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Abstract 

Melanoma is the deadliest form of skin cancer. Prognosis for early stage melanoma patients is 

excellent, and surgery is often curative for these patients. However, once patients have presented with 

invasive disease, the average 5-year survival rate drops significantly from over 90% to between 10 and 

15%. Several therapies have been developed to target a commonly mutated oncogene BRAF, or its 

downstream effectors. Unfortunately, while these treatments show robust initial response, most patients 

relapse within a year. Moreover, therapy-resistant tumors are often more invasive and metastatic. 

Therefore, it is important to investigate the molecular mechanisms underlying melanoma invasion and 

metastasis, and to prevent melanoma cell dissemination and metastatic progression. Invadopodia are 

proteolytic membrane protrusions used by metastatic cancer cells to degrade the extracellular matrix and 

to facilitate cancer cell invasion and metastasis. In my thesis research I have focused on protein 

fucosylation and store-operated calcium entry, two separate mechanisms involved in invadopodial 

regulation.  

 Post translational modifications of proteins are essential for their structure and function. Many 

cell surface proteins require modifications such as glycosylation for protein-protein interactions, cell 

adhesion, and signal transduction. Fucosylation is a form of glycosylation that adds L-fucose on glycan 

structures of proteins. There is evidence indicating that fucosylation plays an important but cancer-type 

and branching dependent role in cancer progression. Emerging evidence indicates that the fucose salvage 

pathway and protein fucosylation are altered during melanoma progression and metastasis. Here, we 

report that the fucose salvage pathway inhibits invadopodia formation and extracellular matrix 

degradation by promoting α(1,2) fucosylation of cell surface proteins. The activation of the fucose salvage 
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pathway decreases invadopodia numbers and inhibits the proteolytic activity of invadopodia in WM793 

melanoma cells. Inhibiting fucokinase, one of the critical enzymes in the fucose salvage pathway, in 

melanoma cells abrogates L-fucose-mediated inhibition of invadopodia, suggesting dependence on the 

fucose salvage pathway. The inhibition of invadopodia formation by L-Fucose treatment or fucokinase 

overexpression could be rescued by treatment with α(1,2), but not α(1,3/4) fucosidase, implicating an 

α(1,2) fucose linkage-dependent inhibitory effect. The ectopic expression of FUT1, an α(1,2) 

fucosyltransferase, is sufficient to inhibit invadopodia formation and ECM degradation. Our findings 

indicate that the fucose salvage pathway can inhibit invadopodia formation, and consequently, 

invasiveness in melanoma via α(1,2) fucosylation. Re-activation of this pathway in melanoma could be 

useful for preventing melanoma invasion and metastasis. 

 Calcium is a critical second messenger involved in a multitude of biological processes from cell 

proliferation to muscle contraction. In melanoma, previous studies have found that activation of the store 

operated calcium entry (SOCE) channel promotes tumor invasion and metastasis, in vitro and in xenograft 

models. The expression levels of STIM1, an essential component of the store operated calcium channels, 

has been found to increase with later stages of melanoma. In melanoma cell lines, the over expression of 

STIM1 enhances invadopodia number whereas STIM1 knockdown inhibits invadopodia formation. 

Similarly, gelatin degradation activity is enhanced with STIM1 overexpression and abrogated with STIM1 

knockdown, implicating STIM1 as an important factor in the regulation of invadopodia formation and 

melanoma invasion. Though the studies published have shown a significant role of STIM1 in tumor 

progression, a robust transgenic animal model has not yet been established. Here, we developed a novel 

transgenic mouse model which, upon 4-hydroxytamoxifen (4OHT) treatment, induces the BRAFV600E 

mutation and PTEN, STIM1, and STIM2 deletions in melanocytes via an inducible Cre-lox system. Our 

investigation found that the loss of STIM1 exacerbates tumor growth and results in tumor formation 

significantly more quickly than STIM1 wild type mice. Whereas PCR analysis of 4OHT-treated skin showed 
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deletion of STIM1 and PTEN, immunohistochemical staining of these genes in tumors did not convincingly 

demonstrate complete deletion. Therefore, it remains to be determined whether the effects we observed 

are due to STIM1 and STIM2 loss. These findings need to be corroborated in the future.  

 Our studies focus on two important mechanisms required for melanoma progression and 

metastasis. We found that α(1,2) fucosylation is able to inhibit invadopodia formation, and melanoma cell 

invasion. The reestablishment of α(1,2) fucosylation in melanoma could potentially be exploited to inhibit 

melanoma metastasis. Additionally, early evidence points to STIM1 having a tumor suppressive role in 

melanoma oncogenesis and tumor growth based on the transgenic mouse model. Although the 

phenotype is unexpected, further investigation of this model will likely provide important insight for the 

complicate roles of SOCE in melanoma initiation and progression.  
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Introduction to Melanoma 

Melanoma is the 5th and 6th most common cancer in men and women respectively in 20181 and is 

the deadliest form of skin cancer.2,3 Despite significant progress in cancer diagnosis and therapeutic 

modalities, the incidence and mortality rates have continued to rise.1,4–6 Between 2009 and 2016, the risk 

of developing invasive melanoma increased from 1 in 58 to 1 in 54, and the life time risk of developing in 

situ melanoma increased from 1 in 78 to 1 in 58.4 When melanoma is detected early, the prognosis is 

favorable, with average 5 year survival rates >90%.4,7 Once melanoma has begun to invade the local tissue 

and metastasize, the average 5-year survival rates drop to 10-15%.3,7 Patients with 3 or more metastases 

have a 1 year mortality rate of over 95%.5  

 Melanoma staging is determined through the TNM system, which takes into account the tumor 

size and ulceration status (T), the number and location of lymph nodes that have been detected as 

involved (N), and the presence of local and distant metastases (M). Several prognostic factors that have 

been linked to poor clinical outcome, and are taken into account when determining staging, include 

ulceration7,8, mitotic rate7,8, satellites8, and primary tumor thickness7,9,10. It has been determined that the 

thickness of the primary tumor – “Breslow Depth” – is the most important factor in predicting survival.7,9 

Surgery is often curative when melanomas are detected early and the tumor thickness is ≤1mm, however, 

survival rates drop steeply with increasing thickness.3 Early stage melanomas are localized to the 

epidermis and have not yet started disseminating.11 Late stage melanoma cells are invasive, and are able 

to invade the local tissue.12 These cells can either intravasate into blood or lymphatic vessels, or take on 

pericyte-like characteristics, to disseminate through or migrate along the vessel.13–15 Disseminated cells 

seeded in different organs develop secondary tumors, or stay in a quiescent state until conditions are 
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favorable for growth.16 Fortunately, our understanding of the causes of melanoma is growing, and 

hopefully, we will begin to see a plateau and decline of mortality rates with continuing education and 

improved detection. 

 

1.1 Metastatic Sites 

 In order for metastasis to occur, the tumor must invade through the local tissue, intravasate into 

the vessels, evade the immune system and survive the circulatory system, adhere to the endothelial lining 

of a capillary, extravasate from the vessel, and finally colonize the new tissue.12,17–19 Metastatic 

colonization is inefficient, with a minute population of disseminated cells developing secondary 

tumors.5,18,20 Melanoma has a propensity to metastasize to certain tissues such as the lungs, brain, and 

skin, however, it has been observed that melanoma tumor cells can disseminate to any viscera and 

tissue.5,12,21,22 Several of the more common metastatic sites are highlighted in Table 1.  

 Lymph nodes have been reported to 

be the most frequent site of metastasis in 

melanoma patients.12 As the thickness of the 

primary melanoma increases, so does sentinel 

lymph node involvement.8,19 Melanoma has 

the propensity to rapidly metastasize, with 

lymph node metastases observed within an 

average of 16 months after initial disease presentation17, and close to 50% of patients with invasive 

melanoma displaying lymphatic invasion.13 Lymph node metastases are prognostic of the metastatic 

potential of primary tumors.19,23 

 Distant organs that are susceptible to melanoma metastases include the lungs5,24, bone5,24, 

liver19,20,24, small intestine20, and brain5,19–21,24. Cutaneous melanomas commonly metastasize to the 

Table 1: Common Sites of Melanoma Metastasis21 

Organ Prevalence at autopsy 

Lymph Nodes 74% 

Lungs 71% 

Liver 58% 

Brain 55% 

Bone 49% 

Adrenal Glands 47% 

GI Tract 44% 

Skin 11% 
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lungs.17 Melanoma cells within tumors that express αvβ3 integrins tend to develop lung metastases.17 A 

postmortem study found that in melanoma patients, lung metastases were present in over 70% of 

individuals.21 Melanoma has been found to metastasize to the bone in ~49% of patients and to the liver 

in up to 58% of postmortem patients.21 Unfortunately, due to poor detection, clinical liver metastases are 

only diagnosed in 10-20% of melanoma patients.5 Melanoma is the most common cancer to metastasize 

to the small intestine, possibly due to CCL25 production by intestinal cells which acts as a chemoattractant 

for CCR9-bearing melanoma cells, and facilitates homing to the small intestine.17 Similar to liver 

metastases, only a small population, between 1-7%5, of patients have metastases clinically detected, 

however, upon autopsy investigation, metastases in the small intestine are found in between 44-58% of 

melanoma patients.5,21 Melanoma is a particularly aggressive cancer type which is able to metastasize 

rapidly to almost any organ. This robust metastatic phenotype significantly contributes to lethality among 

melanoma patients. 

 

1.2 Commonly Mutated Drivers 

 Several oncogenes and tumor suppressors have been found to be commonly mutated in 

melanoma including BRAF, Neuroblastoma RAS (NRAS), phosphatase and tensin homolog (PTEN), p53, 

and cyclin-dependent kinase inhibitor 2A (CDKN2A). BRAF is the most commonly mutated oncogene in 

melanoma with a mutation rate of ~40%, and 80-90% of those mutation being BRAFV600E.2,3,25–36 This 

glutamic acid substitution of valine at position 600 causes constitutive activation of BRAF, which in turn 

continuously activates the mitogen activated protein kinase (MAPK) pathway to promote tumor cell 

growth, survival, migration, and invasion.2,25,27,30 However, the mutation of BRAF alone is not sufficient to 

induce melanoma formation.37 Oncogenic BRAF mutations are found in 80-90% of benign nevi, indicating 

that while it might be a necessary event to induce melanocyte proliferation, the mutation of a single 

oncogene is insufficient to cause a malignant transformation.3,10,27,28,32,36,37 Further studies have found that 
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BRAFV600E is often coupled with inactivation of tumor suppressor genes such as PTEN, p53, and 

CDKN2A.28,36,37 There are numerous FDA approved BRAFV600E inhibitors, with impressive clinical efficacies 

in melanoma patients.28,38–46 However despite robust initial response, most patients become resistant to 

these targeted therapies after 6-7 months with a small percentage remaining disease-free past 1 

year.25,39,47 Resistance has been reported to develop through BRAF splice variant expression, gene 

amplification, or NRAS activating mutations.3,28,39,41,48 Additionally, resistance can develop through the 

activation of signaling pathways that bypass targets of inhibition. Activating mutations in MEK3,47,49,50, 

MITF amplification51, and upregulation of COT expression52 are examples of MAPK agonists resulting in 

the activation of ERK despite BRAF inhibition. Other mechanisms such as enhanced NF-κB signaling53 and 

upregulation of signaling receptors such as PDGFR54, IGF-R155, and FGFR356 have also been implicated in 

conferring therapeutic resistance in melanoma. Multiple studies have been conducted to investigate 

combination treatments to discover novel treatment regimens to combat resistance and extend patient 

survival summarized in Table 2.  

 Another frequently mutated oncogene in melanoma in the MAPK pathway is NRAS. It is the 

second most commonly mutated protein in melanoma with a mutation rate of ~20%.2,3,26–31,33–35,41 Mutant 

NRAS leads to the activation of the MAPK pathway, as well as the PI3K pathway.25,30,57 NRAS mutations in 

melanoma can disrupt antitumor immunity by inhibiting the expression of major histocompatibility 

complexes and recruiting myeloid-derived suppressor cells and regulatory T-cells leading to decreased 

lymphocyte infiltration and a less immunogenic tumor type.25,29 Mutations of NRAS and BRAF are mutually 

exclusive with only ~0.6% analyzed melanoma tumors expressing both mutated oncogenes.25–27,34 

Incidentally, there is evidence that mutations of both proteins in the same cell leads to senescence.35  

Table 2: Combination Treatments 
  

 

Combined with MEK inhibitor Immunotherapy Radiation Chemotherapy 

BRAF inhibitor 2,25,28,38,40,43,46,73,74 65,76 
 

299,300 

Immunotherapy  301–305 63 306 
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 BRAF and NRAS mutations alone are insufficient to promote tumorigenesis and additional 

mutations are required for malignant transformation. PTEN is a frequently mutated tumor suppressor in 

melanoma. PTEN is a lipid phosphatase that dephosphorylates the 3’-position of the inositol ring of 

phosphatidylinositols and inhibits Akt activation.2,30 Loss of PTEN activity can be due to inactivating 

mutations, chromosomal deletion, methylation induced transcriptional silencing, or miRNA dependent 

mechanisms.25 Mutations of PTEN occur in about 10-35% of melanomas and have been observed in both 

NRAS and BRAF mutant tumors.28,30,35,38 A retrospective study found that PTEN protein expression is 

completely lost or reduced in ~80% of analyzed melanoma samples.30 The combination of a mutated 

oncogene with the loss of PTEN activity is sufficient to drive melanoma progression. 

 One of the best known tumor suppressor genes is p53, which is frequently mutated in many 

cancer types.58 p53 is mutated in ~20% of melanomas.28 Mutated p53 is found in thicker invasive 

melanomas and contributes to advanced progression in chronically sun damaged skin.10 Ultra-violet (UV) 

radiation causes DNA damage, which must be repaired in order for a cell to progress through the cell cycle 

to division.59 When DNA damage is detected, p53 is one of the proteins responsible for halting cell division 

until the DNA has been repaired.60 p53 mutations in melanoma occur later in tumor progression as p53 

expression is high in primary tumors compared to nevi, but lost in matched metastatic tumors.36 

Inactivating mutations of p53 are found at a much higher frequency in metastases than primary tumors, 

further supporting p53 mutations are a late event in melanoma.10 

 Another tumor suppressor gene that is frequently mutated in melanoma is CDKN2A. This gene 

inhibits cell cycle progression as it encodes two proteins, p16 and p14arf, that inhibit cyclin dependent 

kinases and activate p53, respectively.35 CDKN2A is mutated in 25-40% of families with hereditary cases 

of melanoma.28,37 Inactivation of CDKN2A has been reported in as high as 88% of sporadic 

melanoma.36,37,61 Similar to p53 or PTEN, loss of CDKN2A is thought to occur later in melanoma progression 

as inactivation is not typically observed in precursor lesions, but occurs once the melanomas have become 
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invasive.10,36 UV radiation is thought to be responsible for CDKN2A loss by causing DNA damage in the 

region of the CDKN2A gene.2 In addition to promoting general tumor growth, the continuous passage 

through the cell cycle without regulation allows for tumor cells to accumulate further mutations that 

might confer a survival advantage62, further promoting heterogeneity and evolution of the tumor. 

 There are many genes and proteins that have been implicated in tumor formation. It is generally 

understood that one mutation is not sufficient to generate melanoma, but rather accumulated mutations 

of oncogenes and tumor suppressors work in tandem to prompt tumor formation and tumor progression.  

 

1.3 Treatments for Melanoma 

The most effective treatment for early stage melanoma is surgery, which can be curative.3,10,17 

However, with later stages of disease, surgery alone is not sufficient to successfully treat melanoma. 

Treatment options that are considered for patients with later stages of disease include adjuvant treatment 

with small molecule inhibitors28,32,34,38,39,41,46,48, radiation17,63,64, and immunotherapy8,25,38,63–72 following 

surgery (Table 3). Limitations of current therapy are due to resistance mechanisms that melanoma cells 

develop to survive targeted therapy treatment. Combination treatments are being investigated to combat 

relapse mechanisms and enhance patient responses. Some treatments aim to block signaling cascades by 

Table 3: Current Therapy Modalities for Melanoma 

Treatment Reasons Used References 

Surgery  Curative intent in early stages 

 Removal of lymph nodes with curative intent 

10,17 

Radiation 

 Alternative to surgery for in situ disease 

 Adjuvant therapy following surgery 

 Palliative relief after metastasis 

17,63,64 

Molecular 
Targeted Therapies 

 Blocking of protein active sites to inhibit signaling driving 
tumorigenesis 

28,32,34,38,39,41,46,

48 

Immunotherapies 
 Block signaling events that lead to immune cell exhaustion 

through CTLA-4 or PD1 

 Adjuvant therapy to boost immune cell function 

8,25,38,63–72 

Combination 
Treatments 

 Target multiple proteins of the same signaling cascade 

 Target multiple proteins in different signaling pathways  

2,38,43,63,65,68,75 
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administration of small molecule inhibitors to target multiple proteins in the same or parallel signaling 

pathways.2,25,28,38,40,43,46,73,74 Other treatment regimens combine small molecule inhibitors, antibodies, 

chemotherapies, and/or immunotherapies in order to inhibit melanoma development while 

simultaneously augmenting the immune response to the tumor cells.2,25,28,38,40,43,46,63,65,68,73–75 The most 

promising combination treatments have delayed disease progression by ~15 months in patients treated 

with a BRAF and a MEK inhibitor38 and overall survival by ~20 months in patients treated with a BRAF 

inhibitor and immunotherapy.76 Although responses and median survival rates are improving compared 

to the standard of care, there is still much to be desired.  

Melanoma has the ability to metastasize rapidly and indiscriminately, causing treatment 

difficulties. Metastases can develop quickly once melanoma cells have begun to invade, or occur years to 

decades after apparent successful removal of the primary tumor.18 Up to 12% of patients that develop 

metastatic melanoma have no identifiable primary tumor5 and upwards of 50% of melanomas develop 

from benign tumors, further contributing to treatment challenges.32,57  

 

1.4 Major Proteins Involved in Cytoskeletal Rearrangement 

 Cancer cells use the same migratory mechanisms involved in embryonic morphogenesis, wound 

healing, and lymphocyte trafficking to migrate through tissue to local vessels.77 The actin cytoskeleton 

plays a significant role in cell movement. Actin polymerization promotes cell migration through the 

elongation of polarized cells and generation of traction forces.77 There are two main actin structures in 

the leading edge of migrating cells termed lamellipodia and filopodia. Filopodia are actin rich protrusions 

that are transient in nature, protrude the cell membrane, promote cell-cell adhesion, act as sensors for 

the cell to probe the microenvironment, and sometimes generate focal adhesionions.78 Lamellipodia are 

thin, sheet-like protrusions of the cell membrane formed by rapid actin branching.79 Filopodia are thought 

to act as sensors of the extracellular matrix (ECM) and seek out small gaps in the fibers, whereas 



8 
 

lamellipodia provide the protrusive force resulting in membrane protrusion and cell crawling.80 As the cell 

crawls forward, the actin filaments at the rear of the cells are degraded, and the globular actin segments 

are recycled to the leading edge of the migrating cell, where they are incorporated into actin filaments, 

to continue the migration.81 

Actin branches are repeatedly being formed and disassembled to facilitate the continual push of 

the cell membrane at the leading edge of migrating cells.82 Extracellular stimuli through integrins or 

receptor tyrosine kinases (RTKs) activates Neuronal Wiskott-Aldrich Syndrome Protein (N-WASP), leading 

to actin nucleation by activation of the Arp2/3 complex79, which can be promoted by WASP interacting 

protein (WIP).79,83 Ena/VASP regulate actin branching by bundling actin filaments and preventing capping 

of actin barbed ends.79 Existing branches are transient in nature and are rapidly disassembled by cofilin to 

maintain the constant pool of actin monomers available to the cell and create barbed ends at which 

further polymerization can occur.84 Cortactin interacts with cofilin to inhibit its actin severing abilities.84,85 

The Rho family of GTPases have been implicated in actin dynamics, particularly RhoC, which has been 

shown to regulate cofilin activity.86 Rho-associated kinases (ROCK) regulate cell migration and invasion 

through organization of the actin cytoskeleton.87 Many studies have been conducted investigating the 

molecular mechanisms of the aforementioned proteins, including the role they play in cancer progression. 

 

1.5 Invadopodia  

Invadopodia are proteolytic actin-rich protrusions of the cell membrane on the ventral side of the 

cell.80 Invadopodia formation can be divided into the following stages: initiation, assembly, and 

maturation.88 Initiation begins when the cell develops focal adhesions, and signaling events through 

growth factors or integrins result in the recruitment of actin nucleating proteins.88 Assembly occurs when 

actin polymerization extends actin filaments and results in protrusion of the cell membrane.88 Maturation 

results in the degradation of the ECM through recruitment and secretion of matrix metalloproteinases, 
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such as MT1-MMP, MMP2, and MMP9.88–90 These invasive structures are important to tumor cell invasion 

as they lead to the restructuring and degradation of the ECM through the recruitment, secretion, and 

activation of MMPs.17,91,92 

Since invadopodia are actin-based protrusions, they require similar molecular machinery as 

filopodia and lamellipodia.89 Invadopodia have been shown to be as long as 12µM, and have a lifetime of 

anywhere from 20 minutes to 2 hours.79,80,89,93 Invadopodia form on the ventral side of the cell, under the 

nucleus, and form perpendicular to the cell surface.79,80,94,95 Once invadopodia have developed, 

degradation of the ECM follows, typically through the combination of physical force as well as the 

recruitment, secretion, and activation of proteinases.86,96–98 Invadopodia have been shown to act as 

docking and secretion sites for endosomes99, which might contribute to the development of metastasis.100 

Cancer cells have been demonstrated both in vitro and in vivo to form invadopodia to penetrate the 

basement membrane, surrounding stroma, and vasculature.83,95,101 Understanding the mechanisms by 

which invadopodia are formed and dysregulated in cancers provides insight and possible targets to study 

to abrogate, or at least delay, tumor cell invasion.  

 

1.6 Signaling Cascades and Key Proteins in Invadopodia 

 Invadopodia initiation begins with signaling through plasma membrane proteins such as integrins 

and RTKs. The signal transduction cascades from these membrane receptors facilitates the recruitment of 

scaffolding proteins, kinases, and actin related machinery to promote invadopodia assembly and 

maturation.89,102–104 There is evidence that invadopodia are generated at lipid rafts, and several important 

proteins in invadopodia assembly, such as Arp2/3, Tks5, and MT1-MMP, localize to these rafts.105–107 

Various growth factors that have been shown to initiate invadopodia formation include PDGF, EGF, VEGF, 

HGF and TGFβ.89,98,108 β1 and β3 integrins have been shown to be the primary adhesion molecules found 

at invadopodial puncta. β1 integrin is thought to be more involved than β3 integrin and forms signaling 
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complexes with Src, epidermal growth factor receptor (EGFR), and focal adhesion kinase (FAK) at 

invadopodia.104 One of the essential kinases in invadopodia formation is Src. Src phosphorylates 

scaffolding proteins and facilitates the interaction between multiple proteins important in cytoskeletal 

rearrangement.79 One such scaffolding protein is known as Tks5. Following activation by Src, Tks5 binds 

to N-WASP and cortactin, facilitating their interaction and function in invadopodia formation.79,89,105,109 

Tks5 also enables the degradation of the ECM through the recruitment of degradative enzymes.101,105,110 

Cortactin plays an important role in the activation of key players in actin polymerization and assembly of 

invadopodia.94 Cortactin acts as a scaffolding protein to facilitate the interaction between N-WASP and 

Arp2/3 and has been shown to be an important regulator of protease secretion, localization of MMPs to 

actin puncta, and ECM degradation.79,96 The phosphorylation of cortactin by Src leads to dissociation with 

cofilin, and promotes the recruitment of Arp2/3 and N-WASP.95,101,105,110,111 Cofillin dissociation from 

cortactin severs actin filaments to generate new barbed ends for actin polymerization and membrane 

protrusion.84,85 As invadopodia mature, degradative enzymes are recruited to degrade the ECM. MT1-

MMP, MMP2, MMP9, sepharase, cathepsin B, gelatinase A, ADAM proteinases, and uPAR are recruited or 

secreted at invadopodia to facilitate the cleavage of various components of the ECM and lead to 

degradation.104,112  
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Part One: An Investigation into the Modulatory Role of Fucose in Melanoma 
Invasion 

Note to Reader 

 Portions of this part have previously been published in PLOS ONE, 2018, 13(6): e0199128 and have 

been reproduced under the terms of the Creative Commons Attribution License CC-BY 2018. 

 

2.1 Introduction 

2.1.1 Fucose 

Fucose is a natural deoxyhexose with similar structure to glucose, except for its lack of a hydroxyl 

group on carbon 6.113 Mammalian cells utilize fucose in the L-enantiomer, whereas they generally make 

use of other deoxyhexoses in the D-enantiomer.114 L-fucose is incorporated onto glycoproteins and 

glycolipids and is important in the synthesis of N- and O-linked glycans in mammalian cells.115,116 

Fucosylated glycans are important in a range of cellular functions from modulating the inflammatory 

response, to cell adhesion and communication, to fertilization.117 Specificity of cell-cell interactions can 

be partially determined by the presence of fucosylated lectin-like adhesion molecules on the cell 

surface.118 Several cell membrane receptors and proteins that have been shown to be fucosylated include 

EGFR, TGFβ, E-cadherin, and various integrins.119 Additionally, selectin ligands have been shown to be 

fucosylated which enhances their binding to selectins, and loss of fucosylation on selectin ligands 

abrogates selectin binding.120 Since cancer can dysregulate many cellular functions to promote growth 

and metastasis, aberrantly fucosylated glycans can play an important role in tumorigenesis and 

progression.  
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Post-transitional modifications are stringently regulated to perform specific cellular functions. 

Aberrant fucosylation has been reported in many cancer types, including melanoma.121 In some cases 

fucosylation is upregulated, whereas in other cases fucosylation is downregulated. Different phenotypes 

stemming from differential fucosylation can be linked to specific fucosylation residues as there are four 

major types of branching.115 Changes in fucosylation have been previously observed to affect metastatic 

properties of cancer such as cell adhesion and recognition by immune cells.122 Lewis antigens (Le) refer to 

specific orientations of monosaccharides with differing orientations of terminal fucosylation, and in some 

cases, sialylation (Fig. 1-1). Augmented exhibition of Le antigens in tumors has been shown to drive 

tumorigenic properties in multiple cancer types, including melanoma.123 Increased levels of fucosylated 

sLex and sLea
 antigens correlate with poor prognosis, as these antigens promote metastasis by 

strengthening tumor cell interactions with epithelial cells.115,118 In gastric cancer, it was found that 

fucosylation is enhanced in early stages, but also diminished in late stages and metastasis as glycans are 

defucosylated.124 However, there are also reports indicating that some metastatic cancer cells have 

 

Figure 1-1: Visual Representation of Lewis antigens and associated fucose branches commonly found on the surface of cells 
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increased fucosylation when compared to non-metastatic cells.125 Overall levels of fucosylation have been 

shown to increase in cancer types such as breast and colorectal126, but the variation in branching types of 

fucosylation plays important roles in cancer progression.  

 

2.1.2 L-fucose metabolism  

There are two known pathways by which mammalian cells synthesize GDP-Fucose (Fig. 1-2). In 

the de novo pathway, GDP-mannose in the cytosol is utilized as a substrate for GDP-mannose 4,6-

dehydratase (GMD), and converted to GDP-4-keto-deoxymannose. The keto intermediate is quickly 

converted by the FX protein to GDP-fucose. The epimerase portion of FX converts the keto intermediate 

to GDP-4-keto-6-deoxygalactose, and the reductase portion of FX then catalyzes the final reaction to 

 

Figure 1-2: Schematic of the fucose salvage and de novo pathways 
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result in GDP-fucose.115 The second pathway is known as the salvage pathway. L-fucose is transported into 

the cytosol from the extracellular space, or from lysosomal compartments. L-fucose from the extracellular 

space is believed to enter the cell through L-fucose specific transporters, although which remain unclear. 

Free L-fucose in the cytosol is converted to fucose-1-phosphate by fucokinase (FUK), which is then 

converted to GDP-fucose by GDP-pyrophosphorylase.115 In general, it is believed that the main source of 

L-fucose for the salvage pathway comes from diet.115 However, when dietary sources are insufficient, L-

fucose can be catabolized from preexisting fucosylated glycans. The glycans are endocytosed and 

catabolized in lysosomes, where L-fucosidases cleave L-fucose from the glycans to be used by the salvage 

pathway.115,116,127 In melanoma cells, it has been reported that the salvage pathway contributes ~40-50% 

of GDP-fucose.128 Once synthesized, GDP-fucose is shuttled into the Golgi apparatus, where it is used as a 

substrate for fucosyltransferases.  

 

2.1.3 Fucosyltransferases: Regulators of Fucosylation Branching 

 Fucosyltransferases (FUTs) are membrane-bound proteins that utilize GDP-fucose as a substrate 

to transfer L-fucose onto oligosaccharides, glycans, lipids, and proteins to form fucosylated 

glycoconjugates.129,130 Eleven FUTs and 2 protein-O-FUTs (POFUTs) have been discovered to this point. 

FUTs conjugate L-fucose onto oligosaccharides in various conformations, such as α(1,2), α(1,3), α(1,4), 

and α(1,6) orientations (Fig. 1-3).115 As fucose is conjugated to oligosaccharides, the first carbon of fucose 

is bound to the second (1,2), third (1,3), fourth (1,4), or sixth (1,6) carbon of galactose or N-

Acetylglucosamine (GalNAc).131 The linkage is considered α when the oxygen atoms in the carbon rings 

are in a cis conformation, whereas β linkages occur when the oxygen atoms in the carbon rings are in a 

trans conformation.132 POFUTs directly conjugate L-fucose onto serine or threonine amino acids within 

EGF or THBS repeats.133 Core fucosylation (α(1,6)) is only conjugated by FUT8, which conjugates L-fucose 

to the primary GalNAc branch on N-glycans.133 Core fucosylation has been shown to play an important 
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role in the signaling of various membrane bound proteins, such as EGFR119,121 and TGFβ117,121. T-cell 

receptors are heavily core fucosylated, which ensures proper activation of downstream signaling.134 

Terminal fucosylation refers to L-fucose conjugated to GalNAc or galactose monosaccharides in an α(1,2), 

α(1,3) or α(1,4) conformations.116,133 Terminal fucosylation is highly diverse, contributing to the generation 

of Lewis antigens on a multitude of proteins.135 The specificity of branched fucosylation, and therefore 

the precise signaling mechanism initiated, is dictated by FUTs. 

FUT 1 and 2 are the two transferases that conjugate L-fucose in the α(1,2) branching to terminal 

galactose on both O- and N-glycans.115 FUT1 is implicated in the synthesis of H antigens, and has been 

shown to contribute to endothelial cell tube formation and leukocyte-synovial fibroblast proliferation and 

adhesion.136 Its role in immunity was demonstrated as the overexpression of FUT1 in transgenic mice 

promotes thymocyte maturation and arrest through increased T-cell receptor signaling and apoptosis.134 

FUT1 has been demonstrated to contribute to Lewisy (Ley) antigen production.137 FUT2 contributes to 

 

Figure 1-3: Visual representation of the various sites of fucosylation and the respective FUTs that conjugate L-fucose to the 
monosaccharides 
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α(1,2) fucosylation of H antigens in salivary glands and epithelial tissues124, and ABO blood type antigens 

in body fluids, the gut, and secretory glands.138,139 

FUT3-7, and 9-11 are responsible for the addition of L-fucose to GalNAc monosaccharides in α(1,3) 

and α(1,4) orientations on O- and N-glycans.115 Carbohydrate lectins are fucosylated in patterns similar to 

Lewis antigens in order to facilitate binding with selectins expressed on the surface of platelets, 

endothelial cells, and leukocytes.115 FUT3 conjugates L-fucose in both α(1,3) and α(1,4) branching and 

contributes to the synthesis of Lewisa(Lea) Lewisb(Leb), Lewisx(Lex), and sialyl-Lewisx(sLex) antigens.124,130,135 

FUT4 and 5 also conjugate both branching of L-fucose to glycans, and are thought to contribute to the 

formation of the same Lewis antigens as FUT3, as well as the sialylated precursor selectin ligands in 

leukocytes.124,130,133,135 The formation of the precursor selectin ligands generated by FUT4 are likely 

responsible for leukocyte function and trafficking.129 FUT6 additionally contributes to both forms of 

branching, however, its activity is limited to synthesis of Lex and sLex antigens.124,130,133,135 In addition to 

the conjugation of L-fucose in the α(1,3) and α(1,4) orientations, FUT7 is involved in the recruitment of 

neutrophils and T-cells to areas of inflammation and lymphoid trafficking to distal lymphoid organs – likely 

due to its contribution to sialylated precursor selectin ligands in leukocytes.115,130,135 FUT9 has only been 

reported to be involved in the synthesis of Lex antigens.130,135 Most of the α(1,3) and α(1,4) FUTs have 

redundant function, particularly in the generation of Lewis antigens. However, in cancer, there tends to 

be differential expression or activity of some, but not all FUTs, indicating that they might play a more 

specific role in disease regulation or progression. 

 FUT8 is the only transferase to conjugate L-fucose to the initial GalNAc residue on N-glycans in an 

α(1,6) conformation (core fucosylation).135,140 FUT8 has been shown to be integral in TGFβ signaling as 

knockout of FUT8 results in a lack of core fucosylation of receptor type II, which inhibits the binding of 

TGFβ1 to type I and II receptors.117 Additionally, core fucosylation has been previously shown to be 
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important in EGF, TGFβ, and HGF signaling.121 Core fucosylation of E-cadherin increases cell adhesion by 

facilitating tighter E-cadherin-dependent adhesions.126  

 

2.1.4 α(1,2) Branching 

It is thought that enriched fucosylation might lead to increased adhesion and metastatic potential 

through the expression of Lewis antigens.141 There have been studies in melanoma128,142,143, oral/head and 

neck144, gastric145, pancreatic146, and hepatocellular147,148 carcinomas indicating that α(1,2) fucosylation 

inhibits tumor formation and is decreased during tumorigenesis and disease progression (Table 4). A 

recent investigation into the role L-fucose and fucokinase (FUK) of the salvage pathway played in 

melanoma progression with regard to α(1,2) fucosylation was conducted. The investigators found that L-

fucose treatment and/or FUK overexpression inhibited cell migration and invasive potential as 

demonstrated by scratch assays and Matrigel-embedded spheroid assays. In mouse models, FUK 

overexpression and L-fucose treatment resulted in slower tumor growth and fewer lung metastases. 

Assessment of human melanoma patient specimens in a tissue microarray revealed that primary tumors 

with low UEA-1 staining correlated with significantly lower probability of survival compared to primary 

tumors with high UEA-1 staining. Similarly, metastases exhibited significantly lower UEA-1 staining 

compared to primary tumors, suggesting that loss of α(1,2) fucosylation might promote melanoma 

metastasis.128 It has been previously reported that approximately 25% of melanoma cell lines lack FUT1 

expression.126,149 Transfection of FUT1 to BL6 cells has been reported to inhibit the metastatic ability of 

these cells142 suggesting that metastatic ability is suppressed by α(1,2) fucosylation and melanoma cells 

might reduce or eliminate FUT1 expression as a mechanism to promote tumorigenic properties. A siRNA 

screen for glycosyltransferases in melanoma cell lines found that the knockdown of FUT1 and 2 increased 

cell invasion. Further screening of primary and metastatic melanomas through fluorescent staining 

indicated that α(1,2) fucosylation is higher in primary tumors than in metastatic tumors.121 This data 
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indicates that the loss of α(1,2) correlates with the progression of primary tumors to metastasis. A study 

in melanoma cell lines determined that the knockdown of FUT1 or 2 increases the invasive potential of 

the cells. Histological analysis of tumor samples found that α(1,2) fucosylation is reduced in metastatic 

tissues compared to primary tumors.122 The current literature suggests that loss of α(1,2) fucosylation is 

important for melanoma tumor progression. 

  

2.1.5 α(1,3/4) Branching 

Compared to α(1,2) fucosylation, α(1,3/4) fucosylation has been shown to have a much more 

consistent effect on various cancer types. Studies comparing α(1,3/4) fucosylation in cancer and normal 

tissues have found that it is up regulated in breast150,151, liver148,152, ovarian153,154, colorectal141, 

pancreatic155–157, gastric158,159, lung160, and prostate161–163 cancers (Table 4). α(1,3/4) fucosylation 

conjugated by FUTs 3-7 & 9-11 has been shown to be enhanced in tumors and metastases in these cancer 

types. 

A similar phenotype is found in melanoma. One study investigated the role of sLex in melanoma 

through the overexpression of FUT3 in melanoma cell lines. Moderate expression of sLex significantly 

increased the development of tumor nodules in the lungs compared to control transfected cells. 

Interestingly, cells that exhibited high expression of sLex died in the lung vasculature through Natural Killer 

cell rejection.164 Several studies found that lung colonization and tumor growth of melanoma cells could 

be diminished by inhibiting selectin interaction with sLex through the use of peptide mimics.165,166 E-

selectin on epithelial cells has been implicated in several studies as the target of sLex. The overexpression 

of sLex antigen in multiple cancer types allows for stronger interactions with the endothelial lining of blood 

vessels demonstrated by slower rolling speed under shear forces, and promotes the ability of circulating 

tumor cells to extravasate from the blood vessel into the surrounding tissue156,159,161,163,167. In addition to 

enhancing sLex expression, several α(1,3/4) FUTs have been shown to alter cell surface signaling. α(1,3/4)  
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Table 4: Changes of Fucosylation in Cancer 

Cancer Type Changes in α(1,2) fucosylation Reference 
Melanoma  α(1,2) fucosylation inhibits tumor formation 

 25% of melanoma cell lines lack FUT1 expression 

 FUT1 expression is decreased in tumors 

 α(1,2) fucosylation inhibits invadopodia & invasion 

128,142,143 
126,149 
121,128 
143 

Oral/Head & Neck  α(1,2) fucosylation inhibits tumor formation 

 FUT1 expression is decreased in tumors 

 α(1,2) fucosylation high in tumors, lost at invading front 

 
144 
 

Gastric  α(1,2) fucosylation inhibits tumor formation 145 

Hepatocellular  α(1,2) fucosylation inhibits tumor formation 

 FUT1 expression is decreased in tumors 

147,148 
148 

Ovarian  α(1,2) fucosylation is elevated through FUT1 
overexpression 

307 

Prostate  α(1,2) fucosylation is elevated through FUT1 
overexpression 

 FUT1 expression is increased in tumors 

308 
308,309 

Colorectal  α(1,2) fucosylation increased in tumor tissues 141,310,311 

Pancreatic  α(1,2) fucosylation is elevated through FUT1 
overexpression in primary tumors & lost in metastases 

 
136,146 

 Changes in α(1,3/4) fucosylation Reference 
Breast 

 α(1,3/4) fucosylation upregulated in tumor tissue 

150,151 

Melanoma 164 

Oral/Head & Neck 312 

Liver 148,152 

Ovarian 153,154 

Prostate 161–163 

Colorectal 141 

Pancreatic 155–157 

Gastric 158,159 

Lung 160 

 Changes in α(1,6) fucosylation Reference 
Breast 

 Core fucosylation increased in tumor tissue 

172,313 

Melanoma 121 

Liver 121,126,148,173 

Ovarian 121,126,174,175 

Colorectal 126,141,176,177 

Pancreatic 157 

Lung 181–183 

Gastric  Core fucosylation increased in tumor tissue 

 Core fucosylation decreased in tumor tissue 

145,179 
178,180 

Prostate  Core fucosylation increased in castrate resistant tissue 314 

Thyroid Papillary 
Carcinoma 

 Core fucosylation increased in tumor tissue 
315–317 
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fucosylation of growth factor receptor signaling pathway such as TGFβ, VEGFA, EGF, and FGF2 have been 

implicated in promoting tumor development.151,168,169 Inhibition of α(1,3/4) fucosylation impedes 

migration, proliferation, and MAPK activity. One of the consequences of TGFβ exposure is the induction 

of epithelial to mesenchymal transition (EMT), during which E-cadherin expression is diminished, and N-

cadherin is elevated.170 Loss of α(1,3/4) fucosylation by knockdown of FUT3/6 abrogates the loss of E-

cadherin expression after TGFβ stimulation, thereby inhibiting EMT and preventing migration.168 

Additionally, enhanced α(1,3/4) fucosylation has been shown to decrease the expression of apoptotic 

proteins, such as procaspase-3, and increase the expression of anti-apoptotic proteins, such as pPKB and 

pBad, leading to an increased resistance to cell death.171 Since multiple FUTs catalyze α(1,3/4) 

fucosylation, it is difficult to determine which are most important in tumor progression. Different FUTs 

have been implicated in various cancer types, indicating each cancer type might rely more on one FUT to 

catalyze sLex that is different from other cancer types. To this point, there have been few studies 

examining the role of α(1,3/4) fucosylation in melanoma, but studies that have been conducted agree 

with the literature published in other cancer types indicating that augmentation of α(1,3/4) fucosylation 

enhances tumorigenic and metastatic properties. 

 

2.1.6 α(1,6) Branching 

FUT8 is the only known transferase that conjugates L-fucose residues to core GalNAc 

monosaccharides on N-glycans. Studies investigating core fucosylation have been conducted in 

melanoma121, breast172, liver121,126,148,173, ovarian121,126,174,175, colorectal126,141,176,177, pancreatic157, 

gastrointestinal145,178–180, and lung181–183 cancers (Table 4). Many of the studies found that FUT8 expression 

is elevated in cultured cell lines and therefore found that loss of FUT8 inhibits invasion121,173, 

migration173,184, proliferation173,183, colony formation183, tumor growth121,185,186, and metastasis121,185. Core 
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fucosylation is important in mediating EMT induced by TGFβ as knockdown of FUT8 attenuated TGFβ 

induced EMT and inhibited de-differentiation.185,187 It has been demonstrated that core fucosylation of 

plasma membrane proteins such as β1-integrin188, β-catenin187,189, EGFR186,188,190, c-Met186, and E-

cadherin183,189 regulates activity and signaling. In melanoma, a siRNA screen found that the knockdown of 

FUT8 inhibits melanoma cell migration and invasion. By examining α(1,6) fucosylation in primary and 

metastatic tumors through fluorescent staining, it was determined that tumor metastases exhibit higher 

α(1,6) fucosylation than primary tumors. Knockdown of FUT8 in melanoma cells in murine xenograft 

models significantly inhibits lung metastases and metastatic tumor burden in the lung following flank and 

intracardiac injection. Glycomic analysis identified L1-CAM as a critically core fucosylated protein in 

melanoma metastasis, as once core fucosylation of L1-CAM is lost, L1-CAM is cleaved and inhibits 

melanoma cell invasion.121 Another study in melanoma cell lines determined that the knockdown of FUT8 

decreases invasion ability. Examination of α(1,6) fucosylation in histological samples determined that 

FUT8 is highly expressed in metastatic tissues.122 As FUT8 is the only known transferase capable of 

conjugating core fucosylation to glycans, it might prove to be a valuable target for cancer therapy. 

 

2.2 Methods 

2.2.1 Cell culture 

WM793 and WM245 melanoma cells were cultured in HyClone RPMI-1640 Media supplemented with 10% 

FBS and 1% Penicillin/Streptomycin. Cells were treated for 48 hours with 25μM or 50μM [L-fucose 

(Biosynth, F8060)] as indicated prior to experimentation. 

2.2.2 Gelatin coated coverslips 

Glass cover slips (Fisherbrand 18Cir.-1, 12-545-100) were acid washed overnight in 1M HCl at 60°C. After 

thorough rinsing with diH2O, coverslips were washed with 1xPBS and stored in 20% EtOH. To coat, 

coverslips were removed from 20% EtOH and washed with 1xPBS. After last wash was removed, 100μL of 
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0.2% bovine gelatin (Sigma, G9391) in 0.2M NaHCO3 was applied to each coverslip, and allowed to stand 

for 20 minutes. After three washes of 1xPBS, 100μL of 0.5% Glutaraldehyde (Sigma, S7776) was applied 

to each coverslip and allowed to stand for 15 minutes. Coverslips were then washed extensively (10x) in 

1xPBS to remove any residual glutaraldehyde. After final wash, coverslips were set gelatin side up into 12-

well plates and either used immediately, or stored at 4°C for future use. 

2.2.3 Texas Red gelatin labeling and coating 

The labeling and coating of Texas Red gelatin were performed was previously described191,192 with 

modifications. A 2% gelatin solution was made in 0.2M NaHCO3 pH 8.3. Texas Red-X Succinimidyl Ester 

(Invitrogen, T6134) was dissolved DMSO (Fisherbrand, BP231) at a concentration of 10mg/mL. 50μL of the 

reactive dye solution was mixed into 1.5mL of the filtered gelatin and allowed to incubate for 1 hour at 

room temperature with continuous stirring, protected from light. Unbound dye was then removed using 

a HiTrap desalting column. Recovered gelatin was diluted 1:8 and protected from bacterial growth with 

2mM sodium azide (Sigma, S2002), and stored at 4°C. Acid washed coverslips (see above) were removed 

from 20% EtOH and washed three times with 1xPBS. After final wash, 100μL of poly-D-lysine (Sigma, 

P6403) was applied to each coverslip and allowed to stand for 20 minutes. Following another three washes 

in 1xPBS, 100μL of glutaraldehyde was applied to each coverslip and allowed to stand for 15 minutes. 

After three more washes of 1xPBS, 80μL of Texas Red labeled gelatin was applied to each coverslip and 

allowed to stand, protected from light, for 10 minutes. Excess gelatin was reclaimed and recycled. 

Coverslips were washed three times with 1xPBS, then quenched with 100μL of 5mg/mL sodium 

borohydride (Sigma, 452882) and allowed to sit for 15 minutes. Coverslips were then set into 12-well 

plates with gelatin side up, and washed three times with 1xPBS, then stored at 4°C protected from light, 

or used immediately. 
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2.2.4 Proliferation assay 

WM793 cells were plated into 12-well plates at equal densities in triplicate for each condition. After 4 

hours, the media was changed on all plates, and one plate was washed once with 1xPBS and fixed with 

10% buffered formalin as Day 0. At each 24-hour interval, another plate was washed and fixed. After plates 

were fixed for 5 days, cells were stained with crystal violet for 15 minutes. Plates were then washed in DI 

water until washes remained clear. The plates were then dried, inverted on paper towels overnight. Any 

residual water was aspirated. The cell bound stain was solubilized with 300μL 10% Glacial Acetic Acid per 

well, and placed on a shaker for 10 minutes. 50μL of each well was then transferred to a 96-well plate, 

and the absorbance read at 562nm. 

2.2.5 cDNA constructs 

The pLenti-GFP, pLenti-GFP-hFUK, pLKO, and pLKO-hFUK-shB3 constructs were generously provided by 

Dr. Eric Lau. The CTRL shRNA (SHC016-1EA) and hFUKsh37856 (TRCN0000037856) were obtained from 

Sigma. Human FUT1 was subcloned from the Harvard Plasmid Repository (HsCD00345675) to pLenti-CMV-

blast empty as follows: hFUT1 was amplified with BamHI and XhoI cutting sites, as well as a C-terminal 

flag tag using sense primer 5’-ATCAG GATCCCATGTGGCTCCGGAGCCATCGTC-3’ and antisense primer 5’-

ACTCCTCGAGTCACTTGTCGTCATCGTCTTTGTAGTCAGGCTTAGCCAAT GTCC-3’. The amplified product and 

the pLenti-CMV-blast vectors were digested using BamHI and XhoI and run on a 1% agarose gel. Digested 

vector and hFUT1 were purified using Wizard® Plus SV Gel and PCR Clean-Up System (A9282). The purified 

products were ligated for 2 hours at room temperature, and transformed to DH5α bacteria, and plated to 

ampicillin+ LB agarose plates. Multiple colonies were picked the following day, and amplified for Midi Prep 

DNA generation. 

2.2.6 Stable cell lines 

HEK293T cells were used to package lentiviral particles as previously described.193 Lentiviral vector cDNA 

(5μg) was combined with pSPAX (5μg), pMD2G (5μg) and polyethylenimine (Fisher, NC9197339) and 
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added dropwise to 10cm plates of 60% confluent 293T cells. After 48 hours, virus was collected after each 

14 hour interval for 4 days. Virus containing media was first centrifuged at 3000g for 15 minutes at 4°C to 

spin down cellular debris, then ultracentrifuged at 20,000rpm for 2 hours at 4°C to pellet virus. Pellets 

were suspended in growth medium and snap frozen in LN2, then stored at -80°C for future use. Virus was 

then used to infect WM793 cells, and after 48 hours, cells were subjected to antibiotic selection. Surviving 

cells were verified of complete selection by fluorescent microscopy for the hFUK constructs, or western 

blotting for the hFUT1 constructs. 

qPCR: The qPCR primers for hFUK are as follows: 

hFUK Fwd: 5'-CTGTATCCAGGCCAGTCACC-3' Rev: 5'-CAGATTGTGCACTCCCAGGT-3' 

GAPDH Fwd: 5'-TGAAGGTCGGAGTCAACGG-3' Rev: 5'-AGAGTTAAAAGCAGCCCTGGTG-3' 

WM793 cells were seeded at 5x105 cells in 6cm plates and allowed to incubate overnight. The following 

day, plates were washed once with 1xPBS and total RNA was isolated using Qiagen RNeasy kit 

(Cat#74106). Two micrograms of total RNA was used for reverse transcription. cDNA was diluted 1:10 and 

used for qPCR with Power SYBR1Green PCR Master Mix (Applied Biosystems, 4367659). 

2.2.7 Invadopodia assay 

WM793 cells were plated to 6cm dishes and allowed to grow for 48 hours. Parental WM793 cells were 

treated with 25μM L-fucose or control water. Plates were washed once with 1xPBS and cells dissociated 

using enzyme free cell dissociation solution (Millipore, S-004-C). Cells were seeded to gelatin coated 

coverslips at 1x105 cells per coverslip and allowed to incubate for 4 hours. Coverslips were then washed 

once with 1xPBS and fixed using fresh 4% paraformaldehyde (Sigma, 158127) for 20 minutes at room 

temperature. Cells were then stained with fluorescent phalloidin stains (Alexa Fluor phalloidin-488, -594, 

and -647) based on the experimental conditions, and imaged for quantitation using wide-field microscopy. 

Samples were imaged using an Axiovert S100 upright microscope through a 63x/1.3 FLUAR Plan 

Apochromatic oil immersion objective. An attached Axiocam 503 mono charge-coupled camera and ZEN 



25 
 

2.3 blue edition (Zeiss) software were used to capture images. For representative images, samples were 

imaged using a Leica SMI8 inverted microscope, TCS SP8 confocal scanner, and a HC PL APO 63x/1.4 CS2 

oil immersion objective. The 488, 552, and/or 638 STED lasers were used to excite the samples, and a 

tunable acousto-optical beam splitter was used to minimize crosstalk between fluorochromes. Sample 

emission was captured with Leica HyD hybrid detectors and images were prepared with the Leica 

Application Suite X. To calculate percent degraded gelatin, ImageJ software (NIH) was used to determine 

total cell area in pixels. The suspected area of degradation was then duplicated, converted to 32-bit, and 

the threshold was set. Using the measure function, the percent area of selection that was degraded was 

calculated. The percent of the degradation of the gelatin under the entire cell was then calculated by 

multiplying the percent of degradation in the selected area by the total area of selection, then dividing by 

the entire cell area. 

2.2.8 Invadopodia precursor assay 

WM793 cells were plated at 1x105 cells per coverslip and allowed to settle for 1 hour in complete RPMI. 

After 1 hour, cells were washed once with 1xPBS, and 1mL of 1% FBS RPMI (starvation media) was added 

to each well. The cells incubated for 18 hours, then FBS was added to the media to make up to 10% FBS 

for each well. Coverslips were fixed in 4% PFA every 15 minutes and images for quantitation and 

representation were acquired as mentioned. 

2.2.9 Fucosidase treatment 

After cell dissociation using enzyme free solution, cells were washed three times in 1xPBS, then incubated 

in PBS with 0.08U/mL fucosidase (New England Biolabs, α(1,2):P0724S, α(1,3/4):P0769S) for 30 minutes 

at 37°C. Next, cells were washed three times in 1xPBS, then used in further experiments. 

2.2.10 Flow cytometry 

Cells were harvested using enzyme free dissociation media, washed once with 1xPBS, and incubated with 

1x PKH26 (Sigma, MINI26) for 1 minute at room temperature. Next, cells were washed three times in 



26 
 

1xPBS, then fixed in 2% paraformaldehyde in PBS for 45 minutes at room temperature and protected from 

light. Cells were then washed once with 1xPBS and blocked with 0.2% IgG- and protease-free BSA (Jackson 

ImmunoResearch, 001-000) for 30 minutes at room temperature. Cells were washed twice in 1xPBS and 

stained with 0.2μg/mL FITC-UEA-1 (Vector Labs, FL1061) for 1 hour at room temperature and protected 

from light. After two more washes with 1xPBS, cells were analyzed by flow cytometry. For levels of FITC-

UEA-1 staining. FITC-UEA-1 staining levels were calculated as a ratio of the median UEA-1 values divided 

by median PKH26 values (where each condition was relative to the control). For flow cytometric 

experiments using GFP-EV- or GFP-FUK-expressing cells, the cells were harvested as above, divided in half 

for staining with PKH26 or with TRITC-UEA1 (EY Labs, R-2201-2) and analyzed by flow cytometry as 

described above. 

2.2.11 Western blotting 

Cells were seeded to 6cm plates at 5x105 cells per plate and allowed to incubate overnight. The following 

day, plates were washed once with ice cold 1xPBS, then lysed with a rubber policeman and ice cold RIPA 

buffer (150mM NaCl, 5mM EDTA, 50mM Tris pH 8.0, 1% NP-40) with 1mM phosphatase (ThermoScientific, 

88667) and 1mM protease (Roche, 04693159001) inhibitor cocktails added. The following antibodies were 

used: FLAG (Sigma, F3165) at 1:5000 dilution in 5% BSA (Fisher, BP1600) in TBST; GAPDH (Sigma, G8795) 

at 1:5000 dilution in 5% BSA in TBST. 

2.2.12 Bioinformatics 

FUT1 and FUT2 mRNA expression data was retrieved from 5 previously published microarray datasets 

(GSE84 01, GSE46517, GSE 7553, GSE15605 and GSE3189).194–197 The expression level data of FUT1 

(probeset 206109_at) and FUT2 (probeset 208505_s_at) were plotted as scatted dot plot using Graphpad 

Prism 7.0 and the statistical analysis was performed using two samples, two-tailed t-test. 
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2.2.13 Matrigel invasion assay 

Matrigel invasion by WM793 cells was performed using invasion Boyden chamber (8μm) as described 

previously.191,192,198,199 

 

2.3 Results 

2.3.1 L-fucose treatment inhibits invadopodia formation and extracellular matrix degradation 

 There have been a number of studies that have investigated the effect of L-fucose and L-fucose-

containing extracts, termed fucoidan, in breast200–205, lung, colorectal203,206–208, and melanoma128,209 

cancers. In each of these studies, L-fucose or fucoidan significantly attenuated tumor growth and 

metastasis in vivo, and inhibited cell proliferation, migration, invasion, and colony formation in vitro. Our 

laboratory was particularly interested in melanoma. Although the study conducted by Lau et. al.128 

determined that melanoma progression was promoted by the inhibition of FUK, whether the 

manipulation of FUK or L-fucose treatment affects invasive structures that tumor cells utilize to 

metastasize, particularly invadopodia, is not known. Since FUK expression is suppressed in invasive and 

metastatic melanoma cells, and L-fucose supplementation inhibited melanoma metastasis, we examined 

the effects of L-fucose treatment on invadopodia formation. We have previously demonstrated that the 

 

Figure 2-1: L-fucose treatment does not affect WM793 cell proliferation. A, Representative images showing invadopodia in 
WM793 cells revealed by F-actin and cortactin double staining. B, the effect of L-fucose treatment on WM793 cell 
proliferation. 
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WM793 melanoma cell line is an excellent model to study invadopodial regulation.191 When plated on 

gelatin coated glass coverslips under normal growth condition, approximately 70% of WM793 cells were  

able to assemble arrays of robust invadopodia generally in areas underneath the nuclei.191 These 

 invadopodial puncta are cortactin and F-actin positive protrusions on the ventral site of the cell (Fig. 2- 

1A), and are able to degrade fluorescently labeled gelatin191. L-fucose treatment had no effect on the 

proliferation of WM793 cells (Fig. 2-1B). However, when pre-treated with 25 µM L-fucose for 48 hours, 

the average numbers of invadopodia per cell was decreased by approximately 50% compared to vehicle 

control (dH2O)-treated WM793 cells (Fig. 2-2A and 2-2B). The percentage of invadopodia-positive cells 

was also decreased from ~70% in control cells to ~40% in L-fucose treated cells (Fig. 2-2C). To determine 

how the degradative capacity of invadopodia was affected by L-fucose, we further evaluated the effects 

of L-fucose-treatment on the degradation of fluorescence-labeled gelatin. The degradation of gelatin by 

invadopodia would leave black dots on a bright fluorescence background. Indeed there was a significant 

decrease in gelatin degradation in the L-fucose treated cells (Fig. 2-2A and 2-2D.). The inhibition of gelatin 

degradation by L-fucose treatment was also observed in WM245, a melanoma cell line derived from radial 

growth phase melanoma (Fig. 2-3A). Taken together, our data indicate that the number and degradative 

capability of invadopodia are inhibited by L-fucose treatment.  

 

Figure 2-2: Fucose treatment inhibits invadopodia formation and ECM degradation. A, representative invadopodia assay 
images showing the effects of 25μMLfucose treatment on the formation of invadopodia and degradation of TexasRed labeled 
gelatin by WM793 cells. B-D, quantitation of the effect of fucose treatment on the average invadopodia number per cell (B), 
proportion of invadopodia-positive WM793 cells (C) and gelatin degradation area by WM793 cells (D). *, *** and **** 
indicate p<0.05, 0.001 and 0.0001, respectively. The p values were determined by two tailed, two sample t-test (in B, D) or 
two-tailed Fisher exact test (C). Numbers in parenthesis indicates the number of cells used in quantitation. Representative 
results from at least three independent replicates were presented. 
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2.3.2 Overexpression of FUK abrogates invadopodia formation and delays invadopodia initiation 

To determine whether activation of the fucose salvage pathway is sufficient to inhibit invadopodia 

formation, we ectopically expressed hFUK in WM793 cells. The expression of FUK was verified by qPCR 

(2-4A). The expression of FUK increased the fucosylation of cell surface proteoglycans without affecting 

cell proliferation (Fig 2-4B to 2-4D). The control and FUK OE cells were seeded to gelatin coated coverslips 

and the formation of invadopodia was determined by phalloidin staining. Similar to L-fucose treatment, 

we found that the ectopic expression of FUK resulted in about 50% drop in average invadopodia per cell 

(Fig 2-5A and 2-5B). Additionally, the proportion of invadopodia positive cells was reduced by about 40% 

in FUK OE group (Fig 2-5C). We also found that the overexpression of FUK attenuated the degradative 

ability of invadopodia in WM793 cells (Fig 2-5D). Taken together, our data indicate that augmenting the 

fucose salvage pathway by ectopic expression of FUK is sufficient to inhibit invadopodia formation and 

ECM degradation. 

 

Figure 2-3: L-fucose treatment inhibits invadopodia formation and ECM degradation in WM245 cells. A, representative 
images showing the effects of L-fucose treatment on invadopodia formation and gelatin degradation in WM245 melanoma 
cells. 
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To understand the mechanism by which the fucose salvage pathway regulates invadopodia, we 

determined the effects of ectopic FUK expression on invadopodial initiation. WM793 cells were starved 

in 1% FBS overnight to reduce the basal invadopodial assembly. The cells were then stimulated with 10% 

FBS and the extents of FBS-induced invadopodial formation were quantified at indicated time points over 

one hour (Fig 2-6A). We found that FBS stimulation remarkably induced invadopodial formation in control 

cells, as we previously reported.191 In contrast, FBS-induced invadopodia initiation was significantly 

inhibited in WM793 cells expressing ectopic FUK (Fig 2-6A), suggesting that the fucose salvage pathway in 

melanoma regulates invadopodial initiation. 

 

2.3.3 FUK is required for L-fucose-mediated inhibition of invadopodia formation 

As the phosphorylation of L-fucose by FUK is a crucial first step in the generation of GDP-L-fucose 

for fucosylation, we next investigated whether FUK is required for L-fucose-mediated inhibition of 

invadopodia formation. By combining 2 shRNA targeting hFUK, we were able to reduce the mRNA 

transcript levels of FUK in WM793 by about 70% (Fig 2-6B). To determine whether FUK is required for L-

fucose-mediated inhibition of invadopodia formation, control or FUK knockdown WM793 cells were 

 

Figure 2-4: The ectopic expression of FUK in melanoma cells promotes cell surface fucosylation. A, qPCR analysis of WM793 
cells following infection with an hFUK overexpression vector. B, the effect of FUK overexpression on the fucosylation of 
WM793 cell surface proteoglycans. The plasma membrane proteins from control and FUK OE WM793 cells were separated 
using SDS-PAGE and detected by biotin-UEA1. C, the effect of FUK overexpression on cell surface fucosylation as detected by 
UEA1 staining and flow cytometry. D, the effect of FUK overexpression on WM793 cell proliferation. ** and **** indicates 
p<0.01 and p<0.0001, as determined by two-tailed, two sample t-test. 
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incubated for 48 hours with 20μM L-fucose, and then the effect of L-fucose treatment on invadopodia 

formation were evaluated by phalloidin staining. As shown in Figs 2-6C and 2-6D, FUK knockdown itself 

has no significant effect on invadopodia formation. However, the depletion of FUK significantly reduced 

the L-fucose-mediated inhibition (Fig 2-6C and 2-6D). Taken together, our data suggests that FUK is 

essential for L-fucose-mediated inhibition of invadopodia assembly. 

 

 

Figure 2-5: The ectopic expression of FUK in melanoma cells inhibits invadopodia formation and gelatin degradation. A, 
representative images showing the effects of ectopically expressed FUK on invadopodia formation and TexasRed gelatin 
degradation in WM793. B and C, quantitation of the effect of ectopically expressed FUK on the invadopodia number per cell 
(B) and the proportion of invadopodia positive cells (C) in WM793. D, quantitation of the effects of FUK overexpression on 
gelatin degradation. *** indicates p<0.001, as determined by two-tailed, two sample t-test (B & D) or two-tailed Fisher's 
exact test (C). Numbers in parentheses indicates the number of cells used in quantitation. Representative results from at 
least three independent replicates were presented. 
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2.3.4 α(1,2) fucosylation is responsible for the inhibition of invadopodia formation by L-fucose 

We noted that the L-fucose- and FUK-mediated inhibition of invadopodia was abrogated when 

cells were lifted with trypsin instead of by protease-free dissociation methods. We reasoned that the 

neutralization of fucosylation effects by trypsin digestion might be due to proteolysis of fucosylated 

transmembrane proteins. To determine whether plasma membrane protein fucosylation is mediating the 

inhibition of invadopodia formation, we used fucosidase to remove the fucosylation of cell surface 

proteoglycans. Proteoglycans can be modified by α(1,2), α(1,3) or α(1,4) branched fucosylations (Fig 2-

 

Figure 2-6: The ectopic expression of FUK in melanoma cells delays invadopodial initiation. A, the effects of ectopic FUK on 
the initiation of the assembly of invadopodia induced by 10% FBS. B, qPCR assay showing the effects of FUK sh1+sh2 on the 
mRNA transcript levels of FUK in WM793 cells. C, quantitation of the effects of FUK knockdown on L-fucose-mediated 
inhibition of invadopodia formation at increasing concentrations of L-fucose in WM793 cells. D, percentages of cells 
exhibiting invadopodia following FUK knockdown in titrated concentrations of L-fucose. * and *** indicates p<0.05 and 
p<0.001, as determined by two-tailed, two sample t-test (B-D). Representative results from at least three independent 
replicates were presented. 
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7A). Control or L-fucose-treated WM793 cells were lifted from the plates using protease-free dissociation 

buffer and incubated with fucosidase to remove branched fucosylation, and the effects of fucosidase 

treatments on cell-surface α(1,2) fucosylation were evaluated by UEA-1 lectin staining. As shown in Fig 2-

7B, L-fucose treatment increased cell surface UEA-1 staining, suggesting an increase in α(1,2) L-fucose 

linkages. The increase in UEA-1 staining was abrogated by treatment with α(1,2) fucosidase (but not with 

α(1,3/4) fucosidase), confirming the specificity of fucosidase treatment and UEA-1 staining (Fig 2-7B). 

Interestingly, treatment with α(1,2) fucosidase sufficed to completely abrogate the inhibition of 

invadopodia by L-fucose (Fig 2-9A-2-9D). To determine whether FUK-mediated inhibition of invadopodia 

was dependent on α(1,2) fucosylation, we treated control of FUK OE WM793 cells with α(1,2) fucosidase. 

The treatment with α(1,2) fucosidase partially rescued the inhibition of invadopodia formation by FUK (Fig 

2-8A-2-8E). The removal of α(1,2) fucosylation by fucosidase also restored the proportion of invadopodia-

positive cells in FUK OE group. In contrast, the treatment with α(1,3/4) fucosidase did not rescue 

invadopodia formation in L-fucose-treated or FUK-overexpressing WM793 cells (Fig 2-10A-2-11D), 

suggesting that the inhibition of invadopodia by the fucose salvage pathway is mediated by cell surface 

α(1,2) fucosylation but not by the α(1,3/4) fucosylation. 

 

Figure 2-7: α(1,2) fucosidase, but not α(1,3/4) fucosidase cleaves cell surface α(1,2) fucosylation. A, schematic illustration 
showing the modification of glycans by α(1,2), α(1,3) and α(1,4) branched fucosylations. B, the effects of L-fucose and 
fucosidase treatment on cell surface α(1,2) fucosylation, as determined by UEA-1 staining and flow cytometry. 
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Fucosyltransferase 1 and 2 (FUT1 and FUT2) are the fucosyltransferases responsible for the 

transfer of L-fucose to glycans via α(1,2) linkages and has been shown to be involved in inhibition of 

melanoma cell migration and adhesion.195 We examined the changes of FUT1 and FUT2 expression levels 

during melanoma progression in five previously published datasets (GSE8401, GSE46517, GSE 7553, 

GSE15605 and GSE3189).194–197 As shown in Fig 2-12A, FUT1 mRNA levels were downregulated in 

malignant melanoma when compared to benign nevi or normal skin from human patients (Fig 2-12A). The 

levels of FUT1 were further suppressed in metastatic melanoma when compared to primary melanoma 

 

Figure 2-8: The fucose salvage pathway inhibits invadopodia through α(1,2) fucosylation. A, representative invadopodia 
assay images showing the effect of α(1,2) fucosidase treatment on FUK-mediated inhibition of invadopodia formation in 
WM793 cells. B-E, quantitation of the effect of α(1,2) fucosidase treatment on the invadopodia number per cell (B & C) and 
the proportion of invadopodia positive cells (D & E) in control or FUK OE WM793 cells. ** and *** indicates p<0.01 and 
0.001, respectively, as determined by two-tailed, two sample t-test (B, C) or two-tailed Fisher's exact test (D, E). ns, not 
statistically significant. Numbers in parentheses indicates the number of cells used in quantitation. Representative results 
from at least three independent replicates were presented. 
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(Fig 2-12A). In contrast, there was no clear correlation between FUT2 mRNA levels and melanoma 

progression in these datasets. Although in some datasets there appeared to be down-regulation of FUT2 

mRNA in metastatic melanoma when compared to primary melanoma (GSE46517, GSE15605), in other 

datasets there was either no changes or increases in FUT2 expression with melanoma progression 

(GSE8401, GSE7553, GSE3189). Therefore, to further evaluate whether α(1,2) fucosylation is sufficient to 

inhibit invadopodia, we ectopically expressed Flag-tagged FUT1 in WM793 cells (Fig 2-13A). As shown in 

Fig 2-13B and 2-13C, ectopic expression of FUT1 resulted in approximately 50% reduction in the average 

number of invadopodia when compared to the vector control cells (Fig 2-13C). Additionally, analysis of 

the percentage of cells that presented invadopodia showed an approximate 40% reduction in the cells 

overexpressing FUT1 as compared to the empty vector control cells (Fig 2-13D). In line with the previous 

experiments, FUT1 overexpression also inhibited the Matrigel invasion activity of WM793 (Fig 2-13E and 

2-13F), suggesting that α(1,2) fucosylation mediated by FUT1 is sufficient to inhibit invadopodia formation 

and melanoma invasion. 

 

 

Figure 2-9: L-fucose treatment inhibits invadopodia through α(1,2) fucosylation. A-D, quantitation of the effect of α(1,2) 
fucosidase treatment on the invadopodia number per cell (A & B) and the proportion of invadopodia positive cells (C & D) in 
control or L-fucose treated WM793. ** and *** indicates p<0.01 and 0.001, respectively, as determined by two-tailed, two 
sample t-test (A, B) or two-tailed Fisher's exact test (C, D). ns, not statistically significant. Numbers in parentheses indicates 
the number of cells used in quantitation. Representative results from at least three independent replicates were presented. 
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2.4 Discussion 

The differential deregulation of fucosylation has been correlated with tumorigenesis and tumor 

progression in various cancers.126,128,142,210,211 More recently, a systemic glycomics study suggested that 

the role of glycosylation in melanoma progression could be linkage dependent.121 

The activity of FUK in catalyzing the crucial phosphorylation of L-fucose in the salvage pathway is 

reportedly attributable for up to 40% of total cellular fucosylation128,212. In metastatic melanoma, although 

the expression of FUK is suppressed by the PKCε-ATF2 pathway, the ectopic expression of FUK or 

 

Figure 2-10: α(1,3/4) fucosidase cannot rescue invadopodia formation in FUK overexpression cells. A, representative 
invadopodia assay images showing the effect of α(1,3/4) fucosidase treatment on FUK-mediated inhibition of invadopodia 
formation in WM793 cells. B-E, quantitation of the effect of α(1,3/4) fucosidase treatment on the invadopodia number per 
cell (B & C) and the proportion of invadopodia positive cells (D & E) in control or FUK OE WM793. *** indicates 0.001, 
respectively, as determined by two-tailed, two sample t-test (B, C) or two-tailed Fisher's exact test (D, E). ns, not statistically 
significant. Numbers in parentheses indicates the number of cells used in quantitation. Representative results from at least 
three independent replicates were presented. 
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treatment with L-fucose significantly inhibits melanoma cell migration/invasion in vitro and lung 

metastasis in mouse models. These data indicate that the FUK-mediated salvage pathway represents an 

important determinant of invasive/metastatic capacity and therapeutically actionable target for 

suppressing melanoma. 

However, the mechanisms by which FUK and the fucose salvage pathway regulates melanoma 

progression are not completely understood. Here, we present evidence that the ectopic expression of FUK 

and L-fucose treatment inhibit the formation and the proteolytic activities of invadopodia, suggesting that 

the fucose salvage pathway might control melanoma invasion through invadopodia-mediated ECM 

remodeling. It is interesting to note that the depletion of FUK in WM793 melanoma cells at least partially 

abrogated the L-fucose-mediated inhibition of invadopodia formation, suggesting that the 

downregulation of FUK in metastatic melanoma might desensitize melanoma cells to the anti-metastatic 

effects of L-fucose. FUK overexpression and L-fucose treatment similarly inhibit invadopodia in melanoma 

cells. However, in some experiments it appeared that L-fucose treatment might decrease invadopodial 

 

Figure 2-11: L-fucose mediated invadopodia inhibition cannot be rescued by α1(3,4) fucosidase. A-D, quantitation of the 
effect of α(1,3/4) fucosidase treatment on the invadopodia number per cell (A & B) and the proportion of invadopodia 
positive cells (C & D) in control or L-fucose treated WM793. *** indicates p<0.001, as determined by two-tailed, two sample 
t-test (A, B) or two-tailed Fisher's exact test (C, D). ns, not statistically significant. Numbers in parentheses indicates the 
number of cells used in quantitation. Representative results from at least three independent replicates were presented. 
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size (Fig 2-2A and 2-3A), while FUK overexpression might result in larger invadopodia. The underlying 

mechanism and potential significance for such difference remained to be determined. 

Core-fucosylation (α(1,6) fucosylation) catalyzed by FUT8 is highly elevated in metastatic 

melanoma, and promotes melanoma progression and metastasis by regulating L1CAM cleavage and 

L1CAM-mediated invasion.121 In contrast, α(1,2) branched fucosylation of glycans attenuates melanoma 

growth and metastasis121,128, suggesting that the modification of glycans by different fucosyltransferases 

might have drastically different functional consequences. Treatment of melanoma cells with α(1,2) 

fucosidase but not α(1,3/4) fucosidase sufficed to abrogate the inhibition of invadopodia by L-fucose and 

FUK, suggesting the inhibitory effects of the fucose salvage pathway are mediated through the α(1,2) 

fucosylation of plasma membrane glycans. The ectopic expression of FUT1, an α(1,2) fucosyltransferase, 

sufficed to recapitulate the inhibition of invadopodia assembly and ECM degradation, further supporting 

this notion. It is interesting to note that the expression of FUT1 and FUT2, the two α(1,2) 

 

Figure 2-12: FUT1 mRNA expression, but not FUT2 mRNA expression is downregulated in advancing stages of melanoma. 
A, comparing the expression levels of FUT1 and FUT2 mRNA in normal skin, benign nevi, primary melanoma and metastatic 
melanoma in five microarray datasets. *, *** and **** indicates p< 0.05, 0.001 and 0.0001, as determined by two-tailed, 
two sample t-test. 
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fucosyltransferases, are suppressed during melanoma progression121, and the levels of α(1,2) fucosylation 

are inversely correlated with the survival of melanoma patients.128 Although all fucosyltransferases use 

GDP-L-fucose as fucosylation donors, it is possible that the fucose salvage pathway might preferentially 

provide GDP-L-fucose for certain fucose transferases through compartmentalization or spatial-temporal 

regulation. 

There are several plasma membrane proteins that might lead to the inhibition of invadopodia 

when modified by α(1,2) fucosylation. One such protein is CD44. CD44 is a multifunctional cell surface 

adhesion receptor that interacts with various components of the ECM including hyaluronan, ostepontin, 

collagens and MMP-9.110,213 High expression of CD44 has been shown to negatively affect patient outcome 

 

Figure 2-13: The ectopic expression of α(1,2) fucosyltransferase FUT1 inhibits invadopodia in WM793 cells. A, the ectopic 
expression of Flag-FUT1, as determined using anti-FLAG Western blotting. B, representative invadopodia assay images 
showing the effect of ectopically expressed FUT1 on invadopodia formation and gelatin degradation in WM793 cells C and 
D, quantitation of the effect of ectopically expressed FUT1 on the invadopodia number per cell (C) and the proportion of 
invadopodia positive cells (D) WM793. E and F, representative images (E) and quantitation data (F) showing the effects of 
FUT1 overexpression in WM793 cells on Matrigel invasion. *** and **** indicates 0.001 and 0.0001, as determined by two-
tailed, two sample t-test (C, F) or two-tailed Fisher's exact test (D). Numbers in parentheses indicates the number of cells 
used in quantitation. Representative results from at least three independent replicates were presented. 
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in those with malignant melanoma.214,215 Studies investigating the role of CD44 in tumorigenesis have 

determined that CD44 promotes cell adhesion and blocking CD44 with an antibody inhibits cell 

adhesion.150,216 Additionally, after processing with MT1-MMP, the enzymatic products of CD44 have been 

demonstrated to promote tumor cell migration.217 In regards to invadopodia, CD44 has been implicated 

as important in invadopodia formation and maturation.104 CD44 promotes the phosphorylation of 

cortactin at invadopodia, as well as the recruitment of MMP9 to invadopodia in breast cancer cells.88 The 

knockdown of CD44 inhibits invadopodia formation.218 CD44 is also referred to as P-glycoprotein, and has 

been shown to be fucosylated.120,146,161,213,219 sLex antigen expression increases on CD44 after FUT3, 6, or 

7 overexpression in prostate cancer cells, contributing to cell adhesion through E-selectin.161 A similar 

phenomenon has been observed in breast cancer cells, where high expression of CD44 on invasive cancer 

cells, and low CD44 expression on non-metastatic cancer cells demonstrates that sLex antigens interact 

with CD44.219 A study in rat colon carcinoma cells found that CD44 is α(1,2) fucosylated after FUT1 

overexpression, and contributes to tumorigenicity.220 Thus far, there have not been any studies 

investigating fucosylated CD44 in melanoma progression. It might be possible that L-fucose treatment of 

melanoma cells, FUK overexpression, or FUT1 overexpression enhances α(1,2) fucosylation of CD44, thus 

diminishing sLex antigen expression and inhibiting invadopodia formation. 

 Another cell surface protein that might inhibit invadopodia formation after α(1,2) fucosylation is 

β1 integrin. β1 integrin is an important signaling factor which promotes the protrusion of the cell 

membrane and invadopodia formation.89,221 It has been demonstrated that invadopodia formation 

through β1 integrin signaling is mediated by the presence of collagen in the ECM.97 The inhibition or 

knockdown of β1 integrin interrupts invadopodia formation, implicating it as an important factor in 

invadopodia.89,95 There are multiple reports indicating that β1 integrin fucosylation is crucial for its 

function.121,124,150,222–224 β1 integrin can be α(1,2) fucosylated through FUT1 as demonstrated in bladder 

cancer cells, where α(1,2) fucosylation contributes to activation of β1 integrin.225 Several studies in various 
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cell types have demonstrated that core fucosylation mediates integrin activity and promotes ligand 

binding, migration, and metastasis in cancer cells121,124,182,224, whereas defucosylation of integrins inhibits 

adhesion and migration.150,223 Additionally, it has been demonstrated that β1 integrin is core fucosylated 

in metastatic melanoma cells.226 Since β1 integrin can be fucosylated, and has been shown to be α(1,2) 

fucosylated, it might be possible that enhanced α(1,2) fucosylation of β1 integrin on melanoma cells 

inhibits invadopodia formation. 

A third potential candidate is EGFR. EGFR has been previously determined to be 

fucosylated.119,186,188,190,227,228 One study suggests that loss of fucosylation of EGFR mediated by α-L-1-

fucosidase results in activation of EGFR and its signaling pathways in breast cancer and CRC cell lines.119 

In lung cancer cells, the role of fucosylation and EGFR signaling is more complicated. α(1,3) fucosylation 

mediated by FUT4 and FUT6 overexpression has been shown to prevent EGFR dimerization and inhibit 

signaling. At the same time the overexpression of FUT8 promotes the dimerization and activation of 

EGFR.190 Similarly, the overexpression of FUT7 in lung cancer cells leads to enhanced activation of EGFR 

and AKT/mTOR signaling pathway to promote cell proliferation.227 α(1,3) fucosylation mediated by FUT4 

was found to be increased on EGFR in breast cancer cells, leading to activation of EGFR signaling.228 

Through the use of an L-fucose analog in HCC cells, one study demonstrated that decreased core 

fucosylation of EGFR suppressed downstream signaling events, and correlates with inhibited colony 

formation in soft agar and tumor growth in vivo therefore indicating that during HCC progression, core 

fucosylation of EGFR contributes to it signaling.188 Similarly, it was demonstrated in HCC cells that the loss 

of FUT8 inhibited EGFR signaling, perhaps leading to ablated tumor formation in xenograft models.186 The 

current literature has indicated that EGFR has the potential to be fucosylated, but to this point there have 

not been studies investigating fucosylation of EGFR in melanoma. EGFR is a known factor in invadopodia 

formation as it has been shown that EGF stimulation induces invadopodia formation and EGFR inhibition 

prevents invadopodia formation.98,104 It is thought that EGFR forms signaling complexes with other 
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membrane-bound proteins, such as β1 integrin, at invadopodia.104 Being that EGFR has been 

demonstrated to be involved in invadopodia formation and has the potential to accept multiple forms of 

fucosylation, it might be possible that α(1,2) fucosylation of EGFR in melanoma cells inhibits its association 

with other RTKs or integrins and prevents invadopodia signaling. 

The assembly and maturation of invadopodia are controlled by many glycosylated plasma 

membrane proteins such as integrins, growth factor receptors, ion channels/exchangers, matrix 

metalloproteases, etc. Our findings that the modulation of FUK and the fucose salvage pathway inhibits 

both the initiation of invadopodial assembly and the proteolytic activity of invadopodia establishes a 

foundation for future exploration of how the fucose salvage pathway regulates the functions of such 

crucial invadopodial proteins, and importantly, metastatic capacity in melanoma. 
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Part Two: An investigation into the role of STIM1 in melanoma formation, 

progression, and metastasis through a novel transgenic mouse model 

3.1 Introduction 

3.1.1 Calcium and Homeostasis 

 The calcium ion (Ca2+) is a crucial second messenger in cellular signaling and is involved in many 

physiological functions ranging from regulating enzymatic activity, cellular motility, muscle contraction, 

cell cycle control to angiogenesis.229–232 Extracellular concentrations are typically greater than 1mM, 

whereas normal cytosolic concentrations are between 10-100nM.233 In order to protect the cell from Ca2+ 

overload, several organelles, such as the endoplasmic reticulum (ER) act as Ca2+ sinks to take up excess 

Ca2+. ER Ca2+ concentrations generally range between 21µM to 2mM.233 Ca2+ leakage into the cytosol is 

constantly occurring, therefore homeostasis is maintained by the constant uptake of Ca2+ from the cytosol 

to Ca2+ sinks through Ca2+ pumps.230,233 In general, cells maintain low cytosolic Ca2+ until physiological 

processes necessitate the release of Ca2+ from internal stores. Once internal stores are depleted, and Ca2+ 

is effluxed to the extracellular space, the internal stores must be replenished by Ca2+ influx from the 

extracellular space.234  

There are Ca2+ pumps, exchangers, channels, transporters, and buffering proteins to ensure that 

cytosolic Ca2+ homeostasis is maintained.230,234–236 Channel proteins are found on the plasma membrane, 

as well as intracellular store membranes to allow the passage of Ca2+.234 There is a very narrow range of 

tolerable Ca2+ concentrations within a cell. The dysregulation of Ca2+ homeostasis can lead to extended 

periods of high Ca2+ concentration and cell death.235 it has been observed that dysregulation of Ca2+ 
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homeostasis in cancer cells can lead to promotion of cell proliferation, apoptosis avoidance, gene 

transcription, migration, and metastasis.230,237  

 

3.1.2 Store Operated Calcium Entry 

 Cells utilize store operated calcium entry (SOCE) to replenish depleted ER Ca2+ stores.233 There are 

two families of proteins that are involved in the formation of store operated channels (SOCs), stromal 

interaction molecule (STIM) and ORAI proteins.235 There are two STIM proteins on the ER membrane and 

Table 5: Studies of STIM1 in Cancers 

Cancer Type Effect of STIM1 Reference 

Breast  Knockdown inhibits migration, SOCE, and cell seeding to lungs 244 

Cervical  Overexpression promotes proliferation, migration, 
angiogenesis tumor growth, 

 Knockdown inhibits tumor growth and angiogenesis 

 Inhibition of STIM1 localization to plasma membrane interface 
blocks SOCE 

 
 
245 
246 

Gastric  Knockdown inhibits proliferation, migration, invasion, tumor 
growth, and lung metastasis 

247,248 

Colorectal  Overexpression promotes migration and motility properties 

 Knockdown inhibits migration and SOCE 

 Overexpression promotes migration, invasion, lung & liver 
metastases, and correlates with poor survival. 

 Knockdown inhibits migration, invasion, lung & liver 
metastases, and correlates with improved survival. 

 
 
250 
 
251 

Lung  Knockdown inhibits proliferation, colony formation, and tumor 
growth 

 Knockdown inhibits migration, invasion, and tumor metastasis 

253 
 
254 

Hepatocellular  Knockdown inhibits migration, invasion, and promotes focal 
adhesions 

255 

Prostate  Knockdown inhibits migration and invasion 256 

Melanoma  Overexpression promotes invadopodia formation and gelatin 
degradation 

 Knockdown inhibits invadopodia formation, gelatin 
degradation, Ca2+ oscillations, and cell seeding in lungs 

 Knockdown inhibits proliferation, migration, SOCE, and lung 
seeding 

 
 
191 
 
257 

Glioblastoma  Knockdown inhibits colony formation, proliferation, tumor 
growth, and arrests cells in G0/G1 phases 

290 
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three ORAI proteins on the cell membrane that can be involved in SOC formation, with STIM1 and ORAI1 

as the main contributors.238  

 There are three variants of ORAI, all of which can interact with STIM proteins to form Ca2+ entry 

channels.234 ORAI1 is a 301 amino acid long protein that exists as a transmembrane protein on the plasma 

membrane.233 The channel is formed by the hexameric aggregation of ORAI1 proteins around a central 

pore, of which the C-termini interact with STIM.234,235 Although the ORAI1 proteins form the pore on the 

plasma membrane, this pore is not formed or activated unless Ca2+ stores have been depleted, and STIM1 

is involved.233 

STIM1 is a 685 amino acid long protein located primarily on the ER membrane and acts as the Ca2+ 

sensor for the ER store.233 The STIM1 protein consists of a pair of EF-domains, of which one binds Ca2+, a 

sterile alpha motif (SAM) which interacts with the open EF domain, a transmembrane portion, coiled-coil 

domains, STIM1-ORAI activating region (SOAR)/CRAC activation domain (CAD), and a polybasic tail which 

 

Figure 3-1: Simplified schematic of SOCE channel formation. STIM1 dimers are inactive when bound to Ca2+. Drops in ER Ca2+ 
concentration cause Ca2+ to dissociate with STIM1 and induce a conformational change. STIM1 oligomerizes and translocates 
along the ER membrane. ORAI1 on the PM forms a hexameric unit and interacts with STIM1 to open a pore and allow Ca2+ 
influx to the cytoplasm. 
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interacts with the plasma membrane and ORAI.234 The EF domains in the ER remain bound to Ca2+ until 

Ca2+ is effluxed from the ER and the Ca2= concentration drops to a point at which the bound ions dissociate 

and induce a conformational change.234,239 The dissociation of Ca2+ from the EF domain of STIM1 occurs at 

~200µM, whereas for STIM2 it is ~400µM, indicating that STIM2 responds to changes near resting state 

and STIM1 reacts to significant decreases in Ca2+ concentration.234,239 When activated, STIM1 dimers 

oligomerize and shuttle along the ER membrane to the ER-PM junction, where ORAI1 then accumulates 

and generates hexamers, allowing influx of Ca2+ to the cytosol.233 

SOCE begins with ER depletion, which occurs after inositol triphosphate (IP3) binding to inositol 

triphosphate receptor (IP3R) on the ER membrane and induces Ca2+ release into the cytoplasm.240,241 Ca2+ 

depletion in the ER allows for Ca2+ to shuttle along the concentration gradient from the extracellular space 

into the cytosol through SOC channels (Fig. 3-1). Ca2+ dissociates with STIM1 dimers, causing a 

conformational change and translocation to ER/PM junctions where ORAI proteins aggregate to form an 

entry for Ca2+.234,235,239,242 The multimerization of STIM1 is mediated by lipid rafts.233 When the ER Ca2+ 

store is refilled, STIM1 binds to Ca2+, undergoes an inactivating conformational change, and dissociates 

from ORAI1. 

 

3.1.3 STIM1 in melanoma 

The role of STIM1 and SOCE have been extensively studied in breast230,241,243,244, cervical243,245,246, 

esophageal243, gastric247–249, colorectal249–252, lung241,253,254, hepatocellular241,255, prostate256, and 

melanoma191,241,257 cancers, as summarized in Table 5. Many of these studies demonstrate that STIM1 

overexpression promotes cancer cell migration, invasion, tumor growth, and metastasis.  

In melanoma, overexpression of STIM1 increases the average number of invadopodia per cell and 

enhances gelatin degradation whereas the knockdown of STIM1 inhibits invadopodia formation and ECM 

degradation as demonstrated by invadopodia assays utilizing gelatin coated coverslips.191 IHC staining of 
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melanoma tumors indicates that metastases have higher STIM1 expression than primary tumors, and the 

expression of STIM1 increases as the stage of disease becomes more advanced.191,257 SOCE is thought to 

promote invadopodia formation as treatment of melanoma cells with Ca2+ chelators or SOCE inhibitors 

decreases invadopodia number and gelatin degradation.191 Knockdown of STIM1 in melanoma cells 

inhibits cell proliferation, migration and lung metastases in tail vein injection mouse models.191,257 The 

majority of the published literature has concluded that STIM1 expression is enhanced in many clinical 

tumor types, including melanoma, and is important in promoting migration and invasion of cancer cell 

lines. 

 

3.1.4 Murine models of melanoma 

 Mouse models have significantly advanced our understanding of melanoma development and 

response to treatments, but also come with limitations.258,259 Currently, mouse models are unable to 

completely recapitulate conditions that are observed in patient progression, particularly the clonal nature 

of melanoma cells within a tumor.258 Therefore, different mouse models are used to examine different 

aspects of cancer development and metastasis. Several models have been developed in which melanoma 

cells are implanted subcutaneously or directly into metastatic sites.260 Subcutaneous implantation 

involves the injection of tumor cancer cells below the surface of the skin to develop tumors over the 

course of days to weeks.259 Syngeneic cells that are known to be metastatic can be utilized in order to 

model intravasation, survival in circulation, extravasation, distal site survival, and growth at distal 

sites.5,259,261 Cells can also be injected directly into a metastatic site, such as the brain or lungs, and a tumor 

allowed to grow to examine how metastases function.5 This approach is limited in that the tumors that 

develop lack a complete microenvironment and are often clonal based on culture conditions.20,258 

Additionally, these models sometimes lack immune interaction as only syngeneic cell lines can be used in 

immune competent mice. 
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Patient derived xenograft (PDX) models involve implanting a piece of surgically resected tumor 

from the patient, including stromal cells in the tumor microenvironment, to severely 

immunocompromised mice.259 These models are utilized in an effort to understand and predict patient 

response. Treatments to the models occur in parallel with treatment of the patient to monitor for genomic 

changes and resistance mechanisms.259,262 However, these models are inefficient and tumors do not 

always develop after inoculation. Additionally, these models are limited in that being in 

immunocompromised mice, the impact of the immune system cannot be assessed.259,262 While these 

models are able to model the local tumor microenvironment and treatment response, the immune 

response cannot be examined. 

 Metastasis is the main cause of death in melanoma patients.17 Metastatic colonization is an 

inefficient process, with a low percentage of circulating cells able to develop into secondary tumors.5,18 In 

order to examine metastatic colonization, intravenous models are utilized.5 Tumor cell injection into the 

tail vein, heart, or portal vein are commonly used to study metastatic colonization at various distant 

organs.263,264 Studies of melanoma seeding typically utilize the tail vein injection model as the injected 

cells will often seed in the capillaries of the lungs, and thus model lung “metastases”.259 In cases where 

bone metastases are being examined, melanoma cells are injected into the heart.265 Even though 

intravenous injections are a commonly used model of “metastasis”, the model is not able to study the 

metastatic dissemination from a primary tumor.259  

 In an effort to accurately model cancer in animals, genetically engineered animals have been 

designed and studied to investigate tumor initiation through metastasis. In melanoma, there have been 

many studies conducted in mice, but the relevance to human melanoma formation is not complete. 

Genetically engineered mouse (GEM) model melanomas are dermal in nature, and have few shared 

characteristics with human melanomas.266 Even so, they are the most similar and efficient model to study 

genetic aberrations leading to melanoma. These models are able to develop complete tumor 
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microenvironments, which does not occur with tumor cell implantation, and are thought to more 

accurately recapitulate tumor progression including initiation, dissemination, and metastasis.5 GEM 

models have been used to model various oncogenes, tumor suppressors, and combinations of both to 

obtain insight into the mechanisms of how respective proteins affect melanoma.266 In 2002, a GEM model 

of Cre-mediated PTEN knockout was generated.267 Five years later, a Cre-inducible model was created to 

examine the role of BRAFV600E in lung tumor formation.268 With mutant BRAF and PTEN loss playing such a 

critical role in melanoma formation, the two models were crossed to develop a model that resembled 

human melanoma. In 2009, it was published that a novel melanoma GEM model was created, which 

incorporates melanocyte specific Cre-induced BRAF mutation and PTEN knockout. After topical 4-

hydroxytamoxifen (4OHT) treatment, mutant BRAF alone only results in hyperplasia, whereas when 

coupled with PTEN loss, all mice rapidly develop primary and metastatic tumors.269 In 2008, STIM1 

knockout mice were generated to examine the role of STIM1 in T-cell function.270 To this point, a GEM 

model has not been developed to examine the role of STIM1 in melanoma progression. Based on previous 

data from the laboratory, our aim was to combine these preexisting GEM models to develop an inducible 

melanoma model that incorporates the loss of STIM1 in melanoma initiation, development, and 

metastasis. 

 

3.2 Methods 

3.2.1 Cell culture 

WM793, WM115, and B16/F10 melanoma cells were cultured in HyClone RPMI-1640 Media 

supplemented with 10% FBS and 1% Penicillin/Streptomycin.  

3.2.2 cDNA Constructs 

STIM1 was knocked out using pLentiCRISPRv2-sgSTIM1. The STIM1 sequences used are: 

Human Fwd: 5’-TGTGCGCCCGTCTTGCCCTG-3’ 
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Human Rev: 5’-CAGGGCAAGACGGGCGCACA-3’ 

Mouse Fwd: 5’-ACAGTGGCTCATTACGTATG-3’ 

Mouse Rev: 5’- CATACGTAATGAGCCACTGT-3’ 

STIM1 was knocked down using pSuper-shSTIM1 with the target sequence of 5’-

AGAAGGAGCTAGAATCTCAC-3’ 

3.2.3 Migration Assays 

Matrigel invasion by WM793 and WM115 cells was performed using invasion Boyden chamber (8μm) as 

we previously described previously.191,192,198,199 Wound healing assays were performed with B16/F10 cells. 

Briefly, cells were allowed to grow to confluence before a scratch was made with a pipette tip. The wells 

were washed to remove floating cells and 1% FBS media was added to each well. Images were taken on 

the same field at 0 and 12 hours. 

3.2.4 Soft Agar Assay 

In preparation for the experiment, 1.5% agarose solution and 2x RPMI culture media were made. Agarose 

(Fisher, BP165-25) was added to ddH2O, then autoclaved to complete solvation and sterilize the solution. 

2x RPMI powder (HyClone, Cat #SH30011.02) was dissolved in ddH2O and pH was balanced to 7.4. The 

media was sterilized by passage through a 0.22µm bottle top filter (Corning, 431097), after which 2x 

Penicillin/Streptomycin solution and stored at 4°C. Before using 2x RPMI, FBS was added to an aliquot up 

to 20%. Solutions were kept at 42°C to prevent solidification. 0.75% agarose solution was made by 

combining 1.5% agarose solution with 2x RPMI, and was used to coat the bottom of wells in 12-well plates 

and allowed to cool. Cells were layered in a 0.375% agarose solution over the bottom layer, and allowed 

to cool. Over the top, 1mL of complete media was added, then changed every 2 days. Colonies were 

resolved using p-iodonitrotetrazolium violet (PINTV) staining. 
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3.2.5 Mouse Models 

C57BL/6 Subcutaneous Xenograft: All mice experiments were performed in compliance with protocols 

approved by the Institutional Animal Care and Use Committee (IACUC) of the Moffitt Cancer Center. 

B16/F10 cells expressing the empty vector, or STIM1 knockout were trypsinized and washed using 1x PBS. 

Next, 1x105 cells were injected in 100µL of PBS under the flank skin. Tumor measurements were taken 

three times per week, until tumors reached endpoints. 

Transgenic Mouse Model: Mouse husbandry and tumor studies were done in compliance with protocols 

approved by the IACUC of the Moffitt Cancer Center, and Penn State College of Medicine. Tumors were 

induced by topical application of 4OHT dissolved in DMSO for 10 minutes, with residual liquid removed to 

combat non-specific tumor formation. 

3.2.6 Cytokine Array 

When treated mice were 50 days old, they were sacrificed and tumor tissue was harvested and flash 

frozen in liquid nitrogen. Tumor samples of similar mass from three mice with similar tumor sizes from 

STIM1WT/WT or STIM1lox/lox groups were combined, homogenized with a Dounce Homogenizer in an ice 

bath, then lysed with ice cold RIPA buffer (150mM NaCl, 5mM EDTA, 50mM Tris pH 8.0, 1% NP-40) 

supplemented with phosphatase and protease inhibitor tablets. Homogenate was then sonicated and 

spun down to remove debris. The lysate was then utilized in the cytokine array (RayBiotech, AAM-CYT-3-

2). 150µg of protein was diluted in cytokine array blocking buffer up to 1mL, then added to array 

membranes and incubated overnight at 4°C. Membranes were then incubated with biotinylated antibody 

cocktail for 2.5 hours at room temperature. Detection was performed by exposing the membranes to 

detection buffer mix and exposure to autoradiography film. 
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3.2.7 Peripheral Blood Determination 

Peripheral blood from mice of indicated genotypes was taken by retro-orbital bleeding and analyzed on a 

Heska HemaTrue Hematology Analyzer for the presence of white blood cells, lymphocytes, granulocytes, 

and monocytes. 

3.2.8 Western blotting 

Cells were seeded to 6cm plates at 5x105 cells per plate and allowed to incubate overnight. The following 

day, plates were washed once with ice cold 1xPBS, then lysed with a rubber policeman and ice cold RIPA 

buffer (150mM NaCl, 5mM EDTA, 50mM Tris pH 8.0, 1% NP-40) supplemented with 1mM phosphatase 

(ThermoScientific, 88667) and 1mM protease (Roche, 04693159001) inhibitor cocktails. The following 

antibodies were used: STIM1 (Cell Signaling Technology, 5668) at 1:1000 dilution in 5% BSA (Fisher, 

BP1600) in TBST; GAPDH (Sigma, G8795) at 1:5000 dilution in 5% BSA in TBST. 

3.2.9 PCR Genotyping 

Mouse tail specimens ranging from 3-5mm in length were digested overnight in 600µL TNES buffer (50mM 

Tris, 0.4M NaCl, 100mM EDTA, 0.5% SDS) supplemented with 350µg of proteinase K at 55°C. After tissue 

was completely digested, 167µL of 5M NaCl was added and samples were vortexed vigorously for 15 

seconds. Samples were centrifuged at 18,000rcf for 20 minutes at 4°C. The supernatant was removed to 

fresh tubes, 800µL of cold 100% ethanol was added, and gently inverted several times to precipitate DNA. 

Centrifugation was repeated as described. Ethanol supernatant was discarded, and DNA pellets were 

gently washed with 1mL cold 70% ethanol. Centrifugation was repeated, supernatant discarded, and 

residual ethanol was allowed to evaporate. DNA pellets were resuspended in 200µL ddH2O, and incubated 

at 55° for 30 minutes. 

BRAF, PTEN, Cre PCR - 2µL of DNA, 1.2µL of 10x DreamTaq Buffer, 0.96µL of 2.5mM dNTP, 0.6µL of Fwd 

primer, 0.6µL of Rev primer, 0.06µL of DreamTaq, and 6.58µL ddH2O were mixed for each sample and run 
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on a thermocycler on the following program: 94°C for 3 minutes, 94°C for 30 seconds, 60°C for 1 minute, 

72°C for 1 minute (repeat steps 2-4 for 35 cycles), 72°C for 2 minutes, then 10°C hold. Primers: 

BRAF Fwd: 5’-TGAGTATTTTTGTGGCAACTGC-3’ Rev: 5’-CTCTGCTGGGAAAGCGGC-3’ 

PTEN Fwd: 5’- CAAGCACTCTGCGAACTGAG-3’ Rev: 5’-AAGTTTTTGAAGGCAAGATGC-3’ 

Cre Fwd: 5’-ACGTTGATGCCGGTGAACG-3’ Rev: 5’-CCACCAGCTTGCATGATCTC-3’ 

STIM1 & STIM2 PCR: 0.5µL of DNA, 1.2µL of 10x DreamTaq Buffer, 1.2µL of 2.5mM dNTP, 0.24µL of Fwd 

primer, 0.24µL of Rev primer, 0.05µL of DreamTaq, and 8.59µL of ddH2O were mixed for each sample and 

run on a thermocycler on the following program: 94°C for 1 minute, 94°C for 1 minute, 60°C for 1 minute, 

74°C for 1 minute (repeat steps 2-4 for 40 cycles), 74°C for 1 minute, then 10°C hold. Primers: 

STIM1 Fwd: 5’-CAGAACCGTTACTCTAAGGAGCAC-3’ Rev: 5’-CATATGTTAGGCATGTACTCTGTCAAC-3’ 

STIM1Δ Fwd: 5’-CTGCTGAGCTACACACATTCC-3’  Rev: 5’-CATATGTTAGGCATGTACTCTGTCAAC-3’ 

STIM2 Fwd: 5’-TACAGAGTGCAGTGTGCCTC-3’  Rev: 5’-CCAGGTCATTGTCACTAGGCACAAGC-3’ 

STIM2Δ Fwd: 5’- TACAGAGTGCAGTGTGCCTC-3’  Rev: 5’-TCTGAACAAGTTTCCCAATCCTA-3’ 

PCR products were run on 2% agarose gel to resolve bands. 

3.2.10 Immunohistochemistry 

Mouse tissues were fixed in 10% buffered formalin for 48 hours before being embedded in paraffin and 

sectioned. Slides were deparaffinized at 55°C for 45 minutes, then cleared in two washes of CitriSolv 

(VWR, 89426-270). Tissues were then rehydrated through graded alcohol solutions. Antigen retrieval was 

conducted using 10mM sodium citrate solution pH 6.0 that was heated to ~90°C for 20 minutes. 

Endogenous enzyme activity was blocked by incubation in 3% H2O2. For STIM1 staining, the Vector® 

M.O.M.TM Immunodetection Kit (Vector Laboratories, PK-2200) was utilized. PTEN staining was completed 

using ABC-AP Staining Kit (Vector Laboratories, AK-5000). Both stains were visualized with Vulcan Fast Red 

(Biocare, FR805) development. The following antibodies were used: STIM1 (ThermoFisher, MA1-19451) 
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at 1:200 and PTEN (Cell Signaling Technologies, 9559S) at 1:50. Slides were counterstained with 

hematoxylin before being washed and dehydrated in several quick washes of 100% ethanol and mounting. 

 

3.3 Results 

3.3.1 STIM1 promotes migration and anchorage independent growth 

 STIM1 has been demonstrated in several studies to be elevated in melanoma tumors compared 

to benign nevi, and also increases expression in progressing stages and metastasis.191,241 The same studies 

determine that STIM1 expression facilitated enhanced SOCE and invasive activity through SOCE and 

invadopodia formation.191,241 Our first objective was to generate stable cell lines of several human and 

murine cell lines with STIM1 knockdown or STIM1 knockout and to confirm changes of STIM1 expression 

by western blot (Fig. 3-2A, C, & E). We found that the loss of STIM1 by knockdown or knockout inhibits 

cell migration, consistent with previously published results (Fig. 3-2B & D). We next examined the effect 

 

Figure 3-2: Loss of STIM1 inhibits migration and colony formation. A Western blot analysis of STIM1 shRNA infected stable 
cell lines in WM793 (top) and WM115 (bottom) melanoma cell lines. B Melanoma cell transwell migration was inhibited by 
the knockdown of STIM1. C Western blot analysis of STIM1 sgRNA infected stable cell lines in murine B16/F10 melanoma 
cells. D Scratch assay after 12 hours demonstrated that STIM1 KO cells migrated slower than empty vector control cells. E 
Western blot analysis of STIM1 sgRNA infected WM793 cells. F Representative wells of control cells and STIM1 KO cells. G 
Quantitation of colony formation assay * indicates p<0.05. Representative results from at least three independent replicates 
were presented. Statistical analysis determined by two-tailed, two sample t-test. 
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of STIM1 on colony formation. Loss of STIM1 inhibited colony formation (Fig. 3-2F & G), indicating that 

STIM1 contributes to anchorage independent growth. 

 

3.3.2 Development of a STIM1 inducible knockout model of melanoma progression and metastasis 

 Since STIM1 has been demonstrated to promote melanoma progression and metastasis191,241, we 

began considering a novel method to model STIM1 in melanoma initiation, progression, and metastasis. 

We were able to purchase BRAFCA/CA/PTENlox/lox/Cre mice from the Jackson Lab, and were generously given 

STIM1lox/lox/STIM2lox/lox mice from Dr. Yoshihiro Baba of Osaka University. Our experimental approach was 

to cross the two strains of mice together to generate melanocyte-specific mutant BRAF with PTEN deletion 

and variations of STIM1 expression (Fig. 3-3). PCR genotyping confirmed whether the mice were 

homozygous for the floxed BRAF and PTEN, as well as whether the mice were STIM1WT/WT, STIM1WT/lox, or 

STIM1lox/lox (Fig. 3-4A). Based on the treatment regimen detailed by Dankort et. al.269, we treated the 

 

Figure 3-3: Illustrated representation of our breeding strategy and desired genotypes. 
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indicated pups on post-natal days 2-4, then allowed the pups to grow until day 50, at which point the mice 

were euthanized, and necropsy was performed (Fig. 3-4B). 

Tumor measurements were conducted three times per week. We found that the STIM1lox/lox 

tumors grew faster and were approximately 50% larger on Day 50 than the STIM1WT/WT tumors (Fig. 3-5A). 

Interestingly STIM1 and STIM2 null tumors were approximately two-fold larger than the 

STIM1WT/WT/STIM2WT/WT tumors, indicating that the loss of both STIM molecules exacerbated tumor 

growth. We were curious to know whether the loss of STIM1 and STIM2 significantly affected tumor 

formation and examined tumor free survival. The generated Kaplan-Meier analysis shows that STIM1WT/WT 

 

Figure 3-4: 4OHT treatment induces genomic alterations. A PCR analysis of genomic DNA isolated from tail snips treated 
with 4OHT. All mice were homozygous for BRAFV600E, PTENlox, and STIM2WT. Lanes 1, 5, & 8 were from homozygous STIM1lox 
mice, lanes 4, 7, & 10 were from heterozygous mice, and lanes 3, 6, & 9 were from homozygous STIM1lox mice. Δ refers to 
the modified allele after Cre activity. B Timeline of mice used in the study. 
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and STIM1 heterozygous mice generated tumors later than the STIM1lox/lox, or the STIM1lox/lox/STIM2lox/lox 

mice (Fig. 3-5B). Upon necropsy, we found that there was significant lymph node involvement in all the 

mice. Additional analysis of the lymph node involvement found that there were three distinct phenotypes 

of metastatic lymph nodes; no metastasis, partial metastasis, and complete metastasis. Metastasis was 

defined by the presence of black pigmentation in the lymph nodes. Nodes were considered having no 

metastasis based on a lack of visible pigmentation. Partial and complete metastases were characterized 

as lymph nodes that displayed some black pigmentation, or were completely black. We found that as mice 

lost STIM1 alleles, the percentage of lymph nodes without pigmentation dropped, and the percentage of 

lymph nodes that demonstrated dramatic color change coincidentally rose (Fig. 3-5D). The percentage of 

 

Figure 3-5: STIM1 knockout enhances tumorigenic properties. A Tumor growth curves for mice treated with 4OHT on post-
natal days 2-4. B Kaplan Meier analysis of tumor free survival in mice after 4OHT treatment. C Necropsy analysis of lymph 
node involvement defined by the presence of pigment in the lymph nodes. D Quantitation of percentage of involved lymph 
nodes based on degree of pigmentation. Statistical analysis determined by two tailed, two sample t-test (A, C, D) or log-rank 
t-test (B).  
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lymph nodes considered partially metastatic did not change between cohorts. Quantitation of affected 

lymph nodes did not demonstrate a significant difference between cohorts (Fig. 3-6C). One should caution 

that the presence of black pigmentation in the lymph nodes is not an accurate criteria of melanoma 

metastasis. It is possible that the black pigment in the lymph nodes is a result of immune cells taking up 

melanin prior to circulating to the lymph nodes. Further pathological analysis is required to determine the 

effect of STIM1 loss on melanoma metastasis in this model. 

 Since SOCE is crucial for immune response in both T-cells271 and B-cells272, we are curious whether 

the increased melanoma growth in STIM1/STIM2 knockout models is due to changes in the tumor immune 

microenvironment. First, an analysis of cytokines secreted in the tumor was conducted. Similar sized 

samples were taken from three tumors of similar size from STIM1WT/WT or STIM1lox/lox mice, and 

 

Figure 3-6: STIM1 knockout does not significantly affect peripheral immune system. A Murine cytokine array performed on 
tumor samples from mice that were homozygous for STIM1WT, or STIM1lox. B Breakdown of analyzed circulating blood cells 
taken by retro-orbital bleed from each of the mice analyzed. (C) Circulating blood cell composition for the mice analyzed. 
Grey indicates percentage of granulocytes, orange indicates percentage of monocytes, and blue indicates percentage of 
lymphocytes. 
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homogenized to extract protein. After lysate was generated for each condition, 150µg of total protein was 

incubated on cytokine array membranes to investigate whether noticeable shifts in cytokine expression 

could be observed. It was determined that there was not a significant shift of any examined cytokines 

between the tumor conditions (Fig. 3-6A). Additionally, we conducted flow cytometric analysis of 

circulating blood cells to examine whether there were changes in the immune periphery. Overall, there 

was not a significant difference in populations of white blood cells, lymphocytes, granulocytes, or 

monocytes (Fig. 3-6B & C). 

Next we conducted immunohistochemical staining of tumor tissues for STIM1 and PTEN. 

Interestingly, we found that although there was a decrease of STIM1 in tumor tissue, there was not a 

complete ablation (Fig. 3-7A). This could be explained by other cell types present in the tumor, such as 

infiltrating lymphocytes, fibroblasts, keratinocytes, etc., and will need to be more closely examined in the 

future. Protein lysate generated from the tumors indicate that STIM1 protein expression is reduced by 

approximately 50% in the knockout tumors. Taken together, the data suggest that loss of STIM1 promotes 

tumor growth and tumor initiation. However, as there is not a complete loss of STIM1, further 

experimentation will have to be conducted to confirm and validate our results. 

 

 

 

Figure 3-7: Immunohistochemical analysis indicates incomplete protein deletion. A IHC staining of STIM1 (top) and PTEN 
(bottom) indicating incomplete deletion. Scale bar indicates 50µm B Western blot analysis of tumor lysate indicating 
approximately 50% reduction of STIM1 expression. 
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3.4 Discussion 

 Calcium is a critical component of cellular physiology and disruption of Ca2+ balance is sufficient 

to cause cellular and organismal problems detrimental to overall health.230,235,237,243,273 SOCE is the main 

mechanism by which Ca2+ enters cells, and STIM1 expression is often upregulated in carcinomas. Due to a 

lack of in vivo work modeling the effect that STIM1/STIM2 plays in melanoma initiation, progression, and 

metastasis, we generated a novel transgenic mouse model to investigate the effect of STIM1/STIM2 loss 

in melanoma. Unfortunately, we ran into several difficulties that made our model problematic to work 

with or derive conclusions from. We found in pilot studies that the treatment regimen had to be optimized 

as residual 4OHT on the mice would result in severe oral and genital tumors. The residual 4OHT was likely 

being consumed by the pups by licking, or by the mother during grooming. When the pups lick one 

another, 4OHT enters the digestive system and would stimulate PTEN loss and BRAF mutation activation 

in melanocytes around the mouth and genitals during intake and excretion. If indeed the mother was 

ingesting the residual 4OHT, it is possible that it made it into the milk, and subsequently to the pups. 

Although the role of SOCE has been studied in cancer cell migration, invasion and metastasis, little 

is known about its function in tumor initiation and growth. In the BRAF/PTEN melanoma model, we found 

that the loss of STIM1 accelerated tumor initiation and growth, which was further exacerbated when 

STIM1 loss was combined with STIM2 loss. Although these results are unexpected, it should be noted both 

STIM1 and STIM2 were previously predicted to be tumor suppressors based on the loss of their 

chromosomal loci in some tumors.274–283 It might be possible that STIM1 in the murine melanocytes does 

has a tumor suppressive function. Therefore, the loss of STIM1 combined with mutated BRAF and PTEN 

would lead to the enhanced initiation and tumor growth observed in our experiments. If STIM1 is tumor 
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suppressive, the suppressive nature might be masked in cultured cells due to accumulated mutations, and 

therefore appear to have a oncogenic effect when overexpressed in vitro and in xenograft models.  

Another mechanism that might explain our results is that different STIM1 variants are responsible 

for the difference between our study and previous studies. STIM1 was initially thought of to be a tumor 

suppressor gene that arrested rhabdomyosarcoma cell growth.283 Since then it has been determined that 

there are at least two different variants of STIM1, with the second variant known as STIM1L.284 While 

there have not been any studies investigating if STIM1L is expressed in melanoma, it is thought that 

knockdown of STIM1 will also affect STIM1L, and therefore might result in data that appears contrary to 

previous results.285 If indeed there are different variants of STIM1, and one of them acts as a tumor 

suppressor, then it is within the realm of reason that our knockdown may preferentially target the tumor 

suppressive variant, therefore leading to enhanced tumor growth, as we have observed.  

Our results are also reminiscent of a study conducted in prostate cancer, where STIM1 expression 

was decreased in advancing stages of cancer.286 Further studies in prostate cancer reported that reduced 

SOCE inhibits apoptosis, and the overexpression of STIM1 promotes apoptosis in prostate cancer cells.287–

289 Similarly, while STIM1 overexpression was shown to promote cell migration, it also inhibits cell 

proliferation by promoting senescence and arresting cells in the G0/G1 phase.286 However, being that some 

STIM1 expression appears to persist in our IHC staining, it is not clear whether this phenotype is being 

recapitulated. 

In our IHC stains, the specificity of the antibody was considered for nonspecific staining that might 

show incomplete knockout. The antibody we chose to use has been demonstrated to work in IHC studies 

before.191 However, the staining’s completed in that study was conducted in human tissues, whereas our 

studies were conducted in mouse tissues, and the STIM1 antibody was created in mouse. It is possible 

that a different STIM1 antibody created in a different species would behave differently and give a better 

staining. This antibody has been tested for use in IHC in STIM1 knockdown cells previously in our 
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laboratory where the knockout cells were negative, indicating positive specificity of the antibody to 

STIM1. The simplest way to ensure that STIM1 is knocked out in the tumor melanoma cells would be to 

complete a double staining of STIM1 with a melanocyte specific marker, such as S100. It has been shown 

that three days of treatment are sufficient to induce PTEN deletion and BRAF mutation, but it might be 

possible that this treatment regimen is not inducing complete STIM1 knockout in all melanocytes of the 

treated area. This incomplete deletion might lead to various cellular clones with STIM1 expression, adding 

further heterogeneity to an already complex microenvironment. As mentioned, STIM1 expression in 

prostate cancer cells arrest cells in G0/G1 phase, while the knockout cells could theoretically continue to 

proliferate and give rise to tumors. However, the opposite has also been reported in that the knockdown 

of STIM1 in glioblastoma cells also leads to G0/G1 arrest.290 In our knockdown model, we may not see 

complete loss of STIM1 staining because those cells that have lost STIM1 may not be proliferating, and 

remain arrested within the tumors. In a similar manner, the loss of SOCE has been previously reported to 

induce quiescence in glioblastoma cells.291 Considering this observation, if the same principle applies to 

melanoma, then the cells which have lost STIM1 expression might have transitioned to a quiescent state, 

whereas other melanoma cells which have not completely lost STIM1 expression continued to proliferate. 

Again, the simplest way to test these hypotheses is to conduct double staining with a melanocyte or neural 

crest specific marker. Another possibility is that the cells lacking STIM1 might be providing a survival 

advantage to other cells either through paracrine signaling, or another mechanism that we have not 

investigated. The current model was limited by the treatment regimen and spontaneous tumor formation 

due to Cre leakage. 

The possibility also exists that STIM1 may play a complex role in tumor development, and the 

extent of that complexity has not been determined. It is interesting to note that the TGFβ signaling 

pathway has both tumor-suppressing and metastasis-promoting functions.292,293 In normal cells, TGFβ 

promotes cell homeostasis by regulating differentiation, apoptosis, and inflammation. However, once 
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cells have become tumorigenic or malignant, TGFβ promotes immune avoidance, EMT, migration, and 

metastasis.292,293 It might be possible that STIM1 is tumor suppressive during early stages of melanoma, 

then promotes migration and metastasis in later stages. Therefore, the loss of STIM1 would mitigate the 

tumor suppressive function and result in tumors forming earlier and growing more quickly than 

STIM1WT/WT tumors. 
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4.1 Summary, Future Work, and Discussions 

The thesis research investigated melanoma invasion and metastasis using two very different, but 

complimentary, approaches. Our investigation into how fucosylation inhibits melanoma invasion through 

modulation of invadopodia was conducted entirely in vitro. The study investigating the role of the SOCE 

protein STIM1 in melanoma progression mostly focused on developing a novel transgenic mouse model 

to address how the loss of STIM1 would affect melanoma initiation, growth, and metastasis. Our purpose 

for both studies was to investigate molecular mechanisms to further our understanding of melanoma 

invasion in an effort to combat metastasis. 

 

4.1.1 α(1,2) Fucosylation Inhibits Melanoma Invasion 

 The first project took into account previous studies of fucosylation in melanoma and posed the 

question: how does fucosylation affect invadopodia formation? Tumor cells utilize invadopodia to invade 

the local matrix as the cells migrate towards vasculature. Reports in the literature indicated that L-fucose 

treatment could interfere with melanoma growth and metastasis, and a branch of fucosylation known as 

α(1,2) fucosylation appeared to be lost in melanoma metastasis compared to the primary tumors.121,128 

Our study was the first to demonstrate that the fucose salvage pathways inhibits invadopodia initiation 

and formation. We found that α(1,2) fucosylation of cell surface proteins is responsible for the inhibition 

of invadopodia formation. Later stages of melanoma have been shown to downregulate FUT1 expression, 

which we found inhibits invadopodia formation through α(1,2) fucosylation. 

 This study provides new insight into how α(1,2) fucosylation plays a role in inhibiting melanoma 

progression and invasion. Melanoma metastasis is the main cause of death in patients.17 Invadopodia play 
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an important role in melanoma cell invasion in the metastatic cascade and our results suggest that the 

invasive nature of melanoma cells might be attenuated by α(1,2) fucosylation. Although we were able to 

determine that α(1,2) fucosylation on the cell surface inhibits invadopodia formation, it has not been 

determined which plasma membrane bound proteins are significantly α(1,2) fucosylated to inhibit 

invadopodia formation. The primary goal for a continuation of this study would be to determine which 

cell surface proteins that are involved in invadopodia signaling are significantly fucosylated after L-fucose 

treatment or FUK overexpression. To accomplish this, glycomics and mass spectrometry can be utilized, 

specifically on cell membrane containing fractions of cell lysate to focus the investigation. Additionally, 

experiments can be conducted with radiolabeled L-fucose to confirm possible targets. Those target 

proteins should then undergo manipulation to confirm the mechanistic involvement in invadopodia 

formation and the necessity of α(1,2) fucosylation sites. As α(1,6) fucosylation has been determined to be 

advantageous to melanoma metastasis, it might be worth investigating how it impacts invadopodia 

formation. Relevant proteins might prove interesting targets for treatment through the use of fucosidase. 

 Mouse models investigating the effect of L-fucose treatment and FUK overexpression in tumor 

growth and metastasis have already been investigated.128 In line with these studies, experiments should 

be conducted with FUT1 overexpression melanoma cell lines to determine the effect of FUT1 on tumor 

growth, and to determine if FUT1 overexpression does indeed inhibit metastases. Being that EGFR 

expression is enhanced following the development of resistance to BRAF inhibition28,48, and α(1,2) 

fucosylation of EGFR might inhibit invadopodia formation, it might be of interest to combine current 

treatment regimens with L-fucose analogs or supplement patient diet with L-fucose to further combat 

melanoma progression. Therefore, an experimental mouse model combining L-fucose treatment with 

other melanoma treatment options should be considered to determine if L-fucose treatment improves 

overall and progression free survival.  
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L-fucose, fucose containing extracts, and fucose-containing liposomes are being investigated as 

potential treatments in various cancer types. L-fucose treatment has been shown to inhibit tumor growth 

in vivo in melanoma.128 Since it has been shown that tumor cells will exploit certain FUTs to ensure 

fucosylation that promotes tumorigenic properties, one might wonder how L-fucose treatment inhibits 

melanoma growth and progression. It is possible that excess free L-fucose is taken up and conjugated by 

other FUTs onto structures that are able to mask or override tumorigenic structures. L-fucose treatment 

has been shown to increase fucosylated protein concentration within tumors, contributing evidence to 

this hypothesis.128,200 In metastases, sLex has been demonstrated as critical to facilitate adhesion to 

endothelial cells. L-fucose treatment might affect this interaction as free L-fucose could be conjugated by 

other FUTs that limit or prevent the synthesis of sLex. Another possibility is that the excess free L-fucose 

encourages an immune response against the tumor through the activation of cytolytic immune cells such 

as T-cells and NK cells.128,294 If this phenomenon is consistently noted through further studies, it might lead 

to advances in dietary treatments of melanoma. With L-fucose naturally occurring in various seaweed 

species, it might be worth considering if supplementation of brown seaweed into current diets might help 

slow tumor progression or have preventative effects. One hypothesis, is that average consumption of 

approximately 15g of seaweed per day may inhibit melanoma formation.295  

 Though trends in fucosylation branching have been identified through several cancer types, 

further study must be conducted to identify fucosylation changes in cancer progression. Many questions 

still remain regarding the role of fucosylation in cancer progression. For example, it will be interesting to 

determine how fucosylation patterns change after treatment with L-fucose or fucoidan. It would be 

interesting to determine if the reestablishment of lost fucosylation affects the other branches, or if the 

effect overpowers them; for example, will rescue of α(1,2) fucosylation in melanoma impact or mask the 

tumor promoting effect of α(1,6) fucosylation? There are several cancer types in which certain branching 

has been observed both up- and downregulated. A number of studies have shown that fucosylation can 
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change between cancer stages, and especially between primary and metastatic tumors. Very few, if any, 

studies have investigated the role that cell surface fucosylation might play in the differing stages of tumor 

progression and invasion through the local tissue and basement membrane on the way to the lymphatics 

and vasculature. By identifying fucosylation, and more generally glycosylation, changes between cancer 

stages, investigators might be able to determine new methods of detection and potential treatments. 

 

4.1.2 Role of STIM1 in Melanoma Development and Progression 

 STIM1 and ORAI1 have been the topic of many studies in cancer investigating how modulation of 

SOCE can promote tumorigenic properties. The second project aimed to develop a novel transgenic mouse 

model to examine the role of STIM1 in tumor formation, growth, and metastasis. Melanocyte specific 

BRAFCA/CA/PTENlox/lox/Cre+ mice were crossed with STIM1lox/lox/STIM2lox/lox mice to generate mice with 

BRAFV600E, PTENlox/lox, Cre+ genotypes coupled with various allelic expression of STIM1 and STIM2WT/WT or 

STIM2lox/lox. After birth, 4-hydroxytamoxifen (4OHT) was used to induce the mutation of BRAF and 

deletions of PTEN, STIM1, and STIM2. Contrary to our hypothesis, we found that the loss of STIM1 

promoted tumor growth after 4OHT treatment compared to STIM1WT/WT mice. Additionally, the time to 

tumor development was significantly shorter in STIM1lox/lox mice compared to STIM1WT/WT mice. Although 

we were excited to see what appeared to be metastatic activity in many lymph nodes examined, 

limitations of observational data alone make it difficult to derive a conclusion from our data. Examination 

of tumor tissues by immunohistochemistry determined that our knockouts might not be complete, thus 

adding confounding variables to our study. 

 Our in vitro work suggested that the loss of STIM1 inhibits melanoma cell migration and colony 

formation, whereas our in vivo work indicates loss of STIM1 exacerbates tumor formation and growth. 

This dichotomy might be explained by the inherent differences between in vitro and in vivo experiments. 

Experiments in 2D provide maximal concentration of nutrients and oxygen to all cells, and therefore do 
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not recapitulate the nutrient and oxygen gradients that are observed within tumors.296 In order to remedy 

this in vitro, we moved to anchorage independent assays, which allow for the formation of suspended 

spheres in agarose and can recapitulate the nutrient and oxygen gradients mentioned. In this manner, we 

believed that the loss of STIM1 inhibited colony growth, which would be observed in murine tumors. 

However, colony formation assays do not take into account the interaction between melanoma cells and 

other cells in the tumor stroma, such as endothelial cells, fibroblasts, immune cells, and other types of 

skin cells.297,298 

 Being that our model appears to have incomplete knockout of STIM1, our first priority lies in 

confirming the extent of the knockout and ensuring a complete knockout of our model. Continuous 

treatment of the mice with 4OHT is not feasible as it leads to aggressive systemic tumors. There are several 

approaches that could be used to address this issue. The first is to conduct an orthotopic allograft in 

syngeneic wild type C57BL/6 mice using tumor tissue from our generated models. Our current models of 

mice would be treated with 4OHT to induce tumor formation. The tumors would then be excised, and 

implanted into a wild type C57BL/6 mouse. The allograft mice would be treated with high-dose tamoxifen 

to induce complete STIM1 and STIM2 knockout. In this manner, tumor growth could be accurately 

measured, as well as metastasis and possibly immune infiltration. Another model to be considered would 

be a skin graft. Skin from our generated mice could be grafted to control mice, which would then undergo 

4OHT treatment. By starting 4OHT treatment after grafting, our experimental conditions can begin with 

the same amount of grafted tissue to observe differences in melanoma initiation, as well as progression 

and metastasis. Furthermore, the graft will prevent any spontaneous tumors from untreated sites, which 

has confounded the interpretation of data in our studies.  
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