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ABSTRACT 

 

The Gulf of Mexico commercial reef fish fishery has experienced significant 

management changes and disturbance in recent years, including transitioning two major fisheries 

from a traditional open access system into a limited entry individual fishing quota (IFQ) system 

in 2007 and 2010. Also in 2010, the Deepwater Horizon oil spill (DWH) released an estimated 

4.9 million barrels of oil into the Gulf (~206 million U.S. gallons), and is still the largest U.S. 

environmental disaster to date. Emergency fishing closures initiated shortly after the oil spill 

began were successful in keeping tainted seafood from reaching markets. However, effects of 

DWH closures on fisher decision making, fishery productivity, and distribution of fishing effort 

all remain poorly understood. Understanding the range and magnitude of fishers’ responses to 

perturbations — including regulatory change and human-induced environmental disasters — is 

critical for designing effective management and disaster response policies that can meet 

biological, ecological, economic, social, and sustainability objectives.  

This work characterized the spatial and temporal patterns of productivity and fishing 

effort for the Gulf of Mexico (GoM) commercial reef fish fishery. Patterns of productivity and 

effort distribution were used to examine the response of fishers to management change and large-

scale disturbance, namely the DWH fishing closures. Fisheries-dependent logbook trip reports 

were used to quantify revenue and catch-per-unit-effort (CPUE) patterns from 2000-2014. Novel 

to fisheries work in the GoM, complementary vessel monitoring systems (VMS) satellite 

tracking data were used to quantify high-resolution spatial distribution patterns over time, 



x 

relative to the DWH fishing closures. A general linear modeling (GLM) approach was also used 

to examine which variables may have contributed to resilience of fishers after DWH closures.  

Results suggested that this fishery was largely resilient to the DWH fishing closures in 

2010, although exact outcomes varied by region. Overall fleet-level productivity steadily 

increased over time, but regional patterns were based on major species in catch. Productivity in 

the western GoM was consistently highest over time, and trips in the west and central GoM were 

dominated by Red snapper (Lutjanus campechanus) and Vermilion snapper (Rhomboplites 

aurorubens). Trips in the east were dominated by Red grouper (Epinephelus morio) and Gag 

grouper (Mycteroperca microlepis). Shifts in spatial distribution to new productive fishing 

grounds or reduced competition via fewer vessels or trips may explain the increases in 

productivity observed over the study period. 

Consolidation in the fleet was apparent, with fewer individual vessels and fewer total 

trips over time. However, the rate of vessel drop out after DWH (5%) was far below the annual 

background attrition rate of ~14-20%. Relative productivity patterns inside vs. outside the 

boundaries of fishing closures did not change over time, and there were even some increases in 

productivity observed during and after DWH in the eastern GoM. Yet, vessels that dropped out 

after DWH were concentrated in the north-central and eastern GoM. Distribution of fishing 

grounds before and after DWH were highly similar, and there were increases in effort along the 

outer West Florida Shelf. Variability in revenue and CPUE, CPUE magnitude, and magnitude of 

grouper landings were significant predictors of dropping out of the fishery in the GLMs. 

Synergies with the Red snapper or Grouper-Tilefish IFQs may have “primed” the fishery for 

resilience by eliminating inconsistent or marginal fishers before the oil spill, and may further 

explain some of the spatially varying patterns of productivity and attrition after 2010. Resilience 



xi 

was likely also enhanced by the more than $2 billion in emergency compensation payments 

made to captains, crew, and vessel owners for lost fishing income and assistance with oil 

remediation efforts.  

This work stands to make a significant contribution to our understanding of how the 

DWH oil spill impacted fisheries and communities in the GoM. The results add to a growing 

body of literature suggesting that the acute population- and ecosystem-level impacts of the DWH 

oil spill were not as strong or severe as initially anticipated. This work also stands to make 

contributions to the broader understanding of how this fishery has performed in the wake of 

recent management change and major environmental disturbance. 
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CHAPTER 1. INTRODUCTION 

 

Rationale 

Changing management policies or other sudden disturbances can have significant impacts 

on fisheries and the fishers that operate within them. Understanding the potential range and 

magnitude of these impacts is critical for designing effective and adaptive management strategies 

that can meet diverse biological, ecological, social, and economic objectives. This is especially 

true as fisheries management increasingly moves toward multispecies and ecosystem-based 

approaches. Understanding vulnerability and resilience of fishing communities is equally as 

important for managers in order to identify communities that might be adversely affected by 

management decisions, and ensure that economic and social disruptions are minimal to allow for 

long-term sustainability (Jacob et al. 2013).  

Over the past decade, there have been significant shifts in fisheries management in the 

Gulf of Mexico (GoM) as well as other large-scale and sudden disturbances, with implications 

for fisheries and coastal communities across the region. Several regulatory amendments have 

been added and modified in the Gulf of Mexico Fishery Management Council (GMFMC) Reef 

Fish Fishery Management Plan (FMP)1 to better manage and rebuild stocks. Gear restrictions, 

closed seasons, spatial closures, size limits, and per-trip catch limits have all been used 

extensively. Two major commercial fisheries have moved from a traditional open access system 

— where resources are considered to be in a common pool without any designated access or 

                                                 
1 FMP available online at: http://gulfcouncil.org/fishery-management/implemented-plans/reef-fish/. 
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property rights for users — to a limited access rights-based management system known as 

individual fishing quotas (IFQs), with defined annual allocation rights to total catch for each 

fisher. An IFQ system is often put in place to reduce the number of vessels in a fleet (i.e., reduce 

overcapacity), to in turn reduce harvest effort and competition, increase economic efficiency, and 

reduce overexploitation of a stock (Branch et al. 2006). Red snapper management shifted to an 

IFQ in 2007 to reduce overcapacity, overexploitation, and dangerous derby fishing (where 

fishers race to catch as much as they can as fast as they can; Hood et al. 2007, Agar et al. 2014). 

Groupers and tilefish have been managed together under a single IFQ since 2010 to similarly 

reduce derby fishing, lengthen fishing seasons, improve market conditions and profitability, and 

reduce bycatch and discard mortality.  

Additionally, in 2010 the GoM was struck by the largest accidental oil spill in U.S. 

waters to date. Starting on April 20, 2010, an estimated 4.9 million barrels of oil (approximately 

206 million US gallons) spilled from the Deepwater Horizon (DWH) oil well into the GoM, until 

the wellhead was finally capped 87 days later on July 15. To ensure that oil-contaminated 

seafood did not reach market, the National Oceanic and Atmospheric Administration (NOAA) in 

conjunction with affected states instituted a series of emergency fishing closures, from May 2 

through November 15, 2010.2 The closures were substantial in size, reaching a maximum of just 

over 229,000 km2 (or 37% of the U.S. portion of the GoM) on June 2, 2010 (Figure 1.1). By 

November 15, 2010 all closures were removed except the area immediately around the wellhead, 

and by April 19, 2011 all closed areas had been reopened. These closures were successful in that 

no tainted seafood was reported to have entered the supply chain (Lubchenco et al. 2012).  

                                                 
2 All DWH fishing closure information is from the NOAA Fisheries Southeast Regional Office 
Deepwater Horizon/BP Oil Spill Information page, available online at: 
http://sero.nmfs.noaa.gov/deepwater_horizon/size_percent_closure/index.html. 
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Surely, one would expect regulatory change and environmental disasters of these duration 

and magnitude to have impacts on the livelihoods of fishermen and the broader coastal 

communities that depend on income from fishing and related industries. While the impacts of 

IFQ implementation have been studied (with mandated five-year review programs as part of their 

design), the effects of DWH closures on fisher decision making, fishery productivity, the 

spatiotemporal distribution of fishing effort, and relative differences between displaced and non-

displaced fishers remain poorly understood. There are few studies that explicitly report on 

changes in landings, catch composition, or revenue after DWH (McCrea-Strub et al. 2011, 

Sumaila et al. 2012, Murawski et al. 2016). However, these studies used coarse-resolution spatial 

and temporal data sets, thus limiting the interpretation and conclusions about how fisheries 

actively responded during and after the oil spill and ensuing closures. It is more likely that there 

were regionally-specific and temporally-varying responses to the oil spill, depending on the 

fishing community, proximity to the surface expression of oil, and location of fishing grounds 

relative to emergency fishing closures. It is therefore critical to understand how fishers and 

fishing communities responded to these significant perturbations in order to anticipate and 

mitigate potential negative impacts in the future. 

 

Overview of Dissertation 

This dissertation characterized the spatiotemporal patterns of productivity (i.e., ex-vessel 

revenue and catch-per-unit-effort, CPUE) in the GoM commercial reef fish fishery from 2000-

2014, and quantified impacts from large-scale disturbance that occurred over the same period. 

The 2010 DWH fishing closures were used as an embedded experiment to study fishery response 

and resilience to disturbance. More specifically, using data from onboard observers, trip logbook 
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reports, and satellite tracking vessel monitoring systems (VMS), this dissertation encompassed 

analyses of: 

(1) Gulf-wide distribution of fishing effort and changes in fishery productivity from 

2000-2014 (Chapter 2);  

(2) Differences in effort distribution and productivity among displaced vs. non-displaced 

trips before, during, and after DWH fishing closures (Chapter 3); and 

(3) Potential factors contributing to resilience of fishers after the DWH fishing closures, 

with a quantification of shifting effort distribution after closures (Chapter 4). 

The reef fish complex for the purposes of this work included snappers, groupers, tilefish, 

jacks, and triggerfish (with species as designated by NOAA Fisheries; see Tables 1.1 and 1.2). 

These groups were chosen due to their high recreational and commercial importance, the 

availability and consistency of data, and the large percentage of all commercial trips reporting 

landings for these groups (79% of trips from 2000-2014 reported one of the groups as the top 

revenue-earning group, and 82% of trips reported landings in general). All the species are also 

managed under the GMFMC as part of the Reef Fish FMP.1 Analyses focused on trips/vessels 

that reported longline or vertical line (i.e., bandit-reel or handline) as the top revenue-earning 

gear, as these are the main gears used in this fishery (Scott-Denton et al. 2011) and represented 

89% of reported trip data from 2000-2014. The results of this work are discussed in the context 

of a changing management landscape for this fishery — including implementation of IFQs in 

2007 and 2010 — and potential impacts of environmental and oceanographic variability. 

 Unlike previous studies of DWH impacts, and unique to fisheries studies in the GoM in 

general, this work used high-resolution VMS data to examine fishing activity. VMS technology 

provides a geospatial reference point for a vessel approximately every hour for the duration of 
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every trip, and has been required on all vessels with a commercial reef fish permit since 2007. 

Currently, there are ~800 valid commercial permits for GoM reef fish,3 making this a very 

unique and robust data set. VMS data have been gaining in use and utility as a tool to 

characterize fishing activity and understand fishers’ response to policy change, including the 

distribution of fishing pressure on various spatial and temporal scales (Witt and Godley 2007, 

Jennings and Lee 2012), the distribution of fishing pressure relative to regional habitat 

heterogeneity (Stelzenmüeller et al. 2008), and fishing behavior after implementation of large 

closed areas (Murawski et al. 2005). Complementary trip logbook (or, vessel trip report) and 

onboard observer data were also used to define “rules” for discriminating fishing activity and to 

quantify fishery productivity, thus enhancing the overall explanatory power of the VMS data. 

Integrating the VMS and logbook data in this way can help better identify areas where stocks are 

being targeted, both individually and in a multispecies context, and to assess drivers of 

behavioral change (Gerritsen and Lordan 2010). Given the importance of commercial fishing to 

the economic, cultural, and social well-being of many coastal communities in the GoM, this 

research stands to be of broad interest to fishing and tourism sectors, fisheries managers, 

researchers, government agencies, oil spill response agencies, and policy makers. 
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Table 1.1. Top species group landed as a percentage of all logbook trip data from 2000-2014.  
 

Top group landed 
% of total logbook 

trips (n=162,697) 

% of final logbook trips 
used in productivity 

analyses (n=96,665 trips) 

Shallow water groupers 35.72 46.26 
Mid-depth snappers 29.14 38.61 
Shallow water snappers 9.09 6.25 
Deep water groupers 3.03 4.07 
Jacks 1.31 1.48 
Coastal pelagics 16.04 1.04 
Tilefish 0.55 0.71 
Grunts and Porgies 1.03 0.68 
Sharks 3.4 0.57 
Triggerfish 0.15 0.19 
Other species 0.28 0.07 
Tunas 0.15 0.05 

 
Note: Values are frequency of occurrence. The middle column contains percentages for all 
logbook trip data, and the right-most column contains percentages for only trips used in 
productivity analyses (see methods in Chapter 2). Groups are listed in descending order of 
percentage in the final logbook data set. 
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Table 1.2. Species included in each group used for logbook analyses of GoM longline and 
vertical line fishers. 
 

Top group Species included Scientific name 

Shallow water snappers Hogfish Lachnolaimus maximus 
Lane snapper Lutjanus synagris 
Mangrove snapper Lutjanus griseus 
Mutton snapper Lutjanus analis 
Yellowtail snapper Ocyurus chrysurus 
Other snappers (general)   

Shallow water groupers Black grouper Mycteroperca bonaci 
Gag Mycteroperca microlepis 
Red grouper Epinephelus morio 
Red hind Epinephelus guttatus 
Rock hind Epinephelus adscensionis 
Scamp Mycteroperca phenax 
Yellowfin grouper Mycteroperca venenosa 
Yellowmouth grouper Mycteroperca interstitialis 
Other groupers (general)  

Mid-depth snappers Black snapper Apsilus dentatus 
Dog snapper Lutjanus jocu 
Mahogany snapper Lutjanus mahogoni 
Queen snapper Etelis oculatus 
Red snapper Lutjanus campechanus 
Schoolmaster Lutjanus apodus 
Silk snapper Lutjanus vivanus 
Vermilion snapper Rhomboplites aurorubens 
Other mid-depth snappers 
(general) 

 

Deep water groupers Misty grouper Hyporthodus mystacinus 
Snowy grouper Epinephelus niveatus 
Speckled hind Epinephelus drummondhayi 
Warsaw Epinephelus nigritus 
Yellowedge grouper Epinephelus flavolimbatus 

Jacks Greater amberjack Seriola dumerili 
Lesser amberjack Seriola fasciata 
Other jacks (general) Seriola sp. 

Tilefish Blackline tilefish Caulolatilus cyanops 
Golden tilefish Lopholatilus chamaeleonticeps 
Goldface tilefish Caulolatilus chrysops 
Grey tilefish Caulolatilus microps 
Other tilefish  

Triggerfish Spadefish Chaetodipterus faber 

Triggerfish (general)  
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Figure 1.1. Study region and Deepwater Horizon fishing closures extent. The location of the 
DWH wellhead is marked with an oil derrick symbol and the surface expression of the DWH oil 
spill is shown in gray tones, with the darker colors representing longer exposure to oil. The 
maximum extent of the DWH emergency fishing closures (229,270 km2 on June 2, 2010) is 
delineated with the solid red polygon, the dotted black polygon is the extent of the fishing 
closures on July 22, 2010 (149,026 km2), and the solid black square is the closure immediately 
around the wellhead (2,697 km2) that was closed until April 19, 2011. Marine protected areas 
shown include The Edges, Madison-Swanson, and Steamboat Lumps [designed to protect GoM 
reef fish; Code of Federal Regulations, Title 50, §622.34(a)] and Pulley Ridge, Tortugas Marine 
Reserve, Florida Middle Grounds, and Flower Garden Banks [designated as Habitat Areas of 
Particular Concern (HAPC) to protect GoM corals; Code of Federal Regulations, Title 50, 
§622.74(a-d)]. The 200-m and 2000-m isobaths are labeled and marked with dotted lines and the 
U.S. Exclusive Economic Zone (EEZ) is marked with a solid black line. Note that the southern 
end of the June 2 fishing closure intersects the EEZ. All fishery closure data and marine 
protected area polygons were downloaded from NOAA Fisheries Southeast Regional Office 
(available online at: http://sero.nmfs.noaa.gov/deepwater_horizon/closure_info/index.html and 
http://sero.nmfs.noaa.gov/maps_gis_data/fisheries/gom/GOM_index.html). 
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CHAPTER 2.  CHARACTERIZING SPATIOTEMPORAL PATTERNS OF EFFORT 

AND PRODUCTIVITY 

 

Introduction 

The fluctuating nature of fisheries resources leads to high interannual variation in 

landings and income for fishers, necessitating risk-coping strategies and fishing behaviors that 

can ameliorate the inherent financial risk of depending on natural resources for income (Sethi 

2010, Kasperski and Holland 2013). Variability in productivity may stem from changes in 

population size (e.g., after implementation of a marine reserve, increased fishing pressure), short 

and long-term environmental fluctuations (e.g., natural disasters, El Niño climate forcing, 

upwelling cycles), or external economic conditions (e.g., global fuel prices, consumer demand). 

Fishing pressure is also likely to differ by gear type, vessel size, geography, and patchiness of the 

environment. The demographics, socioeconomic conditions, politics, social networks, 

governance structures, culture, and geography of individual coastal communities will 

additionally determine how they interact with and influence the fishery system in which they 

operate (e.g., Himes 2003, Cinner et al. 2009, Jones 2013, Powell et al. 2018). Of course, none of 

these mechanisms occur in isolation, and are constantly interacting and evolving as part of a 

dynamic coupled social-ecological system. That is, fishing activity both drives and is driven by 

changes in management, the community, the environment, and overall stock condition. 

Spatial distribution of fishing effort is one critical component of fisher behavior that can 

change in response to management and other externalities. Understanding the distribution and 
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redistribution of fishing effort is critical for continued environmental and resource sustainability, 

as changes in fishing location choice and targeting behavior can have direct and indirect 

consequences. For example, displacement from a closed area may lead to congestion, increased 

competition, secondary displacement, overexploitation, and habitat degradation in areas outside 

the closure. More fishermen are competing for the same resource in a smaller space, meaning 

there is lower overall fishery resource available than before (Valcic 2009). Increased bycatch or 

discarding of non-target species can also occur when effort is redistributed (e.g., Abbott and 

Haynie 2012), although the ability of fishers to change gear or targeting behavior to avoid 

particular species has been well documented (e.g., Branch and Hilborn 2008).  

Redistribution of effort is also likely to be heterogeneous over space and time, especially 

in an environment with patchy resources, and will be driven primarily by costs and expectations 

of profitability. Realistic models of fishing effort reallocation (that include a heterogeneous 

system and adaptive fisher behavior that responds to economic incentives) demonstrate an 

optimal utilization on the part of fishermen that maximizes return on investment (i.e., 

concentrating effort in areas and during times that yield maximum profit; Sanchirico and Wilen 

2001, Smith and Wilen 2003, Dowling et al. 2012). At the same time, the ability of fishers to 

capitalize on new fishing locations or targeting behaviors as part of an optimal effort strategy 

(e.g., by engaging in “fishing the line” behavior around marine reserves) has the potential to 

increase landings and revenue for trips after displacement (see for instance Murawski et al. 2005 

and Kellner et al. 2007). By understanding patterns of effort displacement and redistribution, 

regulations and incentive structures can be better designed to anticipate and address these issues.  

This chapter used a combination of VMS and trip logbook (or, vessel trip report) records 

to characterize the distribution of fishing effort and productivity of the commercial reef fish 
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fishery on an annual and Gulf-wide scale from 2000-2014. Analyses were conducted to 

understand changes in effort distribution, revenue, and catch-per-unit-effort (CPUE) over time 

and to identify significant fishing and productivity “hot spots”. Specific attention was paid to 

changes in productivity for snappers and groupers, two particularly important, and contentious, 

groups for fishers and managers in the GoM. Results are discussed in the context of current 

regulations for this fishery and emergency fishing closures during DWH.  

 

Materials and Methods 

Trip logbook and VMS data were selected based on consistency and quality of reporting. 

Logbook revenue was inflation adjusted to 2008 US dollars ($2008) and all productivity 

variables were standardized to account for differences by vessel size (see detailed methods in 

Appendices A-C). VMS data were validated through a series of quality control steps to isolate a 

subset of data representing only fishing activity (e.g., eliminated travel to and from fishing 

grounds; see Appendices D-F). Logbook records from 2000-2014 were used to describe 

productivity patterns (ex-vessel revenue and catch-per-unit-effort, CPUE) and quantify any 

significant changes either over time or by region (western, central, and eastern GoM; Figure 2.1). 

Productivity patterns for snappers and groupers were additionally quantified, because they were 

the dominant top landed groups reported in the fishery (95% of trips; see Table 1.1), and 

continue to be important fishery and management targets. The fleet-level spatial distributions of 

fishing effort overall, by year, and by gear type were characterized and compared, and spatial 

statistics were used to quantify significant “hot spots” of fishing activity, revenue, and CPUE 

from 2008-2012. Methods for each of these analyses are described in more detail below. 
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Fishery Productivity  

Regions were defined as west, central, and east (Figure 2.1) based on initial examination 

of effort distributions across the GoM. The region designations were also consistent with 

delineations in previous studies on the GoM reef fish fishery (e.g., Weninger and Perruso 2013). 

Each trip was allocated to a region based on the logbook-reported top area fished (i.e., the 

logbook grid area producing a plurality of revenue for the trip) and its location relative to region 

boundaries (see Appendix G for NOAA Fisheries maps of logbook reporting grids). Three trips 

were eliminated because the reported top area could not be matched to a valid logbook reporting 

grid (final n=96,665 trips). Trip-level total revenue ($2008) and CPUE (gutted lbs. landed per 

number of hooks fished) were used as response variables in a series of analysis of variance 

(ANOVA) tests to examine annual (2000-2014) and regional differences in productivity. 

Landings were not used, since landings and revenue were shown to be highly correlated (Pearson 

correlation = 0.98, p<0.001) and patterns were similar between them. Snapper and grouper 

revenue and CPUE were similarly used as response variables in an additional series of ANOVAs 

to examine changes in these groups by region and over time. Tests used year and region as main 

effects and year × region as the interaction effect. All response variables were natural log (loge) 

transformed prior to analysis to approximate a normal distribution and equalize variances among 

years and regions. All tests were conducted at an alpha of 0.05, and significant results from the 

ANOVA were explored further using a Tukey-HSD post-hoc test for group means. 

 

Spatial Distribution of Fishing Effort 

All effort densities were first calculated as the number of VMS pings per 0.15° × 0.15° 

grid cell (~15 km × 15 km), using the raster package in R (Hijmans et al. 2016). The density 
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values thus represented the number of hourly VMS points identified as active fishing with a grid 

cell. Grid cells with less than three VMS pings were reassigned as “NA” and not mapped, to 

ensure confidentiality of the data. Fishing effort densities were calculated for the entire GoM 

aggregated over 2008-2012 (overall fleet distribution; n=22,427 trips), for each individual year, 

for each gear type (longline or vertical line), and for each gear × year combination.  

A spatial difference index was calculated (Lee et al. 2010) to quantify the difference in 

effort distribution among all combinations of years (interannual fleet variability), between gears 

in each year, and among years within each gear type (interannual gear variability). Using the 

raster package, each raster layer was normalized so that the sum of all cell values was equal to 1. 

The per-cell absolute difference between two layers was then calculated, summed over the entire 

study region, and divided by two. This provided an index of difference that varied from zero, 

such that an index of 0 represented identical spatial distribution of fishing activity, and 1 

represented maximum difference, or no overlap, in spatial use. 

For comparison of densities between years or gears, density values were standardized 

(ranging from 0 to 1) relative to the maximum for a given time period or gear grouping. Relative 

differences in effort distribution (based on standardized effort density) were then calculated as 

the difference between individual density layers. A difference of 0 indicated no change in 

relative density, or complete overlap in distribution, while a value of 1 or -1 indicated maximum 

difference, or no overlap in spatial distribution.  

  

Significant Clustering of Effort, Revenue, and CPUE 

Significant spatial clustering of fishing effort, revenue, and CPUE were determined using 

the optimized hot spot analysis tool in ArcGIS 10.3 (ESRI, Redlands, CA, USA). The optimized 
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hot spot analysis uses a Getis-Ord (Gi*) spatial statistic (Ord and Getis 1995) to determine 

statistically significant clustering of incident points (e.g., fishing trip locations), or values 

associated with incident points (e.g., revenue and CPUE for each trip). The local sum for a given 

feature and its neighbors are compared proportionally to the global sum of all features; when the 

difference between the observed local sum and expected local sum is larger than would be 

expected by random chance, the region is considered to be a significant cluster. Significant 

clustering of high values is called a “hot spot” while significant clustering of low values is a 

called a “cold spot.” 

The optimized hot spot analysis tool first interrogates the data to choose the optimal 

spatial scale over which to conduct the analysis. Because of the large number of trip locations in 

the data set, the average distance that yielded 30 nearest neighbors was used to determine the 

analysis scale in most cases (Table 2.1). As a best practice, 30 nearest neighbors is the minimum 

that will yield reliable results when conducting spatial autocorrelation analyses.4 For longline 

trips, the analysis scale was determined with an incremental spatial autocorrelation test. 

Distances were selected in increasing increments and the degree of clustering for each distance 

was measured with a global Moran’s I statistic.4 The distance that produced the peak degree of 

spatial clustering was subsequently used for the hot spot analysis (Table 2.1). The Gi* statistic 

was calculated based on the pre-determined spatial scale, and a resultant z-score and p-value 

indicated whether significant clustering of trip locations or values were more pronounced than 

would be expected under a null hypothesis of a random distribution. Statistical significance was 

corrected for multiple testing and spatial dependence of neighboring features to reduce the 

                                                 
4 ESRI. 2016. How Spatial Autocorrelation (Global Moran's I) works. Available online at: 
http://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-statistics-toolbox/h-how-spatial-autocorrelation-
moran-s-i-spatial-st.htm. 
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potential of false positives (Type I error) using a False Discovery Rate (FDR) correction (de 

Castro and Singer 2006).  

Separate analyses were run to evaluate clustering of overall effort, revenue, and CPUE 

(aggregated across 2008-2012 and both gears) as well as effort, revenue, and CPUE by gear type 

(aggregated across 2008-2012). Since there is only a single revenue and CPUE value reported for 

each logbook trip, but potentially multiple VMS points for a given trip, the geographic midpoint 

of each individual trip (i.e., the mean fishing location) was calculated from VMS data and 

matched to the associated trip revenue and CPUE. This approach does not require the assumption 

that all trip values be distributed evenly across all VMS points within a trip, but rather assigns 

the entirety of a trip’s effort to a single location. Thus, the hot spot analysis used trip midpoints 

rather than all locations identified as fishing (n=21,680 trips from 2008-2012). Values for 

revenue and CPUE were back transformed before being used in the analysis, and all tests were 

conducted at an alpha of 0.05. Clusters for effort returned with fewer than three data points were 

removed from the final results to ensure confidentiality of the data.  

 

Results 

Fishery Productivity  

Total fleet over time. The total number of unique individual vessels and logbook trips 

declined over time, with a greater number of trips consistently in the eastern region (Figure 2.2). 

There was a seasonal pattern to the number of logbook trips, with peak number of trips in the 

spring and summer months (Figure 2.3), but there were more trips in the eastern region 

irrespective of this seasonal fluctuation. All effects of year, region, and the interaction of year × 

region for total revenue and total CPUE were significant at the 0.05 level (Table 2.2). Mean trip 
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revenue and CPUE were significantly different between all three regions, with the highest overall 

values in the western region, followed by the central and eastern regions (Figure 2.4; Tukey-

HSD p<0.001 for all comparisons). When looking over time, both productivity measures 

increased gradually over the study period (Figure 2.5), with significantly greater values in 2014 

compared with 2000 (Tukey-HSD, p<0.001). There were several significant shifts, or clusters of 

similar years, apparent as well (note clustering of similar letters in Figure 2.5). Mean trip revenue 

increased significantly from 2000 to 2001, 2006 to 2007, and 2011 to 2012 (Tukey-HSD, 

p<0.001 for all comparisons), and was significantly greater in the cluster of 2012-2014 than any 

of the preceding years. CPUE, on the other hand, increased significantly only from 2000 to 2001 

and 2008 to 2009 (Tukey-HSD, p<0.001 for both comparisons), with no significant differences 

among the other consecutive years. After 2009, CPUE remained stable.  

 Interaction of year and region. The western region had higher revenues and CPUEs than 

the others, but only after 2006 (Figure 2.6). In 2013, the western region had the greatest revenue 

of the entire year × region series. The annual trend for each variable and the significant 

clustering of years appeared to be driven by the western region (compare Figures 2.5 and 2.6), 

which had significant increases in revenue from 2006-2007 and 2012-2013, increases in CPUE 

in 2006-2007, and a sharp decline in CPUE in 2014. The central region had a gradual increase in 

CPUE over the time series, but no significant increase among consecutive years. The eastern 

region had a significant increase in CPUE in 2009 and remained steady thereafter. In the central 

region, revenue was significantly greater in 2013 and 2014 than the preceding years, while in the 

eastern region revenue was greater in 2012-2014 than in preceding years (Figure 2.6). 

Snappers and groupers. The effects of year, region, and the year × region interaction 

were significant for all tests of snapper and grouper productivity at the 0.05 level (Table 2.3). 
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Snapper revenue, snapper CPUE, and grouper CPUE were significantly higher in 2014 than in 

2000 (Tukey-HSD, p<0.001), but grouper revenue was not (Tukey-HSD, p=0.06). There were 

also significant fluctuations in the intervening years (Figure 2.7). In particular, snapper 

productivity increased in 2009, 2010, and 2011 after especially low values in 2007-2008. 

Snapper revenue increased by 91, 135, and 64% in 2009, 2010, and 2011, respectively, and 

CPUE increased by 167, 85, and 40%, respectively. Grouper productivity was especially high in 

2007-2009, with an average revenue and CPUE value that was 96-131% and 90-152% higher, 

respectively, than the average value for years either before or after.  

Snapper revenue and CPUE were greatest overall in the western region while grouper 

CPUE and revenue were greatest in the eastern region (Figure 2.8). Landings in the west and 

central regions were dominated by mid-depth snappers (91% and 86%, respectively; Table 2.4), 

with Red snapper (Lutjanus campechanus) and Vermilion snapper (Rhomboplites aurorubens) 

making up a collective 85-90% of the top landed species (Table 2.5). Shallow water groupers 

were the top landed group in the east (67% of trips; Table 2.4), with Red grouper (Epinephelus 

morio) and Gag (Mycteroperca microlepis) constituting the top species for a collective 60% of 

trips (Table 2.5). This pattern held over time as well; snapper revenue and CPUE were 

significantly lowest in the eastern region over all years, and grouper revenue and CPUE were 

significantly greatest in the eastern region over all years (Figure 2.9). Values were not 

significantly different between the west and central regions in a majority of years for any of the 

snapper or grouper variables. While snapper values in the east were lowest of all regions, there 

were significant increases in snapper revenue and CPUE in the east in 2009, 2010, and 2011, 

with a significant decrease in 2013 (Figure 2.9, panels B and F). Grouper had an especially 

strong fluctuation in the eastern region around 2010: CPUE was at its highest point in 2009, 
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followed by sharp declines in 2010 and 2011, and a return to pre-2009 levels in 2012-2014 

(Figure 2.9G). Grouper revenue also declined sharply in the east in 2010 and 2011, with a return 

to pre-2010 levels in 2012-2014 (Figure 2.9C). The central region similarly experienced a 

significant decline in grouper revenue and CPUE in 2011 (Figure 2.9, panels D and H), but 

levels rebounded in 2012-2014. 

 

Spatial Distribution of Fishing Effort 

For the entire fleet, the greatest concentration of fishing effort was in the eastern GoM on 

the outer West Florida Shelf (WFS) and offshore of the Alabama coast along the 200-m isobath 

(Figure 2.10). The distribution of total effort was generally consistent from year to year, with an 

interannual fleet variability index ranging from 0.22-0.34 (i.e., 66-78% similarity in fishing 

grounds for all combinations of years; Table 2.6). However, there was a clear delineation of 

effort by gear type (Figure 2.11). Longline fishers (n=122 individual vessels) were heavily 

concentrated on the outer margins of the continental shelf near the 200-m isobath, with entire 

regions of the inner shelf empty of any significant effort. This distribution pattern closely 

followed the boundaries of existing longline gear restricted areas: the year-round bag/weight 

limit restricted area5 around the entire GoM (dotted black line in Figure 2.11) and the seasonal 

(June-August) bottom longline closure6 in the eastern GoM (solid black line in Figure 2.11). 

                                                 
5 Established in 1990 as part of Amendment 1 to the GMFMC Reef Fish FMP. Limits catch for vessels 
using longline or buoy gear to catch Gulf reef fish to either established bag limits or 5% of total weight 
onboard for species without bag limits. Includes all federal waters inside of 50 fathoms west of Cape San 
Blas, Florida (85°30’W longitude) and all federal waters inside of 20 fathoms east of Cape San Blas. See 
Code of Federal Regulations §622.35(c) and §622.38(b) for more details. 
 
6 Established in 2010 as part of Amendment 31 to the GMFMC Reef Fish FMP. Prohibits bottom 
longlining for Gulf reef fish in the area from June-August. The boundary includes all federal waters east 
of Cape San Blas, Florida along the 35-fathom contour. See Code of Federal Regulations §622.35(b) for 
more details. 
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Vertical line fishers (n=666 individual vessels), on the other hand, were distributed throughout 

the study region and the maximum effort density was concentrated along the Florida Big Bend 

and north-central GoM regions. The spatial difference index between the two gears overall was 

0.70 (30% similarity in fishing grounds from 2008-2012) and similarity was not greater than 

32% for any single year (Table 2.6). Interannual similarity within gears was high, with similarity 

in longline effort distribution ranging from 63-73% and vertical line effort distribution ranging 

from 65-79% (Table 2.6). 

 

Significant Clustering of Effort, Revenue, and CPUE 

There were 604 significant effort clusters for the entire fleet, with 122 clusters removed 

due to low point counts (less than 3), for a final total of 482 significant effort clusters (Table 2.1; 

Figure 2.12). Of those, 255 were significant hot spots (i.e., greater effort than would be expected 

by a random distribution of effort) and 227 were significant cold spots (i.e., lower effort than 

would be expected by a random distribution). Trips with vertical line had 364 significant clusters 

(with 210 hot spots and 154 cold spots) and trips with longline effort had 208 significant clusters 

(with 155 hot spots and 53 cold spots; Table 2.1; Figure 2.12). Similar to the total fleet effort 

density distribution, significant trip hot spots were located in the eastern GoM, most prominently 

in the Florida Big Bend and along the Florida panhandle and Alabama coasts (Figure 2.12A). 

The gear-specific trip clusters were separated similarly to the gear-specific densities, with a clear 

contribution from each gear to the overall pattern. Vertical line trip hot spots were concentrated 

in the eastern GoM and north-central in the Florida Big Bend and Alabama coast (Figure 2.12B). 

Longline trip hot spots were located further south on the mid-WFS (Figure 2.12C).  
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Significant clustering of revenue and CPUE did not strictly follow the patterns of trip 

clustering. Revenue and CPUE hot spots were distributed throughout the GoM, including areas 

that were significant trip effort cold spots (Figures 2.13 and 2.14). Revenue hot spots were 

located on the mid- to outer-continental shelf in the east and followed the contour of the 200-m 

isobath in the north-central and western GoM. Significant revenue cold spots were located from 

southern Florida to eastern Louisiana, and were further inshore than the revenue hot spots. The 

north-central region (Florida panhandle and Alabama coast) had a greater concentration of cold 

spots than hot spots. Gear-specific analyses revealed that vertical line trips were largely driving 

the overall pattern (Figure 12.3B and C). CPUE hotspots were patchier/more dispersed than 

revenue hot spots (Figure 2.14) and while there were a greater total number of significant 

clusters for vertical line revenue and CPUE, a greater proportion of the longline clusters were 

categorized as hot spots (Table 2.1). 

 

Discussion  

The results from this chapter demonstrated annually increasing and recently stable 

productivity for the fishery as a whole, as well as regionally structured productivity and gear-

dependent effort patterns. Overall annual productivity, as measured by ex-vessel revenue and 

CPUE, increased over the study period. Notably, mean per-trip revenue was significantly greater 

in the last three years (2012-2014) than in the period surrounding the DWH oil spill (2007-2011). 

While mean per-trip CPUE was not significantly greater after DWH, it was not significantly 

lower either. However, the magnitude of productivity and composition of top landed species 

varied by region. Productivity was highest in the western GoM overall and annually after 2006 

(with especially high revenue in 2013). Red snapper and Vermilion snapper dominated trips in 
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the west and central regions, and the aggregate and annual productivity for all snappers was 

significantly higher in the west and central regions. Trips in the eastern region were composed 

primarily of Red grouper and Gag, with significantly higher aggregate and annual grouper 

productivity than in the west or central regions. Importantly, the magnitude of revenue and 

CPUE for snappers was much greater than groupers (5-6 times greater overall and 10-12 times 

greater annually), therefore likely driving the overall regional pattern of greater productivity in 

the west. Given the large proportion of snappers and groupers reported for trips from 2000 

through 2014 (Tables 2.4 and 2.5), it is highly unlikely that the regional patterns were 

attributable to other species groups.  

Over the entire time range, the only productivity metric that did not significantly increase 

was grouper revenue. Grouper productivity did have three strong years in 2007-2009, followed 

by a sharp decline in 2010 and 2011 in the east and central GoM, and a significant increase in 

productivity in the regions in 2012-2014. The increase in grouper productivity from 2007-2009 

was most likely the result of strong Red grouper year classes in 2006 and 2007 (Lombardi-

Carlson 2014) and strong Gag year classes in 2006 and 2007 (Lombardi et al. 2013). 

The increase in grouper productivity from 2012-2014, especially in the eastern GoM, 

may be attributable to enhanced Gag recruitment via deep upwelling and larval transport into 

coastal seagrass beds. The WFS bottom circulation is upwelling-favorable during Gag spawning 

months (i.e., late winter through early spring) and currents can transport demersal larvae 

eastward near to coastal seagrass habitats (Weisberg et al. 2014). In December 2010, an early 

onset of strong weather fronts led to anomalously strong winds and induced an upwelling event 

(Hu et al. 2011), which may have enhanced bottom transport of Gag larvae across the shelf and 

into settlement habitat. At the same time, the upwelling event triggered a month-long 
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phytoplankton bloom from Mobile Bay to the Florida Keys, which could have provided a food 

source for newly hatched Gag larvae at the surface, thus enhancing larval survival and 

subsequent recruitment success. 

The partitioning of snapper and grouper productivity into these regions is consistent with 

results from previous studies, documented fishing pressure on the groups, and known 

distributions of the stocks (Koenig et al. 1996, Weninger and Waters 2003, Scott-Denton et al. 

2011, Zhang and Smith 2011). In particular, the dominance of Red snapper in the west and 

central GoM has been attributed to the proliferation of ~20,000 artificial reefs and ~4,000 oil and 

gas platforms in a region that is otherwise muddy and habitat-limited for juvenile recruitment 

(Gallaway et al. 2009, Shipp and Bortone 2009). A major portion of the Gag population in the 

GoM spawn on deep hard-bottom reefs of the WFS (Koenig and Coleman 1998) from late winter 

through early spring, and subsequent larval settlement occurs in eastern coastal seagrass beds. 

The upwelling-favorable bottom currents on the WFS during Gag spawning season allow for 

successful across-shelf transport of larvae near to coastal seagrass beds (Weisberg et al. 2014). In 

addition, Red grouper rely on the karst topography and carbonate-derived sands in the eastern 

GoM for excavating pits on the seafloor that serve as home territories and spawning sites 

(Coleman et al. 2010, Wall et al. 2011, Harter et al. 2017). 

The three regions that were assigned to the logbook trips were somewhat arbitrary, 

although based on initial data screening and a priori knowledge of fishing pressure and species 

distributions. A finer-scale regional structure could be determined and assigned to logbook trips 

by instead using multivariate methods designed to detect structure in ecological communities. 

For example, similarity profile analysis (SIMPROF) objectively identifies members of groups 

based on species composition and abundance data, and provides a profile of underlying structure  
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that can be visualized with a simple line plot (Clarke et al. 2008). Modeling the spatial variation 

of trips’ species composition and abundance across different scales could additionally be 

performed using a technique known as multi-scale pattern analysis (MSPA; Jombart et al. 2009). 

MSPA is an ordination method that decomposes ecological variability into several spatial scales 

and presents results graphically. With habitat or environmental variables, a canonical (i.e., 

constrained) form of MSPA could be used to assess the potential spatial scales of species-

environment relationships. These types of multivariate analyses could be performed using 

logbook trip landings and revenue (or, when available, discards data) to better define regional 

structure in this fishery.  

The greatest concentration of fleet-level fishing effort was in the eastern GoM on the 

outer WFS and in the central GoM offshore of the Alabama coast along the 200-m isobath. 

Interannual effort distribution (quantified with a spatial difference index) was relatively 

consistent from 2008 through 2012, with 66-78% similarity in effort density among years. 

Significant effort hot spots were located from mid-Florida to Alabama, while significant revenue 

hot spots were distributed throughout the GoM along the seaward extent of trip locations and 

CPUE hot spots were in smaller more diffuse patches along the WFS and offshore of Louisiana. 

The significant hot spots of revenue and CPUE were likely attributable to the snapper and 

grouper productivity patterns discussed above. In particular, the western hot spots cannot be 

explained alone by number of trips taken or fishing effort intensity, as there were consistently 

fewer trips and lower effort density in the west than the central or eastern regions.  

Still, spatial restrictions for the use of longline gear clearly had an impact on the effort 

distribution of the fleet. Effort density for longline fishers was concentrated outside the 

boundaries of two major areal closures: the longline/buoy gear restricted area5 and the longline 
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seasonal closed area.6 Effort for vertical line fishers on the other hand was distributed throughout 

the GoM. These gear-specific effort distribution patterns were consistent with previous analyses 

of effort from observer data for this fishery (Scott-Denton et al. 2011). The locations of 

significant effort hot spots were similarly separated, with vertical line hot spots in the Florida 

panhandle and Big Bend regions, and longline hot spots further south and offshore on the mid-

WFS. Consequently, the similarity in effort distribution between gears was only 24-32% 

annually. Effort distribution was much more similar within a gear, with 63-73% annual overlap 

for longline fishers and 65-79% annual overlap for vertical line fishers. Similar gear-dependent 

patterns with consistent interannual distributions have been reported elsewhere (Lee et al. 2010). 

The patterns of effort density, effort hot spots, and revenue hot spots were all similar 

(compare Figures 2.11, 2.12, and 2.13), suggesting that ex-vessel revenue was contributing to 

location choice in this fishery in addition to gear regulations. Profitability, or the expectation of 

profitability, is the strongest determinant of fishing location choice in commercial fisheries 

(Smith 2000), with greater revenues or profit increasing probability of fishing in a particular 

location (Zhang and Smith 2011, Weninger and Perruso 2013). Fishers can exert strong control 

over the species that are caught, even in a multispecies fishery, and have the ability to adjust 

targeting behavior based on imposed regulations (Branch and Hilborn 2008, Weninger and 

Perruso 2013). Yet, the cost of fishing may increase when regulations necessitate a change in 

targeting behavior (e.g., longer search time, longer travel time to fishing grounds, modification 

of gear or bait). While trip costs were not included in this analysis (to allow for an examination 

of profitability rather than revenue), it would be possible to include some measure of cost for 

select trips in future work. Available cost data in logbooks include fuel, ice, oil, bait, groceries, 

packing fees, and purchase of IFQ allocation starting in 2007.   
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The dominance of Red snapper, Red grouper, and Gag in the trip catch, together with the 

overall increasing revenue and CPUE over the time series, additionally suggest that the IFQ 

systems for Red snapper and Grouper-Tilefish were playing a role in the patterns described. Both 

IFQ systems have been shown to be successful in reducing overcapacity with reductions in the 

number of active vessels, reducing or eliminating quota overages, reducing discard rates, 

lengthening open seasons (now both at 365 days), increasing the average price fishermen receive 

for catch, and increasing the overall economic efficiency and productivity of the fisheries (Hood 

et al. 2007, Agar et al. 2014, Brinson and Thunberg 2016). The observed consolidation of the 

fleet (i.e., fewer vessels and trips over time) together with increased revenue and CPUE for 

snappers since 2008 are in line with these previous assessments. Explicitly teasing apart the 

effects of the IFQs from the DWH closures will require data on which fishers were in the IFQs 

upon initiation, initial allocation amounts, and productivity before and after implementation. 

Those data are beyond the scope of what was available for this work.  

Fisheries management aims to reduce excess fishing pressure to maintain a stock into the 

future, both on the short and long term, while minimizing negative social and economic impacts 

on communities. Fisheries management is therefore necessarily responsive to changing 

environmental, biological, and social factors. To be most effective, management schemes should 

be designed to either anticipate adaptations in fishers’ behavior across multiple spatial scales and 

for multiple species, or be robust to changes in fisher behaviors (Abbott and Haynie 2012). 

Failure to include fisher decision-making and, perhaps more importantly, the potential for 

adaptive fisher behavior in management policies can severely undermine the biological, 

ecological, and economic objectives of fisheries management.  
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Table 2.1. Optimized hot spot analysis distance band used and results for each test.  
 

Analysis 
Fixed distance 

band (km) 

# of significant 
clusters/points 

in clusters 

% hot 
spots 

% cold 
spots 

All trip effort 61.8 482 53 47 

All trip revenue 8.1 7,971 40 60 
All trip CPUE 8.1 3,836 57 43 
Vertical line trip effort 63.7 364 58 42 
Vertical line trip revenue 8.1 5,363 41 59 

Vertical line trip CPUE 8.1 5,597 36 64 

Longline trip effort 75.8 208 75 25 
Longline trip revenue 19.9 620 67 33 
Longline trip CPUE 25.0 124 56 44 

 
Note: The distance bands for longline trips were determined using an incremental spatial 
autocorrelation test. All others were selected based on the average distance for 30 nearest 
neighbors. 
 
 
 
Table 2.2. Results from ANOVA on overall fishery productivity by region and year from 2000-
2014. 
 

Response Effect d.f. SS MS F P 

ln(revenue) Region 2 895 447.6 341.6 < 0.001 

 Year 14 2,968 212 161.8 < 0.001 

 Region × Year 28 1,043 37.2 28.4 < 0.001 

 Residual 96,620 126,625 1.3   

  d.f. SS MS F P 

ln(CPUE) Region 2 2,786 1393.1 264.4 < 0.001 

 Year 14 6,735 481.1 91.3 < 0.001 

 Region × Year 28 1,842 65.8 12.5 < 0.001 

 Residual 96,620 509,011 5.3   
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Table 2.3. Results from ANOVA on snapper and grouper productivity by region and year from 
2000-2014. 
 

Response Effect d.f. SS MS F P 

ln(Snapper revenue) Region 2 291,549  145,775  13,027.2  < 0.001 

 Year 14 57,186  4,085  365.03  < 0.001 

 Region × Year 28 13,241  473  42.3 < 0.001 

 Residual 96,620 1,081,179  11    

ln(Grouper revenue)  d.f. SS MS F P 

 Region 2 389,449  194,725  16,819.4  < 0.001 

 Year 14 8,188  585  50.5 < 0.001 

 Region × Year 28 5,648  202  17.4 < 0.001 

 Residual 96,620 1,118,606  12    

  d.f. SS MS F P 

ln(Snapper CPUE) Region 2 259,704  129,852  7,534.7  < 0.001 

 Year 14 59,457  4,247  246.4 < 0.001 

 Region × Year 28 16,194  578  33.6 < 0.001 

 Residual 96,620 1,665,134  17    

  d.f. SS MS F P 

ln(Grouper CPUE) Region 2 314,548  157,274  14,314.8  < 0.001 

 Year 14 6,278  448  40.8 < 0.001 

 Region × Year 28 5,862  209  19.1 < 0.001 

 Residual 96,620 1,061,546  11    
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Table 2.4. Top species group landed in each region from 2000-2014. 
 

Region Top group 
Total regional 
logbook trips 

Percentage of 
regional trips 

West Mid-depth snappers 8,851 91.1 

 Deep water groupers 440 4.5 

 Shallow water snappers 143 1.5 

 All others 278 2.9 

Central Mid-depth snappers 18,020 85.7 

 Shallow water snappers 944 4.5 

 Deep water groupers 612 2.9 

 Jacks 460 2.2 

 All others 1,000 4.8 

East Shallow water groupers 44,361 67.3 

 Mid-depth snappers 10,447 15.8 

 Shallow water snappers 4,958 7.5 

 Deep water groupers 2,886 4.4 

 All others 3,265 5.0 
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Table 2.5. Top species landed in each region from 2000-2014. 
 

Region Top species 
Total regional 
logbook trips 

Percentage of 
regional trips 

West Red snapper 7,652 78.8 

 Vermilion snapper 1,198 12.3 

 Yellowedge grouper 306 3.2 

 Lane snapper 134 1.4 

 Golden tilefish 108 1.1 

Central Red snapper 12,686 60.3 

 Vermilion snapper 5,324 25.3 

 Mangrove snapper 900 4.3 

 Yellowedge grouper 442 2.1 

 Greater amberjack 387 1.8 

 King mackerel 275 1.3 

East Red grouper 29,311 44.5 

 Gag 11,055 16.8 

 Red snapper 6,488 9.8 

 Vermilion snapper 4,215 6.4 

 Yellowtail snapper 3,605 5.5 

 Black grouper 2,827 4.3 

 Yellowedge grouper 2,264 3.4 

 Mangrove snapper 965 1.5 

 Greater amberjack 928 1.4 

 
Note: Only species constituting greater than or equal to 1% of trips are shown. 
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Table 2.6. Spatial difference index and percent similarity of effort density distributions among 
years and gear types. 
 

Comparison Year 
Spatial difference 

index 
% similarity in 

distribution 

Between year (gears aggregated) 2008-2009 0.25 75 

 2008-2011 0.30 71 

 2009-2011 0.32 68 

 2010-2008 0.26 74 

 2010-2009 0.26 74 

 2010-2011 0.22 78 

 2012-2008 0.26 74 

 2012-2009 0.34 66 

 2012-2010 0.29 71 

 2012-2011 0.27 73 

Between gear, within year 2008 0.76 24 

 2009 0.72 28 

 2010 0.72 28 

 2011 0.71 30 

 2012 0.68 32 

Within gear: Vertical line trips 2008-2009 0.21 79 

 2008-2011 0.33 67 

 2009-2011 0.31 69 

 2010-2008 0.28 72 

 2010-2009 0.27 73 

 2010-2011 0.23 77 

 2012-2008 0.35 65 

 2012-2009 0.32 68 

 2012-2010 0.30 70 

 2012-2011 0.26 74 

Within gear: Longline trips 2008-2009 0.32 68 

 2008-2011 0.34 66 

 2009-2011 0.37 63 

 2010-2008 0.32 68 

 2010-2009 0.34 66 

 2010-2011 0.28 72 

 2012-2008 0.28 73 

 2012-2009 0.37 63 

 2012-2010 0.32 68 

 2012-2011 0.34 66 
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Figure 2.1. Geographic zone delineation for regional analyses, based on trip logbook statistical 
reporting grids. Map is from the 2013 reef fish logbook reporting form and was obtained online 
through the NOAA Southeast Fisheries Science Center Fishermen and seafood dealers forms 
archive (www.sefsc.noaa.gov/fisheries/reporting_archive.htm). Vertical red lines denote breaks 
for west, central, and east regions. 
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Figure 2.2. Number of total individual vessels and logbook trips over time. (A) Unique 
individual vessels in each year, (B) total logbook trips in each year of the final data set 
(n=96,665 trips) and (C) total logbook trips in each year of the final data set by region. 
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Figure 2.3. Monthly number of logbook trips per year in each GoM region. Data are from the 
final logbook trips used in analyses. 
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Figure 2.4. Mean per-trip productivity from 2000-2014 for west, central, and east regions of the 
GoM. Values are back-transformed means ± SEM (standard error of the mean). Different letters 
above the bars denote significant differences as detected from a Tukey-HSD post-hoc test after 
ANOVA. 
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Figure 2.5. Mean annual per-trip productivity for the entire fleet from 2000-2014. Values are 
back-transformed means ± SEM. Letters below bars denote significant differences among years 
as detected from a Tukey-HSD post-hoc test after ANOVA; years with the same letter are not 
significantly different at the 0.05 level.  
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Figure 2.6. Mean annual per-trip productivity by GoM region from 2000-2014. Values are back-
transformed means ± SEM.
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Figure 2.7. Mean annual per-trip CPUE and revenue of snappers (panel A, C) and groupers (panel B, D) from 2000-2014. Values are 
back-transformed means ± SEM. Letters below bars denote significant differences among years as detected from a Tukey-HSD post-
hoc test after ANOVA; years with the same letter are not significantly different at the 0.05 level.  



46 

Figure 2.8. Mean per-trip snapper and grouper productivity from 2000-2014 for west, central, 
and east regions of the GoM. Values are back-transformed means ± SEM. Different letters above 
the bars denote significant differences as detected from a Tukey-HSD post-hoc test after 
ANOVA. 
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Figure 2.9. Mean annual per-trip snapper and grouper productivity by GoM region from 2000-2014. Values are back-transformed 
means ± SEM. Panels B and F show only the east region to enhance the pattern that is smoothed in panels A and B. Panels D and H 
show only the west and central regions to enhance the pattern that is smoothed in panels C and G. Note the change in scales across 
panels. 
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Figure 2.10. Distribution of fishing effort as identified by VMS points, aggregated over 2008-
2012 for the entire fleet. Density was calculated as the number of VMS pings per 0.15° × 0.15° 
grid cell. The location of the DWH wellhead is marked with an oil derrick, and the 200-m 
isobath is shown with a solid black line.  
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Figure 2.11. Distribution of fishing effort as identified by VMS points, aggregated over 2008-
2012 for (A) vertical line and (B) longline gears. Density was calculated as the number of VMS 
pings per 0.15° × 0.15° grid cell and has been standardized to the maximum value to range from 
0 (no effort) to 1 (maximum density of effort). In panel B, the dotted black line marks the year-
round longline/buoy gear restricted area and the solid black line in the eastern GoM marks the 
seasonal bottom longline closure. Note that the restricted area and seasonal closure overlap and 
share an inner boundary in the eastern GoM. All other symbols are as in Figure 2.10. 
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Figure 2.12. Significant clustering of fishing trips from optimized hot spot analysis. (A) All fleet 
effort aggregated over 2008-2012, (B) trips reporting vertical line as the top gear from 2008-
2012, (C) trips reporting longline as the top gear from 2008-2012. Warm colors represent hot 
spots (regions of higher than expected clustering) and cool colors represent cold spots (regions of 
lower than expected clustering). All clusters shown are significant at an alpha of 0.05 (95% 
confidence). All symbols are as in Figure 1.1. 
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Figure 2.13. Significant clustering of logbook-reported revenue from optimized hot spot 
analysis. (A) All fleet revenue aggregated over 2008-2012, (B) trips reporting vertical line as the 
top gear from 2008-2012, (C) trips reporting longline as the top gear from 2008-2012. Warm 
colors represent hot spots (regions of higher than expected clustering) and cool colors represent 
cold spots (regions of lower than expected clustering). All clusters shown are significant at an 
alpha of 0.05 (95% confidence). All symbols are as in Figure 1.1. 
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Figure 2.14. Significant clustering of logbook-reported CPUE from optimized hot spot analysis. 
(A) All fleet CPUE aggregated over 2008-2012, (B) trips reporting vertical line as the top gear 
from 2008-2012, (C) trips reporting longline as the top gear from 2008-2012. Warm colors 
represent hot spots (regions of higher than expected clustering) and cool colors represent cold 
spots (regions of lower than expected clustering). All clusters shown are significant at an alpha 
of 0.05 (95% confidence). All symbols are as in Figure 1.1. 
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CHAPTER 3.  IMPACTS OF CLOSURES ON FISHERS BEFORE, DURING, AND 

AFTER THE DEEPWATER HORIZON OIL SPILL 

 

Introduction 

Significant perturbations in the availability of fisheries resources can have far reaching 

consequences for fishers, their families, and the communities that depend on fishing for 

economic sustainability (Pollnac et al. 2006, Olson 2011, Colburn and Jepson 2012). Changes in 

available biomass, landings, or revenue as the result of perturbations (e.g., new regulations, 

economic recessions, oil spills, hurricanes, stock collapse) can in turn lead to changes in income, 

economic efficiency or security, targeting behavior, space use, and continued sustainability of 

the resource. These impacts can distill into communities via changes in revenue streams and 

influence fisher job satisfaction, overall community well-being, and sustainability of fishing 

communities (Pollnac et al. 2006, Mascia and Claus 2009, Himes-Cornell and Kasperski 2016). 

The impacts from perturbations can linger over time, with ultimate outcomes depending on the 

ability of a community to cope with change (i.e., community resilience, as defined in Jepson and 

Colburn 2013). The recognition that people are integral parts of fisheries systems makes the 

concepts of adaptation and resilience central for designing effective restoration and ecosystem-

based management (Peterson et al. 2011, Jepson and Colburn 2013). To that end, there is a 

growing body of research that integrates qualitative social science methods with more 

quantitative approaches to develop social impact assessment frameworks (Pollnac et al. 2006) 
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and indicators of community vulnerability and resilience to disturbance (Jacob et al. 2010, 

Jepson and Colburn 2013).7 

Communities can maintain or improve resilience if they can anticipate, absorb, and 

diffuse change over time. To ameliorate some of the effects from large perturbations, fishers can 

take advantage of diverse opportunities for fishing and advanced knowledge of fishery 

productivity when faced with environmental or regulatory change (Hackett et al. 2015, Richerson 

and Holland 2017). For example, Brandt (2005) noted that advanced knowledge of IFQ 

implementation and allocation mechanisms for Atlantic surf clams incentivized fishers to 

increase fishing pressure to establish a historical record of harvest. However, it is much more 

difficult to adapt to and absorb change when a disturbance is large and sudden. Response to 

sudden change may therefore be disproportionate throughout a fishery, especially if a 

disturbance is not equitable over space or time. What's more, if some fishers drop out (either 

temporally or permanently) after a disturbance, there may be indirect benefits for remaining 

fishers in the form of reduced competition.  

 This chapter quantified differences in total productivity and distribution of effort for trips 

inside vs. outside the boundaries of DWH emergency fishing closures before (January 1, 2008 

through May 1, 2010), during (May 2, 2010 through November 14, 2010), and after (November 

15, 2010 through December 29, 2012) the closures were in place. The location of a trip relative 

to the spatial extent and temporal duration of DWH closures was used as a proxy for impact and 

displacement due to the closures. It was expected that trips closer to the wellhead or closures 

would have a higher level of impact (i.e., displacement), and would therefore have reduced 

revenue or CPUE during the active closure period.  

                                                 
7 See also the Gulf of Mexico and South Atlantic Fishing Community Snapshots project from NOAA 
Fisheries: http://sero.nmfs.noaa.gov/sustainable_fisheries/social/community_snapshot/. 
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Materials and Methods 

Trip logbook and VMS data from 2008-2012 were selected as described previously (see 

Chapter 2 and Appendices A-D), and matched based on unique vessel identification number and 

a trip identifier assigned by NOAA NMFS Southeast Fisheries Science Center. The location of 

fishing for each trip relative to the boundaries and duration of individual DWH fishing closures 

was used to examine differences among trips that were inside closure boundaries (“displaced”) 

and those that were not (“intact”). Productivity and effort distribution were quantified for trips 

before, during, and after closures to compare patterns across space and time relative to the 

potential impact of displacement from fishing closures. Each of these analyses are described in 

more detail below. 

 

Quantifying Spatial Impact of Closures 

In order to quantify potential spatial displacement from DWH fishing closures, a metric 

of fishing effort relative to DWH fishing closures was calculated for each trip. A heat map of 

“closure proportion” for the DWH fishing closures was created in ArcGIS 10.3 by: (1) importing 

and overlaying the polygons of all emergency closures,8 (2) calculating a cumulative number of 

days closed in each region based on the total duration of all overlapping closure polygons, and 

(3) dividing the cumulative days closed in each region by the total number of days closures were 

enforced (352 days from May 2, 2010 to April 19, 2011; Figure 3.1). Values for closure 

proportion therefore ranged from 0 to 1 (e.g., an area that was never closed was assigned a value 

of 0 and the area closed for 352 days was assigned a value of 1). VMS points were overlain onto 

                                                 
8 Downloaded from the NOAA Fisheries Southeast Regional Office Deepwater Horizon/BP Oil Spill 
Information page. Available online at: 
http://sero.nmfs.noaa.gov/deepwater_horizon/closure_info/index.html. 
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the heat map, and the underlying closure proportion values were assigned to the points. A trip’s 

mean spatial impact metric was calculated as the mean closure proportion value for all VMS 

points comprising the trip. 

 

Categorizing Trip Displacement 

The determination of displacement (“displaced” or “intact”) for each trip (n=17,240) was 

based on the location of VMS points for the trip relative to fishing closure boundaries. If the 

mean spatial impact metric for a trip was greater than 0, then the location of the trip was on 

average within a region that was closed during DWH, and was considered to be “displaced.” 

Individual trips were used for this determination rather than an aggregate record of individual 

vessels/fishers, because there were individual vessels that had records both within and outside 

the closed areas. Significant differences in the spatial impact metric between displaced and intact 

trips, trips among regions (west/central or east), and trips over time (before, during, or after 

closures) were determined with an analysis of variance (ANOVA). Region, time, and 

displacement were used as the main effects, and time × region, region × displacement, time × 

displacement, and time × region × displacement were used as interaction effects. Tukey-HSD 

post-hoc tests were used to examine differences among levels for significant effects. The west 

and central regions (Figure 2.1) were combined because the west/displaced trip replication was 

too low to properly perform statistical analysis (n=2). 

Trips identified as displaced during closures (May 2, 2010 through November 14, 2010) 

were further categorized by displacement magnitude (Table 3.1). A Fisher’s Natural Breaks 

Classification was applied to the mean spatial impact metric for displaced trips only using the 

classInt package in R (Bivand et al. 2015) to obtain three displacement magnitude categories (1 
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being the lowest and 3 being the greatest). Trips that were not displaced during closures were 

assigned a displacement magnitude of 0.  

 

Differences in Trip-Level Productivity  

Differences in trip-level total revenue ($2008) and CPUE (gutted lbs. landed per number 

of hooks fished) among displaced and intact trips over time and among regions were evaluated 

with a series of ANOVA tests. Displacement status (displaced or intact), region (west/central or 

east), time (before, during, or after closures), and the interactions of time × region, time × 

displacement, region × displacement, and time × region × displacement were used as model 

effects. Trips were assigned to a time category based on the trip start date, either as before 

(January 1, 2008 through May 1, 2010), during (May 2, 2010 through November 14, 2010), or 

after (November 15, 2010 through December 29, 2012) DWH closures. For the pre- and post-

closure subsets, only vessels that also had logbook records during closures were considered. 

Running tests with the three time groups enabled comparisons among productivity patterns 

before, during, and after the DWH closures. 

A series of ANOVA tests were also performed on logbook trips displaced during closures 

(n=544 trips). These tests examined potential differences in trip revenue and CPUE among trips 

with fishing locations inside closure boundaries based on region (west/central or east) and 

displacement magnitude (1, 2, or 3 as described above). Region, displacement magnitude, and 

region × displacement magnitude were used as model effects. All ANOVA tests were performed 

on loge-transformed data, at an alpha of 0.05 and Tukey-HSD post-hoc tests were used to 

examine significant differences among levels. 
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Fishing Activity Relative to Displacement 

The spatial distribution of fishing activity for displaced and intact trips before, during, 

and after closures was quantified by mapping the density of VMS pings per 0.15° × 0.15° grid 

cell, using the raster package in R (Hijmans et al. 2016). All VMS points identified as active 

fishing (see Appendices D-F) were used. Grid cells with less than three VMS pings were 

reassigned as “NA” and not mapped, to ensure confidentiality of the data.  

Shifts in distribution of effort before vs. after closures for displaced and intact trips were 

examined by comparing standardized relative density for each group pre- and post-closure. 

Effort density values were standardized (ranging from 0 to 1) relative to the maximum. 

Differences in effort distribution (based on standardized effort density) were then calculated as 

the difference between individual density layers. A difference of 0 indicated no change in 

relative density, or complete overlap in distribution, while a value of 1 or -1 indicated maximum 

difference, or no overlap in spatial distribution. A spatial difference index was additionally 

calculated (Lee et al. 2010; see Chapter 2) to quantify differences (and percent similarity) among 

effort distributions for displaced and intact trips before, during, and after DWH fishing closures. 

 

Results 

Categorizing Trip Displacement 

There were more logbook trips and more individual vessels in the east before, during, and 

after closures than in the west/central region (Table 3.2). During closures, 72% of logbook trips 

were identified as outside the closure boundaries (intact) and 28% were identified as inside 

closure boundaries (displaced). The trips were made by 344 individual vessels, of which 186 

(54%) did not fish within a closure boundary at all, while 158 (46%) had at least some portion of 



59 

their record during closures within a closure boundary (i.e., mean spatial impact metric over all 

trips was > 0). Before and after closures, a greater percentage of all trips were within closure 

boundaries (43% and 42%, respectively) and more individual vessels made trips to locations 

inside a closure boundary (63% and 60%, respectively; Table 3.2). That is, a greater proportion 

of fishing trips were outside the closure boundaries during closures than either before or after. 

This pattern was observed in both regions, although the difference in proportion of displaced 

trips was greater for the west/central region (20-24% decrease in trips within closure boundaries 

during closures) than for the east region (7-9% decrease in trips). The mean spatial impact metric 

in the west/central region was significantly lower for trips during closures than either before or 

after closures (Tukey-HSD, p<0.001 for all comparisons), but there were no significant 

differences in spatial impact metric among times in the east (Tukey-HSD, p>0.06 for all 

comparisons; Figure 3.2). 

 Moreover, there was a greater percentage of trips located within closure boundaries and a 

greater percentage of vessels fishing within closure boundaries for a portion of their record in the 

west/central region across all time periods (Table 3.2). The mean spatial impact metric was also 

significantly greater for trips in the west/central region than in the east during all time periods 

(Tukey-HSD, p<0.001 for all comparisons), indicating more total fishing activity within closure 

boundaries in the west/central region (Table 3.3, Figure 3.2). For trips within closure boundaries 

during closures (i.e., excluding intact trips), the mean spatial impact (± standard error) was 

significantly lower in the east region (0.10 ± 0.004 compared to 0.27 ± 0.007; ANOVA, 

p<0.001).  
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Differences in Trip-Level Productivity  

 The effects of time, region, time × region, and region × displacement were significant for 

trip revenue while the effects of region, displacement, time × displacement, region × 

displacement, and the three-way interaction of time × region × displacement were significant for 

trip CPUE (Table 3.4). Tukey-HSD tests revealed that revenue was higher overall after closures 

than either before or during closures (p<0.001), CPUE and revenue were higher overall in the 

west/central region (p<0.001), and CPUE was significantly higher for intact trips, both overall 

(p<0.001) and within regions (p<0.001 for all comparisons). Revenue was significantly different 

between displaced and intact trips but the pattern was reversed between the two regions; in the 

west/central, revenue was significantly higher for intact trips (p<0.001) while in the east revenue 

was significantly higher for displaced trips (p<0.001; Figure 3.3).  

Intra-regional patterns of revenue and CPUE between displaced and intact trips were 

consistent over time (Figure 3.3). In the west/central region, revenue and CPUE were both 

significantly lower for displaced trips in every time period (p<0.01 for all comparisons). 

Additionally, revenue and CPUE were not significantly different between time periods for 

displaced or intact fishers in the west/central (p>0.97 for all comparisons). In the east region, 

CPUE was significantly lower for displaced trips in every time period (p<0.001 for all 

comparisons) while revenue was significantly higher for displaced trips before and after closures 

(p<0.001 for both comparisons). Revenue was higher for displaced trips in the east during 

closures, but the difference was not statistically significant (p=0.12). Both displaced and intact 

trips had significantly greater revenue after closures than either before or during (p<0.001 for all 

comparisons), and displaced trips had significantly lower CPUE before closures than either 

during (p=0.03) or after (p<0.001). 
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 Considering only displaced trips during DWH closures, only the effect of region was 

significant for revenue while region and region × displacement magnitude were significant for 

CPUE (Table 3.5). West/central revenue was significantly higher overall than east revenue, 

regardless of displacement magnitude (Tukey-HSD, p=0.02; Figure 3.4). West/central CPUE 

was also higher overall than in the east (p<0.001), although regional differences were only 

significant between the magnitude ‘2’ groups (p<0.001).  

 

Fishing Activity Relative to Displacement 

 The distribution of effort (measured as the density of VMS points) was different for 

displaced and intact trips. Before, during, and after closures, intact trips (i.e., those not fishing 

inside closure boundaries), were distributed around the periphery of the GoM (Texas and 

Florida), with the highest effort densities located in the Florida Big Bend and near- to mid-shore 

on the WFS (Figures 3.5-3.7). Displaced trip effort (i.e., those fishing inside closure boundaries) 

was very nearly opposite of this pattern. Displaced trip effort was located primarily in the central 

GoM, offshore of Louisiana, Alabama, and Mississippi, as well as the panhandle of Florida and 

mid- to far-offshore on the WFS. Given the definition of intact and displaced trips for this 

analysis (i.e., inside or outside closure boundaries, respectively), and the spatial extent of the 

fishing closures, these effort distributions follows what would be expected.  

The density of effort overall was lowest during closures and lower after closures as 

compared to before for both displaced and intact trips (compare the range of density values in 

Figures 3.5-3.7). On the whole, effort throughout the GoM was more contracted and patchier 

during closures than either before or after. The greatest density of effort for intact trips was in the 

Big Bend before closures (Figure 3.5), shifted southward and inshore during closures (Figure 
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3.6), and then shifted back offshore after closures, with higher relative densities on the southern 

WFS (Figure 3.7). The greatest effort density for displaced trips was offshore of the Alabama 

coast (slightly northeast of the DWH wellhead) and mid-peninsular Florida before and after 

closures (Figures 3.5 and 3.7), but was shifted into the Florida panhandle and southern WFS 

during closures with no appreciable effort near the wellhead (Figure 3.6).  

 The most prominent shifts in effort distribution pre- to post-closures were seen in the 

eastern GoM for intact trips and in the central and eastern GoM for displaced trips (Figure 3.8). 

For intact trips, effort generally shifted south and west from the Big Bend and inshore WFS to 

more offshore locations along peninsular Florida. The greatest decrease in relative effort density 

outside of closure boundaries (-0.42) was along the Florida panhandle (black circle in Figure 

3.8A) and the greatest increase (0.47) was on the WFS, offshore of Tampa Bay (black diamond 

in Figure 3.8A). For displaced trips, effort shifted southward along the mid-WFS and north-

northeast closer to the Florida coast in the central GoM. The greatest decrease in relative effort 

density (-0.47) was offshore of Alabama (black circle in Figure 3.8B), just northeast of the 

wellhead, where the greatest density of effort was located before closures. The greatest increase 

(0.54) was on the mid-WFS, only slightly south of where the greatest increase was for intact trips 

(black diamond in Figure 3.8B). 

The similarity in effort distribution for displaced vs. intact fishers was low before, during, 

and after closures (22-26%; Table 3.6), but there were slightly fewer vessels overall in the fleet 

after closures (Table 3.2). On the other hand, the inter-group similarity in effort distribution 

among times was moderately high. Comparing effort densities before and after closures, trips 

within closure boundaries were 76% similar and trips outside of closure boundaries were 78% 
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similar. Comparisons with trips that occurred during closures were slightly lower: 58-63% for 

trips inside closure boundaries and 70-75% for trips outside closure boundaries. 

 

Discussion 

Results indicate that fishers adapted and were largely resilient to DWH fishing closures, 

although there were some regional differences in the impact and response. Fishing grounds for 

trips in the west/central region were more heavily impacted by closures (as quantified by the 

spatial impact metric) than trips in the east. There was also a greater percentage of trips and 

vessels inside closure boundaries in the western GoM over all time periods. This result is not 

unexpected, given the location of the DWH wellhead and the known extent of the various 

closures. The total number and proportion of trips and vessels inside closure boundaries 

decreased during DWH in both regions, with a greater magnitude of change in the west (i.e., 

where impact from displacement was greater). Yet, revenue and CPUE were consistently higher 

in the west/central GoM than in the east, regardless of impact from closures. As was discussed in 

Chapter 2, this is likely due in part to the magnitude of snapper landings that made up a majority 

of catch in western GoM trips. Among trips displaced during DWH, displacement magnitude 

was not a significant factor affecting productivity.  

Contrary to expectations, productivity was not adversely affected during DWH closures 

for trips either inside or outside closures. Productivity remained the same across time periods for 

both intact and displaced trips in the west and increases were seen for productivity during and 

after closures in the east. The pattern of productivity between trips inside and outside closure 

boundaries remained the same over time: generally higher for trips outside boundaries, with the 

exception of higher revenue for trips inside boundaries in the east. It is possible that the constant 
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and even increased productivity for trips was the result of reduced competition during and after 

closures. That is, there were fewer vessels in the fleet during and after closures, especially inside 

closure boundaries, and overall lower density after closures (compare the maximum density 

values in Figures 3.5 and 3.7). The fleet conditions during and after closures thus could have 

resulted in reduced competition and increased landings and CPUE.  

 Similarity in effort distribution was greatest within displacement category before vs. after 

closures. This implies that fishers were generally returning to pre-DWH fishing grounds, 

regardless of whether trips were first inside or outside closure boundaries. On the other hand, 

there was evidence of shifting fishing grounds beyond DWH. For intact trips, maximum density 

during closures shifted southward along the WFS, and remained there even after closures were 

removed. Although there was lower density overall during closures, the shift in effort 

distribution for these fishers (who were not fishing directly inside closures, and may have moved 

simply to avoid being near the DWH disaster as it was occurring) suggests that there may have 

been a more productive or economically efficient fishing ground along the WFS than was being 

used previously. Displaced fishers similarly displayed a shift in effort away from pre-closure 

fishing grounds northeast of the wellhead, although the pattern was less distinct than for intact 

trips. Profitability and economic incentives are a primary determinant of fishery participation and 

location choice (Smith and Wilen 2003), making it likely that fishers were concentrating effort 

pre- and post-DWH in such a way that optimized profitability, perhaps in this new fishing 

ground on the WFS.  

However, profitability varies based on species movement patterns, level of competition, 

and vessel capacity (Dowling et al. 2012). Therefore, the ability of fishers to be successful during 

and after a large-scale disturbance will also depend on the diversity of the fishing portfolio (i.e., 
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participation in a variety of fisheries) and other underlying economic factors for individual 

fishers. For example, Hackett et al. (2015) found that greater diversity of fishing income and 

lower interannual variability in fishing income were consistent predictors of remaining in a 

California commercial fishery after a series of regulatory changes that reduced access to fishery 

resources. There is also likely variation among captains in the decision-making process (e.g., 

based on level of experience or familiarity with alternative fishing grounds) or variable decisions 

depending upon environmental, management, and economic conditions (e.g., weather, remaining 

quota for the target species, in-season species, market conditions, and perceived profitability of 

fishing location; Sanchirico and Wilen 2001, Smith and Wilen 2003). Further investigation of the 

relationship between species composition, the makeup of vessels in the fleet, and profitability in 

this region would help elucidate the mechanisms driving increased effort in this region during 

and after DWH. 
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Table 3.1. Intervals of mean spatial impact metric used to categorize trips during DWH closures 
into displacement magnitude categories.  
 

Mean trip spatial impact 
metric 

Displacement 
magnitude category 

# of trips during 
DWH closures  

0 0  1,379 

[0.0002,0.09] 1 161 

(0.09,0.22] 2 222 

(0.22,0.44] 3 161 

 
Note: All intervals were closed on the right. 
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Table 3.2. Logbook trips and vessels identified as displaced or intact overall and by region before, during, and after DWH fishing 
closures. 
 

Region 
Trip start 
relative to 
closures 

Total 
logbook 
trips 

Total 
vessels 

Trips inside a closure 
boundary (displaced) 

Trips outside a closure 
boundary (intact) 

Vessels with no 
fishing records inside 
a closure boundary 

    N % N % N % 

Combined Before 8,852 325 3,812 43 5,040 57 121 37 

 During 1,923 344 544 28 1,379 72 186 54 

 After 6,465 309 2,683 42 3,782 58 124 40 

West/Central Before 2,484 96 1,877 76 607 24 20 21 

 During 354 91 184 52 170 48 29 32 

 After 1,529 92 1,096 72 433 28 22 24 

East Before 6,368 253 1,935 30 4,433 70 102 40 

 During 1,569 262 360 23 1,209 77 159 61 

 After 4,936 236 1,587 32 3,349 68 103 44 
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Table 3.3. Results from ANOVA on differences in spatial impact metric among GoM regions 
and time periods relative to DWH fishing closures. 
 

Effect d.f. SS MS F P 

Time 2 4.6 2.3 181.5 < 0.001 

Region 1 160.3 160.3 12,621.7 < 0.001 

Time × Region 2 4.2 2.1 165.4 < 0.001 

Residual 17,234 218.9 0.01   

 
 
 
Table 3.4. Results from ANOVA tests on per-trip productivity among GoM regions, time 
periods relative to DWH fishing closures, and displacement category relative to fishing closure 
boundaries. 
 

Response Effect d.f. SS MS F P 

ln(revenue) Time 2 216 108.1 110.9 < 0.001 

 Region 1 271 270.6 277.4 < 0.001 

 Displacement 1 0.4 0.4 0.4 0.6 

 Time × Region 2 58 29.1 29.8 < 0.001 

 Time × Displacement 2 0.4 0.2 0.2 0.8 

 Region × Displacement 1 383 382.6 392.2 < 0.001 

 Time × Region × Displacement 2 2 1.1 1.1 0.3 

 Residual 17,228 16,803 1   

  d.f. SS MS F P 

ln(CPUE) Time 2 16 8 1.7 0.2 

 Region 1 57 57 12.0 < 0.001 

 Displacement 1 6,659 6,659 1,406 < 0.001 

 Time × Region 2 9 4 0.9 0.4 

 Time × Displacement 2 215 107 22.6 < 0.001 

 Region × Displacement 1 34 34 7.2 < 0.01 

 Time × Region × Displacement 2 80 40 8.4 < 0.001 

 Residual 17,228 81,593 5   
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Table 3.5. Results from ANOVA tests on per-trip productivity among GoM regions and 
magnitude of displacement for trips displaced during DWH closures. 
 

Response Effect d.f. SS MS F P 

ln(revenue) Displacement magnitude 2 4.8 2.4 2.8 0.06 

 Region 1 9.6 9.6 11.1 0.001 

 Region × Displacement magnitude 2 1.6 0.8 0.9 0.4 

 Residual 538 462.7 0.9   

  d.f. SS MS F P 

ln(CPUE) Displacement magnitude 2 19.5 9.76 2.3 0.10 

 Region 1 62.2 62.2 14.7 < 0.001 

 Region × Displacement magnitude 2 28.4 14.2 3.4 0.04 

 Residual 538 2,271.1 4.2     

 
 
 
Table 3.6. Spatial difference metric and percent similarity in effort distribution between 
displaced and intact trips before, during, and after DWH closures. 
 

Comparison Spatial difference metric % similarity 

Displaced-intact before 0.76 24 

Displaced-intact during 0.78 22 

Displaced-intact after 0.74 26 

Displaced before-after 0.24 76 

Intact before-after 0.22 78 

Displaced during-after 0.38 63 

Intact during-after 0.31 70 

Displaced during-before 0.42 58 

Intact during-before 0.25 75 
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Figure 3.1. Cumulative days closed, expressed as a proportion of total days closed for each 
emergency closure region during the Deepwater Horizon oil spill. Darker colors represent a 
larger proportion of cumulative days closed. Symbols are as in Figure 1.1. 
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Figure 3.2. Mean trip-level spatial impact metric by GoM region and time relative to DWH 
fishing closures. Values were calculated based on location of VMS points relative to closure 
boundaries for trips before, during, and after DWH closures. The number of trips (N) in each 
region/time combination are given below the bars. Different letters above the bars denote 
significant differences as detected from a Tukey-HSD post-hoc test after ANOVA. 
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Figure 3.3. Mean trip-level productivity before, during, and after DWH closures for displaced 
and intact trips by GoM region. Values are back-transformed means ± SEM. Different letters 
above the bars denote significant differences as detected from a Tukey-HSD post-hoc test after 
ANOVA. 
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Figure 3.4. Mean trip-level productivity for trips displaced during DWH fishing closures. Values 
are back-transformed means ± SEM. Different letters above the bars denote significant 
differences as detected from a Tukey-HSD post-hoc test after ANOVA. Numbers below the bars 
indicate the number of replicates (N). 
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Figure 3.5. Density of fishing effort for 2008-2010 trips aggregated before DWH emergency 
fishing closures. (A) Trips outside of closure boundaries (“intact”) and (B) trips inside closures 
boundaries (“displaced”). Density was calculated as the number of VMS pings per 0.15° × 0.15° 
grid cell. 
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Figure 3.6. Density of fishing effort for trips aggregated during DWH emergency fishing 
closures in 2010. (A) Trips outside of closure boundaries (“intact”) and (B) trips inside closures 
boundaries (“displaced”). Density was calculated as the number of VMS pings per 0.15° × 0.15° 
grid cell.  
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Figure 3.7. Density of fishing effort for 2010-2012 trips aggregated after DWH emergency 
fishing closures. (A) Trips outside of closure boundaries (“intact”) and (B) trips inside closures 
boundaries (“displaced”). Density was calculated as the number of VMS pings per 0.15° × 0.15° 
grid cell. 
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Figure 3.8. Difference in standardized effort densities for (A) intact and (B) displaced trips from 
pre- to post-DWH closures. Blue areas denote a decrease in relative effort density after closures 
and red areas denote an increase in relative effort density after closures. 
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CHAPTER 4. RESILIENCE OF THE COMMERCIAL REEF FISH FISHERY AFTER 

LARGE-SCALE DISTURBANCE 

 

Introduction 

The impacts of disturbance — whether from climate change, regulatory change, external 

economic forces, or environmental disasters — are determined in part by vulnerability (i.e., the 

immediate conditions and state before a disturbance) and resilience (i.e., the ability to absorb, 

adapt, and cope with disturbance over time). The capacity to adapt to changing fishery resources 

will ultimately help determine overall social well-being and sustainability for coastal fisheries 

and fishing communities (Jepson and Colburn 2013, Himes-Cornell and Kasperski 2016). As 

fisheries management strategies prioritize ecosystem-based management, and continue to 

recognize that humans are an integral part of fishery systems, there is an increasing need to 

understand the factors leading to vulnerability, resilience, and sustainability of fishing 

communities in the face of disturbance. In the long term, the concepts of vulnerability and 

resilience can help society adapt to or absorb environmental, social, and economic change 

(Jepson and Colburn 2013).  

The commercial reef fish fishery in the GoM has experienced several major perturbations 

in recent years. Perhaps most notably, during the Deepwater Horizon oil spill (DWH) in 2010, a 

series of emergency fishing closures were put in place from May 2 to November 15, 2010 (197 

days), with the area immediately around the wellhead closed until April 19, 2011 (for a total of 

352 days). Research since DWH has demonstrated negative effects on the mental and physical 



81 

health of residents in coastal communities impacted both directly and indirectly by the spill, 

often disproportionately for those individuals and families involved in the fishing and seafood 

industries (Grattan et al. 2011, Lee and Blanchard 2011, Cope et al. 2013). Public perceptions of 

seafood safety after the oil spill impacted demand and consumption of GoM seafood. Yet, the 

potential outcomes (e.g., leaving the fishery temporally or permanently), impacts on productivity 

(e.g., a decrease in landings or revenue), and drivers of resiliency (e.g., diverse economic 

opportunities outside of fishing) for fishers in the wake of the closures remain largely unexplored 

and poorly understood.  

 This chapter examined a suite of factors that may have contributed to resilience of the 

commercial reef fish fishery after the 2010 DWH emergency fishing closures. Resilience in this 

context was measured at the vessel-level, and quantified as remaining in the fishery after the 

closures. The main objective of the analysis was to identify potential drivers of fisher resilience 

and build a set of general linear models (GLMs) to quantify the probability of leaving the fishery 

after the closures. This work is novel in its use of high-resolution spatial data, coupled with trip 

logbooks, to build quantitative models identifying drivers of fisher resilience after significant and 

sudden perturbations to fishery resources in the GoM.  

 

Materials and Methods 

The analysis for this chapter used the same trip logbook and vessel positioning VMS data 

as described previously (see Appendices A-D), with the exception that CPUE was calculated for 

each logbook trip as the total landings divided by either hook-hours (for vertical line gears) or 

total number of hooks set (for longline). A set of logistic (i.e., binary) GLMs were fitted to 

predict the probability of individual vessels dropping out of the fishery after the DWH closures 
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in 2010. Pre-closure history of fishing location, trip productivity, and a range of descriptive 

fishing behavior variables were used to fit the models. The fate of vessels after closures 

(remained in or dropped out) was used as the model response.  

 

Vessel Pre-Closure History 

Productivity history. For each vessel, logbook trips were used to calculate aggregated 

pre-closure (January 1, 2000 to May 1, 2010) median trip duration (days), median revenue and 

median CPUE, revenue and CPUE between-trip variability, median snapper landings, and 

median grouper landings. All landings, CPUE, and revenue variables were calculated from loge-

transformed values. Outliers were identified and removed using the Grubb’s test in the outlier 

package in R (Komsta 2011). Primary and secondary gears used by each vessel, primary and 

secondary landing states, and primary and secondary species groups targeted were also identified 

for use as independent variables in the GLMs. Dummy variables for multiple gears used on a 

trip, multiple gears used among trips, multiple landing states, and multiple species groups 

targeted were also included as independent variables (Table 4.1). 

Fishing history relative to closures. A vessel’s pre-disturbance VMS record from January 

1, 2008 through May 1, 2010 was used to construct a metric of fishing location history relative to 

DWH closure location. The metric was calculated in order to include fishing location choice in 

the GLMs. Using the heat map of “closure proportion” (Figure 3.1) and approach described in 

Chapter 3, pre-closure VMS fishing points for all trips were assigned a closure proportion value 

and the median spatial impact metric for each trip was calculated. Each vessel’s pre-DWH 

spatial impact metric was then calculated as the median impact metric over all pre-closure trips. 

Median values were used rather than the mean to reduce any potential skew of the data from 
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especially high or low values (i.e., those vessels that fished very near the wellhead or completely 

outside the region for a majority of the record). 

 

Modeling Fisher Resilience 

Longline vessels impacted by an emergency turtle bycatch reduction rule in 2009 were 

first identified and removed from the data set to avoid conflating effects from the different 

closures. The turtle bycatch rule was in place from May 18 through October 28, 2009 (164 days), 

and prohibited bottom longlining for GoM reef fish shoreward of Cape San Blas, Florida, 

approximately along the 100-m (50-fathom) contour (NOAA Fisheries Service 2009). Vessels 

reporting longline as the top gear and with logbook trips in 2008 and 2009 (with a start date 

before the May 18, 2009 closure) were identified. If a vessel did not have any logbook trips with 

a start date on or after May 18, 2009 it was considered as having “dropped out” and was 

removed from the dataset. 

From the vessels remaining, only those with a consistent trip record in 2008, 2009, and 

2010 (with a start date before the April 20, 2010 blowout) were used to fit a set of GLMs9 to 

predict the probability of dropping out of the fishery after DWH closures. If a vessel did not have 

any logbook trips with a start date on or after the initiation of the closures (May 2, 2010), it was 

considered as having “dropped out.” If a vessel had trips after the start of closures, or stopped 

fishing temporarily and then returned, it was considered as having “remained” in the fishery. 

This fisher selection approach is similar to other studies that have modeled fisher resilience after 

closures (e.g., Hackett et al. 2015, Richerson and Holland 2017).  

                                                 
9 Separate GLMs were used for revenue productivity variables and CPUE productivity variables (Table 
4.1) due to a high collinearity between CPUE variability and revenue variability (Pearson correlation= 
0.79, p<0.001). 
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Each GLM used post-closure vessel status (dropped out or remained) as the model 

response, and was fit using vessel-level aggregate pre-disturbance productivity and fishing 

location history. Thus, the level of replication was an individual vessel, and there was only one 

entry per vessel in the model data (n=319 vessels). The predicted probabilities returned from the 

GLMs were the probabilities of individual vessels dropping out of the fleet after DWH closures. 

Hierarchical selection of an optimal model using Akaike’s Information Criterion (AIC) was 

conducted in R using the native stats package (R Core Team 2016). A null model with only the 

response and intercept was used as the lower scope of the model selection process, with the full 

model of all terms (including appropriate interactions) used as the upper scope of model 

selection (Table 4.1). Both forward and backward selection were used and ‘longline’ and 

‘Florida’ were used as the standards for gear type and landing state, respectively (GLM 

coefficients=1). Owing to the skewed nature of the response (i.e., a highly unbalanced number of 

0’s and 1’s), a complementary log-log link function (clog-log) was used for all models. Terms 

that were marginally significant or non-significant after the hierarchical selection procedure were 

manually eliminated based on comparison of the scaled deviance between models with a 

likelihood ratio test; non-significant changes in deviance resulted in deletion of terms, and terms 

that changed the model deviance the least were removed first. After each variable removal, the 

model was re-evaluated, and the process was repeated until only significant terms (or one term) 

remained. All p-values were tested at an alpha of 0.05. Plots of GLM residuals were further used 

to identify and remove potential outliers.  

Estimates of model coefficients, coefficient standard error, and 95% confidence intervals 

of the final model were transformed from the link function scale (i.e., log linear odds) to the 

scale of the response (fitted probabilities) by applying the inverse of the link function: 
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(1) 1 ����
 

where X was either the confidence intervals, GLM estimates, or GLM standard errors. A 

Hosmer-Lemeshow goodness-of-fit test (Hosmer and Lemeshow 2000) was used from the 

ResourceSelection package in R (Lele et al. 2016) to test the fit between the final logistic GLM 

and the observed data. This test is based on a Chi-square test statistic and a p-value greater than 

0.05 indicates that the model fit is not significantly different than the observed data.  

Model results were then grouped into post-hoc categories based on the model data means 

for each significant term returned in the GLMs. If a vessel had a pre-disturbance value less than 

the mean it was classified as “low”, and “high” otherwise. The mean predicted probability of 

dropping out was then calculated for each post-hoc group based on the GLM predicted 

probability of each vessel in the category, and analysis of variance (ANOVA) tests were used to 

assess significant differences in predicted model probability among groups. Significant 

differences from ANOVA were examined further with Tukey-HSD tests for group means; both 

ANOVA and Tukey-HSD tests were conducted at an alpha of 0.05. 

 

Post-Oil Spill Changes in Effort Distribution 

Differences in the spatial distribution of fishing effort were quantified and mapped for: 

(1) vessels that dropped out of the fishery after DWH closures vs. those that remained, and (2) 

the pre-DWH closure (January 1, 2008 through May 1, 2010) vs. post-DWH closure (May 2, 

2010 through December 28, 2012) distribution of remaining vessels. Vessels were only included 

in the effort mapping if they were in the final data set used to fit the GLMs. All effort densities 

were first calculated as the number of VMS pings per 0.15° × 0.15° grid cell, using the raster 

package in R (Hijmans et al. 2016). Grid cells with less than three VMS pings were reassigned as 
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“NA” and not mapped, to ensure confidentiality of the data. For ease of comparison and 

visualization, densities of remaining cells were rescaled (ranging from 0 to 1) relative to the 

maximum for a given time period or group. Changes in spatial distribution (based on rescaled 

effort density) were then calculated as the difference between individual density layers. A 

difference of 0 indicated no change in relative density, or complete overlap in distribution, while 

a value of 1 or -1 indicated maximum difference, or no overlap in spatial distribution.  

A spatial difference index was calculated (Lee et al. 2010) to quantify the overall 

difference in effort distributions before and after the closures. Using the raster package, each 

raster layer was normalized so that the sum of all cell values was equal to 1. The per-cell 

absolute difference between two layers was then calculated, summed over the entire study 

region, and divided by two. This provided an index of difference that varied from zero, such that 

an index of 0 represented identical spatial distribution of fishing activity, and 1 represented 

maximum difference, or no overlap, in spatial use. 

 

Results 

Modeling Fisher Resilience 

A total of 319 vessels were used to fit the GLMs, 16 of which dropped out post-DWH 

(5%). Of the 16 that dropped, 6 (38%) reported longline as the top gear, and 10 (62%) reported 

vertical line as the top gear. The rate of drop out after each closure was within the range that 

would be expected based on background rates of annual attrition seen in logbook and VMS data 

(Table 4.2), both prior to and after these closures. From 2000 through 2014, the mean rate of 

attrition in logbook data was 14% annually, and both logbook and VMS rates of attrition were 
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~20% annually from 2008-2012. Both logbook and VMS data showed evidence of consolidation 

in the fleet, with fewer total trips and fewer total vessels over time (Table 4.2). 

The final models for DWH closures used revenue variability, median grouper landings, 

median CPUE, and the interaction between CPUE magnitude and CPUE variability to predict the 

probability of dropping out of the fishery (Table 4.3). Gear type, state landed, and spatial history 

of a vessel (i.e., the time spent fishing inside the closure region previous to the closure date) were 

not significant. The CPUE and revenue GLMs were both significant overall (�2=24.5, d.f.=4, 

p<0.001 and �2=19.8, d.f.=2, p<0.001, respectively) and fitted probability values were not 

significantly different than observed data based on the Hosmer-Lemeshow test (p=0.35 and 0.19, 

respectively). The final GLMs for predicting the probability of dropping out after DWH closures 

were specified as: 

CPUE model: 

(2) clog-log(πi) = α + β1(Median grouper lbs.)i  + β2(Median CPUE)i + β3(CPUE 

variability)i  + β4(CPUE variability × Median CPUE)i 

Revenue model: 

(3) clog-log(πi) = α + β1(Median grouper lbs.)i + β2(Revenue variability)i 

where πi was the GLM predicted probability of dropping out on the scale of the complementary 

log-log link function (i.e., log linear odds) for each vessel i, α was the model intercept, and the 

βj’s were the variable coefficients. The fitted probability of dropping out for each vessel i on the 

response scale (Yi) was calculated using the inverse of the link function (see eqn. 1) as: 

(4)	Y� 	 = 	1 �����������	(��)	
	

In the first model (eqn. 2), vessels with greater CPUE magnitude were less likely to drop 

out (p=0.002; Figure 4.1C), but the interaction between CPUE magnitude and CPUE variability 



88 

was also significant (p=0.01; Figure 4.1D; Table 4.3). The interaction term appeared to be driven 

by CPUE variability, as the increasing pattern between the two were similar (compare curves in 

Figure 4.1A and D). Thus, the positive relationship with CPUE variability (increasing probability 

with increasing variability) compensated for the negative relationship with CPUE magnitude. In 

the second model (eqn. 3), revenue variability displayed a positive relationship with probability 

of dropping out (p<0.001; Figure 4.2A); vessels with less consistent pre-DWH revenues were 

more likely to drop out. Greater pre-closure grouper landings significantly increased the 

probability of dropping out in both the CPUE model (p=0.02; Figure 4.1B) and the revenue 

model (p=0.007, Figure 4.2B).  

 

Post-hoc Classification 

 Classifying the vessels into post-hoc groups relative to variable means revealed 

combinations of variables that resulted in higher or lower probability of dropping out of the 

fishery (Table 4.4). In the CPUE model (eqn. 2), vessels with a history of lower grouper landings 

before DWH were less likely to drop out (mean probability=0.02) than those vessels with a 

history of greater grouper landings (mean probability=0.07). The GLM fitted probability of 

dropping out was significantly different between grouper landings categories (ANOVA, 

F1,314=42.5, p<0.001; Figure 4.3A; Table 4.5). At the same time, vessels with consistently higher 

CPUE before DWH closures were the least likely to drop out (mean probability=0.02), while 

vessels that had low and variable CPUE were the most likely to drop out (mean 

probability=0.08). The interaction of CPUE magnitude × CPUE variability categories was 

significant (ANOVA, F1,314=8.91, p=0.003): vessels with low CPUE had a higher probability of 

dropping out regardless of variability, while vessels with high CPUE had a significantly greater 
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probability of dropping out when variability was also high (Tukey-HSD, p=0.001; Figure 4.3B). 

In the revenue model (eqn. 3), vessels with low revenue variability or low grouper landings 

before closures were less likely to drop out (mean probability=0.04 and 0.02, respectively), while 

vessels with high revenue variability or high grouper landings were more likely to drop out 

(mean probability=0.08 and 0.07, respectively; Table 4.4). The GLM fitted probabilities were 

significantly different between grouper landings (ANOVA, F1,316=63.7, p<0.001; Figure 4.3C) 

and revenue variability categories (ANOVA, F1,316=39.34, p<0.001; Figure 4.3D; Table 4.5). 

 

Post-Oil Spill Changes in Effort Distribution 

Dropped and remaining vessels before closures. The difference in pre-DWH effort 

distribution among vessels that dropped out vs. remained was moderate (Figure 4.4). Remaining 

vessels had a greater scale of effort density than dropped vessels (maximum density value of 

1,525 VMS points per grid cell vs. 245, respectively). The overall (2008-2010) spatial difference 

index between the groups was 0.55, meaning there was ~45% similarity in space use before 

closures. This overall similarity was only slightly higher than the annual spatial difference index 

in 2008 (0.63=37% similarity), 2009 (0.61=39% similarity), and 2010 (0.74=26% similarity). 

The greatest overall difference in relative effort density was 0.95 (i.e., almost no overlap), 

offshore of the central Florida Peninsula (black diamond in Figure 4.4C). This difference was 

due to a much greater relative density in the area for remaining vessels. Interestingly, the region 

with greater relative density of dropped vessels was just slightly northwest of this (black circle in 

Figure 4.4C). There was also greater relative density of remaining vessels throughout the Big 

Bend and off the Alabama coast northeast of the DWH wellhead (Figure 4.4C). The difference in 

the distributions between the two groups of vessels may be attributable to the very low number 
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of vessels that dropped out overall (only 5%), or the geographic difference in distribution for 

those vessels that remained vs. dropped out: effort was distributed throughout the GoM before 

closures for vessels that remained (Figure 4.4A), while effort was heavily concentrated in the 

north-central and eastern GoM for those that dropped out (Figure 4.4B). The similarity in effort 

was concentrated entirely in the north-central and eastern GoM. 

Remaining vessels before and after closures. Vessels that remained in the fishery after 

DWH did not undergo a substantial shift in spatial distribution after the initiation of fishing 

closures. The overall spatial difference index for these vessels was 0.20, meaning that there was 

a ~80% similarity in space use from before to after closures. The spatial difference index for 

remaining vessels by gear type was slightly higher than the overall value, but still indicated no 

substantial shifts in spatial distribution post-closure: 0.21 for vertical line (79% similarity) and 

0.23 for longline (77% similarity). The maximum absolute difference in relative effort density 

from before to after closures was 0.59, and was centered on the 200-m isobath off the Alabama 

coast. This pattern was driven by a post-closure reduction in relative effort density off the 

Alabama coast (black circle in Figure 4.5). The Florida Panhandle, Big Bend, and WFS regions 

also saw moderate changes in relative effort density after closures: effort was generally reduced 

along the Panhandle and Big Bend, and shifted slightly south/southeastward, increasing the 

relative density along the middle and southern WFS. The greatest increase in post-closure 

density for remaining vessels was centered on the southern WFS, with an absolute difference of 

0.43 (black diamond in Figure 4.5). 
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Discussion 

We expected that vessels with a significant history of fishing within closed areas would 

be more likely to leave the fishery once closures were put in place. The models, however, did not 

explicitly include spatial distribution metrics or landing state as a significant predictor of leaving 

the fishery. Instead, vessels with a record of consistently high CPUE, low grouper landings, or a 

combination of consistent revenue and low grouper landings were the least likely to drop out 

after DWH closures. This result is somewhat surprising, given the importance of spatial 

dynamics in fishers’ decision making and fishing outcomes (Branch et al. 2006, Dowling et al. 

2012, Weninger and Perruso 2013). Yet, pre-closure median grouper landings was a significant 

predictor of dropping out of the fishery after DWH closures and may be linked to pre-closure 

effort distribution. Reef fishers in the eastern GoM tend to rely on grouper species more so than 

fishers in the central or western GoM, in part due to the historically overfished red snapper stock 

in the eastern GoM (see also the results in Chapter 2). The geographic disparity in distribution 

between vessels that dropped out vs. remained (Figure 4.5) may therefore be reflecting the 

significance of grouper landings in the models; the probability of dropping out was greater with 

increased grouper landings and there was a high concentration of vessels that dropped out in the 

eastern GoM where grouper landings are dominant. A more rigorous analysis of spatially-

explicit and spatial proxy variables for dropped and remaining vessels (e.g., mean fishing 

location and geographical range of fishing locations), may help elucidate the finer-scale spatial 

differences in vulnerability and resilience in this fishery.  

There may have additionally been other motivations or modifications in response to these 

emergency closures. The seemingly small shift in effort distribution after DWH closures 

(quantified as an ~80% overall similarity in space use, and gear-specific similarity ranging from 
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71-77%) suggests either a fidelity to fishing grounds, or the ability to adapt to changing 

conditions independent of changes in spatial utilization. For instance, fishers on remaining 

vessels may have had the ability to use different gears or target different species in the reef-

species complex. Transferability of vessels, gears, and crew skills and knowledge is an important 

factor for fishery participation (Hackett et al. 2015). Of the 303 vessels that remained after DWH 

closures, 160 (53%) used multiple gear types within single trips, 234 (77%) reported multiple top 

gear types between trips, and 278 (92%) reported more than one top species group landed.  

At the same time, payments made through the Vessels of Opportunity (VoO) Program 

and to commercial fishers, crew, and vessel owners from the Seafood Compensation Program 

likely buffered against potential oil-related economic losses. Payments through the VoO program 

for spill remediation efforts totaled $283 million, and $2.2 billion was paid through the Seafood 

Compensation Program for lost fishing-related income (Deepwater Horizon Claims Center 

2018). The financial buffer from these payments likely ameliorated some of the impacts from the 

oil spill and subsequent fishing closures, thereby allowing more fishers to remain in the fishery 

than would have otherwise and decreasing the rate of fisher drop out (5% compared to 14-20% 

background). This mechanism is analogous to insurance programs buffering against financial 

risk and environmental uncertainty in agricultural production. In the case of fisheries, 

unanticipated natural or human-induced disaster may lead to revenue shortfalls because of lower 

catch and/or lower prices, with indemnity payments making up for lost revenue and sustaining 

individual fishers that might otherwise be forced to leave (Mumford et al. 2009). 

The rate of drop out after each closure was well below or within the range that would be 

expected based on background rates of attrition. Other studies have similarly reported on the 

resiliency of GoM fishes and fisheries post-DWH (Fodrie et al. 2014, Murawski et al. 2016, 
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Schaefer et al. 2016), and there is evidence that the emergency closures may have had positive 

effects on the abundance of some near-shore and estuarine juvenile fishes in 2010 through 

release of fishing mortality on spawning adults (i.e., a closure reserve effect; Fodrie and Heck 

2011, Schaefer et al. 2016). Population-level benefits have also been reported for Gulf menhaden 

(Brevoortia patronus) in the northern GoM (Short et al. 2017), owing to reduced predation 

pressure after high oil-induced mortality of some predators (i.e., seabirds, marsh birds, and 

bottlenose dolphins) and diversions of fresh water from the Mississippi River that inhibited 

access to juvenile menhaden for others. Recruitment of the 2010 Gulf menhaden year class was 

anomalously high and led to a population biomass that was more than twice the average biomass 

for the preceding decade (Short et al. 2017). This population increase — especially for a major 

forage fish species at the base of the food web — presents the possibility of additional indirect 

effects throughout the northern GoM ecosystem via increased predation on Gulf menhaden prey 

or greater availability of Gulf menhaden biomass to surviving predators. 

While fishers in the far western GoM were not directly impacted by the DWH closures, it 

is possible that perceived risks from the DWH oil spill impacted willingness or ability to fish, or 

reduced overall revenue and profitability as the result of reduced consumer confidence and 

market prices. There were also relatively few productivity or other descriptive variables that 

were significant in the models. This may have been due to similarities in catch and revenue 

values between the vessels that dropped out and those that remained (compare the range of 

observed values in Figures 4.1 and 4.2). Using additional quantitative variables for the models is 

therefore warranted. Exploring fishery-level patterns in a multivariate context (e.g., a canonical 

analysis of species composition and abundance in landings coupled with fishing locations and 
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descriptive behavioral variables), could also reveal additional drivers of differences between 

vessels that remained and those that left.  

A decadal record of fishing trips informed our modeling approach, under the assumption 

that an aggregate record of pre-impact fishing would influence a fishers’ decision making, and 

therefore the potential for resilience after each closure. However, there may be different time 

scales operating that were not captured in our analysis. For example, fishers may be using a one 

year, months- or days-long record of fishing to make decisions. There may also be processes 

occurring at the regional-, state-, or county-scale that were not explicitly examined (potentially 

contributing to the result that spatial indices were not significant). While a more in-depth 

partitioning of the data may help illuminate some of these processes, ethnographic studies in 

fishing communities would give local context and external validity to our results, and assure that 

our conclusions make sense in reality (Jacob et al. 2010).  

Given the small percentage of vessels that dropped out of the fishery, the comparatively 

high background rate of attrition, and the small shifts in effort distribution for remaining vessels 

post-DWH, we might conclude that this commercial reef fishery was largely resilient to the 

emergency closures put in place during the DWH oil spill. Still, there is some evidence that 

winners and losers post-DWH were location specific, with a greater concentration of dropped 

vessels in the north-central and eastern GoM.  
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Table 4.1. Factors considered as inputs into the logistic general linear models for quantifying 
fisher resilience after DWH fishing closures. 
 

Factor CPUE model Revenue model 

Spatial impact metric  Distribution of pre-disturbance effort relative to closures  

Aggregated pre-
disturbance fishing 
history characteristics 

Median trip duration (days) 
Primary species group landed (Top group) 
Secondary species group landed 
Primary landing state (Top state) 
Secondary landing state  
Primary gear used (Top gear) 
Secondary gear used 

Aggregated pre-
disturbance fishing 
history characteristics 
coded as dummy 
variables  

Multiple gears used within a trip 
Multiple top gears used between trips  
Multiple top groups between trips  
Multiple landing states between trips 

Aggregated pre-
disturbance productivity 

Median CPUE 
CPUE variability 
Median snapper landings 
Median grouper landings 

Median revenue 
Revenue variability 
Median snapper landings 
Median grouper landings 

Interactions considered 

Spatial impact × CPUE 
Spatial impact × CPUE variability 
Spatial impact × snapper landings 
Spatial impact × grouper landings 
Spatial impact × Top group 
CPUE × trip duration 
CPUE variability × trip duration 
CPUE × Top state 
CPUE × Top group 
CPUE × CPUE variability 
CPUE variability × Top state 
CPUE variability × Top group 
Snapper landings ×  trip duration 
Grouper landings ×  trip duration 
Snapper landings × Top state 
Grouper landings × Top state 
Trip duration × Top state 
Trip duration × Top group 

Spatial impact × revenue 
Spatial impact × revenue variability 
Spatial impact × snapper landings 
Spatial impact × grouper landings 
Spatial impact × Top group 
Revenue × trip duration 
Revenue variability × trip duration 
Revenue × Top state 
Revenue × Top group 
Revenue variability × revenue 
Revenue variability × Top state 
Revenue variability × Top group 
Snapper landings × trip duration 
Grouper landings × trip duration 
Snapper landings × Top state 
Grouper landings × Top state   
Trip duration × Top state 
Trip duration × Top group 
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Table 4.2. Number of unique vessels and rates of vessel entry and attrition as calculated from the 
logbook and VMS data. 
 

 Year 
Number of unique 

vessels in first year 
% Remaining % Dropped % Entering 

Logbook 2000-2001 417 91.6 8.4 11.2 

 2001-2002 431 93.7 6.3 14.3 

 2002-2003 470 90.2 9.8 10.2 

 2003-2004 474 92.2 7.8 14.5 

 2004-2005 511 89.8 10.2 13.8 

 2005-2006 530 88.7 11.3 14.9 

 2006-2007 552 86.6 13.4 11.3 

 2007-2008 540 85.5 14.5 14.9 

 2008-2009 543 86.9 13.1 15.3 

 2009-2010 556 73.0 27.0 11.0 

 2010-2011 457 79.8 20.2 18.2 

 2011-2012 447 82.0 18.0 15.3 

 2012-2013 432 77.3 22.7 11.7 

 2013-2014 381 81.7 18.3 14.0 

 2014 359 n.a. n.a. n.a. 

 Mean 00-14 473 85.6 14.4 13.6 

 Mean 08-12 487 80.4 19.6 14.9 

VMS 2008-2009 516 84.3 15.7 15.7 

 2009-2010 516 71.9 28.1 12.5 

 2010-2011 424 80.4 19.6 17.6 

 2011-2012 414 80.4 19.6 14.8 

 2012 391 n.a. n.a. n.a. 

 Mean 08-12 452 79.3 20.7 15.2 

 
Note: Percentages were calculated using the number of unique vessels (as identified by vessel 
hull numbers) in each year. Only the number of vessels is reported for the terminal year of each 
data set. n.a. = not applicable. 
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Table 4.3. Results of logistic general linear models (GLMs) for the probability of dropping out 
of the fishery after 2010 DWH emergency fishing closures.  
 

GLM Effect Coefficient  SE P 
Lower 
CI 

Upper 
CI 

CPUE (Intercept) 0.02 0.93 < 0.001 0.002 0.08 

 Median CPUE  0.35 0.73 0.002 0.21 0.52 

 CPUE variability  0.77 1.00 0.89 0.001 1.00 

 Median grouper landings  0.76 0.69 0.02 0.67 0.87 

 
Median CPUE ×  
CPUE variability 

1.00 0.95 0.01 0.81 1.00 

Revenue (Intercept) 0.004 0.92 < 0.001 0.001 0.02 

 Revenue variability 1.00 0.996 < 0.001 0.99 1.00 

 Median grouper landings  0.78 0.69 0.007 0.69 0.87 

 
Note: Coefficients, standard errors (SE), and probability confidence intervals (CI) are on the 
scale of the response (probability), and were calculated using the inverse of the link function 
used in the general linear model (see eqns. 1 and 4). Models for CPUE and revenue were run 
separately due to the high collinearity between CPUE and revenue variability. The models were 
fit using pre-closure loge-transformed values. 
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Table 4.4. Mean logistic general linear model (GLM) fits for the probability of dropping out of 
the fishery after DWH emergency closures, based on post-hoc category groupings for vessels.  
 

GLM Variable 
Variable 
Mean 

Grouping 
Mean GLM 
probability 

N 

CPUE CPUE magnitude  5.4 High  0.03 173 

   Low 0.08 146 

 CPUE variability 1.1 Low 0.04 225 

   High 0.06 94 

 Grouper landings 21.2 Low 0.02 124 

   High 0.07 195 

 CPUE magnitude ×  
CPUE variability 

n.a. High × Low 0.02 122 

  High × High 0.05 51 

   Low × Low 0.08 103 

   Low × High 0.08 43 

Revenue Revenue variability 1.1 Low 0.04 227 

   High 0.08 92 

 Grouper landings 21.2 Low 0.02 124 

   High 0.07 195 

 
Note: The categories were assigned based on the means of each variable found to be significant 
in the GLMs, with “low” defined as less than the model data mean. Means given are back-
transformed values. n.a. = not applicable.  
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Table 4.5. ANOVA results from post-hoc category comparisons among significant variables 
after fitting general linear models (GLMs).  
 

GLM Effect d.f. SS MS F P 

CPUE CPUE magnitude  1 0.21 0.21 46.6 < 0.001 

 CPUE variability 1 0.03 0.02 5.4 0.02 

 Grouper landings 1 0.19 0.19 42.5 < 0.001 

 
CPUE magnitude × 
CPUE variability 

1 0.04 0.04 8.9 0.003 

 Residual 314 1.43 0.005    

  d.f. SS MS F P 

Revenue Revenue variability 1 0.13 0.13 39.3 < 0.001 

 Grouper landings 1 0.21 0.21 63.7 < 0.001 

 Residual 316 1.04 0.003    

  



104 

 
Figure 4.1. CPUE model of fitted GLM probabilities as a function of (A) pre-closure between-
trip CPUE variability, (B) pre-closure median grouper landings, (C) pre-closure median CPUE 
magnitude, and (D) the interaction of CPUE variability and CPUE magnitude. Black circles are 
observed values (1=dropped out, 0=remained), gray circles are model fitted probabilities, and the 
dashed vertical lines denote the mean value of each variable (used to group vessels into post-hoc 
groups, see Table 4.4). Solid black lines are predicted probability values (holding other model 
variables constant at their mean value) and dashed lines are 95% confidence intervals.  
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Figure 4.2. Revenue model of fitted GLM probabilities as a function of (A) pre-closure between-
trip revenue variability and (B) pre-closure median grouper landings. Black circles are observed 
values (1=dropped out, 0=remained), gray circles are model fitted probabilities, and the dashed 
vertical lines denote the mean value of each variable (used to group vessels into post-hoc groups, 
see Table 4.4). Solid black lines are predicted probability values (holding other model variables 
constant at their mean value) and dashed lines are 95% confidence intervals.   
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Figure 4.3. Fitted GLM probability of dropping out after DWH closures, based on post-hoc 
categorical grouping of vessels from the CPUE model (panel A-B) and the revenue model (panel 
C-D). The categories were assigned based on the means of each variable found to be significant 
in the model, with “low” defined as less than the model data mean (see Table 4.4). Different 
letters in the bars in panel B indicate significant differences from a Tukey-HSD post-hoc test on 
group means after ANOVA. All values are means ± SEM.  
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Figure 4.4. Fishing effort distribution and difference between vessels before DWH closures. (A) 
Effort density for vessels that remained in, (B) effort density for vessels that dropped out, (C) 
difference in relative effort density (scaled to 1) between dropped and remaining vessels. The 
highest density region is marked with a black diamond (A) and black circle (B). In panel C, the 
red color indicates regions where the density of remaining vessels was greater than dropped 
vessels, and the blue color indicates regions where the density of dropped vessels was greater 
than remaining vessels. The greatest difference for dropped vessels (i.e., where the pre-closure 
relative density was greatest over remaining vessels) is marked with a black circle (-0.57) and the 
greatest difference for remaining vessels over dropped (0.95) is marked with a black diamond. 

VMS Density  
(# points/0.15 degree square) 

VMS Density  
(# points/0.15 degree square) 
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Figure 4.5. Differences in fishing effort distribution from before to after DWH closures for 
vessels that remained in the fishery. Areas with reductions in effort density after DWH closures 
are in blue, with the maximum difference (-0.59) indicated by the black circle. Areas with 
increases in effort density are in red, with the maximum difference (0.43) indicated by the black 
diamond. 
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CHAPTER 5. CONCLUSIONS 

 

Summary of Dissertation  

This dissertation characterized the spatiotemporal patterns of productivity and fishing 

effort for the commercial reef fish fishery in the Gulf of Mexico (GoM) and quantified responses 

to large-scale disturbance in the form of the Deepwater Horizon oil spill fishing closures. 

Analyses utilized traditional fisheries-dependent datasets (onboard observer and trip logbooks), 

but were novel in the use of complementary high-resolution VMS data to quantify displacement, 

characterize changes in space use over time, and build quantitative models identifying drivers of 

fisher resilience.  

Trip-level productivity (quantified as ex-vessel revenue and CPUE) for total species, 

snappers, and grouper CPUE increased significantly over the study period. Although grouper 

revenue was not significantly different between the start and end of the study period (2000 vs. 

2014), there were significant fluctuations in the interim years, including a significant decrease in 

grouper revenue in the central and eastern regions in 2010 and 2011. Snapper and grouper 

productivity were separated into distinct west and east regions, and effort between vertical line 

and longline gear was clearly delineated based on existing regulations for longline gear. 

Productivity was consistently highest in the western GoM over the study period, although fishing 

effort was most dense in the central and eastern regions. This result was likely driven by the 

dominance of snappers in catch for trips in the west.  
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Similarly, Gulf-wide productivity patterns for trips inside vs. outside DWH fishing 

closure boundaries did not change over time. There were, however, increases in CPUE for trips 

inside closure boundaries in the east both during and after closures as well as post-closure 

increases in revenue for trips inside closure boundaries in the east. This pattern may have been 

the result of reduced competition from fewer vessels or trips in and after 2010. Consolidation of 

the fleet after 2010 was evident in both the logbook and VMS data and vessels that dropped out 

of the fishery post-DWH were concentrated in the north-central and eastern GoM (Chapter 4). 

Fewer vessels could have led to more available fish biomass, and therefore overall greater 

landings, CPUE, and revenue per trip over time in this area.  

While there were regionally varying outcomes for individual fishers — with a greater 

concentration of dropped vessels in the north-central and eastern GoM — the overall attrition 

rate after DWH was well below what was expected based on the background annual attrition rate 

alone (5% vs. 14-20%). Given the magnitude of the oil spill on the environment, businesses, 

tourism, and the seafood industry in the GoM, this is a surprising and significant result. The 

drivers of attrition were found to be a pre-closure history of revenue variability, median grouper 

landings, median CPUE, and the interaction between CPUE magnitude and CPUE variability. At 

the same time, resilience was likely enhanced by the significant emergency compensation 

payments made to fishers and vessel owners for lost income and assistance with spill remediation 

efforts (Figure 5.1). Continuing work on this fishery would certainly benefit from including 

additional variables in the models, including landings and revenue for individual species and 

finer-scale information on individual households and communities.  

Reduced competition may not have been only a consequence of DWH fishing closures. 

Results presented here suggest that the implementation of the Grouper-Tilefish IFQ in 2010 may 
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have played a role in consolidation in the eastern GoM. Fishing effort for vessels that left the 

fishery after DWH closures was most concentrated in the eastern GoM, and trip productivity in 

the east was dominated by grouper species (Chapters 2 and 4). Yet, the spatial impact metric 

quantified as a measure of displacement was lowest in the eastern region, meaning that fewer 

trips were located inside closure boundaries (Chapter 3). It is therefore possible that the loss of 

vessels after 2010 was a consolidation effect from the grouper IFQ. Consolidation of participants 

has been previously documented for the Grouper-Tilefish IFQ (Brinson and Thunberg 2016), and 

would not be unexpected since reducing overcapacity is a primary objective of restricted access 

management. Surely, the IFQ and the oil spill could have been working in tandem to force out 

more fishers than might have dropped out from either disturbance alone.  

On the other hand, the Red snapper and Grouper-Tilefish IFQs (implemented in January 

2007 and January 2010, respectively) may have “primed” the fishery for increased resilience 

during and after the DWH oil spill. That is, if inconsistent or marginally productive fishers (i.e., 

the least resilient to DWH closures, as quantified in Chapter 4) left after IFQ implementation, 

the baseline capacity for resilience in the fishery may have been enhanced. The exact reasons for 

attrition in the Grouper-Tilefish and Red snapper components of this fishery at the time of both 

DWH and IFQ implementation requires more data than is currently available for this work, 

including more fine-scale ethnographic and economic information.  

The results presented here suggest an optimal utilization of fishing grounds on the part of 

fishers in response to gear restrictions and DWH fishing closures. Trip-level revenue and CPUE 

continued to increase annually even as DWH closures, the longline seasonal closure, and IFQ 

systems for the two major species groups in the fishery were put into place. Effort was clearly 

concentrated based on gear type and existing longline regulations, and moved in response to the 
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initiation and cessation of DWH fishing closures. CPUE magnitude and variability and revenue 

variability were significant GLM variables (Chapter 4) and the distribution of trip revenue hot 

spots appeared to contribute to the overall patterns of effort distribution (Chapter 2).  

The fleet displayed a largely similar effort distribution before and after closures (66-78% 

overall, and 63-79% by gear), including a return to fishing grounds that were inside closure 

boundaries during DWH. Still, once closures were removed there was a decrease in effort density 

off the Alabama coast and Florida Big Bend and concomitant increases in effort density on the 

West Florida Shelf (WFS). Shifts in effort onto the WFS during DWH persisted after the 

closures were removed for both fishers that were inside and outside closure boundaries during 

DWH. It is possible that fishers began to take advantage of an already productive fishing ground 

on the southern WFS during and after DWH. Thus, changes in space use during and after DWH 

could have contributed to the observed increases in both CPUE and revenue over time. 

Characterizing and quantifying the productivity and profitability of this specific region warrants 

further investigation. 

In addition, the increased CPUE and revenue in the years following closure re-openings, 

suggest that fishermen remaining in the fleet after DWH may have benefitted from a closure 

reserve effect and/or reduced competition. A closure reserve effect – wherein emergency 

closures protected targeted stocks by virtue of not allowing any fishing – could have resulted in 

increased available biomass in the short term, and therefore increased landings and CPUE for 

individual fishers once closures were removed. Evidence for a closure reserve effect has been 

suggested for other coastal species (Fodrie and Heck 2011), including Spotted seatrout 

(Cynoscion nebulosus) in the north-central GoM that had orders-of-magnitude increases in 

juvenile abundance and elevated catch rates after closures in 2010.  
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Environmental Considerations 

The environment is an integral part of any fisheries system. While environmental 

variability and oceanographic conditions were not a primary focus of this dissertation, it is 

important to place the results into a broader environmental and oceanographic context.  

 

Species-Habitat Relationships 

The benthic habitat across the GoM varies from being dominated by muds in the west 

(Texas and Louisiana) to sands and gravel in the north-central and east (Mississippi, Alabama, 

and Florida).10 This spatial distribution of bottom habitat types impacts the distribution of major 

fishery species. Red snapper in particular rely on intermediate and high relief reef habitats 

throughout its lifetime, with requirements for increasingly complex structure as a fish grows 

(Gallaway et al. 2009). While natural reef habitat is generally sparse in the northern GoM 

(Parker et al. 1983), the proliferation of nearly 4,000 oil and gas platforms in the western and 

north-central GoM and ~20,000 artificial reefs off of Alabama’s coast has supported significant 

commercial and recreational Red snapper fisheries for at least the past 50 years (Gallaway et al. 

2009, Shipp and Bortone 2009). Similarly, Gag grouper depend on deep hard-bottom reefs on the 

edge of the West Florida Shelf for spawning, coastal seagrass beds for larval settlement, and 

near-shore hard-bottom reefs as juveniles and adults (Koenig and Coleman 1998, Ellis and 

Powers 2012). Red grouper rely on karst topography and carbonate sands in the eastern GoM to 

excavate pits that are used for home territories and spawning sites (Coleman et al. 2010, Wall et 

al. 2011, Harter et al. 2017). The regional patterns of logbook species composition quantified in 

                                                 
10 NOAA Gulf of Mexico Data Atlas. 2017. Marine Geology: Dominant Bottom Types and Habitats. 
Available online at: https://gulfatlas.noaa.gov/catalog/products/physical/marine-geology/. 
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this work (i.e., snappers in the west and central GoM and groupers in the east) fall in line with 

the distributions that would be expected based on these bottom habitat types. 

The interaction between habitat, species distribution, area or seasonal closures, and gear-

specific functionality could have important ramifications for effort redistribution, profitability of 

fishing locations, and ultimately the outcomes of regulatory change. The distribution of fish 

species is strongly related to the distribution of suitable habitat (Yeager et al. 2011, Arias-

González et al. 2012), and it has been demonstrated that snapper and grouper species have strong 

site fidelity to reef or hard-bottom structure (e.g., Saul et al. 2013). While habitat maps were not 

used in this analysis, the high percentage of trips reporting Red snapper, Vermilion snapper, Red 

grouper, and Gag (Table 2.5) make it unlikely that fishers are not fishing in these habitats.  

Furthermore, the functionality and effectiveness of particular gear types will vary based 

on the environment and the target species. For example, Stelzenmüeller et al. (2008) found 

fishing effort in offshore waters of the United Kingdom concentrated regionally based on 

seafloor sediment type, which was additionally linked to the functionality of the different gears 

used in the fleet. If only particular gear types are restricted from an area (i.e., bottom longline), 

the cost of fishing could increase disproportionately for some fishers (e.g., due to increased 

travel time to avoid the closure), thereby reducing overall profitability for certain fishing 

locations. While fishers can change targeting behavior to account for regulations, the relationship 

between habitat, species distributions, and gear functionality for particular species in particular 

habitats can lead to serious and complex outcomes for a fishery (Valcic 2009).  
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Phytoplankton Blooms 

Spring phytoplankton blooms have been observed in the Florida Big Bend and across the 

WFS, owing to seasonal high-nutrient discharges from the Mississippi River, Apalachicola 

River, and local rivers throughout northwest Florida (Gilbes et al. 1996, Gilbes et al. 2002). 

These high-nutrient river inputs are transported across the WFS by east/southeastward currents, 

which are set up by seasonal winds, large-scale surface heat fluxes, and across-shelf temperature 

gradients (Weisberg et al. 2005). Strong winds or Loop Current (LC) intrusions can further 

intensify seasonal currents and upwelling circulation, thereby increasing advection and mixing of 

nutrient-rich deep water onto the WFS (Weisberg and He 2003), and creating conditions for a 

phytoplankton bloom. For example, in December 2010 physical forcing from anomalously 

strong upwelling-favorable winds increased advection of nutrients across the shelf break onto the 

WFS, and led to a phytoplankton bloom through January 2011 that spanned from Mobile Bay to 

the Florida Keys (Hu et al. 2011).  

In addition, there is indirect evidence from satellite observations and circulation modeling 

that the DWH oil spill led to the formation of a large, contiguous patch (~11,000 km2) of 

anomalously high phytoplankton biomass in the northeastern GoM from August to September 

2010 (Hu et al. 2011). Several smaller patches were also present in the area and southwest of the 

Mississippi River, but were not as spatially coherent. Reduced predation pressure from 

zooplankton grazing or increased nutrient regeneration from dead zooplankton or other 

organisms may have been responsible for the observed patch, although zooplankton surface 

densities were highly variable across space (ranging from 10,000 to over 70,000 individuals/m3). 

An influx of nutrients from upwelled deep water may have also played a role in the 

phytoplankton bloom; LC interactions with the shelf slope at the Dry Tortugas led to a prolonged 
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upwelling event across the region through the spring and fall (Weisberg et al. 2014a). It is 

possible that this large increase in available phytoplankton biomass (both in August and again in 

December of 2010) increased survival and recruitment of some larval and juvenile fishes in the 

region, and thus contributed to increased productivity of the commercial reef fish fishery after 

2010 (these data) as well as to the strong year classes observed for some juvenile coastal fishes 

(Fodrie and Heck 2011) and Gulf menhaden (Short et al. 2017) in 2010. 

 

Larval Dispersal Mechanisms 

Successful larval dispersal is a major determinant of population dynamics, and is 

ultimately driven by interactions between biology (e.g., larval behavior, growth rate, condition, 

survival rate) and physical circulation properties (e.g., advection, upwelling) at a range of spatial 

and temporal scales (Cowen and Sponaugle 2009). Seasonally varying wind stress has been 

described as a determinant of Red snapper larval dispersal in the northern GoM (Johnson et al. 

2009); larval transport pathways were modeled to be westward during May, September, and 

October (under the influence of strong westward wind stress) and eastward during peak 

spawning months of June, July, and August (under the influence of weaker shoreward wind 

stress). The varying circulation of WFS bottom currents similarly plays a role in the transport of 

Gag larvae to inshore settlement habitats. The bottom currents over the WFS are upwelling-

favorable during Gag spawning months (i.e., late winter through early spring) and have been 

demonstrated to transport demersal larvae eastward near to coastal seagrass habitats (Weisberg et 

al. 2014b). However, interannual variability in the intensity or timing of seasonal upwelling (e.g., 

from strong winds or interactions with the Loop Current) can influence annual, seasonal, and 

temporal variability in Gag recruitment success. Significant interannual variability in juvenile 
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Gag recruitment has been reported by Switzer et al. (2012), who additionally noted a pattern of 

strong juvenile recruitment every two to four years. The WFS upwelling event in December 

2010 (as described above) may have thus acted to enhance Gag larval transport and recruitment 

success in the eastern GoM, resulting in the observed pattern of increased grouper productivity in 

the region from 2012 through 2014.  

 

Harmful Algal Blooms 

Harmful algal blooms in the GoM known as “red tide” typically occur in low nutrient 

conditions supplied by aeolian dust and local estuarine nutrients, in the presence of colored 

dissolved organic matter (CDOM) that acts as a sunscreen for the dinoflagellate cells, and with 

localized wind-driven upwelling that concentrates cells at coastal fronts (Walsh et al. 2003, 

2009). Red tides composed of the ichthyotoxic dinoflagellate Karenia brevis are now frequent 

(near annual) events in the GoM, and have been observed off the coast of Texas since at least the 

1930’s and the Florida coast since the mid-1800’s (Walsh et al. 2006). Massive fish kills — 

some comparable to the yields of a directed fishery — for groups including sardines, menhaden, 

drums, groupers, and snappers can be attributed to the potent neurotoxins produced by K. brevis 

during red tide events.  

 There have been significant red tide events in the eastern GoM from fall 2004 through 

winter 2007,11 including a severe event that lasted for nearly 13 months off Florida’s coast from 

January 2005 to February 2006 (Flaherty and Landsberg 2011). The 2005 event started offshore 

along west-central Florida and eventually reached more than 1,300 km2 in surface area, spanning 

from Tampa Bay to the Florida-Alabama border in June 2005 (FWRI 2018). The event 

                                                 
11 Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute. 2017. HAB 
Monitoring Database. Available online at: http://myfwc.com/research/redtide/monitoring/database/. 
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contributed to the formation of widespread hypoxic zones off west-central Florida, in Tampa 

Bay, Sarasota Bay, and Charlotte Harbor in July-August 2005 (Hu et al. 2006), and affected 

benthic communities in an estimated 5,600 km2 area (FWRI 2018). The extent and duration of 

the event caused mass mortalities for benthic communities, sea turtles, marine mammals, birds, 

and fish, including Gag, Red grouper, and Red snapper.12  

In this work, productivity for groupers was significantly lower overall in 2005 than either 

2004 or 2006 (Figure 2.7); the eastern GoM displayed the same pattern but 2005 differences 

were not statistically significant (Figure 2.9). The broad spatial scale of the eastern zone, 

however, may be dampening finer-scale regional impacts of the 2005 red tide on fishery 

productivity. Snapper and grouper productivity in the western GoM similarly decreased in 2005 

compared to 2004 and 2006, although grouper CPUE was the only metric with a statistically 

significant change (Figure 2.9). Given the location of the red tide events in the eastern GoM, any 

decreases in western productivity attributable to red tide would likely manifest through indirect 

trophic mechanisms. Grazing on K. brevis by some copepod species may pass brevetoxins on to 

higher trophic levels (Walsh et al. 2003), and seagrass, shellfish, and omnivorous and 

planktivorous fish have been found to act as brevetoxin vectors for higher trophic levels 

(including marine mammals, birds, and humans) through retention and accumulation in their 

tissues (Landsberg 2002, Flewelling et al. 2005, Naar et al. 2007). More complex ecological 

dynamics may occur as the result of red tide events as well. For example, if K. brevis affects 

competitors, per-capita consumption rates may increase after competition for prey is reduced 

(e.g., Sagarese et al. 2015). Productivity of younger fish (typically with faster growth rates) may 

                                                 
12 Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute. 2018. Fish 
Kill Database Directory. Available online at: http://myfwc.com/research/saltwater/health/fish-kills-
hotline/. Searched results for all counties as the result of red tide from January 1, 2005 through February 
28, 2006. 
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similarly increase if red tide mortality disproportionally affects older individuals. These types of 

compensatory mechanisms may in part explain the rapid productivity increases observed here for 

snappers and groupers after 2006. 

 On the other hand, deep water upwelling over the shelf break brings inorganic nutrients 

to otherwise oligotrophic surface waters and suppresses red tide blooms, because increased 

nutrients allow for the growth of phytoplankton species that can outcompete K. brevis (Walsh et 

al. 2003, 2009). In 1998 and 2010, LC interactions with the shelf slope at the Dry Tortugas led to 

strong and prolonged upwelling across the WFS from spring through the fall. This LC mediated 

upwelling has been implicated in the absence of a red tide on the WFS in those same years 

(Weisberg et al. 2014a). Thus, the anomalous physical circulation of the WFS in 1998 and 2010 

may have acted to indirectly enhance survival and recruitment of several fish species through 

release from red tide mortality.  

Due to the narrow shelf width and onshore direction of bottom currents, the region 

between Tampa Bay and Charlotte Harbor is one of maximum near-shore upwelling (Weisberg 

et al. 2000). This region is also one of prolific Gag recruitment (Weisberg et al. 2014b, Switzer 

et al. 2012) and a major epicenter of recurring red tide events in the eastern GoM (Walsh et al. 

2006). If Gag larvae (spawned from late winter through early spring) and K. brevis were 

concentrated together near the coast, there could be serious negative consequences for the 

population and fishery in subsequent years. Changes in fish abundance, community structure, 

and declines in juvenile recruitment were reported for several species in the Tampa/Sarasota 

region after the 2005 red tide event (Gannon et al. 2009, Flaherty and Landsberg 2011). At the 

same time, chronic exposure to brevetoxins through the diet could lead to impaired feeding, 

growth, immune function, behavior, or reproduction for organisms at all trophic levels 
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throughout the ecosystem (Landsberg 2002 and references therein). In the long term, chronic 

exposure to toxins from harmful algal blooms poses a major threat to ecosystems and fisheries 

sustainability. 

 

Implications 

 While this dissertation is a step toward understanding spatiotemporal changes in 

productivity, distribution of fishing effort, and resilience in this fishery, it could also serve as a 

bridge to more rigorous and data-intensive modeling of responses to sudden disturbances (e.g., 

oil spills or emergency regulatory rules) as well as gradual changes in spatial management (e.g., 

implementation of marine protected areas). This work includes only a portion of the GoM reef 

fish fishery and most certainly only a small portion of overall fishing in the GoM (Figure 5.1). 

For instance, the total (vessel standardized) 2010-2014 revenue and landings for the data used for 

this work totaled $43.2M (adjusted to $2008) and 14.1 million gutted pounds. In comparison, 

NOAA fisheries reported $3.8B in commercial revenue and 1.8 billion lbs. in total commercial 

landings for all GoM key species or groups13 over the same time period (NMFS 2016a). 

Nevertheless, major key species such as Red snapper, Vermilion snapper, and groupers were 

included in the data used here; in 2015, Red snapper and Vermilion snapper were two of the top 

ten commercial species landed Gulf-wide (NMFS 2016b). 

The patterns detailed here must be studied further, and with a more discrete eye toward 

other regulatory changes that occurred around this same time. For example, in 2010 Amendment 

                                                 
13 Key species and groups for the commercial sector include Blue crab, Stone crab, Crawfish, Red 
snapper, groupers, mullets, oysters, shrimp, and tunas. Menhaden were not included in the total values 
reported here, since the group represents a disproportionate fraction of the commercial fishery (e.g., ~73% 
of total key species landings and ~10% of key species revenue from 2010-2014). Menhaden contributed 5 
billion lbs. in landings and $394M in revenue from 2010-2014 (NMFS 2016a). 
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31 to the Reef Fish Management Plan (GMFMC 2010) established a series of new regulations 

for longline fishers in the eastern GoM. These included the longline seasonal closure (June-

August) for reef fish, a longline endorsement for the reef fish permit (requiring average annual 

reef fish landings of at least 40,000 pounds from 1999 through 2007 to qualify), and a gear 

limitation of 1,000 hooks per vessel per trip, of which no more than 750 can be rigged for fishing 

or fished. These regulations almost certainly impacted the ability of individual longline fishers to 

remain in the fleet after 2010, independent of any effects from the DWH oil spill or 

implementation of the Grouper-Tilefish IFQ in 2010. In the Red snapper fishery, harvest 

reduction regulations have led to accelerated recovery rates of Red snapper since 2007 

(Gallaway et al. 2017). Juvenile bycatch mortality has also been reduced in part due to shrimp 

trawling effort reductions as mandated in the 2004 Red snapper rebuilding plan,14 although 

shrimp trawling effort has declined primarily from adverse economic conditions (i.e., high fuel 

costs and reduced prices from cheap imports; Gallaway et al. 2017). Note, however, that the Red 

snapper IFQ was also implemented in 2007 and recovery patterns from pre-IFQ regulations are 

likely confounded with IFQ impacts. Additional concomitant regulatory changes included a 164-

day emergency turtle bycatch reduction closure for longline fishers in the eastern GoM in 2009 

(NOAA Fisheries Service 2009). In addition, the GMFMC recently voted to remove the 1,000 

hook limit on longline vessels that was established with Amendment 31 (GMFMC 2017), thus 

creating an interesting opportunity to compare longline effort distribution, fleet economics, and 

productivity before, during, and after the hook limitation regulation.  

A wider range of fisher characteristics, decisions, and outcomes should be included in 

future modeling work as well. For instance, fishers that returned to the fishery after a hiatus, 

                                                 
14 The GMFMC approved an updated Red snapper rebuilding plan in 2004 with Amendment 22 to the 
Reef Fish Fishery Management Plan (GMFMC 2004). 
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moved to the recreational for-hire sector, or transitioned into working in other fishery-related or 

non-fishing sectors. It is feasible that fishers moved into other jobs in the fishing industry for a 

period of time, and returned to fishing after the initial environmental and economic risks from 

the oil spill had dissipated. To be sure, there are a variety of social and economic drivers behind 

the decision to stay active in a commercial fishery. These can include fishing income 

diversification and income stability; market channel relationships with processors, fish markets, 

restaurants, and others; age, health, and disability status; education level, experience, and skills 

that can be transferred to non-fishing sectors; other household income and employment 

opportunities; and the location of job opportunities outside of fishing relative to household 

mobility (Hackett et al. 2015). These data could be obtained through surveys, interviews, or 

workshops within fishing communities, or quantified with proxies from existing fishery datasets. 

Discrete choice modeling could be used to approach these questions, and has been used in the 

past to understand displacement and spatial shifts in fishing effort after closures (Valcic 2009), 

participation choice in a multispecies fishery (Larson et al. 1999), long-term decisions such as 

entry and exit (Ward and Sutinen 1994), and shorter-term daily decisions of where to fish (Hicks 

and Schnier 2005). Recent econometric work (Zhang and Smith 2011) on the GoM reef fish 

fishery — using captain survey data and a similar logbook data set to that used here — revealed 

that travel costs, species price, captain age, and perceptions on the effectiveness of marine 

reserves were all drivers of fishing behavior and choice of fishing grounds after implementation 

of two marine reserves.  

In the case of the DWH oil spill, fishers may have opted to aid in oil spill response 

through the Vessels of Opportunity (VoO) program. Approximately 3,500 commercial and 

charter boats were employed in the VoO program over its lifetime (Upton 2011), with payments 
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of $283 million paid out to 5,401 individual fishers (Deepwater Horizon Claims Center 2018; 

Figure 5.1). An additional $2.2 billion was paid out to commercial fishers, crew, and vessel 

owners as part of the Seafood Compensation Program, and all economic and property damages 

compensation totaled $10.4 billion (Deepwater Horizon Claims Center 2018). While some may 

have opted to leave fishing altogether in exchange for a monetary settlement, the compensation 

payments possibly gave others some financial security and incentive to remain in the fishery 

during a very uncertain and risky period of time (see also the Discussion in Chapter 4). A more 

focused analysis of the relationship between DWH emergency compensation and the decision to 

remain in the fishery is warranted. At the time of this work, data on individual participation in 

the VoO program, transition to other job opportunities, or specific compensation amounts for 

individual fishers were not available. 

  

Final Thoughts 

There is a growing body of literature that suggests that the acute population-level impacts 

of the DWH oil spill were not as severe or significant as might have been expected. Fodrie and 

Heck (2011) and Schaefer et al. (2016) concluded that the oil spill did not significantly impair 

the community of northern GoM coastal fishes examined at the ecosystem level, and no 

significant post-spill shifts in community composition, structure, or biodiversity were observed. 

Peterson et al. (2017) similarly concluded that the DWH oil spill did not significantly impact the 

abundance or food-web structure of large coastal fishes in the Florida Big Bend. To be sure, the 

impacts of DWH will propagate through the GoM ecosystem over different time horizons and 

with different outcomes for individual populations or systems. Economic and environmental 
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impacts will likely be more severe and require longer recovery time for benthic fishery species 

such as shrimp and shellfish (Sumaila et al. 2012).  

It has been previously estimated that the DWH oil spill will result in over 22,000 lost jobs 

and have a total economic impact of $8.7 billion through 2019 for mariculture, commercial, and 

recreational fisheries in the GoM (with total economic impact to commercial fisheries estimated 

at $4.9 billion; Sumaila et al. 2012). While the full scope of population- and fisheries-level 

responses to the DWH oil spill may take many years to be realized, it appears from this work that 

the resilience and recovery of this fishery have been better than initially anticipated. This 

conclusion is supported by the following results: 

(1) Productivity for snappers, groupers, and total species were generally either stable or 

increased after 2010 (Chapter 2); 

(2) Regional productivity patterns and relative productivity for trips inside vs. outside 

closure boundaries were constant over time (Chapters 2 and 3); 

(3) Fleet-level and gear-specific fishing grounds were similar before and after DWH 

(including the location of trips relative to closure boundaries), with shifts in effort 

after closures onto the West Florida Shelf (Chapters 3 and 4); and 

(4) A lower rate of vessel attrition after the DWH closures than would be expected based 

on the background rate (Chapter 4). 

It is important to note that the conclusion of resiliency for this particular fishery is not meant to 

negate or trivialize the loss of jobs, income, or financial stability that resulted from the oil spill 

for many businesses, families, and coastal communities across the GoM. 

Ultimately, understanding the factors that contribute to vulnerability, resilience, and 

response of fishers to regulations and disturbance will improve decision making about fisheries 
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resources. This dissertation stands to make a significant contribution to our understanding of how 

the DWH oil spill impacted fisheries and communities in the GoM. This work will also 

contribute more broadly to our understanding of how large-scale perturbations are absorbed and 

propagated through coastal marine fisheries. 
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Figure 5.1. Deepwater Horizon economic and property damage claim payments for a subset of 
claim categories, with a comparison of the total revenue for this fishery and total revenue for 
GoM key species from 2010-2014. The total number of claims paid out in each category is 
shown with the bars (in thousands; primary axis) and the total payment values are shown with 
the green line (in millions; secondary axis) and the numbers above bars. Claims data were 
obtained from the Deepwater Horizon Claims Center (2018). 
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Appendix A. Logbook Data Selection 

Logbook records were filtered by first eliminating trips that reported no reef fish 

landings, revenue, vessel length, or effort (i.e., average hooks per line, average number of lines 

used, or total number of sets). Duplicate records were removed based on the unique trip identifier 

assigned to records by the NOAA NMFS Southeast Fisheries Science Center. Only trips 

reporting longline or vertical line (handline or bandit-reel) as the top-revenue producing gear 

were used in analyses, since these are the main gears used in this fishery (Scott-Denton et al. 

2011), and represent 89% of logbook-reported trips from 2000-2014. Only data for snappers, 

groupers, tilefish, jacks, and triggerfish were used to quantify catch and revenue; total revenue 

and total landings were calculated for each trip as the sum of reported values for the species in 

these five groups. Total landings and revenue for snappers and groupers were also calculated 

similarly, using only the species in the respective group (see Table 1.2). Trips that had zero total 

calculated landings were eliminated (under the assumption that these trips were not targeting reef 

fish), and remaining records had a constant of 0.1 added to the value for snapper and grouper 

landings and revenue in order to permit natural log (loge) transformation of data.  

Catch-per-unit-effort (CPUE) was calculated for each logbook trip as the total landings 

(or total snapper or grouper landings) divided by the total number of hooks fished. Total revenue, 

snapper revenue, and grouper revenue for each trip were inflation adjusted to 2008 US dollars 

($2008) using the United Nations Food and Agriculture Organization (FAO) fish price index 

(FPI) price series (Tveterås et al. 2012). Analogous to a consumer price index, the FPI collapses 

price and quantity information into one number that tracks change in seafood price as a whole. 

The FPI is an improvement over other food commodity indices, however, in that it incorporates 

aquaculture production, import and export flows, and the extent of international trade 
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competition for 608 unique trade data categories of fish and seafood. The value of the FPI for 

2008 (FAO value of 136) was set to 100 as the standard and all other values were scaled 

accordingly (i.e., multiplied by 0.74).  

Two outliers for CPUE and one for landings were identified and removed using the 

Grubb’s test in the outlier package in R (Komsta 2011). Vessels that had anomalous gaps in their 

VMS reporting frequency were also eliminated (see Appendix B), for a total of n=96,668 trips in 

the final logbook data set. All revenue, landings, and CPUE data were loge-transformed in order 

to linearize relationships and meet normality assumptions of linear regression and ANOVA. 

Total, snapper, and grouper landings, CPUE, and inflation-adjusted revenue were 

additionally standardized to account for effects of vessel size, as larger vessels have the capacity 

to hold more fish, make longer trips, and therefore report greater landings or revenue overall. To 

eliminate this potential confounding factor, data were divided by a fishing power coefficient, 

calculated based on empirically-determined vessel size categories and ANOVAs of loge-

transformed values vs. vessel size category (Murawski et al. 2005; see Appendix C).  
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Appendix B. Vessel Monitoring System Reporting Frequency Quality 

 Vessel monitoring system (VMS) locations are meant to be reported approximately every 

hour for the duration that the transponder is active. However, there were vessels within the 

dataset that did not adhere to this reporting frequency. The VMS dataset is patchy in places, with 

some vessels having highly irregular tracking records; including these data in the analysis would 

add considerable noise for limited benefit. In order to eliminate lower quality reporting vessels, a 

test was run to determine which vessels had the best quality data reporting. A linear model was 

fit to each individual vessel’s VMS record (from 2006-2013), with ordered record number as the 

predictor and timestamp as the response. Using this approach, a perfect VMS record would make 

a straight line and a fitted model would have an r2=1. Conversely, gaps in the VMS record will 

cause discontinuities in the ordered data series with a resultant decrease in the r2 value of a fitted 

regression model for that vessel. The VMS dataset used in this study was filtered by selecting 

vessels with a high reporting frequency quality r2 (i.e., a regular reporting record; r2=0.75 or 

greater) and 10 or greater total VMS records. There were 1,302 unique vessels in the VMS data 

set to start, reduced to 1,104 unique vessels once the data reporting quality filter was applied 

(~85% of all unique vessels). The mean reporting frequency quality r2 value for these vessels 

was 0.96.  
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Appendix C. Logbook Data Standardization to Vessel Size 

Fisher’s Natural Breaks Classification was applied to the selected logbook data (see 

Appendices A-B) from 2000-2014 (n=96,668 records) using the classInt package in R (Bivand et 

al. 2015) to obtain the size bins for four vessel size classes (Table C.1). Each trip was then 

assigned to a vessel class based on the reported length of the vessel (in meters). A linear 

regression for the effect of vessel length on landings, CPUE, and revenue for the total, snapper 

portion, and grouper portion were run separately for each variable to calculate the fishing power 

coefficients, with vessel class 1 as the baseline in each test. All variables were linearized with a 

loge transformation before running the regressions. The formula for calculating the coefficient 

for each vessel size class was: 

(1) �����������	�����������	���������(�.�	×	�����������	���.		�����) 

The untransformed original values for landings, CPUE, and revenue were then divided by the 

appropriate fishing power coefficient (Table C.1) to obtain the final vessel-class standardized 

values. To ensure that there was no relationship between the standardized variables and assigned 

vessel class, an ANOVA was run on loge-transformed standardized variables vs. vessel size class 

after each transformation and confirmed visually with boxplots and scatterplots.  
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Table C.1. Fishing power coefficients used for standardizing variables to vessel size. 
 

Vessel length 
(m) 

Vessel 
category 

Total 
revenue 

Total 
landings 

Total 
CPUE 

Snapper 
revenue 

Snapper 
landings 

Snapper 
CPUE 

Grouper 
revenue 

Grouper 
landings 

Grouper 
CPUE 

[4.87-9.9] 1  1 1 1 1 1 1 1 1 1 
(9.9-12.63] 2 3.26 3.18 1.02 2.00 1.93 0.62 10.12 8.28 2.66 

(12.63-16.46] 3 7.12 7.06 0.12 5.61 5.27 0.09 10.89 9.07 0.15 
(16.46-26.21] 4 9.15 8.92 0.15 22.07 18.56 0.32 1.90 1.81 0.03 

 
Note: Vessel size class 1 was the standard for all calculations. All size class intervals were closed on the right



141 

Appendix D. Vessel Monitoring System Data Selection 

The VMS data (Rivero 2015) were filtered to retain only active fishing points, as 

determined by: (1) linking VMS points to logbook trips based on a unique vessel identifier and 

trip start and end dates, (2) filtering VMS-logbook linked data to the times of peak fishing 

activity as quantified in observer data (see Appendix E), and (3) applying empirically-

determined “speed filters” based on the cumulative distribution of ranked vessel speeds (see 

Appendix F). After identifying fishing activity with the time and speed filters (based on gear type 

used), an additional three nautical mile (5.56 km) coastal “buffer” was added to avoid false 

positives for fishing activity near the coast. Points that were on land (likely representing a VMS 

system turned on early or left on after a trip), outside the GoM basin, or deeper than 2000-m 

(where reef fishing activity is highly unlikely to occur) were also eliminated. Vessels that had 

anomalous gaps in their VMS reporting frequency were removed (see Appendix B), and vessels 

with fewer than three VMS points after filters were applied were removed from the data set to 

allow for proper calculation of spatial metrics.  

  



142 

Appendix E. Defining Peak Fishing Activity in Observer Data 

Mandatory onboard observer efforts began in 2006 for the commercial reef fish fishery 

(Scott-Denton et al. 2011). Observer data were available for bottom longline (n=5,839) and 

bandit-reel (n=20,646) trips. Fishing activity in the observer data was defined as the time 

spanning the recorded start of a gear set plus the recorded soak time (for bottom longline) or 

fishing time (for bandit-reel). The median number of observations for set start times and set end 

times were calculated, the earliest set start and latest set end time corresponding to the median 

frequency were determined, and an additional 30 minute “deviation window” was added on 

either side to get the final fishing time window. Fishers are often engaged in fishing activity 

before and after gear deployment and actual recorded set times; the deviation window was added 

to account for this possibility as well as individual VMS pings that may have been transmitted 

just before or after the recorded set times and would otherwise be considered “non-fishing.” 

Complementary work to this study has also revealed that algorithms trained to identify fishing 

activity with this “window-labeling” method are more accurate in positively identifying fishing 

behavior than traditional “point-labeling” methods, especially in fisheries using gears such as 

bandit-reel that have short-duration sets (O’Farrell et al. 2017). The majority of fishing activity 

as recorded in the observer data set was between 0615 and 2245 hours for bottom longline (97% 

of n=5,839 observer records) and between 0745 and 2000 hours for bandit-reel (92% of 

n=20,646 records; Figure E.1). The same peak activity time window was used for both vertical 

line gears (i.e., bandit-reel and handline). 
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Figure E.1. Diel pattern of fishing sets from 2008-2012. (A) Bottom longline and (B) bandit-reel 
observer data. Times at the start of sets are marked with black circles and times at the end of sets 
are marked with grey circles. Red vertical lines denote the time window used to filter VMS 
points for fishing activity. Time windows were chosen based on correspondence with the median 
number of observations for set start (solid horizontal line) and end times (horizontal dashed line). 
Median values are equal for bottom longline. The y-axis has been jittered to better visualize 
overlapping points of observations made at the same times.  
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Appendix F. Determining Fishing Speed Filters 

 Speed filters were determined empirically from the data set. First, VMS points and 

logbook records were linked by using unique individual vessel identifiers and the start and end 

date of the logbook trips; only those points that fell on or within the dates of each logbook trip 

for a given vessel were kept. Second, these VMS-logbook linked records were matched to 

bottom longline and/or bandit-reel observer data based on the top gear reported in logbooks, 

unique vessel ID, date, and times of peak observed fishing activity (see Appendix E). This 

resulted in only VMS points that were matched to logbook trip dates as well as fishing activity as 

reported by observers. Records were further filtered by eliminating records with speeds equal to 

zero or in excess of 20 m/s, and keeping only records for vessels that met the minimum reporting 

frequency quality (see Appendix B).  

Next, the cumulative distributions of calculated VMS speeds from 2008-2012 were used 

to empirically determine the speed rules for bottom longline and bandit-reel gear fishing activity. 

The VMS speed data were ranked; the lower and upper 5% of the data were subsequently 

removed, keeping only the middle 90% of calculated vessel speeds (Figure F.1). The mean speed 

from the middle 90% of the distribution (Figure F.2) as well as boxplots of the data (Figure F.3) 

helped visualize the range of vessel speeds and determine the speed rules. The speed rules were 

chosen to include the overall mean value for each gear, as well as the majority of speeds that fell 

within the middle 90% of the cumulative distribution.  

Based on the ranked data and cumulative distributions of VMS speeds, speed rules of 1-4 

m/s were used for both longline and vertical line gears (representing ~35% and 20% of the 

logbook and observer matched VMS data, respectively). The average (mean ± SEM) calculated 

speed from the middle 90% of ranked data from 2008-2012 for bottom longline and bandit-reel 
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gears was 2.04 ± 0.008 m/s and 1.19 ± 0.01 m/s, respectively. Bandit-reel had an especially large 

variation in mean vessel speed from year to year. 
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Figure F.1. Cumulative frequency distributions of calculated VMS vessel speeds. From 2008- 
2012 VMS data matched to logbook trip dates and peak time of fishing activity as quantified in 
observer data. (A) Trips reporting bottom longline as the top gear, and (B) trips reporting bandit-
reel as the top gear. Circles on the curves denote the speeds corresponding to the lower and upper 
5% of the distribution.  
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Figure F.2. Calculated vessel speeds for the middle 90% of ranked VMS speed data. From 2008-
2012 VMS points matched to logbook trip dates and peak time of fishing activity as quantified in 
observer data, for (A) bottom longline (mean ± SEM) and (B) bandit-reel gears (mean ± SEM). 
The horizontal solid and dashed lines represent the overall mean and SEM, respectively, for the 
respective gear.   
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Figure F.3. Boxplots of calculated vessel speeds for the middle 90% of ranked speed data. From 
2008-2012 VMS points matched to logbook trip dates and peak time of fishing activity as 
quantified in observer data for (A) bottom longline and (B) bandit-reel gears. Whiskers for each 
year are 1.5 times the interquartile range. 
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Appendix G. NOAA Fisheries Logbook Reporting Grids 

 Logbooks require reporting of the top area fished (i.e., the area producing a plurality of 

revenue for the trip) based on statistical grid areas (Figures G.1 and G.2). In 2013 and later, the 

grid areas were on a much finer scale (Figure G.2). These grid areas were used to categorize trips 

into west, central, and east regions for an analysis of productivity over space (see Chapter 2, 

Figure 2.1). Maps of logbook reporting grids were obtained online through NOAA Southeast 

Fisheries Science Center Fishermen and Seafood Dealers Forms Archive for this purpose 

(www.sefsc.noaa.gov/fisheries/reporting_archive.htm). 
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Figure G.1. NOAA Fisheries logbook statistical reporting grids for years 2012 and earlier. 
Available from www.sefsc.noaa.gov/fisheries/reporting_archive.htm.  
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Figure G.2. NOAA Fisheries logbook statistical reporting grids for years 2013 and later. 
Available from www.sefsc.noaa.gov/fisheries/reporting_archive.htm. 
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