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ABSTRACT 

 

 

Wildlife diseases impact the success and sustainability of native populations; therefore, it 

is crucial to understand the disturbances that are capable of shifting the dynamics between hosts 

and parasites.  In terms of elucidating the effects of introduced parasites or determining how 

alterations occur in the abundance of parasites already present in the environment, ecological 

disturbances are understudied.  Here, I use the Cuban treefrog (CTF), Osteopilus septentrionalis, 

to examine both of these facets of disturbance because 1) the CTF is an introduced species for 

which little work has been conducted on the parasites it is either introducing and/or acquiring, 

and 2) the CTF is also common to habitats that undergo frequent prescribed burning. Thus, the 

CTF can be used to address parasite spillover, spillback, and dilution while also addressing the 

direct and indirect effects that prescribed burning may have on parasites.   

Even though there is strong evidence that introduced parasites (novel weapons) can 

greatly impact native host populations, there is also a growing body of literature that suggests 

that invasive species often lose many of their parasites after invading and colonizing new areas 

(enemy release hypothesis). I first show that the CTF has undergone enemy release because it is 

nearly void of parasites that are common to it in its native range. Next, I show that the CTF may 

be simultaneously changing parasite burdens of native treefrogs by either introducing new 

parasites (spillover effect) to these frogs or by the CTF acquiring new species parasites in the 

invaded area that can then be subsequently transmitted back to the native wildlife.  For example, 

I show that one of these introduced parasites, Aplectana sp., can successfully infect a native 
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treefrog, Hyla femoralis, and that H. femoralis is less tolerant of these infections than O. 

septentrionalis because this nematode caused a greater loss in body mass for H. femoralis than 

O. septentrionalis .  despite H. femoralis shedding fewer total worms in their feces than O. 

septentrionalis.  

To determine how host age and behaviors might influence the spread or acquisition of the 

three most prevalent parasites (Aplectana sp., acuariids, metacercariae) in CTFs, I investigated 

the relationship between parasite intensity and CTF age (host age-intensity relationship). These 

data show that Aplectana sp. intensity tends to increase with host age for both male and female 

CTFs. As such, these older frogs are likely to be the individuals spreading the greatest number of 

Aplectana sp. in the wild. I also show that as female and male CTFs age, they continue to acquire 

native acuariid nematodes.  Because the CTF is likely a paratenic host to the acuariids, at this 

time it is unclear as to whether these infections may result in an increase in acuariids in native 

frogs (spillback effect) or whether the CTF is helping to remove the parasites from the 

environment (dilution effect) because we do not know how often these infected CTFs are being 

consumed by final hosts. In contrast to the acuariids and Aplectana sp. nematodes, there does not 

appear to be a change in trematode metacercarial intensity as CTFs age.  The CTF serves as an 

intermediate host for the metacercariae and could be contributing to spillback to native frogs 

because it is not uncommon for intermediate hosts to be preferentially preyed upon by larger 

predators, many of which are final hosts for the trematodes. 

In addition to using the CTF to determine how an invasive host may change the host-

parasite relationships of native species, I also used the CTF to determine how parasites may 

change in burned habitats.  Here, I show that fire can interact with disease dynamics in 

predictable manners, but these results may also depend on the sex of the host. In summary, 
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where fire recruits hosts, we can expect parasite abundance to increase, and where parasites are 

in direct contact with the intense heat of fire, we can expect a decrease in parasites. For example, 

CTFs that harbor parasites (e.g. acuariids and metacercariae) that are transmitted by invertebrate 

intermediate hosts that tend to be 1) recruited to recently burned areas due to increased food 

availability or 2) experience increased productivity/fitness due to increased nutrient availability 

show an increase in abundance after burns. In contrast, juveniles of Aplectana sp. nematodes are 

free-living and are subjected to extreme heat during burns. As expected, the intensity of 

Aplectana sp. in CTFs tends to decrease through time after burns.  This correlation between 

increased temperature and nematode (both free living and parasitic) death was confirmed during 

controlled burns in the field and in mesocosms.  Furthermore, the significant reduction in 

nematodes was observed despite variation in burn duration and intensity.  Surprisingly, there 

were no discernible changes in parasite trajectories through time, indicating that there was no 

evidence of parasite recovery in CTFs that had been captured from wetlands that had 

experienced fire nearly seven years prior to collection.  These results suggest that disturbance by 

fire might create long-term effects on host-parasite dynamics. 

My collection of work establishes the need to further consider the factors that can shift 

host-parasite dynamics and how host populations may be influenced by these altered dynamics.  

Given that invasive species continue to threated native populations on a global scale, it is 

important to not only understand how they outcompete or replace native species, but to also 

appreciate that they can cause shifts in host-parasite relationships with potential positive and 

negative effects on native hosts (e.g. spillover, spillback, and dilution effect). In addition to 

invasive species altering parasite abundance, there are other ecological disturbances, such as fire, 
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that can alter parasite abundance. Consequently, managing diseases of wildlife stands to benefit 

from appreciating these impacts that invasive species and fire can have on infectious diseases.   

 

 
  



 1 

 

 

INTRODUCTION 

 

 

Infectious diseases of wildlife are associated with considerable losses to human lives, 

biodiversity, and ecosystem services [1-5], and the emergence of such diseases typically follows 

a change in the relationship or the interaction between hosts and parasites [5-7]. Thus, 

identifying the disturbances that alter host-parasite relationships is important to understanding 

emerging diseases.  For example, several biotic and abiotic disturbances, such as climate change 

[8, 9], urban development [10, 11], deforestation [12-15], wildfire [16, 17], and introduced 

species [18, 19], are capable of structuring communities of hosts.  However, how such 

disturbances influence the spread and emergence of diseases is widely debated (e.g. climate 

change: [20-25]; urbanization: [23, 26]; habitat fragmentation and deforestation: [27].  Though 

some disturbances, such as introduced hosts and parasites, disrupt native host-parasite 

relationships [18, 28-32], less is known about how introduced species contribute to declines in 

native host populations.  Furthermore, fire, which is a relatively common disturbance, likely 

affects host-parasite relationships, but little is known about these interactions. By improving our 

understanding of what catalyzes changes in host-parasite dynamics, we can better predict disease 

patterns for both humans and wildlife. 

Shifting of host-parasite relationships via introduced host species 

The spread of introduced species is a global problem that has gained widespread attention 

because it can cause long-lasting ecological changes [33]. Such deleterious impacts include 



 2 

economic damage [34], disease transmission [2], displacement and consumption of native 

species [29, 33, 35], and hybridization with native species [19, 36]. The role that introduced 

species play in disrupting ecosystem balance [37] and extirpating native organisms [29] may be 

mediated by changes to parasite burdens of introduced and/or native hosts [30-32, 38], whereby 

parasites may be lost (enemy release), transmitted (spillover or spillback effect), or diluted.  

The enemy release hypothesis proposes that introduced species readily establish in 

nonindigenous areas because they leave behind many natural enemies, such as parasites, in their 

native ranges [39-41].  For example, Burke et. al. (2007)  report that two introduced species of 

lizards in several different populations across the United States have lost most of their gut and 

blood parasites.  In Hawaii, the introduced Coqi frog, Eleutherodactylus coqui, does not have 

any parasites that commonly infect it in its native Puerto Rican habitats [43, 44]. Although there 

is growing evidence in support of this loss of parasites from the native areas into the invaded 

areas, studies suggest that evaluation of enemy loss should 1) be considered relative to parasite 

infection intensities of native hosts and 2) with respect to the expanding ranges of the introduced 

hosts. For example,  Colautti, Ricciardi [45] caution against accepting that enemy release holds 

true at the community level where introduced hosts might not have fewer enemies (parasites) 

than the native hosts. In this case, in order for the enemy release hypothesis to hold at both the 

biogeographical and at community levels for the introduced host, both the introduced and native 

hosts’ parasites must be considered. In the Panama Canal watershed, the introduced Nile tilapia, 

Oreochromis niloticus, harbored fewer parasite species than in its native range, and it also had 

lower parasite abundance compared to the native Blackbelt cichlid, Vieja maculicauda [46].  

Furthermore, even though introduced hosts do lose parasites, studies suggest that a significant 

loss of native parasites in introduced hosts is most noticeable along the invasion front; introduced 
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hosts at the original invasion sites might not be entirely free of parasites harbored in its native 

ranges (reviewed in Poulin [47].  

In addition to undergoing a shift in their own parasite loads, introduced host species can 

also impact parasite abundance of native host species [30-32]. The parasite spillover effect 

suggests that introduced host species can introduce new parasites to native host species (Figure 

1).  If these introduced parasites happen to be more virulent in the native hosts than in the 

introduced hosts, then the parasites might become a source of “novel weapons” that allow the 

introduced hosts to obtain a greater competitive advantage over the natives [48-53]. A review by 

Lymbery, Morine [53] found that 85% of introduced parasites were more virulent in native hosts 

than in the introduced hosts.  For example, in Hawaii, malaria transmitted via a non-native 

mosquito is causing significant declines in many native species of birds [54]. Even if some 

spillover parasites are not as virulent in native hosts, they can still negatively impact native hosts.  

For example, the introduced castrating barnacle, Loxothylacus panopaei, causes the mud crab, 

Eurypanopeus depressus, to be more susceptible to the predatory blue crab, Callinectes sapidus 

[55]. Additionally, several different native species of aquatic invertebrates and vertebrates in 

Europe have declining populations as a result of parasite spillover [31].   

Introduced hosts might intensify the abundances of native parasites if the introduced 

species are suitable hosts or reservoirs for the native parasites (“spillback effect”; Figure 1) [32, 

56, 57].  For example, an introduced species of the American mink, Neovison vison, can release 

nearly three times as many trematodes that normally infect the Eurasian otter, Lutra lutra [58]. In 

another example, an introduced snail, Pseudosuccinea columella, can successfully be infected 

with the liver fluke, Fasciola gigantica, which can then infect humans.  The introduced snail is 

hypothesized to increase fascioliasis (disease caused by F. gigantica) in humans in Egypt by 
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increasing the abundance of F. gigantica in the environment [59]. By amplifying parasite 

abundance or serving as reservoir hosts, introduced hosts could be negatively impacting the 

success of native host populations.  For example, Faillace et al. [60] discuss how parasites (e.g. 

viruses) transmitted between introduced and native hosts led to population declines of several 

native host species. 

Introduced hosts may remove native parasites from the environment if: 1) they become 

infected with parasites but do not then directly transmit them back the native hosts, or 2) they 

reduce the probability that the parasite can effectively be transmitted to the proper final host; this 

process is termed the dilution effect (Figure 1) [53, 57, 61, 62]. Gendron and Marcogliese [63] 

show that an introduced round goby, Neogobius melanostomus, can successfully can be infected 

by the native acanthocephalan, Neoechinorhynchus tenellus, but the parasite then dies. 

Additionally, when N. melanostomus, was absent from waters that harbored a native darter, 

Etheostoma nigrum, this native fish species had a higher parasite infection intensity and 

abundance, which suggests that the presence of N. melanostomus can cause a diversion for 

parasites to infect it rather than the native darter. Similarly, Gagne, Heins [64] found that both 

native and introduced fishes in several Hawaiian watersheds have an overall lower parasite 

abundance when they live in the same watersheds, suggesting that a mutual dilution effect may 

be occurring between the different species of fishes. Though introduced species can impact host-

parasite relationships of natives, research of these shifting dynamics pales in comparison to 

general research conducted on the success of biological invasions, and we must continue to 
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investigate how introduced hosts are altering parasitism of natives [47].

 

Figure 1. Shifting parasite relationships via an introduced species. Each panel is respective to the 

top left diagram, which shows the parasites harbored by an introduced and native host prior to 

parasite exchange. Each color worm represents a different species of nematode. The top right 

panel represents an introduced species becoming successfully infected by a native parasite and 

then increasing the abundance of that parasite species.  The bottom left panel is an example of 

the introduced host removing parasites from the environment that would normally infect native 

hosts. Here, the parasite may not be able to further complete its life cycle to then go on to infect 

natives; therefore, it is diluted it in the environment. As a result, the native host may now harbor 

fewer of these parasites. In the bottom right panel, an introduced host is introducing a parasite 

Native treefrogInvasive treefrog

x Dillution Spillover

Spillback
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that can successfully infect the native hosts that may then be more adversely affected by the 

parasite compared to the infected introduced hosts. 

Altering parasite abundance with fire  

Fire can impart drastic changes across both aquatic and terrestrial habitats [1, 65], and 

such changes include cycling of nutrients, supplying new food and habitats to animals, causing 

seedling recruitment and sprouting of vegetation, preserving indigenous animal and vegetation 

species, and also reducing the occurrence of destructive fires that are fueled by unnaturally 

accumulated biomass [16, 66-69]. We also know that humans have greatly impacted the 

occurrence of natural wildfires and could thus be interfering with an ecological process that 

might have profound effects on parasite burdens of wildlife.  For example, in much of the present 

day developed world, fire is suppressed to minimize property and human losses, but this 

suppression dangerously facilitates fuel buildup, which can lead to intense and unmanageable 

wildfires [16, 66, 67, 70, 71]. Also, where anthropogenic-induced climate change facilitates 

drought and increases in temperatures, there will likely be an increase in the occurrence of 

wildfires [72-74]. However, a strong, predictive framework is required for establishing how the 

presence or absence of fire will influence diseases. 

Community changes induced by fire, such as the clearing of overgrown vegetation 

followed by new growth that is more palatable to herbivorous invertebrates and vertebrates [75-

77], likely impacts recruitment or movement of hosts to recently burned areas [78]. As a result, 

these preferred areas might subsequently either concentrate infected hosts or change how 

frequently hosts are encountering parasites [79, 80].  For example, studies present conflicting 

evidence for how tick abundance is expected to change with respect to fire.  Cully (1999) found 

that tick abundance decreases with increased burning.  In contrast, other studies have found that 
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tick abundance is higher in burned sites compared with control areas [81, 82], which is likely due 

to the presence of herbivores, such as deer (harboring ticks), that prefer burned habitats [80]. In a 

similar example, McCoy, Styga [79] show that there is a tendency for ectoparasitic mites, 

Eutrombicula sp., to have a higher infection prevalence on the six-lined racerunner, Aspidoscelis 

sexlineata, and the Florida scrub lizard, Sceloporus woodi, captured from recently burned Florida 

scrub communities.  

In addition to attracting vertebrates to the burned areas, new, poorly defended vegetation 

may also serve as food for several arthropod species [83, 85-88]. An influx of these invertebrates 

may then attract birds that consume these arthropods [89-92]. As such, we might expect that 

bird-transmitted and/or arthropod-transmitted parasites to increase in burned habitats.   

Another mechanism by which fire may alter parasite abundance is by changing the 

availability of nutrients. Through combustion of the vegetation, fire quickly converts compounds 

in the vegetation into char and ash. These carbon, nitrogen, and phosphorous compounds can 

then be readily taken up by terrestrial plants, but they may also be washed into nearby 

waterbodies. As nutrients become available in the water, they can enhance freshwater 

productivity via a bottom-up effect where more nutrients lead to more primary producers that can 

subsequently support a larger abundance of hosts. For example, nutrient-enhanced freshwater 

systems can increase snail abundance, which also likely increases metacercarial (trematode) 

infections due to an increase in cercariae shed from snails [93, 94]. Similarly, Hossack et al. 

(2013a) found that there was a positive correlation between burn severity and infection intensity 

of an aquatically-transmitted nematode, Gyrinicola batrachiensis, which is likely an artifact of 

increased tadpole densities in these more productive freshwater systems.   
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In contrast to indirectly increasing parasitic infections, we might expect fire to reduce 

parasites that are temperature-sensitive because they could be killed by the intense heat of fire or 

may become desiccated in the arid habitats that are created when most of the shade and soil 

moisture is reduced by the fire. For example, Derek Scasta, Engle [95] show that heat from fire 

in pastures can directly reduce the eggs and pupae of ectoparasitic horn flies, Haematobia 

irritans, that infect livestock. Furthermore, Hossack et al. [96] found that when toads were 

collected from recently burned areas (i.e. more arid), they were less likely to be infected by the 

chytrid fungus, a disease that is implicated in the global decline of amphibians. In a different 

study, Hossack, Lowe [84] found that burn severity negatively impacted the mean intensity of 

Cosmocercoides variabilis, a skin-penetrating nematode of amphibians.  As previously 

discussed, there is evidence that fire can impact host-parasite relationships by either increasing or 

decreasing wildlife diseases, but a straightforward framework does not exist for predicting the 

occurrence of such differing effects.  

Dissertation study system and objectives 

Florida harbors an abundance of introduced reptiles and amphibians (137 taxa) [35, 97], 

and it also holds statewide prescribed burning programs that aggressively monitor and manage 

lands with fire. Thus, the effect of ecological disturbances on host-parasite interactions can be 

thoroughly studied in this area. Specifically, I studied Cuban treefrog, Osteopilus septentrionalis, 

an introduced amphibian with a population range that overlaps lands that are managed with fire. 

Osteopilus septentrionalis outcompetes and displaces native treefrogs because it has a much 

larger body size, broad dietary niche [98], and year-round reproduction with average clutch sizes 

of 2000-4000 eggs [99], but no studies have addressed the possible success of O. septentrionalis 
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being mediated through parasites or a lack thereof.  Furthermore, no studies in Florida have 

determined what effect fire has on parasites that infect O. septentrionalis.   

My dissertation addressed how an introduced host species can disturb native host-parasite 

relationships and quantified the direct and indirect effects of fire on parasite transmission in 

aquatic and terrestrial environments. First, I determined if O. septentrionalis has indeed 

experienced enemy release from parasite species that commonly infected it in its native range 

(Chapter 1). Next, I showed how O. septentrionalis contributes to parasite spillover, spillback, 

and dilution, and I then quantified the effects of an introduced parasite on a native treefrog, Hyla 

femoralis (Chapter 2). Finally, I constructed and tested a framework for predicting the effects of 

fire on parasite transmission by first quantifying the effect of time-since-burn on parasites found 

in O. septentrionalis, and then I verified that fire directly induced mortality of soil-dwelling, 

parasitic nematodes (Chapter 3). 
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CHAPTER 1: ACQUIRED AND INTRODUCED MACROPARASITES OF THE INVASIVE 

CUBAN TREEFROG, OSTEOPILUS SEPTENTRIONALIS 

 

Note to Reader: 

This chapter has been previously published and is attached as Appendix A.  See 

Appendix B for permission from the publisher.  
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CHAPTER 2: INTRODUCED SPECIES AND HOST-PARASITE DYNAMICS 

 

Abstract 

 Host-parasite dynamics can be disrupted by introduced species. Introduced hosts are 

capable of introducing new parasite species and altering the abundance of parasites that are 

already present in native hosts.  The traits of introduced hosts might shed light on what type of 

an effect they will have on overall parasite abundance in the environment.  For the first part of 

this study, we evaluated the effects of a likely introduced nematode (Aplectana sp.) on native 

treefrogs (Hyla femoralis) compared to the invasive Cuban treefrogs (Osteopilus 

septentrionalis).  There was a marginally significant effect of worms on the proportional mass 

loss for both species of treefrogs. H. femoralis was less tolerant of these infections than O. 

septentrionalis because this nematode caused a greater loss in body mass for H. femoralis than 

O. septentrionalis despite H. femoralis shedding fewer total worms in their feces than O. 

septentrionalis.  In the second part of the study, we tested for monotonic and nonmonotonic 

relationships between host age and the intensity of infection for the three most prevalent 

parasites (Aplectana sp., acuariid nematodes, and trematode metacercariae) in O. septentrionalis 

to determine what effect age may have in spreading or acquiring parasites.  We found that, for 

both males and females, there is a significant linear increase in Aplectana sp. and encysted 

acuariids with host age.  There was no detectable significant effect of host age on the intensity of 

metacercariae.  These results suggest that an introduced host along with one of its introduced 

parasites could have effects on native treefrog populations. 
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Introduction 

Introduced hosts can disrupt host-parasite relationships of native species in several ways 

[30-32]. For example, introduced hosts can introduce new parasites to native host species, a 

phenomenon described as “parasite spillover”.  This can be particularly problematic to natives 

hosts if they lack sufficient defenses against these new infections [49-52]. For instance, in Europe 

native aquatic wildlife species, ranging from invertebrates like crayfish and mollusk species to 

aquatic vertebrates like fishes and amphibians, have experienced population declines because of 

parasite spillover from introduced hosts [31]. In addition to introducing parasites, introduced hosts 

that become suitable hosts or reservoirs for parasites already common to native host species can 

then magnify the abundances of native parasites, a phenomenon termed “parasite spillback” [32, 

56, 57]. For example, Sherrard-Smith, Chadwick [58] showed that the introduced American mink, 

(Neovison vison) can be infected with a trematode species that is native to otters (Lutra lutra), and 

it potentially sheds nearly three times as many of these parasites as the native otter. In another 

possible situation, the introduced host may acquire but not transmit native parasites, thereby 

effectively removing them from the environment and decreasing the risk to natives, which is often 

referred to as the dilution effect [53, 57, 61]. Gendron and Marcogliese [63] found that an 

introduced goby, Neogobius melanostomus, could potentially decrease an acanthocephalan, 

Neoechinorhynchus tenellus, because the parasite infects the goby but then dies prematurely in 

contrast to the native species of fishes that successfully serve as paratenic hosts.  Although in the 

short-term introduced hosts are often thought to leave most of their parasites behind in their native 

range (enemy release hypothesis) and only acquire a few new parasite species in their introduced 

range [39, 100], it is imperative to understand how any potential parasite spillback, spillover, or 

dilution effects can impact native populations. Given that many of the parasite-mediated effects of 



 18 

introduced species on native species are adverse to native hosts, there is extensive interest in 

understanding the role parasites play in facilitating these invasions and how to best-manage their 

impacts on the natives [53].  

For populations of introduced hosts that either become suitable hosts for native parasites 

or serve to introduce new parasites, employing the relationship between the ages of hosts and their 

parasite infection intensities (age-intensity relationship) could help to identify which introduced 

hosts pose the greatest risk to native hosts. For example, many age-intensity relationships increase 

monotonically, either increasing continuously with age or reaching some asymptote because 

parasite death balances parasite colonization [101](Fig. 1).  In these cases, the oldest introduced 

hosts would have the most parasites and thus would represent the greatest risk of transmitting or 

amplifying native or introduced parasites in native hosts.  In contrast, if hosts acquire the majority 

of a parasite species as juveniles but then are minimally re-infected as adults, we may expect to 

see a monotonically negative age-intensity relationship as parasites either die naturally or are killed 

by the immune system of the host (Fig. 1).  In this case, the youngest introduced hosts would have 

the most parasites and thus would represent the greatest risk of transmitting or amplifying native 

or introduced parasites in native hosts.  In some cases, age-intensity relationships are convex, 

peaking at intermediate ages [102-104] because of acquired immunity or parasite-induced 

mortality in older hosts [102, 105, 106] (Fig. 1). In this case, intermediate-aged introduced hosts 

might pose the greatest threat to native hosts. 

The Cuban treefrog (CTF), Osteopilus septentrionalis, is an ideal host for evaluating 

parasites that are either associated with spillover, spillback, or dilution, and also for addressing 

age-relationships. First, it is a highly invasive amphibian species in Florida that is extremely 

abundant and easily captured [107, 108], and is already negatively impacting native treefrogs 
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because of its large body size, broad dietary niche, and extended reproduction period [98, 99].  

Additionally, CTFs have acquired parasites from native frogs and have also introduced parasites 

to native frogs [109].  Additionally, CTFs have an aquatic and terrestrial life stage, which allows 

us to address how their parasite loads change as a function of age for infections primarily acquired 

early in life as aquatic tadpoles or later in life as predominantly terrestrial juveniles and adults.   

Our first objective was to determine if an introduced parasite of the CTF could effectively 

spillover to native Pinewoods treefrogs, Hyla femoralis. [109].  To address this objective, we 

exposed both CTFs and H. femoralis to Aplectana sp., a nematode that has likely been introduced 

by CTFs, and determined infection success and growth rates of each frog species. We hypothesized 

that Aplectana sp. would not be as infective to H. femoralis, a novel host, as it is to the CTF, a host 

with which it has coevolved (naïve host syndrome) [110] . Furthermore, we hypothesized that any 

H. femoralis that do become infected might experience greater pathology and lower growth rates 

because of this lack of coevolution with Aplectana sp. [53, 110, 111].  

Our second objective was to offer insights into the traits of CTFs that might predict their 

potential for spillover, spillback, or dilution by quantifying the relationship between the abundance 

of their parasitic infections (native and introduced) and the age/size of both male and female CTFs. 

To address this second objective, we determined the best-fitting model of parasite burdens as a 

function of age for both sexes of CTFs.  These analyses were conducted on the most common 

parasites recovered from CTFs: Aplectana sp. (gut nematode; likely introduced from Cuba), 

acuariids (encysted nematodes in gut wall; native to FL), and trematode metacercariae (encysted 

in mesenteries and body cavity; native to FL). Below we detail the life cycles of each parasite and 

describe and justify our hypotheses. By examining the age-intensity relationships for Aplectana 
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sp., acuariids, and metacercariae, we can begin to understand the impact that the CTF may be 

having on native treefrogs through either the introduction and/or the acquisition of parasites. 

Life Cycles 

For Aplectana, the CTF serves as the only host in the nematode’s direct life cycle.  Gravid, 

adult female worms live in the intestinal tract of the CTF and release juveniles or eggs (viviparous 

or ovoviviparous) in the feces of infected frogs.  These juveniles penetrate the skin of another frog 

to complete the life cycle.  For acuariids, the CTF is a paratenic host.  Acuariids are nematodes 

that require a bird as a final host with arthropods serving as intermediate hosts, but sometimes they 

will infect paratenic hosts (i.e. a host that can facilitate life-cycle completion but one in which the 

parasite does not continue to develop), such as fishes or amphibians that have ingested the infected 

arthropod [112]. Thus, CTFs acquire larval acuariids on the gastrointestinal tract when consuming 

another infected host.  Finally, the CTF is an intermediate host for trematode metacercariae.  

Metacercariae are primarily acquired during the aquatic stage, where the tadpoles are exposed to 

cercariae, a larval swimming stage of the trematode life cycle.  Cercariae typically infect 

amphibians by penetrating their skin or crawling up their cloaca. 

Hypotheses 

Based on host traits, we can make general predictions about how age and sex of CTFs 

should affect the parasite burden of each of the three focial parasite species.  First, we hypothesized 

that older, larger frogs would have the largest burdens of both Aplectana and acuariids because the 

predominantly terrestrial CTFs have accumulated exposure to these predominantly terrestrial 

parasites throughout their lifetime. Furthermore, CTFs are sexually dimorphic, with females often 

being much larger than males [99].  Thus, females have more surface area to contact larval 

Aplectana and need to eat more than males to maintain their larger body size increasing their 
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likelihood of consuming acuariids.  Consequently, we expect older females to have the highest 

burdens and pose the biggest risk of transmitting Aplectana sp. and acuariids to natives.   

Unlike Aplectana and acuariids, trematode metacercariae are mostly obtained when hosts are 

young and exclusively aquatic.  Thus, CTFs should have predominantly decreasing exposure to 

metacercariae with age post-metamorphosis. For female CTFs, we hypothesize that the encysted 

metacercariae would either die naturally or be cleared as the host ages [113], producing a 

negative linear age-intensity relationship. Relative to females, males spend more time in the 

water during the breeding season in an effort to maximize mating opportunities [114].  Hence, 

males should acquire more of these aquatic infections as adults than females and should therefore 

have a less negative age-intensity relationship for this parasite.   

Methods 

Aplectana Spillover into Hyla femoralis 

Host and Parasite Collections  

Cuban treefrogs, Osteopilus septentrionalis, and Pinewoods treefrogs, Hyla femoralis, 

were collected as tadpoles in July of 2015 from Flatwoods Wilderness Park in Tampa, FL 

(28°07’01.08”N 82°18’11.15”W).  Tadpoles were separated by species and reared outdoors in 

the shade in plastic boxes (33 x 20 x 15 cm) containing roughly 8 L of artificial spring water 

with approximately 10 tadpoles per box. Tadpoles were fed ad libitum on a spirulina-agar diet. 

After metamorphosis, the juvenile frogs were housed in the laboratory (22C, 12 hr light-dark 

photoperiod) in individual plastic containers along with a wet, unbleached paper towel for 

bedding. All frogs received a new, clean container with bedding on a weekly basis.  These 

juvenile frogs were fed ad libitum with vitamin-dusted crickets until all frogs reached a 

minimum snout-vent-length (SVL) of 20 mm.   
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Two weeks before nematode exposures, adult CTFs were collected from Flatwoods 

Wilderness Park, euthanized with tricane methanesulfonate (MS-222), and necropsied to obtain 

adult Aplectana. Once the gravid, adult female Aplectana sp. nematodes were isolated from the 

CTF intestinal tract, the worms were then individually transferred to petri dishes (3.5 x 1 cm) 

along with approximately 2 mL 0.7 % saline water where they shed juvenile worms. Juvenile 

worms were allowed to grow for approximately two weeks to ensure that they had reached their 

infective, skin-penetrating stage before exposing them to the juvenile frogs. To also ensure that 

none of the juvenile frogs had been previously infected as tadpoles with nematodes in the wild, 

two weekly fecal checks for juvenile nematodes were conducted prior to experimental exposure. 

Fecal checks were performed by rinsing individual frog containers with approximately 2 mL of 

0.7 % saline water and then observing this rinse water and any feces under a dissecting 

microscope to check for the presence of juvenile nematodes.  

Experimental Design 

For the nematode exposures, each frog was first placed in a single petri dish (3.5 x 1 cm) 

that was capped and then sealed with parafilm (n=20 worm-exposed frogs and n=20 sham-

exposed frogs per species).  Next, through one large, premade hole in the petri dish lid, 20 

juvenile Aplectana were counted with a dissecting microscope and then transferred to each 

worm-exposed frog along with approximately 1 mL of 0.7 % saline water.  For sham-exposed 

frogs, approximately 1 mL of the same nematode water solution (but without nematodes) was 

pipetted through the hole into the petri dish.  Each large hole was then sealed with tape to reduce 

evaporation of the water, but a smaller, premade hole in the lid was left uncovered to allow for 

airflow.  These petri dishes containing the frogs were then randomly placed in a dark cabinet to 

minimize stress to the frog and left for 24 hr.  After the 24hr exposure time, frogs were removed 
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from the petri dishes and placed back into their original individual plastic housing containers. 

The remaining juvenile Aplectana nematodes in each petri dish that were unable to successfully 

penetrate the frog were counted with a dissecting microscope.  All frogs were kept at the same  

22C, 12 hr light-dark photoperiod throughout the remainder of the experiment.  

Before exposure to Aplectana and each week thereafter, frog snout-vent-length (SVL) (to 

the nearest 0.1 mm) and mass (to the nearest 0.001 g) were recorded once per week for a total 

period of six weeks. Additionally, successful infections of established adult Aplectana 

nematodes in the gut were confirmed by performing fecal checks as described above. To isolate 

the effect of Aplectana sp. on frog growth, we fed each frog a restricted diet of three vitamin-

dusted crickets two days per week to ensure that frogs could not compensate for resources lost to 

parasitism by consuming crickets ad libitum.  

Age-Intensity Relationships for Ctfs And Aplectana sp., Acuariid, and Metacercariae  

Host and Parasite Collections  

During the summers of 2005-2008, 330 CTFs were collected from polyvinyl chloride 

(PVC) pipes encircling 18 wetlands within the Flatwoods Wilderness Park in northeastern 

Hillsborough County, Florida (28°07’01.08”N, 82°18’11.15”W). Within this park, the plant 

community is mainly a second-growth pine flatwoods forest matrix with numerous borrow pits, 

hardwood swamps, freshwater marshes, and cypress domes [108, 115].  After removing frogs 

from the PVC pipes, each frog was placed in a plastic bag, euthanized, and kept frozen until 

necropsied for parasite quantification.  Frog SVL and wet weight were recorded.  For frogs ≥ 42 

mm, sex was determined by the presence/absence of nuptial pads and evidence of mature 

reproductive organs.  All frogs ≤ 41 mm were considered juveniles due to a lack of discernable 

reproductive organs.  The body cavity was opened by a longitudinal incision from vent to throat 
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and all internal body organs and mesenteries were examined for Aplectana sp., acuariids, and 

metacercariae.  Parasites were counted and preserved in 70% ethanol.  Identification and 

confirmation of parasites were provided by Charles Bursey at Pennsylvania State University’s 

Shenango Campus and by Dr. Omar M. Amin at Parasitology Center, Inc. (PCI) in Scottsdale, 

Arizona. 

Statistical analyses 

Aplectana Spillover into Hyla femoralis 

We used a linear model to determine the effect of treatment (control vs infected) on 

proportional mass change while controlling for the initial mass of each individual.  For infected 

individuals, we also used a linear model to quantify the effect of total worms shed (a proxy for 

intensity of infection), initial mass, and species on the proportional mass change between week 1 

and week 6.  Initial mass of the frogs was included in the models because initial host mass may 

influence the number of worms that were successfully able to penetrate the host (resistance), or it 

may also be correlated with bigger frogs being able to support larger worms that could then shed 

more larvae. To control for the overdispersion of nematode counts in the feces, the counts were 

log transformed. We used the Anova function in the car_package to generate probability values 

via log-likelihood ratio tests.     

Age-Intensity Relationships for CTFs and Aplectana sp., Acuariids, and Metacercariae  

To address our second objective of quantifying the relationship between the intensity of parasitic 

infections (response variable) and the age/size (SVL) and year of collection of both male and 

female CTFs (explanatory variables treated as fixed effects), we used model selection to compare 

among several plausible models (Table 1). To best-account for the overdispersion of parasite 

counts in the hosts, our models included the comparison of negative binomial and Poisson error 
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distributions.  To facilitate identifying nonlinear relationships that might exist between predictors 

and parasite intensity, we considered generalized additive models (GAMs) using the gam 

function in the mgcv package (with the default smoothing spline) [116]. With the 

mgcv_package, a term called the effect degrees of freedom (edf) was used to assess how linear or 

non-linear the models were.  These values range between 0 and infinity, and lower values 

indicate that the relationship is more linear.   Finally, since CTFs were captured across multiple 

wetlands, we also considered models that treated wetland as a random effect (generalized 

additive mixed models, GAMMs). CTF infection was modeled independently for each parasite 

(Aplectana, metacercariae, and acuariids) and separately for each sex of the CTF. Juvenile frogs 

were used to model both the male and female populations.   

To determine the best fitting age-intensity model for each parasite (Aplectana, metacercariae, 

and acuariid), we compared among models by comparing their AIC values as recommended by 

[116].  AIC considers a trade-off between the goodness of fit and complexity of a statistical 

model. Required normality and homoscedasticity assumptions were confirmed by visually 

inspecting plots of the fitted values versus the residuals [116]. All statistical analyses were 

conducted with R statistical software [117]. 

Results 

Aplectana Spillover into Hyla femoralis 

A total of 13 CTFs and 9 H. femoralis became infected, and the average (± SE) initial 

starting mass for each species was 0.709 ± 0.040 g and 0.547 ± 0.038 g, respectively. Hence, 

Aplectana can indeed spillover from CTF to the native H. femoralis.  There was a marginally 

significant effect of treatment on change in proportional mass overall, both the control and 

infected CTFs and the control H. femoralis tended to gain mass throughout the experiment (Fig. 
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1). However, the infected H. femoralis lost mass (Fig. 1). Infected H. femoralis lost mass despite 

shedding significantly fewer worms (mean ± SE: 77.12 ± 31.21) than CTFs (mean ± SE: 171.5 ± 

19.74; df = 20, t = 2.686, P = 0.01) throughout the experiment (Fig. 2).  Additionally, H. 

femoralis were less tolerant of infections than CTFs (Fig. 3).  When controlling for initial mass, 

H. femoralis showed a greater decline in mass with each additional worm shed than CTFs 

(Species x worms shed x initial mass: F1,1 = 11.97, P = < 0.01; Fig. 3). 

Age-Intensity Relationships for CTFs and Aplectana sp., Acuariids, and Metacercariae  

The best-fitting models for all parasite species and each host sex were the GAMS with negative 

binomial distributions (Table 2). For both males (Fig. 4) and females (Fig. 5), all plots of the best 

fitting models against the partial residuals showed that the relationships for all parasite intensities 

and host age (using SVL as a proxy) were linear. These linear results are corroborated by the 

GAM edf values all having a value of one (Table 3). Host age was a significant positive predictor 

for both Aplectana sp. and acuariid intensities in both males (Fig. 4A and D) and females (Fig. 

5A, B, and D), but there was no significant relationship between metacercariae intensity and age 

for males (Fig. 4B) or females (Fig. 5C; Table 3). 
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Figure 1. Proportional mass change between week 1 and week 6 for Aplectana-infected and 

control individuals.  All treatment groups gained mass except for infected Pinewoods treefrog, H. 

femoralis, and there was a marginally significant effect of treatment on proportional mass 

change. 
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Figure 2.  Average weekly fecal Aplectana worm counts for infected Cuban treefrogs and 

Pinewoods treefrogs. With the exception of the week 3 outlier, Cuban treefrogs consistently shed 

more worms each week. 
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Figure 3. The proportional mass change for Cuban treefrogs and Pinewood treefrogs as a 

function of the number of Aplectana worms shed, controlling for initial mass (Species x worms 

shed x initial mass: F1,1 = 11.97, P = < 0.01).  These results reveal that Pinewood treefrogs are 

less tolerant of infections than Cuban treefrogs
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Figure 4. Plots of the partial residuals for the GAM best-fit models of parasite intensity against 

host snout-vent length (proxy for age) for male Cuban treefrogs. Each panel represents the 

following: A) Aplectana sp. (model I), B) metacercariae (model I) C) metarcercariae (model II), 

and D) acuariids (model II).  Snout-vent length is a significant predictor of parasite intensity for 

Aplectana sp. (X2 = 43.38, P < 0.001) and acuariids (X2 = 18.16, P < 0.001 
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Figure 5. Plots of the partial residuals for the GAM best-fit models of parasite intensity against 

host snout-vent length (proxy for age) for female Cuban treefrogs. Each panel represents the 

following: A) Aplectana sp. (model I), B) Aplectana sp. (model II), C) metacercariae (model I), 

and D) acuariids (model II).  Snout-vent length is a significant predictor of parasite intensity for 

Aplectana sp. (model 1; X2 = 44.01, P < 0.001) and (model II; X2 = 42.33, P < 0.001), and 

acuariids (X2 = 13.22, P < 0.001). 
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Table 1. Comparison of plausible models for quantifying the relationship between host age and parasite intensity. Each model was run 

separately for male and female frogs.  

 

Response	 Model	type	 Predictors	 Random	effect	 Error	distribution*	 Model	

ID	

Parasite	abundance	 GAM	 SVL	 	 Nb	 I	

	 GAM	 SVL	+	Collection	year	 	 Nb	 II	
	 GAM	 SVL	 	 Poisson	 III	

	 GAM	 SVL	+	Collection	year	 	 Poisson	 IV	

	 GAMM	 SVL	 Wetland	 Nb	 V	
	 GAMM	 SVL	+	Collection	year	 Wetland	 Nb	 VI	

	 GAMM	 SVL	 Wetland	 Poisson	 VII	
	 GAMM	 SVL	+	Collection	year	 Wetland	 Poisson	 VIII	

*Nb	=	negative	binomial	   
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Table 2. Results of best fit models according to Akaike information criterion (AIC).  All models 

with ∆ AIC ≤ 2 are listed for each parasite for male and female frogs. See model ID and Table 1 

for corresponding predictors, error distribution, and model type.  

Parasite	 Host	sex	 	D	AIC	 df	 Model	weight	 Model	ID	

Aplectana	sp.	 Males	 0.0	 3	 0.81	 I	

Metacercariae	 	 0.0	 3	 0.72	 I	

	 	 1.9	 4.0	 0.48	 II	

Acuariids	 	 0.0	 4.0	 0.91	 II	

Aplectana	sp.	 Females	 0.0	 3.0	 0.71	 I	
	 	 1.8	 4.0	 0.29	 II	
Metacercariae	 	 0.0	 3.0	 0.72	 I	
Acuariids	 	 0.0	 4.0	 0.91	 II	
	  

Discussion 

Aplectana Spillover into Hyla femoralis 

Several studies show that introduced parasites (spillover) can have negative impacts on 

native populations [49-52]. Although the CTF is a well-established invasive species throughout 

nearly the entire state of FL, and native treefrog populations have been shown to decline in areas 

where they are sympatric with CTFs [99], no studies have measured the effects of any introduced 

parasites of the CTF on native treefrogs.  Here we show that infected CTFs do not experience a 

significant loss in body mass when infected with Aplectana nematodes, yet they shed more 

juvenile worms than the native H. femoralis, which is significantly less tolerant of these 

infections than CTFs.   

Aplectana sp. is likely an introduced parasite of the CTF, and their shared evolutionary history 

might explain why infected CTFs shed more worms and experience less pathology (weight loss) 

than native treefrogs. When hosts are investing in costly immune functions (e.g. inflammation) to 
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resist pathogens, the host may have fewer resources to devote towards growth and/or 

reproduction [118-120].  Consequently, it could be beneficial for hosts to mount less of this type 

of resistance response if, for example, increased tolerance (i.e., less demand of energetic 

resources) towards the infection improves host fitness in the presence of this parasite [119].  

Hosts that do not share an evolutionary history with a pathogen, such as native treefrogs and 

Aplectana sp., might suffer increased pathology due to this lack of evolved tolerance [53, 110, 

111].  In this case, it is likely that H. femoralis may have invested in resistance to Aplectana sp., 

and the use of resources to fuel such an investment may explain why infected H. femoralis were 

unable to invest in growth [121, 122]. 

In addition to not observing a significant decline in mass of the CTF, our data also show 

that the CTFs are capable of shedding significantly more worms, and thus likely harbor a greater 

number of adult nematodes in the intestinal tract.  This immune response is not uncommon in 

hosts that become infected with a foreign parasite with which they have not coevolved [53, 110, 

111].  Given that Aplectana sp. is one of the most abundant nematodes in the CTF at our study 

site (Flatwoods Wilderness Park) [109], it is possible that the negative effects of Aplectana sp. 

are being experienced by several species of native treefrogs, in which case the invasive CTF and 

Aplectana sp. would contribute to the growing body of literature that shows that populations of 

native hosts can be altered by introduced parasites [31, 49-52] 

Age-Intensity Relationships for CTFs and Aplectana sp., Acuariids, and Metacercariae  

In addition to quantifying the effects that introduced parasites have on native populations, 

it is also beneficial to understanding how host traits and behaviors influence the spread or 

acquisition of parasites [123-125]. Deciphering how host traits influence parasite dynamics can 

be particularly useful for exploring how an invasive species may be contributing to parasite 
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spillover, spillback, and dilution effect.  By understanding each of those three general effects, we 

can better predict how CTFs directly or indirectly change parasite burdens within native 

treefrogs. Here, we show that older CTFs continue to gain Aplectana sp. and acuariids, but that 

there is no effect on metacercariae loads as CTFs age.   

As CTFs get older (larger), they also harbor more Aplectana sp…  This larger size in 

hosts increases surface area for penetrating the host as well as larger hosts providing more gut 

resources to support a larger nematode burden within the intestinal tract because the nematodes 

are feeding on digested food. Older hosts tend to harbor more parasites due to accumulated 

exposures (cumulative hypothesis) [126]; therefore, older CTFs should have a greater number of 

Aplectana sp. than younger CTFs, which is exactly what our data show. Because juvenile 

Aplectana sp. exit the CTF in the feces, host age leads to an increase in Aplectana sp. in the wild; 

therefore, older individuals likely contribute the most to con- and heterospecfic transmission, the 

latter of which is spillover.  

The increasing amounts of acuariids in older hosts is likely a result of these hosts 

consuming a larger quantity of arthropods that are also infected with acuariids. Because the 

acuariids are encysted in the CTF (a paratenic host), there is no chance of the parasite being 

transmitted back to the native treefrogs unless the CTF is consumed by a final host (bird), 

whereby the acuariid can complete its lifecycle and then exit in the feces of the birds [112]. If 

birds preferentially consume larger CTFs, this invasive treefrog may then contribute to the 

spillback effect because birds may become infected with a larger quantity of acuariids, thus 

eventually releasing more eggs into the environment. On the other hand, if birds selectively 

consume smaller CTFs, then the larger CTFs may be contributing to the dilution effect because 

they essentially become a sink for the acuariids, which removes them from the environment. 
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The metacercarial loads within the CTFs do not significantly change as the frogs get 

older.  Although the frogs are likely to be predominantly infected as tadpoles, it is possible that 

these infections can be cleared as the frogs mature.  For example, bluegill fish infected with 

Ribeiroia ondatrae metacercariae showed a decline in their infection over the course of roughly 

two months, and these declines were correlated with circulating leukocytes and neutrophils 

(immune system cells) [127]. Because the metacercariae can be cleared, we should expect a 

decline with age of the CTF, but instead, our results show that there is no difference between the 

adult and juvenile metacercariae infections in CTFs.  These infections in the adult frogs can be 

explained by the adult frogs returning to these water bodies to breed, at which time they become 

re-infected by cercariae. Studies have also shown that fishes infected with trematodes tend to be 

easier prey for fish-eating birds (the final host) [128, 129].  Additionally, Goodman and Johnson 

(2011),  show that metacercarial-induced morphological changes result in decreased survivorship 

for frogs. In our case, if the infected CTFs are preferentially consumed by prey, then more eggs 

may be passed from the final host into the environment whereby native hosts may eventually 

encounter more cercariae in the water.  In such case, the CTF will amplify parasites of the native 

treefrogs.  This increase in cercariae by CTF would lead to a spillback effect of native 

trematodes. 

In summary, our data show that H. femoralis can be infected by a parasitic nematode that 

is spread by an invasive host with which it is sympatric.  More studies need to be conducted to 

confirm that this nematode is negatively impacting native amphibian populations in the wild. It 

also stands to reason that older CTFs are the individuals that are most responsible for spreading 

juvenile nematodes in the environment because there is a positive relationship between 

Aplectana sp. intensity and host age. Although this same positive relationship was also shown for 
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acuariids, additional studies would be needed to examine the feeding habits of predators of 

infected CTFs to elucidate whether or not the CTFs are a sink or a source of amplification for 

these nematodes.  In a similar manner, even though there is no discernable change in 

metacercariae intensity as frogs age, it is likely that the CTF is resulting in a spillback effect for 

trematodes that utilize birds as a final host. By investigating the mechanisms by which invasive 

species can lead to declines in native populations while also discerning which host traits result in 

alterations to relationships between native hosts and their parasites, biologists can better predict 

how new invasions may impact native populations as well as develop better management plans 

for native populations that are already experiencing declines. 
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CHAPTER 3: EFFECT OF FIRE ON PARASITE TRANSMISSION 

 

Abstract 

Disease emergences are often associated with a change to host-pathogen ecology, and 

wildfires are known to profoundly modify the ecology of terrestrial and freshwater ecosystems. 

Nevertheless, a proposed and validated predictive framework for the effects of fire on parasite 

transmission has remained elusive.  Here we provide that framework by proposing that fire 

should directly kill parasites with terrestrial free-living stages but should indirectly increase 

parasites with hosts whose population densities increase after fire. Using field and mesocosm 

before-after-control-impact experiments, we provide support for these hypotheses for two 

nematodes and several trematode species of Cuban treefrogs (Osteopilus septentrionalis).  

Moreover, we found no change in the fire-driven trajectories of these parasites seven years after 

burns.  These results suggest that fire has predictable direct and indirect positive and negative 

effects on parasite transmission and that these effects on host-parasite dynamics can be highly 

persistent. 

Introduction 

 Fire and disease are ecological factors that occur naturally, but the occurrence of 

both are also highly modified by humans [131, 132]. In the developing world, fire is being used 

intentionally to clear tropical forests for agriculture.  In contrast, in the developed world, fire has 

often been intentionally suppressed to reduce property and human losses, which in turn facilitates 

fuel accumulation, making wildfires more intense and less manageable when they do occur [16, 
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66, 67, 70, 71].  Indeed, the incidence of large, uncontrolled fires has increased on all vegetated 

continents, with resulting annual economic costs exceeding $US 15 billion in some years [1].  To 

prevent such catastrophic damage from over-fueled wildfires and to restore and maintain 

naturally fire-adapted communities, prescribed burns are now widely used as a land management 

tool [16, 133, 134]. 

Like fire, infectious diseases of both humans and wildlife have increased in incidence, 

geographic range, and intensity in the 21st century [1, 16, 133, 134].  Also similar to fire, these 

increases have had enormous costs to human societies, resulting in declines in biodiversity and 

ecosystem services and losses of human lives [1-5]. Owing to these costs, there is considerable 

interest in understanding factors that drive wildlife disease emergence, as well as considerable 

management efforts to control these diseases [132]. 

The emergence of most diseases is generally associated with a change to host-pathogen 

ecology [5, 6], and we know that fire often profoundly modifies the ecology of terrestrial and 

freshwater systems [1, 65]. This suggests that fire might be an important but overlooked driver of 

infectious disease dynamics [135].  For example, Hossack, Lowe [84] showed that fire can either 

increase or decrease parasite densities depending on how host densities change in response to fire 

severity. Additionally, Derek Scasta, Engle [95] found that ectoparasitic horn flies (Haematobia 

irritans) of cattle can be directly reduced by burning pastures because the heat kills both the eggs 

and pupae living in the cow fecal pats.  However, with the exception of these few studies, the 

effects of fire on wildlife diseases have not been well-studied.  Additionally, these few studies 

suggest that fire can increase and decrease wildlife diseases, but no clear hypotheses have 

emerged for when and why fire should have these opposing effects.  To fill this gap, we develop 

and test a framework for predicting the effects of fire on parasite transmission. 
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 The first hypothesis of our framework is that fire will directly reduce soil-dwelling, skin-

penetrating nematodes of vertebrates because fire should have more detrimental direct effects on 

these parasites than the hosts. The basis for this this hypothesis is that parasitic nematodes that 

infect vertebrate hosts via skin penetration generally spend a substantial portion of their time at 

the soil surface waiting for a host, and thus might not be buffered from extreme temperatures by 

being deep in the soil.  Moreover, nematodes cannot move as quickly as their vertebrate hosts, so 

it seems more likely that hosts could avoid the adverse effects of fire than soil dwelling 

nematodes.  Indeed, numerous studies have shown that many species of herpetofauna, mammals, 

and birds can escape or withstand fires by fleeing or seeking refuge in bodies of water or burrows 

[136-138]. 

The second hypothesis of our framework is that fire should increase terrestrial parasites 

that use arthropods as intermediate hosts.  Arthropod diversity often increases after fire, likely 

because of increased habitat heterogeneity that results from patches of burned and unburned 

areas [91]. For example, the diversity of 20 species of ground beetles increased within forests 

managed with prescribed burns [92]. Furthermore, Moretti, Obrist [89] showed that at least nine 

arthropod families either significantly increased in abundance or showed positive increasing 

trends in areas that had experienced fire.  Often times, herbivorous arthropods are attracted to 

poorly defended new plant growth that appears soon after fires [139]. This increase in arthropod 

biodiversity and abundance after fires should promote parasites that require these species to 

complete their life cycles.  

Finally, we hypothesize that fire will increase aquatic parasites.  It is well-documented 

that fire can cause an influx of nutrients from terrestrial systems into freshwater ecosystems, 

enhancing aquatic algal and invertebrate productivity [140, 141].   It is also well-established that 
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nutrient additions to freshwater ecosystems can lead to increased aquatic parasites, especially 

trematodes [93, 94].  Hence, through bottom-up effects, fire might indirectly increase aquatic 

parasites.   

To test this framework for how fire might affect parasite abundance in wildlife, we quantified 

helminth parasites in the Cuban tree frog (CTF), Osteopilus septentrionalis, as a function of time 

since prescribed burns. Cuban tree frogs are an optimal host for testing our hypotheses because 

they can acquire parasites from freshwater and terrestrial ecosystems. Next, because no previous 

experiments have demonstrated that natural or prescribed fires can kill soil-dwelling nematode 

parasites of vertebrates, we tested this hypothesis using a before-after-impact experiment in the 

field. Finally, to isolate the effects of fire specifically on parasitic soil-dwelling nematodes, we 

conducted a before-after-control-impact experiment in mesocosms.  Here, we provide support for 

our proposed framework suggesting that, through fire suppression, the well-known “Smokey the 

Bear” campaign in the U.S. altered host-parasite dynamics of wildlife. 

Methods 

A Natural Experiment on the Effects of Fire on Parasites in Frogs 

From 2006-2009, 239 CTFs (Table S1 in Supporting Information) were collected from polyvinyl 

chloride (PVC) pipes encircling five wetlands within Flatwoods Park in northeastern 

Hillsborough County, Florida (28°07’01.08”N 82°18’11.15”W). The park is primarily a matrix 

of second-growth pine flatwoods forest, borrow pits, hardwood swamps, freshwater marshes, and 

cypress domes [108].  This 4,000 acre property has been compartmentally burned by Southwest 

Florida Management District (SWFWMD) for approximately the last 33 years.  Sections of the 

park are preferentially burned at times when water levels can prevent fire from moving directly 
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through the wetlands, which mostly results in the burning of wetland edges and uplands. Burn 

histories for each wetland were obtained from SWFWMD. 

 Upon capture, each of the CTFs was euthanized, placed in a plastic bag, and kept frozen 

until they were later necropsied.  Date of capture, host snout-vent length (SVL), and wet weight 

were recorded.   Sex was determined by evidence of mature reproductive organs upon necropsy.  

For most hosts, sex could be determined if they were > 41 mm.  Hosts that lacked discernible 

reproductive organs are referred to as juveniles.  After thawing, the body cavity of each CTF was 

opened by a longitudinal incision from vent to throat and all internal body organs were examined 

for macroparasites.  Parasites were identified, counted, and preserved in 70% ethanol.  Parasite 

identification was confirmed by Charles Bursey at Pennsylvania State University’s Shenango 

Campus and by Dr. Omar M. Amin at Parasitology Center, Inc. in Scottsdale, Arizona, and 

voucher specimens of each species have been placed in the United States National Parasite 

Collection Beltsville, Maryland.   

Before-After-Control-Impact Experiments on the Effects of Fire on Soil-dwelling Nematodes 

 Fires often result in influxes of terrestrial nutrients via runoff into local waterbodies, and 

nutrient additions have been shown to increase aquatic parasites, such as trematode metacercariae 

[93, 94]. Also, the diversity of arthropods emerging from waterbodies can increase after fires 

[89] along with terrestrial insects that arrive to feed on new plant growth in burned areas [90]. 

Hence, the hypotheses that fire should increase both aquatic parasites and parasites that use 

insects seemed reasonably well-founded.  However, many nematodes have hardy resting stages 

[142]  that might be resistant to fire.  Moreover, temperature attenuates rapidly as soil depth 

increases, and thus it is seemingly possible that soil-dwelling parasites could seek refugia at 
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deeper soil depths to survive fire.  Hence, we set out to empirically test how fire affects the 

survival of soil-dwelling nematodes. 

A Field Experiment on the Effects of Fire on Soil-dwelling Nematodes 

 The field experiment offered us information on the degree of variability in the duration 

and intensity of prescribed burns in Florida and their impacts on both free-living and parasitic 

nematodes.  During two prescribed burns at Flatwoods Park in April and May of 2015, we 

collected temperature profiles and soil samples before and after fire in the uplands of Flatwoods 

Park. The dominant vegetation was Aristida stricta (wiregrass), Ilex glabra (gallberry), Pinus 

spp. (pine straw), Serenoa repens (saw palmetto), and Myrica cerifera (wax myrtle). 

Temperature loggers (Onset™  # U12-014 HOBO data loggers with additional HOBO TC6-K 

Type K beaded thermocouple attached to insulated 30-AWG wire) were used to capture the 

intensity and duration of burns. Each logger was encased in a Pelican™ 1010 micro case with a 

small hole to allow the wire to extend beyond the case.   For each burn, seven loggers were 

deployed.  

Each sample plot was haphazardly chosen from an area that was most likely to be burned 

soon after the initial fire line was strung. At each sample plot, two neon-painted rebar (for visibly 

locating plots) were placed in the ground ~0.5m apart, and between them, a temperature logger 

was buried ~15cm below the surface with only the tip of the wire being exposed at the surface 

with care given to not disturb the area from which the soil was being collected. A 50 mL 

centrifuge tube was pressed approximately 2.5 cm into the soil to remove a plug of the before 

and after burn soil, which was then sealed inside the tube, placed in a cooler, and analyzed within 

24 hrs. Preburn soil was collected ~1hr before the burn, and the postburn soil was collected ~4hrs 

after the burn. For each of the two burns, soil was collected and temperatures were recorded for 
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seven plots. At each plot, 1 ‘before’ and 1 ‘after’ fire soil cores were collected (14 total), but only 

12 soil cores (6 ‘before’ and 6 ‘after’ soil cores) were used for each burn in this study because 

they were confirmed to be from plots that experienced fire.  Seven temperature loggers were 

deployed per burn at each plot for a total of 14 temperature profiles; however, two profiles were 

excluded (one for each burn) because they did not appear to burn, leaving a total of 12 

temperature profiles used in the statistical analyses. Due to time constraints during sampling, 

control samples from adjacent unburned forests were not obtained, but given that the preburn 

samples were taken  1hr prior to ignition, we have no reason to think that any change in 

nematode counts could be attributed to any other factor than fire, and to verify, we included 

controls in the mesocosm experiment. All plots were at least 10m apart         

Nematodes were extracted from the soil using modified Baermann’s funnels.  Ten grams 

of soil was added to each Baermann funnel and allowed to stand for roughly 24 hrs, after which 

the pinchcock at the bottom of the funnel was opened to allow for the collection of 5 mL of the 

bottom-most portion of the extraction solution to where the live nematodes had fallen. The 5 mL 

extraction solution was transferred into a petri dish (35 x 10 mm) that had a transparent grid 

affixed to the bottom, and the nematodes were counted under 40x magnification and then 

preserved in a solution of 1 part glycerine, 79 parts dionized water, 20 parts 96% ethanol. 

A Mesocosm Experiment on the Effects of Fire on Parasitic Nematodes 

 The previous field experiment did not discriminate between the effects of fire on free-

living and parasitic worms and thus could not definitively test the sensitivity of parasitic 

nematodes to fire.  To address this specifically, we intended to repeat the field experiment with 

and without inoculations of parasitic nematodes to our field plots, however, one of the wettest 

summers and winters followed the field experiment and burns were unsuccessful.  Hence, we 
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chose to isolate the effects of fire on parasitic nematodes using a BACI mesocosm experiment 

with fuel and burn durations and intensities that matched the field (see Results below).  For this 

experiment, our mesocosms consisted of four steel tubs (57 L, 56 cm long x 33 cm wide by 19 

cm high, respectively) containing a rectangular section of soil (~ 30 cm x 19 cm deep) obtained 

from Flatwoods Park, and the soil was kept intact with aluminum foil. Next, vegetation was 

added to each tub so that it mimicked the plant species and average duration and intensity of fires 

observed during our field experiments at Flatwoods Park. The same previously described 

temperature loggers were placed on the ground, away from the bin, and the thermocouple wire 

was run alongside the bin and buried approximately 2.5 cm under the soil except for the tip of the 

wire, which remained exposed at the soil surface (Figure S2A). 

 One of the following four treatments was applied to a steel tub: 1) fire + parasitic 

nematode inoculation, 2) fire with no parasitic nematode inoculation, 3) no fire + parasitic 

nematode inoculation, or 4) no fire and no parasitic nematode inoculation. Using a 50 mL 

centrifuge tube, two circular indentations were made on each side of the exposed thermocouple 

wire to mark the area where either the nematodes or control water inoculations were to be 

pipetted onto the soil (Figure S1B). The circular indentation created a mark in the soil that 

allowed us to see the exact location of the added nematode/control water treatment after the fires 

occurred.  For tubs receiving parasitic nematode inoculations, we added 200 juveniles (~1 mL 

total water volume) of a known skin-penetrating parasitic nematode, Aplectana sp., attained from 

freshly necropsied CTFs.  This addition of Aplectana allowed us to isolate the effect of fire on 

parasitic nematodes. For the non-inoculated tubs, ~1mL of control water was added to the center 

of each circular indentation.  The non-inoculated tubs provided a background level of the 

naturally occurring densities of both the free-living and parasitic worms. Next, the “preburn” soil 
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core samples were taken from each of the four tubs by aligning a clean 50 mL centrifuge tube 

with the aforementioned indentation and then pressing the tube approximately 2.5 cm into the 

soil to remove a plug of the soil, which was then sealed inside the tube until further analysis.   In 

this same fashion, a “postburn” soil core was taken from each of the four tubs after soil in the 

burned bins had reached ambient temperature. Nematode extractions were carried out as 

described above. This procedure was repeated in five additional temporal blocks between May 

and June 2015 for a total of six replicates per treatment. 

Statistical analyses 

All statistical analyses were conducted with R statistical software.  For all models, we 

used a negative binomial distribution, instead of Poisson distribution, to control for the 

overdispersion that is associated with parasite count data. For the natural experiment on the 

effects of fire on parasites in CTFs, we used the glm.nb function in the MASS package [143] to 

conduct a generalized linear model with a negative binomial error distribution to quantify the 

effects of spatial block (individual wetland), time since burn, frog snout-vent length, and frog sex 

(male, female, or unknown juvenile) on the number of parasites per CTF.  For the before-after 

field burns, we used the glmmadmb function in the glmmADMB_package [144, 145] to conduct 

a mixed effect generalized linear mixed model with a negative binomial error distribution to 

quantify the effects of burn (before and after), maximum temperature, and burn duration on 

number of nematodes per gram of soil treating plot as a random effect. For the BACI experiment 

in the mesocosms, we also used the glmmadmb function in the glmmADMB package with a 

negative binomial error distribution to quantify the crossed effects of parasitic nematode 

additions, timing of sample collection (before or after burns) and burn treatment (burned or not 

burned) on number of nematodes in soil samples controlling for temporal block (day) and 
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treating the replicate as a random effect to account for the lack of independence between soil 

samples collected from the same mesocosm.  Probability values were calculated using log-

likelihood ratio tests using the Anova function in the car_package [146], and coefficients were 

generated using the summary function. The Anova function generates an ANOVA table, and the 

associated probability values control for the other factors in the model.  The summary function 

tests whether the coefficient for a given level of a predictor is significantly different than zero. 

Results 

A Natural Experiment on the Effect of Fire on Parasites in Frogs 

Three helminths were found commonly enough in the CTFs to justify statistical analyses-

- a soil dwelling, skin-penetrating nematode, Aplectana sp., an encysted larval acuariid nematode 

transmitted by arthropod intermediate hosts, and larval trematode metacercariae that are 

transmitted from aquatic snails to frogs.  As predicted, there was a significant overall decrease 

(Fig. 1A) in the abundance of Aplectana sp. per host with time-since-burns (χ2=6.0, P=0.014, 

df=1; Tables S2 and S3).  However, this decrease was greater for adult female CTFs than adult 

males (Sex x days-since-burn: χ2 = 7.6, P = 0.023, df = 2).  Also as predicted, for all classes of 

frogs, both acuariid nematodes and metacercariae per host increased with time-since-burn (Fig. 

1).  However, for acuariids, adult female CTFs showed a significantly greater increase as a 

function of time-since-burn than did males (Sex x days since burn: χ2 = 6.8, P = 0.033, df = 2; 

Fig. 1B; Tables S2 and S3).  In contrast, for metacercariae, adult male CTFs showed a 

significantly greater increase as a function of time-since-burn than did females (Sex x days since 

burn: χ2 = 6.2, P = 0.04, df = 2; Fig. 1C; Tables S2 and S3).  

 

Before-After-Impact Field Experiment  
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The average number of nematodes recovered per gram of soil was significantly lower 

with than without fire (X2 = 9.33, P < 0.01, n=12, df=1; Fig. 2A; Tables S4 and S5), suggesting 

that fire directly decreased densities of nematodes in soil. Additionally, there was no effect of 

maximum temperature (X2 = 1.1, P = 0.29, df = 1) or burn duration (χ2 = 0.68, P = 0.41, df = 1) 

on the number of nematodes recovered. The prescribed burns at Flatwoods Park had a median 

burn duration (defined as time recorded for temperatures ≥ 100 °C) of 3.7 min (1-117min) and 

reached a median maximum soil surface temperature of 771°C (197-1304°C, n=12). The 

maximum temperature of 1,304°C was likely an underestimate because the temperature logger is 

not equipped to record greater temperatures.   

Before-After-Control-Impact Mesocosm Experiment  

In this experiment, we tested the effects of fire on parasitic versus free living nematodes. When 

juvenile parasitic Aplectana nematodes were added to the soil before the burns, we recovered two 

and half times the number of nematodes compared to tubs without juvenile Aplectana added (Fig. 

2B), which demonstrates that the inoculations effectively increased the density of parasitic 

worms (χ2 = 14.18, P < 0.001, df = 1; Tables S6 and S7).  Abundance of worms recovered from 

mesocosms that were not burned was similar before and after the burn treatments (Fig. 2C).  

However, there was a significant reduction in live worms recovered after the burns (χ2 = 21.9, P 

< 0.001, df = 1; Fig. 2C), and like the field study, there was no effect of maximum temperature 

(χ2 = 0.36, P = 0.55; Figure S2; Tables S8 and S9) or burn duration (χ2 = 1.74, P = 0.18; Figure 

S3; Tables S8 and S9).  Given that the proportional decline in nematodes was the same when 

tubs were inoculated with parasitic worms or not, the parasitic and free-living worms exhibited 

similar sensitivities to fire (three-way interaction: χ2 = 0.21, P=0.65; Tables S6 and S7). The 

median burn duration was 4.9 min (0.27 – 11min), and the median maximum soil surface 
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temperature was 774°C (150-1304°C, n = 12). This burn regime was very similar to the 

aforementioned burns at Flatwoods Park where the experiment on the effects of fire on soil-

dwelling nematodes in the field was conducted. 
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Figure 1.  Sex-dependent effects of fire on the three most prevalent parasites recovered from O. 

septentrionalis.  A) The soil-dwelling Aplectana declines with time since burn, whereas the B) 

acuariid, which has an arthropod intermediate host, and C) metacercariae, acquired in freshwater, 

both increase with time since burn.  See text for statistics and sample sizes.  Bands represent 95% 

confidence bands. The y-axis represents the natural logarithm of parasites per host. 
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Figure 2. Mean (±1 SE) nematode recovery from the before-after-impact field experiment and 

the before-after-control-impact mesocosm experiment. A) Fire reduced the total nematodes 

recovered per gram of soil (X2=9.33, P=<0.01, n=12) in the field.  B) Soil inoculated with 

Aplectana (solid bar) increased nematode recovery from Baermann funnels at least two-fold 

before fire was applied (n=6) in mesocosms. C) Fire reduced the nematodes recovered from 

mesocosms (X2=21.9, P<0.001, df=1, n=6). Means and standard errors are back-transformed 

from log values to more accurately reflect the underlying error distribution. 

Discussion 

As hypothesized, fire was associated with decreases in soil-dwelling, skin-penetrating 

nematodes and increases in aquatic metacercariae and the acuariid nematodes that require 

arthropod intermediate hosts.  Additionally, the effects of fire on changes in parasite abundances 

in the CTFs were sex-dependent, and none of the parasite abundance trends showed any 

discernible sign of recovery after the burns.  We also found clear adverse effects of fire on both 

free-living and parasitic nematodes in our field and mesocosm experiments.  Moreover, these 

direct effects of fire on soil-dwelling nematodes occurred despite considerable heterogeneity in 

the field and variation in the duration and intensity of burns. Below we discuss each of the results 

in more detail. 

Although heat has been shown to be an effective tool for reducing parasitic nematodes of 

plants [83, 85-88], the direct effects of increased soil temperatures (i.e. fire) on soil-dwelling 

parasites of animals has remained understudied before our work (but see Hossack et al. 2013a,b).  

To kill parasitic nematodes in crops, farmers in tropical and subtropical regions use soil 

solarization, a process by which a clear plastic sheet is placed atop the soil to create heat through 

the “greenhouse effect”. The difference between soil solarization and fire is that temperatures are 
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higher but the duration of heat is shorter with fire than soil solarization. In fact, the median 

duration during which soil temperatures exceeded 100 degrees Celsius during our prescribed 

burns was <5 minutes.  Despite these short burns, the intensity of the heat produced was 

sufficient to consistently reduce both free-living and parasitic, larval Aplectana nematodes.  

Given that larval Aplectana infect hosts and replace adult worms that have either died naturally 

in or have been cleared by hosts, the overall decline in Aplectana infections in CTF hosts after 

prescribed burns was likely a direct product of fire reducing Aplectana recruitment to the adult 

subpopulation.   

In addition to elucidating the direct effects of fire on parasite transmission, it is also 

important to understand its indirect effects.  We hypothesized that fire would indirectly increase 

parasites whose hosts benefited the most from fire.  We found support for this hypothesis in two 

parasite species of CTFs, an acuariid nematode and trematode metacercariae.  Occasionally, 

acuariids will infect paratenic hosts (i.e. a host that can facilitate life-cycle completion but one in 

which no further parasite development occurs), such as fish or amphibians, but typically the 

acuariid lifecycle requires a bird definitive host to eat an infected arthropod intermediate host 

[112].  Given that arthropod diversity and abundance commonly increases after burns because of 

a rise in habitat heterogeneity (patchy burned and unburned areas) and a proliferation of the 

preferred food of many herbivorous arthropods (poorly defended new plant growth) [83, 85-88], 

and that this, in turn, often recruits predatory birds that forage on these arthropods [89-92], it was 

not surprising to discover that the abundance of acuariids in the CTFs also increased after burns.  

Similar to the acuariids, metacercariae in CTFs likely increased after burns because fire 

was beneficial to their intermediate hosts, freshwater snails.  It is well documented that 

freshwater ecosystems receive an influx of nutrient-rich run-off from burned sites nearby.  These 



 58 

nutrients can enhance freshwater productivity and the abundance of snails, which likely increased 

metacercarial infections [93, 94].  The increase in metacercariae and acuariids parasites after 

burns is consistent with the hypotheses that fire indirectly 1) increases aquatic parasites and 

terrestrial parasites associated with arthropods and, 2) more generally, increases parasites whose 

hosts’ densities increase as a consequence of fire.   

 Just as fire had discrepant effects on parasite species, it also had varying effects on 

the parasitism of frogs of different sexes.  Although the exact causes of these differences are not 

entirely clear, they are likely a product of differences in the behavior, diet, and immunity of male 

and female CTFs.  For example, after fire, metacercariae increased more for male than female 

frogs, which is unsurprising given that male frogs tend to spend more time in the water during 

the breeding season searching for extra mating opportunities [114], a behavior that would 

increase exposure to aquatic metacercariae.  In contrast, after fire, acuariids, which are acquired 

via diet, increased more for female than male frogs.  This is consistent with the larger females 

(i.e., sexual dimorphism), whose fitness is determined by the size of their egg masses [147, 148], 

consuming a greater quantity of infected arthropods than males.  The greater decline in Aplectana 

infections of females than males after burns is more challenging to explain, but it is consistent 

with the hypothesis that testosterone is immunosuppressive [149]. The response of infections in 

juvenile frogs to fire was intermediate to that of the adult males and females, which probably just 

reflects that the juvenile subpopulation was likely half males and half females.  

We tracked parasite infections in CTFs for nearly seven years after prescribed burns and 

did not see any discernible changes in trajectories or signs of parasite recovery after the burns.  In 

short, the trajectories for all three parasites were linear through time suggesting that the 

metapopulation structure of the hosts and parasites was not sufficient to allow recovery from this 
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disturbance within the time course of our study.  This suggests that the disturbance created by 

prescribed or natural burns might have long-term effects on host-parasite dynamics.    

Here we provided a tested framework for how fire can directly and indirectly affect 

macroparasites (nematodes and trematodes), but there is some, albeit limited, data from the 

literature that provides insights on how fire might affect other types of parasites as well.  For 

example, fungi thrive in cool, moist environments, but burned areas have less ground cover and 

are therefore hotter and less humid than more vegetated areas, a condition that is likely less 

favorable for pathogenic fungi.  Indeed, Hossack et al. (2013) found that toads from recently 

burned areas in a boreal forest were less likely to be infected with chytrid fungus, an infection 

implicated in the global decline of amphibians. For Lyme disease, a bacterial infection 

transmitted to humans by ticks, the effects of fire are conflicting.  Tick abundance can be reduced 

by burns [150], but the populations may sometimes be even greater in burned sites than control 

sites [81, 82], perhaps because tick populations quickly rebound after fires [151]. For other 

microparasites, like viruses transmitted by “container-breeding” mosquito vectors, there is likely 

a negative impact on the parasite because the natural, shallow water reservoirs that serve as 

breeding sites tend to be reduced by fire, and thus, so too are the mosquitoes [152].  Continued 

research is needed on a greater variety of parasites and their hosts to better understand how fire 

ecology more generally impacts disease dynamics.   

This study shows that ecological disturbances created by fire can have long-lasting alterations to 

host-parasite dynamics, but that these changes are not the same for all types of parasites.  

Parasites exposed to the intense heat of fires are expected to experience direct reduction in 

abundance; whereas the abundance of parasite species whose host populations increase after fires 

are also expected to increase. Based on these findings and the current review by Scasta [135], it 
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is imperative to recognize that fire, or lack thereof, may be a driver of infectious disease 

dynamics.  These results suggest that the Smokey the Bear campaign that promoted the 

suppression of wild fires could have caused shifts in disease dynamics in the U.S., increasing 

some infectious disease and decreasing others. Consequently, when forming management plans 

to monitor or control diseases of humans and wildlife, scientists and managers might benefit 

from more explicitly considering the impact of fire ecology on infectious diseases.  
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CONCLUSION 

 

Introduced species disturbance on host-parasite dynamics 

On a global scale, introduced species are responsible for the decline of many native 

species [29] and elicit long-last changes to ecosystems [33].  Some change in native populations 

reflects the shift in parasite burdens [30-32, 38]. For instance, introduced species often lose many 

of their parasites during the process of invading and colonizing novel areas (i.e., enemy release 

hypothesis) [39-41]. Therefore, introduced species might have a competitive advantage over 

native species as a result of having to invest fewer resources in immune function. Furthermore, 

by releasing parasites (i.e., novel weapons) in the introduced range, introduced species can often 

cause detrimental effects on native species populations [48-53]. Alternatively, the introduction of 

non-native species might change host-pathogen dynamics in the introduced range if the 

introduced species can serve as suitable hosts for native parasites (e.g., dilution effect). [30-32].    

Using the Cuban treefrog (CTF), Osteopilus septentrionalis, I investigated the effects that an 

introduced species can have on host-parasite dynamics in native populations. 

I first showed that the CTF has undergone enemy release in introduced habitats and that it 

is also acquiring parasites that are common to native amphibians. In summary, at least eight 

parasite species were recovered, six of which had never been reported in the CTF.  Two 

nematodes, Oswaldocruzia lenteixeirai and Aplectana sp., were the only species that exist in 

both the CTF’s introduced and native ranges. The acquired parasites were trematodes (encysted 

metacercariae), nematodes (encysted acuariid larvae, Physaloptera sp., and Rhabdias sp.), a 
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cestode (Cylindrotaenia americana), and one pentastomid.   I then demonstrated that the 

nematode, Aplectana sp., (likely introduced by the CTF) can successfully infect a native species 

(Pinewoods treefrog, Hyla femoralis), and that the native treefrog is less tolerant to the nematode 

than the CTF, which supports the idea of introduced species being successful as a result of the 

introduction of parasites (novel weapons).  Thus, the CTF alters parasite burdens of native 

treefrogs through the introduction of Aplectana sp. and by the CTF acquiring new parasites in the 

invaded area.  

I also determined that for three of the most prevalent parasites (two nematodes and one 

trematode) in the CTF, the age and sex of the CTF can predicted the intensity of infection for the 

two nematodes (Aplectana sp. and encysted acuariid larvae). Aplectana sp. was used to address 

spillover due to its introduction by the CTF, and encysted metacercariae and acuariid larvae were 

used to determine the CTF’s effect on spillback and dilution because these parasites are most 

likely being acquired from native amphibians.  By paring the life cycle of each parasite with 

these age-intensity relationships, we can predict which hosts are likely to be contributing to 

parasite spillover, spillback, and dilution in the wild.  

Fire disturbance on host-parasite dynamics  

Disease emergence is often associated with changes in host and/or parasite ecology [5, 6]; 

therefore, where disturbance results in major ecological changes, we might also expect to see a 

shift in disease dynamics [135]. For example, fire disturbance can drastically alter ecosystems [1, 

65], but there is a gap in the literature for explaining how fire may be driving disease emergence 

[135].  Consequently, there are no clear predictions for how changes to fire regimes, whether it 

be through 1) fire suppression, 2) increase in incidence of wildfires, or 3) prescribed burning 

wildlife will affect wildlife diseases.  In this research, I used the CTF as a model to determine 
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how its parasites change relative to time-since-burn, and thus elucidate how fire can directly and 

indirectly influence parasite transmission.  

Using parasites from necropsied CTFs paired with mesocosm and field data, I show that 

fire can have predictable direct and indirect effects on disease dynamics, which are dependent 

upon host sex. When parasites are in direct contact with heat, there is a decline in parasite 

abundance.  Regardless of habitat heterogeneity and burn variation, field and mesocosm data 

show a significant reduction in both free-living and parasitic nematodes that are exposed to the 

heat generated by fire.  For parasites that have hosts which benefit from recently burned areas 

(i.e., nutrient pulses, new vegetative growth, invertebrate recruitment), there is an increase in 

parasites relative to time-since-burn. Even more surprising is that for CTFs captured from 

wetlands that had not experienced fire for nearly seven, there was no turnover in the relationship 

between the parasite intensity relative to time-since-burn (i.e., parasites continued to either 

increase or decrease, depending on the parasite species).  These results suggest that direct and/or 

indirect disturbance by fire might create long-term effects on host-parasite dynamics as parasites 

are either removed or recruited into an area.   

Concluding remarks and future work for host-parasite dynamics and disturbance ecology  

As global climate change continues, it is expected that occurrence of diseases [20-25] and 

fire [153-156] will also shift. The need to identify mechanisms responsible for the decrease in 

native populations and biodiversity is of utmost importance as humans continue to affect 

ecosystems through the spread of non-native species and alteration of natural fire regimes.  

Moreover, we also need to be able to better-predict and manage disease emergence for humans 

and wildlife alike.  As such, it is imperative that future work continues to investigate how 

ecological disturbances modify relationships between hosts and their parasites.  
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APPENDIX A: Acquired and introduced macroparasites of the invasive Cuban treefrog, 

Osteopilus septentrionalis 
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APPENDIX C: Supplemental materials for Chapter 3.  

 

Figure S1. Schematics of experimental mesocosm burns.  A) Side view of an experimental 

mesocosm with temperature logger alongside.  Vegetation and soil are held together with 

aluminum foil. B) Top-down view of mesocosm and soil, with indentations made in the soil 

where either nematodes or control solutions were inoculated before vegetation was added. Soil 

samples were taken from each circular indented area before or after a burn. 

 

A

B

Soil indentation with nematodes

Soil

Temperature logger with 

thermocouple wire
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Figure S2. Effect of maximum temperature on the percent of nematodes recovered from 

mesocosms. Only burned mesocosm are included in the figure. Temperature (˚C) did not have a 

significant effect on nematodes recovered from mesocosms (χ2=0.36, P=0.55, n=6). Bands 

represent 95% confidence bands. 

 

 
Figure S3. Effect of burn duration on the percent of nematodes recovered from mesocosms. Only 

burned mesocosms are included in the figure. Burn duration (minutes) did not have a significant 

effect on nematodes recovered from mesocosms (χ2=1.74, P=0.18, n=6). Bands represent 95% 

confidence bands. 

 

 

Table S1. Total O. septentrionalis collected from Flatwoods Park, Tampa, FL for each of the five 

burned wetlands.  

Wetland ID Female Juvenile Male Unidentified Total 

A 40 23 14 2 79 
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Table S1 (Continued)      

Wetland ID Female Juvenile Male Unidentified Total 

B 33 31 6 2 72 

C 12 3 13 2 30 

D 12 14 0 0 26 

E 18 1 11 0 32 

 

 

Table S2.  ANOVA table for the effect of time-since-burn on Aplectana sp., acuarrids, and 

metacercariae quantified from O. septentrionalis. 

Response Predictors χ2 df P 

Aplectana Days since burn 5.99 1 0.01 

 Sex (Female, Juvenile, Male) 0.97 2 0.62 

 Wetland 25.83 4 <0.001 

 Frog mass 32.12 1 <0.001 

 Days since burn x Sex 7.578 2 0.02 

     

Acuariid Days since burn 2.78 1 0.10 

 Sex 2.57 2 0.28 

 Wetland 8.33 4 0.08 

 Frog mass 0.78 1 0.38 

 Days since burn x Sex 6.79 2 0.03 

     

Metacercariae Days since burn 0.14 1 0.71 

 Sex 1.28 2 0.53 

 Wetland 5.33 4 0.25 

 Frog mass 0.27 1 0.60 

 Days since burn x Sex 6.53 2 0.04 

 

 

 

Table S3.  Coefficients table for the effect of time-since-burn on Aplectana sp., acuarrids, and 

metacercariae quantified from O. septentrionalis. 

Response Predictors Coefficient (SE) Z P 

Aplectana Intercept 5.017 (1.96) 2.554 0.01 

 Days since burn -0.002 (0.001) -2.628 0.01 

 Sex (Female, Juvenile, Male)    

 Juvenile -0.349 (0.62) -0.57 0.57 

 Male -1.410 (0.86) -1.63 0.10 

 Wetland    

 B -5.013 (1.54) -3.251 <0.01 

 C -3.800 (0.67) -5.664 <0.001 

 D -5.140 (1.63) -3.148 <0.01 
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Table S3 (Continued)     

Response Predictors Coefficient (SE) Z P 

 E -3.626 (1.35) -2.676 <0.01 

 Frog weight 0.229 (0.04) 6.369 <0.001 

 Days since burn x Sex    

 Days since burn x Juveniles 0.001 (0.0004) 2.162 0.03 

 Days since burn x Males 0.0016 (0.001) 2.576 0.01 

     

Acuariid Intercept 2.5283 (2.12) -1.190 0.23 

 Days since burn 0.002 (0.001) 1.926 0.05 

 Sex (Female, Juvenile, Male)    

 Juvenile -0.065 (0.65) -0.100 0.920 

 Male 1.916 (0.90) 2.133 0.03 

 Wetland    

 B 2.293 (1.66) 1.380 0.17 

 C 0.143 (0.66) 0.216 0.83 

 D 1.199 (1.78) 0.676 0.50 

 E 0.300 (1.47) 0.204 0.84 

 Frog weight -0.0386 (0.04) -0.944 0.34 

 Days since burn x Sex    

 Days since burn x Juveniles -0.001 (0.0004) -1.810 0.07 

 Days since burn x Males -0.002 (0.001) -2.611 0.01 

     

Metacercariae Intercept -0.464 (2.30) -0.201 0.84 

 Days since burn 0.001 (0.001) 0.443 0.66 

 Sex    

 Juvenile -1.603 (0.70) -2.303 0.02 

 Male -2.017 (1.03) -1.960 0.05 

 Wetland    

 B 1.660 (1.81) 0.916 0.36 

 C -0.909 (0.75) -1.214 0.22 

 D 1.192 (1.91) 0.623 0.53 

 E 1.057 (1.60) 0.660 0.51 

 Frog weight -0.024 (0.04) -0.552 0.58 

 Days since burn x Sex    

 Days since burn x Juveniles 0.001 (0.0004) 2.297 0.02 

 Days since burn x Males 0.001 (0.001) 1.861 0.06 

 

Table S5. Coefficients table for the effect of fire on nematodes recovered before and after field 

burns. 

Predictors* Coefficient (SE) Z P 

Intercept 10.023 (2.41) 4.16 <0.001 

Sample event (before or after)    

Before  0.540 (0.18) 3.05 <0.01 

Soil mass -0.481 (0.11) -4.24 <0.001 
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Table S5 (Continued)    

Predictors* Coefficient (SE) Z P 
†Maximum temperature -0.739 (0.70) -1.05 0.29 

*Random effect = Sample location; Variance = 0.156, StdDev = 0.395 

Negative binomial dispersion parameter = 7.37 
†log transformed 

 

Table S6. ANOVA table for the effect of fire on nematodes recovered before and after 

mesocosm burns. 

Predictors χ2 P df 

Sample event (before or after) 29.344 <0.001 1 

Inoculation (nematodes or sham added) 1.536 0.215 1 

Fire (burned or unburned) 21.873 <0.001 1 

Day 17.004 <0.01 5 

Fire x Inoculation  0.004 0.95 1 

Fire x Inoculation x Sample event 2.207 0.649 1 

 

Table S7. Coefficients table for the effect of fire on nematodes recovered before and after 

mesocosm burns. 

Predictors*,† Coefficients (SE) Z P 

Intercept 0.543 (0.43) 1.26 0.21 

Sample event (before or after)    

Before 2.39 (0.44) 5.44 <0.001 

Inoculation (nematodes or sham added)    

Nematodes added 0.482 (0.47) 1.02 0.31 

Fire (burned or unburned)    

Unburned 2.39 (0.44) 5.44 <0.001 

Day    

Day (2) 1.078 (0.37) 2.89 <0.01 

Day (3) 0.387 (0.38) 1.03 0.31 

Day (4) -0.298 (0.38) -0.79 0.43 

Day (5) 0.776 (0.36) 2.14 0.03 

Day (6) 0.616 (0.36) 1.69 0.09 

Fire x Inoculation     

Unburned x Nematodes added 0.0002 (0.59) 0 1.00 

Inoculation x Sampling event    

Nematodes added x Before 0.655 (0.53) 1.22 0.22 

Fire x Inoculation x Sample event    

Unburned x Nematodes added x Before burn -0.314 (0.69) -0.45 0.65 
*Random effect = Day; Variance < 0.0001, StdDev = 0.0003    
†Random effect= Tub within Day; Variance = 0.10, StdDev = 0.3176 

Negative binomial dispersion parameter: 4.04  
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Table S8. ANOVA table for the effect of temperature and duration of burn on nematodes 

recovered only from burned mesocosms. 

Predictors χ2 P df 

Sample event (before or after) 9,407 <0.01 1 

Inoculation (nematodes or sham added) 2.463 0.12 1 

Day 19.541 <0.01 5 

Burn time above 100C  1.738 0.19 1 

Maximum Temperature 0.364 0.55 1 

Inoculation x Sample event 2.448 0.12 1 

    

Table S9. Coefficients table for the effect of temperature and duration of burn on nematodes 

recovered only from burned mesocosms. 

Predictors*† Coefficients (SE) Z P 

Intercept 0.181 (1.03) 0.18 0.86 

Sample event (before or after)    

Before 2.889 (0.99) 2.92 <0.01 

Inoculation (nematodes or sham added)    

Nematodes added 0.426 (0.43) 0.99 0.32 

Day    

Day (2) 1.759 (0.44) 0.18 0.86 

Day (3) -0.221 (0.451) -0.49 0.624 

Day (4) -0.514(0.45) -1.15 0.25 

Day (5) 0.819 (0.42) 1.96 0.05 

Day (6) 0.04 (0.43) 0.08 0.93 

Burn time above 100C  0.129 (0.10) 1.32 0.19 

Maximum Temperature -0.0004 (0.001) -0.60 0.55 

Inoculation x Sample event    

Nematodes added x Before burn 0.824 (0.53) 1.56 0.12 
*Random effect = Day; Variance < 0.0001, StdDev = 0.0003 
†Random effect= Tub within Day; Variance = 0.10, StdDev = 0.3176 

Negative binomial dispersion parameter: 4.04  
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APPENDIX D: IACUC letter of approval for amphibians used.  
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