425 0.699 37.262 40%-QW 

80 0.413 38.250 0.084 29.042 0.329 9.208 40%-QW 

2000 S 50 0.228 64.763 0.076 35.548 0.152 29.215 40%-LW 

80 0.074 31.698 0.023 26.592 0.051 5.106 40%-LW 

M 50 0.595 65.865 0.094 17.788 0.501 48.077 55%-CW 

80 0.221 26.547 0.032 12.544 0.189 14.003 55%-CW 

L 50 0.983 69.528 0.093 12.951 0.890 56.577 75%-CW 

80 0.407 29.690 0.037 9.436 0.370 20.254 75%-CW 

20000 S 50 0.237 62.777 0.025 12.465 0.212 50.312 70%-CW 

80 0.082 23.001 0.009 9.186 0.073 13.815 70%-CW 

M 50 0.606 66.260 0.028 6.056 0.578 60.204 85%-CW 

80 0.229 25.265 0.010 4.103 0.219 21.162 85%-CW 

L 50 0.993 69.927 0.009 3.990 0.984 65.937 95%-CW 

80 0.415 29.337 0.003 2.914 0.412 26.423 95%-CW 

      Note. N = Sample Size, ES = Effect Size (S = Small, M = Medium, L = Large), 

       LW = Linear Weight, QW = Quadratic Weight, CW = Cubic Weight. 
 
 
 

      Table 11: Bias and RRMSE (%) for Unadjusted and Adjusted Models, Arbitrary Responding 

N ES RS 
     Unadjusted   Adjusted      Reduction 

Strategy 
Bias RRMSE(%)        Bias RRMSE(%)         Bias RRMSE(%) 

200 S 50 0.130 87.375 ------ ------ ------ ------ None 

80 0.052 84.081 ------ ------ ------ ------ None 

M 50 0.353 51.462 0.123 44.135 0.230 7.327 40%-LW 

80 0.130 40.291 0.043 40.587 0.087 -0.296 40%-LW 

L 50 0.607 48.550 0.141 33.234 0.466 15.316 40%-QW 

80 0.214 30.512 0.026 29.082 0.188 1.430 40%-QW 

2000 S 50 0.121 40.910 0.037 31.548 0.084 9.362 40%-LW 

80 0.038 27.090 0.010 26.133 0.028 0.957 40%-LW 

M 50 0.344 39.109 0.045 15.450 0.299 23.659 55%-CW 

80 0.118 17.191 0.015 12.236 0.103 4.955 55%-CW 

L 50 0.607 43.357 0.042 11.669 0.565 31.688 75%-CW 

80 0.227 17.895 0.018 9.216 0.209 8.679 75%-CW 

20000 S 50 0.132 35.602 0.014 11.353 0.118 24.249 70%-CW 

80 0.044 14.027 0.005 8.996 0.039 5.031 70%-CW 

M 50 0.355 38.976 0.016 5.535 0.339 33.441 85%-CW 

80 0.124 13.941 0.006 3.988 0.118 9.953 85%-CW 

L 50 0.617 43.528 0.006 3.966 0.611 39.562 95%-CW 

80 0.231 16.418 0.001 2.910 0.230 13.508 95%-CW 

       Note. N = Sample Size, ES = Effect Size (S = Small, M = Medium, L = Large), 

        LW = Linear Weight, QW = Quadratic Weight, CW = Cubic Weight. 
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             Table 12: Bias and RRMSE (%) for Unadjusted and  

             Adjusted Models, Socially Desirable Responding 

N ES 
50% Sample 80% Sample 

Bias RRMSE(%) Bias RRMSE(%) 

200 S -0.019 98.997 -0.002 87.968 

M -0.006 44.537 0.000 40.705 

L -0.039 51.822 -0.031 30.008 

2000 S 0.033 31.360 0.012 26.439 

M 0.046 14.623 0.018 12.195 

L 0.052 10.740 0.021 9.053 

20000 S 0.020 10.751 0.008 8.719 

M 0.038 6.048 0.014 4.044 

L 0.045 4.432 0.016 2.919 

             Note. N = Sample Size, ES = Effect Size  
(S = Small, M = Medium, L = Large).  

 

Conclusion 

Response bias is a common issue in survey research with well-documented impacts on 

statistical estimates. Although some attempts have been made at correcting for this bias, none 

are applicable when inconsistent reporting is the primary method of detecting and quantifying 

response bias. To address this gap, the current study analyzed 4,770 logistic regression models 

to evaluatae a wide variety of bias correction strategies across a myriad of scenarios (various 

combinations of sample size, effect size, sample reliability, and response style) to examine their 

collective impacts on estimating the treatment effect in a series of hypothetical clinical trials.  

The simulations showed that as sample size increased, the number of available bias 

correction strategies also increased, with N = 200 having only one alternative strategy, N = 2000 

having two, and N = 20000 having three. Additionally, bias and RRMSE (%) became more similar 

among estimates from competing strategies as sample and effect sizes increased, providing 

evidence of increasing estimator stability.  
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Based on these simulations, no adjustment is recommended for socially desirable 

responding or when N = 200/ES = small. However, when N = 200 and ES = medium or large, a 

40% reliability threshold combined with a linear weight for ES = medium or a quadratic weight 

for ES = large is recommended. For N = 2000 when ES = small, a 40% threshold in combination 

with a linear weight is recommended, but a cubic weight is recommended when ES = medium 

and ES = large with reliability thresholds of 55% and 75%, respectively. For N = 20000, a cubic 

weight is recommended for all effect sizes, but reliability thresholds differ and are 

recommended at 70%, 85%, and 95% when ES = small, medium, and large, respectively.  

Employing these bias correction strategies when unreliable responding has been 

detected within a dataset will decrease error and increase the accuracy of estimates and 

validity of inferences. In the current study, the best strategy for socially desirable responding 

was no adjustment since this responding style only introduced a small amount of bias and made 

minimal changes to the true responses. Thus, applying these strategies to responding styles 

that introduce minimal bias is not recommended. However, inadvertenly doing so will not 

introduce substantial error to the model and resulting estimates will still be valid. The results of 

this study also showed significant improvements in error for arbitrary and opposite responding, 

which introduced moderate and large amounts of bias into the model, respectively. Thus, 

applying these strategies to responding styles that introduce similar amounts of error will likely 

result in similar reductions in error. Furthermore, samples with low levels of reliability will 

receive the greatest benefits from these bias correction models; however, these strategies 

were designed to be applied to samples with higher levels of reliability as well, wherein more 

aggressive bias correction strategies can be applied.   
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Chapter 4: Discussion 

 

The objective of this study is to provide a means of reducing error in treatment effect 

estimation during statistical modeling and to show how this small advancement fits into the big 

picture of bias in clinical and epidemiological research. Bias is a problem that has plagued 

researchers for decades and comes in many different forms and from many different angles. 

Whatever the form, bias introduces error into statistical modeling and estimation, decreasing 

the validity of findings and inferences, with the potential to mislead the scientific community or 

the general public.  

For example, the optimal dosage of a drug could be inaccurately estimated in a clinical 

trial, resulting in an ineffective intervention if the dosage is underestimated or toxicity if 

overestimated. Furthermore, resources, namely grant funding, may not be distributed in a way 

that produces the best outcomes if the true effects are not evident due to biased results and/or 

reporting.  

Response bias is a particularly problematic type of bias because there are many 

subtypes, but prevention efforts are typically aimed at social desirability while ignoring the 

other subtypes, making this a bias typically handled in the analysis phase of a study. One of the 

more common methods of detecting and quantifying response bias after a study has ended is 

by identifying inconsistent reporting in survey responses. However, current bias correction 

methods are not appropriate for use when such is the case, thus motivating the current study.  
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 The recommended bias correction strategies presented in Chapter 3 require three 

pieces of information before they can be applied: (1) sample size, (2) effect size, and (3) 

subject-level reliability. The sample size will already by known and the effect size can be 

obtained by fitting the model as usual (i.e., unadjusted). Once these first two pieces of 

information are obtained, the third can be calculated as discussed below.  

Subject-level reliability may be obtained either through historical data or by identifying 

inconsistent reporting within a given dataset. For the latter, the first step is to count the 

number of times that a subject had the opportunity to provide an illogically inconsistent 

response. This can occur across question sets (e.g., responding “No” to “Have you ever had 

sex?” but “Yes” to “Have you ever been pregnant?”), time points (e.g., responding “Yes” to 

“Have you ever had sex?” at baseline, but “No” at follow-up), or data collection methods (e.g., 

responding “No” to “Have you ever had sex?” in an interview, but blood or urine sample shows 

that subject is pregnant). Once the number of opportunities for inconsistent reporting has been 

identified, the next step is to calculate the number of times that each subject provided an 

inconsistent response. Then calculate the proportion of inconsistent responses for each subject, 

which is found by dividing the number of observed inconsistent responses by the number of 

opportunities to provide an inconsistent response. For example, if there are 10 sets of 

questions where inconsistent reporting is possible, and a subject provides inconsistent reports 

in 2 of these question sets, then the proportion of inconsistent responses would be  

2

10
 = 0.20 or 20%. This number provides the probability of responding unreliably, so the inverse 

would be the probability of responding reliably (𝑝) – which is what we are after – obtained by 
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subtracting the probability of responding unreliably from 1. In this example, 𝑝 = 1 – 0.20 = 0.80 

or 80%.  

Once all three pieces of required information are obtained, researchers can refer to 

Table 9, where the recommended bias correction strategies are presented, and select the 

strategy that applies to the sample and effect size combination relevant to their trial. If the 

sample size falls between those presented in Table 9, researchers are encouraged to modify the 

threshold component by the amount equivalent to the distance between the sample size in 

question and those presented in the table. For example, a sample size of 1000 with a small 

effect size is approximately half way between 200 and 2000, so the researcher can reduce the 

threshold from 40% to 20% and try either linear or no weighting.  

 

          Table 13: Step-by-Step Guide to Applying Bias Correction Strategies 

Step Instruction 

1 Obtain sample size 

2 Fit model as usual, obtain effect size 

3 Count number of opportunities for inconsistent reporting 

4 Calculate number of times each subject provided inconsistent response 

5 Calculate proportion of inconsistent responses for each subject 

6 Calculate 1 - [value from Step 6] to obtain probability of responding honestly 

7 Select bias correction strategy that applies to sample and effect size 

8 Refit model, applying threshold and weight 

9 Compare standard error for unadjusted model from Step 2 and adjusted model from Step 9 

10 Retain estimate from model that produced the smallest standard error 

 
 

Assuming the recommended strategy is not “no adjustment,” the next step is to refit the 

model, first applying the subset analysis (i.e., threshold), then entering the weight into the 

model fitting statemennt to be applied to the retained portion of the sample. After applying the 

bias correction strategy, the standard error of the estimate from the unadjusted (first model) 
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should be compared to that of the adjusted (second model) to verify validity of estimates and 

ensure the appropriate adjustment was applied. The estimate with the lower standard error 

should be retained and reported. See Table 13 for a summary of the step-by-step process to 

applying the bias correction strategies.  

Limitations 

When applying the bias correction strategies recommended in this study, researchers 

should consider the impact of these strategies on statistical power, which is the probability of 

correctly rejecting the null hypothesis and depends greatly upon sample size, effect size, and 

significance level. In applying these bias correction strategies, the threshold component directly 

reduces the sample size by removing subjects with a probability of responding honestly that is 

lower than the recommended threshold, which results in a reduction in power. Similarly, the 

weighting component reduces the influence of less-reliable responses on the estimate, 

indirectly decreasing the sample size since less information is contributed to the model. Thus, it 

is recommended that researchers conduct a power analysis both before and after the 

utilization of these bias correctio strategies to evaluate both the improvement in error and the 

potential reduction in power when considering the application of these strategies. 

In the design phase of a study, when researchers are looking to other studies for 

estimates of effect size and attrition rates, they should also look for information on reliability 

distributions in similar samples. Researchers should then use that information in conjunction 

with sample size and effect size to predict which bias correction strategy will be most 

appropriate for their study. Doing so will allow researchers to account for the reduction in 

sample size that results from applying the tentative bias correction strategy. That is, just as 
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sample sizes are increased to account for dropouts, they should also be increased to account 

for the proportion of the sample that will be removed when applying these bias correction 

strategies, as doing so will help maintain sufficient power. When reporting results, researchers 

should include their sample reliability distributions to aid other researchers in determining their 

own sample size calculations. Sample-level reliability can be reported as the proportion of 

sample that is 100% reliable (no inconsistent reports), or even 95% or 99% reliable, or as the 

mean of the subject-level reliability. Providing this information to assist other researchers will 

strengthen the integrity of the work produced in the scientific community. 

Unfortunately, response bias often goes undetected and bias corrections are only as 

helpful as unreliability is detectable. In the context of a binary outcome, for example “Have you 

ever had sex before?” asked at two time points, the only options for true responses are No/No, 

No/Yes, and Yes/Yes. Under opposite responding, self-reports would emerge as Yes/Yes, 

Yes/No, or No/No, respectively, with the Yes/No response being the only one that is detectable 

(33.3% of unreliable responses). Under arbitrary responding, self-reports could appear as 

No/No, No/Yes, Yes/No, or Yes/Yes, again with the Yes/No response being the only one that is 

detectable (25% of unreliable responses). Under social desirability, assuming the social norm is 

not having had sex before, the self-reported response would be No/No, which is undetectable 

(0% of unreliable responses). Even when we are able to detect inconsistent reporting, there is 

no way to know which answer is true and which is not, or if neither are true since there is no 

way to truly know which responding style the subject is using. 
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Directions for Future Research 

Although the current study has made advances in correcting for response bias in clinical 

trails where inconsistent reporting is the method used to identify response bias, only a limited 

number of scenarios were investigated. Future research would benefit from exploring how 

other scenarios would influence the choice of bias correction strategy as well. For example, the 

current study only utilized main effects models, but exploring these strategies in the context of 

interactions, especially those between the treatment effect and other covariates, would be 

particularly beneficial. Exploring the behavior of these strategies using more complex models 

like mixed effect models or generalized estimating equations (GEE) would also be helpful in 

increasing the applicability of these strategies.  

 Future research should also examine different levels of the variables that were included 

in the current study (i.e., sample size, effect size, reliability distribution, response style, and 

reliability weight) to see how other levels would influence the best bias correction strategy for 

various scenarios. For example, many studies have samples as small as 50 or 100 subjects, or as 

large as 50,000 or 100,000 or more so these other levels are important to explore.  

Although this study covers three categories of effect size (i.e., small, medium, large), an 

odds ratio (OR) to Cohen’s d effect size conversion was used (see Chen et al., 2010), which only 

provided conversions in scenarios where the rate of the outcome occurred in 1% - 10% of the 

unexposed/control group. However, the outcome was prevalent in 27% - 44% of the sample in 

the current study, which is out of the range of conversion. As 10% was the highest prevalence 

rate converted in the paper, the ORs corresponding to that conversion were used in the 

simulations. Reviewing Table 1 in Chen et al. (2010), ORs within each Cohen’s d effect size 
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category decrease as the prevalence rate increases. The ORs for a 10% prevalence rate are 1.46, 

2.50, and 4.14 for small, medium, and large effect sizes, respectively, which are the values used 

in the current study (more precisely, their logarithmic transformed inverses). Since the 

prevalence rate in this study is 3 to 4 times larger than that used in the conversions, the ORs 

may actually apply to different effect size strengths. That is, 1.46 could potentially be 

considered a medium effect size and 2.50 a large effect size with prevalence rates as high as 

those in the current study. Without conversions corresponding to higher prevalence rates, the 

best option was to use the conversion for the highest rate available, 10%. Future research 

would benefit from examining prevalence rates of binary outcomes that have a direct 

conversion (i.e., 1% - 10%) as well as from extending the OR to Cohen’s d conversions to include 

higher prevalence rates.  

Regarding reliability distributions, the current study covers samples with reliabilities 

between approximately 50% and 80%, but other sample reliabilities may be higher or lower and 

should thus be explored. For instance, which bias correction strategies would be best for 

scenarios where reliability is closer to 30% or 40%? 90% or 95%? At which level of sample 

reliability will applying the strategies become futile because the reduction in error is so small 

that it is no longer worth the computational and application efforts? Also, this study calculates 

the sample-level reliability based on the proportion of subjects with a probability of responding 

reliably (𝑝) of 100%, but future simulation studies may consider using (𝑝) of 95% or 99% as well, 

or even using the mean of the subject-level reliability.  

The present study used the same unreliable response style in both self-report variables 

within the models (i.e., outcome and covariate), but it may be advantageous to mix and match 
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response styles within a single model such that one variable is impacted by social desirability 

responding and the other by careless responding (or any other combination). Other unreliable 

response styles should also be considered so that greater applicability of bias corrections can be 

obtained. For example, acquiescence bias and extreme responding are other types of response 

bias that occur in survey research but were not investigated in the current study.   

Linear, quadratic, and cubic weights were used in this study, but future research would 

benefit from examining higher order weights, as these may further reduce estimator error. 

Indeed, reviewing Table 9, weights progress from none to cubic through the first half of the 

recommendations, but then remain at cubic weight for the second half. The inclusion of higher 

order weights would likely show a continued trend of increasing weight as the sample and 

effect sizes increase.  

Countless different scenarios occur in research settings and the closer researchers come 

to mimicking these scenarios in the search for the best bias correction strategies, the more 

accurate our estimates and inferences will become. Although this study provides a foundation 

for applying these strategies, it is up to us as a scientific community to expand these findings, 

refining when and where these strategies are best applied to increase their general applicability 

and to improve the estimates and inferences we generate.   
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  Appendices 

 

The R code used for data generation, bias correction models, bias and RRMSE (%), and 

RRMSE (%) figures are presented below in Appendices A, B, C, and D, respectively. All codes 

(excluding that for figures) were rerun multiple times with changes to sample size, effect size, 

and sample reliability – all of which are highlighted in yellow to show where the changes were 

made – in order to generate the estimates for the various scenarios. The code for sample size 

appears on page 70 in the “Sample” section of the code, currently as “n <- 20000” for the 20000 

sample size, but was also run as “n <- 2000” and “n <- 200” for sample sizes of 2000 and 200, 

respectively. The code for sample reliability appears on page 70 in the “Reliability Distribution” 

section of the code, currently as “rlb.star <- abs(rnorm(n, 2, 1))” for a sample reliability of 80%, 

but was also run as “rlb.star <- abs(rnorm(n, 1, 1))” for a sample reliability of 50%. As this code 

was updated, the histograms generated for Figure 2 were also updated. The code for effect size 

appears in two locations, the first on page 70 in the “Parameters” section of the code and the 

second on page 89 in the “Bias and RRMSE (%)” section. These codes are currently written as 

“b1 <-  -1.4204” and “or <-  -1.4204,” respectively for the large effect size, but were also run as 

“b1 <-  -0.9152” and “or <-  -0.9152” for the medium effect size and “b1 <-  -0.3795” and  

“or <-  -0.3795” for the small effect size. As a reminder, these are the log odds of the inverse 

ORs that correspond to a baseline prevalence rate of 10%. Due to the length of the code, some 

sections were formatted into columns to save space.  
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Appendix A: R Code for Data Generation 

 
library(xlsx) 
library(lattice) 
library(ggplot2) 
 
set.seed(1234) 
 
rep <- 1000 
 
 
######################## Sample ######################### 
 
n <- 20000 
n1 <- n2 <- n / 2 
tx <- c ( rep ( 0, n1 ), rep ( 1, n2 ) ) 
    
prop.a <- .5 
prop.b <- 1 - prop.a 
group <- rbinom ( n, 1, prop.a ) 
 
 
################## Reliability Distribution ################### 
 
est2 <- matrix (0, rep, 265) 
 
for ( i in ( 1 : rep ) ) { 
 
r.rlb <- .75 # ratio of reliabilities between the two groups; group a vs group b 
rlb.star <- abs ( rnorm ( n, 2, 1 ) ) 
rlb.star [ group == 1 ] <- rlb.star [ group == 1 ] * r.rlb 
rlb <- rlb.star; rlb [rlb > 1 ] <- 1 
 
## histograms ## - FIGURE 2 
 
histogram (rlb, main="Reliability Distribution \n N=20000 R~80%", 
xlab="Probability of Responding Honestly", ylab="Percentage of Total Sample", 
ylim=c(0,100), breaks=c(0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0), col=c("azure3")) 
 
histogram (rlb [rlb<1], main="Unreliability Distribution \n N=20000 R~80%", 
xlab="Probability of Responding Honestly", ylab="Percentage of Unreliable Sample", 
ylim=c(0,25), breaks=c(0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0), col=c("azure3")) 
 
summary(rlb) 
summary(rlb==1) 
 
# rnorm (n, 1, 1) --> rel ~ 50% 
# rnorm (n, 2, 1) --> rel ~ 80% 
# Group 0 = Group A 
# Group 1 = Group B 
# Group B is approx. 25% less reliable than group A 
 
# convert reliability measure to a binomial decision 
rlb.b <- rbinom (n , 1, rlb ) 
 
 
####################### Parameters ####################### 
 
# simulate regression coefficients    
 
b0  <-  -1.0  # exp(-1.0) = odds (0.3679) = probability (0.27) 
b1  <-  -1.4204 # cohen's d - see below 
b2  <-   0.75 # exp(0.75) = 2.12 
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# values for b1 corresponding to OR strengths / cohen's d:  
 # small:    b1 = -0.3795 --> exp(-0.3795) = OR = 0.6842 (inverse OR = 1.4615) 
 # medium:  b1 = -0.9152 --> exp(-0.9152) = OR = 0.4004 (inverse OR = 2.4972) 
 # large:  b1 = -1.4204 --> exp(-1.4204) = OR = 0.2416 (inverse OR = 4.1387) 
# ORs based on event rate = 10% in non-exposed 
# See Chen, Cohen, & Chen (2010) for details 
 
predictor <- group 
table ( predictor ) 
 
# simulate outcome that incorporates tx and predictor  
 
z <- b0 + b1*tx + b2*predictor   #linear combination 
invlogit <- ( exp(z) / ( 1 + exp(z)))   #probability of outcome 
 
yy <- rbinom(n,1,invlogit) 
 
table(yy) 
 
 
################ Unreliable Response Styles ################# 
 
 
###### Predictor  
 
# careless responding (arbitrary)  
 
p.arb <- .5 
predict.arb <- rbinom (n , 1, p.arb ) 
 
# opposite  
predict.ops <- 1 - predictor 
 
# social desirability 
predict.social <- rep (0, n ) 
 
# incorporate rlb to predictor response 
 
predictor1 <- predictor 
predictor1 [ rlb.b == 0 ] <- predict.arb [ rlb.b == 0 ]   
# verify 
cbind ( predictor, predict.arb, rlb.b, predictor1 ) [ 1 : 100, ]  
 
predictor2 <- predictor 
predictor2 [ rlb.b == 0 ] <- predict.ops [ rlb.b == 0 ]   
 
predictor3 <- predictor 
predictor3 [ rlb.b == 0 ] <- predict.social [ rlb.b == 0 ]   
 
table(predictor1) 
table(predictor2) 
table(predictor3) 
 

###### Outcome 
 
# careless responding (arbitrary) 
 
p.arb <- .5  
yy.arb <- rbinom (n , 1, p.arb ) 
 
# opposite  
yy.ops <- 1 - yy 
 
# social desirability 
yy.social <- rep (0, n ) 
 
# incorporate rlb to yy response 
 
yy1 <- yy 
yy1 [ rlb.b == 0 ] <- yy.arb [ rlb.b == 0 ]    
# verify 
cbind ( yy, yy.arb, rlb.b, yy1 ) [ 1 : 100, ] 
 
yy2 <- yy       
yy2 [ rlb.b == 0 ] <- yy.ops [ rlb.b == 0 ] 
 
yy3 <- yy 
yy3 [ rlb.b == 0 ] <- yy.social [ rlb.b == 0 ]   
 
table(yy1) 
table(yy2) 
table(yy3) 
 

 

 

  



72 

 

Appendix B: R Code for Bias Correction Models 

 
##################### Unadjusted ####################### 
 
# true y 
R1 <-   glm ( yy ~ tx + predictor  , fam = binomial ) 
summary(R1)  
est2 [i, 1] <-  exp ( R1 $ coefficients [ "tx" ] ) 
 
# arb y 
R2 <-   glm ( yy1 ~ tx + predictor1 , fam = binomial )  
summary(R2) 
est2 [i, 2] <-  exp ( R2 $ coefficients [ "tx" ] ) 
 
# ops y 
R3 <-   glm ( yy2 ~ tx + predictor2 , fam = binomial ) 
summary(R3)  
est2 [i, 3] <-  exp ( R3 $ coefficients [ "tx" ] ) 
 
# social y 
R4 <-   glm ( yy3 ~ tx + predictor3 , fam = binomial ) 
summary(R4) 
est2 [i, 4] <-  exp ( R4 $ coefficients [ "tx" ] ) 
 
 
###################### Threshold Only ##################### 
 
### Cut at rlb = 1  
cut <- 1 
 
# arb y 
R5 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , sub = ( rlb >= cut )) 
summary(R5)  
est2 [i, 5] <-  exp ( R5 $ coefficients [ "tx" ] ) 
 
# ops y 
R6 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , sub = ( rlb >= cut )) 
summary(R6)  
est2 [i, 6] <-  exp ( R6 $ coefficients [ "tx" ] ) 
 
# social y 
R7 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , sub = ( rlb >= cut )) 
summary(R7)  
est2 [i, 7] <-  exp ( R7 $ coefficients [ "tx" ] ) 
 
 
 
### Cut at rlb = .99 
cut <- .99 
 
# arb y 
R8 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , sub = ( rlb >= cut )) 
summary(R8)  
est2 [i, 8] <-  exp ( R8 $ coefficients [ "tx" ] ) 
 
# ops y 
R9 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , sub = ( rlb >= cut )) 
summary(R9)  
est2 [i, 9] <-  exp ( R9 $ coefficients [ "tx" ] ) 
 
# social y 
R10 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , sub = ( rlb >= cut))  
summary(R10) 
est2 [i, 10] <-  exp ( R10 $ coefficients [ "tx" ] ) 

### Cut at rlb = .95 
cut <- .95 
 
# arb y 
R11 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , sub = ( rlb >= cut)) 
summary(R11) 
est2 [i, 11] <-  exp ( R11 $ coefficients [ "tx" ] ) 
 
# ops y 
R12 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , sub = ( rlb >= cut)) 
summary(R12)  
est2 [i, 12] <-  exp ( R12 $ coefficients [ "tx" ] ) 
 
# social y 
R13 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , sub = ( rlb >= cut))  
summary(R13) 
est2 [i, 13] <-  exp ( R13 $ coefficients [ "tx" ] ) 
 
 
 
### Cut at rlb = .9 
cut <- .9 
 
# arb y 
R14 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , sub = ( rlb >= cut)) 
summary(R14) 
est2 [i, 14] <-  exp ( R14 $ coefficients [ "tx" ] ) 
 
# ops y 
R15 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , sub = ( rlb >= cut))  
summary(R15) 
est2 [i, 15] <-  exp ( R15 $ coefficients [ "tx" ] ) 
 
# social y 
R16 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , sub = ( rlb >= cut))  
summary(R16) 
est2 [i, 16] <-  exp ( R16 $ coefficients [ "tx" ] ) 
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### Cut at rlb = .85 
cut <- .85 
 
# arb y 
R17 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , sub = ( rlb >= cut)) 
summary(R17) 
est2 [i, 17] <-  exp ( R17 $ coefficients [ "tx" ] ) 
 
# ops y 
R18 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , sub = ( rlb >= cut))  
summary(R18) 
est2 [i, 18] <-  exp ( R18 $ coefficients [ "tx" ] ) 
 
# social y 
R19 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , sub = ( rlb >= cut))  
summary(R19) 
est2 [i, 19] <-  exp ( R19 $ coefficients [ "tx" ] ) 
 
 
 
 
### Cut at rlb = .8 
cut <- .8 
 
# arb y 
R20 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , sub = ( rlb >= cut)) 
summary(R20) 
est2 [i, 20] <-  exp ( R20 $ coefficients [ "tx" ] ) 
 
# ops y 
R21 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , sub = ( rlb >= cut))  
summary(R21) 
est2 [i, 21] <-  exp ( R21 $ coefficients [ "tx" ] ) 
 
# social y 
R22 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , sub = ( rlb >= cut))  
summary(R22) 
est2 [i, 22] <-  exp ( R22 $ coefficients [ "tx" ] ) 
 
 
 
 
### Cut at rlb = .75 
cut <- .75 
 
# arb y 
R23 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , sub = ( rlb >= cut)) 
summary(R23) 
est2 [i, 23] <-  exp ( R23 $ coefficients [ "tx" ] ) 
 
# ops y 
R24 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , sub = ( rlb >= cut))  
summary(R24) 
est2 [i, 24] <-  exp ( R24 $ coefficients [ "tx" ] ) 
 
# social y 
R25 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , sub = ( rlb >= cut))  
summary(R25) 
est2 [i, 25] <-  exp ( R25 $ coefficients [ "tx" ] ) 
 
 
 
 
 
 
 

### Cut at rlb = .7 
cut <- .7 
 
# arb y 
R26 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , sub = ( rlb >= cut)) 
summary(R26) 
est2 [i, 26] <-  exp ( R26 $ coefficients [ "tx" ] ) 
 
# ops y 
R27 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , sub = ( rlb >= cut))  
summary(R27) 
est2 [i, 27] <-  exp ( R27 $ coefficients [ "tx" ] ) 
 
# social y 
R28 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , sub = ( rlb >= cut))  
summary(R28) 
est2 [i, 28] <-  exp ( R28 $ coefficients [ "tx" ] ) 
 
 
 
 
### Cut at rlb = .65 
cut <- .65 
 
# arb y 
R29 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , sub = ( rlb >= cut)) 
summary(R29) 
est2 [i, 29] <-  exp ( R29 $ coefficients [ "tx" ] ) 
 
# ops y 
R30 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , sub = ( rlb >= cut))  
summary(R30) 
est2 [i, 30] <-  exp ( R30 $ coefficients [ "tx" ] ) 
 
# social y 
R31 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , sub = ( rlb >= cut))  
summary(R31) 
est2 [i, 31] <-  exp ( R31 $ coefficients [ "tx" ] ) 
 
 
 
 
### Cut at rlb = .6 
cut <- .6 
 
# arb y 
R32 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , sub = ( rlb >= cut)) 
summary(R32) 
est2 [i, 32] <-  exp ( R32 $ coefficients [ "tx" ] ) 
 
# ops y 
R33 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , sub = ( rlb >= cut))  
summary(R33) 
est2 [i, 33] <-  exp ( R33 $ coefficients [ "tx" ] ) 
 
# social y 
R34 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , sub = ( rlb >= cut))  
summary(R34) 
est2 [i, 34] <-  exp ( R34 $ coefficients [ "tx" ] ) 
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### Cut at rlb = .55 
cut <- .55 
 
# arb y 
R35 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , sub = ( rlb >= cut)) 
summary(R35) 
est2 [i, 35] <-  exp ( R35 $ coefficients [ "tx" ] ) 
 
# ops y 
R36 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , sub = ( rlb >= cut))  
summary(R36) 
est2 [i, 36] <-  exp ( R36 $ coefficients [ "tx" ] ) 
 
# social y 
R37 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , sub = ( rlb >= cut))  
summary(R37) 
est2 [i, 37] <-  exp ( R37 $ coefficients [ "tx" ] ) 
 
 
 
 
### Cut at rlb = .5 
cut <- .5 
 
# arb y 
R38 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , sub = ( rlb >= cut)) 
summary(R38) 
est2 [i, 38] <-  exp ( R38 $ coefficients [ "tx" ] ) 
 
# ops y 
R39 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , sub = ( rlb >= cut))  
summary(R39) 
est2 [i, 39] <-  exp ( R39 $ coefficients [ "tx" ] ) 
 
# social y 
R40 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , sub = ( rlb >= cut))  
summary(R40) 
est2 [i, 40] <-  exp ( R40 $ coefficients [ "tx" ] ) 
 
 
 
 
### Cut at rlb = .45 
cut <- .45 
 
# arb y 
R41 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , sub = ( rlb >= cut)) 
summary(R41) 
est2 [i, 41] <-  exp ( R41 $ coefficients [ "tx" ] ) 
 
# ops y 
R42 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , sub = ( rlb >= cut))  
summary(R42) 
est2 [i, 42] <-  exp ( R42 $ coefficients [ "tx" ] ) 
 
# social y 
R43 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , sub = ( rlb >= cut))  
summary(R43) 
est2 [i, 43] <-  exp ( R43 $ coefficients [ "tx" ] ) 
 
 
 
 
 
 
 

### Cut at rlb = .4 
cut <- .4 
 
# arb y 
R44 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , sub = ( rlb >= cut)) 
summary(R44) 
est2 [i, 44] <-  exp ( R44 $ coefficients [ "tx" ] ) 
 
# ops y 
R45 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , sub = ( rlb >= cut))  
summary(R45) 
est2 [i, 45] <-  exp ( R45 $ coefficients [ "tx" ] ) 
 
# social y 
R46 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , sub = ( rlb >= cut))  
summary(R46) 
est2 [i, 46] <-  exp ( R46 $ coefficients [ "tx" ] ) 
 
 
 
 
### Cut at rlb = .35 
cut <- .35 
 
# arb y 
R47 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , sub = ( rlb >= cut)) 
summary(R47) 
est2 [i, 47] <-  exp ( R47 $ coefficients [ "tx" ] ) 
 
# ops y 
R48 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , sub = ( rlb >= cut))  
summary(R48) 
est2 [i, 48] <-  exp ( R48 $ coefficients [ "tx" ] ) 
 
# social y 
R49 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , sub = ( rlb >= cut))  
summary(R49) 
est2 [i, 49] <-  exp ( R49 $ coefficients [ "tx" ] ) 
 
 
 
 
### Cut at rlb = .3 
cut <- .3 
 
# arb y 
R50 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , sub = ( rlb >= cut)) 
summary(R50) 
est2 [i, 50] <-  exp ( R50 $ coefficients [ "tx" ] ) 
 
# ops y 
R51 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , sub = ( rlb >= cut))  
summary(R51) 
est2 [i, 51] <-  exp ( R51 $ coefficients [ "tx" ] ) 
 
# social y 
R52 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , sub = ( rlb >= cut))  
summary(R52) 
est2 [i, 52] <-  exp ( R52 $ coefficients [ "tx" ] ) 
 
 
 
 
 
 
 



75 

 

### Cut at rlb = .25 
cut <- .25 
 
# arb y 
R53 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , sub = ( rlb >= cut)) 
summary(R53) 
est2 [i, 53] <-  exp ( R53 $ coefficients [ "tx" ] ) 
 
# ops y 
R54 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , sub = ( rlb >= cut))  
summary(R54) 
est2 [i, 54] <-  exp ( R54 $ coefficients [ "tx" ] ) 
 
# social y 
R55 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , sub = ( rlb >= cut))  
summary(R55) 
est2 [i, 55] <-  exp ( R55 $ coefficients [ "tx" ] ) 
 
 
 
 
### Cut at rlb = .2 
cut <- .2 
 
# arb y 
R56 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , sub = ( rlb >= cut)) 
summary(R56) 
est2 [i, 56] <-  exp ( R56 $ coefficients [ "tx" ] ) 
 
# ops y 
R57 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , sub = ( rlb >= cut))  
summary(R57) 
est2 [i, 57] <-  exp ( R57 $ coefficients [ "tx" ] ) 
 
# social y 
R58 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , sub = ( rlb >= cut))  
summary(R58) 
est2 [i, 58] <-  exp ( R58 $ coefficients [ "tx" ] ) 
 
 
 
 
### Cut at rlb = .15 
cut <- .15 
 
# arb y 
R59 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , sub = ( rlb >= cut)) 
summary(R59) 
est2 [i, 59] <-  exp ( R59 $ coefficients [ "tx" ] ) 
 
# ops y 
R60 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , sub = ( rlb >= cut))  
summary(R60) 
est2 [i, 60] <-  exp ( R60 $ coefficients [ "tx" ] ) 
 
# social y 
R61 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , sub = ( rlb >= cut))  
summary(R61) 
est2 [i, 61] <-  exp ( R61 $ coefficients [ "tx" ] ) 
 
 
 

### Cut at rlb = .1 
cut <- .1 
 
# arb y 
R62 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , sub = ( rlb >= cut)) 
summary(R62) 
est2 [i, 62] <-  exp ( R62 $ coefficients [ "tx" ] ) 
 
# ops y 
R63 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , sub = ( rlb >= cut))  
summary(R63) 
est2 [i, 63] <-  exp ( R63 $ coefficients [ "tx" ] ) 
 
# social y 
R64 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , sub = ( rlb >= cut))  
summary(R64) 
est2 [i, 64] <-  exp ( R64 $ coefficients [ "tx" ] ) 
 
 
 
 
### Cut at rlb = .05 
cut <- .05 
 
# arb y 
R65 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , sub = ( rlb >= cut)) 
summary(R65) 
est2 [i, 65] <-  exp ( R65 $ coefficients [ "tx" ] ) 
 
# ops y 
R66 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , sub = ( rlb >= cut))  
summary(R66) 
est2 [i, 66] <-  exp ( R66 $ coefficients [ "tx" ] ) 
 
# social y 
R67 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , sub = ( rlb >= cut))  
summary(R67) 
est2 [i, 67] <-  exp ( R67 $ coefficients [ "tx" ] ) 
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####################### Weight Only ###################### 
 
 
 
### Linear Weight = rlb 
 
# arb y  
R68 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , weight = rlb ) 
summary(R68) 
est2 [i, 68] <-  exp ( R68 $ coefficients [ "tx" ] ) 
 
# ops y 
R69 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , weight = rlb )  
summary(R69) 
est2 [i, 69] <-  exp ( R69 $ coefficients [ "tx" ] ) 
 
# social y 
R70 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , weight = rlb )  
summary(R70) 
est2 [i, 70] <-  exp ( R70 $ coefficients [ "tx" ] ) 
 
 
 
### Quadratic Weight = rlb ^2 
 
# arb y 
R71 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , weight = rlb^2 )  
summary(R71) 
est2 [i, 71] <-  exp ( R71 $ coefficients [ "tx" ] ) 
 
# ops y 
R72 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , weight = rlb^2 )  
summary(R72) 
est2 [i, 72] <-  exp ( R72 $ coefficients [ "tx" ] ) 
 
# social y 
R73 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , weight = rlb^2 ) 
summary(R73) 
est2 [i, 73] <-  exp ( R73 $ coefficients [ "tx" ] ) 
 
 
 
### Cubic Weight = rlb ^3 
 
# arb y 
R74 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , weight = rlb^3 )  
summary(R74) 
est2 [i, 74] <-  exp ( R74 $ coefficients [ "tx" ] ) 
 
# ops y 
R75 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , weight = rlb^3 )  
summary(R75) 
est2 [i, 75] <-  exp ( R75 $ coefficients [ "tx" ] ) 
 
# social y 
R76 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , weight = rlb^3 )  
summary(R76) 
est2 [i, 76] <-  exp ( R76 $ coefficients [ "tx" ] ) 
 
 
 
 
 
 
 
 



77 

 

################# Threshold & Linear Weight ################ 
 
### Cut at rlb = 1 and linear weight 
cut <- 1 
 
# arb y 
R77 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , weight = rlb,  
sub = ( rlb >= cut )) 
summary(R77)  
est2 [i, 77] <-  exp ( R77 $ coefficients [ "tx" ] ) 
 
# ops y 
R78 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , weight = rlb,  
sub = ( rlb >= cut )) 
summary(R78)  
est2 [i, 78] <-  exp ( R78 $ coefficients [ "tx" ] ) 
 
# social y 
R79 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , weight = rlb,  
sub = ( rlb >= cut )) 
summary(R79)  
est2 [i, 79] <-  exp ( R79 $ coefficients [ "tx" ] ) 
 
 
### Cut at rlb = .99 and linear weight 
cut <- .99 
 
# arb y 
R80 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , weight = rlb,  
sub = ( rlb >= cut )) 
summary(R80)  
est2 [i, 80] <-  exp ( R80 $ coefficients [ "tx" ] ) 
 
# ops y 
R81 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , weight = rlb,  
sub = ( rlb >= cut )) 
summary(R81)  
est2 [i, 81] <-  exp ( R81 $ coefficients [ "tx" ] ) 
 
# social y 
R82 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , weight = rlb,  
sub = ( rlb >= cut ))  
summary(R82) 
est2 [i, 82] <-  exp ( R82 $ coefficients [ "tx" ] ) 
 
 
### Cut at rlb = .95 and linear weight 
cut <- .95 
 
# arb y 
R83 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , weight = rlb,  
sub = ( rlb >= cut )) 
summary(R83) 
est2 [i, 83] <-  exp ( R83 $ coefficients [ "tx" ] ) 
 
# ops y 
R84 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , weight = rlb,  
sub = ( rlb >= cut )) 
summary(R84)  
est2 [i, 84] <-  exp ( R84 $ coefficients [ "tx" ] ) 
 
# social y 
R85 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , weight = rlb,  
sub = ( rlb >= cut ))  
summary(R85) 
est2 [i, 85] <-  exp ( R85 $ coefficients [ "tx" ] ) 

### Cut at rlb = .9 and linear weight 
cut <- .9 
 
# arb y 
R86 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , weight = rlb,  
sub = ( rlb >= cut )) 
summary(R86) 
est2 [i, 86] <-  exp ( R86 $ coefficients [ "tx" ] ) 
 
# ops y 
R87 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , weight = rlb,  
sub = ( rlb >= cut ))  
summary(R87) 
est2 [i, 87] <-  exp ( R87 $ coefficients [ "tx" ] ) 
 
# social y 
R88 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , weight = rlb,  
sub = ( rlb >= cut ))  
summary(R88) 
est2 [i, 88] <-  exp ( R88 $ coefficients [ "tx" ] ) 
 
 
### Cut at rlb = .85 and linear weight 
cut <- .85 
 
# arb y 
R89 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , weight = rlb,  
sub = ( rlb >= cut )) 
summary(R89) 
est2 [i, 89] <-  exp ( R89 $ coefficients [ "tx" ] ) 
 
# ops y 
R90 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , weight = rlb,  
sub = ( rlb >= cut ))  
summary(R90) 
est2 [i, 90] <-  exp ( R90 $ coefficients [ "tx" ] ) 
 
# social y 
R91 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , weight = rlb,  
sub = ( rlb >= cut ))  
summary(R91) 
est2 [i, 91] <-  exp ( R91 $ coefficients [ "tx" ] ) 
 
 
### Cut at rlb = .8 and linear weight 
cut <- .8 
 
# arb y 
R92 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , weight = rlb,  
sub = ( rlb >= cut )) 
summary(R92) 
est2 [i, 92] <-  exp ( R92 $ coefficients [ "tx" ] ) 
 
# ops y 
R93 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , weight = rlb,  
sub = ( rlb >= cut ))  
summary(R93) 
est2 [i, 93] <-  exp ( R93 $ coefficients [ "tx" ] ) 
 
# social y 
R94 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , weight = rlb,  
sub = ( rlb >= cut ))  
summary(R94) 
est2 [i, 94] <-  exp ( R94 $ coefficients [ "tx" ] ) 
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### Cut at rlb = .75 and linear weight 
cut <- .75 
 
# arb y 
R95 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , weight = rlb,  
sub = ( rlb >= cut )) 
summary(R95) 
est2 [i, 95] <-  exp ( R95 $ coefficients [ "tx" ] ) 
 
# ops y 
R96 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , weight = rlb,  
sub = ( rlb >= cut ))  
summary(R96) 
est2 [i, 96] <-  exp ( R96 $ coefficients [ "tx" ] ) 
 
# social y 
R97 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , weight = rlb,  
sub = ( rlb >= cut ))  
summary(R97) 
est2 [i, 97] <-  exp ( R97 $ coefficients [ "tx" ] ) 
 
 
 
### Cut at rlb = .7 and linear weight 
cut <- .7 
 
# arb y 
R98 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , weight = rlb,  
sub = ( rlb >= cut )) 
summary(R98) 
est2 [i, 98] <-  exp ( R98 $ coefficients [ "tx" ] ) 
 
# ops y 
R99 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , weight = rlb,  
sub = ( rlb >= cut ))  
summary(R99) 
est2 [i, 99] <-  exp ( R99 $ coefficients [ "tx" ] ) 
 
# social y 
R100 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , weight = rlb,  
sub = ( rlb >= cut ))  
summary(R100) 
est2 [i, 100] <-  exp ( R100 $ coefficients [ "tx" ] ) 
 
 
 
### Cut at rlb = .65 and linear weight 
cut <- .65 
 
# arb y 
R101 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , weight = rlb,  
sub = ( rlb >= cut )) 
summary(R101) 
est2 [i, 101] <-  exp ( R101 $ coefficients [ "tx" ] ) 
 
# ops y 
R102 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , weight = rlb,  
sub = ( rlb >= cut ))  
summary(R102) 
est2 [i, 102] <-  exp ( R102 $ coefficients [ "tx" ] ) 
 
# social y 
R103 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , weight = rlb,  
sub = ( rlb >= cut ))  
summary(R103) 
est2 [i, 103] <-  exp ( R103 $ coefficients [ "tx" ] ) 

### Cut at rlb = .6 and linear weight 
cut <- .6 
 
# arb y 
R104 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , weight = rlb,  
sub = ( rlb >= cut )) 
summary(R104) 
est2 [i, 104] <-  exp ( R104 $ coefficients [ "tx" ] ) 
 
# ops y 
R105 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , weight = rlb,  
sub = ( rlb >= cut ))  
summary(R105) 
est2 [i, 105] <-  exp ( R105 $ coefficients [ "tx" ] ) 
 
# social y 
R106 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , weight = rlb,  
sub = ( rlb >= cut ))  
summary(R106) 
est2 [i, 106] <-  exp ( R106 $ coefficients [ "tx" ] ) 
 
 
 
### Cut at rlb = .55 and linear weight 
cut <- .55 
 
# arb y 
R107 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , weight = rlb,  
sub = ( rlb >= cut )) 
summary(R107) 
est2 [i, 107] <-  exp ( R107 $ coefficients [ "tx" ] ) 
 
# ops y 
R108 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , weight = rlb,  
sub = ( rlb >= cut ))  
summary(R108) 
est2 [i, 108] <-  exp ( R108 $ coefficients [ "tx" ] ) 
 
# social y 
R109 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , weight = rlb,  
sub = ( rlb >= cut ))  
summary(R109) 
est2 [i, 109] <-  exp ( R109 $ coefficients [ "tx" ] ) 
 
 
 
### Cut at rlb = .5 and linear weight 
cut <- .5 
 
# arb y 
R110 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , weight = rlb,  
sub = ( rlb >= cut )) 
summary(R110) 
est2 [i, 110] <-  exp ( R110 $ coefficients [ "tx" ] ) 
 
# ops y 
R111 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , weight = rlb,  
sub = ( rlb >= cut ))  
summary(R111) 
est2 [i, 111] <-  exp ( R111 $ coefficients [ "tx" ] ) 
 
# social y 
R112 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , weight = rlb,  
sub = ( rlb >= cut ))  
summary(R112) 
est2 [i, 112] <-  exp ( R112 $ coefficients [ "tx" ] ) 
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### Cut at rlb = .45 and linear weight 
cut <- .45 
 
# arb y 
R113 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , weight = rlb,  
sub = ( rlb >= cut )) 
summary(R113) 
est2 [i, 113] <-  exp ( R113 $ coefficients [ "tx" ] ) 
 
# ops y 
R114 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , weight = rlb,  
sub = ( rlb >= cut ))  
summary(R114) 
est2 [i, 114] <-  exp ( R114 $ coefficients [ "tx" ] ) 
 
# social y 
R115 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , weight = rlb,  
sub = ( rlb >= cut ))  
summary(R115) 
est2 [i, 115] <-  exp ( R115 $ coefficients [ "tx" ] ) 
 
 
 
### Cut at rlb = .4 and linear weight 
cut <- .4 
 
# arb y 
R116 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , weight = rlb,  
sub = ( rlb >= cut )) 
summary(R116) 
est2 [i, 116] <-  exp ( R116 $ coefficients [ "tx" ] ) 
 
# ops y 
R117 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , weight = rlb,  
sub = ( rlb >= cut ))  
summary(R117) 
est2 [i, 117] <-  exp ( R117 $ coefficients [ "tx" ] ) 
 
# social y 
R118 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , weight = rlb,  
sub = ( rlb >= cut ))  
summary(R118) 
est2 [i, 118] <-  exp ( R118 $ coefficients [ "tx" ] ) 
 
 
 
### Cut at rlb = .35 and linear weight 
cut <- .35 
 
# arb y 
R119 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , weight = rlb,  
sub = ( rlb >= cut )) 
summary(R119) 
est2 [i, 119] <-  exp ( R119 $ coefficients [ "tx" ] ) 
 
# ops y 
R120 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , weight = rlb,  
sub = ( rlb >= cut ))  
summary(R120) 
est2 [i, 120] <-  exp ( R120 $ coefficients [ "tx" ] ) 
 
# social y 
R121 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , weight = rlb,  
sub = ( rlb >= cut ))  
summary(R121) 
est2 [i, 121] <-  exp ( R121 $ coefficients [ "tx" ] ) 

### Cut at rlb = .3 and linear weight 
cut <- .3 
 
# arb y 
R122 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , weight = rlb,  
sub = ( rlb >= cut )) 
summary(R122) 
est2 [i, 122] <-  exp ( R122 $ coefficients [ "tx" ] ) 
 
# ops y 
R123 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , weight = rlb,  
sub = ( rlb >= cut ))  
summary(R123) 
est2 [i, 123] <-  exp ( R123 $ coefficients [ "tx" ] ) 
 
# social y 
R124 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , weight = rlb, 
 sub = ( rlb >= cut ))  
summary(R124) 
est2 [i, 124] <-  exp ( R124 $ coefficients [ "tx" ] ) 
 
 
 
### Cut at rlb = .25 and linear weight 
cut <- .25 
 
# arb y 
R125 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , weight = rlb,  
sub = ( rlb >= cut )) 
summary(R125) 
est2 [i, 125] <-  exp ( R125 $ coefficients [ "tx" ] ) 
 
# ops y 
R126 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , weight = rlb,  
sub = ( rlb >= cut ))  
summary(R126) 
est2 [i, 126] <-  exp ( R126 $ coefficients [ "tx" ] ) 
 
# social y 
R127 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , weight = rlb,  
sub = ( rlb >= cut ))  
summary(R127) 
est2 [i, 127] <-  exp ( R127 $ coefficients [ "tx" ] ) 
 
 
 
### Cut at rlb = .2 and linear weight 
cut <- .2 
 
# arb y 
R128 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , weight = rlb,  
sub = ( rlb >= cut )) 
summary(R128) 
est2 [i, 128] <-  exp ( R128 $ coefficients [ "tx" ] ) 
 
# ops y 
R129 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , weight = rlb,  
sub = ( rlb >= cut ))  
summary(R129) 
est2 [i, 129] <-  exp ( R129 $ coefficients [ "tx" ] ) 
 
# social y 
R130 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , weight = rlb,  
sub = ( rlb >= cut ))  
summary(R130) 
est2 [i, 130] <-  exp ( R130 $ coefficients [ "tx" ] ) 
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### Cut at rlb = .15 and linear weight 
cut <- .15 
 
# arb y 
R131 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , weight = rlb,  
sub = ( rlb >= cut )) 
summary(R131) 
est2 [i, 131] <-  exp ( R131 $ coefficients [ "tx" ] ) 
 
# ops y 
R132 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , weight = rlb,  
sub = ( rlb >= cut ))  
summary(R132) 
est2 [i, 132] <-  exp ( R132 $ coefficients [ "tx" ] ) 
 
# social y 
R133 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , weight = rlb,  
sub = ( rlb >= cut ))  
summary(R133) 
est2 [i, 133] <-  exp ( R133 $ coefficients [ "tx" ] ) 
 
 
 
### Cut at rlb = .1 and linear weight 
cut <- .1 
 
# arb y 
R134 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , weight = rlb,  
sub = ( rlb >= cut )) 
summary(R134) 
est2 [i, 134] <-  exp ( R134 $ coefficients [ "tx" ] ) 
 
# ops y 
R135 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , weight = rlb,  
sub = ( rlb >= cut ))  
summary(R135) 
est2 [i, 135] <-  exp ( R135 $ coefficients [ "tx" ] ) 
 
# social y 
R136 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , weight = rlb, 
 sub = ( rlb >= cut ))  
summary(R136) 
est2 [i, 136] <-  exp ( R136 $ coefficients [ "tx" ] ) 
 
 
 
### Cut at rlb = .05 and linear weight 
cut <- .05 
 
# arb y 
R137 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , weight = rlb,  
sub = ( rlb >= cut )) 
summary(R137) 
est2 [i, 137] <-  exp ( R137 $ coefficients [ "tx" ] ) 
 
# ops y 
R138 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , weight = rlb,  
sub = ( rlb >= cut ))  
summary(R138) 
est2 [i, 138] <-  exp ( R138 $ coefficients [ "tx" ] ) 
 
# social y 
R139 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , weight = rlb,  
sub = ( rlb >= cut ))  
summary(R139) 
est2 [i, 139] <-  exp ( R139 $ coefficients [ "tx" ] )
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############### Threshold & Quadratic Weight ###############  
 
### Cut at rlb = 1 and quadratic weight 
cut <- 1 
 
# arb y 
R140 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , weight = rlb^2,  
sub = ( rlb >= cut )) 
summary(R140)  
est2 [i, 140] <-  exp ( R140 $ coefficients [ "tx" ] ) 
 
# ops y 
R141 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , weight = rlb^2,  
sub = ( rlb >= cut )) 
summary(R141)  
est2 [i, 141] <-  exp ( R141 $ coefficients [ "tx" ] ) 
 
# social y 
R142 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , weight = rlb^2,  
sub = ( rlb >= cut )) 
summary(R142)  
est2 [i, 142] <-  exp ( R142 $ coefficients [ "tx" ] ) 
 
 
### Cut at rlb = .99 and quadratic weight 
cut <- .99 
 
# arb y 
R143 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , weight = rlb^2,  
sub = ( rlb >= cut )) 
summary(R143)  
est2 [i, 143] <-  exp ( R143 $ coefficients [ "tx" ] ) 
 
# ops y 
R144 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , weight = rlb^2,  
sub = ( rlb >= cut )) 
summary(R144)  
est2 [i, 144] <-  exp ( R144 $ coefficients [ "tx" ] ) 
 
# social y 
R145 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , weight = rlb^2,  
sub = ( rlb >= cut ))  
summary(R145) 
est2 [i, 145] <-  exp ( R145 $ coefficients [ "tx" ] ) 
 
 
### Cut at rlb = .95 and quadratic weight 
cut <- .95 
 
# arb y 
R146 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , weight = rlb^2,  
sub = ( rlb >= cut )) 
summary(R146) 
est2 [i, 146] <-  exp ( R146 $ coefficients [ "tx" ] ) 
 
# ops y 
R147 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , weight = rlb^2,  
sub = ( rlb >= cut )) 
summary(R147)  
est2 [i, 147] <-  exp ( R147 $ coefficients [ "tx" ] ) 
 
# social y 
R148 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , weight = rlb^2,  
sub = ( rlb >= cut ))  
summary(R148) 
est2 [i, 148] <-  exp ( R148 $ coefficients [ "tx" ] ) 

### Cut at rlb = .9 and quadratic weight 
cut <- .9 
 
# arb y 
R149 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , weight = rlb^2,  
sub = ( rlb >= cut )) 
summary(R149) 
est2 [i, 149] <-  exp ( R149 $ coefficients [ "tx" ] ) 
 
# ops y 
R150 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , weight = rlb^2,  
sub = ( rlb >= cut ))  
summary(R150) 
est2 [i, 150] <-  exp ( R150 $ coefficients [ "tx" ] ) 
 
# social y 
R151 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , weight = rlb^2,  
sub = ( rlb >= cut ))  
summary(R151) 
est2 [i, 151] <-  exp ( R151 $ coefficients [ "tx" ] ) 
 
 
### Cut at rlb = .85 and quadratic weight 
cut <- .85 
 
# arb y 
R152 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , weight = rlb^2, 
sub = ( rlb >= cut )) 
summary(R152) 
est2 [i, 152] <-  exp ( R152 $ coefficients [ "tx" ] ) 
 
# ops y 
R153 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , weight = rlb^2,  
sub = ( rlb >= cut ))  
summary(R153) 
est2 [i, 153] <-  exp ( R153 $ coefficients [ "tx" ] ) 
 
# social y 
R154 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , weight = rlb^2,  
sub = ( rlb >= cut ))  
summary(R154) 
est2 [i, 154] <-  exp ( R154 $ coefficients [ "tx" ] ) 
 
 
### Cut at rlb = .8 and quadratic weight 
cut <- .8 
 
# arb y 
R155 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , weight = rlb^2,  
sub = ( rlb >= cut )) 
summary(R155) 
est2 [i, 155] <-  exp ( R155 $ coefficients [ "tx" ] ) 
 
# ops y 
R156 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , weight = rlb^2,  
sub = ( rlb >= cut ))  
summary(R156) 
est2 [i, 156] <-  exp ( R156 $ coefficients [ "tx" ] ) 
 
# social y 
R157 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , weight = rlb^2,  
sub = ( rlb >= cut ))  
summary(R157) 
est2 [i, 157] <-  exp ( R157 $ coefficients [ "tx" ] ) 
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### Cut at rlb = .75 and quadratic weight 
cut <- .75 
 
# arb y 
R158 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , weight = rlb^2,  
sub = ( rlb >= cut )) 
summary(R158) 
est2 [i, 158] <-  exp ( R158 $ coefficients [ "tx" ] ) 
 
# ops y 
R159 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , weight = rlb^2,  
sub = ( rlb >= cut ))  
summary(R159) 
est2 [i, 159] <-  exp ( R159 $ coefficients [ "tx" ] ) 
 
# social y 
R160 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , weight = rlb^2,  
sub = ( rlb >= cut ))  
summary(R160) 
est2 [i, 160] <-  exp ( R160 $ coefficients [ "tx" ] ) 
 
 
 
### Cut at rlb = .7 and quadratic weight 
cut <- .7 
 
# arb y 
R161 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , weight = rlb^2,  
sub = ( rlb >= cut )) 
summary(R161) 
est2 [i, 161] <-  exp ( R161 $ coefficients [ "tx" ] ) 
 
# ops y 
R162 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , weight = rlb^2,  
sub = ( rlb >= cut ))  
summary(R162) 
est2 [i, 162] <-  exp ( R162 $ coefficients [ "tx" ] ) 
 
# social y 
R163 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , weight = rlb^2,  
sub = ( rlb >= cut ))  
summary(R163) 
est2 [i, 163] <-  exp ( R163 $ coefficients [ "tx" ] ) 
 
 
 
### Cut at rlb = .65 and quadratic weight 
cut <- .65 
 
# arb y 
R164 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , weight = rlb^2,  
sub = ( rlb >= cut )) 
summary(R164) 
est2 [i, 164] <-  exp ( R164 $ coefficients [ "tx" ] ) 
 
# ops y 
R165 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , weight = rlb^2,  
sub = ( rlb >= cut ))  
summary(R165) 
est2 [i, 165] <-  exp ( R165 $ coefficients [ "tx" ] ) 
 
# social y 
R166 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , weight = rlb^2,  
sub = ( rlb >= cut ))  
summary(R166) 
est2 [i, 166] <-  exp ( R166 $ coefficients [ "tx" ] ) 

### Cut at rlb = .6 and quadratic weight 
cut <- .6 
 
# arb y 
R167 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , weight = rlb^2,  
sub = ( rlb >= cut )) 
summary(R167) 
est2 [i, 167] <-  exp ( R167 $ coefficients [ "tx" ] ) 
 
# ops y 
R168 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , weight = rlb^2,  
sub = ( rlb >= cut ))  
summary(R168) 
est2 [i, 168] <-  exp ( R168 $ coefficients [ "tx" ] ) 
 
# social y 
R169 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , weight = rlb^2,  
sub = ( rlb >= cut ))  
summary(R169) 
est2 [i, 169] <-  exp ( R169 $ coefficients [ "tx" ] ) 
 
 
 
### Cut at rlb = .55 and quadratic weight 
cut <- .55 
 
# arb y 
R170 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , weight = rlb^2,  
sub = ( rlb >= cut )) 
summary(R170) 
est2 [i, 170] <-  exp ( R170 $ coefficients [ "tx" ] ) 
 
# ops y 
R171 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , weight = rlb^2,  
sub = ( rlb >= cut ))  
summary(R171) 
est2 [i, 171] <-  exp ( R171 $ coefficients [ "tx" ] ) 
 
# social y 
R172 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , weight = rlb^2,  
sub = ( rlb >= cut ))  
summary(R172) 
est2 [i, 172] <-  exp ( R172 $ coefficients [ "tx" ] ) 
 
 
 
### Cut at rlb = .5 and quadratic weight 
cut <- .5 
 
# arb y 
R173 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , weight = rlb^2,  
sub = ( rlb >= cut )) 
summary(R173) 
est2 [i, 173] <-  exp ( R173 $ coefficients [ "tx" ] ) 
 
# ops y 
R174 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , weight = rlb^2,  
sub = ( rlb >= cut ))  
summary(R174) 
est2 [i, 174] <-  exp ( R174 $ coefficients [ "tx" ] ) 
 
# social y 
R175 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , weight = rlb^2,  
sub = ( rlb >= cut ))  
summary(R175) 
est2 [i, 175] <-  exp ( R175 $ coefficients [ "tx" ] ) 
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### Cut at rlb = .45 and quadratic weight 
cut <- .45 
 
# arb y 
R176 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , weight = rlb^2,  
sub = ( rlb >= cut )) 
summary(R176) 
est2 [i, 176] <-  exp ( R176 $ coefficients [ "tx" ] ) 
 
# ops y 
R177 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , weight = rlb^2,  
sub = ( rlb >= cut ))  
summary(R177) 
est2 [i, 177] <-  exp ( R177 $ coefficients [ "tx" ] ) 
 
# social y 
R178 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , weight = rlb^2,  
sub = ( rlb >= cut ))  
summary(R178) 
est2 [i, 178] <-  exp ( R178 $ coefficients [ "tx" ] ) 
 
 
 
### Cut at rlb = .4 and quadratic weight 
cut <- .4 
 
# arb y 
R179 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , weight = rlb^2,  
sub = ( rlb >= cut )) 
summary(R179) 
est2 [i, 179] <-  exp ( R179 $ coefficients [ "tx" ] ) 
 
# ops y 
R180 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , weight = rlb^2,  
sub = ( rlb >= cut ))  
summary(R180) 
est2 [i, 180] <-  exp ( R180 $ coefficients [ "tx" ] ) 
 
# social y 
R181 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , weight = rlb^2,  
sub = ( rlb >= cut ))  
summary(R181) 
est2 [i, 181] <-  exp ( R181 $ coefficients [ "tx" ] ) 
 
 
 
### Cut at rlb = .35 and quadratic weight 
cut <- .35 
 
# arb y 
R182 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , weight = rlb^2,  
sub = ( rlb >= cut )) 
summary(R182) 
est2 [i, 182] <-  exp ( R182 $ coefficients [ "tx" ] ) 
 
# ops y 
R183 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , weight = rlb^2,  
sub = ( rlb >= cut ))  
summary(R183) 
est2 [i, 183] <-  exp ( R183 $ coefficients [ "tx" ] ) 
 
# social y 
R184 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , weight = rlb^2,  
sub = ( rlb >= cut ))  
summary(R184) 
est2 [i, 184] <-  exp ( R184 $ coefficients [ "tx" ] ) 

### Cut at rlb = .3 and quadratic weight 
cut <- .3 
 
# arb y 
R185 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , weight = rlb^2,  
sub = ( rlb >= cut )) 
summary(R185) 
est2 [i, 185] <-  exp ( R185 $ coefficients [ "tx" ] ) 
 
# ops y 
R186 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , weight = rlb^2,  
sub = ( rlb >= cut ))  
summary(R186) 
est2 [i, 186] <-  exp ( R186 $ coefficients [ "tx" ] ) 
 
# social y 
R187 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , weight = rlb^2,  
sub = ( rlb >= cut ))  
summary(R187) 
est2 [i, 187] <-  exp ( R187 $ coefficients [ "tx" ] ) 
 
 
 
### Cut at rlb = .25 and quadratic weight 
cut <- .25 
 
# arb y 
R188 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , weight = rlb^2,  
sub = ( rlb >= cut )) 
summary(R188) 
est2 [i, 188] <-  exp ( R188 $ coefficients [ "tx" ] ) 
 
# ops y 
R189 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , weight = rlb^2,  
sub = ( rlb >= cut ))  
summary(R189) 
est2 [i, 189] <-  exp ( R189 $ coefficients [ "tx" ] ) 
 
# social y 
R190 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , weight = rlb^2,  
sub = ( rlb >= cut ))  
summary(R190) 
est2 [i, 190] <-  exp ( R190 $ coefficients [ "tx" ] ) 
 
 
 
### Cut at rlb = .2 and quadratic weight 
cut <- .2 
 
# arb y 
R191 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , weight = rlb^2,  
sub = ( rlb >= cut )) 
summary(R191) 
est2 [i, 191] <-  exp ( R191 $ coefficients [ "tx" ] ) 
 
# ops y 
R192 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , weight = rlb^2,  
sub = ( rlb >= cut ))  
summary(R192) 
est2 [i, 192] <-  exp ( R192 $ coefficients [ "tx" ] ) 
 
# social y 
R193 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , weight = rlb^2,  
sub = ( rlb >= cut ))  
summary(R193) 
est2 [i, 193] <-  exp ( R193 $ coefficients [ "tx" ] ) 
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### Cut at rlb = .15 and quadratic weight 
cut <- .15 
 
# arb y 
R194 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , weight = rlb^2,  
sub = ( rlb >= cut )) 
summary(R194) 
est2 [i, 194] <-  exp ( R194 $ coefficients [ "tx" ] ) 
 
# ops y 
R195 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , weight = rlb^2,  
sub = ( rlb >= cut ))  
summary(R195) 
est2 [i, 195] <-  exp ( R195 $ coefficients [ "tx" ] ) 
 
# social y 
R196 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , weight = rlb^2,  
sub = ( rlb >= cut ))  
summary(R196) 
est2 [i, 196] <-  exp ( R196 $ coefficients [ "tx" ] ) 
 
 
 
### Cut at rlb = .1 and quadratic weight 
cut <- .1 
 
# arb y 
R197 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , weight = rlb^2,  
sub = ( rlb >= cut )) 
summary(R197) 
est2 [i, 197] <-  exp ( R197 $ coefficients [ "tx" ] ) 
 
# ops y 
R198 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , weight = rlb^2,  
sub = ( rlb >= cut ))  
summary(R198) 
est2 [i, 198] <-  exp ( R198 $ coefficients [ "tx" ] ) 
 
# social y 
R199 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , weight = rlb^2,  
sub = ( rlb >= cut ))  
summary(R199) 
est2 [i, 199] <-  exp ( R199 $ coefficients [ "tx" ] ) 
 
 
 
### Cut at rlb = .05 and quadratic weight 
cut <- .05 
 
# arb y 
R200 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , weight = rlb^2,  
sub = ( rlb >= cut )) 
summary(R200) 
est2 [i, 200] <-  exp ( R200 $ coefficients [ "tx" ] ) 
 
# ops y 
R201 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , weight = rlb^2,  
sub = ( rlb >= cut ))  
summary(R201) 
est2 [i, 201] <-  exp ( R201 $ coefficients [ "tx" ] ) 
 
# social y 
R202 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , weight = rlb^2,  
sub = ( rlb >= cut ))  
summary(R202) 
est2 [i, 202] <-  exp ( R202 $ coefficients [ "tx" ] )
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################# Threshold & Cubic Weight ################# 
 
### Cut at rlb = 1 and cubic weight 
cut <- 1 
 
# arb y 
R203 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , weight = rlb^3,  
sub = ( rlb >= cut )) 
summary(R203)  
est2 [i, 203] <-  exp ( R203 $ coefficients [ "tx" ] ) 
 
# ops y 
R204 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , weight = rlb^3,  
sub = ( rlb >= cut )) 
summary(R204)  
est2 [i, 204] <-  exp ( R204 $ coefficients [ "tx" ] ) 
 
# social y 
R205 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , weight = rlb^3,  
sub = ( rlb >= cut )) 
summary(R205)  
est2 [i, 205] <-  exp ( R205 $ coefficients [ "tx" ] ) 
 
 
### Cut at rlb = .99 and cubic weight 
cut <- .99 
 
# arb y 
R206 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , weight = rlb^3,  
sub = ( rlb >= cut )) 
summary(R206)  
est2 [i, 206] <-  exp ( R206 $ coefficients [ "tx" ] ) 
 
# ops y 
R207 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , weight = rlb^3,  
sub = ( rlb >= cut )) 
summary(R207)  
est2 [i, 207] <-  exp ( R207 $ coefficients [ "tx" ] ) 
 
# social y 
R208 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , weight = rlb^3,  
sub = ( rlb >= cut ))  
summary(R208) 
est2 [i, 208] <-  exp ( R208 $ coefficients [ "tx" ] ) 
 
 
### Cut at rlb = .95 and cubic weight 
cut <- .95 
 
# arb y 
R209 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , weight = rlb^3,  
sub = ( rlb >= cut )) 
summary(R209) 
est2 [i, 209] <-  exp ( R209 $ coefficients [ "tx" ] ) 
 
# ops y 
R210 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , weight = rlb^3,  
sub = ( rlb >= cut )) 
summary(R210)  
est2 [i, 210] <-  exp ( R210 $ coefficients [ "tx" ] ) 
 
# social y 
R211 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , weight = rlb^3,  
sub = ( rlb >= cut ))  
summary(R211) 
est2 [i, 211] <-  exp ( R211 $ coefficients [ "tx" ] ) 

### Cut at rlb = .9 and cubic weight 
cut <- .9 
 
# arb y 
R212 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , weight = rlb^3,  
sub = ( rlb >= cut )) 
summary(R212) 
est2 [i, 212] <-  exp ( R212 $ coefficients [ "tx" ] ) 
 
# ops y 
R213 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , weight = rlb^3,  
sub = ( rlb >= cut ))  
summary(R213) 
est2 [i, 213] <-  exp ( R213 $ coefficients [ "tx" ] ) 
 
# social y 
R214 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , weight = rlb^3,  
sub = ( rlb >= cut ))  
summary(R214) 
est2 [i, 214] <-  exp ( R214 $ coefficients [ "tx" ] ) 
 
 
### Cut at rlb = .85 and cubic weight 
cut <- .85 
 
# arb y 
R215 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , weight = rlb^3,  
sub = ( rlb >= cut )) 
summary(R215) 
est2 [i, 215] <-  exp ( R215 $ coefficients [ "tx" ] ) 
 
# ops y 
R216 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , weight = rlb^3,  
sub = ( rlb >= cut ))  
summary(R216) 
est2 [i, 216] <-  exp ( R216 $ coefficients [ "tx" ] ) 
 
# social y 
R217 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , weight = rlb^3,  
sub = ( rlb >= cut ))  
summary(R217) 
est2 [i, 217] <-  exp ( R217 $ coefficients [ "tx" ] ) 
 
 
### Cut at rlb = .8 and cubic weight 
cut <- .8 
 
# arb y 
R218 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , weight = rlb^3, 
sub = ( rlb >= cut )) 
summary(R218) 
est2 [i, 218] <-  exp ( R218 $ coefficients [ "tx" ] ) 
 
# ops y 
R219 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , weight = rlb^3,  
sub = ( rlb >= cut ))  
summary(R219) 
est2 [i, 219] <-  exp ( R219 $ coefficients [ "tx" ] ) 
 
# social y 
R220 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , weight = rlb^3,  
sub = ( rlb >= cut ))  
summary(R220) 
est2 [i, 220] <-  exp ( R220 $ coefficients [ "tx" ] ) 
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### Cut at rlb = .75 and cubic weight 
cut <- .75 
 
# arb y 
R221 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , weight = rlb^3,  
sub = ( rlb >= cut )) 
summary(R221) 
est2 [i, 221] <-  exp ( R221 $ coefficients [ "tx" ] ) 
 
# ops y 
R222 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , weight = rlb^3,  
sub = ( rlb >= cut ))  
summary(R222) 
est2 [i, 222] <-  exp ( R222 $ coefficients [ "tx" ] ) 
 
# social y 
R223 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , weight = rlb^3,  
sub = ( rlb >= cut ))  
summary(R223) 
est2 [i, 223] <-  exp ( R223 $ coefficients [ "tx" ] ) 
 
 
 
### Cut at rlb = .7 and cubic weight 
cut <- .7 
 
# arb y 
R224 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , weight = rlb^3,  
sub = ( rlb >= cut )) 
summary(R224) 
est2 [i, 224] <-  exp ( R224 $ coefficients [ "tx" ] ) 
 
# ops y 
R225 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , weight = rlb^3,  
sub = ( rlb >= cut ))  
summary(R225) 
est2 [i, 225] <-  exp ( R225 $ coefficients [ "tx" ] ) 
 
# social y 
R226 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , weight = rlb^3,  
sub = ( rlb >= cut ))  
summary(R226) 
est2 [i, 226] <-  exp ( R226 $ coefficients [ "tx" ] ) 
 
 
 
### Cut at rlb = .65 and cubic weight 
cut <- .65 
 
# arb y 
R227 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , weight = rlb^3,  
sub = ( rlb >= cut )) 
summary(R227) 
est2 [i, 227] <-  exp ( R227 $ coefficients [ "tx" ] ) 
 
# ops y 
R228 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , weight = rlb^3,  
sub = ( rlb >= cut ))  
summary(R228) 
est2 [i, 228] <-  exp ( R228 $ coefficients [ "tx" ] ) 
 
# social y 
R229 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , weight = rlb^3,  
sub = ( rlb >= cut ))  
summary(R229) 
est2 [i, 229] <-  exp ( R229 $ coefficients [ "tx" ] ) 

### Cut at rlb = .6 and cubic weight 
cut <- .6 
 
# arb y 
R230 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , weight = rlb^3,  
sub = ( rlb >= cut )) 
summary(R230) 
est2 [i, 230] <-  exp ( R230 $ coefficients [ "tx" ] ) 
 
# ops y 
R231 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , weight = rlb^3,  
sub = ( rlb >= cut ))  
summary(R231) 
est2 [i, 231] <-  exp ( R231 $ coefficients [ "tx" ] ) 
 
# social y 
R232 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , weight = rlb^3,  
sub = ( rlb >= cut ))  
summary(R232) 
est2 [i, 232] <-  exp ( R232 $ coefficients [ "tx" ] ) 
 
 
 
### Cut at rlb = .55 and cubic weight 
cut <- .55 
 
# arb y 
R233 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , weight = rlb^3,  
sub = ( rlb >= cut )) 
summary(R233) 
est2 [i, 233] <-  exp ( R233 $ coefficients [ "tx" ] ) 
 
# ops y 
R234 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , weight = rlb^3,  
sub = ( rlb >= cut ))  
summary(R234) 
est2 [i, 234] <-  exp ( R234 $ coefficients [ "tx" ] ) 
 
# social y 
R235 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , weight = rlb^3,  
sub = ( rlb >= cut ))  
summary(R235) 
est2 [i, 235] <-  exp ( R235 $ coefficients [ "tx" ] ) 
 
 
 
### Cut at rlb = .5 and cubic weight 
cut <- .5 
 
# arb y 
R236 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , weight = rlb^3,  
sub = ( rlb >= cut )) 
summary(R236) 
est2 [i, 236] <-  exp ( R236 $ coefficients [ "tx" ] ) 
 
# ops y 
R237 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , weight = rlb^3,  
sub = ( rlb >= cut ))  
summary(R237) 
est2 [i, 237] <-  exp ( R237 $ coefficients [ "tx" ] ) 
 
# social y 
R238 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , weight = rlb^3,  
sub = ( rlb >= cut ))  
summary(R238) 
est2 [i, 238] <-  exp ( R238 $ coefficients [ "tx" ] ) 
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### Cut at rlb = .45 and cubic weight 
cut <- .45 
 
# arb y 
R239 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , weight = rlb^3,  
sub = ( rlb >= cut )) 
summary(R239) 
est2 [i, 239] <-  exp ( R239 $ coefficients [ "tx" ] ) 
 
# ops y 
R240 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , weight = rlb^3,  
sub = ( rlb >= cut ))  
summary(R240) 
est2 [i, 240] <-  exp ( R240 $ coefficients [ "tx" ] ) 
 
# social y 
R241 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , weight = rlb^3,  
sub = ( rlb >= cut ))  
summary(R241) 
est2 [i, 241] <-  exp ( R241 $ coefficients [ "tx" ] ) 
 
 
 
### Cut at rlb = .4 and cubic weight 
cut <- .4 
 
# arb y 
R242 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , weight = rlb^3,  
sub = ( rlb >= cut )) 
summary(R242) 
est2 [i, 242] <-  exp ( R242 $ coefficients [ "tx" ] ) 
 
# ops y 
R243 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , weight = rlb^3,  
sub = ( rlb >= cut ))  
summary(R243) 
est2 [i, 243] <-  exp ( R243 $ coefficients [ "tx" ] ) 
 
# social y 
R244 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , weight = rlb^3,  
sub = ( rlb >= cut ))  
summary(R244) 
est2 [i, 244] <-  exp ( R244 $ coefficients [ "tx" ] ) 
 
 
 
### Cut at rlb = .35 and cubic weight 
cut <- .35 
 
# arb y 
R245 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , weight = rlb^3,  
sub = ( rlb >= cut )) 
summary(R245) 
est2 [i, 245] <-  exp ( R245 $ coefficients [ "tx" ] ) 
 
# ops y 
R246 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , weight = rlb^3,  
sub = ( rlb >= cut ))  
summary(R246) 
est2 [i, 246] <-  exp ( R246 $ coefficients [ "tx" ] ) 
 
# social y 
R247 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , weight = rlb^3,  
sub = ( rlb >= cut ))  
summary(R247) 
est2 [i, 247] <-  exp ( R247 $ coefficients [ "tx" ] ) 

### Cut at rlb = .3 and cubic weight 
cut <- .3 
 
# arb y 
R248 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , weight = rlb^3,  
sub = ( rlb >= cut )) 
summary(R248) 
est2 [i, 248] <-  exp ( R248 $ coefficients [ "tx" ] ) 
 
# ops y 
R249 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , weight = rlb^3,  
sub = ( rlb >= cut ))  
summary(R249) 
est2 [i, 249] <-  exp ( R249 $ coefficients [ "tx" ] ) 
 
# social y 
R250 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , weight = rlb^3,  
sub = ( rlb >= cut ))  
summary(R250) 
est2 [i, 250] <-  exp ( R250 $ coefficients [ "tx" ] ) 
 
 
 
### Cut at rlb = .25 and cubic weight 
cut <- .25 
 
# arb y 
R251 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , weight = rlb^3,  
sub = ( rlb >= cut )) 
summary(R251) 
est2 [i, 251] <-  exp ( R251 $ coefficients [ "tx" ] ) 
 
# ops y 
R252 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , weight = rlb^3,  
sub = ( rlb >= cut ))  
summary(R252) 
est2 [i, 252] <-  exp ( R252 $ coefficients [ "tx" ] ) 
 
# social y 
R253 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , weight = rlb^3,  
sub = ( rlb >= cut ))  
summary(R253) 
est2 [i, 253] <-  exp ( R253 $ coefficients [ "tx" ] ) 
 
 
 
### Cut at rlb = .2 and cubic weight 
cut <- .2 
 
# arb y 
R254 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , weight = rlb^3,  
sub = ( rlb >= cut )) 
summary(R254) 
est2 [i, 254] <-  exp ( R254 $ coefficients [ "tx" ] ) 
 
# ops y 
R255 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , weight = rlb^3,  
sub = ( rlb >= cut ))  
summary(R255) 
est2 [i, 255] <-  exp ( R255 $ coefficients [ "tx" ] ) 
 
# social y 
R256 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , weight = rlb^3,  
sub = ( rlb >= cut ))  
summary(R256) 
est2 [i, 256] <-  exp ( R256 $ coefficients [ "tx" ] ) 
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### Cut at rlb = .15 and cubic weight 
cut <- .15 
 
# arb y 
R257 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , weight = rlb^3,  
sub = ( rlb >= cut )) 
summary(R257) 
est2 [i, 257] <-  exp ( R257 $ coefficients [ "tx" ] ) 
 
# ops y 
R258 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , weight = rlb^3,  
sub = ( rlb >= cut ))  
summary(R258) 
est2 [i, 258] <-  exp ( R258 $ coefficients [ "tx" ] ) 
 
# social y 
R259 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , weight = rlb^3,  
sub = ( rlb >= cut ))  
summary(R259) 
est2 [i, 259] <-  exp ( R259 $ coefficients [ "tx" ] ) 
 
 
 
### Cut at rlb = .1 and cubic weight 
cut <- .1 
 
# arb y 
R260 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , weight = rlb^3,  
sub = ( rlb >= cut )) 
summary(R260) 
est2 [i, 260] <-  exp ( R260 $ coefficients [ "tx" ] ) 
 
# ops y 
R261 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , weight = rlb^3,  
sub = ( rlb >= cut ))  
summary(R261) 
est2 [i, 261] <-  exp ( R261 $ coefficients [ "tx" ] ) 
 
# social y 
R262 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , weight = rlb^3,  
sub = ( rlb >= cut ))  
summary(R262) 
est2 [i, 262] <-  exp ( R262 $ coefficients [ "tx" ] ) 
 
 
 
### Cut at rlb = .05 and cubic weight 
cut <- .05 
 
# arb y 
R263 <-  glm ( yy1 ~ tx + predictor1 , fam = binomial , weight = rlb^3,  
sub = ( rlb >= cut )) 
summary(R263) 
est2 [i, 263] <-  exp ( R263 $ coefficients [ "tx" ] ) 
 
# ops y 
R264 <-  glm ( yy2 ~ tx + predictor2 , fam = binomial , weight = rlb^3,  
sub = ( rlb >= cut ))  
summary(R264) 
est2 [i, 264] <-  exp ( R264 $ coefficients [ "tx" ] ) 
 
# social y 
R265 <-  glm ( yy3 ~ tx + predictor3 , fam = binomial , weight = rlb^3,  
sub = ( rlb >= cut ))  
summary(R265) 
est2 [i, 265] <-  exp ( R265 $ coefficients [ "tx" ] )          } 
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Appendix C: R Code for Bias and RRMSE (%) 

 
or <- -1.4204 
 
sum.out <- matrix ("", 89, 4 )  
sum.out [1,  ] <- c ( "", "Arbitrary", "Opposite", "Social Desirability" ) 
sum.out [, 1 ] <- c ( "", "Non-adjusted", 

"Cut at 1", "Cut at .99", "Cut at .95", "Cut at .9", "Cut at .85", "Cut at .8", "Cut at .75",  
 "Cut at .7", "Cut at .65", "Cut at .6", "Cut at .55", "Cut at .5","Cut at .45", "Cut at .4",  
  "Cut at .35", "Cut at .3", "Cut at .25", "Cut at .2", "Cut at .15", "Cut at .1", "Cut at .05",  
 "Lin-weight", "Qua-weight", "Cub-weight",  
 
 "Cut at 1 & LW", "Cut at .99 & LW", "Cut at .95 & LW", "Cut at .9 & LW", "Cut at .85 & LW", "Cut at .8 & LW", "Cut at .75 & LW",  
 "Cut at .7 & LW", "Cut at .65 & LW", "Cut at .6 & LW", "Cut at .55 & LW", "Cut at .5 & LW", "Cut at .45 & LW", "Cut at .4 & LW", 
 "Cut at .35 & LW", "Cut at .3 & LW", "Cut at .25 & LW", "Cut at .2 & LW", "Cut at .15 & LW", "Cut at .1 & LW", "Cut at .05 & LW",  
 
 "Cut at 1 & QW", "Cut at .99 & QW", "Cut at .95 & QW", "Cut at .9 & QW", "Cut at .85 & QW", "Cut at .8 & QW", "Cut at .75 & QW",  
 "Cut at .7 & QW", "Cut at .65 & QW", "Cut at .6 & QW", "Cut at .55 & QW", "Cut at .5 & QW", "Cut at .45 & QW", "Cut at .4 & QW",  
 "Cut at .35 & QW", "Cut at .3 & QW", "Cut at .25 & QW", "Cut at .2 & QW", "Cut at .15 & QW", "Cut at .1 & QW", "Cut at .05 & QW",   
 
 "Cut at 1 & CW", "Cut at .99 & CW", "Cut at .95 & CW", "Cut at .9 & CW", "Cut at .85 & CW", "Cut at .8 & CW", "Cut at .75 & CW",  
 "Cut at .7 & CW", "Cut at .65 & CW", "Cut at .6 & CW", "Cut at .55 & CW", "Cut at .5 & CW", "Cut at .45 & CW", "Cut at .4 & CW",  
 "Cut at .35 & CW", "Cut at .3 & CW", "Cut at .25 & CW", "Cut at .2 & CW", "Cut at .15 & CW", "Cut at .1 & CW", "Cut at .05 & CW" ) 
 
for ( i in (1:88 ) )                     { 
 for ( j in (1:3) )    { 
 x <- log ( est2 [, 3 * (i-1) + j + 1 ]) 
 sum.out [ i + 1, j + 1 ] <- paste ( round (mean ( x )-or, 3 ), ", (", round (sqrt ( var ( x ) +  ( mean ( x ) - or ) ^ 2 )/abs(or) *100 , 3 ), ")" ) 
} 
} 
 
sum.out2 <- matrix ("", 92, 4 )  
sum.out2 [ c(2:90), ] <- sum.out 
sum.out2 [ 1, 1 ] <- "Compare Weighting Methods With Respect to Bias and RRMSE (%)" 
sum.out2 [ 1, 2 ] <- paste (" n = ", n ) 
sum.out2 [ 1, 3 ] <- paste (" rep = ", rep ) 
sum.out2 [ 92, 1 ] <-"*If we had observed the true responses: " 
x <- log (est2 [, 1]) 
sum.out2 [ 92, 2 ] <-paste ( round (mean ( x )-or, 3 ), ", (", round (sqrt ( var ( x ) +  ( mean ( x ) - or ) ^ 2 ) / abs(or)*100, 3 ), ")" ) 
sum.out2 
 
 
###################### Export Results ###################### 
 
 
write.xlsx (sum.out2, file = "Simulation.xlsx", sheetName = paste("n=", n, sep="") , col.names = TRUE, row.names = TRUE, append = TRUE) 
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Appendix D: R Code for RRMSE (%) Figures 

 
################################  Competing Bias Correction Strategies  ################################## 

 
library (xlsx) 
library (ggplot2) 
 
d <- read.xlsx("C:\\Users\\vswai\\Documents\\School\\MSPH Biostats\\Thesis\\Data\\Data.xlsx",sheetName = "Competing Strategies", 
header=T) 
 
summary(d$Bias) 
summary(d$RRMSE) 
 
d$Srlb2 <- factor(d$Srlb, levels = c("50", "80")) 
d$Srlb2 
 
levels (d$Srlb2) <- c("50%", "80%") 
d$Srlb2 
 
d$ES2 <- factor(d$ES, levels = c("Small", "Medium", "Large")) 
d$ES2 
 
# Data subset for RS = Opposite 
drsopp <- d[d$RS=="Opposite",] 
head(drsopp) 
dim(drsopp) 
 
# Data subset for RS = Arbitrary 
drsarb <- d[d$RS=="Arbitrary",] 
head(drsarb) 
dim(drsarb) 
 
# Data subset for RS = Social Desirability 
drssd <- d[d$RS=="Social Desirability",] 
head(drssd) 
dim(drssd) 
 
#Assign colors to specific bias-correction strategies 
  #Mediumvioletred  = recommended strategy (N=200, 2000, & 20000) 
  #Orange2   = alternate strategy 1 (N=200, 2000, & 20000)  
  #Royalblue1  = alternate strategy 2 (N=2000 & 20000) 
  #Mediumseagreen  = alternate strategy 3 (N=20000) 
#Colors separated by N size (200, 2000, 20000) 
 
color <- c( "S - Unadjusted*" = "Mediumvioletred", "S - LW" = "Orange2",  
  "M - Cut at .40 & LW*" = "Mediumvioletred", "M - QW" = "Orange2",  
  "M - Unadjusted*" = "Mediumvioletred", 
  "L - Cut at .40 & QW*" = "Mediumvioletred", "L - CW" = "Orange2",  
  "L - Unadjusted*" = "Mediumvioletred", 
   
  "S - Cut at .40 & LW*" = "Mediumvioletred", "S - Cut at .25 & QW" = "Orange2",  
  "S - QW" = "Royalblue1",    
  "M - Cut at .55 & CW*" = "Mediumvioletred", "M - Cut at .65 & QW" = "Orange2",  
  "M - Cut at .70 & LW" = "Royalblue1", 
  "L - Cut at .75 & CW*" = "Mediumvioletred", "L - Cut at .80 & QW" = "Orange2", 
  "L - Cut at .80 & LW" = "Royalblue1",  
 
  "S - Cut at .70 & CW*" = "Mediumvioletred", "S - Cut at .85 & QW" = "Orange2", 
  "S - Cut at .85 & LW" = "Royalblue1", "S - Cut at .85" = "Mediumseagreen",  
  "M - Cut at .85 & CW*" = "Mediumvioletred", "M - Cut at .90 & QW" = "Orange2", 
  "M - Cut at .90 & LW" = "Royalblue1", "M - Cut at .90" = "Mediumseagreen",  
  "L - Cut at .95 & CW*" = "Mediumvioletred", "L - Cut at .95 & QW" = "Orange2",  
  "L - Cut at .95 & LW" = "Royalblue1", "L - Cut at .95" = "Mediumseagreen" ) 
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#Organize legend by (1) color (2) ES (3) Alpha-Numeric order 
#Order of color: Mediumvioletred, Orange2, Royalblue1, Mediumseagreen 
 
order <- c( "S - Unadjusted*", "S - Cut at .40 & LW*", "S - Cut at .70 & CW*", 
  "M - Unadjusted*", "M - Cut at .40 & LW*", "M - Cut at .55 & CW*", "M - Cut at .85 & CW*", 
  "L - Unadjusted*", "L - Cut at .40 & QW*", "L - Cut at .75 & CW*", "L - Cut at .95 & CW*", 
 
  "S - LW", "S - Cut at .25 & QW", "S - Cut at .85 & QW", 
  "M - QW", "M - Cut at .65 & QW", "M - Cut at .90 & QW", 
  "L - CW", "L - Cut at .80 & QW", "L - Cut at .95 & QW", 
 
  "S - QW", "S - Cut at .85 & LW", 
  "M - Cut at .70 & LW", "M - Cut at .90 & LW", 
  "L - Cut at .80 & LW", "L - Cut at .95 & LW", 
     
  "S - Cut at .85",  
  "M - Cut at .90",  
  "L - Cut at .95" ) 
 
 
 
######## Comparison of RRMSE (%) for Competing Bias Correction Strategies ######## 
 
### RS = Opposite ### - FIGURE 3 
 
p1 <- ggplot(drsopp, aes(Srlb2, RRMSE, group=Strategy, color=Strategy))  + geom_point (se=F, size=3) + geom_line (se=F) 
 
p1 + scale_colour_manual(values=color, breaks=order) + 
 facet_grid(ES2~N) + labs(x="Sample Reliability", y="RRMSE (%)",  
 title="Opposite Responding") + 
    theme(legend.position = "bottom") +  
 theme(plot.title = element_text(hjust = 0.5)) + 
 guides(color = guide_legend(title.position = "top", title.hjust = 0.5)) 
 
### RS = Arbitrary ### - FIGURE 4 
 
p2 <- ggplot(drsarb, aes(Srlb2, RRMSE, group=Strategy, color=Strategy))  + geom_point (se=F, size=3) + geom_line (se=F) 
 
p2 + scale_colour_manual(values=color, breaks=order) + 
 facet_grid(ES2~N) + labs(x="Sample Reliability", y="RRMSE (%)",  
 title="Arbitrary Responding") + 
    theme(legend.position = "bottom") +  
 theme(plot.title = element_text(hjust = 0.5)) + 
 guides(color = guide_legend(title.position = "top", title.hjust = 0.5)) 
 
### RS = Social Desirability ### - FIGURE 5 
 
p3 <- ggplot(drssd, aes(Srlb2, RRMSE, group=Strategy, color=Strategy))  + geom_point (se=F, size=3) + geom_line (se=F) 
 
p3 + scale_colour_manual(values=color, breaks=order) + 
 facet_grid(ES2~N) + labs(x="Sample Reliability", y="RRMSE (%)",  
 title="Socially Desirable Responding") + 
    theme(legend.position = "bottom") +  
 theme(plot.title = element_text(hjust = 0.5)) + 
 guides(color = guide_legend(title.position = "top", title.hjust = 0.5)) 
 
 
 

################################  Undjusted and Adjusted Models  ################################## 

 
d2 <- read.xlsx("C:\\Users\\vswai\\Documents\\School\\MSPH Biostats\\Thesis\\Data\\Data.xlsx",sheetName = "Unadjusted v Adjusted", 
header=T) 
 
summary(d2$Bias) 
summary(d2$RRMSE) 
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d2$Srlb2 <- factor(d2$Srlb, levels = c("50", "80")) 
d2$Srlb2 
 
levels (d2$Srlb2) <- c("50%", "80%") 
d2$Srlb2 
 
d2$ES2 <- factor(d2$ES, levels = c("Small", "Medium", "Large")) 
d2$ES2 
 
d2$Adjustment <- factor(d2$Adj, levels = c("Unadjusted", "Recommended")) 
d2$Adjustment 
 
# Data subset for RS = Opposite 
drsopp <- d2[d2$RS=="Opposite",] 
head(drsopp) 
 
# Data subset for RS = Arbitrary 
drsarb <- d2[d2$RS=="Arbitrary",] 
head(drsarb) 
 
# Data subset for RS = Social Desirability 
drssd <- d2[d2$RS=="Social Desirability",] 
head(drssd) 
 
#Assign colors to adjusted and unadjusted models 
  #Mediumvioletred  = adjusted model (recommended strategy) 
  #Orange2   = unadjusted model 
   
color <- c( "Recommended" = "Mediumvioletred", "Unadjusted" = "Orange2") 
 
 
 
######## Comparison of RRMSE (%) for Unadjusted and Adjusted Models ######## 
 
### RS = Opposite ### - FIGURE 6 
 
p4 <- ggplot(drsopp, aes(Srlb2, RRMSE, group=Adjustment, color=Adjustment))  + geom_point (se=F, size=3) + geom_line (se=F)  
 
p4 + scale_colour_manual(values=color) + 
 facet_grid(ES2~N) + labs(x="Sample Reliability", y="RRMSE (%)",  
 title="Opposite Responding") + 
     theme(legend.position = "bottom") +  
 theme(plot.title = element_text(hjust = 0.5)) + 
 guides(color = guide_legend(title.position = "top", title.hjust = 0.5)) 
 
### RS = Arbitrary ### - FIGURE 7 
 
p5 <- ggplot(drsarb, aes(Srlb2, RRMSE, group=Adjustment, color=Adjustment))  + geom_point (se=F, size=3) + geom_line (se=F)  
 
p5 + scale_colour_manual(values=color) + 
 facet_grid(ES2~N) + labs(x="Sample Reliability", y="RRMSE (%)",  
 title="Arbitrary Responding") + 
     theme(legend.position = "bottom") +  
 theme(plot.title = element_text(hjust = 0.5)) + 
 guides(color = guide_legend(title.position = "top", title.hjust = 0.5)) 
 
### RS = Social Desirability ### - FIGURE 8 
 
p6 <- ggplot(drssd, aes(Srlb2, RRMSE, group=Adjustment, color=Adjustment))  + geom_point (se=F, size=3) + geom_line (se=F)  
 
p6 + scale_colour_manual(values=color) + 
 facet_grid(ES2~N) + labs(x="Sample Reliability", y="RRMSE (%)",  
 title="Socially Desirable Responding") + 
     theme(legend.position = "bottom") +  
 theme(plot.title = element_text(hjust = 0.5)) + 
 guides(color = guide_legend(title.position = "top", title.hjust = 0.5))  
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