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ABSTRACT 
 

Wherever wildlife share space with boaters, collisions are a potential source of mortality.  

Establishing protection and speed zones are the primary actions taken to mitigate collision risk.  

However, creation of protection zones may be a point of contention with stakeholders as new zones 

can have significant socioeconomic impacts.  The Florida Manatee is a prime example of a species 

whose abundance and viability are constrained by this balance between the needs of humans and 

wildlife on a shared landscape.  The goal of this work is to help further understand the risk to 

manatees by quantifying the probability of lethal collisions.  I hypothesized that higher boat speeds 

increase the probability of lethal injury to manatee during a collision and aimed to characterize the 

relationship between vessel speed and the probability of lethal injury to manatee.  I used a logistic 

regression model implemented with a Bayesian approach and fitted to citizen reported collision data 

as a feasible method for examining the influence of vessel speed in contributing to lethal injury to a 

manatee when struck.  I also present a method for dealing with uncertainty in data used to report 

collisions.  To conduct this analysis, I used citizen reported collision data.  These data are typically 

collected opportunistically, suffer from low sample sizes, and have uncertainty in reported vessel 

speeds.  Uncertainty associated with speed values in reported collision events was assessed by 

performing a multiple imputation to replace qualitative vessel speed – in other words, “missing data” 

– with quantitative values.  This procedure involves fitting log-normal distributions to radar data that 

contained precise vessel speeds along with a physical description like ‘planing’, ‘plowing’, or ‘idle’.  

For each imputation of the data, a quantitative value was selected randomly from that distribution 

and used in place of its initial corresponding speed category.  I evaluated issues related to quasi-
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separation and model fit using simulated data sets to explore the importance of sample size and 

evaluated the effect of key sources of error.  The prediction that greater strike speed increases the 

probability of lethal injury was supported by the data that I analyze. 
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CHAPTER 1: 
 

INTRODUCTION 

 

Wildlife-vehicle collisions affect the populations of a large range of taxa.  Collisions with cars 

and terrestrial species have been well documented (Forman and Alexander, 1998) and are a large 

source of mortality for many mammals (Allen and McCullough, 1976; Hell et al., 2005), birds (Hell 

et al., 2005), reptiles (Langen et al., 2009), amphibians (Puky, 2006; Langen et al., 2009) and insects 

(Rao and Girish, 2007).  Many large marine animals suffer from strikes from both commercial and 

recreational watercraft.  This includes sirenians, (Aipanjiguly et al., 2003; Calleson & Frohlich, 2007; 

Maitland et al., 2006) including Dugongidae and Trichechidae (manatees), Cetacea, including North 

Atlantic right whales (Eubalaena glacialis) (Kraus, 1990; Ward-Geiger et al., 2005; Fonnesbeck et al., 

2008; Vanderlaan et al., 2008), fin whales (Balanenoptera physalus), humpback whales (Megaptera 

novaeangliae), sperm whales (Physeter macrocephalus), grey whales (Eschnichtus robustus) (Laist et al., 2001), 

and some Delphinidae (Wells & Scott, 1997; Stone & Yoshinaga, 2000); as well as green turtles 

(Chelonia mydas) (Hazel et al., 2007).  In the case of the Florida manatee (Trichechus manatus latirostris), 

collisions with vessels are a primary source of mortality (Runge et al., 2007).  

 

 The creation of protection zones that regulate the speed and operation of vessels can reduce 

wildlife-vehicle collisions and decrease the resulting impact on wildlife populations (Allen and 

McCullough, 1976; Calleson & Frohlich, 2007; Hazel et al., 2007; Martin et al. 2016).  Laist and 

Shaw (2006), and Calleson and Frohlich (2007) are among the authors that have argued that slower 

vessel speeds make up an important component of risk mitigation for vessel strikes of manatees.  In 
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fact, the creation of protection zones to regulate speed and operation of vessels is considered a 

primary management action to protect marine mammals (USFWS, 2001; Calleson and Frohlich, 

2007; FWC, 2007; Fonnesbeck et al., 2008; Bauduin et al., 2013; Martin et al. 2016).   

 

However, the potential impacts on waterway users caused by such management actions can 

present a point of contention as they may have socioeconomic impacts (Aipanjiguly et al., 2003).  

Speed-limited zones, restrictions on boat access, restrictions on dock construction, and locations of 

boat ramps that increase boater access to manatee habitat are among some things concerning vessel 

operation that have been challenged in court (Marsh et al., 2011).  Despite this controversy, the total 

area in which vessel speeds are regulated for manatee protection in Florida is a small fraction of the 

total thousands of kilometers of available waterways (FWC, 2007).  In addition, the general boating 

public favors speed zones for manatee protection (Aipanjiguly et al., 2003).  To meet the needs of 

humans and wildlife on a shared landscape, it is important to identify optimal management policies 

that balance multiple objectives: e.g., protecting marine mammals while minimizing impacts on 

waterway users (Martin et al. 2016; Udell 2016; Udell et al. in review).  For manatees, it has been 

proposed that limits on vessel speed in high traffic areas reduces the risk of lethal collisions by 

allowing the manatee and the vessel a greater amount of time for reaction. It has also been proposed 

that reducing speed decreases the severity of injuries if a collision does occur (Calleson and Frohlich, 

2007).  The following work addresses the latter.    

 

Although there is a general understanding that the risk of injury to a manatee increases with 

increasing vessel speeds, estimates of the probability of death at speed have not been made.  Here I 

estimated the probability of lethal injury to manatees as a function of vessel speed at the time of 

collision.  I propose this to be a first step towards understanding the effectiveness of these 
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protection zones.  In order for credible management decisions regarding speed zones to be made, it 

is necessary to understand the precise characteristics of a collision that lead to lethal injury in 

manatees.  Martin et al. (2016) described a modeling framework known as a Bayesian Belief 

Network (BBN) which links regulation of vessel speed to marine mammal mortality.  This network 

incorporates uncertainty from encounter, collision, and mortality rates (Fig. 1).  Given information 

about the probability of lethal injury given collision speed, it may be possible to optimize the design 

of speed zones in order to minimize collision risk while considering the burden these impose on 

vessel operators and waterway users (Martin et al. 2016; Udell 2016).  This analysis should hopefully 

fill an important gap and ultimately help improve the management of vessel regulations for manatees 

and other species affected by vessel collisions.  While quantifying lethal injury speed is essential for 

management decisions, it is equally necessary to effectively describe the uncertainty surrounding the 

collision event (i.e. vessel speed), which is intrinsic given the current reporting system.  I predict that 

vessel speed increases the probability of lethal injury to manatees during collisions with vessels.  I 

examined the effect of vessel speed on contributing to either a lethal or non-lethal injury to Florida 

manatees using a logistic regression model implemented with a Bayesian approach.  Vanderlaan and 

Taggart (2007) and Conn and Silber (2013) also used a logistic regression approach to estimate the 

probability of death given strike speed of the North Atlantic right whale, but they did not account 

for uncertainty about strike speed.  When combined with other data, results of this analysis can be 

used to derive the number of potential deadly collisions between manatees and vessels, and the 

potential impact on the manatee populations (Martin et al. 2016).   
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Figure 1: Bayesian Belief Network (BBN) which links regulation of vessel speed to marine mammal mortality 
from Martin et al. 2016.   

 

To conduct this analysis, I used citizen reported vessel collision information. Human 

interactions with wildlife are a regular occurrence, and it is possible to exploit the tendency for the 

public to report collisions with species of concern, such as the threatened Florida manatee.  For 

instance, McClintock et al. (2015) describe a novel methodology using public reports of collisions 

between Florida panthers and vehicles along with routine telemetry monitoring data to produce the 

first defensible population estimates for the Florida panther.  Carcass recovery models have also 

been used to estimate survival probability (Brownie et al., 1985) and mortality rate 

(Bellan et al., 2013).  These types of data are underutilized in ecology but contain valuable 

information that can be extracted.  Citizen science, with its “many eyes”, is an invaluable resource 

for answering ecological and conservation questions (recent examples in Dickinson et al., 

2012).  Citizens can log rare events and obtain data that would not be recorded otherwise.  Along 
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with the many benefits, citizen science presents analysis-related challenges (e.g. sampling bias, 

observer variability, and detection probability) that are not easily addressed with statistical hypothesis 

testing or model selection approaches (Weir et al. 2005).  Manatee collision events are typically 

collected as opportunistic reports, suffering from low sample sizes and uncertainty in reported 

traveling speeds.  For these types of data, the challenge lies in estimating the uncertainty associated 

with the reported characteristics of the event, particularly vessel speed.  In order to address 

uncertainty and low sample size, I used simulated data sets to explore the importance of sample size 

and evaluated the effect of key sources of error.  Uncertainty for collision events with speeds 

reported as qualitative descriptors was assessed by performing a multiple imputation (MI) approach.  

This was conducted by fitting log-normal distributions to ancillary radar speed gun data with a 

corresponding category (‘planing’, ‘plowing’, or ‘idle’ speed), iteratively drawing speed values from 

these distributions for each collision event and re-fitting the regression model.  I will describe MI 

more in depth in the following paragraphs.  I also evaluated issues related to quasi-separation, an 

issue affecting binomial data of small sample sizes, and model fit.  
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CHAPTER 2: 

METHODS 

 

About Citizen Reported Collision Data 

I used a collection of observational records detailing vessel-manatee collisions occurring 

throughout Florida that were reported by either the operator of the vessel or by a witness.  These 

records cover a time span from 1978 to 2014.  I excluded records where the vessel was greater than 

64 feet.  This allowed for exclusion of large barges, work boats, and other heavy vessels where 

lethality can be attributed to sheer vessel mass acting on the manatee at slow speeds.  Similarly, 

tugboats were excluded due to large propeller size.    

 

Vessel-manatee collision reports were originally classified as: ‘known vessel lethal collision 

events’, ‘suspected vessel lethal collision events’, and ‘uncertain collision events’ (see Table 1 for 

detailed definitions of each category).  In the first category, lethal collision events with a known 

vessel (n = 22), collisions were reported by the vessel operator, a carcass was matched to the event, 

or the collision was reported by a witness with a high level of confidence.  These records describe a 

lethal collision and the associated vessel with the highest level of certainty.  While in most cases, a 

lethal collision report describes certain death at the time of the collision, a few of these cases 

describe an instance where the manatee was severely injured and died later.  For this analysis, I 

excluded vessels that were only suspected, but not known for certain, to be involved in lethal 

collision (n=8) in order to reduce the level of uncertainty in the details about the involved vessel 
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(e.g. speed, size, characteristics, etc.).  Of the initial reports, 141 subset records were considered for 

the analysis described hereafter. 

 

Table 1: Original collision report data classification. Suspected vessel, lethal collision category was excluded 

from this analysis. 

 
Collision type n Definition 

Known vessel, 

lethal collision 
22 

collisions were reported by the vessel operator, a carcass was matched to 

the event, or the collision was reported by a witness with a high level of 

confidence; records describe events with a high level of certainty that a 

collision with the associated vessel resulted in a lethal injury to the 

manatee 

Suspected 

vessel, lethal 

collision 

8 

collisions were reported predominantly by law enforcement; records 

describe events with less certainty that a collision with the associated 

vessel resulted in a lethal injury to the manatee 

Uncertain 

collisions 
119 

collision reports contain varying degrees of missing information and were 

reclassified using expert opinion 

Total =  149  

 
 
Addressing uncertain collision outcomes 

To address uncertain collisions, I recruited the help of two experts in manatee biology who are 

particularly familiar with the data set of recovered carcasses linked to watercraft collisions, S. 

Calleson (US Fish and Wildlife Service, Jacksonville FL) and B. Bassett (Florida Wildlife Research 
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Institute, St. Petersburg FL).  They worked independently to reclassify the 119 uncertain collision 

records into 6 categories (called ID) based on the original event reports (Table 2).  The main 

purpose of this was to identify records that were unlikely to have resulted in a lethal injury, letting us 

define a negative outcome.  Since this type of probability analysis requires a binary response variable 

(lethal/not lethal) to proceed, it was necessary to have a set of "not lethal" or "severe injury unlikely" 

records, backed by good evidence that the manatee survived.  In some cases, severe injury was 

categorized by open, bleeding wounds or blood in the water which was based on an actual 

observation of the animal (Table 2 category 6).  However, in most cases, severe injury was 

determined as the outcome based on descriptions in the report (Table 2 category 5).  The same was 

true for the cases where severe injury was ‘unlikely’ (Table 2 categories 4 and 3, respectively).  In 

either “severe injury likely/unlikely” cases, a manatee observation constitutes a more certain 

outcome.  While the advice on the matter from each expert was considered useful, one of datasets 

resulting from classification 1 reclassification experienced complete separation (this is discussed 

more in a following section).  Therefore, for the purpose of this analysis, I utilized only one of their 

reclassification efforts (classification 2, Table 2).  For the purposes of the logistic model, a positive 

outcome (a fatality) was based on ‘known vessel, acute lethal collision’ (n=22, Table 1).  A negative 

outcome was based on ‘Severe injuries unlikely observational’ (n=5, Table 2), which relies on an 

observation of the manatee.  These cases are the best possible representations of lethal/non-lethal 

incident. Note, however, that even in the case of ‘Severe injuries unlikely observational’, there is 

uncertainty about the ultimate outcome. Indeed, it is possible that the animal was classified in that 

category when in fact the animal suffered a deadly injury that was invisible to the observer. 

Nevertheless, the tradeoff for a smaller sample size is a more reliable dataset.  Since the goal of this 

work is to demonstrate the effectiveness of MI for estimating cases where there was no data for the 

speed of the vessel, this is an appropriate trade off to make.   
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    n   

ID Name class. 1 class. 2 Definition 

1 Collision unknown 10 22 vessel-manatee collision uncertain (no 
further assessment) 

2 Injuries unknown 20 20 vessel-manatee collision likely but 
injuries unknown 

3 Circumstantial: severe injuries 
unlikely  31 20 

severe injuries unlikely based on vessel 
speed and/or other described 
circumstances 

4 Observational: severe injuries 
unlikely  6 5 severe injuries unlikely based on 

manatee observation 

5 Circumstantial: severe injuries 
likely 48 43 

severe injuries likely based on vessel 
speed and/or other described 
circumstances 

6 Observational: severe injuries likely 4 4 severe injuries likely based on manatee 
observation 

 
Table 2: Categories resulting from reclassification of uncertain collision events.  Uncertain collision events are 
represented by classification (class) 1 and 2, unlikely severe injury categories 3 and 4, and severe injury 
categories 5 and 6.  Classification 2 sums to 114 and not the total number of “uncertain” records (N=119) 
because five were excluded by the reviewer.   
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Statistical model 

 I employed a logistic regression approach to model the probability of manatees suffering 

lethal injury during a collision as a function of boat speed.  The response predicts probability of a 

lethal outcome given vessel speed at collision P(φ | x), where x is vessel speed.  The outcome of the 

collision event (denoted ci, where ci = 1 if lethal) was modeled as a Bernoulli response variable:  

 

(Eq. 1)  ci  ~ Bernouilli(φi)     

        

where φi is the probability of lethal injury given strike speed for event i. The probability of injury is 

assumed independent among collision events.  The probability of injury was modeled as a function 

of vessel speed using a logit link: 

 

(Eq. 2)  Logit (φi) = β0 + β1 * x    

        

where β0 is the regression intercept, and β1 is the slope parameter for x (speed).  Several studies have 

used this formulation when addressing mortality associated with vessel collision, specifically for 

whales (Vanderlaan & Taggart 2007; Conn & Silber 2013), but it has not yet been conducted for 

manatees. The logistic regression is a special case of a generalized linear model and is appropriate 

here since the response variable is discrete valued (binomial), and the predictor variable is a vector 

containing discrete or continuous variables.  In this analysis, inferences were drawn using a Bayesian 

approach and Markov Chain Monte Carlo (MCMC) simulation methods (e.g. Link et al. 2002).  This 

method allowed for the uncertainty around lethality risk φ at vessel speed x to be treated 

probabilistically as P(φ | x).  The parametric form used for the logistic regression is the same form 
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implied by Bayesian inference, which incorporates prior knowledge about the model or model-

parameters.  At the root of this type of inference is Bayes’ theorem, where in this case: 

 

(Eq. 3)  P(φ | x) = P(x | φ) * P(φ) / P(x) ȣ likelihood * prior 

 

In other words, the joint posterior probability, or the probability of obtaining the response 

parameter given the data, is proportional to the product of the likelihood and the prior distribution.  

Bayes theorem can be employed for this problem because the sample space in this case is partitioned 

into a set of mutually exclusive collision events, which lends information about the prior distribution 

(the probability of getting the data given the parameter of interest).  These estimates can then be 

used with Bayes theorem to determine the joint posterior probability, ultimately obtaining a 

predictive model that estimates the conditional probability of lethal injury at any new instance of x 

(vessel speed).   

  I ran three parallel chains with initial values picked randomly from their prior distributions 

(Uniform(-10,10)) for each parameter (β0 and β1), each with 10000 iterations discarding the first 5000 

(so-called ‘burn in’) iterations. I assessed convergence of the chains to their stationary distributions 

using the Brooks-Gelman-Rubin diagnostic (also called R-hat  Gelman et al. 2004). This analysis was 

conducted with JAGS version 3.4.0 (Plummer 2013), in a batch mode using the R package RJAGS 

version 0.5-6 (Su & Yajima 2015) which imports R2WinBUGS (Sturtz et al. 2005; see Kéry 2008 for 

similar approach).  All analysis was done in program R version 3.1.4.  The results of these logistic 

regressions were used to draw inferences based on the inflection points.    
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Addressing uncertainty in vessel speeds 

 Vessel speed was typically reported as continuous quantitative values with values ranging 

from 0-50 knots.  Figure 2 shows the distribution of quantitative vessel speeds that are present in the 

original data.  Two cases reported 25+ and < 5 knots for vessels at the time of strike, and speeds of 

25 and 5 knots, respectively, were assumed for the analyses.  A portion of the vessel speeds were 

reported as a categorical “qualitative descriptor” (n=62), and some as a quantitative range (n=26).   

 

MI is a procedure for treating missing data by replacing each missing datum with a set of m 

>1 plausible values (Rubin, 1987).  MI involves three steps: data imputation, routine analysis, and 

pooling results for parameter estimation.  The imputation step is a “filling-in” process that replaces 

missing data.  This step assumes that data are missing at random. This step is repeated m times, each 

set resulting in unique imputed missing values.  The second step involves each “complete” dataset 

being analyzed.  The third step aggregates parameter estimates from each analysis (Rubin, 1987).  

The most common approach to dealing with missing data is to delete cases containing missing 

observations. However, this approach reduces statistical power and increases estimation bias 

(Nakagawa & Freckleton 2011).  Recent studies show how data can be biased if “missing fraction” is 

removed (Hadfield 2008).  Data imputation can be split into types: single imputation and MI. Single 

imputation is worse than data deletion in terms of parameter estimation and especially in estimation 

of uncertainty (i.e. standard errors) because single imputation ignores any uncertainty of imputed 

values (Nakagawa & Freckleton 2008).  Here we analyze the effects of MI and single imputation 

(no-MI). 

 

I used a MI procedure to account for uncertainty in vessel speed described as follows: For 

records provided as “qualitative descriptors”, I treated speed values (e.g. planing, plowing, and 
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slow/idle) as “missing values” and, for each iteration of the MI, replaced them with values randomly 

selected from a corresponding lognormal distribution fit to ancillary vessel speed data (Gorzelany 

2013).  These data were obtained from Gorzelany et al.’s boater compliance study in which a radar 

gun was used to measure the speeds of vessels throughout Florida (N= 7418).  Each record also 

included a physical description of the vessel’s position in the water that corresponded to the 

“qualitative descriptors” in the collision data.  This allowed me to obtain a range of possible speeds 

for each description.  For records reported as a range, I replaced them with values randomly selected 

from a uniform distribution constructed from the range for each speed category.   

 

 

Figure. 2:  Frequencies of observed quantitative vessel speeds present in collisions report data 
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Table 3: Vessel speed categories used in this analysis.  Includes definitions from the original collision report 
data that were classified into these categories. 
 

Category 
Mean 
(knots) 

Standard 
deviation Radar gun Possible definitions 

1 5.62 1.15 Slow (SL), Idle (ID) 
no wake, very slow, out of gear, 
less than idle 

2 10.96 3.80 Plowing (PW), Cruising (CR) not on plane, cruising 

3 26.52 6.63 Planning (PL) 
on plane, high speed, fast, coming 
up on plane 

 
 
Table 3 shows the three vessel speed categories used in this analysis and the possible definitions 

from the original collision report that were classified into each of these categories.  The ancillary 

radar gun data were separated into three categories for comparison with collision categories: 

category 1 – slow and idle; category 2 – plowing and cruising; category 3 – planing.  In this way, the 

radar gun data served as a link between the qualitative categories and quantitative speed estimates.  

Each corresponding category from the collision data was then assigned a lognormal distribution 

based on the fitted empirical speed data.  The MI treatment was performed 200 times, each 

imputation containing 5000 MCMC iterations described previously.  To assess the effects of 

ignoring the uncertainty in qualitative speed values, I also fit the logistic regression model using the 

mean of corresponding qualitative speed categories (rather than multiple random draws) or the mean 

of the range of speed values given.  This is also called single imputation and is referred to as no-MI 

hereafter.   

 

 To assess the effectiveness of the MI routine, the validity of the parameter estimates, and the 

effects of ignoring uncertainty in the qualitative speed values, simulations were performed.  500 

datasets were generated based characteristics of the original data – including, proportion of 
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qualitative speeds, number of records expressed as ranges, and the number of lethal and non-lethal 

records.  200 MI runs were then applied to each simulated dataset, and parameter estimates, bias, 

mean squared error (MSE), and coverage were tracked for each iteration.    

 

About separation in data 

 

Due to the small size of the observational data, complete and quasi-complete separation 

existed in a proportion of the simulated datasets.  Complete separation occurs when a linear 

combination of the predictors yields a perfect prediction of the response variable, and quasi-

complete separation occurs when the predictors yield a perfect prediction of the response for most 

values of the predictors but not all (Heinze, 2006).  In other words, in complete separation the 

outcome variable separates a predictor variable completely.  When this occurs, the maximum 

likelihood estimate for the separated predictor variable does not exist.  This is common in small 

datasets.  Data with separation are weak data that tend to not provide enough information about the 

parameters of statistical models.  Informing the prior allows us to regularize the coefficients and pull 

them just slightly towards zero — reducing the standard deviation of possible outcomes (Rainey, 

2016).  In other words, an informative prior is a reasonable and mathematically sound way to 

regulate separated data.  The prior distribution should be reflective of prior information for a range 

of situations — this doesn’t mean it is always perfect, sometimes it provides too little prior 

information and sometimes too much (Rainey, 2016).  Selecting a reasonable prior is the 

responsibility of the researcher, here I used expert advice to determine this range.  In large datasets, 

the data tend to overwhelm the contribution of the prior so that the specific choice of the prior has 

little effect on the posterior distribution.  In the case of separation, the prior distribution is an 

important choice that affects the inference.  Bayesian inference, more specifically incorporating prior 
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information, is helpful in situations where separation creates implausible MLEs (Rainey, 2016).  In 

Bayesian inference, a posterior probability derived from a prior probability and the likelihood 

function, which is derived from a statistical model for the observed data.  Here, Bayesian inference is 

used not only to obtain a posterior probability for predictive purposes, but to mitigate the quasi and 

complete separation encountered when simulating data from the small original dataset.   Bayesian 

inference treated issues with separation in simulated datasets, however in an additional attempt to 

quell the effects of separation on parameter estimates, one of the reclassified original datasets 

(classification 1) was not considered for this analysis because it exhibited complete separation (Fig. 

3).  It is one thing for simulated datasets to have separation, it is another to simulate datasets from 

an original set that is completely separated, where parameter estimates are ultimately doomed from 

the start.   

 

I conducted the MI routine on sets of simulated data in which the instances of complete and 

quasi-complete separation were retained, and for comparison, sets of simulated data in which 

instances of complete separation were removed and new simulations generated until 500 were 

reached.   
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Figure 3: Demonstration of the complete separation present in “classification” treatment of collisions report 
data.  Complete separation means that there is no overlap of the prediction variable for the positive and 
negative response.  This was the motivation behind using only one of the re-classification efforts 
(“classification 2”) for the analysis hereafter.    

 

Data was simulated based on parameter values estimated from the original data using MI, for the 

purpose of this analysis I refer to these as the ‘true values’.  This acts as a baseline by which 

comparisons of simulation results can be made.  In order to determine if simulations were effective, 

I assessed a model outcome where the β1 values were forced to be zero, i.e. no relationship, by 

setting the ‘true value’ for the β1 to zero at the simulation stage.   
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CHAPTER 3: 

RESULTS 

 

 The logistic model (no-MI) of manatee fate given speed shows that there is a positive relationship 

between the probability of lethal injury and boat speed (β0 = -5.13 and β1 = 0.35 95% CDI [-9.55 -

0.76; 0.12 0.61]).  That is, as speed increases the probability of lethal injury increases.  The logistic 

relationship treated with MI (where uncertainty in vessel speed is accounted for using ancillary radar 

gun data) had parameter estimates: β0 = -4.68 and β1 = 0.34 95% CDI [-9.32 -0.03; 0.07 0.60].  The 

main difference between these two estimation techniques is best understood by the credible 

intervals.  Figure 4 shows a comparison of the main effect modeled with MI and no-MI. Not 

surprisingly the uncertainty is larger with MI. 

 

Both the MI and no-MI treatment demonstrate that the greatest rate of change in the 

probability of lethal injury to manatees occurs between 10 and 20 knots, or somewhere after the first 

inflection of the first derivative of the logistic.  Large credible intervals (CDI) are observed at very 

low speeds, decreasing as speed increases.  MI results show a larger range of probabilities (larger 

CDI), indicating that uncertainty in vessel speed data may be more accounted for.  MI treatment also 

decreases the inflection point by a small amount, which is indicative of a more conservative estimate.  

Figure 4 shows the distribution of the β1 parameter from 500 simulation runs.  The true values for 

the beta parameters are based on the results from the MI performed on the original collision report 

data.  Figures 5.a and 5.b compare parameter results and difference between expected and true 
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values from simulated datasets to simulated datasets exhibiting no separation.  With separation 

eliminated, the expected value is more similar to the true value. 

 

 

Figure 4: Probability of a lethal injury resulting from a vessel collision to manatee as a 
function of vessel speed.  Model used is a simple logistic regression without multiple-imputation (MI) 
(solid circles) and 95% credible intervals (CDI) (solid thin lines) and the logistic fitted with multiple-
imputation (empty circles) and 95% CDI for each distribution (solid thin lines). 
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Figure 5.a:  Histogram of β1 MI-treated relationship for 500 simulated datasets.  The blue line represents the 
“true value” of the parameter based on the MI estimates, and the red line is the mean of the simulated 
results for the parameter.   

 

 

Figure 5.b: Histogram of β1 MI-treated relationship for 500 simulated datasets with datasets exhibiting 
separation removed.  The blue line represents the “true value” of the parameter based on the MI estimates, 
and the red line is the mean of the simulated results for the parameter.   
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Table 4 shows the comparisons of all model estimates.  Effectiveness of the simulation is shown by 

a high coverage (>90%) and low MSE of the no treatment β1 for simulated datasets.  Figure 6 shows 

a comparison of the β1 parameter for the three MI models.  Once more, it is noted that removing 

separated data sets brings the estimated slope closer to the true MI estimate of 0.34, also reducing 

uncertainty.  It is also clear that the credible intervals and estimates are more conservative in the MI 

results, with the mean value slightly closer to the true value than without MI.   

 

Scenario  True Mean Bias MSE Coverage (%) 

With MI beta0 -4.6816 -5.408 -0.7267 3.8967 96.6 
beta1 0.3404 0.4930 0.1525 0.0601 96.6 

Without MI beta0 -4.6816 -5.9991 -1.3174 4.3801 98.4 
beta1 0.3404 0.5343 0.1938 0.0706 96.8 

With MI - no 
relationship 

beta0 1.4816 1.7609 0.2793 1.8328 98.4 
beta1 0.0000 0.0017 0.0017 0.0050 98.8 

With MI - no 
separation 

beta0 -4.6816 -4.0476 0.6340 2.8380 93.3 
beta1 0.3404 0.3472 0.0068 0.0135 96.5 

Table 4: Simulation results for scenario of interest (classification 2).  Comparison of results with and without 
MI (MI) replacing qualitative speed values, scenario where no-relationship was forced (i.e. β1 (slope) = 0), and 
one scenario where I excluded any simulated dataset that exhibited separation, re-simulating until I reached 
500 non-separated datasets. 
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Figure 6: Comparisons of average β1 values three simulation models.  With multiple-imputation (MI), with 
multiple-imputation and no separated datasets (MI-nosep), and without multiple-imputation (no-MI).  The 
red line indicates the ‘true value’ or β1 estimated from original collision report data using multiple-
imputation to replace unknown vessel speed values.   
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CHAPTER 4: 

DISCUSSION 

 

 This work aimed at evaluating the hypothesis that vessel speed has an effect on the 

probability of lethal injury to manatees.  Until now, managers have assumed that the probability of 

lethal injury increases with vessel speed, but this assumption is based on anecdotal evidence and not 

on any rigorous statistical analysis (Calleson and Frochlich, 2007).  Here, I used citizen reported 

information to evaluate this hypothesis, and quantify the relationship.  It is important to note that 

data obtained from citizen-based surveys must be analyzed carefully because of many important 

sources of uncertainty.  For instance, in the case of the vessel-manatee collision data set, uncertainty 

about vessel speed is a potentially important source of error.  My analysis provides information 

about the relative importance of accounting for speed uncertainty, and accounting for uncertainty in 

covariate data in general.  Using the multiple-imputation approach allows for estimation of risk that 

are as close to reality as possible given small, flawed samples.  Not accounting for this uncertainty 

can affect the slope of the relationship and associated credible intervals (Nakagawa & Freckleton, 

2011).  Future work should consider other covariates besides speed, including vessel size, type, and 

propulsion system as these may have compounding effects on the risk of lethal injury.   

 

 Several potential sources of errors could affect my results.  First, although the estimated 

shape of the relationships for the probability of death given strike speed was qualitatively similar, 

there were numerous discrepancies in the classification of event types among the two observers.  

This issue illustrates the large uncertainty with the fate of manatees associated with collision events.  
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For example, an animal may be hit and suffer deadly internal injuries but may be classified as not 

injured, although it may die later at a different location due to the injuries.  Many collision events are 

obviously not reported, but a bias in the reporting can be particularly problematic.  For instance, if 

collision events are preferentially reported depending on the fate of the animal (e.g. if the cases of 

minor (or no) injuries are less likely to be reported), this could result in bias of the parameter 

estimates.  Unfortunately, I was not able to assess the extent of this potential source of error.  One 

particular concern of a directional bias is the case of expert classification.  The experts may have 

considered that an event resulted in a serious injury when the collision occurred at a higher speed.  

Although, we tried to minimize this type of error, we were not able to remove it and we do not have 

a good way to quantify the extent of the potential bias.  The low sample size was another problem 

for this study.  For instance, given the low sample size it would have been difficult to determine the 

effect of vessel size on the relationship, yet, mechanistically I would expect vessel size to have an 

impact on this relationship. Given all these caveats, my results should be interpreted with caution.  

 The probability of death given strike speed is a key parameter to understanding the 

effectiveness of speed zones for manatee, and this analysis will provide the first quantification of this 

parameter.  This analysis should hopefully fill an important gap and ultimately help improve the 

management of vessel regulations for manatees and other species affected by vessel collisions.  For 

example, Vanderlaan and Taggart (2007) and Conn and Silber (2013) did not account for speed 

uncertainty in their analyses, but the quantitative approach presented here can provide a robust 

means for this.  This example also shows a method for making use of citizen data, which is an 

underused resource, but one that demands a rigorous and transparent method for quantification.  

Error in variable models are under used in ecology and hopefully my analysis will encourage other 

scientists to use it for their research. 
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 Data collected by citizens provide many opportunities to integrate data collected at large 

scales and cheaply.  Also, citizen scientists act as “many eyes”, and these data are valuable for 

recording rare events.  Given that these data are often collected opportunistically it is important to 

clearly identify the limitations of the data and to try to properly account for the most important 

sources of uncertainty.  I recommend that to obtain the best dataset on collisions as possible, the 

collection methodology should be improved and standardized.  Citizen science mobile phone 

applications are becoming more common, and ecologists could leverage this tremendous potential to 

address many questions in ecology and conservation.  Reporters should be given the opportunity to 

add photographs for quality assurance and control, as well as comment.  However only a few 

variables should be made priority: speed, vessel type, size, and the outcome of the collision.  

Emphasis should be made on anonymity to help ease concerns that reporting may lead to 

convictions for speeding, however public outreach on how and what to report along with 

information on how these data are used should be the priority.  It is necessary at this point to find a 

way to sufficiently explain the reasoning behind parameterizing the relationship between manatees 

and vessels, not only for wildlife, but for human wellbeing.  The benefit to boaters is that this 

relationship is better understood, and speed zones may be optimized based on actual data.  A clear 

and mathematical explanation for where and why speed zones exist may ease any tensions about the 

topic.  Reporting can be emphasized as a way for boaters to be involved in this optimization 

process, acting as stewards for the water and wildlife that they appreciate on a daily basis.  In order 

to be beneficial in these ways, the reporting system should be simple and accessible to waterway 

users.   

 

Even with improved reporting, missing data will be inevitable with citizen reported data.  

More likely, the witness or operator reporting will describe a vessel as “planing” or “between 20 and 
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30 knots”, for example.  This type of data, while vague, still contains valuable information that is lost 

if the information is ignored or replaced with a mean or other representative value.  Multiple 

imputation (MI) is considered the fastest-growing method in handling missing data and is becoming 

the standard method in medical and social sciences (Nakagawa & Freckleton 2008).  As of this date, 

it is an underused method in ecology.  The critical importance of MI, and the difference between it 

and other ways of handling missing data, is the capability of MI to provide information, i.e. statistical 

parameters, regarding the impact of missing data on parameter estimation.  Such considerations are 

crucial for ecological data.  As citizen science is used more frequently to answer challenging 

ecological questions, and in addition as more ecologists begin using model selection and Bayesian 

approaches, both of which require complete sets of information, we will need to continue to focus 

on effective ways of dealing with missing data.   

 

This work provides an example of how citizen science data can be used to address the 

problem of collisions between wildlife and boaters.  The methodology used in this paper will help 

reach the goal of understanding the variables that impact severity of a collision and help develop an 

adequate treatment of the intrinsic uncertainty that comes with citizen reported data.  Moreover, the 

insights gained here help inform what is needed from collision reports.  The goal should be to 

emphasize the reporting of accurate speeds and other characteristics of the vessel involved from 

observers of a collision event.  Since vessel strikes are the leading cause of mortality, we need to 

encourage reporting of collisions.  We also need to make reporting easy.  Reporting by concerned 

and invested citizens represents our best dataset for understanding where and at what speed 

collisions occur.  Citizen reported data is a potentially valuable resource for resource management, 

but tool development must take into consideration how to mitigate uncertainty and missing values. 
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