
University of South Florida University of South Florida

Digital Commons @ University of Digital Commons @ University of

South Florida South Florida

USF Tampa Graduate Theses and Dissertations USF Graduate Theses and Dissertations

October 2018

Statistical Monitoring of Queuing Networks Statistical Monitoring of Queuing Networks

Yaren Bilge Kaya
University of South Florida, yarenbilgekaya@gmail.com

Follow this and additional works at: https://digitalcommons.usf.edu/etd

 Part of the Industrial Engineering Commons

Scholar Commons Citation Scholar Commons Citation
Kaya, Yaren Bilge, "Statistical Monitoring of Queuing Networks" (2018). USF Tampa Graduate Theses and
Dissertations.
https://digitalcommons.usf.edu/etd/7534

This Thesis is brought to you for free and open access by the USF Graduate Theses and Dissertations at Digital
Commons @ University of South Florida. It has been accepted for inclusion in USF Tampa Graduate Theses and
Dissertations by an authorized administrator of Digital Commons @ University of South Florida. For more
information, please contact digitalcommons@usf.edu.

https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/etd
https://digitalcommons.usf.edu/grad_etd
https://digitalcommons.usf.edu/etd?utm_source=digitalcommons.usf.edu%2Fetd%2F7534&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/307?utm_source=digitalcommons.usf.edu%2Fetd%2F7534&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usf.edu

Statistical Monitoring of Queuing Networks

by

Yaren Bilge Kaya

A thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science in Industrial Engineering
Department of Industrial and Management Systems Engineering

College of Engineering
University of South Florida

Major Professor: Devashish Das, Ph.D.
Susana K. Lai-Yuen, Ph.D.

Mingyang Li, Ph.D.
Michael Weng, Ph.D.

Date of Approval:
October 26, 2018

Keywords: Jackson’s networks, Queuing analysis, Markov Chain
Statistical Process Control, CUSUM Charts

Copyright c© 2018, Yaren Bilge Kaya

DEDICATION

This study is dedicated to my little brother, Engin Can Kaya...

ACKNOWLEDGEMENTS

I would like to thank my project adviser Assistant Professor Devashish Das for his guid-

ance, analytical and constructive critiques, open door policy and providing endless encour-

agement. This accomplishment would not be possible without his support.

Besides my advisor, I am also grateful to my thesis committee: Dr. Susana Lai-Yuen,

Dr. Mingyang Li, Dr. Micheal Weng for their insightful comments and valuable guidance.

In addition to my Professors, I would like to thank Yinqang Kuang for her help.

Last but not least, I would like to thank my parents and my brother for providing me

unfailing support throughout my years of study and through the process of researching and

writing this thesis.

TABLE OF CONTENTS

LIST OF TABLES . iii

LIST OF FIGURES . iv

ABSTRACT . v

CHAPTER 1: INTRODUCTION . 1

CHAPTER 2: QUEUING NETWORKS . 6
2.1 Basic Explanation of Queuing Networks 6
2.2 Series Networks . 8

2.2.1 Average Measures . 9
2.3 Open Jackson Networks . 10

2.3.1 Average Measures . 11
2.3.2 Steady State Probabilities of Open Jackson Networks 11
2.3.3 Transition Probabilities of Open Jackson Networks 12

2.4 Closed Jackson Networks . 16
2.5 Basic Steady State Properties of Queuing Networks 16

2.5.1 Single Server and Infinite Capacity Queue M/M/1 17
2.6 Network Structure . 18

CHAPTER 3: LIKELIHOOD ESTIMATION . 19
3.1 Maximum Likelihood Estimation for Markov Chains 19

3.1.1 Derivation of Maximum Likelihood Estimation for Markov Chains 19
3.1.2 Implementation of MLE to Transition Probabilities 21

3.2 CUSUM Charts and Statistics . 22
3.3 Likelihood Ratio Tests . 24

CHAPTER 4: SIMULATION STRUCTURE AND RESULTS 27
4.1 Structure of the Simulation . 27
4.2 Simulation Results . 31

CHAPTER 5: CONCLUDING REMARKS . 36

REFERENCES . 39

APPENDIX A: SIMULATION MODEL . 42

i

A.1 Long Form of Simulations . 42
A.1.1 Simulation for Computing Queue Lengths 42
A.1.2 Simulation for Computing Likelihood Ratio 51
A.1.3 Simulation for Obtaining Average Run Length 54

ii

LIST OF TABLES

Table 1 Table of average run length values and respective threshold values 29

Table 2 Different design parameters that we have used while simulation 30

iii

LIST OF FIGURES

Figure 2.1 Basic example of a series network . 7

Figure 2.2 Basic example of an open Jackson network 7

Figure 2.3 Basic example of a closed Jackson network 8

Figure 2.4 Timeline and the points where transitions occur (τ) 12

Figure 2.5 Transitions between states in a M/M/1 queue 13

Figure 2.6 Possible transitions between nodes . 13

Figure 2.7 Transition rates from states . 14

Figure 2.8 Sample open Jackson queuing network 18

Figure 3.1 Transition rates from states . 21

Figure 4.1 Change in ARL values when all the service rates decrease in the network 31

Figure 4.2 Change in ARL values when just the service rate of first queue decreases 32

Figure 4.3 Change in ARL values when just the service rate of second queue decreases 32

Figure 4.4 Change in ARL values when just the service rate of third queue decreases 33

Figure 4.5 Change in ARL values when just the service rate of fifth queue decreases 34

Figure 4.6 Change in ARL values when just the service rate of sixth queue decreases 34

iv

ABSTRACT

Queuing systems are important parts of our daily lives and to keep their operations at

an efficient level they need to be monitored by using queuing Performance Metrics, such

as average queue lengths and average waiting times. On the other hand queue lengths

and waiting times are generally random variables and their distributions depend on different

properties like arrival rates, service times, number of servers [23]. We focused on detecting the

change in service rates in this report. Therefore, we monitored queues by using Cumulative

Sum(CUSUM) charts based on likelihood ratios and compared the Average Run Length

values of different service rates.

v

CHAPTER 1: INTRODUCTION

In stochastically dynamic service environments, modeling and optimizing the environ-

ment and parameters is in the scope of research. These environments can be represented as

queuing networks. According to Thomopoulos(2012), queuing systems are generally combi-

nations of input population, arrivals, queue (a line that entities wait to get their service),

service facilities (servers) and departures [2]. Applications of queuing networks vary and

it’s possible to see their applications in different research fields. From previous research,

we saw that there are studies on the application of queuing theory in logistics [12], manu-

facturing [17], healthcare systems [18], the supply of materials [28] and so on. Thus, there

are different kinds of queuing systems in our everyday lives; in supermarkets, in hospitals

or in call centers. Therefore, increasing the service quality of a queuing system will have

a tremendous impact on our lives. Service quality can be increased by the following ap-

proaches; decreasing wait time or queue length. If we are working on a manufacturing line,

increasing the service quality may return us as increasing the productivity, which generally

means results in profits. If we are working on healthcare systems, increasing the quality may

result decreasing in disease outbreak and may even decrease fatalities in emergency rooms.

Therefore, it is necessary to carefully monitor the queuing performance metrics like queue

lengths and waiting times [23]. For instance, in an emergency room, if we face an abnormal

waiting line we may need to increase the number of service stations or the number of emer-

gency nurses. It is shown in Johnson’s work [21] that emergency room crowding has negative

effects on practices of emergency nurses and also on patients itself. Therefore, monitoring

the processes and spotting changes on time can be vital sometimes.

1

There are different kinds of queuing networks both in theory and in the application:

series(tandem) networks, Jackson networks, BCMP networks are some examples. All of

these examples of networks are combinations of queues with different properties and these

individual queues within networks as ”nodes” of the network. In general, properties of a

queue are: arrival rate distribution, service rate distribution, number of servers in the queue,

population of the inflow and the queuing policy (First Come First Served, Last Come First

Served, ...). Since queuing networks behave as a union of individual queues, they carry the

characteristics of the queues within them. In addition to these characteristics, there are also

routing probabilities which defines probability of going from one queue to another whenever

a service is finished in the current queue.

In tandem networks there are multiple queues connected to each other in series. If we

have K nodes in a series network, inflow of the ith node is equivalent to outflow of the (i−1)th

node. Therefore we can say that in series networks the routing probability of going from

node i − 1 to i is equal to 1, where i = {1, 2, 3, . . . , K}. However, Jackson networks gener-

ally consist of multiple queues connected to each other with some routing probabilities with

(0, 1]. The special property of Jackson is explained in Gelenbe(1987), all the queues in these

networks behave as independent and individual queues [3]. Thus, we can say that the service

rate of the first queue of the network is assumed to be independent of the service rate of the

second queue of the network. This property of Jackson networks helps us find the steady

state properties easier. There are two types of Jackson networks in literature they are called

as: open and closed Jackson networks [1]. In the closed network, there is no external arrival

to any of the queues and there is no departure from any of the queues. However in the open

Jackson networks, external arrival can happen to any of the queues and entities can leave

the system from any of the queues. Main networks that we have worked on in this report are

Jackson Networks and we are going to focus on queues with exponentially distributed service

rates, one server at a queue and the arrival rates are going to follow Poisson distribution; in

Kendall’s notation [8] they are called as M/M/1 queues.

2

Queuing networks can be examined as Continuous Time Markov Chains (CTMC). Be-

cause as the Markov Chain definition: probability of the next event is only depends on the

previous event, not the events before that [22]. And generally in queuing theory states are

defined as the number of entities in a queue where the state space is defined as: [0, maximum

number of entities in a queue]. However, it’s difficult to observe the queue lengths continu-

ously; therefore for changing the CTMC to Discrete Time Markov Chain (DTMC) embedded

property can be applied. In other words, looking at time points where a transition occurs

instead of the time itself allows us to define CTMC queuing network as a DTMC model.

While implementing this methodology main assumption is: there cannot be 2 transitions at

the same time in a queuing network. There can either be a ”birth” process, ”death” process

or a switch between nodes. Birth is defined as having an external arrival to the system

and the death is defined as having a departure from the system. Switch between nodes can

happen only if the queues have a routing probability different than zero from one to another.

In other words: a death in ith node and a birth in (i+ 1)th node at the same time. In our

report we used this method to obtain the queue lengths of each queue in the network and

this also helped us while finding the transition probabilities between states.

Improving service quality in queuing systems is highly difficult since the nature of these

systems is stochastic and hard to monitor. In addition, most of the time observations from

queuing networks are not complete. For example in an emergency room, if we define emer-

gency nurses and doctors as servers; we may find the number of people waiting to be served

from a specific server but it will be hard to detect the exact time that they have spent in

the queue or in the system. Because of these problems, not so many research conducted on

statistical process control of queuing networks. Most of the studies are on examining the

changes in queuing performance metrics like average number of entities in a queue or average

waiting time in a queue lead them to spot abnormalities in the operations. Bhat, Rao(1972)

worked on controlling traffic intensity in queuing systems by working on M/G/1 and GI/M/1

queues. In their study, they found upper and lower control limits to observe the out of con-

3

trol points [6] by using statistical quality control techniques. Whenever a point is under

lower control point or above upper control point they accepted that the system has gone out

of control. Long after them Shore(2006) used attributes control charts to monitor the queue

lengths in G/G/S queues [7]. While using attributes charts he also handled the skewness

in queue lengths and obtained successful results. Chen, Yuan, Zhou(2011) extended Bhat,

Rao(1972)’s work by comparing average run length (ARL) values of two different charts:

nL charts and warning zone charts. Average run length can be defined as the average of

expected number of samples taken before an Out of Control(OC) point observed. Later

on Chen, Zhou(2014) used Cumulative Sum(CUSUM) Charts based on likelihood ratios to

monitor the performance of mainly M/M/1 queues they also extended their research by ap-

plying the methods to M/G/1 and G/G/1 queues. They mentioned in their research that,

as Lucas (1985) [31], and Ryu, Wan and Kim (2010) [29] CUSUM charts are more sensitive

and they detect changes faster than Shewhart Charts. With the help of these studies we

used CUSUM Charts based on likelihood ratios with different designs. To obtain a solution

we compared the average run lengths of these charts in this report. We are conducting our

research especially on detecting changes in service rates, therefore in simulation, we only

changed the service rates of our design parameters.

In this work we make the following contributions: (i) We detect changes in service rates

faster by using CUSUM charts based on likelihood ratios (ii) We monitored queuing Per-

formance Metrics on queuing networks instead of individual queues different from previous

studies (iii) We used average run length while comparing the performance of CUSUM charts.

Thus, with these contributions, our aim is to follow and expand previous research.

4

The remaining of this report organized as follows. Chapter 2, explains basic queuing

networks, their properties and then focuses on steady state and transition probabilities of

Open Jackson networks which are used to find likelihood ratios. Chapter 3 gives a brief in-

troduction to likelihood estimations and explains likelihood ratios while computing CUSUM

Charts. Chapter 4 discusses the simulation results and compares ARL performances of dif-

ferent design parameters. Finally, the report concludes with the explanation of future works

in Chapter 5.

5

CHAPTER 2: QUEUING NETWORKS

You may find an introduction to some basic queuing networks in this chapter. Man-

ufacturing facilities, assembly lines, communication networks, and health care systems are

everyday life examples of these queuing networks.

2.1 Basic Explanation of Queuing Networks

These networks consist of one or more nodes, where each node represents a service.

This service can be served by one or more servers at each node. In most of the cases,

customers/entities enter the system from a node, travel some other nodes and then depart

from the system. But this may change; customers may skip some nodes, they may visit a

node more than one time or they may stay in the system forever.

We generally name the queues by using the following Kendall notation [8] A/B/C/D/E

• A stands for arrival time distribution

• B stands for service time distribution and if we have more than one server at a node it

also shows whether the servers are identical or not.

• C stands for the number of servers at a node

• D stands for the maximum number of units in network (finite or infinite)

• E stands for the queuing policy (FIFO, LCLS, shortest process time)

In this report we will mainly focus on open Jackson networks which have:

• Poisson process in their arrivals.

• Exponentially and independently distributed service times at nodes.

• Routing probabilities.

• Infinite queue capacity.

• Utilization ≤ 1 for all servers.

6

We’re going to start explaining queuing networks by first explaining series (tandem)

queues. In these networks, customers enter the system only from the first node and departs

from the last node by following the series of nodes. Also, the flow of the system is always

directed in one direction. You may see the basic representation in Figure 2.1.

Figure 2.1: Basic example of a series network

Other than series queues, there are more complex queuing networks like Jackson networks.

There are two types of Jackson networks: one of them is called open Jackson networks and

the other one is closed Jackson networks. The closed networks have a fixed number of

population which we can call as N . The customers or items circulate continuously in the

system and they never leave. In the open networks, customers or items come from external

sources and they eventually depart from the system. Figure 2.2 is a basic example of an

open Jackson networks and Figure 2.3 is an example of a closed network.

Figure 2.2: Basic example of an open Jackson network

7

Figure 2.3: Basic example of a closed Jackson network

2.2 Series Networks

In these networks, arrival process of the queues is generally Poisson with mean λ and

service times are exponentially distributed with the mean of 1/µi where i = 1, 2, 3...K and i

stands for the number of nodes in the network. If there is more than one server in the nodes

we assume that their service times are independent and identical. There is no capacity in the

queues. An everyday example of this concept is assembly lines. All products in the assembly

lines enter the system from the beginning node and depart from the last node.

While analysing these kinds of queues we can behave each node as a separate queue.

Because we assume that output distribution of the previous node is equal to the input

distribution of the next node. For example, if we have c1 servers at 1st node and c2 servers

at 2nd node; we can say that node 1 is a M/M/c1/∞ model and node 2 is a M/M/c2/∞

model. Departure time distribution of an M/M/ci queue is identical to inter-arrival time

distribution. Therefore while analysing these kinds of networks we are going to assume that

we have separate queues and then we will aggregate them.

One of the most important things while analysing these networks is the traffic equations

and we can obtain them by using ”input = output” relationship.

8

Let’s assume that we have a basic ”2 nodes with one server in each queue” network. Flow

from node 1 to 2 is exponentially distributed with µ1 and flow from node 2 to departure is

µ2. Only entering point to the system is from node 1 and only departure point is node 2.

Arrivals are Poisson process with the mean λ.

Let Ni be the random variable, which represents the number of customers in the node i

at steady state. And we are looking for the joint probability:

Pr{N1 = n1, N2 = n2, ..., Nk = nk} = p(n1,n2,...,nk)

p(n1,n2) = (1− ρ1)ρn1
1 (1− ρ2)ρn2

2 where ρ = λ/µ ≤ 1 and n ≥ 0 (1)

When there is k nodes:

p(n1,n2,...,nk) =
∏

k
i=1(1− ρi)ρ

ni
i where ρi = λi/µi ≤ 1 and ni ≥ 0 ∀i (2)

2.2.1 Average Measures

In order to find the expected waiting time in the queues and the number of customers

in the queues or in the system, we need the average measurements you may see below. L

stands for the expected number of customers in the system; and Lq stands for the expected

number of customers in the queue.

Li =
k∑

i=1

λi
µi − λi

(3)

By using Little’s Law [9] we can also find the expected total time spent on the system which

is represented as W .

Wi =
Li

λi
(4)

9

2.3 Open Jackson Networks

In this model, customers may enter the system from any node with Poisson distribution

with the mean λ. There can be one or more servers at each node with service time expo-

nentially distributed with mean µi. If there are more than one servers at each node, we are

going to assume that all servers are independent of each other and their service rates are

identical. When customers complete the service at node i, there is a probability of rij that

the customer may go to the next (jth) node. Also, customers may leave the system from any

node with the probability ri0. In addition to these, we accept that there is no capacity on

queues.

Jackson’s theorem says that: ”In steady state, each node behaves independently as

M/M/1 or M/M/c queue with infinite capacity. And the number of customers in differ-

ent nodes are independent. In addition to that, queues behave like their arrival stream is

Poisson.” [14] [1]. Therefore, while analysing this model at first we are going to assume that

all nodes are separate and then we are going to aggregate our solution.

If we call γi as external arrival rate and λ as total arrival rate to that node, we are going

to obtain the equation (5) from traffic equations.

λi = γi +
K∑
i=1

λjrij where 1 ≤ i ≤ K (5)

We are going to focus on Open Jackson networks with M/M/1 queues in this report, that’s

why we are going to give more details about their steady state and transition probabilities

below in addition to their average measures.

10

2.3.1 Average Measures

In this part, you may find the measurements and the formulas for one server model of open

Jackson networks. L represents the number of customers in the system and W represents

the waiting times in the system. You may convert this model into a M/M/c model by using

the necessary formulas.

Li =
ρi

1− ρi
where ρi =

λi
µi

(6)

Wi =
Li

γi
and therefore, Wqi = Wi −

1

µi

(7)

In order to find the total waiting time in the system we can sum all the λis that we have

found since they are independent of each other and we can call it as λ. Then we can use the

Equation (8) below.

W =
1

λ

k∑
i=1

Li (8)

2.3.2 Steady State Probabilities of Open Jackson Networks

In order to find the steady state probabilities of queuing networks we need to use Jack-

son’s theorem. In Jackson’s theorem, every node in a network considered as an individual,

independent M/M/1 or M/M/c queue therefore, we assume that number of customers in one

node is independent of the number of customers in another node. Thus while finding the

steady state probabilities, we can use the Equation (9) [4].

p(n1,n2,...,nk) =
∏

k
i=1(1− ρi)ρ

ni
i where ρi = λi/µi ≤ 1 and ni ≥ 0 ∀i (9)

As you can see from the Equation (9) steady state probabilities of Jackson networks

follow geometric distribution with the success probability (1− ρi).

11

2.3.3 Transition Probabilities of Open Jackson Networks

The probability of the occurrence of a transition between two states are called as tran-

sition probabilities in Markov Chains. If we would like to examine our queuing networks as

Markov chains first we need states and generally, they are defined as the number of people

in the queue in queuing theory. These states change depending on time, that’s why we can

call this process as a continuous time Markov Chain(CTMC). Unfortunately, it is difficult to

find transition probabilities by using CTMC, therefore we can transform this system from

continuous time to discrete time by just looking at the times where transitions occur. We

call these types of Markov Chains as embedded Markov Chains [5] and we can call the points

where transitions occur as τl where l = 1, 2, ...L.

Figure 2.4: Timeline and the points where transitions occur (τ)

If we call X(t) as a continuous time Markov Chain which is a function of time and define

functions Y1 and Y2 as Y1 = X(τ1) and Y2 = X(τ2) respectively; we can call these Y1 and Y2

as discrete time Markov Chains.

First, we are only going to talk about a M/M/1 queue instead of a queuing network

to explain the basic logic. We suppose that the process is in state n right now and till a

transition occurs it will stay at state n. If we say that the arrivals occur with Poisson distri-

bution with rate λ our average time until an arrival occurs is going to be 1/λ. If the service

rate is exponential with the rate µ we can say that average time until a service completion

(departure) is going to be exponential with 1/µ. We know that the system will leave the

state n whenever an arrival or a departure occurs so that the time spent in state n is going

to be the minimum of these two events. When we do the calculations we see that the time

that system spent in state n will be exponential with rate 1/(λ+ µ). Thus, the probability

of having an arrival is going to be λ/(λ + µ) and the probability of having a departure is

12

going to be µ/(λ+ µ). By looking at these values, we can see our system as a discrete time

Markov Chain with transition probability of going one state up as λ/(λ+ µ) and going one

state down as µ/(λ + µ) [1]. We should also remember the important point which is: this

method only works if the ρ < 1. You may see the basic representation of the system is given

below in Figure (2.5).

Figure 2.5: Transitions between states in a M/M/1 queue

You may see all the possible transitions if we have a 3 node network given in the Figure

2.6.

Figure 2.6: Possible transitions between nodes

In queuing networks we can explain the states of the nodes as the number of entities

in each node. Therefore, if we have K nodes we can show the current state as −→n =

(n1, n2, n3, ..., ni, ..., nj, ..., nK) . While finding the transition probabilities, we assume that

only one transition can occur at a time. It can be either one external arrival to one of the

nodes, one departure from a node or it can be one entity switching nodes. Therefore if

we have a 2 node queuing network we cannot have an external arrival to first node and a

departure from the second node at the same time; the times where transitions occur must

have a slight difference.

13

Let i and j be two nodes which have a connection(routing probability different than 0)

between. We can show the state ~n where,

• One external arrival to node i occurred as:

−−−→ni+1,j = (n1, n2, n3, ..., ni + 1, ..., nj, ..., nK)

• One departure from the node i occurred as:

−−−→ni−1,j = (n1, n2, n3, ..., ni − 1, ..., nj, ..., nK).

• One customer departed from node i and arrived to node j as:

−−−−→ni−1,j+1 = (n1, n2, n3, ..., ni − 1, ..., nj + 1, ..., nK).

• One customer departed from node j and arrived to node i as:

−−−−→ni+1,j−1 = (n1, n2, n3, ..., ni + 1, ..., nj − 1, ..., nK).

Figure 2.7: Transition rates from states

You may see the transition rates from one state to another in Figure 2.7. If we say that

our initial state is ~ni,j, going to ~ni+,j state means that one external arrival occurred with

rate λi. If we have one departure from state ~ni,j we will reach to state ~ni−,j with the rate of

ri0µi, where ri0 is the routing probability of departing from the system from node i.

There are two more options that may occur in a queuing network: a customer may leave

one node and enter another node. If we are currently at the state ~ni,j and we go to state

~ni−,j+ it means that a customer left node i and entered node j. The rate of this transition is

rijµi where rij is the routing probability from node i to node j.

14

Therefore we can find the transition rates by looking at Figure 2.7. If we would like

to show it mathematically, we can use q~n,~m as the transition rates. In this representation

our initial state is shown as ~n which represents ~ni,j, and ~m shows the next state where a

transition occurs. You may see the open form below in equation (10).

q~n, ~m =



0, ~m /∈ {~ni+, ~ni−, ~ni+,j−, ~ni−,j+}

λi, ~m = ~ni+,j

ri0µi, ~m = ~ni−,j

rjiµj, ~m = ~ni+,j−

rijµi, ~m = ~ni−,j+

−[λi + µi + rjiµj + rijµi], ~m = ~n

(10)

Transition probabilities can be found by using the transition rates given in equation (10)

and you may see the probabilities below in equation (11) shown as p~n, ~m. In order to find

the probabilities we first found all the possible transitions occur in each state by summing

the rates over i and we obtained: φi = λi + ri0µi + rjiµj + rijµi .

p~n, ~m =



0, ~m /∈ {~ni+, ~ni−, ~ni+,j−, ~ni−,j+}

λi
φi

, ~m = ~ni+,j

µi

φi

, ~m = ~ni−,j

rjiµj

φi

, ~m = ~ni+,j−

rijµi

φi

, ~m = ~ni−,j+

0, ~m = ~n

(11)

If we have total of O states in our system, that means we have O number of ~n vectors

and also we have O number of ~m’s. In order to obtain the transition probability matrix we

will need O2−O number of p~n, ~m’s where ~n, ~m = 1, 2, 3, ...K because the diagonal element of

15

this transition matrix is going to be equal to 0, since there is no transition from state ~ni,j to

same state. Therefore if we call our transition rate matrix as Q, our transition probability

matrix is going to look like T which you can see below.

Q =



−
∑

j q1j q12 q13 . . . q1N

q21 −
∑

j q2j q23 . . . q2N
...

...
...

. . .
...

qN1 qN2 qN3 . . . −
∑

j qNj



T =



0
q12∑
j q1j

q13∑
j q1j

. . .
q1N∑
j q1j

q21∑
j q2j

0
q31∑
j q2j

. . .
q2N∑
j q2j

...
...

...
. . .

...

qN1∑
qNj

qN2∑
j qNj

qN3∑
j qNj

. . . 0



2.4 Closed Jackson Networks

In closed Jackson networks there is no arrival or departure from the system, basically,

γi = 0 and ri0 = 0. That means, we have N customers continuously travelling in the system.

This model is a special form of general Jackson networks. Therefore we’re mainly going to use

the product form solution and the formulas we have previously mentioned in open Jackson

networks. After analysing the traffic equations and using ”input = output” relationship.

2.5 Basic Steady State Properties of Queuing Networks

In Jackson networks we can assume every node as an individual queue, that’s why in order

to find steady state properties we need to find the properties of these individual queues.

In our case, we assume that the service rate of the customers are exponentially distributed

and the arrival rate distribution is Poisson. We may have one or more servers in a node and

16

if we are using Kendall’s notation, we are either working with an M/M/1 queue or an M/M/c

queue. The customers are coming from a infinite population.

Generally, the properties we want to know in a queue are:

• Average waiting time in the queue (Wq)

• Average waiting time in the system (W)

• Average number of people waiting in the queue (Lq)

• Average number of people in the system (L)

• Server utilization (ρ)

2.5.1 Single Server and Infinite Capacity Queue M/M/1

Arrivals are Poisson with the rate λ and service times are exponentially distributed with

rate µ in this case. If the λ/µ is less than 1 the system will function properly and will not

explode. In steady state we can find the properties are given above: Wq,W, L, Lq, ρ.

Utilization of the server is given as:

ρ = λ/µ (12)

The probability of having ”n” customers in the system is shown as Pn and it is equal to:

pn = (1− ρ)ρn and, p0 = 1− ρ (13)

The average number of customers in the system and in the queue is given as:

L = ρ/(1− ρ) and, Lq = ρ2/(1− ρ) (14)

Average waiting time in the queue and in the system is given as:

W = 1/(µ− λ) and, Wq = λ/µ(µ− λ) (15)

17

2.6 Network Structure

The network that we have examined in this report is given below in Figure 2.8. It consists

of 6 nodes where 2 of them are parallel to each other and the rest is in series. We only let

external arrivals to first node and entities can only depart the system from the last node.

Routing probability of going from the second node to third is 0.6 and going from the second

node to fourth is 0.4. Rest of the routing probabilities are equal to 1, since they are connected

in series.

Figure 2.8: Sample open Jackson queuing network

All of the queues have only one server and we assume that their service rates are inde-

pendent from each other. Their service rates are exponentially distributed with the mean

µi and the arrivals are with Poisson distribution with rate λi where i ∈ {0, 1, 2, 3, 4, 5, 6}.

According to the given information, we can say that we are working on a queueing network

with 6 M/M/1 queues. While showing the general cases in other chapters we took the maxi-

mum number of queues in a network as K and the maximum observations that we have seen

from a queue as O.

18

CHAPTER 3: LIKELIHOOD ESTIMATION

In the network model, stochasticity of the environment is often represented by a para-

metric probability density function. Observations have varying values how likely they are

coming from different parameters for the same distribution. This value of a particular data

for the parametrized density is called the the likelihood of the variable under the distribu-

tion. In statistics, likelihood of the data set under the distribution is used to measure the

goodness of the fit. Hence, to compare the performance of two different parameter set for

the same distribution family, likelihood ratio is often preferred. This comparison is referred

as likelihood ratio test. Moreover, by nature, the logarithm is a monotonically increasing

function and hence allows the likelihood ratio to be valid after applied. In most scenarios,

distributions are selected from exponential families, thus taking the logarithm eases compu-

tation. For our work, we also follow the log-likelihood ratio test to justify the performance

of our model.

3.1 Maximum Likelihood Estimation for Markov Chains

Generally in queuing theory states of the Markov Chain defined as the number of entities

in the queue. Therefore if we have a network of K nodes and if the maximum number of

states is O; our state space is going to consist O number of 1 x K sized vectors.

3.1.1 Derivation of Maximum Likelihood Estimation for Markov Chains

Let’s assume that we are working with a network consists of O states and we would like

to find the transient matrix, we can use maximum likelihood estimation to obtain its best

estimate. Let’s say that ~ns
t is the O sized vector which shows the number of people in a

19

queue at time t, and N s
t is the realization of ns

t and it is also an O sized vector. By looking

at this information and using the basic knowledge of Markov Chains [19] we can obtain the

Equation (16).

P (~ns
1 = ~N s

1) = P (~n1 = ~N1)
O∏
t=2

P (~nt = ~Nt|~nt−1 = ~Nt−1)

= P (~n1 = ~N1)
O∏
t=2

p~nt−1,~nt

= P (~n1 = ~N1)
O∏

~n=1

O∏
~m=1

p
c~n,~m

~n,~m

(16)

To find the likelihood we are going to make Equation (16) equal to L(p). Before taking

the derivative of this L(p) function we are going to find the logarithm likelihood to ease the

derivation step.

logL(p) = logP (X1 = x1) +
L∑

~n,~m

c~n,~m logp~n,~m (17)

In order to take the derivative with respect to p~n,~m we need to use the Lagrange multi-

pliers, you may see the steps we used below in Equation (18) and you may also look for the

explanation of Lagrange multipliers from Boas’s book [13]. We used γ instead of λ as our

Lagrange multiplier to not cause confusions.

max L(γ) =
∑
~n

[
∑
~m

c~n,~mlogp~n,~m − γ~n
∑
~m

p~n,~m − 1]

∂L

∂p~n,~m
=
c~n,~m
p~n,~m

− γ~m when we make
∂L

∂p~n,~m
= 0 we will get the maximum point

p~n,~m =
c~n,~m
γ~m

and if we sum p~n,~m over~m , we will get
∑
~m

p~n,~m =

∑
~m c~n,~m
γvecm

= 1

p~n,~m =
c~n,~m∑m
m c~n,~m

(18)

20

After taking the logarithm of the likelihood and using the Lagrange multipliers we ob-

tained that the maximum likelihood of the transition matrix can be found by using:

p~n,~m =
number of transactions from state ~n to state ~m

number of transactions from state ~n to all other states

3.1.2 Implementation of MLE to Transition Probabilities

Let’s assume that we have a queuing network consist of K nodes and the maximum

number of states is L. States are the number of entities in each queue. Therefore we have O

number of 1 x K sized ~n = [n1, n2,nK] vectors. If we are talking about the most general

case, where there can be an arrival to each node and there can be a departure from each

node we need routing probabilities between nodes and the routing probability of departing

from that specific node. You may see the routing probabilities, arrival and departure rates

for a 3 node network below in Figure 3.1.

Figure 3.1: Transition rates from states

For instance if we use this network, possible consecutive states may be: ~n1 = (0, 0, 0), ~n2 =

(1, 0, 0), ~n3 = (0, 0, 0), ~n4 = (1, 0, 0), ~n5 = (2, 0, 0), ~n6 = (1, 1, 0), ~n7 = (1, 0, 1), ~n8 =

(2, 0, 1), ~n9 = (1, 1, 1)... . We can obtain the probability to maintain this sequence by find-

ing the P (~n1 → ~n2)P (~n2 → ~n3)P (~n3 → ~n4)...P (~nl−1 → ~nl). By using the information we got

from the transition probabilities part and derivation of MLE, we can write these probabilities

for this network.

21

p(~n1 → ~n2) =
λ1

λ1 + µ1r12 + µ1r13 + µ2r21 + µ3r31 + µ1r10

p(~n2 → ~n3) =
µ1

λ1 + µ1r12 + µ1r13 + µ2r21 + µ3r31 + µ1r10

p(~n3 → ~n4) =
λ1

λ1 + µ1r12 + µ1r13 + µ2r21 + µ3r31 + µ1r10

p(~n4 → ~n5) =
λ1

λ1 + µ1r12 + µ1r13 + µ2r21 + µ3r31 + µ1r10

p(~n5 → ~n6) =
r12µ1

λ1 + µ1r12 + µ1r13 + µ2r21 + µ3r31 + µ1r10

p(~n6 → ~n7) =
r23µ2

λ2 + µ1r12 + µ3r32 + µ2r21 + µ2r23 + µ2r20
...

(19)

3.2 CUSUM Charts and Statistics

Cumulative Sum control charts introduced by Page(1958) as a memory control chart to

detect changes in processes faster [26]. Currently, they are known to be giving satisfactory

results therefore, they are used as a statistical process control tool for monitoring processes.

In our study, we also used CUSUM charts instead of Shewhart charts because while She-

whart charts don’t keep previous data, CUSUM charts fall into the memory-type control

charts [30]. And the most popular performance measure of these charts is the average run

length (ARL). Addition to Page(1958)’s study and Faisal(2018)’s study we learned from

Basseville(1993) that we can derive CUSUM charts by using likelihood ratios [27].

The ARL0 represents the average run length when the system is in control and ARL1

represents the average run length when the system is out of control. Therefore if the system

is in control we want ARL0 to be high and when the system is out of control we want ARL1

to be low as possible.

If we call Θ0 = [µ1, µ2, ...µK , λ1, λ2, ...λK , r12, r23..] as our in control parameters which

represents service rates, arrival rates and routing probabilities, Θ1 = [(1 + δ1)µ1, (1 +

22

δ1)µ2, ...µK , λ1, λ2, ...λK , r12, r23..] will be our design parameters which also represents the

same properties as in control parameters. And let ~nk = [n1, n2,nK] be our kth observation

from queueing network where all elements of the vector represents the number of entities

in queues of the network. We can represent our in control observations as joint probability

density function(pdf) as P (~n1, ~n2, ~n3, ..., ~nO|Θ0) and designed pdf as P (~n1, ~n2, ~n3, ..., ~nO|Θ1).

With the help of these joint pdf’s we can find the likelihood and log-likelihood ratios which

will help us construct the CUSUM chart as follows:

P (~n1, ~n2, ~n3, ..., ~nO|Θ1)

P (~n1, ~n2, ~n3, ..., ~nO|Θ0)
we can also obtain the log likelihoods by,

logP (~n1, ~n2, ~n3, ..., ~nO|Θ1)− logP (~n1, ~n2, ~n3, ..., ~nO|Θ0)

We can obtain CUSUM statistics by using conditional probability rule and the log like-

lihoods that we have found. Conditional probability rule is given:

P (~nk|~nk−1, ...~n2, ~n1,Θ) =
P (~nk, ~nk−1, ...~n2, ~n1|Θ)

P (~nk−1, ~nk−2, ...~n2, ~n1|Θ)

By applying the conditional probability rule we get,

logP (~nk|~nk−1, ...~n2, ~n1,Θ1) = log
P (~nk, ~nk−1, ...~n2, ~n1|Θ1)

P (~nk−1, ~nk−2, ...~n2, ~n1|Θ1)

logP (~nk|~nk−1, ...~n2, ~n1,Θ0) = log
P (~nk, ~nk−1, ...~n2, ~n1|Θ0)

P (~nk−1, ~nk−2, ...~n2, ~n1|Θ0)

Let CUSUM statistic be gk where g0 = 0,

gk = max{0, gk−1 + (logP (~nk|~nk−1, ...~n2, ~n1,Θ1) − logP (~nk|~nk−1, ...~n2, ~n1,Θ0))}

If we call these log likelihood functions as lk(Θ1) and lk(Θ0) we can call the difference as

τk = lk(Θ1)−lk(Θ0) and this will make our CUSUM statistic equal to gk = max{0, gk+1+τk}.
23

3.3 Likelihood Ratio Tests

If we have two communicating states named ~n and ~m we can represent them as shown

below.

~n = [n1, n2,nK]

~m = [m1,m2,mK]

One step transitions between these states were explained before, in section 4.2 Transition

Probabilities. Therefore we know that we have 4 possible transitions: an arrival, a departure

or a switch between nodes. In order to write the transition probabilities in general form we

need the differences between states and we defined these vectors as ~ei+, ~ei−, ~ei+j−, ~ei−j+ .

~ei+ =

[
0 0 . . . 1 . . . 0

]
for the ith component

~ei− =

[
0 0 . . . −1 . . . 0

]
for the ith component

~ei+j− =

[
0 . . . 1 . . . −1 . . . 0

]
for the i, j components

~ei−j+ =

[
0 . . . −1 . . . 1 . . . 0

]
for the i, j components

All the possible states that a specific state can go defined as:

φi = λi + (1−
K∑

j=1,j 6=i

rji)µi +
K∑

j=1,j 6=i

rijµi +
K∑

j=1,j 6=i

rjiµj

We can show the departures from the system by using:

ri0 = (1−
K∑

j=1,j 6=i

rij)

24

Probability of going from state ~n to state ~m can be shown below. We used the Equation

(11) from section 4.2 Transition Probabilities to find this definition.

p~n, ~m =



0 if ~n− ~m 6= {0, ~ei+, ~ei−, ~ei+j−}
λi
φi

if ~n− ~m = ~ei+

ri0µi

φi

if ~n− ~m = ~ei−

rijµi

φi

if ~n− ~m = ~ei−,j+

rjiµj

φi

if ~n− ~m = ~ei+,j−

(20)

From a queuing network we observe O number of observations which are shown as:

~n0, ~n1, . . . ~nO

Define,

c~n, ~m =
O−1∑
i=1

I (~ni = ~n and ~ni+1 = ~m)

c~n, ~m is going to help us count the number of ~ei+, ~ei−, ~ei−,j+, ~ei+,j− vectors we find after

each transition.

Likelihood function obtained as follows:

L(µ1, µ2, ...µK , λ1, λ2, ...λK , R)

=
K∏
i=1

K∏
j=1,j 6=i

(pei+)cei+ (pei−)cei− (pei+j−)cei+j− (pei−j+
)cei−j+

=
K∏
i=1

K∏
j=1,j 6=i

(
λi
φi

)cei+
(
ri0µi

φi

)cei−
(
rjiµj

φi

)cei+j−
(
rijµi

φi

)cei−j+

(21)

25

Log-likelihood function obtained by taking logarithm of likelihood function (Equation

(21)) and it’s given below.

lO(µ1, µ2, ...µK , λ1, λ2, ...λK , R)

=
K∑
i=1

K∑
j=1,j 6=i

cei+ log

(
λi
φi

)
+ cei− log

(
ri0µi

φi

)
+ cei+j− log

(
rjiµj

φi

)
+ cei−j+

log

(
rijµi

φi

)
(22)

Let,

Θ0 = [µ1, µ2, ...µK , λ1, λ2, ...λK , r12r23..]

Θ1 = [(1 + δ1)µ1, (1 + δ1)µ2, ...µK , λ1, λ2, ...λK , r12r23..]

where Θ0 represents the in control parameters and Θ1 represents the design parameters. By

using the likelihood ratios we obtained,

τk = lk(Θ1)− lk(Θ0)

Which helped us find the CUSUM statistic is defined as:

gk = max{0, gk−1 + τk} (23)

Monitoring rule if,

gk ≥ h

we say that the system has gone slow. In this case h is the threshold value and also it

can be interpreted as Upper Control Limit(UCL). When a point above that threshold value

observed, we say that the process is out of control. Since that point is the first out of control

point that we have observed, it can also be called as ARL.

26

CHAPTER 4: SIMULATION STRUCTURE AND RESULTS

4.1 Structure of the Simulation

Aim of this simulation is to detect the changes in service rates in queueing networks by

looking at the queue lengths. To detect changes faster we used CUSUM charts derived from

likelihood ratios and we used the ARL values to compare performances of different design

parameters.

Initial values that we used is ~µ0 = [1.1, 1.1, 1.1, 1.1, 1.1, 1.1] as our service rate and arrival

rate as ~λ = [1, 1, 1, 1, 1, 1]. Our routing matrix is given below.

Routing Matrix (R)=



0 1 0.0 0.0 0 0

0 0 0.6 0.4 0 0

0 0 0.0 0.0 1 0

0 0 0.0 0.0 1 0

0 0 0.0 0.0 0 1

0 0 0.0 0.0 0 0


With all the initial values we defined our in control parameters which is defined before as

Θ0 ,you may see below.

Θ0 = [µ1, µ2, ...µK , λ1, λ2, ...λK , R] = [~µ = [1.1, 1.1, 1.1, 1.1, 1.1, 1.1], ~λ = [1, 1, 1, 1, 1, 1], R]

27

By just changing service rates:

from ~µ0 = [1.1, 1.1, 1.1, 1.1, 1.1, 1.1] to

 ~µ1 = 0.9[1.1, 1.1, 1.1, 1.1, 1.1, 1.1]

~µ2 = [0.9(1.1), 1.1, 1.1, 1.1, 1.1, 1.1]

we obtained our design parameters Θ1 and Θ2 as shown below. We only changed the service

rates and kept all the other parameters as they are because in this simulation we only focused

on effect of change in service rates in queuing networks.

Θ1 = [(1 + δ1)µ1, (1 + δ1)µ2, ...µK , λ1, λ2, ...λK , r12r23..] =

[~µ = 0.9[1.1, 1.1, 1.1, 1.1, 1.1, 1.1], ~λ = [1, 1, 1, 1, 1, 1], R]

Θ2 = [(1 + δ1)µ1, (1 + δ1)µ2, ...µK , λ1, λ2, ...λK , r12r23..] =

[~µ = ~µ2 = [0.9(1.1), 1.1, 1.1, 1.1, 1.1, 1.1], ~λ = [1, 1, 1, 1, 1, 1], R]

By using these in control and design parameters we calculated the likelihood values which

then helped us draw the CUSUM charts. We had 2 layouts of CUSUM charts for finding

ARL0: (i)Θ1 and Θ0,(ii) Θ2 and , Θ0. After plotting the CUSUM charts we tried finding

the threshold value(h) which will give us the ARL0 equal to 100. Our replication length

was 10000 during these processes. You may see the Table 1 to see the change of ARL0 with

different threshold values for Θ1.

28

Table 1: Table of average run length values and respective threshold values

Trials Threshold value(h) ARL Trials Threshold value(h) ARL

1 0.30000 91.6063 13 0.31800 100.7563
2 0.31200 98.6633 14 0.31805 100.0016
3 0.31300 98.1186 15 0.31810 99.6200
4 0.31350 98.6633 16 0.31820 100.3964
5 0.31500 101.2301 17 0.31830 100.3017
6 0.31600 98.2884 18 0.31840 99.0278
7 0.31700 101.0299 19 0.31850 100.2106
8 0.31750 99.8485 20 0.31900 101.4304
9 0.31770 100.1145 21 0.31900 101.8636
10 0.31780 98.7236 22 0.32000 101.0877
11 0.31790 102.0267 23 0.33000 108.7100
12 0.31800 99.7828 24 0.40000 160.0700

So by looking at the table we took our threshold value(h) to be 0.318 for the first CUSUM

chart. For the second CUSUM chart we found the threshold value as 0.345. In addition to

these we simulated the process by using different design parameters, in every 10000 replica-

tion we changed our service rates and found the corresponding ARL values for all CUSUM

charts. Since our aim is to spot the time where the service become slower, we decreased our

service rates and checked whether the ARL values are decreasing or not. You may see the

list of design parameters below in Table 2. We worked on these parameters with 2 different

CUSUM layouts that we have, and compared all the ARL values. Average Run Length is

the expected number observations before an out of control point observed. That’s why if

our system is out of control we want ARL value to be small as possible and if the system is

in control we want ARL value to be high as possible. In our case, we want ARL value to

decrease whenever the service rate is decreasing. Because slow servers mean that the system

is getting out of control and we would like to spot the out of control signal fast as possible

to find out the cause and solve the problem earlier.

29

Table 2: Different design parameters that we have used while simulation

Explanations Design of service parameters

~µ changed (all service
rates changed)

~µ = 0.9[1.1, 1.1, 1.1, 1.1, 1.1, 1.1]
~µ = 0.8[1.1, 1.1, 1.1, 1.1, 1.1, 1.1]
~µ = 0.7[1.1, 1.1, 1.1, 1.1, 1.1, 1.1]
~µ = 0.6[1.1, 1.1, 1.1, 1.1, 1.1, 1.1]
~µ = 0.5[1.1, 1.1, 1.1, 1.1, 1.1, 1.1]
~µ = 0.4[1.1, 1.1, 1.1, 1.1, 1.1, 1.1]

First element of ~µ
changed

~µ = [0.9(1.1), 1.1, 1.1, 1.1, 1.1, 1.1]
~µ = [0.9(1.1), 1.1, 1.1, 1.1, 1.1, 1.1]

...
~µ = [0.9(1.1), 1.1, 1.1, 1.1, 1.1, 1.1]

Second element of ~µ
changed

~µ = [1.1, 0.9(1.1), 1.1, 1.1, 1.1, 1.1]
~µ = [1.1, 0.8(1.1), 1.1, 1.1, 1.1, 1.1]

...
~µ = [1.1, 0.4(1.1), 1.1, 1.1, 1.1, 1.1]

Third element of ~µ
changed

~µ = [1.1, 1.1, 0.9(1.1), 1.1, 1.1, 1.1]
~µ = [1.1, 1.1, 0.8(1.1), 1.1, 1.1, 1.1]

...
~µ = [1.1, 1.1, 0.4(1.1), 1.1, 1.1, 1.1]

Fifth element of ~µ
changed

~µ = [1.1, 1.1, 1.1, 1.1, 0.9(1.1), 1.1]
~µ = [1.1, 1.1, 1.1, 1.1, 0.8(1.1), 1.1]

...
~µ = [1.1, 1.1, 1.1, 1.1, 0.4(1.1), 1.1]

Sixth element of ~µ
changed

~µ = [1.1, 1.1, 1.1, 1.1, 1.1, 0.9(1.1)]
~µ = [1.1, 1.1, 1.1, 1.1, 1.1, 0.8(1.1)]

...
~µ = [1.1, 1.1, 1.1, 1.1, 1.1, 0.4(1.1)]

30

4.2 Simulation Results

In simulation we used the design parameters that are shown in Table 2 with 2 different

CUSUM layouts which named as CUSUM1 and CUSUM2 .

CUSUM1 corresponds to using:

Θ0 = [~µ = [1.1, 1.1, 1.1, 1.1, 1.1, 1.1], ~λ = [1, 1, 1, 1, 1, 1], R] and

Θ1 = [~µ = 0.9[1.1, 1.1, 1.1, 1.1, 1.1, 1.1], ~λ = [1, 1, 1, 1, 1, 1], R] with h = 0.31805

And CUSUM2 corresponds to using:

Θ0 = [~µ = [1.1, 1.1, 1.1, 1.1, 1.1, 1.1], ~λ = [1, 1, 1, 1, 1, 1], R] and

Θ2 = [~µ = [0.9(1.1), 1.1, 1.1, 1.1, 1.1, 1.1], ~λ = [1, 1, 1, 1, 1, 1], R] with h = 0.345

Figure 4.1: Change in ARL values when all the service rates decrease in the network

In Figure 4.1 we changed our ~µ itself, that means all the servers on the network have

gone slow. As you can see the Average Run Length value is decreasing when we decrease

the service rates. Thus, we can say that we are detecting the out of control points faster

whenever the system goes a bit slower. Both CUSUM1 and CUSUM2 designs seem to be

giving satisfactory results. But we were expecting CUSUM1 design to be giving better results

compared to CUSUM2 while all the servers are becoming slower. Because Θ1 parameters of

CUSUM1 is specially designed for spotting the change while all the servers are going slow.

After running our simulation we saw that CUSUM2 is giving better results, thus we real-

ized that slowing down in first queue is dominating the network. On the other hand, since the

31

difference between results are not so much we can say that both designs work well while

spotting the change in service rates.

Figure 4.2: Change in ARL values when just the service rate of first queue decreases

In Figure 4.2 only the service rate of the first queue is decreasing which corresponds to

µ01. As you can see the ARL values are decreasing when the service rate decreases and this

means that we are able to spot the changes earlier when the system is out of control with

both of the CUSUM designs. While only changing µ01 we expect CUSUM2 to operate better

than CUSUM1 because it’s designed to spot changes better when the first server gone slow.

So by looking at the Figure above, we can say that CUSUM2 is giving better results than

CUSUM1, however, the difference is not too much. On the other hand, CUSUM1 is designed

to detect changes when all the queues(including first queue) slow down, therefore it’s also

normal to observe satisfactory results from CUSUM1.

Figure 4.3: Change in ARL values when just the service rate of second queue decreases

32

You may see the change in ARL values in Figure 4.3 when only the service rate of the

second queue decreases which is shown as µ02. As you can see the CUSUM1 design is giving

better results compared to CUSUM2. Because CUSUM2 parameters don’t have a decrease

in the second queue’s service rate and it’s difficult to observe the change in the second

queue. Therefore we can say that CUSUM1 design is giving satisfactory results since it has

a decrease in all servers when CUSUM2 fails in this case.

Figure 4.4: Change in ARL values when just the service rate of third queue decreases

To observe the change when only the third queue goes slow we plotted Figure 4.4. If you

don’t remember our network structure, third and fourth queues are parallel to each other;

arrivals are coming from the second queue and the departing entities arrive in the fifth queue.

As you can see from the Figure 4.4 that decrease in ARL value is not as high as the other

graphs because the decrease in service rate in a parallel queue does not effect the network

as much as the series queues. Therefore, in this case, ARL is decreasing from 100 to 94

with CUSUM1 and from 100 to 95 with CUSUM2. We can say that CUSUM1 is giving more

satisfactory results because in Θ1 we change the third queue’s service rate as well as the

others. We did not work on service rates of the fourth queue since it’s just parallel to the

third queue and will give similar results.

33

Figure 4.5: Change in ARL values when just the service rate of fifth queue decreases

You may see the change in ARL values when only the service rate of fifth queue deceases

(µ05) in Figure 4.5. As you can see while we can observe a steady decrease in CUSUM1 we

observe fluctuating decrease in CUSUM2 and it’s not decreasing as much as CUSUM1. It’s

because CUSUM2 doesn’t have a change in fifth queue’s service rates. Therefore we can say

that using CUSUM1 is more effective than using CUSUM2 for this method.

Figure 4.6: Change in ARL values when just the service rate of sixth queue decreases

In Figure 4.6 we only decreased the service rate of the sixth node (µ06). The sixth node is

the last node of our network, therefore, decrease in its service rates does not effect the queue

lengths of the other queues in our network. Therefore we can say that the slight decrease in

the ARL value has a reason. As you can see while initial and last points of CUSUM1 and

34

CUSUM2 are same; CUSUM1 has a steady decrease and CUSUM2 has fluctuations. Even

though it’s hard to say which design works better we can say that they are both giving

satisfactory results since the ARL is decreasing.

To summarize our results, in most of the scenarios CUSUM1 works better than CUSUM2

while detecting change in the service rates of queues. When there is a decrease at first queue’s

service rate, we observed that CUSUM2 is better at spotting changes compared to CUSUM1.

Because CUSUM2’s Θ1 parameters designed specially to detect the changes whenever first

queue slows down. On the other hand, CUSUM1 also gave good results for the first queue

because it is prepared for detecting change in all queues. Therefore it’s logical to say that

by using Θ0 and Θ1 parameters we can detect changes faster while a random server is going

slow. On the other hand, when we changed all the service rates at the same time CUSUM1

should have worked better but CUSUM2 gave a better result with a slight difference. There-

fore we can say that they both operated well when all the service rates decreased. The main

reason CUSUM2 gave a better result is, first queue is carrying the biggest importance in

the network since it’s the source queue. In addition to these, we realized that slow down of

service in parallel queues does not effect rest of the queues in the network as much as series

queues. Therefore detecting the change in service rates in parallel queues is not as easy as

detecting changes in series queues. Additionally, the decrease in ARL values are decreasing

when we go from changing first queue’s service rate to last queue’s service rate. When we

change the service rate of first queue the decrease in ARL is around 80 and when we change

the second queue it’s around 30 and when we change the third, fifth and sixth queue’s service

rates the ARL difference is decreasing to 5. Therefore we can say that detecting changes

in first queues is easier than detecting change in last queues. In conclusion, we realized

that the decrease in service rate of the last queue does not effect the queue lengths of the

other queues. Therefore, both CUSUM1 and CUSUM2 charts are giving satisfactory results

however the results are not as good as the other simulations while detecting change in last

queue.

35

CHAPTER 5: CONCLUDING REMARKS

We proposed CUSUM charts based on likelihood ratios to monitor change in service

rates of queueing networks in this report. We used a popular CUSUM performance measure:

Average Run Length to compare our results. With the help of our simulations, we realized

that CUSUM charts are giving satisfactory results even though the change in parameters is

very small.

We mainly worked on Open Jackson Networks with M/M/1 queues. To monitor the

queue lengths by using CUSUM charts based on likelihood ratios we first found the transition

probabilities of queuing networks to help us find the likelihood ratios. We found the transition

probabilities by looking at the difference between two consecutive states and counting the

total number of times that we have seen that specific transition. By using this information,

we came up with the likelihood function and took the logarithm to obtain the log-likelihood

function which we used while finding the CUSUM statistic gk. Our aim was to detect the

change in service rates by monitoring queue lengths in this report and we achieved that by

following this path and then we have constructed our simulation.

In our simulation, we used two different CUSUM layouts: CUSUM1 was designed for

detecting change whenever all the servers slow down and CUSUM2 was designed for detecting

change whenever only the server of the first queue slows down. After changing our design

parameters by using Table 2 we draw our CUSUM charts and compared Average Run Length

values of CUSUM1 and CUSUM2. From our simulation results, we have seen that CUSUM1

and CUSUM2 designs are giving satisfactory results when we decrease all the servers or when

we only decrease the first server. CUSUM2 gave better results in these scenarios because we

realized that first queue is dominating the network. For the other scenarios, we found out

that CUSUM1 is giving better results compared to CUSUM2. Because in CUSUM2 layout we

36

did not change the service rates of the queues except first queue. Therefore it’s not sensitive

to detect changes in other queues. In addition, in the scenarios where we decreased service

rates of second, third, fifth and sixth queues separately we realized that ARL values are not

decreasing as much as when we decreased the service rate of first queue or all the service

rates at the same time. It’s because of the queue length change in the first queue is making

a bigger effect on the network than the other queues. Therefore while changing the service

rates sequentially starting from first queue the change in ARL is decreasing. You may see

from the graphs that we have plotted that the ARL value change is around 80’s in first queue

analysis while the change is around 5 for the last queue.

In this work we make the following contributions: (i) We monitored queuing lengths on

queuing networks instead of individual queues different from previous studies (ii) We used

CUSUM charts based on likelihood ratios to detect the change in service rates. (iii) We

used average run length while comparing performances of different control charts. Thus,

with these contributions we can say that we achieved our aim which was following and

expanding previous research. The work we have done in this research is important because

limited number of research conducted on the statistical monitoring of queues and especially

of queueing networks.

In this study, we have only worked on networks with M/M/1 queues and we only focused

on change in service rates. Therefore this study can be expanded by implementing the

same theory on queueing networks with different kinds of queues such as M/G/1 and other

properties of the queues may change. We can extend the work we are doing right now by

using another control chart like T2 and compare our values. The network we are using right

now is a 6 node network, which is big enough to study the theory but is not considered

as a complex network. In future works, the network can be extended to a much larger

network. Additionally, we used a lot of parameters to come up with our model and in

future, the network can be represented with lower number of parameters by using model

selection problems. In addition, currently, we are working on theory and doing our own

37

simulations based on service and arrival rates that we have decided. Therefore the most

important thing to be done in future in this study is: implementing this study in a real-life

system.

38

REFERENCES

[1] John F. Shortle, James M. Thompson, Donald Gross, Carl M. Harris. (2018) Fundamen-

tals of queuing Theory John Wiley & Sons, New Jersey

[2] Nick T. Thomopoulos.(2012) Fundamentals of Queuing Systems, Statistical Methods for

Analyzing Queuing Models Springer, Boston, MA

[3] Erol Gelenbe, Guy Pujolle. (1987) Introduction to queuing Networks John Wiley & Sons,

New York

[4] Dimitri P. Bertsekas, Robert G. Gallager (1992) Data Networks Prentice Hall, Englewood

Cliffs

[5] Samuel Karlin. (2014) First Course in Stochastic Processes Elsevier Science & Technol-

ogy, ProQuest Ebook Central

[6] U. Narayan Bhat,S. Subba Rao. A Statistical Technique for the Control of Traffic In-

tensity in the Queuing Systems M/G/1 and Gi/M/1 Operations Research. 20: 955-966,

1972

[7] Haim Shore. Control Charts for the Queue Length in a G/G/S System IIE Transactions.

38: 1117-1130, 2006

[8] David G. Kendall. Stochastic Processes Occurring in the Theory of Queues and their

Analysis by the Method of the Imbedded Markov Chain The Annals of Mathematical

Statistics. 24(3):338-354,1953

[9] J.D.C. Little, S.C. Graves. (2008) Little’s Law. In:Building Intuition. International Series

in Operations Research & Management Science. vol 115 Springer, Boston

39

[10] John D. C. Little. Little’s Law as Viewed on Its 50th Anniversary Operations Research

59(3):536-549,2011

[11] John D. C. Little. A Proof for the Queuing Formula: L = λW Operations Research

9(3): 383-387, 1961

[12] M. Stojcic, D. Pamucar,E. Mahmutagic,Z. Stevic. Development of an ANFIS Model for

the Optimization of a Queuing System in Warehouses. Information, 9(10): 240, 2018

[13] Mary L. Boas. (2005) Mathematical Methods in the Physical Sciences. John Wiley &

Sons, New Jersey

[14] James R. Jackson. Jobshop-Like queuing Systems Management Science 50(12

supplement):1796-1802, 2004

[15] D.R. Cox, Valerie Isham. (1980) Point Processes.Chapman & Hall/CRC Monographs

on Statistics & Applied Probability. vol 12 CRC Press, Boca Raton

[16] Jim Pitman. (1993) Probability. Springer, New York

[17] Manish K. Govil, Michael C. Fu. Queuing theory in manufacturing: A survey Journal

of Manufacturing Systems, 18(3):214-240, 1999.

[18] C. Lakshmi , Sivakumar Appa Iyer. Application of queuing theory in health care: A

literature review Operations Research for Health Care, 2(1–2):25-39, March–June 2013

[19] Iuliana Teodorescu. Maximum likelihood estimation for Markov Chains. arXiv preprint

arXiv:0905.4131. 2009 May.

[20] Douglas Montgomery. (2005) Introduction to Statistical Quality Control John Wiley &

Sons, New Jersey

[21] K.D. Johnson, C. Winkelman. The effect of emergency department crowding on patient

outcomes: a literature review. Advanced Emergency Nursing Journal, 33(1):39-54, 2011

40

[22] Paul A. Gagniuc. (2017) Markov Chains: From Theory to Implementation and Experi-

mentation. John Wiley & Sons, New Jersey

[23] Nan Chen, Yuan Yuan, Shiyu Zhou. Performance Analysis of Queue Length Monitoring

of M/G/1 Systems Naval Research Logistics, Vol. 58: 782-794 ,2011

[24] Nan Chen, Shiyu Zhou. CUSUM Statistical Monitoring of M/M/1 Queues and Exten-

sions Technometrics, 57(2): 245-256, 2014

[25] Nan Chen, Shiyu Zhou. Supplemental Materials for CUSUM Schemes for Statistical

Monitoring of queuing Systems Technometrics, 57(2): A2, 2014

[26] E. S. Page. Continuous Inspection Schemes Biometrika, 41(1/2): 100-115, 1954.

[27] Michele Basseville, Igor V. Nikiforov.(1993) Detection of Abrupt Changes: Theory and

Application Prentice Hall, Englewood Cliffs

[28] Moh Zainal Arifin, Banun Diyah Probowati,Sri Hastuti. Applications of Queuing Theory

in the Tobacco Supply Agriculture and Agricultural Science Procedia, 3: 255-261, 2015

[29] J. H. Ryu, H. Wan, S. Kim. Optimal Design of a Cusum Chart for a Mean Shift of

Unknown Size Journal of Quality Technology, 42: 311-326, 2010

[30] Muhammad Faisal, Raja Fawad Zafar, Nasir Abbas, Muhammad Riaz, Tahir Mah-

mood. A modified CUSUM control chart for monitoring industrial processes Quality and

Reliability Engineering International, 34:1045–1058, 2018

[31] J. M. Lucas. Counted Data Cusums Technometrics, 27: 129-144, 1985

41

APPENDIX A: SIMULATION MODEL

A.1 Long Form of Simulations

You may find the full form of the codes that we have used while simulating the queuing

networks in this part. Explanations were in Chapter 3 and Chapter 5. The R packages that

we have used are given below.

in s ta l l . packages (”Rcpp”)

in s ta l l . packages (”RcppArmadillo”)

in s ta l l . packages (”queuecomputer”)

in s ta l l . packages (” dplyr ”)

in s ta l l . packages (” ggp lot2 ”)

in s ta l l . packages (” t i dy r ”)

Generally the initial values that we have used are below.

lambdas = c (1 , 1 , 1 , 1 , 1 , 1)

mus = c (1 . 1 , 1 . 1 , 1 . 1 , 1 . 1 , 1 . 1 , 1 . 1)

t l im = 24

A.1.1 Simulation for Computing Queue Lengths

This code is the long form of the code that we have given in Chapter 3, which is for find-

ing queue lengths of the queuing network and also for finding the step by step transitions.

As the output, it’s giving the vectors ~n = [n1, n2, ..., nK] which shows us the transitions.

42

QL s imulator = function (lambdas , mus , t l im) {

ex ar r 1 = cumsum(rexp (10000 , lambdas [1]))

ex ar r 1 = ex ar r 1 [ex ar r 1 <= t l im]

#Node 1

ar r 1 = ex ar r 1

s e r 1 = rexp (length (ex ar r 1) ,mus [1])

dep 1 = queue (ar r 1 , s e r 1 ,1)

queuedata1 <− queue l eng th s (a r r 1 , s e r 1 , dep 1)

#Node 2

ar r 2=dep 1

s e r 2 = rexp (length (a r r 2) ,mus [2])

dep 2 = queue (ar r 2 , s e r 2 ,1)

queuedata2 <− queue l eng th s (a r r 2 , s e r 2 , dep 2)

#sepe ra t i on o f e n t i t i e s

tmp 1 = runif (length (ex ar r 1) , min=0, max=1)

alpha = 0 .6

index1 = which(tmp 1<alpha)

index2 = which(tmp 1> alpha)

#Node 3

ar r 3 = dep 2 [index1]

s e r 3 = rexp (length (a r r 3) ,mus [3])

dep 3 = queue (ar r 3 , s e r 3 ,1)

queuedata3 <− queue l eng th s (a r r 3 , s e r 3 , dep 3)

#Node 4

ar r 4 = dep 2 [index2]

43

s e r 4 = rexp (length (a r r 4) ,mus [4])

dep 4 = queue (ar r 4 , s e r 4 ,1)

queuedata4 <− queue l eng th s (a r r 4 , s e r 4 , dep 4)

#Node 5

ar r 5 = sort (append(dep 3 , dep 4) , d e c r ea s ing = FALSE)

s e r 5 = rexp (length (a r r 5) ,mus [5])

dep 5 = queue (ar r 5 , s e r 5 ,1)

queuedata5 <− queue l eng th s (a r r 5 , s e r 5 , dep 5)

#Node 6

ar r 6=dep 5

s e r 6 = rexp (length (a r r 6) ,mus [6])

dep 6 = queue (ar r 6 , s e r 6 ,1)

queuedata6 <− queue l eng th s (a r r 6 , s e r 6 , dep 6)

max. l en = max(length (a r r 1) , length (a r r 2) , length (a r r 3) , length (a r r 4) ,

length (a r r 5) , length (a r r 6))

a r r 3 = c (a r r 3 , rep (NA, max. l en − length (a r r 3)))

dep 3= c (dep 3 , rep (NA, max. l en − length (dep 3)))

a r r 4= c (a r r 4 , rep (NA, max. l en − length (a r r 4)))

dep 4= c (dep 4 , rep (NA, max. l en − length (dep 4)))

df = data . frame (a r r 1 , dep 1 , a r r 2 , dep 2 , a r r 3 , dep 3 , a r r 4 , dep 4 , a r r

5 , dep 5 , a r r 6 , dep 6)

df new = data . frame (t imes =

c (df [, ” a r r 1”] , df [, ”dep 1”] , df [, ” a r r 2”] , df [, ”dep 2”] ,

df [, ” a r r 3”] , df [, ”dep 3”] , df [, ” a r r 4”] , df [, ”dep 4”] ,

df [, ” a r r 5”] , df [, ”dep 5”] , df [, ” a r r 6”] , df [, ”dep 6”]) ,

t r an s a c t i on s =

c (rep (” ar r 1” , length (a r r 1)) , rep (”dep 1” , length (dep 1)) ,

44

rep (” ar r 2” , length (a r r 2)) , rep (”dep 2” , length (dep 2)) ,

rep (” ar r 3” , length (a r r 3)) , rep (”dep 3” , length (dep 3)) ,

rep (” ar r 4” , length (a r r 4)) , rep (”dep 4” , length (dep 4)) ,

rep (” ar r 5” , length (a r r 5)) , rep (”dep 5” , length (dep 5)) ,

rep (” ar r 6” , length (a r r 6)) , rep (”dep 6” , length (dep 6))))

#so r t i n g the data and removing the NA va lue s

so r t ed df new= data . frame (df new [with (df new, order (df new$ t imes)) ,])

s o r t ed df new <− so r t ed df new [! (i s .na(so r t ed df new$ t imes)) ,]

#f ind i n g the t r an sa c t i on s

T= c (0 , 0 , 0 , 0 , 0 , 0)

df queue length = data . frame (

t imes = rep (0 , nrow(so r t ed df new)) ,

t r an s a c t i on s = rep (0 , nrow(so r t ed df new)) ,

q1 = rep (0 , nrow(so r t ed df new)) ,

q2 = rep (0 , nrow(so r t ed df new)) ,

q3 = rep (0 , nrow(so r t ed df new)) ,

q4 = rep (0 , nrow(so r t ed df new)) ,

q5 = rep (0 , nrow(so r t ed df new)) ,

q6 = rep (0 , nrow(so r t ed df new))

)

df queue length$ t imes = sor t ed df new$ t imes

df queue length$ t r an s a c t i on s = sor t ed df new$ t r an s a c t i on s

t l i s t= l i s t (rep (c (0) , length (so r t ed df new [, 1])))

for (i in 1 : length (so r t ed df new$ t imes)) {

i f (so r t ed df new$ t r an s a c t i on s [i]==” ar r 1”) {

T[1]= T[1]+1

t l i s t [[i]]=T

}

i f (so r t ed df new$ t r an s a c t i on s [i]==”dep 1”) {

45

T[1]= T[1]−1

t l i s t [[i]]=T

}

i f (so r t ed df new$ t r an s a c t i on s [i]== ” ar r 2”) {

T[2]= T[2]+1

t l i s t [[i]]=T

}

i f (so r t ed df new$ t r an s a c t i on s [i]== ”dep 2”) {

T[2]= T[2]−1

t l i s t [[i]]=T

}

i f (so r t ed df new$ t r an s a c t i on s [i]== ” ar r 3”) {

T[3]= T[3]+1

t l i s t [[i]]=T

}

i f (so r t ed df new$ t r an s a c t i on s [i]== ”dep 3”) {

T[3]= T[3]−1

t l i s t [[i]]=T

}

i f (so r t ed df new$ t r an s a c t i on s [i]== ” ar r 4”) {

T[4]= T[4]+1

t l i s t [[i]]=T

}

i f (so r t ed df new$ t r an s a c t i on s [i]== ”dep 4”) {

T[4]= T[4]−1

t l i s t [[i]]=T

}

i f (so r t ed df new$ t r an s a c t i on s [i]== ” ar r 5”) {

T[5]= T[5]+1

t l i s t [[i]]=T

}

i f (so r t ed df new$ t r an s a c t i on s [i]== ”dep 5”) {

T[5]= T[5]−1

46

t l i s t [[i]]=T

}

i f (so r t ed df new$ t r an s a c t i on s [i]== ” ar r 6”) {

T[6]= T[6]+1

t l i s t [[i]]=T

}

i f (so r t ed df new$ t r an s a c t i on s [i]== ”dep 6”) {

T[6]= T[6]−1

t l i s t [[i]]=T

}

}

mtx = cbind (matrix (unlist (t l i s t) , nrow= length (t l i s t) ,ncol= length (t l i s t

[[1]]) , byrow = TRUE))

colnames (mtx) = c (” l ength1 ” , ” l ength2 ” , ” l ength3 ” , ” l ength4 ” , ” l ength5 ” , ”

l ength6 ”)

for (i in seq (3 , 8)) {

df queue length [, i] = mtx [, i −2]

}

df queue length$d i f f time = c (d i f f (df queue length$ t imes) ,100) == 0

df queue length = df queue length %>% f i l t e r (! (df queue length$d i f f time))

%>% s e l e c t (−d i f f time , −t r an sac t i on s , −t imes)

return (df queue length)

}

In order to shorten the computation time we converted one part of the code to C++ and

used Rcpp package for calling it inside R. We converted it for the ”for” and multiple ”if”

loops we have. You may see the code below.

47

#inc lude <RcppArmadil lo . h>

// [[Rcpp : : depends (RcppArmadillo)]]

#inc lude <RcppArmadi l loExtensions/sample . h>

#inc lude <math . h>

us ing namespace Rcpp ;

// [[Rcpp : : export]]

arma : :mat QueLen(NumericVector a) {

i n t L = a . s i z e () ;

arma : :mat l en (L , 6) ;

l en . z e r o s () ;

for (i n t i = 0 ; i< L ; i ++){

i n t j= (a [i]+1)/ 2 ;

i n t remain=a [i]+1−2∗ j ;

i f (i !=0) {

for (i n t k = 0 ; k< 6 ; k ++){ l en (i , k)=len (i −1,k) ;}

i f (remain==0){

l en (i , j−1)=len (i −1, j−1)+1;

} else {

l en (i , j−1)=len (i −1, j−1)−1;

}

} else {

i f (remain==0){ l en (0 , j−1)=1;}

}

}

return l en ;

}

// [[Rcpp : : export]]

s td : : vector<int> find l o c s (NumericVector a , double t) {

std : : vector<int> id l o c s ;

48

for (i n t i =0; i < a . s i z e () ; i++){

i f (a [i] == t) {

id l o c s . push back (i) ;

}

}

return id l o c s ;

}

// [[Rcpp : : export]]

double Phi (double x , double y) {

double u = std : : log (x) − std : : log (y) ;

return u ;

}

// [[Rcpp : : export]]

Rcpp : : NumericVector Count C(arma : :mat x , i n t L) {

Rcpp : : NumericVector aa = rep (0 . , 6) ;

Rcpp : : NumericVector bb = rep (0 . , 8) ;

for (i n t i = 1 ; i< L ; i ++){

for (i n t j = 0 ; j< 6 ; j ++){aa [j]=x (i , j)−x (i −1, j) ;}

double sum=std : : accumulate (aa . begin () , aa . end () , 0 . 0) ;

i f (sum==0){

std : : vector<int> index1 = find l o c s (aa ,−1) ;

s td : : vector<int> index2 = find l o c s (aa , 1) ;

i f (index2 [0]==4){

i f (index1 [0]==2){bb [4]++;} else {bb [5]++;}

} else i f (index2 [0]==5){

bb [6]++;

} else {

bb [index2 [0]]++;

}

} else i f (sum==1){

bb [0]++;

49

} else {

bb [7]++;

}

}

return bb ;

}

// [[Rcpp : : export]]

Rcpp : : NumericVector CUSUM(arma : :mat x , i n t L) {

Rcpp : : NumericVector aa = rep (0 . , L) ;

for (i n t i = 1 ; i< L ; i ++){

arma : :mat xx=x . rows (0 , i) ;

// std : : cout << ” l ength= ” << xx . n rows << ’ \n ’ ;

Rcpp : : NumericVector C= Count C(xx , i +1) ;

double l 1=Phi (1 , 2 . 1)∗C[0]+Phi (1 . 1 , 2 . 1) ∗C[1]+Phi (0 . 6∗ 1 . 1 , 2 . 2)∗C[2]+Phi (0 . 4∗

1 . 1 , 2 . 2)∗C[3]+Phi (1 . 1 , 1 . 1+0 .6∗ 1 . 1)∗C[4]+Phi (1 . 1 , 1 . 1+0 .4∗ 1 . 1)∗C[5]+Phi

(1 . 1 , 3 . 3) ∗C[6]+Phi (1 . 1 , 2 . 2) ∗C [7] ;

double l 0=Phi (1 , 1 . 9 9)∗C[0]+Phi (0 . 9 9 , 1 . 9 9)∗C[1]+Phi (0 . 6∗0 .99 ,0 . 99+0 .99)∗C

[2]+Phi (0 . 4∗0 .99 ,0 . 99+0 .99)∗C[3]+Phi (0 . 99 , 0 . 99+0 .6∗ 0 . 99)∗C[4]+Phi

(0 . 99 , 0 . 99+0 .4∗ 0 . 99)∗C[5]+Phi (0 .99 ,0 .99+0.99+0.99)∗C[6]+Phi

(0 . 99 , 0 . 99+0 .99)∗C [7] ;

double gg= l1−l 0 ;

double g= max(NumericVector : : create (0 . , gg)) ;

aa [i]=aa [i−1]+g ;

}

return aa ;

}

50

A.1.2 Simulation for Computing Likelihood Ratio

You may see the long form of the code that we have used while computing likelihood

ratios below.

df = QL s imulator (lambdas , mus , t l im)

L ike l i hood r a t i o = function (df , lambdas , mus) {

c 1 = 0

c 12 = 0

c 23 = 0

c 24 = 0

c 35 = 0

c 45 = 0

c 56 = 0

c 6 = 0

for (i in seq (nrow(df) −1)) {

i f (prod (df [i +1,] − df [i ,] == c (1 , 0 , 0 , 0 , 0 , 0)) == 1) c 1 = c 1 + 1

i f (prod (df [i +1,] − df [i ,] == c (−1 ,1 ,0 ,0 ,0 ,0)) == 1) c 12 = c 12 + 1

i f (prod (df [i +1,] − df [i ,] == c (0 , −1 ,1 ,0 ,0 ,0)) == 1) c 23 = c 23 + 1

i f (prod (df [i +1,] − df [i ,] == c (0 , −1 ,0 ,1 ,0 ,0)) == 1) c 24 = c 24 + 1

i f (prod (df [i +1,] − df [i ,] == c (0 ,0 , −1 ,0 ,1 ,0)) == 1) c 35 = c 35 + 1

i f (prod (df [i +1,] − df [i ,] == c (0 ,0 ,0 , −1 ,1 ,0)) == 1) c 45 = c 45 + 1

i f (prod (df [i +1,] − df [i ,] == c (0 ,0 ,0 ,0 , −1 ,1)) == 1) c 56 = c 56 + 1

i f (prod (df [i +1,] − df [i ,] == c (0 ,0 ,0 ,0 ,0 , −1)) == 1) c 6 = c 6 + 1

}

r 1 = log (lambdas [1]) − log (lambdas [1] + mus [1])

r 12 = log (mus [1]) − log (lambdas [1] + mus [1])

r 23 = log (0 . 6∗mus [2]) − log (0 . 6∗mus [2] + 0 .4∗mus [2])

r 24 = log (0 . 4∗mus [2]) − log (0 . 6∗mus [2] + 0 .4∗mus [2])

r 35 = log (mus [3]) − log (mus [3] + 0 .6∗mus [2])

r 45 = log (mus [4]) − log (mus [4] + 0 .4∗mus [2])

51

r 56 = log (mus [5]) − log (mus [4] + mus [5])

r 6 = log (mus [6]) − log (mus [5] + mus [6])

l 0 =

(r 1∗c 1+r 12∗c 12+r 23∗c 23+r 24∗c 24+r 35∗c 35+r 45∗c 45+r 56∗c 56+r 6∗c 6)

mus = 0 .9∗c (1 . 1 , 1 . 1 , 1 . 1 , 1 . 1 , 1 . 1 , 1 . 1)

r 1 = log (lambdas [1]) − log (lambdas [1] + mus [1])

r 12 = log (mus [1]) − log (lambdas [1] + mus [1])

r 23 = log (0 . 6∗mus [2]) − log (0 . 6∗mus [2] + 0 .4∗mus [2])

r 24 = log (0 . 4∗mus [2]) − log (0 . 6∗mus [2] + 0 .4∗mus [2])

r 35 = log (mus [3]) − log (mus [3] + 0 .6∗mus [2])

r 45 = log (mus [4]) − log (mus [4] + 0 .4∗mus [2])

r 56 = log (mus [5]) − log (mus [4] + mus [5])

r 6 = log (mus [6]) − log (mus [5] + mus [6])

l 1 =

(r 1∗c 1+r 12∗c 12+r 23∗c 23+r 24∗c 24+r 35∗c 35+r 45∗c 45+r 56∗c 56+r 6∗c 6)

return (l 1 − l 0)

}

Computing time of this code was slow, that’s why we eliminated the loops and wrote a

new code. You may see the faster version below.

l i k e l i h o o d r a t i o c a l = function (df , lambdas ,mus) {

r 1 = log (lambdas [1]) − log (lambdas [1] + mus [1])

r 12 = log (mus [1]) − log (lambdas [1] + mus [1])

r 23 = log (0 . 6∗mus [2]) − log (0 . 6∗mus [2] + 0 .4∗mus [2])

r 24 = log (0 . 4∗mus [2]) − log (0 . 6∗mus [2] + 0 .4∗mus [2])

r 35 = log (mus [3]) − log (mus [3] + 0 .6∗mus [2])

r 45 = log (mus [4]) − log (mus [4] + 0 .4∗mus [2])

52

r 56 = log (mus [5]) − log (mus [4] + mus [5])

r 6 = log (mus [6]) − log (mus [5] + mus [6])

mus new = 0.9∗mus

r r 1 = log (lambdas [1]) − log (lambdas [1] + mus new [1])

r r 12 = log (mus new [1]) − log (lambdas [1] + mus new [1])

r r 23 = log (0 . 6∗mus new [2]) − log (0 . 6∗mus new [2] + 0 .4∗mus new [2])

r r 24 = log (0 . 4∗mus new [2]) − log (0 . 6∗mus new [2] + 0 .4∗mus new [2])

r r 35 = log (mus new [3]) − log (mus new [3] + 0 .6∗mus new [2])

r r 45 = log (mus new [4]) − log (mus new [4] + 0 .4∗mus new [2])

r r 56 = log (mus new [5]) − log (mus new [4] + mus new [5])

r r 6 = log (mus new [6]) − log (mus new [5] + mus new [6])

df1 = df [−1 ,]

df0 = df [−nrow(df) ,]

d i f f df = df1 − df0

d i f f df = d i f f df %>%

mutate (c1 = (q1 ==1 & q2 == 0 & q3 ==0 & q4 == 0 & q5 == 0 & q6 == 0)) %>%

mutate (c12 = (q1 == −1 & q2 == 1 & q3 ==0 & q4 == 0 & q5 == 0 & q6 == 0))

%>%

mutate (c23 = (q1 == 0 & q2 == −1 & q3 == 1 & q4 == 0 & q5 == 0 & q6 == 0))

%>%

mutate (c24 = (q1 == 0 & q2 == −1 & q3 == 0 & q4 == 1 & q5 == 0 & q6 == 0))

%>%

mutate (c35 = (q1 == 0 & q2 == 0 & q3 == −1 & q4 == 0 & q5 == 1 & q6 == 0))

%>%

mutate (c45 = (q1 == 0 & q2 == 0 & q3 == 0 & q4 == −1 & q5 == 1 & q6 == 0))

%>%

mutate (c56 = (q1 == 0 & q2 == 0 & q3 == 0 & q4 == 0 & q5 == −1 & q6 == 1))

%>%

mutate (c6 = (q1 == 0 & q2 == 0 & q3 == 0 & q4 == 0 & q5 == 0 & q6 == −1))

%>%

s e l e c t (c1 , c12 , c23 , c24 , c35 , c45 , c56 , c6) %>%

53

mutate (c1 = cumsum(c1) , c12 = cumsum(c12) , c23 = cumsum(c23) , c24 = cumsum(

c24) , c35 = cumsum(c35) , c45 = cumsum(c45) , c56 = cumsum(c56) , c6 =

cumsum(c6)) %>%

mutate (l 10 =

(r r 1∗c1+r r 12∗c12+r r 23∗c23+r r 24∗c24+r r 35∗c35+r r 45∗c45+r r 56∗c56+r r 6∗c6)

− (r 1∗c1+r 12∗c12+r 23∗c23+r 24∗c24+r 35∗c35+r 45∗c45+r 56∗c56+r 6∗c6))

return (d i f f df$ l 10)

}

A.1.3 Simulation for Obtaining Average Run Length

As a result of our simulation we seek to obtain the average run lengths at the threshold

value from the CUMSUM charts. You may see the full code below to obtain ARL.

RL = function (h) {

df = QL s imulato r (lambdas , mus , t l im)

x = l i k e l i h o o d r a t i o c a l (df , lambdas , mus)

y = cusum aux i a l l r y (x)

z = which(y > h)

z [1]

}

h= c (0 . 3 178 , 0 . 3 182 , 0 . 3 184 , 0 . 3 186) # t h i s may vary

ARL 0 =c ()

RLs l i s t= l i s t ()

for (i in 1 : (length (h))) {

RLs l i s t [[i]] = unlist (r e p l i c a t e (10000 ,RL(h [i])))

ARL 0 [i] = mean(RLs l i s t [[i]])

}

K = cbind (h , ARL 0)

54

	Statistical Monitoring of Queuing Networks
	Scholar Commons Citation

	tmp.1551475158.pdf.bQBkq

