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ABSTRACT 

 The microtubule associated protein, tau, is involved in regulating microtubule 

stability and axonal transport. When tau becomes hyperphosphorylated it can 

disassociate from the microtubules and start to aggregate. These tau aggregates are 

the hallmarks of many diseases known as tauopathies. The heat shock protein 90 kDa 

(Hsp90) chaperone network is highly involved in modulating client proteins, including 

tau. However, during aging and disease the Hsp90 chaperone network becomes highly 

imbalanced with some Hsp90/co-chaperone complexes increasing, while others are 

repressed. This imbalance in Hsp90/co-chaperone complexes could result in a 

worsening of tau pathology in Alzheimer’s disease.  

 Hsp90 inhibition has been of interest as a potential therapeutic for tauopathies for 

many years. However, issues with toxicity and bioavailability have dampened 

enthusiasm for Hsp90 as a viable therapeutic target. Hsp90 co-chaperones are 

currently being investigated for as potential therapeutic targets for tauopathies, with the 

hope that targeting co-chaperones will lead to more specific targeting without toxicity. 

One co-chaperone that has the potential to become a therapeutic target for tauopathies 

is the activator of Hsp90 ATPase homolog 1 (Aha1).  

 Aha1 is the only known stimulator of the ATPase of Hsp90, so targeting this 

particular co-chaperone could potentially mimic the effects of Hsp90 inhibition with more 
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specificity. In this study we found that Aha1 enhanced Hsp90-mediated tau aggregation 

and increased insoluble tau accumulation in vitro. Additionally, a novel Aha1 inhibitor 

was able to reduce the formation of insoluble tau in vitro. We also investigated the 

effects of Aha1 overexpression in the rTg4510 mouse model, which is a tauopathy 

model that stably overexpresses the P301L mutation of tau. Overexpression of Aha1 in 

these mice increased the accumulation of insoluble and oligomeric tau. Furthermore, 

Aha1 overexpression led to cognitive deficits and neurotoxicity. Due to the effect of 

Aha1 overexpression on tau we wanted to investigate the effects of Aha1 knock-down in 

the rTg4510 mice. Incredibly, Aha1 knock-down led to reductions in pathological 

Gallyas silver positive tau tangles and was able to rescue neuronal loss. Overall, this 

work highlights Aha1 as an important regulator of tau pathology through Hsp90. The 

Hsp90/Aha1 complex could provide a novel therapeutic target for the treatment of 

tauopathies.  
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Chapter One1: 
 

Imbalances in the Hsp90 chaperone machinery: Implications for tauopathies 

1.1 Abstract  

The ATP-dependent 90kDa heat shock protein, Hsp90, is a major regulator of 

protein triage, from assisting in nascent protein folding to refolding or degrading aberrant 

proteins. Tau, a microtubule associated protein, aberrantly accumulates in Alzheimer’s 

disease (AD) and other neurodegenerative diseases, deemed tauopathies. Hsp90 binds 

to and regulates tau fate in coordination with a diverse group of co-chaperones. 

Imbalances in chaperone levels and activity, as found in the aging brain, can contribute 

to disease onset and progression. For example, the levels of the Hsp90 co-chaperone, 

FK506-binding protein 51 kDa (FKBP51), progressively increase with age. In vitro and in 

vivo tau models demonstrated that FKBP51 synergizes with Hsp90 to increase neurotoxic 

tau oligomer production. Inversely, protein phosphatase 5 (PP5), which dephosphorylates 

tau to restore microtubule-binding function, is repressed with aging and activity is further 

repressed in AD. Similarly, levels of cyclophilin 40 (CyP40) are reduced in the aged brain 

and further repressed in AD. Interestingly, CyP40 was shown to breakup tau aggregates 

in vitro and prevent tau-induced neurotoxicity in vivo. Moreover, the only known stimulator 

of Hsp90 ATPase activity, Aha1, increases tau aggregation and toxicity. While the levels 

of Aha1 are not significantly altered with aging, increased levels have been found in AD 

brains. Overall, these changes in the Hsp90 heterocomplex could drive tau deposition 

and neurotoxicity. While the relationship of tau and Hsp90 in coordination with these co-
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chaperones is still under investigation, it is clear that imbalances in these proteins with 

aging can contribute to disease onset and progression. This chapter highlights the current 

understanding of how the Hsp90 family of molecular chaperones regulates tau or other 

misfolded proteins in neurodegenerative diseases with a particular emphasis on the 

impact of aging.  

____________________ 

1Portions of this work were previously published (Shelton LB et al., 2018) and are used with 
permission of the publisher. 

 

 

1.2 Introduction 

Aging is the biggest risk factor for developing a neurodegenerative disease, but 

the specific factors which cause these predominantly sporadic diseases are still under 

investigation (1). As cells within the body age, the cellular homeostasis network must deal 

with an increasing amount of misfolded and aggregated proteins that can pathogenically 

accumulate leading to cell death. Aging is caused by compromised cellular homeostasis, 

fitness, and plasticity, leading to degeneration and cell death in vital organs. According to 

the ‘garbage catastrophe’ hypothesis, aged differentiated cells lose the capacity to 

dispose of damaged and malfunctioning proteins (2). Such damaged proteins can 

assume cytotoxic properties, and their constant removal is thus essential for cell survival. 

Not only does aging lead to an increased likelihood of protein misfolding and aggregation, 

it is compounded by a decrease in the efficiency of the protein degradation machinery. 

The activity of both the proteasome, which is the main mechanism of protein degradation 

(3, 4), and chaperone-mediated autophagy (CMA; (5)) is significantly impaired with aging 

and is especially pronounced in post-mitotic cells, such as neurons, potentially resulting 
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in neurodegenerative disease  (2). Fortunately, there is a system in place to help the body 

maintain proteostasis in times of stress and disease: the molecular chaperone network 

(6). This network is comprised of a diverse family of proteins which contains members 

that are constitutively expressed to help in normal cell maintenance as well as members 

that become activated during times of stress. All of these chaperones assist in various 

ways to help fold, refold and degrade misfolded proteins.  

The molecular chaperone network is comprised of diverse families of heat shock 

proteins (Hsps) that are divided based on their molecular mass. The small Hsps regulate 

general protein aggregation, Hsp40s regulate Hsp70 ATP hydrolysis, Hsp70 folds 

proteins during translation, and Hsp90 maintains and triages a subset of clients (7, 8). 

While Hsp70 and Hsp90 perform many overlapping roles in the cell, Hsp90 shows more 

client selectivity. Hsp90 requires ATP to perform these functions including protein 

degradation, protein folding, prevention of protein aggregation, and protein modification 

(9). These regulatory processes are particularly important for intrinsically disordered 

proteins (IDPs), which have a high propensity to aggregate (10).  

Hsp90 binds to one of these IDPs, tau, in a broad region that includes aggregation 

prone areas (11). Tau normally functions to stabilize the microtubules and regulate axonal 

transport (12). The pathological accumulation of tau is a hallmark in several 

neurodegenerative disorders collectively termed tauopathies (13); a series of diseases 

including Alzheimer’s disease (AD), progressive supranuclear palsy (PSP), Pick’s 

disease, and chronic traumatic encephalopathy (CTE; (12)). Currently there are no 

treatment options available that regulate tau pathogenesis (14), therefore more work 

needs to be done to identify potential tau regulating therapeutic strategies.  
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A promising avenue to target tau is through Hsp90 inhibition. In fact, Hsp90 

ATPase-inhibitors rapidly degrade tau aggregates in vivo (15, 16), but these inhibitors 

have not yet been successful in clinical trials due to lack of efficacy and associated 

toxicities (17–19). However, Hsp90 regulates tau and other aggregating proteins in 

coordination with a diverse group of co-chaperones (10). In fact, the levels of many of 

these co-chaperones have been shown to change with aging, which can alter the fate of 

tau and potentially contribute to disease onset or severity (20, 21). It is possible that a 

more successful treatment strategy may be found by a therapeutic aimed toward 

regulating these co-chaperones or Hsp90/co-chaperone heterocomplexes (22, 23). This 

chapter discusses the involvement of Hsp90 and its co-chaperones in disease and how 

alterations in levels and activity with aging can affect this process (Table 1.1). Current 

Hsp90 therapeutic interventions for neurodegenerative diseases will also be reviewed.    

1.3 Hsp90  

Hsp90 is critical to maintaining proteostasis (21) and accounts for up to 6% of all 

protein within the cell during times of stress (24, 25). Hsp90 consists of three domains: 

an N-terminal ATP-binding domain, a middle domain, and a C-terminal domain 

responsible for the inherent dimerization of the protein (26). Hsp90 requires ATP in order 

to dimerize and properly assist in protein folding. The Hsp90 ATPase cycle consists of 

four stages: the ATP-bound state, an initial intermediate state (I1), a second intermediate 

state (I2), and finally a closed state in which ATP hydrolysis occurs (26). There are several 

different isoforms of Hsp90: cytosolic Hsp90, which includes Hsp90α (stress-inducible) 

and Hsp90β (constitutively active); an endoplasmic reticulum (ER) isoform, gluclose-

regulated protein 94 (GRP94); and a mitochondrial associated isoform, tumor necrosis 
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factor receptor associated protein 1 (TRAP1) (24, 27). Very little is known about the 

organelle specific Hsp90 isoforms, so this chapter will focus on cytosolic Hsp90.  

The two different cytosolic forms of Hsp90 are 86% genetically identical and have 

93% amino acid sequence homology, showing lots of similarities in structure and function. 

However, there are some differences that set these two isoforms apart. The first 

difference is the viability of Hsp90 knock-out mice. Mice lacking Hsp90β are embryonically 

lethal and do not survive past day 9, whereas mice lacking Hsp90α are viable but leads 

to sterility in male mouse (28, 29). There are also some differences in the cellular 

functions of Hsp90α and Hsp90β. Hsp90α is involved in growth promotion, cell cycle 

regulation, stress-induced cytoprotection, and cancer cell invasiveness; whereas Hsp90β 

is involved with early embryonic development, germ cell maturation, cytoskeletal 

stabilization, cellular transformation, signal transduction, and long-term cell adaptation 

(30, 31). While there are some general functional differences between the two cytosolic 

isoforms more studies are needed to better understand the role of these different isoforms 

on tau pathology.    

Alterations in chaperone expression are commonly seen in aging, leading to 

complications within the Hsp90 chaperone network. In fact, recent work has shown the 

levels of many Hsp90 co-chaperones are also altered in the aged brain (21). These co-

chaperones are necessary for client selection and triage. There are two main categories 

of Hsp90 co-chaperones: tetratricopeptide repeat (TPR) and non-TPR containing (32). 

Therefore, changes in Hsp90 levels are part of a larger imbalance in the chaperone 

network, which contribute to aging and age-related neurodegenerative disorders.  
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1.4 Aha1 

The activator of Hsp90 ATPase homolog 1 (Aha1) works as a co-chaperone to 

stimulate the ATPase function of Hsp90 to regulate the folding and activation of client 

proteins. Pearl and Prodromou were the first to identify the role of Aha1 as a stimulatory 

co-chaperone of Hsp90 (33). Aha1 is a relatively small protein of 38kDa that is highly 

conserved from yeast to man (33, 34). There is also an Aha1-related protein, Aha2, which 

can only be found in higher eukaryotes although this protein has not been well 

characterized (35). Aha1 is highly expressed throughout tissues such as the kidney, brain, 

heart, and skeletal muscles and is mainly localized to the cyctoplasm within cells (35). 

Aha1 knock-out mice are available and viable but there is currently no information on any 

phenotypic deficits (The Jackson Laboratory; Stock No: 029805). 

Aha1 interacts with Hsp90 independent of its nucleotide status and allows the 

Hsp90 ATPase cycle to skip the I1 phase, thus accelerating the progression of the 

ATPase cycle dramatically (26, 36). Interestingly, only one Aha1 protein is required to 

fully stimulate the ATPase activity of Hsp90 even though there are two binding pockets 

on each Hsp90 dimer (36). One study suggests that SUMOlyation of a conserved lysine 

on Hsp90 (K191) facilitates the recruitment of Aha1 (37). Another study found that c-Abl 

phosphorylation of the tyrosine residue Y223 in human Aha1 promotes its interaction with 

Hsp90 (38). Perhaps both of these post-translational modifications need to occur for 

Hsp90 and Aha1 to interact, however, it is possible that either of these PTMs are 

sufficient. While the c-Abl tyrosine kinase is important in promoting the interaction 

between Aha1 and Hsp90, it also plays a significant role in tau phosphorylation. One 

study has shown that amyloid-β-peptide (Aβ) activates c-Abl, which then goes on to 
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phosphorylate tau through Cdk5 activation (39). This same study found that inhibition of 

c-Abl expression via shRNA decreased both AT8 and PHF1 tau in the 

APPswe/PSEN1ΔE9 transgenic mouse (39). These findings suggest that c-Abl could be 

a link between tau and Aha1, because when c-Abl levels are increased, there is an 

increased association between Aha1 and Hsp90 as well as an increase in tau 

phosphorylation and aggregation, but more studies are needed to elucidate the specifics 

of these interactions. 

Aha1 has been investigated for its role in several diseases such as cancer, cystic 

fibrosis, and more recently, tauopathies. In cancer cells, when c-Abl is inhibited, Aha1 is 

unable to interact with Hsp90, which allows the cancer cells to become hypersensitized 

to other treatments, such as Hsp90 inhibition (38). Cystic fibrosis was the first disease 

that Aha1 was implicated in and, studies have shown that downregulation of Aha1 is able 

to rescue the translocation of the mutant form of cystic fibrosis transmembrane 

conductance regulator (CFTR) ΔF508 (40). This provides additional support for targeting 

Aha1, as suppression of Aha1 is beneficial in multiple diseases. It is interesting to note 

that Aha1 levels have been shown to increase with AD. In fact, we have found that Aha1 

levels in the medial temporal gyrus of human brain correlated with increased tau Braak 

staging (41). In the same study, we found that high levels of Aha1 in a tau transgenic 

mouse model increased tau oligomers as well as neuronal loss concomitant with cognitive 

deficits (41). Since Aha1 levels are repressed in aging, but are abnormally preserved in 

AD, tau aggregation could be accelerated in part by Aha1 in the AD brain.  Thus, 

treatments which reduce Aha1 may be beneficial for diseases such as AD and cystic 

fibrosis.  
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While the Aha1/Hsp90 complex and the impact on tau is the focus of this thesis, 

there are many other important co-chaperones that play a role in the complicated 

dynamics of the Hsp90 chaperone network. The rest of the Hsp90 co-chaperones and 

their relationship to tau will be discussed below.  

1.5 TPR co-chaperones  

 TPR-containing Hsp90 co-chaperones interact with the C-terminal MEEVD peptide 

motif on Hsp90 (27). Since Hsp90 functions as a dimer, two TPR-containing co-

chaperones could interact simultaneously. However, these interactions are dependent on 

the isoform of Hsp90 and the repertoire of expressed co-chaperones. In fact, co-

chaperones do compete for binding to Hsp90 (42, 43). This competition can have 

beneficial or detrimental effects on tau pathology. Known examples include co-

chaperones which interact with Hsp90 to promote the degradation of aberrant tau or 

others which drive tau oligomerization and aggregation. Therefore, an imbalance in 

protein levels with aging and AD compound this already complex competition for binding 

Hsp90 to regulate tau fate (Fig. 1.1). Here, we will describe these TPR-co-chaperones, 

and how their interaction with Hsp90 regulates tau.  

1.5.1 Immunophilins and Immunophilin homologs 

 Hsp90 interacts with six immunophilins that display peptidyl-prolyl isomerase 

(PPIase) activity through TPR domains including cyclophilin 40 (CyP40) and five FK506-

binding proteins: FKBP51, FKBP52, FKBP36, FKBP38, FKBPL/WISp39 (44–47). These 

PPIases regulate the twisting of proline bonds through stabilization of the cis-trans 

transition state and accelerate the isomerization process. This is particularly important for 
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tau, which has 40 proline residues that regulate phosphorylation and aggregation 

propensity (48). Hsp90 also interacts with two immunophilin homologs: protein 

phosphatase 5 (PP5) and XAP2/FKBP37. Altered levels of many of these immunophilins 

and immunophilin-like proteins have been found in aging and AD (Table 1.1), which could 

skew the competition dynamics for Hsp90 binding (discussed later in this chapter) and 

may promote toxic tau accumulation.  

1.5.1.1 CyP40 

An interesting PPIase, CyP40, decreases in aging and is further repressed in AD 

(21). CyP40 was recently shown to disaggregate tau fibrils in vitro and prevents toxic tau 

accumulation in vivo preserving memory, demonstrating a neuroprotective role for CyP40 

in the brain (49). The PPIase activity of CyP40 is slightly repressed when bound to Hsp90, 

but under cellular stress CyP40 can release from Hsp90 increasing its isomerase and 

chaperone activity (50). However, as CyP40 levels decrease with aging, it is possible that 

the pool of free CyP40 is not sufficient to help disentangle aggregating proteins, like tau.  

1.5.1.2 FKBP51 

Contrary to the neuroprotective effects of CyP40, two FK506-binding proteins 

(FKBPs) have been shown to stimulate toxic tau aggregation (20, 51, 52). One of these, 

FKBP51, coordinates with Hsp90 to preserve toxic tau oligomers in vivo (Blair et al., 

2013). In fact, mice lacking FKBP51 have decreased tau levels in the brain (20, 53). 

However, throughout aging, FKBP51 levels progressively increase and are further 

increased in AD brain samples (Table 1.1) (20, 54). Previous studies have also shown 

that FKBP51 can form complexes with tau in both human AD brain samples and control 
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samples (53). Additionally, this study showed that FKBP51 was able to stabilize 

microtubules, suggesting a novel and unique function for FKBP51 (53). Taken together, 

the increase in FKBP51 in aging and AD suggest that targeting FKBP51 could offer a 

potential therapeutic strategy for tauopathies such as AD.  

1.5.1.3 FKBP52 

FKBP52 interacts both physically and functionally with tau and promotes tau 

aggregation in vitro (51, 55). FKBP52 induces oligomers from both P301L and truncated 

wild-type tau. Interestingly, this oligomerization is not due to the PPIase activity of 

FKBP52, instead the oligomerization of tau appears to occur via molecular interaction 

(52). FKBP52 can also induce aggregation of a truncated form of tau that appears to have 

prion like behavior, suggesting a possible mechanism for the spread of tau pathology 

throughout the brain in diseases such as AD (51).  However, it is interesting to note that 

FKBP52 levels are lower in the cortex of AD patients’ brains (Table 1.1) (21, 55). 

1.5.1.4 FKBP36, FKBP38, and FKBPL 

There are several other FKBPs that act as co-chaperones to Hsp90 including 

FKBP36, FKBP38, and FKBPL (WISp39), however their relationship to tau, if any, is still 

unknown at this point and so they will not be discussed in detail.  

1.5.1.5 XAP2 

 XAP2, otherwise known as FKBP37 or Aryl hydrocarbon receptor interacting 

protein (AIP), contains a PPIase homologous domain. While a direct role of XAP2 in tau 

pathogenesis has not been described, studies have shown that XAP2 is activated by 
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histone deacetylase (HDAC) 6, which has been linked to pathogenic tau (56–58). In 

addition, XAP2 coordinates with Hsp90 to regulate glucocorticoid receptor signaling (59), 

which has also been implicated in the production of pathogenic tau (60). Additional 

studies are needed to determine the direct or indirect effects of XAP2 on tau pathology. 

1.5.1.6 PP5 

Another member of this family, protein phosphatase 5 (PP5), is repressed in aging. 

PP5 is contains a PPIase homology domain, but does not display classical PPIase 

activity, since it can bind FK506 (61). Instead, PP5 acts as a Ser/Thr phosphatase, which 

activates when bound to Hsp90 (62). PP5 activity has been shown to be repressed in AD 

(Table 1.1) (63). Studies have shown that PP5 is able to dephosphorylate tau at several 

phosphorylation sites connected to AD pathology (64). Further studies are needed to 

better understand if the upregulation of PP5 could be used to slow or prevent tau 

pathogenesis. 

1.5.2 Hop 

The Hsp70-Hsp90 organizing protein, otherwise known as Hop and sometimes 

STIP1 (stress inducible protein 1), is involved in helping transfer client proteins from the 

early stages of protein maturation involving Hsp70 and Hsp40 to the later stages of the 

cycle involving Hsp90 (65). As such, Hop plays a crucial role in the maturation of client 

proteins, like tau. A previous study found that when Hop was depleted using siRNA, there 

was an accumulation of tau (66). This suggests that Hop is necessary for tau clearance 

via Hsp70/Hsp90. In fact, loss-of-function mutations in Hop drive toxic tau accumulation 



 

12 
 

in a fly model of tauopathy (67). Together these studies demonstrate a protective role of 

Hop in a tauopathic brain.  

1.5.3 CHIP 

C-terminus of Hsc70-interacting protein (CHIP) is highly involved in the Hsp70-

Hsp90 machinery acting not only as a co-chaperone, but also as an E3 ubiquitin ligase 

responsible for ubiquitin-dependent proteasomal degradation (68). CHIP has many roles 

within the cell including stress-response activation, protein triage, and restitution of the 

stress response (69). CHIP has been linked to several neurodegenerative disorders 

including Huntington’s disease, Parkinson’s disease and AD as well as other diseases 

such as cystic fibrosis and cancer (68, 69). In tauopathic mice, CHIP regulates the 

removal of tau species that have undergone abnormal phosphorylation and folding (69). 

Additionally, silencing CHIP via siRNA, led to a massive increase in tau levels (70). 

Similarly, CHIP/Stub1-knockout mice have increased accumulation of phospho- and total 

tau species (Table 1.2) (71). Overexpression of CHIP could represent a therapeutic 

strategy to prevent neuronal cell death and improve outcomes of neurodegenerative 

diseases by promoting the degradation of tau.   

1.5.4 DnaJC7 

 DnaJC7, also known as Tpr2, simultaneously binds Hsp70 and Hsp90 via its two 

TPR domains (72). To date, a link between DnaJC7 and tau has not been investigated. 

However, it is known that DnaJC7 plays an important role in steroid receptor chaperoning, 

as well as recycling substrates from Hsp90 back to Hsp70 via this unique TPR interaction 
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(72, 73). Additional studies are needed to understand if DnaJC7 regulates tau 

pathogenesis. 

1.5.5 Tom34 

 Tom34 is a co-chaperone involved in mitochondrial protein import. One study 

found that in Drosophila, impaired Tom34 gene function led to enhanced tau pathology 

(67). Conversely, the same study demonstrated Tom34 overexpression was able to 

suppress tau toxicity elucidating a role for Tom34 in tau pathology in Drosophila. The 

mechanism by which Tom34 promotes tau pathology remains unclear. It is possible that 

mitochondrial dysfunction could lead to cellular stress which, in turn, could enhance tau 

pathology. Additional studies are needed to fully elucidate this interaction. 

In addition, there are other TPR-containing Hsp90 co-chaperones such as UNC-45, 

Tom70, NASP, SGTA, SGTB, Cns1, CRN, Tah1, TPR1, DYX1C1, and AIPL1. However, 

very little is known about most of these co-chaperones in the brain and even less is known 

about their interactions with tau, therefore they will not be discussed in detail in this 

chapter.  

1.6 Non-TPR co-chaperones 

1.6.1 Cdc37 

Cell division cycle 37 (Cdc37) slows the ATPase activity of Hsp90 allowing a 

prolonged interaction between Hsp90 and its client proteins (74). Cdc37 is also required 

for the stable folding of protein kinases in coordination with Hsp90 (75). Many of these 

kinases are known to phosphorylate tau at sites associated with AD, such as GSK3β and 
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MAPK13 (76, 77). Interestingly, overexpression of Cdc37 preserves tau, and its 

suppression reduces tau (78). However, additional studies are needed to better 

understand the dynamics between Cdc37 and tau phosphorylation.  

1.6.2 p23 

p23 has an opposing effect on Hsp90 compared to Aha1. p23 works by inhibiting 

the ATPase activity of Hsp90. The interaction between Hsp90 and p23 is nucleotide-

dependent meaning that p23 can only interact with Hsp90 when ATP is bound (79). p23 

works in a unique way to inhibit ATPase activity, it can either inhibit the hydrolysis process 

or it can impede the release of ADP and Pi (80). As a co-chaperone, p23 works to 

suppress protein aggregation and exhibits chaperoning activity, although p23 is not able 

to refold proteins on its own (81). Inhibition of p23 in an siRNA screen of Hsp90 co-

chaperones showed that silencing p23 reduced both total and phospho-tau (66, 78). p23 

also plays an important role in preventing endoplasmic reticulum (ER) stress-induced cell 

death, which can be triggered by misfolded proteins, like tau (82, 83). However, p23 can 

be cleaved during ER stress-induced cell death into a smaller p19 fragment which is then 

unable to exert its anti-apoptotic effects (84). A mutant p23 (p23D142N) that is 

uncleavable was shown to ameliorate the ER stress-induced cell death in vitro and 

suggests that this mutant p23 could be a potential therapeutic target in neurodegenerative 

diseases (84).  

1.6.3 S100A1 

 S100 calcium-binding protein A1 (S100A1) interacts with Hsp90. One study used 

siRNA to screen several Hsp90 co-chaperones to investigate the effect on tau. This study 
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found that reductions in S100A1 also led to massive reductions in both phospho- and total 

tau levels in cells (66). S100A1 could play a role in stabilizing tau, thus leading to a 

worsening of tau pathology. Therefore, silencing or knocking down S100A1 could offer a 

potential therapeutic strategy for tauopathies.  

1.6.4 FNIP1 

 The folliculin-interacting protein 1 (FNIP1) is able to interact with Hsp90 as a co-

chaperone in order to inhibit its ATPase activity. One study found that FNIP1, in complex 

with FNIP2 and Hsp90, was able to stabilize the tumor suppressor folliculin (FLCN; (85)). 

FNIP1 was shown to interact directly with Hsp90, and it can also interact with other co-

chaperones such as p23, Hop and Cdc37 (85). FNIP1 was also shown to compete for 

binding with Aha1 suggesting an important role for FNIP1 in the Hsp90 chaperone 

network (85). Additional studies are needed to determine if FNIP1 could regulate tau 

directly or potentially through competition with Aha1 to bind Hsp90 and alter its ATPase 

activity. 

1.7 Aging in the Hsp90 Chaperone Network 

All of the above mentioned co-chaperones interact with Hsp90 in order to form 

diverse heterocomplexes, however, changes in Hsp90 expression with aging can alter 

their composition. There is conflicting data on Hsp90 levels with age in both human and 

animal studies. One study focused on the basal levels of cytosolic Hsp90 in peripheral 

blood mononuclear cells (PBMC) and found that in aged human samples there was an 

increase in Hsp90 under normal physiological conditions when compared to young 

samples (86). Another study had similar findings in the hippocampus of aged gerbils. This 
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study demonstrated that cytosolic Hsp90 levels were significantly increased in the 

hippocampus of aged gerbils (24 months) compared to adult gerbils (6 months) (87). 

Conversely, there are also studies showing decreased levels of Hsp90 in aged human 

brain samples. For instance, two other studies investigated the levels of chaperone 

proteins in the human brain. One study found that cytosolic Hsp90 was repressed in the 

superior frontal gyrus, while another demonstrated a similar repression in the prefrontal 

cortex of aged patients compared to controls (21, 88, 89). Taken together, this data 

suggests that alterations in Hsp90 levels do not occur uniformly and that changes in the 

expression of Hsp90 with aging may vary between cell types and brain regions (88). While 

Hsp90 protein levels are an important factor with aging, co-chaperone expression levels 

could be equally important in heterocomplex formation. 

In addition to the differences in expression levels of Hsp90, there are also changes 

in expression levels of co-chaperone proteins during the aging process. Almost all of the 

Hsp90 co-chaperones are repressed in aging, suggesting that these proteins could play 

important roles in maintaining homeostasis within the cell (21). For instance, CyP40, 

FKBP52, PP5, Hop, p23, and Aha1 are all repressed in the aged brain. All of these 

proteins are integral to the Hsp90 chaperone system and when levels of these proteins 

go down the Hsp90 chaperone network can no longer function normally, which can lead 

to an increased risk of developing a neurodegenerative disease. Interestingly, one co-

chaperone is significantly induced in the aged brain and that is FKBP51. FKBP51 has 

several important roles within the cell including immunoregulation as well as helping with 

protein folding and trafficking in complex with Hsp90. Because FKBP51 is induced in 

aging, while many other co-chaperones are reduced, this suggests that the imbalance 
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seen in these proteins during aging could lead to completely different Hsp90 

heterocomplexes resulting in the dysfunction of cellular homeostasis during aging.  

Hsp90 is able to form many unique heterocomplexes with different co-chaperones 

in order to regulate protein triage. Hsp90 heterocomplexes are unique in that there is 

usually a specific progression of co-chaperones that interact with Hsp90 (10). One 

interesting aspect to these heterocomplexes is the fact that Hsp90 can bind multiple co-

chaperones simultaneously. One study found that Hsp90 could form stable complexes 

with Hsp90, FKBP52, Hop, and p23 (43). There does appear to be a hierarchy though, 

with some co-chaperones able to bind more strongly than others. For example, Aha1 has 

been shown to compete with Hop, FNIP1, and p23 for the ability to bind with Hsp90 (42, 

85). These competition dynamics between Aha1 and p23/FNIP1 suggest that there is a 

constant battle for control of the ATPase activity of Hsp90. Additionally, FKBP51 and 

FKBP52 have been shown to have greater relative binding to Hsp90 compared to other 

TPR co-chaperones (90). While not as strong as FKBP51 and FKBP52, PP5 forms more 

complexes with Hsp90 than most other TPR co-chaperones. Taken together, increased 

FKBP51 and decreased PP5 and CyP40 could contribute to an imbalance in Hsp90 

heterocomplexes which may promote increased tau phosphorylation and aggregation 

causing neurotoxicity (20). This suggests an even more complex system in place because 

depending on the amount of certain co-chaperones and their relative ability to bind to 

Hsp90; certain maladaptive complexes could be more abundant than others with aging.  

In addition to altering Hsp90 heterocomplex composition and client selection, 

altered Hsp90 co-chaperone expression can interfere with degradation of aberrant 

proteins via the proteasome or autophagy. As mentioned above, aged cells are often 
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inundated with misfolded and aggregated proteins, which can overload the Hsp90 

chaperone network causing a negative spiral where there are not enough healthy 

chaperone molecules to refold or degrade aberrant proteins. In addition to the problems 

faced with an overwhelmed chaperone network, the proteolytic activity of the proteasome 

also declines with aging, and in fact Hsp90 has been shown to protect the proteasome 

from age-related, oxidative-dependent decline (91). However, with advanced aging, the 

association between Hsp90 and the proteasome drastically decreases (3). This suggests 

that because the Hsp90 chaperone system and the proteasome are so connected, when 

one starts to fail the other will fail as well leading to cytotoxicity and cell death. Proteins 

can also be degraded by CMA; however, CMA activity also decreases with age (92). 

Hsp90 and Hop are both involved in the CMA system; helping to unfold the target 

substrate before it can translocate into the lysosome for degradation. As mentioned 

previously, both Hsp90 and Hop are repressed in aging and therefore may not be able to 

assist in the translocation of substrates, leading to a buildup of misfolded or aggregated 

proteins. Post-translational modifications (PTMs) of Hsp90 can also complicate the matter 

further.  

There are many different PTMs that can affect Hsp90 including phosphorylation, 

acetylation, S-nitrosylation, oxidation, and ubiquitination; and all of these PTMs can 

impact the chaperoning function of Hsp90. Phosphorylation of Hsp90 leads to reduced 

chaperoning ability and phosphorylation of specific tyrosine residues can affect the ability 

of Hsp90 to interact with distinct client proteins (93, 94). Acetylation of Hsp90 affects client 

protein interaction and also decreases binding of Hsp90 to ATP (93, 95). S-nitrosylation, 

oxidation and ubiquitination also inhibit Hsp90 chaperone activity (96–98). These PTMs 
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increase with aging and can alter the ability of Hsp90 to function properly as well as 

change the ability of different co-chaperones to bind. As the chaperone network declines 

with aging, so does the ability of the cell to recover from damaged proteins and stress, 

thus leading to an environment which promotes aberrant protein accumulation and 

neurotoxicity.  

1.8 Targeting the Hsp90 Chaperone Network 

 Inhibition of the ATPase activity of Hsp90 has been shown to have positive 

outcomes in cell culture and animal models of tauopathy. Hsp90 ATPase inhibitors have 

been developed to target each of the three domains: N-terminal, middle, and C-terminal; 

with the majority of Hsp90 inhibitors targeting the N-terminal domain (99). Inhibition of 

Hsp90 induces the expression of protective chaperones, Hsp70 and Hsp40, further 

promoting the degradation of aberrant proteins (100). Previous studies have shown that 

Hsp90 inhibition decreased the levels of hyperphosphorylated and/or mutated tau species 

both in cells and mice. The Hsp90 N-terminal domain inhibitor, EC102, was used to 

demonstrate degradation of hyperphosphorylated pathologically relevant tau in cells (15). 

Another N-terminal Hsp90 ATPase inhibitor, 17-AAG, was shown to decrease levels of 

phosphorylated tau in cells, and a related N-terminal Hsp90 ATPase inhibitor, PU-DZ8, 

reduced soluble and insoluble tau in tauP301L mice (16). Although Hsp90 inhibitors have 

been in clinical development since 1999, none have reached New Drug Application (NDA) 

status (99). All of these clinical trials were focused on investigating Hsp90 inhibitors on 

various cancers. Hsp90 plays a similar role in both neurodegenerative disorders and 

cancer, however because of the complexity of the brain and the need for a blood-brain 

barrier (BBB) permeable drug, the clinical development of Hsp90 inhibitors for 
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neurodegenerative diseases has been even less successful. While the development of 

Hsp90 inhibitors is still underway, it is possible that the development of therapeutics which 

target Hsp90 heterocomplexes or discrete Hsp90 co-chaperones could open up 

additional avenues for success in developing a BBB-permeable drug. 

In addition to offering more potential therapeutic targets, small molecules which 

modify Hsp90/co-chaperone interactions may also show more specificity for a specific 

pool of Hsp90 which may reduce the number of on-target side effects. There are very few 

Hsp90 co-chaperone targeting small molecules, and of these, only a handful of these 

have been investigated for their role in effecting tau. There is a Hop/Hsp90 complex 

specific inhibitor, C9, however, there is no available data on how chemical inhibition of 

this complex affects tau accumulation (101). The Cdc37/Hsp90 inhibitors, Celasterol and 

Withaferin A (102, 103), reduce tau levels and a new compound, platycodin D has just 

been discovered (104). Platycodin D does not affect the ATPase activity of Hsp90, but 

instead disrupts the interaction between Hsp90 and Cdc37 leading to client protein 

degradation without an increase in Hsp70 (104). More work still needs to be done to better 

understand the role of Cdc37 in tau phosphorylation to determine if targeting this complex 

is of therapeutic benefit. Developing drugs to target discrete FKBPs has been challenging 

due to their homology, however, despite their structural similarity they do display 

differences in conformational flexibility which could be a way to potentially target specific 

FKBPs in the future (105). Interestingly, one study demonstrated that patients chronically 

treated with FK506, which inhibits the PPIase domain of many of the FKBPs, significantly 

reduced the incidence of AD (106). The targeting FKBP51 is of great interest for the 

treatment of tauopathies as well as mood disorders (107). Recently a PPIase antagonist 
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has been developed which shows selectivity for FKBP51, but additional studies are 

needed to determine if targeting the PPIase domain of FKBP51 will be effective in 

regulating tau accumulation (53). There is one compound, MJC13, which targets the 

FKBP52-Hsp90-androgen receptor complex (108). MJC13 results in a reduced stress 

response which has demonstrated therapeutic potential in cancer, but so far MJC13 has 

not been investigated for a role in tau pathology (108). Additionally, Aha1-specific 

inhibitors have been recently developed (109). One of these inhibitors, KU-177, reduced 

insoluble tauP301L levels in cells (41). While this is an exciting result, more studies are 

needed to determine if Aha1 inhibitors regulate tau similarly in vivo. There is still much to 

be done to develop compounds which target the Hsp90 chaperone network, but there are 

a lot of promising leads which can be targeted to develop disease-modifying therapeutics.   

1.9 Conclusions  

   The Hsp90 chaperone machinery plays a huge role in both aging and 

neurodegenerative diseases. Hsp90 is one of the most highly expressed proteins in the 

cell and is involved in a myriad of cellular processes. Previous work has focused on 

inhibition of Hsp90 to triage misfolded proteins. There are also many co-chaperones that 

associate with Hsp90 and play their own roles in aging and neurodegeneration. As these 

Hsp90 co-chaperones change with age they can significantly impact the propensity for 

certain neurodegenerative diseases. FKBP51 steadily increases with age and both 

FKBP51 and Aha1 are induced in the AD brain suggesting that these two co-chaperones 

negatively affect tau pathology. On the other hand, both CyP40 and PP5 are repressed 

in aged and AD brains. CyP40 disaggregates tau fibrils in vitro and PP5 dephosphorylates 

tau restoring microtubule binding, suggesting that increasing the levels or activity of these 
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co-chaperones could have a beneficial, neuroprotective role in diseases such as AD. 

These are just a few examples of how important maintaining the balance of Hsp90 co-

chaperones is to homeostasis, and what can happen when they are altered in aging and 

disease. Hsp90 co-chaperones offer a unique target for potential therapeutics due to their 

specific roles within the Hsp90 machinery. Overall, more work needs to be done to 

develop BBB-permeable therapeutics to target discrete Hsp90 co-chaperones for the 

treatment of AD and other tauopathies. 

 

Table 1.1 Summary of Hsp90 and Hsp90 co-chaperone levels in aging and 

Alzheimer’s disease (AD). A summary of the levels of the Hsp90 chaperone network in 

both aging and AD human samples.  

Chaperone Gene Function Aging AD Reference 

Hsp90α HSP90AA1 Chaperone Repressed No Data Brehme et al., 2014 

Hsp90ß HSP90AB1 Chaperone Repressed Repressed Brehme et al., 2014 

CyP40 CYP40 
Peptidyl-prolyl 

isomerase 
Repressed Repressed Brehme et al., 2014 

FKBP51 FKBP5 
Peptidyl-prolyl 

isomerase 
Induced Induced 

Brehme et al., 2014; 
Blair et al., 2013 

FKBP52 FKBP4 
Peptidyl-prolyl 

isomerase 
Repressed Repressed 

Brehme et al., 2014; 
Meduri et al., 2016 

Xap2 AIP Co-chaperone 
Slightly 

Repressed 
No Data Brehme et al., 2014 

PP5 PPP5 Ser/Thr phosphatase Repressed 
Activity 

repressed 
Brehme et al., 2014; 

Liu et al., 2005 

FKBP38 FKBP8 
Peptidyl-prolyl 

isomerase 
Unchanged No Data Brehme et al., 2014 

FKBP36 FKBP6 
Peptidyl-prolyl 

isomerase 
Unchanged No Data Brehme et al., 2014 

WISp39 FKBPL 
Peptidyl-prolyl 

isomerase 
Unchanged Repressed Brehme et al., 2014 
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Table 1.1, Continued 

Hop STIP1 
Client protein 

maturation 
Slightly 

Repressed 
No Data Brehme et al., 2014 

CHIP STUB1 E3 ubiquitin ligase Unchanged Unchanged Brehme et al., 2014 

DNAJC7 DNAJC7 
Steroid receptor co-

chaperone 
Repressed Repressed Brehme et al., 2014 

Tom34 TOMM34 
Mitochondrial import 

protein 
Unchanged No Data Brehme et al., 2014 

UNC-45A UNC45A Myosin chaperone 
Slightly 
Induced 

Unchanged Brehme et al., 2014 

Tom70 TOMM70 
Mitochondrial import 

protein 
Repressed Repressed 

Brehme et al., 2014; 
Loerch et al., 2008 

NASP NASP Co-chaperone 
Slightly 
Induced 

Induced Brehme et al., 2014 

SGTA SGTA Co-chaperone Unchanged No Data Brehme et al., 2014 

SGTB SGTB Co-chaperone Repressed Repressed 
Brehme et al., 2014; 
Loerch et al., 2008 

Cns1 TTC4 Co-chaperone Induced No Data Brehme et al., 2014 

CRN CRNKL1 Co-chaperone 
Slightly 

Repressed 
No Data Brehme et al., 2014 

Tah1 RPAP3 
RNA Polymerase II-
associated protein 

Repressed No Data Brehme et al., 2014 

TPR1 TTC1 Co-chaperone Unchanged No Data Brehme et al., 2014 

DYX1C1 DNAAF4 Co-chaperone Induced No Data Brehme et al., 2014 

AIPL1 AIPL1 Co-chaperone Unchanged No Data Brehme et al., 2014 

Cdc37 CDC37 Inhibits ATPase activity Unchanged Repressed Brehme et al., 2014 

Aha1 AHSA1 
Stimulates ATPase 

activity 
Slightly 

Repressed 
Induced 

Brehme et al., 2014; 
Shelton et al., 2017 

p23 PTGES3 Inhibits ATPase activity 
Slightly 

Repressed 
Unchanged Brehme et al., 2014 

S100A1 S100A1 Co-chaperone No Data No Data  

FNIP1 FNIP1 Co-chaperone No Data No Data  



 

24 
 

Table 1.2 Summary of Hsp90 and Hsp90 co-chaperone knockout mice. This table 

contains information on the available knock-out mouse lines for the Hsp90 chaperone 

family.  

 

 Protein Gene KO model Viable Phenotype Reference 

H
sp

90
 

Hsp90α Hsp90aa1 Mouse Yes 

Male mice, failure of 
spermatogenesis; viable 

and phenotypically 
normal into adulthood 

Grad et al. PLoS One 
2010 

Hsp90β Hsp90ab1 Mouse No 
Early embryonic lethality 

(day E9) 
Voss et al. Development 

2000 

TP
R

 c
o

-c
h

ap
er

o
n

es
 

Cyp40 Cyp40 Mouse Yes Phenotypically normal 
Periyasamy et al. 
Oncogene 2010 

FKBP51 Fkbp5 Mouse Yes 
Resilliant to stress-

induced depression-like 
behavior 

Yong et al. JBC 2007; 
O'leary et al. PLoS One 
2011; Touma et al. Biol 

Psychiatry 2011 

FKBP52 Fkbp4 Mouse 
~50% are 

embryonic 
lethal 

Reduced fertility in both 
males and females 

Cheung-Flynn et al. Mol 
Endocrin 2005; 

Tranguch et al. PNAS 
2005; Yang et al. Mol 

Endocrin 2006 

Xap2 AIP Mouse No Embryonic lethality 
Raitila et al. Am J Pathol 

2010 

PP5 Ppp5 Mouse Yes 

Mice survive both 
embryonic development 
and into postnatal mice; 
defect in DNA damage 

checkpoint after ionizing 
radiation 

Yong et al. JBC 2007 

FKBP38 Fkbp8 Mouse No Embryonically lethal 
Bulgakov et al. 

Development 2004 

FKBP36 Fkbp6 Mouse Yes 

Both male and female 
mice are healthy and live 

normal lifespans; male 
mice are sterile 

Crackower et al. Science 
2003 

WISp39 Fkbpl Mouse No 
Heterozygous FKBPL 
mice appear normal 

Yakkundi et al. 
Arterioscler Thromb 

Vasc Biol 2015 

Hop Stip1 Mouse No 
Embryonically lethal 
around day E9.5-10.5 

Beraldo et al FASEB J 
2013 

CHIP Stub1 Mouse Yes 

Develop normally but 
are susceptible to stress-

induced apoptosis of 
multiple organs; 

increased peri- and 
postnatal lethality 

Dai et al. EMBO J 2003 

 

https://www.picard.ch/downloads/Cyp40facts.pdf
https://www.picard.ch/downloads/Cyp40facts.pdf
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Table 1.2, Continued 

 

DnaJC7 Dnajc7 Mouse Yes 
No information on 

phenotype 
Dickinson et al. Nature 

2016 

Tom34 TOMM34 Mouse Yes Phenotypically normal 
Terada et al. J Biochem 

2003 
UNC-
45A 

UNC45A Mouse No Embryonic lethality 
Dickinson et al. Nature 

2016 

Tom70 TOMM70 No N/A   

NASP NASP Mouse No Embryonic lethality 
Richardson et al. JBC 

2006 

SGTA SGTA Mouse Yes 

Less fertile with small 
liters and higher 

neonatal death rates; 
smaller body size in both 

males and females 

Philp et al. Nature 
Scientific Reports 2016 

SGTB SGTB No N/A   

Cns1 TTC4 Mouse Yes Phenotypically normal 
Josefowicz et al. Nature 

2012 

CRN CRNKL1 No N/A   

Tah1 RPAP3 No N/A   

TPR1 TTC1 No N/A   

DYX1C1 DYX1C1 Mouse Yes 

Embryonic lethality in 
approx. 2/3; surviving 
mice develop severe 

hydrocephalus by 
postnatal day 16 and 

died by P21 

Tarkar et al. Nat 
Genetics 2013 

AIPL1 AIPL1 Mouse Yes Phenotypically normal 
Ramamurthy et al. PNAS 

2003 

N
o

n
 T

P
R

 c
o

-c
h

ap
er

o
n

es
 

Cdc37 Cdc37 C. elegan No 
Embryonically lethal in C. 

elegans 
Beers & Kemphues, 
Development 2006 

Aha1 Ahsa1 Mouse Yes 
No information on 

phenotype 
The Jackson Laboratory: 

Stock No: 029805 

p23 Ptges3 Mouse No 

Perinatal lethality 
resulting from defective 

lung development; 
Abnormal skin and 

reduced expression of 
GR markers 

Grad et al. Mol and Cell 
Biol 2006; Lovgren et al. 
Mol and Cell Biol 2007; 
Nakatani et al. Biochem 
and Biophys Res Comm 

2007 

S100A1 S100A1 Mouse Yes Phenotypically normal 
Jun Du et al. Mol Cell 

Biol 2002 

FNIP1 FNIP1 Mouse Yes Phenotypically normal Hasumi et al. PNAS 2015 
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Figure 1.1. Schematic depicting fate of tau following Hsp90 interaction with 
distinct co-chaperones; the impact of Alzheimer’s disease on the levels of co-
chaperones. Aha1 and FKBP51 protein levels are induced in AD, and their association 

to tau leads to increased aggregation. Whereas, CyP40 and PP5 levels are repressed 
in AD, and their association to tau leads to reduced tau aggregation. This schematic 
highlights the important role of co-chaperones in AD.  
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Chapter Two1: 
 

The Hsp90 activator Aha1 drives production of tau aggregates 

2.1 Abstract  

The microtubule-associated protein tau forms neurotoxic aggregates that promote 

cognitive deficits in tauopathies, the most common of which is Alzheimer’s disease (AD). 

The 90-kDa heat shock protein (Hsp90) chaperone system affects the accumulation of 

these toxic tau species, which can be modulated with Hsp90 inhibitors. However, many 

Hsp90 inhibitors are not blood-brain barrier permeable and several present associated 

toxicities. Here, we find that the co-chaperone, activator of Hsp90 ATPase homolog 1 

(Aha1), dramatically increased the production of aggregated tau. We see that Aha1 

overexpression in an iHek-P301L tau model led to the accumulation of insoluble tau. 

Whereas, treatment with a novel Aha1 inhibitor, KU-177, dramatically reduced the 

accumulation of insoluble tau. Overall, these data demonstrate that Aha1 contributes to 

tau fibril formation through Hsp90. This suggests that therapeutics targeting Aha1 may 

reduce toxic tau species, which could be beneficial in slowing or preventing the 

progression of tauopathies. 

 

____________________ 

1Portions of this work were previously published (Shelton LB et al., 2017) and are used with 

permission of the publisher. 
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2.2 Introduction 

The microtubule associated protein tau (MAPT, tau) accumulates and aggregates 

in a family of neurodegenerative diseases called tauopathies (110), the most common 

being Alzheimer’s disease (111). In particular, the pathogenic formation of oligomeric tau 

species is thought to be a major contributor to disease progression (112). One study has 

shown that injection of recombinant full-length human tau oligomers in vivo led to synaptic 

dysfunction and impaired memory, whereas injection of tau fibrils and monomers did not 

(113). Therefore strategies aimed at reducing oligomeric tau accumulation could hold 

therapeutic promise for these diseases (114).  

Molecular chaperones, including the 90-kDa heat shock protein (Hsp90), regulate 

protein folding, degradation, and accumulation (115). Of the proteins regulated by Hsp90, 

often referred to as ‘clients,’ tau is one of the most thoroughly characterized (116). In the 

past decade, Hsp90 emerged as one of the next breakthrough drug targets for diseases 

of aging, particularly for neurodegenerative diseases like tauopathies (117). Small 

molecules inhibiting the ATPase activity of Hsp90 showed great promise in preclinical 

models, prompting the development of a host of clinical leads (118), but the translation of 

this pre-clinical success into patients has been disappointing. Not only have many leads 

suffered from poor blood-brain barrier permeability (119), but toxicity has also dampened 

enthusiasm (120, 121). This has led to the pursuit of Hsp90 co-chaperones as distinct 

drug targets offering an alternative to Hsp90 (115, 122).  

Activator of Hsp90 ATPase homolog 1 (Aha1) is the only one of these co-

chaperones known to stimulate Hsp90 ATPase activity (123). This small 38kDa co-
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chaperone binds to the N-terminal and mid-domains of Hsp90, inducing a partially closed 

conformation that accelerates the progression of the ATPase cycle dramatically (123, 

124). Therefore, small molecules targeting the interaction of Hsp90 with Aha1 could be 

beneficial in disease by reducing Hsp90 ATPase activity (125, 126). Here we sought to 

determine if Aha1 could facilitate the pathogenesis of tau by stimulating Hsp90 activity. 

We determined that Aha1 stimulation of Hsp90 activity can drive tau fibril formation, in 

vitro. Moreover, inhibiting the interaction between Aha1 and Hsp90, using a small 

molecule, reduced recombinant tau fibril formation as well as insoluble tau accumulation 

in cultured cells. Our findings suggest that targeting Hsp90 co-chaperones may enable 

inhibition of tau aggregation, which could re-energize the translational appeal of the 

Hsp90 chaperone network as a drug target. 

2.3 Materials and Methods 

2.3.1 Antibodies 

The following antibodies were used: Anti-Aha1 antibodies (StressMarq, SMC-172D and 

Abcam, ab83036 for IP), anti-Hsp90 α (StressMarq, SMC-149B), anti-GAPDH 

(Proteintech, 60004-1-Ig), H-150 anti-tau (Santa Cruz Biotechnology, sc-5587), and anti-

tau pT231 (Anaspec, 55313-025). PHF1 anti-tau (pS396/404) was a kind gift from Dr. 

Peter Davies.  

2.3.2 Plasmids and viral vectors 

Aha1 WT and Aha1 E67K expression plasmids were generated in our lab using the 

pCMV6 backbone.  
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2.3.3 Protein expression 

Recombinant human P301L tau, Aha1, Aha1 E67K, p23, FKBP51, FKBP52 and CDC37 

were cloned into bacterial expression vector, pet28a with a His tag followed by a TEV 

sequence. Plasmids were transformed into E.coli (BL21) one-shot star cells and plated 

onto kanamycin-agar plates. Plates were grown at 37°C for approximately 16 hours. 

10mL LB broth with kanamycin starter cultures were then inoculated with a colony and 

the starter culture grown for 8 hours. 1L cultures were then inoculated at 1:100 dilution 

and grown to OD600 of 0.8. Cultures were induced with the addition of 1mM IPTG and 

the incubator temperature was reduced to 16°C. Cultures were then grown for 14 hours. 

Cells were then pelleted at 3,500 x g for 30 minutes and supernatant discarded. Pellets 

were resuspended in lysis buffer (20 mM Tris-HCl pH 8.0, 500 mM NaCl, 10 mM Imidazole 

with protease inhibitors) and frozen at -80°C. Bacterial pellets were then thawed and lysed 

by sonication. Lysates were then spun at 50,000 x g for 1 hr. Next, the supernatant was 

purified by nickel affinity chromatography (Nickel Resin, Fisher #PI88222). Protein purity 

and expression was then checked by Coomassie stained SDS-PAGE. Next, the protein 

was digested with TEV protease, removing the His tag. Finally, proteins were purified by 

a size exclusion column (HiLoad 16/600 Superdex200pg). Proteins were then stored at -

80°C. Hsp90α protein was a kind gift from Dr. Johannes Buchner.  

2.3.4 Transmission Electron Microscopy 

10 µL of protein samples were adsorbed onto square mesh copper grids (EMS300-Cu) 

for 60 seconds, washed twice with 10 µL of deionized water and excess water removed 

by wicking with filter paper. Samples were negatively stained with 1% uranyl acetate for 
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30 seconds and dried overnight. Grids were viewed using a JEOL 1400 Digital 

Transmission Electron Microscope and images were captured with a Gatan Orius wide-

field camera. Fields shown are representative. 

2.3.5 Thioflavin T fluorescence assay 

10 µM P301L tau was incubated with 400 nM of the indicated chaperone in 100 µM 

Sodium Acetate pH 7.0 buffer with 2mM DTT, 2.5uM heparin (3,000 Da), and 10uM 

Thioflavin ThT in 100 µL volumes in a 96-well black clear-bottom plate (Fisher #07-200-

525) for 3 days at 37°C. Fluorescence was read at 440 nm excitation and 482 nm 

emission in a BioTek Synergy H1 plate reader at indicated time points. All conditions were 

performed at least in duplicate. 

2.3.6 Cell culture and transfection 

iHek-P301L cells (32) and luciferase expressing PC3-MM2 cells (127) were cultured in 

DMEM media supplemented with 10% FBS and 1% Penicillin-Streptomycin (Invitrogen). 

Inducible cells were incubated with 3 µg of tetracycline for 72 h. 48 h prior to harvest, 

transfections were performed with 2.5 μL Lipofectamine 2000 (Invitrogen) per 1 μg of 

DNA, which was incubated in serum-free Opti-MEM for 5 minutes before adding the 

mixture dropwise to the cells. KU-177 was added 24 h prior to harvest at indicated 

concentrations. Cells were harvested in Hsaio TBS buffer (50mM Tris Base, 274mM 

NaCl, 5mM KCl, pH 8.0) containing protease inhibitors. Samples were prepared as 

previously described (128) to obtain soluble (S1) and Sarkosyl-insoluble (P3) fractions. 
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2.3.7 Co-immunoprecipitation 

Co-immunoprecipitation of Hsp90α with Aha1 from PC3- MM2 and iHek P301L cells 

incubated with the indicated compounds for 24 hours were performed as previously 

described (129).  

2.3.8 Luciferase refolding assay 

Compound dissolved in DMSO at the indicated concentrations or a DMSO control was 

evaluated in a luciferase refolding assay in PC3-MM2 cells as previously described  (130) 

and dose–response curves of the luminescence signal relative to DMSO control were 

generated using GraphPad Prism 5.0. 

2.3.9 Western blot and dot blot analysis 

 Cell samples were analyzed by Western blot using 4-15% SDS gradient gels 

(BioRad). Antibody dilutions were 1:1000 unless otherwise stated, and all secondary 

antibodies were used at 1:1000 (Southern Biotech). Blots were developed using ECL 

(Pierce) on a LAS-4000 mini imager (GE Healthcare).    

2.3.10 Statistical analysis 

 To compare two groups, a t-test was used. Groups larger than two were evaluated 

using a one-way ANOVA with Dunnett’s multiple comparison test. P values below 0.05 

were considered significant.  
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2.4 Results 

2.4.1 Aha1 enhances Hsp90-dependent tau aggregation.  

Since Hsp90 has been shown to exacerbate tau fibril formation (131), we 

screened five established Hsp90 co-chaperones to determine whether they had an 

inhibitory or stimulatory effect on this process. Recombinant P301L tau was incubated 

with Hsp90 in the presence of ATP with or without co-chaperone proteins, as indicated 

(Fig. 2.1A). Aha1 was the only co-chaperone to show a significant enhancement of tau 

fibril formation; while CDC37, p23, FKBP51 and FKBP52 were not significantly different 

than Hsp90 alone. We then examined the effects of Hsp90 and Aha1 on tau fibril 

formation over time. We found the most potent inducer of tau fibril formation was Hsp90 

and Aha1 combined (Fig. 2.1B). Moreover, Aha1 alone did not affect tau aggregation. 

These results were also confirmed using transmission electron microscopy (TEM), 

which shows an increase in tau fibrils in the presence of Hsp90, and an exacerbation of 

fibrils when both Hsp90 and Aha1 are present (Fig. 2.1C); suggesting that Aha1 could 

be responsible for the enhancement of tau aggregates seen. Additionally, a mutant 

Aha1-E67K, which does not bind to Hsp90 (Fig. 2.2A), did not enhance tau fibril 

formation (Fig. 2.1D). Since heparin is a known tau aggregation inducer, and tau 

aggregation can be modulated by DTT, we conducted control experiments to check if 

the aggregation behavior of tau can be affected by Hsp90, Aha1, or their combination in 

the absence of heparin or DTT. Tau did not fibrillate under these conditions within the 

timeframe examined (Fig. 2.3A and B). Moreover, since Aha1 is a known stimulator of 

Hsp90 ATPase activity (123, 124), next, we also investigated the effects of these 

proteins on tau aggregation in the absence of ATP. We found that ATP was essential 
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for Aha1/Hsp90-mediated tau aggregation (Fig. 2.1E). Together, these data indicate 

that Aha1 utilizes ATP to enhance Hsp90-mediated tau aggregation. 

2.4.2 KU-177 inhibits interaction between Hsp90 and Aha1.  

There are no commercially available Aha1-specific inhibitors. We received 

novobiocin analogs from Dr. Brian Blagg which were designed to bind to both Hsp90 

and Aha1 (KU-174) or to only Aha1 (KU-177, KU-308) (Fig. 2.4A). Immunoprecipitation 

of Aha1 from PC3-MM2 cells revealed that Aha1 and Hsp90 complexes were inhibited 

by KU-308, KU-177, and KU-174 (Fig. 2.4B). Hsp90-mediated refolding of denatured 

luciferase was inhibited with KU-174 (Fig. 2.4C), indicating that this compound directly 

inhibits Hsp90, consistent with a previous report (129). However, both KU-308 and KU-

177, which lack the noviose sugar required for Hsp90 binding (Fig 2.4A, red), did not 

inhibit luciferase refolding (Fig. 2.4C). This suggests that these compounds do not 

directly inhibit Hsp90, as they were engineered to specifically bind to Aha1. Because of 

these characteristics, we chose to use KU-177 as our lead compound. We further tested 

the ability of KU-177 to inhibit the interaction between Hsp90 and Aha1 in HEK cells. 

Consistent with the PC3-MM2 cells, immunoprecipitation of Aha1 revealed that KU-177 

inhibited the binding of Aha1 to Hsp90 (Fig. 2.4D).  

2.4.3 KU-177 inhibits tau aggregation in vitro.  

We investigated the ability of KU-177 to inhibit Aha1-mediated tau aggregation. 

Recombinant P301L tau was incubated with Hsp90 alone or Hsp90 and Aha1, then 

treated with KU-177 or DMSO as a control. KU-177 was able to significantly reduce tau 

fibril formation compared to the DMSO control (Fig. 2.5A). KU-177 showed a robust 
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reduction in tau fibril formation, as observed by TEM (Fig. 2.5B). iHEK-P301L cells 

transfected with Aha1-WT or Aha1-E67K were treated with KU-177 and harvested to 

examine soluble and Sarkosyl-insoluble tau. We see that both the mutant Aha1-E67K 

as well as the Aha1 inhibitor KU-177 were able to reduce insoluble tau (Fig. 2.5C). We 

also noted that KU-177 increased soluble, phosphorylated tau however, this finding was 

not significant. 

 

2.5 Discussion 

In this study we identified the Hsp90 co-chaperone, Aha1, as a potential 

therapeutic target for the treatment of tauopathies. Our data suggest that Aha1 

increased tau fibril formation resulting in insoluble tau accumulation by stimulating 

Hsp90 ATPase activity. Additionally, we demonstrated that the novel Aha1 inhibitor, KU-

177, reduced the accumulation of insoluble P301L tau in cultured cells. This suggests 

that Aha1 may be a promising target for the development of therapeutics directed 

toward reducing tau aggregation. 

Previous work has focused on Hsp90 as a therapeutic target in order to reduce 

the toxic load of amyloidogenic proteins in cells (132). However, this endeavor has been 

challenging as Hsp90 has many client proteins within the cell and inhibiting this 

chaperone can lead to many pleiotropic effects (120, 133). Compounds that target 

specific Hsp90 co-chaperones (122) are being investigated for their potential to be less 

toxic as well as more specific (115). Targeting the Hsp90/p23 and Hsp90/CDC37 

complexes with celastrol analogs (134–137) or withanolides (138–140) has been 
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investigated. However, these compounds still bind Hsp90 and have effects similar to 

Hsp90 inhibitors (140, 141). Alternatively, small molecule inhibitors of Hsp90/HOP 

complexes disrupt this complex by binding directly to HOP (142). One of these 

compounds, C9, was shown to have anticancer effects similar to direct Hsp90 inhibition, 

without inducing heat shock response (101). Until recently, there were no known small 

molecule inhibitors of Aha1. Ghosh and colleagues identified compounds which bind to 

either Hsp90 or Aha1 based on the novobiocin scaffold (129). More recently, two 

additional Aha1/Hsp90 inhibitors were identified (143). These compounds demonstrated 

protection against pathologies related to cystic fibrosis, but it is still unclear if these 

inhibitors bind directly to Hsp90 or Aha1.  

Here, we demonstrated that the Aha1-binding inhibitor, KU-177, reduced 

Hsp90/Aha1-mediated toxic tau accumulation. Further studies will be required to 

determine the pharmacokinetics, brain distribution, and efficacy of KU-177 and future 

classes of Aha1 inhibitors. Exploring Aha1 as an alternative to Hsp90 inhibition could re-

energize the field, as Aha1 can be targeted more specifically and perhaps avoid the 

potential negative side effects that are seen when Hsp90 is inhibited. Additional studies 

are also needed to determine the in vivo relevance of this work. Future studies could 

investigate the effect of Aha1 knock-down on tau pathology in vivo. Collectively, this study 

identified a role for Aha1 in the progression of tauopathies. This suggests inhibition of 

Aha1 may prevent the accumulation of pathogenic tau. 
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Figure 2.1. Hsp90 and Aha1 synergize to form tau aggregates. (A) Recombinant 

P301L tau fibril formation measured by ThT fluorescence, comparing the effect of 5 

different recombinant co-chaperone proteins with Hsp90 and ATP (Results represent 

the mean ± SEM, n=3; *** = p < 0.001). (B)  Recombinant P301L tau fibril formation 

measured by ThT fluorescence over a period of 72 hr with or without the addition of 

Hsp90 and Aha1 (Results represent the mean ± SEM, n=3). (C) Representative 20,000x 

TEM images of recombinant P301L tau fibrils formed in the presence of indicated 

chaperone proteins with ATP, scale bar represents 2 µm. (D) Recombinant P301L tau 

fibril formation was measured by ThT fluorescence in the presence ATP and 

chaperones as indicated (Results represent the mean ± SEM, n=3; * = p<0.05). (E) 

Recombinant P301L tau fibril formation measured by ThT fluorescence with varying 

mixtures of Hsp90, Aha1 and ATP as indicated (Results represent the mean ± SEM, 

n=3; *** = p < 0.001, *p<0.05).   
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Figure 2.2. E67K-Aha1 mutation reduces tau aggregation in vitro. (A) Western blot 

of immunoprecipitated Hsp90 (FLAG) from iHek cells transfected with either Aha1-WT 

or Aha1-E67K. 
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Figure 2.3 Tau fibril formation without heparin and DTT. (A) Recombinant P301L 

tau fibril formation measured by ThT fluorescence over a period of 72 hr with or without 

the addition of Hsp90 and Aha1 (Results represent the mean ± SEM, n=3). (B) 

Representative 20,000x TEM images, scale bar represents 2 µm. 
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Figure 2.4. KU-177 inhibits interaction between Hsp90 and Aha1. (A) Chemical 

structure of the novobiocin analogs KU-174, KU-177 and KU-308. The noviose sugar 

moiety (red) is required for Hsp90-binding of novobiocin analogs and is absent in KU-

177 and KU-308. The biaryl amide moiety (green) has been shown to interact with Aha1 

(18). (B) Immunoprecipitated Aha1 from PC3-MM2 cells treated with ± 10 µM KU-308, 

KU-177 or KU-174 for 24 hours were analyzed by Western blot. Without antibody (-Ab) 

indicates a mock immunoprecipitation. (C) Comparison of Hsp90–mediated luciferase 

refolding activity in PC3-MM2 cell treated with DMSO or 100, 25, 6.25, 1.56, 0.39, and 

0.097 µM KU-308, KU-177 or KU-174 for 2 hours. IC50 value for KU-177 is shown (R2 = 

0.98). Dose response curves for KU-308 and KU-177 suggest the IC50 values would be 

higher than the range of concentrations examined here. (KU-308, KU-174 n=3; KU-177 
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n=2). (D) Immunoprecipitated Aha1 from iHEK cells treated ± 10 µM KU-177 for 24 

hours were analyzed by Western blot.  
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Figure 2.5. KU-177 inhibits Aha1 enhancement of Hsp90-mediated tau 

aggregation. (A) Recombinant P301L tau fibril formation measured by ThT 

fluorescence, comparing the effect of 10 µM KU-177 or DMSO on tau fibril formation 

(Results represent the mean ± SEM, n=3; ** = p < 0.01, * = p < 0.05). (B) 

Representative 20,000x TEM images of recombinant P301L tau fibrils formed in with 

KU-177 or DMSO control, scale bar represents 2 µm. (C) iHek P301L cells transfected 

with Aha1-WT, Aha1-E67K or empty vector were treated with 10 µM KU-177 or DMSO 

then harvested and soluble and Sarkosyl-insoluble fractions were prepared. Blots were 

probed by antibodies as indicated.  
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Chapter Three1: 
 

Overexpression of Aha1 accelerates tau pathology and neurotoxicity in rTg4510 

mice 

3.1 Abstract  

Pathological tau aggregates are the hallmark of a group of diseases deemed 

tauopathies. Several forms of tau can be seen within the brain, such as tau monomers, 

oligomers, and fibrils, with tau oligomers thought to be the most toxic. We previously 

demonstrated that Hsp90, together with Aha1, can significantly increase the production 

of aggregated tau species in vitro. However, the impact of Hsp90/Aha1 interaction on tau 

in vivo has not yet been investigated. Therefore, this study sought to investigate the 

effects of Aha1 overexpression in the rTg4510 mouse model of tauopathy. We found that 

Aha1 overexpression led to an increased production of both insoluble and oligomeric tau 

species in the hippocampi of the mice. Significant cognitive deficits and neuronal loss was 

also seen in mice overexpressing Aha1. This suggests that Aha1 overexpression can 

induce the formation of pathological tau aggregates. This work provides precedent for the 

use of Aha1 as a novel therapeutic target for the treatment of tauopathies.  

 

____________________ 

1Portions of this work were previously published (Shelton LB et al., 2017) and are used with 

permission of the publisher. 
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3.2 Introduction 

 Tau, a microtubule associated protein, accumulates in many diseases known as 

tauopathies, the most common being Alzheimer’s disease (AD). Hyperphosphorylation of 

tau allows it to disassociate from the microtubule and leads to its propensity to aggregate 

(144). It has been assumed for many years that neurofibrillary tangles (NFTs) were the 

cause of toxicity because they correlate well with disease progression (145). However, 

more recent evidence suggests that tau oligomers may be the toxic form of tau in 

neurodegenerative disease (145). It is plausible that multiple tau conformations can cause 

toxicity, but tau oligomers appear to be the most toxic species of tau.  

There are several key mutations that occur in tauopathies, which lead to tau 

becoming more easily abnormally hyperphosphorylated, including G272V, P301L, 

V337M and R406W (146). There are several mouse models that use these mutations to 

mimic tauopathies, and to some extent, AD. The P301L mutation has been used to 

generate the greatest number of transgenic mouse lines (147). The first mouse line 

expressing the P301L mutation was the JNPL3 mice, with 4R/0N (four-repeat, no amino-

terminal inserts) under the control of the mouse prion promoter (147, 148). While this 

mouse line did develop neurofibrillary tangles in the diencephalon, brainstem and 

cerebellar nuclei, there were no clear cognitive deficits or neuronal loss and these mice 

had a severe motor impairment (147). Since then, many other mouse lines have been 

created expressing the P301L mutation.  

The rTg4510 mouse line is another transgenic mouse that expresses the P301L 

mutation. Expression of the transgene is driven by a forebrain specific Ca2+ calmodulin 
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kinase II promoter system that results in high levels of expression in the hippocampus 

and neocortex (128). An interesting aspect of this mouse line is that transgene expression 

is induced via the tetracycline-operon responsive element allowing suppression after 

treatment with doxycycline (128). The pathological hallmarks of this mouse model are 

striking with an age-dependent accumulation of neurofibrillary tangles (NFT), which can 

be seen as early as 2.5 months of age, as well as Sarkosyl-insoluble tau (128, 149). 

Additionally, massive neuronal loss can be seen, reaching over 80% loss in the CA1 of 

the hippocampus and dentate gyrus by 8.5 months of age (149). Due to this massive 

neuronal loss, the rTg4510 mice also display impaired cognition in spatial learning and 

memory tasks (128, 150). Astoundingly, tau suppression via doxycycline administration 

is able to reverse the cognitive deficits seen, even after accumulation of pathological 

NFTs and neuronal loss has occurred (150). Previous work from our lab, has focused on 

using co-chaperones, proteins that assist chaperones in protein folding and other 

functions, to modulate tau pathology in the rTg4510 mice. FKBP51 and CyP40, while both 

immunophilins, have very different effects on tau pathology (49, 131). While FKBP51 

increases oligomeric tau and enhanced neurotoxicity, CyP40 had the opposite effect (49, 

131). These studies demonstrate that co-chaperones can have different effects on tau 

aggregation and provide a precedent for examining the role of Aha1 in this mouse model. 

Additionally, Aha1 is the only known stimulator of the ATPase activity of Hsp90, providing 

a unique co-chaperone target that, if inhibited, could mimic the effects seen from Hsp90 

inhibition (41, 123). Hsp90 inhibition has previously been shown to modulate tau 

pathology, however, due to toxicity and bioavailability, Hsp90 inhibitors have not been 

successful in clinical populations (15, 18, 19). Therefore, finding a co-chaperone that can 



 

47 
 

also modulate tau pathology with more specificity could provide additional therapeutic 

targets for the treatment of tauopathies. 

For these reasons, we chose to examine the effects of overexpression of Aha1 in 

the rTg4510 mouse model. Aha1 was found to be co-localized with tau tangles in AD 

brain samples, suggesting that it is a clinically relevant co-chaperone. We also found that 

Aha1 overexpression increased both oligomeric and Sarkosyl-insoluble tau in the 

hippocampi of the mice. Additionally, we saw increased neuronal loss and cognitive 

deficits in mice overexpressing Aha1. Our findings suggest that overexpression of Aha1 

in a mouse model of tauopathy significantly worsens the phenotype seen in these mice.  

3.3 Materials and Methods 

3.3.1 Antibodies 

The following antibodies were used: Anti-Aha1 antibodies (StressMarq, SMC-172D and 

Abcam, ab83036 for IP), anti-Hsp90 α (StressMarq, SMC-149B), anti-GAPDH 

(Proteintech, 60004-1-Ig), anti-NeuN (Millipore, MAB377B), H-150 anti-tau (Santa Cruz 

Biotechnology, sc-5587), and anti-tau pT231 (Anaspec, 55313-025). PHF1 anti-tau 

(pS396/404) was a kind gift from Dr. Peter Davies. T22 anti-tau oligomer was a kind gift 

from Dr. Rakez Kayed. 

3.3.2 Plasmids and viral vectors 

The Aha1 expression plasmid was generated in our lab using the pCMV6 backbone. 

Adeno-associated virus (AAV) serotype 9-Aha1 and AAV9-mCherry were generated in 

our lab for murine gene therapy studies. 
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3.3.3 Human tissue processing 

Brain tissue samples from the medial temporal gyrus of patients with Braak stages 2, 5 

or 6 were provided by the University of California Alzheimer’s Disease Research Center 

(UCI-ADRC) and the Institute for Memory Impairments and Neurological Disorders. 

Samples were fixed in 4% paraformaldehyde overnight, then sucrose gradients up to 

30% were used and tissue was sectioned on a sliding microtome at 25 µm thick 

sections. Sections were stored at 4ºC in Dulbecco’s phosphate buffered saline (PBS) 

supplemented with 0.065% sodium azide until they were used for 

immunohistochemistry.  

3.3.4 Animal studies and tissue processing 

rTg4510 (Jackson labs) and non-transgenic control mice received bilateral stereotaxic 

hippocampal (X = ±3.6, Y = -3.5, Z = +2.68) injections of AAV9 vector (Mini CMV + 

CBA) (1012) at 5-months old. (N = 20 [10 transgenic; 7 male, 3 female], [10 non-

transgenic; 7 male, 3 female] for Aha1. N = 19 [9 transgenic; 6 male, 3 female], [10 non-

transgenic; 6 male, 4 female] for mCherry). Each injection delivered 2 μL of AAV9 

particles. At 7-months of age the mice were used for behavioral testing using the radial 

arm water maze (RAWM) task. Upon completion of RAWM the brains were harvested 

after cardiac perfusion with 0.9% saline. The right hemisphere from each mouse was 

dissected and hippocampus was then snap frozen and stored at -80°C until processed 

as previously described (128) to obtain soluble (S1) and Sarkosyl-insoluble (P3) 

fractions. The left hemisphere from each mouse was fixed in 4% paraformaldehyde 

overnight, then sucrose gradients up to 30% were used and 25 µm thick tissue sections 
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were generated using a sliding microtome for general histochemical staining, and 50 µm 

sections for stereology studies. Sections were stored at 4ºC in Dulbecco’s phosphate 

buffered saline (PBS) supplemented with 0.065% sodium azide until they were used for 

immunohistochemistry. 

3.3.5 Western blot and dot blot analysis 

Mouse brain tissue samples were analyzed by Western blot using 4-15% SDS gradient 

gels (BioRad). Antibody dilutions were 1:1000 unless otherwise stated, and all 

secondary antibodies were used at 1:1000 (Southern Biotech). Blots were developed 

using ECL (Pierce) on a LAS-4000 mini imager (GE Healthcare). For dot blots, proteins 

were applied onto a wet nitrocellulose membrane and dried by vacuum. Dried 

membranes were blocked and developed as described above. 

 3.3.6 Semi-denaturing Western blot 

Tissue was homogenized using sonication and the low-speed spin fraction was 

collected after centrifugation at 13,000xg for 15 min.  Samples were then mixed with 2X 

Laemmli sample buffer (BioRad) containing 2.1% SDS, and run on a blot using 4-15% 

SDS gradient gels (BioRad) without boiling the samples or adding β-Mercaptoethanol 

(βME).  

3.3.7 Radial arm water maze 

The radial arm water maze (RAWM) was performed as previously described (151). 

Briefly, a circular black tank with a six arm metal insert was filled with water and a 

platform was submerged 1 cm below the surface of the water at the end of a designated 
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goal arm. Animals were permitted 60 seconds to locate the platform, during which time 

an observer blind to treatment manually scored the number of errors. An error was 

defined as an entry into an incorrect arm or the absence of an arm choice within 15 

seconds. Mice were trained over 2 days with 12 trials per day, which were divided into 4 

blocks of 3 trials each. Average errors were calculated for each mouse on day 1 and 

day 2. Groups were evaluated separately for each day with a one-way ANOVA using a 

Least Significant Difference test to compare groups. 

3.3.8 Immunohistochemistry 

All immunohistochemistry was done using free floating sections as previously described 

(152). Briefly, sections were incubated in PBS with 10% MeOH and 3% H2O2 to block 

endogenous peroxidases. After PBS washes, tissue was permeabilized for 30 minutes 

by 0.2% Triton X-100 with 1.83% lysine and 4% serum in PBS. Following 

permeabilization, tissue was incubated overnight, at room temperature with either anti-

Aha1 (rat, 1:7000), or anti-T22 (rabbit, 1:700). Following PBS washes, biotinylated goat 

anti-rat (1:1000) or goat anti-rabbit (1:3000) secondary antibody was added for 2 hours. 

An ABC kit (Vectastain) was used to increase visibility. Following three PBS washes, 

tissue was incubated with 0.05% diaminobenzidine plus 0.5% nickel and developed with 

0.03% H2O2. Sections were then mounted on charged slides, allowed to dry overnight 

and dehydrated in alcohol gradients. Slides were coverslipped with DPX following 

clearing with Histoclear (National Diagnostics). 

Human tissue was stained as previously described using immunofluorescent secondary 

antibodies (131, 153). Briefly, the tissue was permeabilized as described above and 
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incubated at room temperature overnight with rat anti-Aha1 (1:100), and mouse anti-

PHF1 (1:100). Following washes sections were incubated for 2 hours with AlexaFluor-

488-labelled goat anti-rat (1:1000) or AlexaFluor 594-labelled goat anti-mouse (1:1000) 

secondary antibodies. Following secondary incubation, sections were stained with 

Neurotrace (1:25) (Invitrogen) for 20 minutes. Human tissue was also incubated in 0.1% 

Sudan Black B in 70% EtOH (Sigma) to reduce autofluorescence for 20 minutes and 

then washed three times with 0.2% Tween in PBS following fluorescent secondary. 

Tissue was mounted after three washes and coverslipped with ProLong Gold antifade 

(Invitrogen) reagent.  

Sections stained for stereology were blocked and permeabilized as described above 

and incubated overnight at room temperature with biotinylated anti-NeuN (1:3000). 

Following washes, ABC conjugation, and peroxidase development, tissue was mounted 

on charged glass slides and allowed to dry overnight. A 0.05% cresyl violet counterstain 

was applied to slides then briefly and quickly destained with 0.3% acetic acid in water 

prior to dehydration.  

3.3.9 Microscopy 

Brightfield stained tissue was imaged using a Plan-Apochromat20x/0.88 objective on a 

Zeiss Axioscan.Z1 slide scanner. Brain tissue immunofluorescently stained was imaged 

using the Leica TCS SP2 for image analysis. The Zeiss LSM 880 AxioObserver laser 

scanning confocal microscope was used for representative images. Fields of view were 

selected in the cortex based on tau positive staining.  A 63x/1.40PLAN APO Oil 

objective was used to take a minimum of 10 1 μm Z-stacked images with Argon (for tau-
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positive signal in green), and Red HeNe (for Aha1-positive and Neurotrace signal in 

red).   

3.3.10 Imaging analysis 

Brightfield image analysis was performed using NearCYTE software 

(http://www.nearcyte.org) as previously described (131). This program was used to 

outline regions of interest and then thresholds were set manually until all of the user-

determined positive cells were selected with as little non-specific area selected as 

possible. Using the batch process option, the area positive ratio was automatically 

calculated for each slide.  

Fluorescent image analysis was performed using ImageJ. Background was subtracted 

from the red channel using the Gaussian Blur tool (Radius = 50um) and then the new 

blurred image was subtracted from the original image. The red channel was also 

despeckled before image analysis. Both channels were set to a consistent threshold 

and then colocalization between the red and green channels were quantified with a 

Pearson’s coefficient. The intensity of red fluorescence was also measured in order to 

make a scatter plot showing levels of Aha1 in relation to Braak staging. 

3.3.11 Stereology 

Neurons were stained with anti-NeuN and cresyl violet, and those positive for both were 

counted in the CA1 of the hippocampus. A computerized stereological system, 

connected to a Leica DM4000B microscope with a Prior motorized stage, was used to 

outline the area using distinct landmarks in the brain at 4x magnification (153, 154). 

Every 8th section was sliced at 50um to be used for stereology, and only sections 
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containing hippocampi (as determined by analyzer) were counted (mCherry N = 7 

animals, ~9 sections/animal, ~5 reference points/section; Aha1 N= 8, ~9 

sections/animal, ~5 reference points/section). After the initial analysis, the mCherry 

control group was reanalyzed at a higher stringency level. Neurons were counted in this 

region by using randomly designated areas in the computer generated grid using a 100x 

oil immersion lens. Neurons were counted when they were located within the three-

dimensional dissectors or touching the inclusion lines, and the top and bottom 1 µm of 

tissue were excluded. After analysis of all tissue, the number of neurons/animal were 

multiplied by 4.5 in order to reflect the total number of neurons throughout the 

hippocampus. 

3.3.12 Statistical analysis 

To compare two groups, a t-test was used. Groups larger than two were evaluated 

using a one-way ANOVA with Dunnett’s multiple comparison test. P values below 0.05 

were considered significant.  

3.3.13 Study approval 

All studies were carried out following the guidelines set by the University of South 

Florida’s Institutional Animal Care and Use Committee (IACUC) in accordance with the 

Association for Assessment and Accreditation of Laboratory Animal Care International 

(AALAC) regulations. All human tissue was acquired under approved Institutional 

Review Board (IRB) protocols for the University of California, Irvine. Patient samples 

were deidentified and approved for studies of this nature with written informed consent 

to use the tissue for research purposes. 



 

54 
 

3.4 Results 

3.4.1 Aha1 co-localization with tau tangles correlates with disease progression in human 

AD brain. 

 Our previous work has shown that Aha1 overexpression led to increased insoluble 

tau in cell models. However, the relevance of this finding in vivo and more importantly, in 

a clinical population, was not clear. Therefore, we evaluated post-mortem human brain 

samples from patients with AD or healthy age-matched controls for Aha1 localization in 

relation to tau tangles (Fig. 3.1A). We found a significant increase in the amount of co-

localization between Aha1 and tau tangles as shown by immunofluorescence 

(pS396/404, PHF1) in AD samples compared to control (Fig. 3.1B). Additionally, there 

was a positive correlation between Aha1 immunofluorescence intensity and tau Braak 

staging (Fig. 3.1C). This suggests Aha1 is involved in pathological tau progression 

providing clinical significance for Aha1 in tauopathies such as AD. These findings provide 

a clear rationale for investigating the link between Aha1 and tau pathology.  

3.4.2 Aha1 overexpression in rTg4510 mice increased insoluble tau species. 

 In order to investigate the role of Aha1 in vivo, five-month old rTg4510 mice 

received bilateral hippocampal injections of AAV9-Aha1 (n = 9) or AAV9-mCherry (n = 8) 

(Fig. 3.2A). Immunohistochemical staining revealed that Aha1 was overexpressed 

throughout the hippocampus, suggesting a robust effect of the virus (Fig. 3.2B). After 

confirming viral expression throughout the hippocampus, the right hippocampi was used 

for biochemical analysis of several tau species, including Sarkosyl-insoluble tau. Aha1 

overexpression significantly increased total monomeric and multimeric Sarkosyl-insoluble 
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tau in the hippocampus (Fig. 3.3A and B). Two different phosphorylated tau species 

(pS396/404 and pT231) were also examined, however, no significant differences were 

detected suggesting that Aha1 overexpression does not affect these specific 

phosphorylated tau species (Fig. 3.3C and D). Additionally, Sarkosyl-insoluble tau was 

not detected in wild-type mice, however there was a modest increase in soluble tau 

species in wild-type mice overexpressing Aha1, suggesting that Aha1 could interact with 

soluble, wild-type tau (Fig. 3.4A).  

3.4.3 In vivo, Aha1 overexpression increases toxic tau oligomers 

In addition to the increased insoluble tau, Aha1 overexpression also increased 

toxic T22-tau oligomer levels (131). Low-speed spin lysate taken from both individual 

mouse samples (Fig. 3.5A and B) as well as in pooled samples from each treatment group 

were run on a dot blot to check T22-tau oligomer levels (Fig. 3.5C and D). Both the 

individual samples, as well as the pooled samples show an increase in oligomeric tau. 

This increase of T22-tau oligomers in Aha1 overexpressing mice was further confirmed 

using immunohistochemistry, where free floating sections from the left hippocampi were 

stained with T22 antibody (Fig. 3.5E and F). Additionally, a semi-denaturing Western blot 

was run and again we show that Aha1 overexpressing mice have significantly increased 

T22-tau oligomers (Fig. 3.5G and H). 

3.4.4 Aha1 overexpression in rTg4510 mice leads to neuronal loss and cognitive 

impairments. 

 Using unbiased stereology, rTg4510 mice overexpressing Aha1 showed a 

significant reduction in hippocampal CA1 neurons compared to mCherry controls (Fig. 
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3.6A and B). This suggests that Aha1 overexpression enhances neuronal loss in the 

rTg4510 mice. Learning and memory were evaluated in AAV9-Aha1 (n=9) and AAV9-

mCherry (n=8) injected mice using the two-day radial arm water maze (RAWM). The 

RAWM is a spatial learning and memory task that evaluates both working and reference 

memory (151, 155). Animals overexpressing Aha1 made significantly more errors in 

locating the submerged escape platform compared to mCherry overexpressing 

littermates, demonstrating a memory recall deficit (Fig. 3.6C). This suggests that the 

enhanced neurotoxicity seen in the mice overexpressing Aha1 is significant enough to 

affect learning and memory as well. Overall, these data demonstrate that Aha1 enhances 

Hsp90-mediated tau aggregation and this interaction results in increased oligomeric and 

insoluble tau concomitant with neuronal loss and memory deficits. 

 

3.5 Discussion 

 Here, we have demonstrated that overexpression of the co-chaperone Aha1 leads 

to a significant increase of pathological tau in the rTg4510 mouse model. We also 

identified the clinical relevance of Aha1, identifying that there is an increase in Aha1 levels 

and Aha1 is more highly co-localized with tau tangles in AD brain tissue. Taken together, 

this work demonstrates the importance of focusing on Aha1 as a therapeutic target for 

tauopathies.  

 Our previous work has focused on the impact of Aha1 overexpression on tau 

pathology in vitro so it was important to demonstrate that this finding would translate in 

vivo as well. Several other Hsp90 co-chaperones have also been shown to affect tau 
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pathology. For instance, FKBP51 has also been shown to increase oligomeric tau in the 

rTg4510 mouse model (131). Another immunophilin, FKBP52, was shown to bind directly 

to P301L tau and induce oligomer formation (156). Additionally, overexpression of the co-

chaperone Cdc37 has been shown to preserve phosphorylated tau in vitro (157). There 

is also one co-chaperone that has been shown to promote the degradation of tau in vivo. 

The immunophilin, CyP40, has been shown to reduce the amount of oligomeric tau and 

preserve neurons in rTg4510 mice (49). While there are many co-chaperones that can 

affect tau pathology, both negatively and positively, Aha1 is a unique therapeutic target 

because of how it affects Hsp90. As mentioned in previous chapters, Aha1 is the only 

known stimulator of the ATPase activity of Hsp90. This means that using an inhibitor to 

target Aha1 may have a similar effect to using an Hsp90 inhibitor.  

 This work has shown that Aha1 overexpression led to an increase in both 

oligomeric and insoluble tau levels in vivo, and this increase in pathological tau 

manifested in cognitive deficits and neuronal loss. With this information, future studies 

could investigate the potential therapeutic effects of Aha1 inhibition on tau pathology in 

vivo.  
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Figure 3.1. Human AD samples show co-localization between Aha1 and tau 

tangles. (A) Tissue samples from the medial temporal gyrus of patients at Braak stage 

2, 5 or 6 were stained for Aha1 (Red), pS396/404 tau tangles (Green) and neuronal 

nissl (Neurotrace, Blue) and imaged using confocal microscopy, images taken at 60x. 
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Scale bar represents 20 µm. Representative no primary sections from a Braak stage 6 

sample are shown. . (B) Quantification of co-localization between Aha1 and 

phosphorylated tau tangles (pS396/404) (Results represent the mean Pearson’s 

correlation coefficient ± SEM, n=10 images; *** = p<0.001). (C) Scatter plot of the 

intensity of Aha1 fluorescence and Braak staging (Results represent the mean 

fluorescence intensity ± SEM; Braak stage 2: n=10 images, Braak stage 5: n=14 

images, Braak stage 6: n=9 images; *** = p<0.001). 
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Figure 3.2. Viral transduction leads to sustained overexpression of Aha1 in the 

hippocampus of rTg4510 mice. (A) Characteristic phenotype of rTg4510 tau 

transgenic mouse model along with experimental design time points. (B) Representative 

images of brain sections showing viral expression of Aha1 protein in AAV9 injected 

Aha1 and mCherry control littermates. Scale bars represent 1000 µm for the whole slice 

and 250 µm for the inset. 
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Figure 3.3. Aha1 overexpression in rTg4510 mice leads to increases in insoluble 

tau species. (A) Western blot analysis of soluble and Sarkosyl-insoluble fractions from 

hippocampal tissue of rTg4510 mice expressing either AAV9-Aha1 or AAV9-mCherry. 

Six representative samples from AAV9-Aha1 and AAV9-mCherry injected mice are 

shown. (B) Quantification of Western blots of Sarkosyl-insoluble total (aa 1-150), 
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pS396/404 and pT231 tau (Results represent the mean ± SEM relative to the level of 

monomeric tau in AAV9-mCherry injected mice; mCherry, n=8; Aha1, n=9; * = p < 0.05, 

** = p<0.01).  

  



 

63 
 

 

Figure 3.4. Tau solubility in wild-type mice. (A) Western blot analysis of soluble and 

Sarkosyl-insoluble fractions from hippocampal tissue of wild-type mice expressing either 

AAV9-Aha1 (n=7) or AAV9-mCherry (n=8). One rTg4510 mouse sample was included 

as a comparison.   
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Figure 3.5. Aha1 overexpression in rTg4510 mice leads to increases in 

pathological tau species. (A) Dot blot of hippocampal tissue of individual mice shown 

in triplicate probed by T22. (B) Quantification of dot blot (Results represent the mean ± 

SEM; mCherry, n=8; Aha1, n=8; **p < 0.01). (C) Dot blot of pooled hippocampal tissue 

shown in triplicate probed by T22. (D) Quantification of dot blot (Results represent the 

mean ± SEM of triplicate samples taken from the pooled fractions; n=3; * = p < 0.05). 
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(E) Representative images of brain tissue slices stained with T22 from AAV9-mCherry 

and AAV9-Aha1 injected mice. Scale bars represent 1000 µm for the whole slice and 

250 µm for the inset. (F) Quantification of the T22 positive area in the hippocampal field 

of view (inset from E) (Results represent the mean ± SEM; mCherry, n=8; Aha1, n=9; *p 

< 0.05). (G) Samples from AAV9-Aha1 and AAV9-mCherry mice were run on a semi-

denaturing gel and probed by T22 (1:500) along with other antibodies as indicated. (H) 

Quantification of T22 Western blot (~75 kDa, results represent the mean ± SEM; 

mCherry, n=6; Aha1, n=7). 

  



 

66 
 

 

Figure 3.6. Aha1 overexpression in rTg4510 mice leads to cognitive impairments. 

(A) Representative images of NeuN stained neurons in the CA1 region of the 

hippocampus (brown) counter stained with cresyl violet (purple) from AAV9-mCherry and 

AAV9-Aha1 injected mice. Inset scale bars represent 100 µm. (B) Quantification of 
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unbiased stereology (Results represent the mean ± SEM; mCherry, n=7; Aha1, n=8; p = 

0.0003). (C) Radial arm water maze (RAWM) was performed on AAV9-Aha1 and AAV9-

mCherry rTg4510 (Tg) and wild-type (WT) littermates as indicated. Average errors from 

Day 1 (training) and Day 2 (memory) are shown. (Results represent the mean ± SEM; 

n≥9; * = p < 0.05). 
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Chapter Four: 
 

Aha1 knock-down results in reduced tau pathology and neuroprotection in 

rTg4510 mice 

 

4.1 Abstract 

 The Hsp90 chaperone network has been studied for its role in tauopathies for 

some time. Many Hsp90/co-chaperone complexes have been implicated for their role, 

both positive and negative, in tau pathology. For example, the FKBP51/Hsp90 complex 

can worsen tau pathology, while the CyP40/Hsp90 complex is able to disaggregate tau 

fibrils and rescue neurotoxicity in vivo. Recently, the co-chaperone Aha1, in complex 

with Hsp90, was shown to worsen tau pathology in rTg4510 mice providing another co-

chaperone complex to potentially target. In this study, we have shown that pathological 

tau levels are reduced when Aha1 is knocked-down in the rTg4510 mouse model. 

Additionally, Aha1 knock-down preserves neuronal loss in the CA1 of the hippocampus. 

Our data support the role of the Aha1/Hsp90 complex in tau pathology and provide 

additional support of this complex as a target to treat tauopathies.  

 

4.2 Introduction 

 Current therapeutics for the treatment of tauopathies are very limited and focus 

only on the symptoms of the disease (158). Disease-modifying treatments for 

tauopathies are sorely needed but so far these treatments have failed in clinical trials 
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(159). Hsp90 inhibitors were thought to be a possible candidate for treating tauopathies 

but have shown toxicities in clinical populations (17). Since then, some researchers 

have switched to focus on targeting Hsp90 co-chaperones instead, with the hope of 

more specificity and less toxicity. Previous work focusing on co-chaperones of Hsp90 

have also shown promise in reducing toxic tau species but so far none have been 

successful in transitioning to the clinic (101–104). The co-chaperone Aha1 is a relatively 

novel co-chaperone in the field of tauopathies and because of its stimulatory function on 

the ATPase activity of Hsp90, Aha1 offers a unique therapeutic target (41).  

While Aha1 is a novel target in the field of tauopathies, it has been studied for its 

role in both cancer and cystic fibrosis in the past. Inhibition of Aha1 has been found to 

be beneficial in both cancer and cystic fibrosis and previous work from our lab found 

that overexpression of Aha1 is detrimental in tauopathy (38, 41, 126). Therefore, 

developing a therapeutic that targets Aha1 could be advantageous in multiple diseases. 

Previous work has used both genetic inhibition, as well as novel Aha1 inhibitors. One 

group has shown that gene silencing of Aha1 via siRNA led to a rescue of misfolded 

CFTR in cystic fibrosis (126). Other work has focused on screening novel compounds to 

be used as Aha1 inhibitors in the treatment of both cancer and cystic fibrosis (143, 160).  

Here we sought to knock-down Aha1 in vivo using shRNA packaged inside 

adeno-associated virus serotype 9 (AAV9). We found that Aha1 was knocked-down in 

the rTg4510 mice, and the reduced levels of Aha1 resulted in decreased, pathologically 

relevant tau species. Additionally, Aha1 knock-down resulted in a preservation of 

neurons in the CA1 of the hippocampus. Our findings suggest that knock-down of Aha1 
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is a potential target for the treatment of tauopathies because of the reductions in 

pathological tau accumulation as well as the neuroprotective effects seen.  

4.3 Materials and methods 

4.3.1 Materials 

Antibodies: Anti-Aha1 (StressMarq, SMC-172D), anti-GAPDH (Proteintech, 60004-1-Ig), 

anti-NeuN (Millipore, MAB377B), H-150 anti-tau (Santa Cruz Biotechnology, sc-5587), 

anti-total human tau (Dako, A0024). PHF1 anti-tau (pS396/404) was a kind gift from Dr. 

Peter Davies. T22 anti-tau oligomer was a kind gift from Dr. Rakez Kayed. 

Plasmids: The shRNA-Aha1 and shRNA-scrambled plasmids were ordered from Sigma. 

4.3.2 Cell culture and transfection 

N2A cells were cultured in MEM media supplemented with 10% FBS and 1% Penicillin-

Streptomycin (Invitrogen). Transfections were performed with 2.5 μL Lipofectamine 

2000 (Invitrogen) per 1 μg of DNA, which was incubated in serum-free Opti-MEM for 5 

minutes before adding the mixture dropwise to the cells. Cells were harvested in RIPA 

buffer (10 mM Tris-Cl, 1 mM EDTA, 1% Triton X-100, 0.1% sodium deoxycholate, 0.1% 

SDS, 140 mM NaCl, pH 7.4) containing protease inhibitors.  

4.3.3 Viral vector production 

Adeno-associated virus (AAV) serotype 9-shRNA-Aha1 and AAV9-shRNA-scrambled 

were generated in our lab for murine gene therapy studies. The shRNA-Aha1 

(CCGGCAACAGGAAAGGCAAACTTATCTCGAGATAAGTTTGCCTTTCCTGTTGTTTT
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TG) and shRNA-scrambled were placed in a pTR12.1 backbone with a U6 promoter, 

followed by a chicken-β-actin (CBA) promoter and mCherry to observe viral expression.  

4.3.4 Western blot and dot blot analysis 

Cell and mouse brain samples were analyzed by Western blot using 4-15% SDS 

gradient gels (BioRad). Antibody dilutions were 1:1000 unless otherwise stated and all 

secondary antibodies were used at 1:1000 (Southern Biotech). Blots were developed 

using ECL (Pierce) on a LAS-4000 mini imager (GE Healthcare). For dot blots, proteins 

were applied onto a wet nitrocellulose membrane and dried by vacuum. Dried 

membranes were blocked and developed as described above. 

4.3.5 Immunohistochemistry 

All immunohistochemistry was done using free floating sections as previously described 

(152). Briefly, sections were incubated in PBS with 10% MeOH and 3% H2O2 to block 

endogenous peroxidases. After PBS washes, tissue was permeabilized for 30 minutes 

by 0.2% Triton X-100 with 1.83% lysine and 4% serum in PBS. Following 

permeabilization, tissue was incubated overnight, at room temperature with either anti-

PHF1 (mouse, 1:5000), or anti-total human tau (rabbit, 1:100000). Following PBS 

washes, biotinylated goat anti-mouse (1:3000) or goat anti-rabbit (1:3000) secondary 

antibody was added for 2 hours. An ABC kit (Vectastain) was used to increase visibility. 

Following three PBS washes, tissue was incubated with 0.05% diaminobenzidine plus 

0.5% nickel and developed with 0.03% H2O2. Sections were then mounted on charged 

slides, allowed to dry overnight and dehydrated in alcohol gradients. Slides were 

coverslipped with DPX following clearing with Histoclear (National Diagnostics). Gallyas 
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silver stain was performed as previously described for non-paraffin imbedded tissue 

(148).   

Mouse tissue was also stained immunofluorescently as previously described (131, 153). 

Briefly, the tissue was permeabilized as described above and incubated at room 

temperature overnight with rat anti-Aha1 (1:100). Following washes sections were 

incubated for 2 hours with AlexaFluor-647-labelled goat anti-rat (1:1000) secondary 

antibody. Tissue was then mounted after three washes and coverslipped with ProLong 

Gold antifade (Invitrogen) reagent. 

Sections stained for stereology were blocked and permeabilized as described above 

and incubated overnight at room temperature with biotinylated anti-NeuN (1:3000). 

Following washes, ABC conjugation, and peroxidase development, tissue was mounted 

on charged glass slides and allowed to dry overnight. A 0.05% cresyl violet counterstain 

was applied to slides then briefly and quickly destained with 0.3% acetic acid in water 

prior to dehydration. 

4.3.6 Microscopy 

Both brightfield and fluorescently stained tissue was imaged using a Plan-

Apochromat20x/0.88 objective on a Zeiss Axioscan.Z1 slide scanner. 

4.3.7 Imaging analysis  

Brightfield and fluorescent image analysis was performed using NearCYTE software 

(http://www.nearcyte.org) as previously described (131). This program was used to 

outline regions of interest and then thresholds were set manually until all of the user-

determined positive cells were selected with as little non-specific area selected as 
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possible. Using the batch process option, the area positive ratio was automatically 

calculated for each slide. 

4.3.8 Stereology 

Neurons were stained with anti-NeuN and cresyl violet, and those positive for both were 

counted in the CA1 of the hippocampus. A computerized stereological system, 

connected to a Leica DM4000B microscope with a Prior motorized stage, was used to 

outline the area using distinct landmarks in the brain at 4x magnification (153, 154). 

Every 8th section was sliced at 50um to be used for stereology, and only sections 

containing hippocampi (as determined by analyzer) were counted. Neurons were 

counted in this region by using randomly designated areas in the computer generated 

grid using a 100x oil immersion lens. Neurons were counted when they were located 

within the three-dimensional dissectors or touching the inclusion lines, and the top and 

bottom 1 µm of tissue were excluded. After analysis of all tissue, the number of 

neurons/animal were multiplied by 4.5 in order to reflect the total number of neurons 

throughout the hippocampus. 

4.3.9 Statistical analysis 

To compare two groups, a t-test was used. Groups larger than two were evaluated 

using a one-way ANOVA with Dunnett’s multiple comparison test. P values below 0.05 

were considered significant.  
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4.3.10 Study approval 

All studies were carried out following the guidelines set by the University of South 

Florida’s Institutional Animal Care and Use Committee (IACUC) in accordance with the 

Association for Assessment and Accreditation of Laboratory Animal Care International 

(AALAC) regulations. 

 

4.4 Results 

4.4.1 Developing an shRNA-Aha1 AAV9 virus 

 Several mouse shRNA-Aha1 plasmids were tested for knock-down efficiency in 

N2A cells because of the high levels of endogenous Aha1 (Fig. 4.1A). All three shRNA 

plasmids were able to reduce the levels of Aha1 compared to control, however shAha1-

3 led to the greatest reductions so we chose to move forward with that plasmid (Fig. 

4.1B). From there, both the shRNA-Aha1 and shRNA scramble, as our control virus, 

were inserted into an AAV9 viral vector along with mCherry on a separate promoter to 

verify viral expression (Fig. 4.1C).  

4.4.2 Knock-down of Aha1 is confirmed after three months of expression  

 Five-month-old rTg4510 mice received bilateral hippocampal injections of AAV9-

shRNA-Aha1 (shAha1, n=8) or AAV9-shRNA-scrambled (scrambled, n=10), with three 

months of viral expression. Aha1 knock-down was confirmed both with Western blot 

(Fig. 4.2A and B) as well as with immunofluorescence (Fig. 4.2C and D), showing that 

both the left and right hippocampi had a significant reduction in Aha1 levels.  
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4.4.3 Aha1 knock-down in rTg4510 mice decreased pathological tau species and 

reduced neurotoxicity. 

 Our previous work has shown that knock-down of Aha1 prevents insoluble tau 

accumulation in vitro so we chose to stain for Gallyas-silver positive tangles, which are 

a traditional pathological hallmark of AD and other tauopathies (41). The rTg4510 mice 

are a good model to use because they are one of the only transgenic models that 

produce Gallyas-silver positive tangles. We found that in our shAha1 mice, there was a 

significant reduction in the amount of Gallyas-silver positive tangles (Fig. 4.3A and B). 

After seeing a reduction in pathologically relevant tau species, we wanted to look at 

whether Aha1 knock-down affected neurotoxicity. Using unbiased stereology, neurons 

from the CA1 of the hippocampus were counted. Aha1 knock-down led to a complete 

rescue of hippocampal CA1 neurons (Fig 4.4A and B).  

4.4.4 Aha1 knock-down reduced phosphorylated but not total or oligomeric tau 

 We also wanted to examine other tau species to see if shAha1 has an effect on 

oligomeric, phosphorylated, or total tau. We found that knock-down of Aha1 led to 

reductions in phosphorylated tau (Fig. 4.5A-D), but did not result in reductions of total 

tau (Fig. 4.6A and B). We also examined oligomeric tau species via both 

immunohistochemistry (Fig. 4.7A and B) as well as biochemically (Fig. 4.7C and D). We 

did not see a significant difference in oligomeric tau species between scrambled and 

shAha1 mice.  
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4.5 Discussion 

 Here we show that Aha1 knock-down led to reductions in both phosphorylated 

and Gallyas silver positive tau tangles. In addition to less pathological tau species, we 

also found that Aha1 knock-down resulted in preservation of neurons in the CA1 of the 

hippocampus of rTg4510 mice. These findings suggest that Aha1 knock-down could 

potentially slow the progression of tauopathies, as the mice were injected at 5 months of 

age and they did not develop accumulation of pathological tau or neuronal loss at the 

severity that is typically seen in these mice by 8 months of age. While we did not see a 

difference in oligomeric tau in these mice, that could be due to a lack of robust Aha1 

knock-down or it could also be a timing issue as we only examined the pathological tau 

accumulation at one time point. Oligomeric tau could be harder to degrade or take 

longer to degrade than other tau species which could explain the discrepancies seen 

between Aha1 overexpression and knock-down.   

 Previous work has also revealed the benefit of inhibiting Aha1, as this results in 

less Hsp90 ATPase activity, which can be beneficial especially in cancer cells. By 

reducing the ATPase activity of Hsp90, cancerous cells become more responsive to 

treatment (38). The same could be true for tauopathies as well. If the ATPase cycle of 

Hsp90 is slowed, it could allow more time for Hsp90 to properly deal with aggregated 

tau, allowing the preservation of neurons. Alternatively, Hsp90 could be holding tau in 

its aggregated state because it is not able to properly refold it and if Aha1 levels are 

reduced this could prevent Hsp90 from attempting to refold it, thereby allowing tau to be 

degraded by other chaperone machinery. Further examinations of the mechanism 

behind Aha1 mediated tau reductions are needed.  
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This work has demonstrated the relevance of Aha1 knock-down in vivo. Future 

studies could use Aha1 specific inhibitors in vivo to further progress this work. Overall, 

this study demonstrates that Aha1 inhibition is an important therapeutic target for 

treating tauopathies.  

  



 

78 
 

 

Figure 4.1. Generating shRNA-Aha1 AAV9. (A) N2A cells were transfected with 

shRNA-Aha1 plasmids and allowed to express for 48hr before harvesting and samples 

were run by Western blot. (B) Quantification of Aha1 protein reduction after treatment 

with shRNA. (C) Schematic of viral construct and delivery method.  
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Figure 4.2. Viral transduction results in reduced Aha1 levels. (A) Samples of low-

speed spin from each mouse hippocampi were analyzed by Western blot to check Aha1 

knock-down. (B) Quantification of Western blot Aha1 levels relative to Actin control 

levels (results represent the mean ± SEM; scrambled, n=8; shAha1, n=8; *p < 0.05). (C) 

Representative image of Aha1 expression from AAV9-scrambled and AAV9-shAha1 

mice. Scale bars represent 300 µm for the whole slice and 100 µm for the inset. (D) 

Quantification of the Aha1 positive area in the hippocampal field of view (results 

represent the mean ± SEM; scrambled, n=8; shAha1, n=6; *p < 0.05).  
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Figure 4.3. Aha1 knock-down decreases Gallyas silver positive tau tangles. (A) 

Representative images of brain tissue slices stained with Gallyas silver from AAV9-

scrambled and AAV9-shAha1 mice. Scale bars represent 300 µm for the whole slice 

and 100 µm for the inset (B) Quantification of the Gallyas silver positive area in the 

hippocampal field of view (results represent the mean ± SEM; scrambled, n=8; shAha1, 

n=6; p=0.05). 
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Figure 4.4. Preservation of hippocampal CA1 neurons seen with Aha1 knock-

down. (A) Representative images of NeuN stained neurons in the CA1 region of the 

hippocampus (black) counter stained with creysl violet (purple) from AAV9-scrambled 

and AAV9-shAha1 mice. Scale bars represent 150 µm for the whole slice and 50 µm for 

the inset. (B) Quantification of unbiased stereology (results represent the mean ± SEM; 

scrambled-WT, n=8; shAha1-WT, n=8; scrambled-rTg4510, n=8; shAha1-rTg4510 n =6; 

*p < 0.05).  
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Figure 4.5. Aha1 knock-down reduces phosphorylated tau. (A) Representative 

images of pS396/404 stained tissue from AAV9-scrambled and AAV9-shAha1 mice. 

Scale bars represent 300 µm for the whole slice and 100 µm for the inset. (B) 

Quantification of pS396/404 positive area from hippocampal field of view (results 

represent the mean ± SEM; scrambled, n=8; shAha1, n=6; **p < 0.01). (C) 

Representative images of AT8 stained tissue from AAV9-scrambled and AAV9-shAha1 

mice. Scale bars represent 300 µm for the whole slice and 100 µm for the inset. (D) 

Quantification of AT8 positive area from hippocampal field of view (results represent the 

mean ± SEM; scrambled, n=8; shAha1, n=6; **p < 0.01). 
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Figure 4.6. Aha1 knock-down does not lead to altered total tau levels. (A) 

Representative images of total human tau stained tissue from AAV9-scrambled and 

AAV9-shAha1 mice. Scale bars represent 300 µm for the whole slice and 100 µm for 

the inset. (B) Quantification of total human tau positive area from hippocampal field of 

view (results represent the mean ± SEM; scrambled, n=8; shAha1, n=6; ns=non-

significant).  
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Figure 4.7. No reductions seen in oligomeric tau from Aha1 knock-down. (A) 

Representative images of TOC1 stained tissue from AAV9-scrambled and AAV9-

shAha1 mice. Scale bars represent 300 µm for the whole slice and 100 µm for the inset. 

(B) Quantification of TOC1 positive area from hippocampal field of view (results 

represent the mean ± SEM; scrambled, n=8; shAha1, n=6; **p < 0.01). (C) Dot blot of 

hippocampal tissue from individual mice probed by T22. Four representative samples 

shown for AAV9-scrambled and AAV9-shAha1. (D) Quantification of dot blot (results 

represent the mean ± SEM of individual mouse samples; scrambled, n=6; shAha1, n=6; 

ns=non-significant). 
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Chapter Five: 
 

Final considerations 

 This study has identified the Hsp90 co-chaperone, Aha1, as an important 

regulator of tau pathology. The major findings in this study demonstrate that Aha1, in 

complex with Hsp90, enhances tau aggregation, both in vitro and in vivo. Aha1 

overexpression in rTg4510 mice leads to cognitive deficits and neuronal loss, whereas 

knock-down of Aha1 in the same mouse model leads to reduced pathological tau and 

neuronal preservation. We have shown that Aha1 is co-localized with tau tangles in the 

brains of human AD patients, providing a clinical link between Aha1 and tau. This study 

supports the need to further characterize drugs which target the Hsp90/Aha1 interaction 

as a therapeutic option for the treatment of AD and other tauopathies.  

 The Hsp90 chaperone network is highly involved in tau pathology, especially in 

aging and disease. The levels of many Hsp90 chaperone network family members are 

altered in aging and AD, suggesting that these changes may be important for aging-

related diseases. Hsp90 has been the main target for modulating tau degradation, but 

due to toxicity and bioavailbility of Hsp90 inhibitors there has been no clinical success 

with Hsp90 inhibitors. Therefore, it is beneficial to try a different approach using co-

chaperones, which help with specificity as well as limit the possibility of toxicity. Aha1 

appears to be an excellent candidate because inhibitors of Aha1 may have a similar 

effect as inhibitors towards Hsp90. Additionally; Aha1/Hsp90 has a much smaller pool of 

potential protein interactions, which lessens the chance of toxicities.  
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 There are some limitations with targeting Aha1 as a disease-modifying treatment 

for tauopathies. Currently, while there are small molecule inhibitors of Aha1, none of 

them have been tested for their in vivo effectiveness on tau pathology. Additionally, 

there is no pharmacokinetic, pharmacodynamics or toxicity data on these inhibitors. So 

while the proof-of-concept of Aha1 inhibition is reasonable, further studies into small 

molecule Aha1 inhibitors needs to be done. While the mechanism involving Hsp90 and 

tau has been well studied, further studies examining the effect of the Hsp90/Aha1 

interaction on tau pathology are warranted. It seems counterintuitive that chaperone 

proteins would make tau pathology worse; however, that is exactly what several 

members of the Hsp90 chaperone network do, including FKBP51, Aha1, and several 

others mentioned in Chapter 1. The imbalances seen in the Hsp90 chaperone network 

in aging and AD shed some light on the problem, with co-chaperones like FKBP51 and 

Aha1 increasing with AD, while others such as CyP40 and PP5 are repressed. It seems 

there is a bigger picture between the Hsp90 chaperone network and tau that will need to 

be elucidated in order to be able to treat tauopathies.  

 There is also a potential link between Aha1 and tau through the tyrosine kinase 

c-Abl. C-Abl has been shown to modulate tau pathology and according to one study, c-

Abl phosphorylation of Y223 on Aha1 promotes its interaction with Hsp90. This 

suggests that an upregulation of c-Abl could be a possible mechanism behind the 

effects of Hsp90/Aha1 on tau pathology. Further studies are needed to fully understand 

the link between c-Abl, Aha1 and tau.  

 In addition to tauopathies, Aha1 has been implicated in other diseases such as 

cancer and cystic fibrosis. It would be worthwhile to monitor the progress of Aha1 
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therapeutics in these fields as well because advancement in diseases in the periphery 

usually occur faster than those of the brain. We could gain useful insights into the 

mechanism underlying Aha1 inhibition by studying its application in other diseases.  

 Overall our findings suggest that the Hsp90/Aha1 complex is integral in 

pathological tau accumulation. Using gene silencing of Aha1 we were able to reduce 

pathological tau and rescue neuronal loss. This work proves that Aha1 is a worthwhile 

target for the treatment of tauopathies and deserves further investigation.  

  



 

88 
 

 

 

References 

1.  Reeve A, Simcox E, Turnbull D (2014) Ageing and Parkinson’s disease: why is 
advancing age the biggest risk factor? Ageing Res Rev 14:19–30. 

2.  Terman A (2001) Garbage catastrophe theory of aging: imperfect removal of 
oxidative damage? Redox Rep 6(1):15–26. 

3.  Conconi M, Szweda LI, Levine RL, Stadtman ER, Friguet B (1996) Age-related 
decline of rat liver multicatalytic proteinase activity and protection from oxidative 
inactivation by heat-shock protein 90. Arch Biochem Biophys 331(2):232–240. 

4.  Rock KL, et al. (1994) Inhibitors of the proteasome block the degradation of most 
cell proteins and the generation of peptides presented on MHC class I molecules. 
Cell 78(5):761–771. 

5.  Cuervo AM, Dice JF (2000) When lysosomes get old. Exp Gerontol 35(2):119–
131. 

6.  Söti C, Csermely P (2002) Chaperones and aging: role in neurodegeneration and 
in other civilizational diseases. Neurochem Int 41(6):383–389. 

7.  Liberek K, Lewandowska A, Zietkiewicz S (2008) Chaperones in control of protein 
disaggregation. EMBO J 27(2):328–335. 

8.  Miyata Y, Koren J, Kiray J, Dickey CA, Gestwicki JE (2011) Molecular chaperones 
and regulation of tau quality control: strategies for drug discovery in tauopathies. 
Future Med Chem 3(12):1523–1537. 

9.  Echeverría PC, Bernthaler A, Dupuis P, Mayer B, Picard D (2011) An interaction 
network predicted from public data as a discovery tool: application to the Hsp90 
molecular chaperone machine. PLoS ONE 6(10):e26044. 

10.  Schopf FH, Biebl MM, Buchner J (2017) The HSP90 chaperone machinery. Nat 
Rev Mol Cell Biol 18(6):345–360. 

11.  Karagöz GE, et al. (2014) Hsp90-Tau Complex Reveals Molecular Basis for 
Specificity in Chaperone Action. Cell 156(5):963–974. 

12.  Guo T, Noble W, Hanger DP (2017) Roles of tau protein in health and disease. 
Acta Neuropathol 133(5):665–704. 



 

89 
 

13.  Kovacs GG (2015) Invited review: Neuropathology of tauopathies: principles and 
practice. Neuropathol Appl Neurobiol 41(1):3–23. 

14.  Orr ME, Sullivan AC, Frost B (2017) A Brief Overview of Tauopathy: Causes, 
Consequences, and Therapeutic Strategies. Trends Pharmacol Sci 38(7):637–
648. 

15.  Dickey CA, et al. (2007) The high-affinity HSP90-CHIP complex recognizes and 
selectively degrades phosphorylated tau client proteins. J Clin Invest 117(3):648–
658. 

16.  Luo W, et al. (2007) Roles of heat-shock protein 90 in maintaining and facilitating 
the neurodegenerative phenotype in tauopathies. Proc Natl Acad Sci USA 
104(22):9511–9516. 

17.  Bhat R, Tummalapalli SR, Rotella DP (2014) Progress in the discovery and 
development of heat shock protein 90 (Hsp90) inhibitors. J Med Chem 
57(21):8718–8728. 

18.  Renouf DJ, et al. (2016) A phase II study of the HSP90 inhibitor AUY922 in 
chemotherapy refractory advanced pancreatic cancer. Cancer Chemother 
Pharmacol 78(3):541–545. 

19.  Thakur MK, et al. (2016) A phase II trial of ganetespib, a heat shock protein 90 
Hsp90) inhibitor, in patients with docetaxel-pretreated metastatic castrate-
resistant prostate cancer (CRPC)-a prostate cancer clinical trials consortium 
(PCCTC) study. Invest New Drugs 34(1):112–118. 

20.  Blair LJ, et al. (2013) Accelerated neurodegeneration through chaperone-
mediated oligomerization of tau. J Clin Invest 123(10):4158–4169. 

21.  Brehme M, et al. (2014) A chaperome subnetwork safeguards proteostasis in 
aging and neurodegenerative disease. Cell Rep 9(3):1135–1150. 

22.  Kamal A, et al. (2003) A high-affinity conformation of Hsp90 confers tumour 
selectivity on Hsp90 inhibitors. Nature 425(6956):407–410. 

23.  Rodina A, et al. (2016) The epichaperome is an integrated chaperome network 
that facilitates tumour survival. Nature 538(7625):397–401. 

24.  Picard D (2002) Heat-shock protein 90, a chaperone for folding and regulation. 
Cell Mol Life Sci 59(10):1640–1648. 

25.  Prodromou C (2016) Mechanisms of Hsp90 regulation. Biochem J 473(16):2439–
2452. 

26.  Li J, Buchner J (2013) Structure, function and regulation of the hsp90 machinery. 
Biomed J 36(3):106–117. 



 

90 
 

27.  Li J, Soroka J, Buchner J (2012) The Hsp90 chaperone machinery: 
conformational dynamics and regulation by co-chaperones. Biochim Biophys Acta 
1823(3):624–635. 

28.  Grad I, et al. (2010) The Molecular Chaperone Hsp90α Is Required for Meiotic 
Progression of Spermatocytes beyond Pachytene in the Mouse. PLoS One 5(12). 
doi:10.1371/journal.pone.0015770. 

29.  Voss AK, Thomas T, Gruss P (2000) Mice lacking HSP90beta fail to develop a 
placental labyrinth. Development 127(1):1–11. 

30.  Eustace BK, et al. (2004) Functional proteomic screens reveal an essential 
extracellular role for hsp90 alpha in cancer cell invasiveness. Nat Cell Biol 
6(6):507–514. 

31.  Sreedhar AS, Kalmár E, Csermely P, Shen Y-F (2004) Hsp90 isoforms: functions, 
expression and clinical importance. FEBS Lett 562(1–3):11–15. 

32.  Prodromou C, et al. (2000) The ATPase cycle of Hsp90 drives a molecular 
“clamp” via transient dimerization of the N-terminal domains. EMBO J 
19(16):4383–4392. 

33.  Panaretou B, et al. (2002) Activation of the ATPase activity of hsp90 by the 
stress-regulated cochaperone aha1. Mol Cell 10(6):1307–1318. 

34.  Lotz GP, Lin H, Harst A, Obermann WMJ (2003) Aha1 binds to the middle domain 
of Hsp90, contributes to client protein activation, and stimulates the ATPase 
activity of the molecular chaperone. J Biol Chem 278(19):17228–17235. 

35.  Sevier CS, Machamer CE (2001) p38: A novel protein that associates with the 
vesicular stomatitis virus glycoprotein. Biochem Biophys Res Commun 
287(2):574–582. 

36.  Wolmarans A, Lee B, Spyracopoulos L, LaPointe P (2016) The Mechanism of 
Hsp90 ATPase Stimulation by Aha1. Sci Rep 6:33179. 

37.  Mollapour M, et al. (2014) Asymmetric Hsp90 N domain SUMOylation recruits 
Aha1 and ATP-competitive inhibitors. Mol Cell 53(2):317–329. 

38.  Dunn DM, et al. (2015) c-Abl Mediated Tyrosine Phosphorylation of Aha1 
Activates Its Co-chaperone Function in Cancer Cells. Cell Rep 12(6):1006–1018. 

39.  Cancino GI, et al. (2011) c-Abl tyrosine kinase modulates tau pathology and Cdk5 
phosphorylation in AD transgenic mice. Neurobiol Aging 32(7):1249–1261. 

40.  Wang X, et al. (2006) Hsp90 cochaperone Aha1 downregulation rescues 
misfolding of CFTR in cystic fibrosis. Cell 127(4):803–815. 



 

91 
 

41.  Shelton LB, et al. (2017) Hsp90 activator Aha1 drives production of pathological 
tau aggregates. Proc Natl Acad Sci USA 114(36):9707–9712. 

42.  Harst A, Lin H, Obermann WMJ (2005) Aha1 competes with Hop, p50 and p23 for 
binding to the molecular chaperone Hsp90 and contributes to kinase and hormone 
receptor activation. Biochem J 387(Pt 3):789–796. 

43.  Hildenbrand ZL, et al. (2011) Hsp90 can accommodate the simultaneous binding 
of the FKBP52 and HOP proteins. Oncotarget 2(1–2):43–58. 

44.  Blundell KLIM, Pal M, Roe SM, Pearl LH, Prodromou C (2017) The structure of 
FKBP38 in complex with the MEEVD tetratricopeptide binding-motif of Hsp90. 
PLoS ONE 12(3):e0173543. 

45.  Guy NC, Garcia YA, Sivils JC, Galigniana MD, Cox MB (2015) Functions of the 
Hsp90-binding FKBP immunophilins. Subcell Biochem 78:35–68. 

46.  Jarczowski F, et al. (2009) FKBP36 is an inherent multifunctional glyceraldehyde-
3-phosphate dehydrogenase inhibitor. J Biol Chem 284(2):766–773. 

47.  Jascur T, et al. (2005) Regulation of p21(WAF1/CIP1) stability by WISp39, a 
Hsp90 binding TPR protein. Mol Cell 17(2):237–249. 

48.  Mandelkow E-M, Mandelkow E (2012) Biochemistry and cell biology of tau protein 
in neurofibrillary degeneration. Cold Spring Harb Perspect Med 2(7):a006247. 

49.  Baker JD, et al. (2017) Human cyclophilin 40 unravels neurotoxic amyloids. PLoS 
Biol 15(6):e2001336. 

50.  Blackburn EA, et al. (2015) Cyclophilin40 isomerase activity is regulated by a 
temperature-dependent allosteric interaction with Hsp90. Biosci Rep 35(5). 
doi:10.1042/BSR20150124. 

51.  Giustiniani J, et al. (2015) The FK506-binding protein FKBP52 in vitro induces 
aggregation of truncated Tau forms with prion-like behavior. FASEB J 
29(8):3171–3181. 

52.  Kamah A, et al. (2016) Isomerization and Oligomerization of Truncated and 
Mutated Tau Forms by FKBP52 are Independent Processes. J Mol Biol 
428(6):1080–1090. 

53.  Jinwal UK, et al. (2010) The Hsp90 cochaperone, FKBP51, increases Tau stability 
and polymerizes microtubules. J Neurosci 30(2):591–599. 

54.  Sabbagh JJ, et al. (2014) Age-associated epigenetic upregulation of the FKBP5 
gene selectively impairs stress resiliency. PLoS ONE 9(9):e107241. 



 

92 
 

55.  Meduri G, et al. (2016) Caspase-cleaved Tau-D(421) is colocalized with the 
immunophilin FKBP52 in the autophagy-endolysosomal system of Alzheimer’s 
disease neurons. Neurobiol Aging 46:124–137. 

56.  Cook C, et al. (2012) Loss of HDAC6, a novel CHIP substrate, alleviates 
abnormal tau accumulation. Hum Mol Genet 21(13):2936–2945. 

57.  Kekatpure VD, Dannenberg AJ, Subbaramaiah K (2009) HDAC6 modulates 
Hsp90 chaperone activity and regulates activation of aryl hydrocarbon receptor 
signaling. J Biol Chem 284(12):7436–7445. 

58.  Selenica M-L, et al. (2014) Histone deacetylase 6 inhibition improves memory and 
reduces total tau levels in a mouse model of tau deposition. Alzheimers Res Ther 
6(1):12. 

59.  Laenger A, et al. (2009) XAP2 inhibits glucocorticoid receptor activity in 
mammalian cells. FEBS Lett 583(9):1493–1498. 

60.  Pinheiro S, et al. (2016) Tau Mislocation in Glucocorticoid-Triggered Hippocampal 
Pathology. Mol Neurobiol 53(7):4745–4753. 

61.  Silverstein AM, et al. (1997) Protein phosphatase 5 is a major component of 
glucocorticoid receptor.hsp90 complexes with properties of an FK506-binding 
immunophilin. J Biol Chem 272(26):16224–16230. 

62.  Conde R, Xavier J, McLoughlin C, Chinkers M, Ovsenek N (2005) Protein 
phosphatase 5 is a negative modulator of heat shock factor 1. J Biol Chem 
280(32):28989–28996. 

63.  Liu F, Iqbal K, Grundke-Iqbal I, Rossie S, Gong C-X (2005) Dephosphorylation of 
tau by protein phosphatase 5: impairment in Alzheimer’s disease. J Biol Chem 
280(3):1790–1796. 

64.  Gong C-X, et al. (2004) Dephosphorylation of microtubule-associated protein tau 
by protein phosphatase 5. J Neurochem 88(2):298–310. 

65.  Baindur-Hudson S, Edkins AL, Blatch GL (2015) Hsp70/Hsp90 organising protein 
(hop): beyond interactions with chaperones and prion proteins. Subcell Biochem 
78:69–90. 

66.  Jinwal UK, Koren J, Dickey CA (2013) Reconstructing the Hsp90/Tau Machine. 
Curr Enzym Inhib 9(1):41–45. 

67.  Ambegaokar SS, Jackson GR (2011) Functional genomic screen and network 
analysis reveal novel modifiers of tauopathy dissociated from tau phosphorylation. 
Hum Mol Genet 20(24):4947–4977. 



 

93 
 

68.  Edkins AL (2015) CHIP: a co-chaperone for degradation by the proteasome. 
Subcell Biochem 78:219–242. 

69.  Dickey CA, Patterson C, Dickson D, Petrucelli L (2007) Brain CHIP: removing the 
culprits in neurodegenerative disease. Trends Mol Med 13(1):32–38. 

70.  Dickey CA, et al. (2008) Akt and CHIP coregulate tau degradation through 
coordinated interactions. Proc Natl Acad Sci USA 105(9):3622–3627. 

71.  Palubinsky AM, et al. (2015) CHIP Is an Essential Determinant of Neuronal 
Mitochondrial Stress Signaling. Antioxid Redox Signal 23(6):535–549. 

72.  Brychzy A, et al. (2003) Cofactor Tpr2 combines two TPR domains and a J 
domain to regulate the Hsp70/Hsp90 chaperone system. EMBO J 22(14):3613–
3623. 

73.  Moffatt NSC, Bruinsma E, Uhl C, Obermann WMJ, Toft D (2008) Role of the 
cochaperone Tpr2 in Hsp90 chaperoning. Biochemistry 47(31):8203–8213. 

74.  Cox MB, Johnson JL (2011) The role of p23, Hop, immunophilins, and other co-
chaperones in regulating Hsp90 function. Methods Mol Biol 787:45–66. 

75.  Calderwood SK (2015) Cdc37 as a co-chaperone to Hsp90. Subcell Biochem 
78:103–112. 

76.  Jin J, et al. (2016) Mutational Analysis of Glycogen Synthase Kinase 3β Protein 
Kinase Together with Kinome-Wide Binding and Stability Studies Suggests 
Context-Dependent Recognition of Kinases by the Chaperone Heat Shock Protein 
90. Mol Cell Biol 36(6):1007–1018. 

77.  Taipale M, et al. (2012) Quantitative analysis of HSP90-client interactions reveals 
principles of substrate recognition. Cell 150(5):987–1001. 

78.  Jinwal UK, et al. (2012) Cdc37/Hsp90 protein complex disruption triggers an 
autophagic clearance cascade for TDP-43 protein. J Biol Chem 287(29):24814–
24820. 

79.  Sullivan W, et al. (1997) Nucleotides and two functional states of hsp90. J Biol 
Chem 272(12):8007–8012. 

80.  Rehn AB, Buchner J (2015) p23 and Aha1. Subcell Biochem 78:113–131. 

81.  Freeman BC, Toft DO, Morimoto RI (1996) Molecular chaperone machines: 
chaperone activities of the cyclophilin Cyp-40 and the steroid aporeceptor-
associated protein p23. Science 274(5293):1718–1720. 



 

94 
 

82.  Abisambra JF, et al. (2013) Tau accumulation activates the unfolded protein 
response by impairing endoplasmic reticulum-associated degradation. J Neurosci 
33(22):9498–9507. 

83.  Rao RV, et al. (2006) Coupling endoplasmic reticulum stress to the cell-death 
program: a novel HSP90-independent role for the small chaperone protein p23. 
Cell Death Differ 13(3):415–425. 

84.  Zhang J, et al. (2013) The small co-chaperone p23 overexpressing transgenic 
mouse. J Neurosci Methods 212(2):190–194. 

85.  Woodford MR, et al. (2016) The FNIP co-chaperones decelerate the Hsp90 
chaperone cycle and enhance drug binding. Nat Commun 7:12037. 

86.  Njemini R, Lambert M, Demanet C, Kooijman R, Mets T (2007) Basal and 
infection-induced levels of heat shock proteins in human aging. Biogerontology 
8(3):353–364. 

87.  Lee CH, et al. (2011) Heat shock protein 90 and its cochaperone, p23, are 
markedly increased in the aged gerbil hippocampus. Exp Gerontol 46(9):768–772. 

88.  Berchtold NC, et al. (2008) Gene expression changes in the course of normal 
brain aging are sexually dimorphic. Proc Natl Acad Sci USA 105(40):15605–
15610. 

89.  Loerch PM, et al. (2008) Evolution of the aging brain transcriptome and synaptic 
regulation. PLoS ONE 3(10):e3329. 

90.  Schülke J-P, et al. (2010) Differential impact of tetratricopeptide repeat proteins 
on the steroid hormone receptors. PLoS ONE 5(7):e11717. 

91.  Conconi M, Friguet B (1997) Proteasome inactivation upon aging and on 
oxidation-effect of HSP 90. Mol Biol Rep 24(1–2):45–50. 

92.  Cuervo AM, Dice JF (2000) Age-related decline in chaperone-mediated 
autophagy. J Biol Chem 275(40):31505–31513. 

93.  Mollapour M, Neckers L (2012) Post-translational modifications of Hsp90 and their 
contributions to chaperone regulation. Biochim Biophys Acta 1823(3):648–655. 

94.  Zhao YG, et al. (2001) Hsp90 phosphorylation is linked to its chaperoning 
function. Assembly of the reovirus cell attachment protein. J Biol Chem 
276(35):32822–32827. 

95.  Yu X, et al. (2002) Modulation of p53, ErbB1, ErbB2, and Raf-1 expression in lung 
cancer cells by depsipeptide FR901228. J Natl Cancer Inst 94(7):504–513. 



 

95 
 

96.  Blank M, Mandel M, Keisari Y, Meruelo D, Lavie G (2003) Enhanced 
ubiquitinylation of heat shock protein 90 as a potential mechanism for mitotic cell 
death in cancer cells induced with hypericin. Cancer Res 63(23):8241–8247. 

97.  Chen W-Y, et al. (2008) Tubocapsenolide A, a novel withanolide, inhibits 
proliferation and induces apoptosis in MDA-MB-231 cells by thiol oxidation of heat 
shock proteins. J Biol Chem 283(25):17184–17193. 

98.  Martínez-Ruiz A, et al. (2005) S-nitrosylation of Hsp90 promotes the inhibition of 
its ATPase and endothelial nitric oxide synthase regulatory activities. Proc Natl 
Acad Sci USA 102(24):8525–8530. 

99.  Bhat R, Tummalapalli SR, Rotella DP (2014) Progress in the discovery and 
development of heat shock protein 90 (Hsp90) inhibitors. J Med Chem 
57(21):8718–8728. 

100.  Carman A, Kishinevsky S, Koren J, Lou W, Chiosis G (2013) Chaperone-
dependent Neurodegeneration: A Molecular Perspective on Therapeutic 
Intervention. J Alzheimers Dis Parkinsonism 2013(Suppl 10). doi:10.4172/2161-
0460.S10-007. 

101.  Pimienta G, Herbert KM, Regan L (2011) A compound that inhibits the HOP-
Hsp90 complex formation and has unique killing effects in breast cancer cell lines. 
Mol Pharm 8(6):2252–2261. 

102.  Yu Y, et al. (2010) Withaferin A targets heat shock protein 90 in pancreatic cancer 
cells. Biochem Pharmacol 79(4):542–551. 

103.  Zhang T, et al. (2008) A novel Hsp90 inhibitor to disrupt Hsp90/Cdc37 complex 
against pancreatic cancer cells. Mol Cancer Ther 7(1):162–170. 

104.  Li T, et al. (2017) Novel Hsp90 inhibitor platycodin D disrupts Hsp90/Cdc37 
complex and enhances the anticancer effect of mTOR inhibitor. Toxicol Appl 
Pharmacol 330:65–73. 

105.  LeMaster DM, Hernandez G (2015) Conformational Dynamics in FKBP Domains: 
Relevance to Molecular Signaling and Drug Design. Curr Mol Pharmacol 9(1):5–
26. 

106.  Taglialatela G, Rastellini C, Cicalese L (2015) Reduced Incidence of Dementia in 
Solid Organ Transplant Patients Treated with Calcineurin Inhibitors. J Alzheimers 
Dis 47(2):329–333. 

107.  Zannas AS, Binder EB (2014) Gene-environment interactions at the FKBP5 locus: 
sensitive periods, mechanisms and pleiotropism. Genes Brain Behav 13(1):25–
37. 



 

96 
 

108.  De Leon JT, et al. (2011) Targeting the regulation of androgen receptor signaling 
by the heat shock protein 90 cochaperone FKBP52 in prostate cancer cells. Proc 
Natl Acad Sci USA 108(29):11878–11883. 

109.  Hall JA, Forsberg LK, Blagg BSJ (2014) Alternative approaches to Hsp90 
modulation for the treatment of cancer. Future Med Chem 6(14):1587–1605. 

110.  Lee VM, Goedert M, Trojanowski JQ (2001) Neurodegenerative tauopathies. 
Annu Rev Neurosci 24:1121–1159. 

111.  Ballatore C, Lee VM-Y, Trojanowski JQ (2007) Tau-mediated neurodegeneration 
in Alzheimer’s disease and related disorders. Nat Rev Neurosci 8(9):663–672. 

112.  Caughey B, Lansbury PT (2003) Protofibrils, pores, fibrils, and 
neurodegeneration: separating the responsible protein aggregates from the 
innocent bystanders. Annu Rev Neurosci 26:267–298. 

113.  Lasagna-Reeves CA, et al. (2011) Tau oligomers impair memory and induce 
synaptic and mitochondrial dysfunction in wild-type mice. Mol Neurodegener 6:39. 

114.  Sahara N, et al. (2007) Molecular chaperone-mediated tau protein metabolism 
counteracts the formation of granular tau oligomers in human brain. J Neurosci 
Res 85(14):3098–3108. 

115.  Blair LJ, Sabbagh JJ, Dickey CA (2014) Targeting Hsp90 and its co-chaperones 
to treat Alzheimer’s disease. Expert Opin Ther Targets 18(10):1219–1232. 

116.  Karagöz GE, et al. (2014) Hsp90-Tau Complex Reveals Molecular Basis for 
Specificity in Chaperone Action. Cell 156(5):963–974. 

117.  Pratt WB, Gestwicki JE, Osawa Y, Lieberman AP (2015) Targeting Hsp90/Hsp70-
based protein quality control for treatment of adult onset neurodegenerative 
diseases. Annu Rev Pharmacol Toxicol 55:353–371. 

118.  Neckers L, Workman P (2012) Hsp90 molecular chaperone inhibitors: are we 
there yet? Clin Cancer Res 18(1):64–76. 

119.  Inda C, Bolaender A, Wang T, Gandu SR, Koren J (2016) Stressing Out Hsp90 in 
Neurotoxic Proteinopathies. Curr Top Med Chem 16(25):2829–2838. 

120.  Butler LM, Ferraldeschi R, Armstrong HK, Centenera MM, Workman P (2015) 
Maximizing the Therapeutic Potential of HSP90 Inhibitors. Mol Cancer Res 
13(11):1445–1451. 

121.  Hong DS, et al. (2013) Targeting the molecular chaperone heat shock protein 90 
(HSP90): lessons learned and future directions. Cancer Treat Rev 39(4):375–387. 



 

97 
 

122.  Gaali S, et al. (2015) Selective inhibitors of the FK506-binding protein 51 by 
induced fit. Nat Chem Biol 11(1):33–37. 

123.  Wolmarans A, Lee B, Spyracopoulos L, LaPointe P (2016) The Mechanism of 
Hsp90 ATPase Stimulation by Aha1. Sci Rep 6:33179. 

124.  Li J, Richter K, Reinstein J, Buchner J (2013) Integration of the accelerator Aha1 
in the Hsp90 co-chaperone cycle. Nat Struct Mol Biol 20(3):326–331. 

125.  Okayama S, et al. (2014) p53 protein regulates Hsp90 ATPase activity and 
thereby Wnt signaling by modulating Aha1 expression. J Biol Chem 
289(10):6513–6525. 

126.  Wang X, et al. (2006) Hsp90 cochaperone Aha1 downregulation rescues 
misfolding of CFTR in cystic fibrosis. Cell 127(4):803–15. 

127.  Ghosh S, et al. (2016) Diverging Novobiocin Anti-Cancer Activity from 
Neuroprotective Activity through Modification of the Amide Tail. ACS Med Chem 
Lett 7(8):813–818. 

128.  Ramsden M, et al. (2005) Age-dependent neurofibrillary tangle formation, neuron 
loss, and memory impairment in a mouse model of human tauopathy (P301L). J 
Neurosci 25(46):10637–10647. 

129.  Ghosh S, et al. (2015) Hsp90 C-terminal inhibitors exhibit antimigratory activity by 
disrupting the Hsp90α/Aha1 complex in PC3-MM2 cells. ACS Chem Biol 
10(2):577–590. 

130.  Hall JA, et al. (2016) Novobiocin Analogues That Inhibit the MAPK Pathway. J 
Med Chem 59(3):925–933. 

131.  Blair LJ, et al. (2013) Accelerated neurodegeneration through chaperone-
mediated oligomerization of tau. The Journal of clinical investigation 
123(10):4158–4169. 

132.  Zhao H, Michaelis ML, Blagg BSJ (2012) Hsp90 modulation for the treatment of 
Alzheimer’s disease. Adv Pharmacol 64:1–25. 

133.  Schulz R, Dobbelstein M, Moll UM (2012) HSP90 inhibitor antagonizing MIF. 
Oncoimmunology 1(8):1425–1426. 

134.  Jiang F, et al. Optimization and biological evaluation of celastrol derivatives as 
Hsp90–Cdc37 interaction disruptors with improved druglike properties. Bioorganic 
& Medicinal Chemistry. doi:10.1016/j.bmc.2016.08.070. 

135.  Zhang T, et al. (2008) A novel Hsp90 inhibitor to disrupt Hsp90/Cdc37 complex 
against pancreatic cancer cells. Mol Cancer Ther 7(1):162–170. 



 

98 
 

136.  Patwardhan CA, et al. (2013) Gedunin inactivates the co-chaperone p23 protein 
causing cancer cell death by apoptosis. J Biol Chem 288(10):7313–7325. 

137.  Chadli A, et al. (2010) Celastrol inhibits Hsp90 chaperoning of steroid receptors 
by inducing fibrillization of the Co-chaperone p23. J Biol Chem 285(6):4224–4231. 

138.  Gu M, et al. (2014) Structure-activity relationship (SAR) of withanolides to inhibit 
Hsp90 for its activity in pancreatic cancer cells. Invest New Drugs 32(1):68–74. 

139.  Yu Y, et al. (2010) Withaferin A targets heat shock protein 90 in pancreatic cancer 
cells. Biochem Pharmacol 79(4):542–551. 

140.  Sinadinos C, et al. (2013) Low endogenous and chemical induced heat shock 
protein induction in a 0N3Rtau-expressing Drosophila larval model of Alzheimer’s 
disease. J Alzheimers Dis 33(4):1117–1133. 

141.  Westerheide SD, et al. (2004) Celastrols as inducers of the heat shock response 
and cytoprotection. J Biol Chem 279(53):56053–56060. 

142.  Yi F, Regan L (2008) A novel class of small molecule inhibitors of Hsp90. ACS 
Chem Biol 3(10):645–654. 

143.  Ihrig V, Obermann WMJ (2017) Identifying Inhibitors of the Hsp90-Aha1 Protein 
Complex, a Potential Target to Drug Cystic Fibrosis, by Alpha Technology. SLAS 
Discov:2472555216688312. 

144.  Mandelkow EM, et al. (1995) Tau domains, phosphorylation, and interactions with 
microtubules. Neurobiol Aging 16(3):355-362-363. 

145.  Ward SM, Himmelstein DS, Lancia JK, Binder LI (2012) Tau oligomers and tau 
toxicity in neurodegenerative disease. Biochem Soc Trans 40(4):667–671. 

146.  Iqbal K, Liu F, Gong C-X, Grundke-Iqbal I (2010) Tau in Alzheimer Disease and 
Related Tauopathies. Curr Alzheimer Res 7(8):656–664. 

147.  Denk F, Wade-Martins R (2009) Knock-out and transgenic mouse models of 
tauopathies. Neurobiol Aging 30(1):1–13. 

148.  Lewis J, et al. (2000) Neurofibrillary tangles, amyotrophy and progressive motor 
disturbance in mice expressing mutant (P301L) tau protein. Nat Genet 25(4):402–
405. 

149.  Spires TL, et al. (2006) Region-specific Dissociation of Neuronal Loss and 
Neurofibrillary Pathology in a Mouse Model of Tauopathy. Am J Pathol 
168(5):1598–1607. 

150.  SantaCruz K, et al. (2005) Tau Suppression in a Neurodegenerative Mouse Model 
Improves Memory Function. Science 309(5733):476–481. 



 

99 
 

151.  Alamed J, Wilcock DM, Diamond DM, Gordon MN, Morgan D (2006) Two-day 
radial-arm water maze learning and memory task; robust resolution of amyloid-
related memory deficits in transgenic mice. Nat Protoc 1(4):1671–1679. 

152.  Dickey C, et al. (2009) Aging analysis reveals slowed tau turnover and enhanced 
stress response in a mouse model of tauopathy. Am J Pathol 174(1):228–238. 

153.  Abisambra JF, et al. (2013) Tau accumulation activates the unfolded protein 
response by impairing endoplasmic reticulum-associated degradation. J Neurosci 
33(22):9498–9507. 

154.  Mouton PR, Pakkenberg B, Gundersen HJ, Price DL (1994) Absolute number and 
size of pigmented locus coeruleus neurons in young and aged individuals. J 
Chem Neuroanat 7(3):185–190. 

155.  Penley SC, Gaudet CM, Threlkeld SW (2013) Use of an Eight-arm Radial Water 
Maze to Assess Working and Reference Memory Following Neonatal Brain Injury. 
J Vis Exp (82). doi:10.3791/50940. 

156.  Giustiniani J, et al. (2014) Immunophilin FKBP52 induces Tau-P301L filamentous 
assembly in vitro and modulates its activity in a model of tauopathy. Proc Natl 
Acad Sci USA 111(12):4584–4589. 

157.  Jinwal UK, et al. (2011) The Hsp90 kinase co-chaperone Cdc37 regulates tau 
stability and phosphorylation dynamics. J Biol Chem 286(19):16976–16983. 

158.  Folch J, et al. (2016) Current Research Therapeutic Strategies for Alzheimer’s 
Disease Treatment. Neural Plast 2016:8501693. 

159.  Bittar A, Sengupta U, Kayed R (2018) Prospects for strain-specific 
immunotherapy in Alzheimer’s disease and tauopathies. NPJ Vaccines 3. 
doi:10.1038/s41541-018-0046-8. 

160.  Stiegler SC, et al. (2017) A chemical compound inhibiting the Aha1-Hsp90 
chaperone complex. J Biol Chem 292(41):17073–17083. 

 

 


	Targeting the Hsp90/Aha1 Complex for the Treatment of Tauopathies
	Scholar Commons Citation

	Title Page, Shelton Dissertation_revision
	Chapters, Shelton Dissertation_revision
	Shelton Dissertation_revision

