
University of South Florida University of South Florida

Digital Commons @ University of Digital Commons @ University of

South Florida South Florida

USF Tampa Graduate Theses and Dissertations USF Graduate Theses and Dissertations

November 2017

Improving Service Level of Free-Floating Bike Sharing Systems Improving Service Level of Free-Floating Bike Sharing Systems

Aritra Pal
University of South Florida, aritra1@mail.usf.edu

Follow this and additional works at: https://digitalcommons.usf.edu/etd

 Part of the Operational Research Commons, Statistics and Probability Commons, and the Urban

Studies and Planning Commons

Scholar Commons Citation Scholar Commons Citation
Pal, Aritra, "Improving Service Level of Free-Floating Bike Sharing Systems" (2017). USF Tampa Graduate
Theses and Dissertations.
https://digitalcommons.usf.edu/etd/7433

This Dissertation is brought to you for free and open access by the USF Graduate Theses and Dissertations at
Digital Commons @ University of South Florida. It has been accepted for inclusion in USF Tampa Graduate Theses
and Dissertations by an authorized administrator of Digital Commons @ University of South Florida. For more
information, please contact digitalcommons@usf.edu.

https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/etd
https://digitalcommons.usf.edu/grad_etd
https://digitalcommons.usf.edu/etd?utm_source=digitalcommons.usf.edu%2Fetd%2F7433&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/308?utm_source=digitalcommons.usf.edu%2Fetd%2F7433&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/208?utm_source=digitalcommons.usf.edu%2Fetd%2F7433&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/436?utm_source=digitalcommons.usf.edu%2Fetd%2F7433&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/436?utm_source=digitalcommons.usf.edu%2Fetd%2F7433&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usf.edu

Improving Service Level of Free-Floating Bike Sharing Systems

by

Aritra Pal

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
Department of Industrial and Management Systems Engineering

College of Engineering
University of South Florida

Co-Major Professor: Yu Zhang, Ph.D.
Co-Major Professor: Changhyun Kwon, Ph.D.

Tapas Das, Ph.D.
Grisselle Centeno, Ph.D.

Gangaram S. Ladde, Ph.D.

Date of Approval:
October 2, 2017

Keywords: Bike Sharing, Last Mile, Mobility Patterns, Rebalancing, Anomaly Detection

Copyright c⃝ 2017, Aritra Pal

Dedication

This dissertation is dedicated to my parents Abhijit and Rupa Pal, for their

unconditional support in all my endeavors.

Acknowledgements

My heartfelt thanks to Dr. Tapas Das for giving me the opportunity to pursue PhD at

University of South Florida.

I would like to thank my co-major professors: Dr. Yu Zhang and Dr. Changhyun

Kwon, and the rest of my committee members: Dr. Tapas Das, Dr. Grisselle Centeno

and Dr. Gangaram S. Ladde for their generous advice, support and guidance during my

doctoral study.

I would like to thank Garrick Aden-Buie for introducing me to the Julia programming

language; and to Dr. Bo Zeng and Dr. Hadi Charkhgard for teaching me the beautiful art

and science of optimization.

This dissertation would not have been possible without the unconditional support of

my parents: Abhijit and Rupa Pal, my brother: Avik Pal, my beautiful girlfriend: Kelly

Serban, my other family members: Anjana Pal, Chandrima Bose, Anirban Bose, Sreetama

Guha, Sanjib Guha and my naughty nephews.

I would like to thank my colleagues at USF, Tampa namely Daniel Romero, Sharmin

Mithy, Jasper Quach, Debtanu Maiti, Sovik Nath, Vignesh Subramanian, Nazmus Sakib

and XuXue Sun for making my four years at USF, Tampa memorable.

Last but not the least to my friends in India and abroad: Rahul Dey, Subrata Das,

Atanu Santra, Krishnendu Banerjee and Debayan Chandra, who I miss dearly everyday.

Table of Contents

List of Tables iii

List of Figures v

Abstract viii

1 Introduction 1

2 Solving Large-Scale Static Rebalancing Problems in Free-Floating Bike Sharing
Systems 6

2.1 Note to Reader 6
2.2 Introduction 6
2.3 Problem Description and Related Work 10
2.4 Mathematical Formulation of SCRP 13
2.5 Proposed Heuristic 22

2.5.1 Initial Solution 23
2.5.1.1 Single Vehicle 23
2.5.1.2 Multiple Vehicles 24

2.5.2 Variable Neighborhood Descent (VND) 25
2.5.2.1 Local Search Operators for Single Vehicle 26
2.5.2.2 Local Search Operators for Multiple Vehicles 28

2.5.3 Large Neighborhood Search (LNS) 29
2.5.3.1 Repairing Operators 31
2.5.3.2 Perturbation Operators 31

2.5.3.2.1 Perturbation Operators 1 and 2 33
2.5.3.2.2 Perturbation Operators 3 and 4 35

2.5.4 NLNS+VND 35
2.6 Recommended Solution Strategies 35

2.6.1 Instances with Zero Imbalance at the Depot 38
2.6.2 Instances with Non-zero Imbalance at the Depot 38

2.7 Case Study 1: 1-PDTSP Instances 40
2.8 Case Study 2: Share-A-Bull (SABB) FFBS 42
2.9 Case Study 3: Divvy SBBS 46
2.10 Final Remarks 46

i

3 Analyzing Mobility Patterns and Imbalance of Free Floating Bike Sharing Systems 54
3.1 Problem Description 54
3.2 Literature Review 56
3.3 Methodology 58

3.3.1 Variables 58
3.3.2 Data Descriptions 59
3.3.3 Decomposing Continuous Independent Variables 62
3.3.4 Interactions between Binary Independent Variables 63
3.3.5 Variable Sets Used in this Chapter 64
3.3.6 Baseline Models 64
3.3.7 Regularization 66
3.3.8 Models Used in this Chapter 67
3.3.9 Model Selection 67

3.4 Experimental Results 68
3.5 Discussion 72

3.5.1 Data Visualization 73
3.5.2 Models with No Interactions 75
3.5.3 Models with Interactions 78
3.5.4 All Vantage Points 83

3.6 Final Remarks 85

4 Strategies to Increase Usable Bikes in Free-Floating Bike Sharing Systems 87
4.1 Problem Description and Related Work 87
4.2 Identifying and Preventing Over Usage 89
4.3 Identifying Users Responsible for Damaging Bikes 93

4.3.1 Stage 1: Selecting a Broad Set of Potential Users who may be
Responsible for Damage 95

4.3.2 Stage 2: Selecting Users with a Positive Correlation to Break-
downs 96

4.3.3 Stage 3: Clustering Users into Regular and Casual Users 100
4.4 Possible Strategies for Minimizing Damage done to Bikes 100
4.5 Final Remarks 106

5 Conclusion 107

References 109

Appendix A Copyright Permissions 117
A.1 Reprint Permissions for Chapter 2 117

ii

List of Tables

Table 2.1 Summary of Literature of Operator Based Rebalancing Strategies 11

Table 2.2 Notations Used in the Remainder of the Chapter 49

Table 2.3 Terminology of the Algorithms 50

Table 2.4 Number of Trials of each Algorithm 50

Table 2.5 Description of Parameters Used in Table 2.6 50

Table 2.6 Summary of Overall Results for 1-PDTSP Instances 51

Table 2.7 Summary of Overall Results for SABB Real Instances 51

Table 2.8 Summary of Overall Results for SABB General Instances 51

Table 2.9 Summary of Overall Results for Divvy SBBS Instances 53

Table 3.1 Dependent Variables Used in this Chapter 59

Table 3.2 Binary Independent Variables Used in this Chapter 60

Table 3.3 Continuous Independent Variables Used in this Chapter 61

Table 3.4 Quantiles of Continuous Variables 63

Table 3.5 Summary of Training and Testing Error Measures for All Models of
Dropoffs and Pickups 69

Table 3.6 Summary of Training and Testing Error Measures for All Models of
Hourly Imbalance 69

Table 3.7 Summary of Variable Selection for All Models of Dropoffs and Pickups 70

Table 3.8 Summary of Variable Selection for All Models of Imbalance 70

Table 3.9 Selected Models 70

iii

Table 3.10 Variables that Become Significant when Combined Together 73

Table 4.1 Different Variable Sets for Estimating Negative Binomial Regression
Models 89

iv

List of Figures

Figure 1.1 A Share-A-Bull Bike Locked to a Wooden Frame 2

Figure 2.1 Subdivisions of Rebalancing Strategies 11

Figure 2.2 Original Network 14

Figure 2.3 Decomposed Network 15

Figure 2.4 Feasible Solution for the Decomposed Network with a Single Vehicle
of Capacity 2 16

Figure 2.5 Corresponding Feasible Solution for the Original Network with a Sin-
gle Vehicle of Capacity 2 17

Figure 2.6 Feasible Solution for the Decomposed Network with a Single Vehicle
of Capacity 1 17

Figure 2.7 Corresponding Feasible Solution for the Original Network with a Sin-
gle Vehicle of Capacity 1 18

Figure 2.8 Example Network 20

Figure 2.9 A Feasible Solution of the Network in Figure 2.8 for a Fleet Consisting
of 2 Rebalancing Vehicles 21

Figure 2.10 Tour of Vehicle 1 for the Feasible Solution in Figure 2.9 21

Figure 2.11 Tour of Vehicle 2 for the Feasible Solution in Figure 2.9 22

Figure 2.12 Summary of Results for Set I, II and III Respectively 52

Figure 3.1 Variation of Dependent Variables with Temporal Variables 74

Figure 3.2 Average Marginal Effects of Statistically Significant Variables for the
Best Model with No Interactions for Daily Pickups 76

Figure 3.3 Average Marginal Effects of Statistically Significant Variables for the
Best Model with No Interactions for Hourly Pickups 76

v

Figure 3.4 Coefficients of Statistically Significant Variables for the Best Model
with No Interactions for Hourly Imbalance 77

Figure 3.5 Average Marginal Effects of First Order Statistically Significant Vari-
ables for the Best Model with Interactions for Daily Pickups 78

Figure 3.6 Average Marginal Effects of First Order Statistically Significant Vari-
ables for the Best Model with Interactions for Hourly Pickups 79

Figure 3.7 Average Marginal Effects of Second Order Statistically Significant Vari-
ables between Day, Holiday and Hour for the Best Model with Inter-
actions for Hourly Pickups 79

Figure 3.8 Average Marginal Effects of Second Order Statistically Significant Vari-
ables between Season, Month and Weather Variables for the Best Model
with Interactions for Hourly Pickups 80

Figure 3.9 Average Marginal Effects of Third Order Statistically Significant Vari-
ables between September/October, Day, Holiday and Hour for the
Best Model with Interactions for Hourly Pickups 80

Figure 3.10 Coefficients of Second Order Statistically Significant Variables between
Day, Holiday and Hour for the Best Model with Interactions for Hourly
Imbalance 81

Figure 4.1 Causes of Damage of a Bike and Users Responsible for Them 87

Figure 4.2 Testing Errors (RMSE) 91

Figure 4.3 Training Errors (ρ2) 92

Figure 4.4 Inverse of Average Marginal Effects 92

Figure 4.5 Decision Tree for Identifying Users Responsible for Damaging Bikes 94

Figure 4.6 Potential Users who May Be Responsible for Damage 95

Figure 4.7 Distribution of the Number of Breakdowns in the Original and the
Re-sampled Dataset 97

Figure 4.8 Number of Users with Positive Correlation to Breakdowns and Test-
ing Errors for All Models 98

Figure 4.9 Users with and without Positive Correlation to Breakdowns 99

Figure 4.10 Intra Cluster Standard Deviation of the 3 Variables for Different Varsets
and Clustering Method 101

vi

Figure 4.11 Intra Cluster Mean of the 3 Variables for Different Varsets and Clus-
tering Method 102

Figure 4.12 Intra Cluster Number of Users for Different Varsets and Clustering
Method 103

Figure 4.13 Number of Users for Selected Cluster 104

Figure 4.14 Decomposition of the Set of All Users into Mutually Exclusive Subsets 105

vii

Abstract

Bike Sharing is a sustainable mode of urban mobility, not only for regular commuters

but also for casual users and tourists. Free-floating bike sharing (FFBS) is an innovative

bike sharing model, which saves on start-up cost, prevents bike theft, and offers signifi-

cant opportunities for smart management by tracking bikes in real-time with built-in GPS.

Efficient management of a FFBS requires: 1) analyzing its mobility patterns and spatio-

temporal imbalance of supply and demand of bikes, 2) developing strategies to mitigate

such imbalances, and 3) understanding the causes of a bike getting damaged and devel-

oping strategies to minimize them. All of these operational management problems are

successfully addressed in this dissertation, using tools from Operations Research, Statis-

tical and Machine Learning and using Share-A-Bull Bike FFBS and Divvy station-based

bike sharing system as case studies.

viii

1 Introduction

Bike sharing allows people a healthy, enjoyable and emission-free way to commute

across small distances free from the worries of owning a bike. It also provides an alter-

native and attractive solution for the first and last-mile problem in multi-modal trans-

portation. Over the years, various schemes of bike sharing have been presented, with

the earliest generation dating back to July, 1965, in Amsterdam with Witte Fietsen (White

Bikes). The next generation, coin-deposit systems, first were introduced in Denmark in

Farse and Grena in 1991 and then in Nakskov in 1993. A major breakthrough came when

people could use a magnetic stripe card to rent a bike. This generation of bike sharing,

known as the IT-based system started with Bikeabout in 1996 at Portsmouth University,

England. Interested readers are referred to DeMaio (2009), for an overview of various

generations of bike sharing.

Free-floating bike sharing (FFBS), also known as station-less bike sharing is a new

generation of bike sharing system (BSS) that allows bikes be locked to ordinary bike racks

(or any solid frame or standalone), eliminating the need for specific stations. In compar-

ison to the prevailing Station-based Bike Sharing (SBBS), FFBS saves on start-up cost by

avoiding the construction of expensive docking stations and kiosk machines required for

SBBS. With built-in GPS, customers can find and reserve bikes via a smart phone or a web

app and operators can track the usage of the bikes in real-time. These has two primary

benefits. First, users satisfaction levels increase as renting and returning bikes become

extremely convenient and second, operators have the basis for smart management of the

system.

1

SocialBicycles (SoBi) is one of the providers of FFBS bikes. SoBi bikes are used as an

example to further illustrate how FFBS works. Each registered SoBi member gets a unique

PIN and can use a smartphone app to locate available bikes. After reserving a bike, the

user has 15 minutes to get to its location. Once the user finds the bike, (s)he enters the

PIN on the bike’s built-in keypad to unlock the bike. If the user wants to stop somewhere

quickly, the bike can be locked and placed on hold. Upon reaching the destination, the

user can simply lock the bike to a bicycle rack (or any solid frame or standalone) and the

bike becomes available for the next user.

Figure 1.1: A Share-A-Bull Bike Locked to a Wooden Frame

The core problem faced by the operator of a bike sharing system, is to maximize its

service level (ability to serve users) and decrease its maintenence cost. The major causes

for decrease in service level of a BSS, is imbalance of usable bikes and presence of un-

usable/damaged bikes in the system. Imbalance of usable bikes in the system can be

addressed by maintaining an (sub-)optimal quantity of bikes in each station in case of

station-based systems or each zone in case of free-floating systems, because excess sup-

ply may hamper the return of bikes, whereas shortage in supply may result in increased

access cost for users (e.g. elongated walking distance) and in lost demand. To mitigate the

2

overall or a station/zonal imbalance, the operator may use different rebalancing strate-

gies depending on the situation. Maintenance cost of a BSS pertaining to usable bikes is

primarily owing to operator-based rebalancing, which can be minimized by computing

high quality tours of the fleet of rebalancing vehicles. Solving the core problem of an es-

tablished BSS requires understanding the mobility patterns of its users. This enables the

operator to estimate an approximate target distribution of bikes for rebalancing as well as

gain insights necessary for developing appropriate rebalancing strategies, e.g. whether

static rebalancing is sufficient or is dynamic rebalancing needed, when are the different

types of rebalancing appropriate and how much time is available for each type of rebal-

ancing.

Usable bikes become unusable for two major reasons: 1) from over usage by subset

of regular users and 2) from mishandling or vandalism by a subset of casual users, who

will be refered to as malevolent users henceforth. Once a usable bike becomes unusable,

a user is unable to use it until it is repaired, decreasing his/her level of satisfaction. Now,

the operator has to repair these unusable bikes either on-site or at a remote location, both

of which involve routing and labor costs. These costs owing to the presence of unusable

bikes can be minimized, if the operator employs strategies to prevent usable bikes from

being converted to unusable bikes owing to over usage by taking proper maintenance

measures and to prevent damage from mishandling / vandalism by identifying malevo-

lent users.

In chapter 2 of this dissertation, we present a novel mixed integer linear program for

solving the static complete rebalancing problem. The proposed formulation, can not only

handle single as well as multiple vehicles, but also allows for multiple visits to a node by

the same vehicle. We present a hybrid nested large neighborhood search with variable

neighborhood descent algorithm, which is both effective and efficient in solving static

complete rebalancing problems for large-scale bike sharing programs. Computational ex-

periments were carried out on the 1-commodity pickup and delivery traveling salesman

3

problem (1-PDTSP) instances previously used in the literature and on three new sets of

instances, two (one real-life and one general) based on Share-A-Bull Bikes (SABB) FFBS

program recently launched at the Tampa campus of University of South Florida and the

other based on Divvy SBBS in Chicago. Computational experiments on the 1-PDTSP in-

stances demonstrate that the proposed algorithm outperforms a tabu search algorithm

and is highly competitive with exact algorithms previously reported in the literature for

solving static rebalancing problems in SBSS. Computational experiments on the SABB

and Divvy instances, demonstrate that the proposed algorithm is able to deal with the in-

crease in scale of the static rebalancing problem pertaining to both FFBS and SBBS, while

deriving high-quality solutions in a reasonable amount of CPU time.

In chapter 3 of this dissertation, we try to understand the mobility patterns and im-

balance of an FFBS by analyzing its historical trip and weather data. Resulting outcomes

provide insights to assist the system operator to make more informed decisions. Re-

searchers have studied mobility patterns by analyzing historical trip and weather data of

station-based bike sharing systems (SBBS) using data visualization and or generalized lin-

ear models. However, none of these studies considered interaction between independent

variables or study imbalance as a dependent variable. In this chapter, we demonstrate

that by considering such interactions, more insights can be obtained about the mobility

patterns and imbalance of an FFBS. We propose a simple method to decompose con-

tinuous variables into binary variables and two stage models that consider interactions

between independent variables. The proposed decomposition method significantly im-

proves the (quasi-)Poisson regression model commonly used in the literature and has the

ability to identify intervals of a continuous variable for which they are statistically signif-

icant.

In chapter 4 of this dissertation, we develop strategies to minimize the overall costs of

a FFBS due to damage by: 1) determining the relationship between the number of break-

downs of a bike to its total distance traveled, total duration of travel and total number of

4

pickups, 2) identifying users who are responsible for breakdowns of bikes and 3) devel-

oping strategies to minimize damage to bikes based on the previous two outcomes. The

first and second problem are formulated as a supervised and an unsupervised learning

problem respectively and tested on the Share-A-Bull FFBS (SABB), an FFBS on the main

campus of the University of South Florida (USF). Finally, based on the above two out-

comes, we provide some strategies that the operator of SABB FFBS can use to minimize

costs owing to damage of bikes. It is worth mentioning that our proposed method is easy

to implement and can be easily ported to other bike sharing systems without any changes.

Finally, Chapter 5 concludes the dissertation with directions for future research.

5

2 Solving Large-Scale Static Rebalancing Problems in Free-Floating Bike Sharing

Systems

2.1 Note to Reader

This chapter has been previously published c⃝ 2017 Elsevier. Reprinted with permis-

sion from Pal and Zhang (2017).

2.2 Introduction

During daily operation, the distribution of bikes in the system becomes skewed, often

leading to a low quality of service and user dissatisfaction. To prevent such a scenario

from prevailing, operators move bikes across the network to achieve a desired distribu-

tion. The operation of redistributing bikes across the network using a fleet of vehicle(s) is

known as bike rebalancing. Rebalancing at night, when user intervention is negligible, is

called static rebalancing. If user intervention is considered, the problem is called dynamic

rebalancing. Bike rebalancing being a variant of vehicle routing problem, is a challenging

combinatorial optimization problem, with the objective function being, to minimize the

financial and environmental costs of rebalancing. Different variants of the bike rebalanc-

ing problem have been proposed in the literature, see Section 2.3 for a detailed literature

review.

Dependent on how rigorous of a rebalancing needs to be performed, it can be classified

into two categories, complete and partial rebalancing. In complete rebalancing the rebal-

ancing operation terminates only when target inventory of all nodes in the network have

been met. However, if complete rebalancing is not feasible (for example: if the time taken

6

to completely rebalance the bike sharing system is more than the actual time available for

rebalancing), the operator may consider partial rebalancing. In partial rebalancing, not

all nodes will meet their target inventory. In SBBS, nodes are working stations with status

of having a deficit or surplus of bikes, or being self-balanced. FFBS has no stations like in

SBBS, so nodes in FFBS include regular bike racks and standalone locations where bikes

are parked by users, and bike racks and standalone locations where bikes have not been

parked but are perceived as important locations for bikes to be present by the operator.

For FFBS, there are no stations like in SBBS. In this chapter, we focus on Static Complete

Rebalancing Problem (SCRP). Partial rebalancing are an on-going effort of our research

team and will be addressed in a future article. The static complete rebalancing problem

(SCRP) is computationally more challenging than static partial rebalancing problem, be-

cause the number of times a node is visited, in the optimal solution can not be determined

apriori. We are also performing studies on understanding demand patterns of bike shar-

ing system and explore how dynamic rebalancing can be applied in real world cases.

For the same configuration, i.e., number of stations (in case of SBBS and bike racks

in case of FFBS), number of bikes and capacity of the rebalancing fleet, computational

complexity of SCRP is higher for FFBS than for SBBS. To illustrate this, let us consider

a bike sharing system with 100 stations (or bike racks) and 200 bikes. In case of SBBS,

number of locations that the rebalancing vehicle(s) has to visit to completely rebalance

the system will at most be 100. This is because some stations may be self rebalanced.

However, in case of FFBS, number of locations that the rebalancing vehicle(s) has to visit

to completely rebalance the system can at times be >> 100. To illustrate this, let us

consider the scenario, when all 200 bikes are parked outside of bike racks in standalone

locations but the operator wants each bike rack to have 2 bikes each. In this scenario,

number of locations that the rebalancing vehicle(s) has to visit to completely rebalance

the system is 300, out of which 200 are standalone locations (for pickup) where bikes are

parked and 100 are bike racks (for drop offs). Now, let us consider the scenario when

7

instead of 100 bike racks, the system has 300 bike racks and all 200 bikes are parked

outside of bike racks in standalone locations. In this case the operator can have at most

200 bike racks to be filled with 1 bike each. In this scenario, number of locations that the

rebalancing vehicle(s) has to visit to completely rebalance the system is at most 400, out

of which 200 are standalone locations (for pickup) where bikes are parked and 200 out

of 300 bike racks where at least 1 bike needs to be dropped off. Thus we can conclude

that nodes in the system that a rebalancing vehicle(s) has to visit is ≤ Number of Working

Stations in case of SBBS and is ≤ min {Number of Bike Racks + Number of Bikes, 2× Number

of Bikes} in case of FFBS. This fact is also evident from the real life instances introduced in

Section 2.8.

Chemla et al. (2013a) was the first to introduce SCRP for SBBS and proposed tabu

search algorithms for solving it. Erdoan et al. (2015) proposed a time extended network

formulation of SCRP for SBBS and solved it exactly using mixed integer programming.

However, the mathematical formulations proposed in Chemla et al. (2013a) and Erdoan

et al. (2015) can handle only a single vehicle. Further, the time extended network for-

mulation of SCRP were designed in a manner that it could not be extended for multiple

vehicles. This is evident when in Alvarez-Valdes et al. (2016) a heuristic method is pro-

posed for solving SCRP in SBBS for a fleet of multiple vehicles, however the authors are

unable to present any mathematical formulation. This issue is being addressed by a math-

ematical formulation based on spacial decomposition of the network into nodes of unit

imbalance each, except for the depot whose imbalance is 0. The proposed formulation,

can not only handle single and multiple vehicles, but also allows for multiple visits to a

node by the same vehicle. For more details on the proposed formulation see Section 2.4.

Tabu search and exact algorithms proposed in Chemla et al. (2013a) and Erdoan et al.

(2015) respectively, are not effective for solving static rebalancing problems even in small

or medium scale FFBS or SCRP with multiple vehicles. Thus, in this chapter a heuristic

algorithm is proposed, to derive high quality solutions of SCRP with both single as well

8

as multiple vehicles, in a reasonable amount of CPU time. The proposed heuristic con-

sists of creating an initial solution using a greedy construction heuristic and improving it

until no further improvement is possible. The improvement heuristic is a hybridization

of variable neighborhood descent with large neighborhood search. Seven granular de-

scent operators (Toth and Vigo (2003)) are used for variable neighborhood descent. Four

perturbation and three repairing operators were developed, resulting in a total of twelve

large neighborhoods. Each of these is explored exhaustively before moving on to the next

large neighborhood until no further improvement is possible, resulting in a nested large

neighborhood search. For more details on the proposed heuristic see Section 2.5.

Computational experiments on the 1-PDTSP instances from the literature, demon-

strate that the presented algorithm outperforms the tabu search algorithm (Chemla et al.

(2013a)) and is highly competitive with the exact algorithms (Erdoan et al. (2015)) for

solving SCRP in SBBS. It is able to find new solutions for 59 of 148 instances for which the

optimal solution is not known and on average 400 and 36 times faster than the exact and

the tabu search algorithms proposed in the literature. Computational experiments on the

new SABB FFBS instances (consisting of up to 400 nodes, 300 bikes, and a eet size of up to

3 vehicles) and Divvy instances (consisting of 450 stations, 3000 bikes, and a eet size of up

to 30 vehicles), demonstrate that NLNS+VND is able to deal with the increase in scale of

SCRP for both FFBS and SBBS. It also shows that SCRP is feasible for both SABB program

at USF, Tampa and Divvy SBBS at Chicago with the given size of the rebalancing fleet.

The remainder of this chapter is organized as follows. Section 2.3 describes SCRP in

detail and presents the literature review of rebalancing operations on bike sharing sys-

tems. Section 2.4 describes the mathematical formulation proposed for SCRP. Section 2.5

describes our proposed heuristic for deriving high quality solutions of SCRP. Section 2.6

discusses our recommended strategies for solving different types of SCRP using our pro-

posed methodology. Sections 2.7, 2.8 and 2.9 summarizes the experimental results and

9

conclusions of the three case studies. Section 2.10 concludes the chapter with final re-

marks.

2.3 Problem Description and Related Work

In recent years, with the boom of SBBS, extensive bike-share related research has been

conducted and documented. Related to the operational management of a bike-sharing

system, the literature can be grouped into three major research sub-streams: demand

analysis, service-level analysis and rebalancing strategies. Service-level and demand

Analysis are beyond the scope of this chapter and will be summarized in a future article

we are working on. In this article, we focus only on the literature relevant to rebalancing

operations. Rebalancing a bike sharing system can be achieved in various ways, illus-

trated in Figure 2.1. In Figure 2.1, operator and user based strategies refers to manually

rebalancing the bikes in the network using a fleet of rebalancing trucks and incentivizing

users to encourage them to self-rebalance the bikes in the network respectively. If the

manual rebalancing is done when the user intervention is negligible, it is known as static

rebalancing, whereas if it is done when there is significant user intervention, the rebal-

ancing is known as dynamic rebalancing. Further, in SCRP the operator meets the target

inventory level at all the nodes in the network exactly. However, if the resources available

(rebalancing time or number of rebalancing vehicles) to the operator is not sufficient for

complete rebalancing, partial target inventory levels are met at certain or at all the nodes.

This is known as partial rebalancing (SPRP).

A summary of the recent literature of operator based rebalancing strategies in SBBS

is provided in Table 2.1. In terms of user based rebalancing strategies for SBBS, Chemla

et al. (2013b) and Pfrommer et al. (2014) presented dynamic pricing strategies, which

encourage users to return bikes to empty (or unsaturated) nodes. Singla et al. (2015)

extended the model of Pfrommer et al. (2014) by incorporating a learning mechanism to

shape the user utility function, and enriched it by taking into account a budget constraint

10

Rebalancing Strategies

Operator based Strategies

Static Rebalancing

Complete Rebalancing (SCRP) Partial Rebalancing (SPRP)

Dynamic Rebalancing

User based Strategies

Incentives

Static Pricing Dynamic Pricing

Figure 2.1: Subdivisions of Rebalancing Strategies

for the operator. For a more detailed literature review of rebalancing strategies in station

based shared mobility systems, the readers are referred to Laporte et al. (2015). From the

literature review, it can be concluded that only Reiss and Bogenberger (2015) reported a

study conducted on FFBS. Weikl and Bogenberger (2013) and Boyacı et al. (2015) report

SPRP schemes for one-way station-based (SBCS) and Free Floating Car Sharing (FFCS)

systems respectively. However, no article has reported any SCRP scheme for either FFBS

or FFCS.

Table 2.1: Summary of Literature of Operator Based Rebalancing Strategies

Research Article Type of Rebalancing Subtype Fleet Size Stations Methodology
Chemla et al. (2013a)

Static Rebalancing

Complete Rebalancing
1 100 Tabu Search

Erdoan et al. (2015) 1 60 Exact algorithm based on Bender’s Cuts
Alvarez-Valdes et al. (2016) 2 28 Heuristic based on Minimum Cost Flow

Raviv et al. (2013)

Partial Rebalancing

2 60 Mixed Integer Programming (MIP)
Forma et al. (2015) 3 200 3-Step Matheuristic

Ho and Szeto (2014) 1 400 Iterated Tabu Search
Schuijbroek et al. (2017) 5 135 Constraint Programming and MIP

Erdoan et al. (2014) 1 50 Branch and Cut and Bender’s Decomposition
Dell’Amico et al. (2014) 1 116 Branch and Cut
DellAmico et al. (2016) 1 500 Metaheuristic based on Destroy and Repair

Rainer-Harbach et al. (2015) 21 700 Combination of Greedy Heuristics, GRASP and VNS
Szeto et al. (2016) 1 300 Chemical Reaction Optimization

Ho and Szeto (2017) 5 518 Hybrid Large Neighborhood Search
Pfrommer et al. (2014)

Dynamic Rebalancing

1 - Greedy Heuristics
Contardo et al. (2012) 1 100 A hybrid MIP approach using Dantzig-Wolfe and Benders decomposition

Regue and Recker (2014) 1 - MIP
Kloimüllner et al. (2014) 5 90 Combination of Greedy Heuristics, GRASP and VNS

In this chapter, the objective function of SCRP is minimizing the makespan of the fleet

of rebalancing vehicles. This is equivalent to minimizing the maximum rebalancing time

of the fleet of rebalancing vehicles, as is done in Schuijbroek et al. (2017). However, if the

fleet consist of a single vehicle, it is equivalent to minimizing the total distance traversed

11

by the rebalancing vehicle, as is done in Chemla et al. (2013a) and Erdoan et al. (2015).

Different studies in the literature have minimized different objective functions, including

weighted sum of two or more measures. The most important measures being:

1. Travel cost

2. Total redistribution (travel + loading and unloading) cost

3. Total absolute deviation from the target number of bikes

4. Total unmet customer demand or a penalty cost

5. Makespan of the rebalancing fleet - Measure used in this chapter

For SCRP, options 3 and 4 are not applicable as the system is completely rebalanced.

In this chapter, the objective function of SCRP is to minimize the make-span of the fleet of

rebalancing vehicles. If the fleet consists of a single vehicle, it is equivalent to minimizing

the total distance (travel cost as well) traversed by the rebalancing vehicle. If multiple

vehicles are needed, minimizing the make-span is better than minimizing the total travel

distance (travel cost) because the latter may create problems that one vehicle is alloted a

rebalancing trip whose time is significantly longer than that of another vehicle. Minimiz-

ing make-span determines the needed time allotted to bike rebalancing and make sure

that rebalancing workload more evenly distributed to multiple vehicles. It decreases the

variance of the rebalancing time of the fleet while at the same time minimizing the overall

rebalancing time to a great extent.

Preemption is not allowed in the tours of the rebalancing vehicles, which means that

nodes can not be used as buffers for storing bikes. For more details pertaining to preemp-

tion in SCRP, the readers are referred to Chemla et al. (2013a) and Erdoan et al. (2015).

Allowing preemption only increases the computational complexity of the mixed inte-

ger linear program (Section 2.4) and the solution algorithm (Section 2.5) without much

improvement in solution quality. The computational complexity increases because the

12

number of (possible) nodes to visit increases when preemption is allowed. If preemption

is not allowed, nodes which are already balanced can be removed in the preprocessing

phase. The solution space also decreases because the inventory level can only either in-

crease or decrease monotonically from the initial inventory levels to the target inventory

levels. Erdoan et al. (2015) empirically showed that, preemption adds a value of 0.6%, at

most in the solution quality, for the 1-PDTSP instances used in the literature.

Mathematical formulations proposed in the literature for SCRP can only handle a sin-

gle vehicle. The formulations were designed in a manner that they could not be extended

for multiple vehicles. This is evident when in Alvarez-Valdes et al. (2016) a heuristic

method is proposed for SCRP in SBBS using multiple vehicles, however the authors are

unable to present any mathematical formulation of SCRP with multiple vehicles. This

issue is addressed by introducing a mathematical formulation based on spacial decom-

position of the network into nodes of unit imbalance each, except for the depot whose

imbalance is 0. Our formulation, can not only handle single and multiple vehicles, but

also allows for multiple visits to a node by the same vehicle. In the existing literature, to

deal with the scale of the static rebalancing problem, researchers have sacrificed solution

quality by limiting the number of visits to a node to, at most, once. If multiple visits to a

node are allowed, the solution algorithms are unable to cope with the scale of the prob-

lem and become ineffective for nodes greater than 50. The proposed heuristic addresses

both of these issues, i.e., retaining solution quality with increase in the scale of the static

rebalancing problem while allowing multiple visits to a node. Our solution algorithm can

also handle a fleet size of 30 vehicles.

2.4 Mathematical Formulation of SCRP

Bike rebalancing network consists of nodes with non-zero imbalance and a depot with

0 imbalance. Figure 2.2 is an example of a network consisting of three nodes, Node 1 or

the Depot, Node 2 with a positive imbalance of 2 (at Node 2 there is a surplus of two

13

bikes) and Node 3 with a negative imbalance of 2 (at Node 3 there is a deficit of two

bikes). Erdoan et al. (2015) was able to formulate the SCRP for a fleet of a single vehicle

using such a network (named original network thereafter). However, it is mathematically

challenging to formulate a SCRP with a fleet of multiple vehicles using the original net-

work, as the number of visits to a node by a vehicle is unknown apriori. To address this

issue, each node (other than the depot) in the original network is decomposed into nodes

each with unit imbalance, but at same geographic location. Figure 2.3 is the decomposed

network of the original network in Figure 2.2. In the decomposed network, Node 2 from

the original network is decomposed into two nodes 21 and 22, with the same geographic

location as Node 2 but each with a positive unit imbalance. Similarly, Node 3 from the

original network is decomposed into two nodes 31 and 32, with the same geographic loca-

tion as Node 3 but each with a negative unit imbalance. Table 2.2 describes the notations

used in the rest of the chapter.

2+2

(Depot) 1

0

3 -2

Figure 2.2: Original Network

In the decomposed network, SCRP becomes feasible to formulate, because the number

of visits to a node in the decomposed network must equal one. This is because, multiple

visits to a node may be required, if and only if its absolute imbalance is strictly greater

than one. However, every node in the decomposed network has a unit absolute imbalance.

Now, SCRP with multiple vehicles can be formulated as a multiple traveling salesman

problem (m-TSP) with additional constraints, on the decomposed network. For a detailed

overview on m-TSP, readers are referred to Laporte and Nobert (1980) and Bektas (2006).

14

21+1

22+1

(Depot) 1

0

31 -1

32 -1

Figure 2.3: Decomposed Network

Let us now consider two other variants of the Traveling Salesman Problem (TSP) -

1 Commodity Pickup and Delivery TSP (1-PDTSP) and Q-TSP or also known as Ca-

pacitated TSP with Pickups and Deliveries (CTSPPD). 1-PDTSP (Hernández-Pérez and

Salazar-González (2004)) is a generalization of TSP, in which nodes (providing or requir-

ing known amounts of a product) must be visited exactly once by a vehicle (with a given

capacity) serving the imbalances, while minimizing the total travel distance. Q-TSP (Cha-

lasani and Motwani (1999)) or CTSPPD (Anily and Bramel (1999)) is a special case of

1-PDTSP, where the delivery and pickup quantities are all equal to one unit.

SCRP with a single rebalancing vehicle on the original network is not equivalent to

1-PDTSP, because in 1-PDTSP number of visits to a node is limited to exactly once, irre-

spective of the imbalances at the node. This limitation on the number of visits to once,

makes 1-PDTSP relatively easy to solve compared to SCRP. However, SCRP on the de-

composed network with a single vehicle is equivalent to formulating a 1-PDTSP, a Q-TSP

or a CTSPPD problem. However, in order to extend the formulation to handle a fleet of

(homogeneous) multiple vehicles, our formulation is based on m-TSP rather than on 1-

PDTSP, Q-TSP or CTSPPD, as doing so reduces the quantity of decision variables. Thus,

our contribution in terms of the mathematical programming formulation is coming up

with a simple, yet effective scheme to decompose the original network, so that existing

15

formulations of different variants of TSP and Vehicle Routing Problem (VRP) can be used

to formulate SCRP with both single and multiple vehicles.

After a feasible solution of SCRP on the decomposed network is obtained, it can be

converted to a feasible solution for SCRP on the original network, by switching the in-

dices of nodes in the tour(s) of the rebalancing vehicles, with their respective indices in

the original network. For example, let us consider SCRP with a single vehicle of capac-

ity 2, on the original network in Figure 2.2. However, if instead of choosing to use the

original network, its corresponding decomposed network (Figure 2.3) is used to compute

a feasible solution (Figure 2.4), it can be converted to a solution feasible on the original

network (Figure 2.5) by switching the indices of nodes in the tour with their respective in-

dices in the original network. One more thing that can be done, is to combine consecutive

locations with same node indices together into one location and their instruction equal

to the sum of that of those corresponding locations. Now, let us consider SCRP with a

single vehicle of capacity 1, on the original network in Figure 2.2. Figure 2.6 represents a

feasible solution on the decomposed network and Figure 2.7 represents the correspond-

ing feasible solution on the original network. This example illustrates how multiple visits

to a node in the original network translates into single visit to a node in the decomposed

network.

1

0

21

+1

22

+1

31

-1

32

-1

1

0
0 1 2 1 0

Figure 2.4: Feasible Solution for the Decomposed Network with a Single Vehicle of Ca-
pacity 2

Before moving onto the Mixed Integer Linear Program (MILP) of SCRP on the decom-

posed network, we have to understand that in this article, we only address SCRP and not

SPRP. For a particular instance to be feasible for SCRP, the total positive imbalance must

equal the total negative imbalance, i.e, ∑i∈N di = 0 on the original network and by ex-

16

1

0

2

+1

2

+1

3

-1

3

-1

1

0
0 1 2 1 0

1

0

2

+2

3

-2

1

0
0 2 0

Figure 2.5: Corresponding Feasible Solution for the Original Network with a Single Vehi-
cle of Capacity 2

1

0

21

+1

31

-1

22

+1

32

-1

1

0
0 1 0 1 0

Figure 2.6: Feasible Solution for the Decomposed Network with a Single Vehicle of Ca-
pacity 1

tension ∑i∈No d̄i = 0 on the decomposed network. From a modeling point of view, SCRP

for SBBS is exactly similar to that for FFBS, i.e, same set of equalities and inequalities de-

fine the constraints. The only difference is from a computational point of view. In case

of FFBS, the scale (number of nodes to rebalance and or number of bikes to rebalance) of

SCRP can become very large compared to that of SBBS with a similar scale (total number

of nodes and total number of bikes in the system).

2.1 - 2.12 is the MILP of SCRP on the decomposed network. There are three decision

variables in this formulation:

• τi is the arrival time of a rebalancing vehicle at node i, ∀i ∈ No

• xij = 1, if Edge (i, j) is traversed by a rebalancing vehicle, otherwise it is 0, ∀(i, j) ∈

Eo.

• qij is the quantity of bikes carried by a rebalancing vehicle on Edge (i, j), ∀(i, j) ∈ Eo.

In this formulation, the objective function (2.1) is to minimize the make-span of the

rebalancing fleet, i.e, τ1. Constraints 2.2 and 2.3 are the Miller-Tucker-Zemlin Subtour

17

1

0

2

+1

3

-1

2

+1

3

-1

1

0
0 1 0 1 0

Figure 2.7: Corresponding Feasible Solution for the Original Network with a Single Vehi-
cle of Capacity 1

Elimination constraints. Constraint 2.4 makes sure, that the number of visits to equals

the number of exits from a node. Constraint 2.5 makes sure, that every node, other than

the depot is visited exactly once. As there are |V| rebalancing vehicles and the flow is

directional (because of capacity constraints), the number of uniques flows through the

depot must be equal to |V|, which is what Constraint 2.6 is. Each of the unique flow out

of |V| flows, starting and ending at the depot corresponds to the tour for a rebalancing

vehicle. Constraint 2.7 prevents self loops in the tour of rebalancing vehicles. Constraint

2.8 are the complete rebalancing constraints for each node in the graph. Constraint 2.8

ensures that the imbalance is met exactly at each node during rebalancing. Constraint 2.9

are the capacity constraints of the rebalancing vehicles.

18

min τ1 (2.1)

s.t. τi ≥ τj + c̄jixji + τ̄ −M(1− xji), ∀i ∈ No, j ∈ No \ {1} (2.2)

τi ≥ c̄1ix1i −M(1− x1i), ∀i ∈ No (2.3)

∑
j∈No

xji = ∑
j∈No

xij, ∀i ∈ No (2.4)

∑
j∈No

xji = 1, ∀i ∈ No \ {1} (2.5)

∑
j∈No

xj1 = |V| (2.6)

∑
i∈No

xii = 0 (2.7)

∑
j∈No

qij − ∑
j∈No

qji = d̄i, ∀i ∈ No (2.8)

qij ≤ Qxij, ∀(i, j) ∈ Eo (2.9)

τi ≥ 0, ∀i ∈ No (2.10)

xij ∈ {0, 1}, ∀(i, j) ∈ Eo (2.11)

qij ∈ Z+, ∀(i, j) ∈ Eo (2.12)

To illustrate how the above MILP can handle multiple vehicles, let us consider the

network presented in Figure 2.8. Figure 2.9 presents a feasible solution on the network

of Figure 2.8 by a fleet consisting of 2 rebalancing vehicles with Q = 1. Figures 2.10 and

2.11 are the tours of Vehicle 1 and 2 respectively, for the feasible solution of Figure 2.9

19

2

+1

(Depot) 1

0
3

-1

4

+1

5

-1

Figure 2.8: Example Network

respectively. Further from Figures 2.10 and 2.11, we can conclude that

τ2 ≥ ¯c12 (2.13)

τ3 ≥ τ2 + ¯c23 + τ̄ (2.14)

τ1 ≥ τ3 + ¯c31 + τ̄ (2.15)

τ4 ≥ ¯c14 (2.16)

τ5 ≥ τ4 + ¯c45 + τ̄ (2.17)

τ1 ≥ τ5 + ¯c51 + τ̄ (2.18)

As our problem is a minimization problem, the above set of inequalities becomes

equations as follows:

τ2 = ¯c12 (2.19)

τ3 = τ2 + ¯c23 + τ̄ (2.20)

τ4 = ¯c14 (2.21)

τ5 = τ4 + ¯c45 + τ̄ (2.22)

20

2

+1

(Depot) 1

0
3

-1

4

+1

5

-1

0

1

0

0 1 0

Figure 2.9: A Feasible Solution of the Network in Figure 2.8 for a Fleet Consisting of 2
Rebalancing Vehicles

(Depot) 1

0

2

τ2 ≥ ¯c12

3

τ3 ≥ τ2 + ¯c23 + τ̄

(Depot) 1

τ1 ≥ τ3 + ¯c31 + τ̄

0 1 0

Figure 2.10: Tour of Vehicle 1 for the Feasible Solution in Figure 2.9

The above set of equations is pretty obvious except for the case of τ1. If τ3 + ¯c31 + τ̄ >

τ5 + ¯c51 + τ̄, τ1 = τ3 + ¯c31 + τ̄, otherwise τ1 = τ5 + ¯c51 + τ̄. In case τ3 + ¯c31 + τ̄ =

τ5 + ¯c51 + τ̄, τ1 can take either values. Thus τ1 equals the arrival time of the rebalancing

vehicle that arrives last at the depot.

The proposed formulation is computationally intractable even for small scale instances

owing to the presence of Big M in the constraints and (geographic) symmetry in the de-

cision variables, which make the linear programming relaxation of the formulation ex-

tremely weak. The Big M constraints are used for subtour elimination. Another reason

for the computational intractability of the formulation is the significant increase in the

number of variables in the formulation owing to spacial decomposition. It is directly

proportional to square of the number of bikes to be rebalanced. Several strategies for

21

(Depot) 1

0

4

τ4 ≥ ¯c14

5

τ5 ≥ τ4 + ¯c45 + τ̄

(Depot) 1

τ1 ≥ τ5 + ¯c51 + τ̄

0 1 0

Figure 2.11: Tour of Vehicle 2 for the Feasible Solution in Figure 2.9

strengthening and making the formulation computationally tractable is mentioned in Sec-

tion 2.10.

2.5 Proposed Heuristic

The algorithm proposed in this section is a hybrid of Nested Large Neighborhood

Search and Variable Neighborhood Descent. It will be referred to as NLNS+VND in the

rest of the article. NLNS+VND was greatly influenced by the success of metaheuristic

algorithms based on perturbation and repair (Helsgaun (2000), Ahuja et al. (2002), Apple-

gate et al. (2003), Ghilas et al. (2016), and Helsgaun (2009)) for solving large scale traveling

salesman and vehicle routing problems. NLNS+VND can solve SCRP on both the orig-

inal and the decomposed network. There are major differences between NLNS+VND

and previous algorithms reported in the literature (Chemla et al. (2013a), Erdoan et al.

(2015)) for solving SCRP in bike sharing systems. NLNS+VND consists of three primary

components each of which have various sub-components. The three primary compo-

nents are creating the initial solution, variable neighborhood descent for intensification

and large neighborhood search for diversification. Each of these components and their

corresponding sub-components are elaborated in great details in the subsequent sections.

NLNS+VND has been coded in Julia (v 0.5.0) (Bezanson et al. (2012)). The sourcecode of

the implementation is available at https://github.com/aritrasep/NLNS+VND.jl.

22

https://github.com/aritrasep/NLNS+VND.jl

2.5.1 Initial Solution

2.5.1.1 Single Vehicle

For a fleet consisting of a single rebalancing vehicle, an initial solution is created using

a greedy construction heuristic. Unlike Chemla et al. (2013a), both (Tv, Iv) are created

simultaneously. Algorithm 1 is the pseudo-code of the greedy construction heuristic. On

lines 4 and 10, in Algorithm 1, the function Maximum operations for every other node() com-

putes the maximum operation that can be performed at a node other than the current

node, if that node is visited next from the current node. When computing maximum op-

eration, only operations remaining at a node are taken into consideration. The procedure

for computing Maximum Operations (or MaxOps) is very simple. First, we have to un-

derstand that sum(I) = current number of bikes in the corresponding rebalancing vehi-

cle. With this in mind, we can define MaxOpsi =

min{do

i , Q− sum(I)} if do
i > 0

max{do
i ,−sum(I)} if do

i < 0

0 if do
i = 0

, ∀i ∈

N . The Nearest Neighbor Function() in Algorithm 1 can be computed in three different

ways. For all three different functions, only nodes with a non-zero maximum operation

(MaxOpsi ̸= 0), are considered for determining Next node.

• Nearest Neighbor 1: The nearest neighbor 1 of a node, is the node with the mini-

mum (traveling) cost from the current node ,i.e, arg min
(
cij
)

, ∀j ∈ N \ {i}; i being

the current node.

• Nearest Neighbor 2: The nearest neighbor 2 of a node, is the node that has the

maximum value of
|Max Opsj|

cij
, ∀j ∈ N \ {i}; i being the current node.

• Nearest Neighbor 3: The nearest neighbor 3 of a node, is a random node (where a

non-zero operation is left) other than the current node and the depot.

23

From Line 5 in Algorithm 1, it is evident that the Next Node of the Depot is chosen

randomly irrespective of what Nearest Neighbor Function() is used to generate the initial

solution. This is because, in our experiments Nearest Neighbor 2 is used to generate 10

different starting solutions. If the Next Node of the Depot is chosen according to Nearest

Neighbor 2, all the 10 starting solutions will exactly be the same.

Algorithm 1: Greedy Construction Heuristic
Data: di,Q, cij, Nearest Neighbor Function
Result: (Tv, Iv)

1 Tv ←− [Depot]
2 Iv ←− [0]
3 do

i ←− di
4 Max Ops←−Maximum operations for every other node(do

i ,Q, sum(Iv))
5 Next node←− Randomly select any node from 2 to |N |
6 Add Next node at the end of Tv
7 Add Max OpsNext node at the end of Iv
8 do

Next node = do
Next node −Max OpsNext node

9 while Number of non zero elements in do
i > 0 do

10 Max Ops←−Maximum operations for every other node(do
i ,Q, sum(Iv))

11 Next node←− Nearest Neighbor Function(do
i , cij, Next node, Max Ops)

12 Add Next node at the end of Tv
13 Add Max OpsNext node at the end of Iv
14 do

Next node = do
Next node −Max OpsNext node

15 end
16 Add Depot at the end of Tv
17 Add 0 at the end of Iv

2.5.1.2 Multiple Vehicles

When |V| > 1, a partition first rebalance second approach is used. For partition-

ing, two strategies have been tried, first partitioning based on geographic locations of

the nodes and second partitioning randomly. During our experiments, it was observed

that, on average partitioning randomly is not only faster but also results in higher qual-

ity solutions for large scale instances. Thus, partitions are created randomly. However,

the partition created in this stage is by no means the final partition, because the overall

solution may get stuck in a local optima. To address this, local search operators INTER

24

Crossover, INTER Node Swapping, INTER Edge Exchange have been proposed, to improve

the quality of the solution by modifying the partitions as needed.

Exactly |V| partitions are made from the set of nodes N , such that for each partition,

the total deficit of bikes equals the total surplus of bikes. While partitioning, a node

∈ N may be split into 2 to up to |V| nodes, each of them being in a separate partition,

however the sum of their absolute imbalance in each partition, must equal their total

original absolute imbalance. This is necessary to satisfy the condition that, total deficit

of bikes equals total surplus of bikes in each partition. Once |V| partitions have been

created, Algorithm 1 is used to create an initial solution for each partition.

2.5.2 Variable Neighborhood Descent (VND)

In VND, the feasibility of the solution is maintained during the subsequent local

search operations, i.e., no capacity constraints are violated. To keep a solution feasible

in the following operations, when an operation is performed on Tv, the corresponding

operation is also performed on Iv and vice versa. This has significant advantages, as it

results in a decrease in the size of the neighborhood of an incumbent solution to a great

extent, taking considerably less time to explore them. Further, a candidate list based on

nearest neighbors is used to rank the edges in a tour. Only operations that result in a

tour whose highest edge rank is less than or equal to the highest edge rank of the current

tour are allowed. This prevents exploration of unwanted regions in a neighborhood and

subsequently reduces exploration time, making the operation extremely granular (Toth

and Vigo (2003)). In total, seven such granular local search operators have been devel-

oped and used successively inside Variable Neighborhood Descent (VND). Operations

which have an INTRA or an INTER prefix signifies that the operation takes place inside

a solution of a single vehicle or the operation takes place between solutions of two vehi-

cles respectively. Further a K-OPT Operation means that K variables are altered from their

present state, in this case K edges are changed. The higher the value of K, the more is

25

the likely improvement, but it comes at the cost of computing time. For a detailed un-

derstanding and analysis of K-OPT Operations the readers are referred to Helsgaun (2000)

and Helsgaun (2009).

2.5.2.1 Local Search Operators for Single Vehicle

1. INTRA Delete-Reinsert: In this case, one node is deleted from a location and in-

serted in another location in Tv while maintaining feasibility of the solution. At

each iteration, starting from the left (or beginning) of Tv, each node (other than the

depot) is inspected to determine if it can be deleted and reinserted either ahead or

behind its current location in Tv. If a valid location(s) is (are) found that reduces the

cost of Tv, then the (best) operation is made. An iteration is completed on reach-

ing the penultimate location in Tv. This procedure is continued until no further

improvement is possible.

2. INTRA Node Swapping: Two 4-OPT neighborhoods based on Intra Node Swap-

ping have been developed. Let k & l be locations of two nodes in Tv, such that

k ̸= l, k < l, k ̸= 1 & l ̸= |Tv|. If Ivk = Ivl and Tvk ̸= Tvl , then the two locations k

and l can be swapped to obtain a new feasible tour. If the swapping results in a tour

with a lower cost, the swapping is confirmed. At each iteration, each location (k) of

Tv is inspected for a possible swap. If a valid swap(s) is(are) found that reduces the

current cost of Tv, the (best) swap is made. An iteration is completed on reaching

the penultimate location in Tv. This procedure is continued until no further im-

provement is possible. Another variation of the above procedure is, let k and l be

locations of two nodes in Tv, such that k ̸= l, k < l, k ̸= 1 and l ̸= |Tv|. If Ivk ̸= Ivl

and Tvk ̸= Tvl , and swapping the two nodes at k and l results in a new feasible tour

with a lower cost, the swapping is confirmed. Everything else is exactly same as the

above procedure.

26

3. INTRA Edge Exchange: Let us consider four edges ek, el, em, en, connecting nodes

at location k, l, m, n to nodes at location k + 1, l + 1, m + 1, n + 1 in Tv respectively,

such that k < l < m < n. If the flow of bikes (= number of bikes carried by the

rebalancing vehicle) on edges ek and el and that on edges em & en are equal, the tour

segment (k + 1) → l can be swapped with the tour segment (m + 1) → n without

violating any capacity constraints. If such a operation results in a tour with a lower

cost than the current one, that operation is confirmed. At each iteration, a step (

= l − k − 1) is fixed and all possible values of m and n are checked for possible

exchanges. If no improvement is possible for the current value of step, its value is

incremented by 1. The value of step is initialized with 1 and can at most be increased

to |Tv| − 3, otherwise there will be overlapping of the tour segments. On reaching

this value of step, the operation is terminated.

4. INTRA Adjust Instructions: In this operation, number of edges broken, which is

variable equals number of edges inserted. The number of edges broken or inserted,

can be represented as 2n, where n ∈ Z+. This operation comprises of nodes, that

are visited multiple times in the current tour. The objective of this neighborhood is

to drive the loading-unloading instructions, at viable locations in the current tour,

of such nodes towards 0. If this can be achieved for one or more locations, the

corresponding locations can be removed from the tour. This is because, the instances

(used in this chapter) are metric, and removing nodes at locations in the current

tour, for which the instruction is 0, reduces the cost of the tour without making it

infeasible. Let a node be present at the kth and lth, k < l locations in Tv. If |Ivk | ≤

|Ivl |, Ivk is driven towards 0 by transferring instructions between Ivk and Ivl , while

maintaining feasibility of the flow of bikes in the tour segment k −→ l and vice

versa. This procedure is executed for all possible combinations of k and l for each

node with multiple visits in Tv. This operation also serves a secondary purpose.

27

Instructions at some locations in the current tour are altered, which might create

new operations for other local search operators described earlier.

2.5.2.2 Local Search Operators for Multiple Vehicles

1. INTER Crossover: This is a 2-OPT operation in which part of the tour of a vehicle is

swapped with part of the tour of another vehicle while maintaining feasibility of the

solution. At each iteration, starting from the left (or beginning) of Tv1 (tour of first

vehicle), flow of bikes on each edge is inspected to determine if it can be swapped

with an edge on Tv2 (tour of another vehicle) with exactly same flow of bikes. If

a valid edge(s) is (are) found that reduces the current make-span, then the (best)

operation is made. An iteration is completed on reaching the penultimate location

in Tv1. This procedure is continued until no further improvement is possible.

2. INTER Node Swapping: Let k and l be location of two nodes in Tv1 and Tv2 respec-

tively. If Iv1k = Iv2l and Tv1k ̸= Tv2l , then the two locations k and l can be swapped

without violating any capacity constraints. If the swapping results in a decrease in

the current make-span, the swapping is confirmed. At each iteration, each location

(k) of Tv1 is inspected for a possible swap. If a valid swap(s) is(are) found that re-

duces the current cost of the tour, the (best) swap is made. An iteration is completed

on reaching the penultimate location in Tv1. This procedure is continued until no

further improvement is possible.

3. INTER Edge Exchange: Let us consider four edges ek, el, em, en, connecting nodes at

location k, l, m, n to nodes at location k + 1, l + 1, m + 1, n + 1 in Tv1 and Tv2 respec-

tively, such that k < l and m < n. If the flow of bikes (= number of bikes carried by

the rebalancing vehicle) on edges ek and el and that on edges em and en are equal, the

tour segment (k + 1)→ l in Tv1 can be swapped with the tour segment (m+ 1)→ n

in Tv2 without violating any capacity constraints. If such a operation results in a

28

decrease of the make-span, that operation is confirmed. At each iteration, a step (

= l − k − 1) is fixed and all possible values of m and n are checked for possible

exchanges. If no improvement is possible for the current value of step, its value

is incremented by 1. The value of step is initialized with 1 and can at most be in-

creased to length of the current tour - 5, otherwise there will be overlapping of the

tour segments. On reaching this value of step, the procedure is terminated.

Algorithm 2 is the pseudo-code of VND, used in NLNS+VND. In VND, local search

operations (described in the above sub-sections) are done sequentially in an iterative man-

ner on an incumbent solution, until no further improvement is possible. The order in

which the operations is carried out is a crucial factor for the improvement to be substan-

tial. In VND, it is based on the computational complexity and the execution time of an

individual operation. The order used in VND is as follows:

• INTRA Adjust Instructions (Operation1)

• INTRA Delete-Reinsert (Operation2)

• INTRA Node Swap (Operation3)

• INTRA Edge Exchange (Operation4)

• INTER Crossover (Operation5)

• INTER Node Swap (Operation6)

• INTER Edge Exchange (Operation7)

2.5.3 Large Neighborhood Search (LNS)

With the decrease in the size of the neighborhood used in VND, finding high-quality

solutions becomes extremely challenging. To overcome this, VND is hybridized with

29

Algorithm 2: Variable Neighborhood Descent
Data: T , I , di,Q, cij, τ̄
Result: (T , I)

1 STOP←− FALSE
2 while STOP = FALSE do
3 for v← 1 to |V| do
4 while Cost(Tv) ̸= Cost(T previous

v) do
5 for io ← 1 to 4 do
6 (T̄v, Īv)←− Operationio(Tv, Iv, di,Q, cij)

7 if Cost(T̄v) < Cost(Tv) then
8 Tv ←− T̄v
9 Iv ←− Īv

10 end
11 end
12 end
13 STOP←− TRUE
14 end
15 if |V| > 1 then
16 while Makespan(T) ̸= Makespan(T previous) do
17 for io ← 5 to 7 do
18 (T̄ , Ī)←− Operationio(T , I , di,Q, cij, τ̄)

19 if Cost(T̄) < Cost(T) then
20 T ←− T̄
21 I ←− Ī
22 end
23 end
24 end
25 if Makespan(T) ̸= Makespan(T previous) then
26 STOP←− FALSE
27 end
28 end
29 end

30

Large Neighborhood Search (LNS). Multiple large neighborhoods are explored to find lo-

cal optimas that, either are clustered together or are present in valleys far away from each

other. Further, these large neighborhoods are nested together to increase the effectiveness

of LNS. The perturbation and repairing operators that comprise LNS are described in the

subsequent sections. They are only applicable for single vehicles. In case the fleet com-

prises of multiple vehicles, it is applied to each partition corresponding to each vehicle.

Thus in Algorithms 3, 4 and 5, when |V| > 1, di represent the imbalance of the nodes for

the partition, where the corresponding vehicle is performing the rebalancing.

2.5.3.1 Repairing Operators

The repairing operator proposed in this section is capable of repairing a partial or an

infeasible solution of a single vehicle. Algorithm 3 is the pseudo-code of the repairing

operator. It is based on the greedy construction heuristic described in Section 2.5.1. As,

three different functions (Nearest Neighbor 1,2 and 3 described in Section 2.5.1.1) can

be used as the nearest neighbor function (line 19), often three distinct solutions can be

constructed from an initial partial solution. This feature comes in handy while repairing

an infeasible solution from a perturbation (Section 2.5.3.2) on a feasible solution.

2.5.3.2 Perturbation Operators

Perturbation operators used in NLNS+VND are greatly influenced by Chained Lin-

Kernighan used for solving large-scale Traveling Salesman Problems (Applegate et al.

(2003)). However, a major difference of the two methods is that in Chained Lin-Kernighan

selected edges are destroyed whereas in the proposed perturbation operators selected lo-

cations in a tour are destroyed. Locations in a tour are ranked for the purpose of pertur-

bation.

Rank of location k =
Rank of Edgek−1,k + Rank of Edgek,k+1

2
, ∀k ∈ [2, length of tour− 1]

31

Algorithm 3: Repair Tour
Data: Tv, di,Q, cij, Nearest Neighbor Function
Result: (Tv, Iv)

1 if Tv[1] is not Depot then
2 Depot is added at the beginning of Tv
3 end
4 Iv ←− [0]
5 do

i ←− di
6 k←− 2
7 while k ≤ |Tv| do
8 Max Ops←−Maximum operations for every other node(do

i ,Q, sum(Iv))
9 if Max OpsTv[k] = 0 then

10 Delete node at location k of Tv
11 else
12 Add Max OpsTv[k] at the end of Iv

13 do
Tv[k] ←− do

Tv[k] −Max OpsTv[k]
14 k←− k + 1
15 end
16 end
17 while Number of non zero elements in do

i > 0 do
18 Max Ops←−Maximum operations for every other node(do

i ,Q, sum(Iv))
19 Next node←− Nearest Neighbor Function(do

i , cij, Next node, Max Ops)
20 Add Next node at the end of Tv
21 Add Max OpsNext node at the end of Iv
22 do

Next node = do
Next node −Max OpsNext node

23 end
24 Add Depot at the end of Tv
25 Add 0 at the end of Iv

32

and

Average Rank of a Tour =
∑k∈[2,length of tour−1] Rank of location k

length of tour− 2

In the upcoming perturbation operators, two functions Sorted Location Rank List and

Reverse Sorted Location Rank List are used extensively. Sorted Location Rank List takes a tour

and a rank list as its inputs and computes the rank of all the locations (except for the first

and for the last) in the tour. It then sorts the locations in the tour in a descending order of

their respective ranks. The sorted list and the number of locations whose rank is above

the average rank of the tour is returned. Reverse Sorted Location Rank List is similar to

Sorted Location Rank List, except that the locations in the tour are sorted in an ascending

order of their respective ranks. The sorted list and the number of locations whose rank is

less than or equal to the average rank of the tour is returned.

2.5.3.2.1 Perturbation Operators 1 and 2 Perturbation operators 1 and 2 are comple-

ments of each other. In Perturbation Operator 1, local optimas in valleys clustered to-

gether, are explored systematically by destroying locations in a tour with undesirable

configurations, followed by repairing of the tour and VND. If the cost of the new tour

is lower than that of the current tour, the new tour becomes the current tour, otherwise

the value of perturbation is incremented. The process continues until the value of pertur-

bation equals that of maximum perturbation. Similarly, in Perturbation operator 2, local

optimas in valleys far away from each other, are explored systematically by destroying

locations in a tour with undesirable configurations, followed by repairing of the tour and

VND. If the cost of the new tour is lower than that of the current tour, the new tour be-

comes the current tour, otherwise the value of perturbation is incremented. The process

continues until the value of perturbation equals that of maximum perturbation.

With increase in |N |, execution time of VND and the maximum perturbation increases

significantly. Thus, to keep the exploration time of these large neighborhoods reasonable,

without hampering the quality of the solutions found, number of perturbations is lim-

33

ited to only
15
|N |% of total perturbations possible. Further, the value of perturbation is

varied between its minimum and maximum values simultaneously. This is based on the

observation that, perturbation is most effective when it is close to its extreme values.

Algorithm 4 is the pseudo-code for Perturbation Operator 1. The pseudo-code for

Perturbation Operator 2 is similar to Algorithm 4, except Sorted Location Rank List and

Number of Locations above Average Rank are replaced by Reverse Sorted Location Rank List

and Number of Locations below Average Rank respectively.

Algorithm 4: Perturbation Operator 1
Data: Tv, Iv, di,Q, cij,Repairing Operator
Result: (Tv, Iv)

1 Location Rank List,Number of Locations above Average Rank = Sorted Location
Rank List(Tv,Rank List)

2 Perturbation←− 1

3 while Perturbation ≤ Number of Locations above Average Rank× 15
|N | do

4 if Perturbation is Odd then

5 Locations to Destroy←− Location Rank List
[

1to
Perturbation+1

2

]
6 else
7 Locations to Destroy←− Location Rank

List
[

1toNumber of Locations above Average Rank + 1− Perturbation
2

]
8 end
9 T̄v ←− Delete Nodes at locations [Locations to Destroy] of Tv

10 (T̄v, Īv)←− Repair Tour(T̄v, di,Q, cij,Repairing Operator)
11 (T̄v, Īv)←− VND(T̄v, Īv, di,Q, cij)
12 if Cost(T̄v) < Cost(Tv) then
13 Tv ←− T̄v
14 Iv ←− Īv
15 Location Rank List,Number of Locations above Average Rank = Sorted

Location Rank List(Tv,Rank List)
16 Perturbation←− 1
17 else
18 Perturbation←− Perturbation+1
19 end
20 end

34

2.5.3.2.2 Perturbation Operators 3 and 4 As with Perturbation Operators 1 and 2, Per-

turbation Operators 3 and 4 are also complements of each other. In Perturbation Operator

3, node(s) on the right of a location in the tour is (are) destroyed, followed by repairing of

the tour and VND. If the cost of the new tour is lower than that of the current tour, the new

tour becomes the current tour, otherwise the value of perturbation is incremented. The

process continues until the value of perturbation equals that of maximum perturbation.

Similarly, in Perturbation Operator 4, node(s) on the left of a location in the tour is (are)

destroyed, followed by repairing of the tour and VND. If the cost of the new tour is lower

than that of the current tour, the new tour becomes the current tour, otherwise the value of

perturbation is incremented. The process continues until the value of perturbation equals

that of maximum perturbation. The locations chosen in these large neighborhoods are

locations with rank greater than the average rank of the tour.

Algorithm 5 is the pseudo-code for Perturbation Operator 3. Pseudo-code for Pertur-

bation Operator 4 is similar to Algorithm 5, except > in lines 5 and 23 and Delete nodes in

Tv right of (Location to Destroy[Perturbation]) in line 13 is replaced by < and Delete nodes in

Tv left of (Location to Destroy[Perturbation]) respectively.

2.5.4 NLNS+VND

Algorithm 6 is the pseudo-code of NLNS+VND. The initial solution is constructed

using Algorithm 1 (line 2). Repairing Operatorjo in line 9 in Algorithm 6, denotes that

Nearest Neighbor jo() is used in Algorithm 3 for repairing the perturbed solution. T −12
v is

the 12th previous tour after perturbation.

2.6 Recommended Solution Strategies

Instances of SCRP can be classified into two categories:

1. Instances with zero imbalance at the Depot, i.e., d1 = 0,

35

Algorithm 5: Perturbation Operator 3
Data: Tv, Iv, di,Q, cij,Repairing Operator
Result: (Tv, Iv)

1 Location Rank List,Number of Locations above Average Rank = Sorted Location
Rank List(Tv,Rank List)

2 Location Rank List←− Location Rank List[1 to Number of Locations above
Average Rank]

3 k←− 2
4 while k ≤ |Location Rank List|) do
5 if Location Rank List[k] > Location Rank List[k− 1] then
6 delete at(Location Rank List,k)
7 else
8 k←− k + 1
9 end

10 end
11 Perturbation←− 1
12 while Perturbation ≤ |Location Rank List| do
13 T̄v ←− Delete Nodes in Tv right of (Location to Destroy[Perturbation])
14 (T̄v, Īv)←− Repair Tour(T̄v, di,Q, cij,Repairing Operator)
15 (T̄v, Īv)←− VND(T̄v, Īv, di,Q, cij)
16 if Cost(T̄v) < Cost(Tv) then
17 Tv ←− T̄v
18 Iv ←− Īv
19 Location Rank List,Number of Locations above Average Rank = Sorted

Location Rank List(Tv,Rank List)
20 Location Rank List←− Location Rank List[1 to Number of Locations above

Average Rank]
21 k←− 2
22 while k ≤ |Location Rank List| do
23 if Location Rank List[k] > Location Rank List[k− 1] then
24 delete at(Location Rank List,k)
25 else
26 k←− k + 1
27 end
28 end
29 Perturbation←− 1
30 else
31 Perturbation←− Perturbation+1
32 end
33 end

36

Algorithm 6: Nested Large Neighborhood Search + Variable Neighborhood Descent
- NLNS+VND

Data: di,Q, cij, τ̄
Result: (T , I)

1 for v← 1 to |V| do
2 (Tv, Iv)←− Greedy Construction Heuristic(di,Q, cij,Nearest Neighbor 2)
3 end
4 STOP←− FALSE
5 while STOP = FALSE do
6 for v← 1 to |V| do
7 for io ← 1 to 4 do
8 for jo ← 1 to 3 do
9 (T̄v, Īv)←− Perturbation Operator io(Tv, Iv, di,Q, cij,Repairing

Operator jo)
10 if Cost(T̄v) < Cost(Tv) then
11 Tv ←− T̄v
12 Iv ←− Īv
13 end
14 if Cost(T̄v) = Cost(T −12

v) then
15 STOP←− TRUE
16 break
17 end
18 end
19 if STOP = TRUE then
20 break
21 end
22 end
23 end
24 if |V| > 1 then
25 (T̄ , Ī)←− VND(T , I , di,Q, cij, τ̄)
26 if Makespan(T̄) < Make-span(T) then
27 T ←− T̄
28 I ←− Ī
29 STOP←− FALSE
30 end
31 end
32 end

37

2. Instances with non-zero imbalance at the Depot, i.e., d1 ̸= 0,

The proposed MILP and NLNS+VND can only handle instances with zero imbalance

at the depot. In this section, it is shown how an instance with non-zero imbalance at the

depot can be converted into an instance with zero imbalance at the depot, so that the

proposed methodology becomes applicable.

2.6.1 Instances with Zero Imbalance at the Depot

The recommended method is using NLNS+VND to solve the instance on the original

network. Currently, the proposed MILP is computationally intractable. However, if using

some techniques the MILP can be made computationally tractable, it can be used to solve

the instance in the following way:

1. Decompose the original network of the instance into its decomposed network

2. Solve the MILP on the decomposed network

3. Convert the solution found by the MILP on the decomposed network to a solution

on the original network

2.6.2 Instances with Non-zero Imbalance at the Depot

For instances, where the depot has a non-zero imbalance, i.e., d1 ̸= 0, a pseudo node

is created in the network. The modified network has |N + 1| nodes, |N + 1| being the

38

index of the pseudo node created. In the modified network,

d̃1 = 0 (2.23)

d̃|N+1| = d1 (2.24)

d̃i = di, ∀i ∈ N \ {1} (2.25)

c̃ij = cij, ∀i ∈ {1, ..., |N + 1|}, j ∈ N (2.26)

c̃i|N+1| = ci1, ∀i ∈ {1, ..., |N + 1|} (2.27)

c̃|N+1|i = c1i, ∀i ∈ {1, ..., |N + 1|} (2.28)

For a feasible solution on the modified network, all |N + 1| in the tour must be re-

placed by 1 to obtain a feasible solution on the original network. The recommended

method in this scenario is the following:

1. When NLNS+VND is used to solve the SCRP:

1. Convert the original network of the instance into its modified original network,

by adding a pseudo node and making the imbalance of the depot equal to zero

as mentioned above.

2. Solve SCRP on the modified original network using NLNS+VND

3. Change index of the pseudo node in the solution obtained by NLNS+VND to

1 so that it becomes a feasible solution for the original network.

2. When MILP is used to formulate and solve the SCRP:

1. Convert the original network of the instance into its modified original network,

by adding a pseudo node and making the imbalance of the depot equal to zero

as mentioned above.

2. Decompose the modified original network of the instance into its decomposed

network

39

3. Solve the MILP on the decomposed network

4. Convert the solution obtained by the MILP on the decomposed network to a

solution on the modified original network

5. Change index of the pseudo node in the solution for the modified original

network to 1 so that it is a feasible solution for the original network.

2.7 Case Study 1: 1-PDTSP Instances

The purpose of Case Study 1 is to compare the performance of NLNS+VND with ex-

act algorithms from Erdoan et al. (2015) and Tabu Search algorithms from Chemla et al.

(2013a).

The instances are those used in Chemla et al. (2013a) and Erdoan et al. (2015) and

adapted from the 1-PDTSP instances introduced in Hernández-Pérez and Salazar-González

(2004). The instances are available at https://github.com/aritrasep/BSSLib.jl. Computa-

tional experiments are carried out on instances with α = {1, 3}, |N | = {20, 30, 40, 50, 60},

Q = {10, 15, 20, 25, 30, 35, 40, 45, 1000} and |N | = 100, Q = {10, 30, 45, 1000}. Further,

each of these configurations have 10 independent instances, resulting in a total of 980 in-

stances. For each instance, we compute di = Original Imbalance× α, ∀i ∈ N and cij as

the euclidean distance between the nodes i and j, ∀i, j ∈ N .

For comparing NLNS+VND with Exact (Erdoan et al. (2015) as well as Tabu Search (

Chemla et al. (2013a)) Algorithms, the test cases are divided into 3 sets. α ∈ {1, 3} for all

the instances in all 3 sets.

The best known lower bound reported in the literature as mentioned in Table 2.5, is

the maximum of the lower bounds reported by Erdoan et al. (2015) and Chemla et al.

(2013a) for each instance. Negative values in column Gap under PEA in Table 2.6 denotes

the added value of preemption.

Our computational experiments are carried out on a workstation powered by an Intel

Core i7-4790 CPU @ 3.6 GHz with a total RAM of 16 GB running an Ubuntu 16.04 64 bit

40

https://github.com/aritrasep/BSSLib.jl

operating system. The performance of Iridis 4 Computing Cluster and Intel i7-4790 is

quite similar, so the computational times for the Exact Algorithms are by itself standard-

ized. Chemla et al. (2013a) on the other hand, ran experiments a workstation powered

by an AMD Athlon 64 X2 Dual Core 5600+ processor. To compare the runtime perfor-

mance of the Tabu Search algorithms proposed in Chemla et al. (2013a) and NLNS+VND,

an approximation factor is estimated based on the single thread rating values reported in

http://www.cpubenchmark.net/compare.php?cmp[]=86&cmp[]=2226. From the above

information, it can be concluded that, a workstation powered by an AMD Athlon 5600+

processor is approximately 2.705325444 times slower than a workstation powered by an

Intel i7-4790 CPU. Thus, computational times of the Tabu Search Algorithms (TS1 and

TS2), are standardized by dividing their reported computational times by 2.705325444.

Table 2.6 summarizes our experimental results for 1-PDTSP instances. The results

(Gap , Best Gap, Avg Gap and Time) are the average of all the combination ofN , Q and α

for each set. Corresponding breakdowns for each set is provided in Figure 2.12. In Figure

2.12, the scale of the y-axis for Time (seconds), for all 3 sets are in log10 scale. Detailed

experimental results for this case study is available from the authors. In our experiments,

NLNS+VND was able to find new solutions for 59 out of 148 instances, for which the

optimal solution is not known.

From Table 2.6 it is evident that:

• PEA outperforms NLNS+VND in terms of finding higher quality solutions for in-

stances with |N | ≤ 60. One of the reason being, PEA allows preemption, whereas

NLNS+VND does not.

• NLNS+VND is highly competitive with NPEA is terms of quality of solutions found.

• NLNS+VND outperforms TS1 for all instances.

• NLNS+VND is more effective than TS2, for instances with |N | > 60.

41

http://www.cpubenchmark.net/compare.php?cmp[]=86&cmp[]=2226

• NLNS+VND is the most efficient of all the five algorithms, as on average it has the

lowest runtime.

• On average, NLNS+VND is 300, 500, 11 and 66 times faster than PEA, NPEA, TS1

and TS2 respectively.

Other important information not evident from Table 2.6 but evident from Figure 2.12

are:

• NLNS+VND is more effective than the algorithms presented in the literature for

realistic instances,i.e., instances with |N | ≥ 50 and Q ≤ 20

• NLNS+VND is 3 orders of magnitude faster than both PEA and NPEA, for instances

with either α = 1 or Q ≥ 30.

• NLNS+VND is 2 orders of magnitude faster than both TS1 and TS2, for instances

with α = 1 or Q ≥ 30 or |N| = {40, 60}

2.8 Case Study 2: Share-A-Bull (SABB) FFBS

The University of South Florida’s Tampa campus covers 1,700 acres and houses more

than 320 buildings. Walking from one building to another during the short breaks be-

tween classes is challenging, owing to weather conditions and the heavy weight of text-

books. An annual Tampa campus transportation and parking survey shows that those

who drive to campus make, on average, one across-campus trip per day (between build-

ings or to lunch). Given that there are more than 38,000 students and 1,700 faculties

and staffs on the Tampa campus, across-campus driving trips can lead to significant fuel

consumption and greenhouse gas (GHG) emissions. Thus, USF collaborated with So-

cial Bicycles (SoBi) and developed the Share-A-Bull FFBS program (SABB). Phase I of the

program was launched in September 2015 with 100 bicycles. With Phases II and III in

next few years, the program will be expanded to 300 bicycles and cover both the Tampa

42

campus and student housing in the vicinity of the campus. The program is expected to

be integrated with parking management and other multi-modal transportation initiatives

on the campus. SABB provides an excellent case study for our bike rebalancing research.

One of the objectives of this case study is to determine whether SCRP with single

and multiple vehicles is feasible for SABB. Another important objective is to determine

if NLNS+VND is capable of dealing with increase in complexity of SCRP for FFBS, i.e.,

when |N | ≥ 100, Q ≤ 10 and |V| > 1.

Table 2.7 summarizes the experimental results for five actual rebalancing operations

that took place in SABB FFBS. Total Time in Table 2.7 is the summation of the Computing

and the Rebalancing Times. µ and σ in Table 2.7 are the mean and standard deviation

of the respective variable. From Table 2.7, it is evident that even for a small scale FFBS,

SCRP can be computationally challenging. Algorithms proposed in Chemla et al. (2013a),

Erdoan et al. (2015) and Alvarez-Valdes et al. (2016) are not capable for handling the cor-

responding SCRPs except for the first instance with |N | = 43. For each instance, ten

trials of NLNS+VND (with Nearest Neighbor 2() as the initial solution creator) are taken,

with a fleet of two vehicles each with a capacity Q of five. The average speed of the re-

balancing vehicles was varied between {10, 15} miles per hour, and the average loading

unloading time per bike (τ̄) was varied between {30, 60} seconds. Each of the these rebal-

ancing operations were completed in less than two hours by a fleet of two vehicles each

with a capacity Q of five in real life. This also shows that the accuracy of NLNS+VND in

computing the makespan is also very high.

Originally, there were 147 nodes (or ordinary bike racks) with a total capacity to hold

1688 bikes, on the USF Tampa campus. However, an additional 10 nodes (SoBi Hubs)

were added at important locations on the USF Tampa campus, to increase user satisfac-

tion. On top of this 157 (original) nodes present in the USF Tampa campus, an additional

293 (artificial) nodes were created at realistic locations on the USF Tampa campus, to

simulate parking of bikes outside of SoBi Hubs and ordinary bike racks. The capacities of

43

these artificial nodes were generated from a normal distribution whose mean and stan-

dard deviation equals the mean and standard deviation of the capacities of the original

157 nodes. Campus recreation center is the Depot of SABB. Test cases are designed to

simulate Phase I, II and III of the Share-A-Bull program, i.e., for 100, 200 and 300 bikes in

the network respectively. For each Phase, the maximum |N | = min{2× |B|, |B|+ 157}.

Thus for 100, 200 and 300 bikes the maximum |N | are 200, 357 and 457 nodes respectively.

For configurations with |N | ≤ 157, |N| − 1 nodes were selected randomly from the

set of 156 original nodes (excluding the Depot). Otherwise all the original 156 nodes (

excluding the depot) were selected, and the remaining |N | − 157 nodes, were selected

randomly from the 293 artificial nodes. The distance matrix (cij) was computed from an

Open Street Map of the USF, Tampa campus. Loading-unloading operations (di) at each

node was randomly assigned such that the following conditions are satisfied:

d1 = 0 (2.29)

di ̸= 0, ∀i ∈ N \ {1} (2.30)

|di| ≤ Number of Bikes Node i can hold, ∀i ∈ N \ {1} (2.31)

∑
i∈N

di = 0 (2.32)

∑
i∈N
|di| = 2× |B| (2.33)

In total 9 such independent instances were created. These instances are available at

https://github.com/aritrasep/BSSLib.jl.

Let us denote the make-span of a fleet of V rebalancing vehicles beM|V|. Then we can

approximate

M|V| ≈
Traveling Time if fleet consist of 1 vehicle + Number of Operations× τ

|V|

44

https://github.com/aritrasep/BSSLib.jl

Thus for a fixed |V| and τ,M|V| will be close to its maximum value, when the Travel-

ing Time if fleet consist of 1 vehicle and Number of Operations is maximum or pretty close to

their maximum values. From Equation 2.33, one can see that, the total number of (load-

ing and unloading) operations = 2× |B|, which is the maximum possible operation for a

fixed |B|, i.e, pickup and drop off of every bike in the system. Further, Equation 2.30 en-

sures that there is at least an unit (positive or negative) imbalance is associated with each

node (other than the depot) in the network. This ensures that all nodes in the network is

visited at least once, by one or more of the rebalancing vehicles, if not more depending

on their respective imbalance. This ensures, that the Traveling Time is also pushed to its

maximum value. Thus, the test cases generated simulate extreme scenarios, so that the

performance of NLNS+VND and feasibility of SCRP for SABB can be tested in the worst

possible scenario.

Given, capacity of the rebalancing vehicle Q ∈ {5, 10}, average speed of the re-

balancing vehicle ∈ {10, 15} miles per hour, and average loading unloading time per

bike (τ̄) ∈ {30, 60} seconds, there are a total of 72 different configurations. Ten trials of

NLNS+VND (with Nearest Neighbor 2() as the initial solution creator) are taken for each

configuration. For each configuration, |V| = |N |
100

. The summary of the experimental

results are reported in Table 2.8.

Total Time in Table 2.8 is the summation of the Computing and the Rebalancing Times.

µ and σ in Table 2.8 are the mean and standard deviation of the respective major column.

From Table 2.8, it is evident that SCRP is feasible for SABB, as the Total Time is less than 6

hours (time available per day for computation and rebalancing) for all the configurations

and NLNS+VND is able to compute high quality solutions of SCRP for FFBS in a short

period of CPU Time.

45

2.9 Case Study 3: Divvy SBBS

Divvy is a large scale SBBS system in the city of Chicago with 476 nodes (stations with

a total capacity to hold approximately 7900 bikes), and 4760 bikes. The objectives for con-

ducting this case study are two fold, first, to determine if SCRP with multiple vehicles

is feasible for Divvy and second, to determine if NLNS+VND is capable of dealing with

increase in complexity of SCRP for large scale SBBS, i.e., when |N | > 400, 500 ≤ |B| and

5 ≤ |V|. The test cases are created using the same method used for creating the SABB

general instances as described in Section 2.8. In total 6 such independent test cases were

created. For each test case generated, capacity of the rebalancing vehicle Q ∈ {10, 20},

average speed of the rebalancing vehicle ∈ {40, 50} miles per hour, and average loading

unloading time per bike (τ̄) ∈ {30, 60, 90} seconds, creating a total of 72 different con-

figurations. Five trials of NLNS+VND (with Nearest Neighbor 2() as the initial solution

creator) was taken for each configuration. For each configuration, |V| = |N |
100

. These

instances are available at https://github.com/aritrasep/BSSLib.jl. The summary of the

experimental results are reported in Table 2.9.

Total Time in Table 2.9 is the summation of the Computing and the Rebalancing Times.

µ and σ in Table 2.9 are the mean and standard deviation of the respective major column.

From Table 2.9, it is evident that SCRP is also feasible for Divvy instances, as the Total

Time is less than 7 hours for all configurations and NLNS+VND is able to compute high

quality solutions for SCRP for large scale Bike Sharing Systems in a short period of CPU

Time.

2.10 Final Remarks

In this chapter, a Novel MILP for formulating SCRP in FFBS and SBBS based on spacial

decomposition is reported. The proposed formulation, can not only handle single and

multiple vehicles, but also allows for multiple visits to a node by the same vehicle. The

46

https://github.com/aritrasep/BSSLib.jl

proposed formulation is computationally intractable even for small scale instances owing

to the presence of Big M, used for subtour elimination in the constraints. It makes the

linear programming relaxation of the formulation extremely weak. Another reason for the

computational intractability of the formulation is the significant increase in the number

of decision variables owing to spacial decomposition.

A hybrid nested large neighborhood search with variable neighborhood descent algo-

rithm (NLNS+VND) for solving SCRP both effectively and efficiently for FFBS and SBBS

is also presented. Computational experiments on 1-PDTSP instances, previously used the

literature, demonstrate that NLNS+VND outperforms tabu search and is highly competi-

tive with exact algorithms reported in the literature. The fact that NLNS+VND was able to

find all solutions for 148 instances, with 59 of which did not have optimal solutions from

applying solution algorithms in existing literature show that, it is more robust than the

algorithms previously reported in the literature. Further, NLNS+VND is, on average, 300

times faster than the exact algorithm that allows preemption and 500 times faster than the

exact algorithm does not allow preemption. To the best of our knowledge, NLNS+VND

is the rst to solve SCRP, with instances having nodes greater than or equal to 50 and ve-

hicle capacity less than 30 both effectively and efficiently. Computational experiments on

the new SABB real and general instances (consisting of up to 400 nodes, 300 bikes, and

a eet size of up to 3 vehicles) and Divvy instances (consisting of 450 stations, 3000 bikes,

and a eet size of up to 30 vehicles), demonstrate that NLNS+VND is able to deal with the

increase in scale of SCRP for both FFBS and SBBS. It also shows that SCRP is feasible for

both SABB program at USF, Tampa and Divvy SBBS at Chicago.

In future research, we consider strengthening the linear programming relaxation of

our proposed formulation by extending valid inequalities proposed in the literature for

m-TSP, 1-PDTSP and Q-TSP to our proposed formulation. To deal with increase in the

number of variables, strategies based on column generation will be explored. Other in-

teresting strategies can be using the high quality solution provided by NLNS+VND as a

47

starting solution (upper bound) for MIP solvers once some mechanism for strengthening

the formulation has been implemented. We also study partial rebalancing in FFBS and

SBBS with single and multiple vehicles.

48

Table 2.2: Notations Used in the Remainder of the Chapter

Notation Description Network MILP HeuristicOriginal Decomposed

Parameters

G = (N , E) Graph of the original network.

✓ × ✓
N Set of nodes in the original network, including the de-

pot. The depot is denoted by 1, where the tour of the
rebalancing vehicles start and end. Rest of the nodes
are numbered from 2, 3, ..., |N |.

E Edges in the original network.
cij Time taken to travel from node i to node j, ∀(i, j) ∈ E

in seconds.
di Imbalance at node i, ∀i ∈ N . di > 0 when node i is

a pickup node or has a surplus of bikes, di < 0 when
node i is a delivery node or has a deficit of bikes and
0 when node i is the depot.

Go = (No, Eo) Graph of the decomposed network.

× ✓ ×
No Set of nodes in the decomposed network, including

the depot. The depot is denoted by 1, where the tour
of the rebalancing vehicles start and end. Rest of the
nodes are numbered from 2, 3, ..., |No|.

Eo Edges in the decomposed network.
c̄ij Time taken to travel from node i to node j, ∀(i, j) ∈ Eo

in seconds.
d̄i Imbalance at node i, ∀i ∈ No. d̄i = +1 when node i is

a pickup node or has a surplus of one bike, d̄i = −1
when node i is a delivery node or has a deficit of one
bike and d̄i = 0 when node i is the depot.

τ̄ Average loading unloading time per bike in seconds.
✓V Fleet of homogeneous rebalancing vehicles.

Q Capacity of each vehicle in the fleet of homogeneous
rebalancing vehicles.

Variables

τi Arrival time of a rebalancing vehicle at node i, ∀i ∈
No. × ✓ ×

xij Equals 1, if Edge (i, j) is traversed by a rebalancing
vehicle, otherwise it is 0, ∀(i, j) ∈ Eo.

qij Quantity of bikes carried by a rebalancing vehicle on
Edge (i, j), ∀(i, j) ∈ Eo.

Tv Tour of rebalancing vehicle v, ∀v ∈ V

× ✓
T {Tv, ∀v ∈ V}
Iv Loading unloading instructions of rebalancing vehi-

cle v, ∀v ∈ V .
I {Iv, ∀v ∈ V}

k, l, m, n Indices used for locations inside a Tour (Tv) of a re-
balancing vehicle.

io, jo Iterators used in Algorithms 2, 3 and 6.

49

Table 2.3: Terminology of the Algorithms

Terminology Description
TS1 Tabu search algorithm initialized with solution from greedy heuris-

tic (Chemla et al. (2013a))
TS2 Tabu search algorithm initialized with Eulerian circuit from MILP

relaxation (Chemla et al. (2013a))
RB Reliability branching used for exploring the Branch-and-bound

tree while solving relaxation of the static rebalancing problem (
Chemla et al. (2013a))

DB Degree branching used for exploring the Branch-and-bound tree
while solving relaxation of the static rebalancing problem (Chemla
et al. (2013a))

PEA Exact algorithm that allows preemption (Erdoan et al. (2015))
NPEA Exact algorithm that does not allow preemption (Erdoan et al.

(2015))
NLNS+VND Hybrid nested large neighborhood search with variable neighbor-

hood descent algorithm presented in this chapter

Table 2.4: Number of Trials of each Algorithm

Algorithm Number of Trials
TS1 2
TS2 1 trial each, with RB and DB as branching strategy

NPEA 1
PEA 1

NLNS+VND 10 (each with Nearest Neighbor 2 as initial solution creator)

Table 2.5: Description of Parameters Used in Table 2.6

Type of Measure Algorithms Description Unit
Gap Exact Absolute Gap of Upperbound found by Ex-

act Algorithms from best known Lower-
bound reported in literature.

%

Best Gap Tabu Search and NLNS+VND Absolute Gap of Best Upperbound found by
corresponding Algorithms in all of its trials,
from best known Lowerbound reported in
literature.

%

Avg Gap Tabu Search and NLNS+VND Absolute Gap of Average Upperbound
found by corresponding Algorithms from all
of its trials, from best known Lowerbound
reported,in literature.

%

Time Exact, Tabu Search and NLNS+VND Computation time of corresponding Algo-
rithms standardized to our workstation.

seconds

50

Table 2.6: Summary of Overall Results for 1-PDTSP Instances

Set
Exact Algorithms Tabu Search Algorithms NLNS+VNDPEA NPEA TS1 TS2

Gap Time Gap Time Best Gap Avg Gap Time Best Gap Avg Gap Time Best Gap Avg Gap Time
I -0.075 1047.32 2.691 1847.936 5.601 6.748 174.054 0.382 0.742 1020.411 2.435 3.776 5.003
II -0.041 978.06 2.003 1663.736 - - - - - - 2.47 3.971 3.224
III - - - - 14.786 16.279 296.442 5.21 7.148 1686.578 5.104 6.776 25.469

Table 2.7: Summary of Overall Results for SABB Real Instances

|B| |N | Makespan (Seconds) Computing Time (Seconds) Total Time (Hours)
µ ρ µ ρ µ ρ

42 43 3512 845.13 0.71 0.31 0.98 0.23
44 79 3670.75 845.57 1.37 0.29 1.02 0.23
51 98 4207.5 989.6 2.13 1.05 1.17 0.27
57 96 4358.25 1040.29 4.56 1.99 1.21 0.29
63 118 4842.75 1182.68 6.1 2.62 1.35 0.33

Table 2.8: Summary of Overall Results for SABB General Instances

|B| |N | |V| Q Makespan (Seconds) Computing Time (Seconds) Total Time (Hours)
µ σ µ σ µ σ

100
100

1

5 13519.5 3175.51 32.99 13.24 3.76 0.88
10 12426.62 3121.92 15.17 6.11 3.46 0.87

200 5 16769.1 3427.65 40.21 12.58 4.67 0.95
10 16584.18 3401.45 18.64 9.56 4.61 0.94

200

100

2

5 12774.75 3070.98 22.82 10.4 3.55 0.85
10 11750.3 3114.54 8.29 3.07 3.27 0.87

200 5 15426.42 3394.37 27.58 14.42 4.29 0.94
10 14535.1 3313.93 13.4 7.22 4.04 0.92

300 5 16526.18 3542.88 65.8 37.97 4.61 0.98
10 15562 3263.39 28.25 9.54 4.33 0.91

300

100

3

5 12215.9 3112.13 18.39 6.68 3.4 0.86
10 11346.32 3081.06 5.21 2.04 3.15 0.86

200 5 14842.05 3286.22 17.26 6.94 4.13 0.91
10 13685.98 3205.2 7.24 3.42 3.8 0.89

300 5 14778.64 3306.76 47.64 17.61 4.12 0.92
10 13933.52 3243.78 19.35 8.64 3.88 0.9

400 5 15803.7 3365.43 80.76 44.22 4.41 0.94
10 14832.58 3381.04 38.94 20 4.13 0.94

51

Figure 2.12: Summary of Results for Set I, II and III Respectively

52

Table 2.9: Summary of Overall Results for Divvy SBBS Instances

|B| |N | |V| Q Makespan (Seconds) Computing Time (Seconds) Total Time (Hours)
µ σ µ σ µ σ

500

450

5 10 18009.47 5119.49 37.1 14.2 5.01 1.42
20 17840.97 4999.4 20.87 8.27 4.96 1.39

1000 10 10 16790.53 5104.62 29.29 4.59 4.67 1.42
20 16491.13 5070.54 15.18 2.3 4.59 1.41

1500 15 10 15807.07 5096.04 31.55 3.24 4.4 1.42
20 15970.4 5124.05 17.86 0.75 4.44 1.42

2000 20 10 15768.13 5127.47 40.53 4.1 4.39 1.42
20 15781.7 5163.12 23.15 0.83 4.39 1.43

2500 25 10 15268.4 5093.73 54.41 6.02 4.26 1.41
20 15306.67 5131.3 28.2 0.93 4.26 1.43

3000 30 10 15119.53 5069.09 65.62 5.75 4.22 1.41
20 15136.53 5113.23 34.44 1.23 4.21 1.42

53

3 Analyzing Mobility Patterns and Imbalance of Free Floating Bike Sharing Systems

3.1 Problem Description

Solving the core problem of an established BSS requires the understanding of the mo-

bility patterns of its users. It enables the operator to estimate an approximate target dis-

tribution of bikes for rebalancing as well as gain insights necessary for developing ap-

propriate rebalancing strategies by addressing issues such as whether static rebalancing

is sufficient or dynamic rebalancing is needed, when the different types of rebalancing

should start, and how much time is available for each type of rebalancing. In this chapter,

we demonstrate our proposed methods of understanding mobility patterns and extract-

ing management insights, using the historical trip data of Share-A-Bull BSS (SABB), an

FFBS on the Tampa campus of the University of South Florida (USF). The knowledge and

insights gained using our proposed method can be used by operators of both FFBS and

SBBS to improve their respective service levels.

Existing studies on mobility patterns analysis focus primarily on SBBS by analyzing

historical trip and weather data. Authors take system outputs (rentals and or returns)

as dependent variables and environmental factors, socio-demographic features and cy-

cling infrastructure as independent variables. However, none of these studies, consider

imbalance (difference between returns and rentals) as a dependent variable or interaction

between the independent variables. In this chapter, we demonstrate that by considering

imbalance as a dependent variable and the interaction between independent variables,

more knowledge and insights can be obtained about the mobility patterns of an FFBS,

54

than by using conventional methods like data visualization and generalized linear mod-

els.

To be consistent with other studies in the literature, rentals and returns of a BSS are

referred to as pickups and dropoffs respectively, in the rest of the chapter. To be more spe-

cific, in this chapter, we are trying to determine how the demand (dropoffs and pickups)

and imbalance of an FFBS vary with time and how they are affected by exogenous vari-

ables such as holidays, weather conditions, etc. To accomplish this, we propose a simple

method to decompose continuous variables into binary variables that improves the base

model (Poisson and negative binomial regression models) commonly used in the litera-

ture as well as consider all feasible (second and third order) interactions between binary

variables. The purpose of adding such interactions is to extract additional insights from

the data for operational management purposes. It is obvious that considering interactions

could result in a significant increase in the number of independent variables, sometimes

even significantly larger than the number of observations. This makes it inappropriate to

use (generalized) linear models directly. To address this issue, we first use a regulariza-

tion operator to shrink the variable space and then estimate an appropriate linear model

on the shrunk variable space. Although our case study is an FFBS, our proposed method

can be used for SBBS without any modifications.

The remainder of the chapter is organized as follows. Section 3.2 summarizes and

highlights gaps in the literature. Section 3.3 describes the proposed method. Section 3.4

introduces the case study and presents the experimental results of our proposed methods.

Section discusses how knowledge and operational management insights about the SABB

FFBS can be drawn from the statistical models. We also demonstrates, how some of this

insights can be used for making useful recommendations to the operator of the system.

Finally, Section 3.6 concludes this chapter with some final remarks.

55

3.2 Literature Review

Papers related to analytics of a BSS (primarily SBBS) can be broadly classified into two

categories, based on their objective(s): 1) chapters whose primary objective is to predict

the future demand of the system and 2) chapters whose primary objective is to under-

stand and describe a system(s), so that either its service level can be improved or the

system can be expanded. The most important chapters related to predicting the future

demand of a BSS (or car sharing systems) are Cheu et al. (2006); Kaltenbrunner et al.

(2010); Borgnat et al. (2011); Regue and Recker (2014) and Alvarez-Valdes et al. (2016). It

is interesting to note that, chapters focused on predicting future demand almost always

rely on non-parametric statistical methods, like neural networks (Cheu et al. (2006)), gra-

dient boosted machines (Regue and Recker (2014)), non-homogeneous Poisson process

(Alvarez-Valdes et al. (2016)), etc. Further, recent chapters on predicting demand (Regue

and Recker (2014); Alvarez-Valdes et al. (2016)) also use the outputs of their demand pre-

diction model as inputs to a rebalancing optimization model.

On the other hand, chapters in the second category always use generalized linear and

generalized linear mixed models as their core statistical method. This is because linear

models are easy to interpret compared to non-linear and non-parametric models. Papers

in the second category can be further subdivided into two subcategories: 1) chapters that

try to understand factors affecting the demand of a BSS and 2) chapters that propose

metrics either to compare several BSS among themselves or to measure the performance

of a BSS. In the first subcategory, the most common factors considered in the literature

are:

1. temporal factors (season, month, day of week, holiday and hour of day) - Gebhart

and Noland (2014); Faghih-Imani et al. (2014); Faghih-Imani and Eluru (2016); Wag-

ner et al. (2016)

56

2. meteorological factors (temperature, relative humidity, wind speed, etc) - Gebhart

and Noland (2014); Faghih-Imani et al. (2014); Faghih-Imani and Eluru (2016)

3. socio-demographic factors - Faghih-Imani et al. (2014, 2017b)

4. infrastructure of BSS and other modes of transportation - Faghih-Imani et al. (2014);

Faghih-Imani and Eluru (2016); Faghih-Imani et al. (2017b,a)

5. size of operating area (large, medium or small-scale city) - Caulfield et al. (2017)

6. effect of expansion on demand - Wagner et al. (2016); Zhang et al. (2016)

Contrary to the above mentioned papers, Fishman et al. (2015) studied factors that

affect membership instead of demand of a BSS. In the second subcategory, papers such

as OBrien et al. (2014); de Chardon and Caruso (2015); de Chardon et al. (2017) propose

methods to compare several BSS using daily trip data, whereas de Chardon and Caruso

(2015); de Chardon et al. (2017) propose metrics to measure the quality and performance

of a BSS without using the daily trip data.

To the best of our knowledge, none of the papers in the literature, consider imbalance

as a dependent variable or interactions between independent variables. Thus, this is the

first research on an FFBS, which takes imbalance as a dependent variable and consid-

ers interactions between independent variables in a statistical model. We propose two stage

models to address the increase in the number of independent variables when interactions

between independent variables are considered. Although in this chapter, we are focused on

extracting knowledge and insight, often smart use of interactions between independent

variables can lead to significant improvement in prediction accuracy (or decrease in out

of sample testing error). We also propose a simple method to decompose continuous

variables into binary variables, which significantly improves the negative binomial re-

gression model commonly used in the literature, and has the ability to identify intervals

of a continuous variable that are statistically significant. Further, our proposed method-

57

ology provides an unique opportunity to study an FFBS and make recommendations to

the operator from various vantage points.

3.3 Methodology

In this section, we describe the variables used in this chapter, method of collecting

and cleaning the data, strategy for discretizing continuous variables into binary vari-

ables, method for creating interactions between independent binary variables, and two

stage models for scenarios when number of independent variables outnumbers number

of observations.

3.3.1 Variables

In this chapter, the dependent variables are daily and hourly dropoffs and pickups

as well as hourly imbalance. Hourly imbalance equals the difference of the number of

dropoffs and the number of pickups in that hour. Unlike dropoffs and pickups, we do

not study daily imbalance as its mean and variance is zero and close to zero respectively.

This makes perfect sense, as the daily dropoffs and pickups will be close to each other

unless bikes are added to or removed from the system by the operator. Daily and hourly

dropoffs and pickups are non-negative count variables whereas hourly imbalance is a

variable which can take any value from the set of real numbers.

Independent variables used in this chapter include temporal variables (season, month,

day and hour) and holiday and weather variables (temperature, apparent temperature,

relative humidity, wind speed, cloud cover and dew point). Season, month and day are

nominal variables whereas hour is an ordinal variable. To have correct estimates, we

decompose both nominal and ordinal variables in to binary (or dummy) variables for

each level. Holiday is a binary variable and the six weather variables are continuous.

Tables 3.1, 3.2 and 3.3 provide a more detailed description of the dependent variables,

binary independent variables and continuous independent variables respectively.

58

Table 3.1: Dependent Variables Used in this Chapter

Variable Name Variable Description
Daily Dropoffs Number of dropoffs in that day
Hourly Dropoffs Number of dropoffs in that hour
Daily Pickups Number of pickups in that day
Hourly Pickups Number of pickups in that hour
Imbalance Difference of the number of dropoffs and pickups in that hour

3.3.2 Data Descriptions

We test our proposed methods on the SABB FFBS program at USF, Tampa. Phase I

of the program was launched in August 2015, providing 100 bikes to students, staff and

faculty at no charge if the users limited their cumulative usage time to less than two

hours per day. An hourly fee was imposed for the extra time beyond the daily two hour

free quota. With Phases II and III in the coming years, the program will be expanded to

300 bikes and cover both the Tampa campus and student housing in the vicinity of the

campus. The program is expected to be integrated with parking management and other

multi-modal transportation initiatives on the campus. USF researchers collaborated with

the bike sharing company and developed the program in 2015. Given it is a program oper-

ated and managed internally, USF researchers had full access to the usage data, including

trajectory data, of the program. With built-in GPS and the application developed by So-

cial Bicycles, the trip data (trajectory of bikes) of each usage of the bikes is recorded in the

operation management system. All trips have a unique ID. Further, each trip has a user

ID, bike ID, starting timestamps, starting latitude, starting longitude, ending timestamps,

ending latitude, ending longitude, trip duration (in minutes) and trip distance (in miles).

Thus, the SABB program provided the perfect setting to test our proposed method. The

time frame of this study was from August 28, 2015, the launch date of the program to

March 30, 2017. During this time frame, a total of 189, 082 trips were recorded. How-

ever, many of these trips were noise; hence, they had to be identified and subsequently

59

Table 3.2: Binary Independent Variables Used in this Chapter

Variable Name Variable Description
Spring Season Indicator 1 if Spring, 0 otherwise
Autumn Season Indicator 1 if Autumn, 0 otherwise
Summer Season Indicator 1 if Summer, 0 otherwise
Fall Season Indicator 1 if Fall , 0 otherwise
January Indicator 1 if January, 0 otherwise
February Indicator 1 if February, 0 otherwise
March Indicator 1 if March, 0 otherwise
April Indicator 1 if April, 0 otherwise
May Indicator 1 if May, 0 otherwise
June Indicator 1 if June, 0 otherwise
July Indicator 1 if July, 0 otherwise
August Indicator 1 if August, 0 otherwise
September Indicator 1 if September, 0 otherwise
October Indicator 1 if October, 0 otherwise
November Indicator 1 if November, 0 otherwise
December Indicator 1 if December, 0 otherwise
Monday Indicator 1 if Monday, 0 otherwise
Tuesday Indicator 1 if Tuesday, 0 otherwise
Wednesday Indicator 1 if Wednesday, 0 otherwise
Thursday Indicator 1 if Thursday, 0 otherwise
Friday Indicator 1 if Friday, 0 otherwise
Saturday Indicator 1 if Saturday, 0 otherwise
Sunday Indicator 1 if Sunday, 0 otherwise
Holiday Indicator 1 if Saturday or Sunday or a US Holiday, 0 otherwise
Hour 0 Indicator (00:00) 1 if after 12:00 AM and before 1:00 AM, 0 otherwise
Hour 1 Indicator (01:00) 1 if after 1:00 AM and before 2:00 AM, 0 otherwise
Hour 2 Indicator (02:00) 1 if after 2:00 AM and before 3:00 AM, 0 otherwise
Hour 3 Indicator (03:00) 1 if after 3:00 AM and before 4:00 AM, 0 otherwise
Hour 4 Indicator (04:00) 1 if after 4:00 AM and before 5:00 AM, 0 otherwise
Hour 5 Indicator (05:00) 1 if after 5:00 AM and before 6:00 AM, 0 otherwise
Hour 6 Indicator (06:00) 1 if after 6:00 AM and before 7:00 AM, 0 otherwise
Hour 7 Indicator (07:00) 1 if after 7:00 AM and before 8:00 AM, 0 otherwise
Hour 8 Indicator (08:00) 1 if after 8:00 AM and before 9:00 AM, 0 otherwise
Hour 9 Indicator (09:00) 1 if after 9:00 AM and before 10:00 AM, 0 otherwise
Hour 10 Indicator (10:00) 1 if after 10:00 AM and before 11:00 AM, 0 otherwise
Hour 11 Indicator (11:00) 1 if after 11:00 AM and before 12:00 PM, 0 otherwise
Hour 12 Indicator (12:00) 1 if after 12:00 PM and before 1:00 PM, 0 otherwise
Hour 13 Indicator (13:00) 1 if after 1:00 PM and before 2:00 PM, 0 otherwise
Hour 14 Indicator (14:00) 1 if after 2:00 PM and before 3:00 PM, 0 otherwise
Hour 15 Indicator (15:00) 1 if after 3:00 PM and before 4:00 PM, 0 otherwise
Hour 16 Indicator (16:00) 1 if after 4:00 PM and before 5:00 PM, 0 otherwise
Hour 17 Indicator (17:00) 1 if after 5:00 PM and before 6:00 PM, 0 otherwise
Hour 18 Indicator (18:00) 1 if after 6:00 PM and before 7:00 PM, 0 otherwise
Hour 19 Indicator (19:00) 1 if after 7:00 PM and before 8:00 PM, 0 otherwise
Hour 20 Indicator (20:00) 1 if after 8:00 PM and before 9:00 PM, 0 otherwise
Hour 21 Indicator (21:00) 1 if after 9:00 PM and before 10:00 PM, 0 otherwise
Hour 22 Indicator (22:00) 1 if after 10:00 PM and before 11:00 PM, 0 otherwise
Hour 23 Indicator (23:00) 1 if after 11:00 PM and before 12:00 PM, 0 otherwise

60

Table 3.3: Continuous Independent Variables Used in this Chapter

Variable Name Variable Description
Apparent
Temperature

Numerical value representing apparent ("feels like")
temperature at a given time in degrees Fahrenheit

Cloud Cover Numerical value between 0 and 1 (inclusive) repre-
senting percentage of sky occluded by clouds

Dew Point Numerical value representing dew point at a given
time in degrees Fahrenheit

Relative Hu-
midity

Numerical value between 0 and 1 (inclusive) repre-
senting relative humidity

Temperature Numerical value representing temperature at a given
time in degrees Fahrenheit

Wind Speed Numerical value representing wind speed in miles
per hour

removed before any further analysis could be conducted. Trips with the following prop-

erties were removed:

• if trip duration ≤ 30 seconds, in such case, the user might be checking the bike

without using it.

• if trip duration ≥ 1.5× inter-quantile range of the trip duration + mean of trip du-

ration, in such case, the user might have forgotten to lock the bike after completion

of the trip.

• if trip distance ≤ .000621371 miles or 1 meter, in such case, the bike might be dam-

aged after short usage and the user may not able to complete his/her trip.

• if the trip either started or ended outside the USF, Tampa campus.

• if the trip is owing to a rebalancing operation.

• if the trip was conducted for testing the system.

After removing trips with the above mentioned properties, there was a total of 147, 438

trips. From this cleaned trip data, first daily and hourly dropoffs and pickups were ex-

tracted, followed by hourly imbalance. In the case of dropoffs and pickups, their corre-

61

sponding time was the starting timestamps and the ending timestamps of that particular

trip respectively. From the respective timestamps, the nominal temporal variables Season,

Month, Day and Hour were computed using date and time functions in the Julia standard

library (jul, 2017) and to check whether it was a holiday, the BusinessDays.jl package (bus,

2017) was used. Once the nominal temporal variables were created, they were converted

into binary (or dummy) variables, to prevent erroneous statistical estimation.

Daily and hourly weather data for the USF, Tampa campus from August 28, 2015 to

March 30, 2017 were obtained using the dark sky api (dar, 2017a), which offers historical

weather data for both daily and hourly time-frames. (dar, 2017a) is backed by a wide

range of data sources, which are detailed in (dar, 2017b). Daily and hourly weather data

were then joined with the daily and hourly dropoffs and pickups as well as hourly imbal-

ance data to obtain the final data that was used for the statistical analysis in this chapter.

3.3.3 Decomposing Continuous Independent Variables

Each continuous variable was decomposed into four binary variables, each of which

represents a quantile range. For example, if we have a continuous variable ContVar

whose quantiles are Q1, Q2, Q3, Q4, Q5, we create four binary variables ContVar 1, ..., Con-

tVar 4, such that ContVar 1 = 1 if Q1 ≤ ContVar < Q2, 0 otherwise. Table 3.4 describes the

quantiles of the six continuous variables. Thus when 36.51oF ≤ Temperature < 67.25oF,

Temperature 1 = 1 and Temperature 2 = Temperature 3 = Temperature 4 = 0.

This operation has four major advantages. First, binary variables are easier to in-

terpret. Second, a continuous variable by itself may not be statistically significant but

one of its corresponding binary variables may be. This is in fact true in the case of the

SABB dataset and is demonstrated in Section 5. Third, adding such binary variables in

(quasi-) Poisson and linear regression models may improve their out-of-sample perfor-

mance. This is again true in case of the SABB dataset and is demonstrated in Section 4.

Finally, it is difficult to derive interactions between independent variables if one or more

62

Table 3.4: Quantiles of Continuous Variables

Continuous Variables Quantile
Zeroth First Second Third Fourth

Apparent Temperature 28.11 67.25 75.09 82.495 107.23
Cloud Cover 0.0 0.03 0.1 0.22 1.0

Dew Point 16.55 58.16 66.0 73.08 82.14
Relative Humidity 0.16 0.62 0.79 0.89 1.0

Temperature 35.61 67.25 75.09 80.37 94.99
Wind Speed 0.0 3.87 5.66 7.82 26.55

are continuous. So, adding binary variables corresponding to continuous variables make

interactions involving continuous variables indirectly possible.

3.3.4 Interactions between Binary Independent Variables

Now that we have made sure that there are binary variables corresponding to each

continuous variable, we can proceed to derive interaction among binary variables. In this

chapter, we refer to the product of any two or any three independent binary variables,

as second order and third order interactions respectively. If BinVar 1, BinVar 2, BinVar 3

are three independent primary binary variables, BinVar 1×BinVar 2, BinVar 2×BinVar 3,

BinVar 3× BinVar 1 and BinVar 1× BinVar 2× BinVar 3 are second and third order inter-

actions respectively of the three independent binary variables. Further, by definition all

second and third order interactions are also binary variables.

It is important to note that, some of the above mentioned second and third order

interactions will have zero variance. Such interactions should not be considered. Any

interactions between binary variables for the same original variable will have zero vari-

ance, i.e, the product of any two season indicator variable will have zero variance. The

same holds true for binary/indicator variables corresponding to continuous variables.

Further, to prevent creation of unnecessary interactions, interactions between season and

month, weekends and holiday are not considered. To ease in the variable selection pro-

63

cedure, certain interactions whose variance is below a predetermined threshold may also

be removed. However, we do not employ any such procedure in this chapter.

It is also not very clear a priori up to what order of interactions should be considered

to achieve a desirable performance. One way of determining the highest order of interac-

tions to be considered is via discussions and inputs from the operator, the primary user

of such an analysis. Another approach is by comparing the out of sample testing errors of

models with different orders of interactions used for training them. The order after which

the testing error starts increasing significantly is an indication of overfitting and should

be chosen as the best order of interactions.

3.3.5 Variable Sets Used in this Chapter

In this chapter, Var Set refers to the set of independent variables used for training a

statistical model. Four such sets are considered. The first and second sets consist of only

primary (binary and continuous) variables and primary variables with decomposed

binary variables of the primary continuous variables respectively. The third and fourth

sets consist of all variables in the second set with all feasible second order interactions

and all variables in the second set with all feasible second and third order interactions

respectively.

3.3.6 Baseline Models

To study how pickups or dropoffs vary with time and or are affected by external

events such as holidays or weather conditions, negative binomial regression is commonly

used in the literature (Gebhart and Noland (2014)). Negative binomial regression is more

appropriate than Poisson regression for the SABB dataset, as the variance of both daily

and hourly dropoffs and pickups is significantly larger than their respective means. Neg-

ative binomial regression, like Poisson regression, can also be modeled as a zero-inflated

or a zero-truncated model. However, in this chapter no such modification is required, as

64

we are only interested in the process that generates non-zero count variables (pickups or

dropoffs). To study how hourly imbalance varies with time and or is affected by external

events such as holidays or weather conditions, linear regression is used. This is because,

unlike dropoffs and pickups, imbalance can also assume a negative value.

Unlike linear regression, it is difficult to interpret the coefficients of the independent

variables in a negative binomial regression model directly. For this purpose, two other pa-

rameters are commonly estimated for the independent variables to determine their effects

on the dependent variable. They are known as elastic and marginal effects. Elasticity of an

independent variable provides an estimate of the effect of a 1% change in the independent

variable on the expected frequency of the dependent variable. They provide a measure

of evaluating the relative impact of each independent variable in the model. However in

this chapter we focus on using marginal effects rather than elastic effects owing to the ease

of interpretation of marginal effects over elastic effects. Marginal effects can be more eas-

ily interpreted than elastic effects, particularly for binary variables, which are extensively

present in the models used in this chapter. Unlike elastic effects, marginal effects measure

the effect of one unit change in the independent variable on the dependent variable. For

more details on negative binomial regression models, refer to Washington et al. (2010).

We use the pscl psc (2015) and mfx mfx (2015) packages in R to estimate all the negative

binomial regression models and their respective average marginal effects respectively.

It is interesting to note that, when Var Set 3 and 4 are used, the number of independent

variables outnumbers the number of observations. In such a scenario, estimating the

coefficients of a negative binomial regression using maximum likelihood estimation or

a linear regression using least squares cannot be used. To deal with such scenarios, we

propose two stage models. In the first stage, at most n statistically significant variables are

selected from the set of independent variables using a variable selection method. Once

a set of variables less than the number of observations has been selected, these selected

variables are used to estimate either a negative binomial or a linear regression model.

65

3.3.7 Regularization

In this section we describe two regularization strategies used in this chapter:

1. Least Absolute Shrinkage and Selection Operator (LASSO) Tibshirani (1996)

2. ElasticNet Zou and Hastie (2005)

LASSO was introduced in Tibshirani (1996). LASSO performs both shrinkage and

variable selection over a set of variables to improve the prediction accuracy and inter-

pretability of the model. Despite having some attractive properties and features, LASSO

has some disadvantages that may end up being problematic for this study. For example,

if there are correlated variables, LASSO will arbitrarily select only one variable from a

group of correlated variables.

ElasticNet, in certain instances, may be a better choice for regularization than LASSO,

because of its above mentioned limitations. ElasticNet incorporates both L1 and L2 regu-

larization which makes the coefficients of correlated variables shrink towards each other,

while retaining the feature selection property of LASSO. This often results in selection of

subsets of correlated variables. This property of ElasticNet makes it a competitive choice

for variable selection along with LASSO. For more details on LASSO, ElasticNet and other

regularization strategies refer to James et al. (2013) and Friedman et al. (2009).

We use the glmnet (Friedman et al., 2010) package in R to compute the regularization

paths for both LASSO and ElasticNet for all models in this chapter. The glmnet package

has no implementation of LASSO and ElasticNet corresponding to negative binomial dis-

tribution, so we use the implementation corresponding to Poisson distribution for daily

and hourly dropoffs and pickups. This does not affect the variable selection procedure,

as over-dispersion does not affect the estimates for the conditional mean. This is because,

the estimating equations for the coefficients of the conditional mean are equivalent for

both Poisson and negative binomial regression models. Therefore the point estimates are

66

identical for both Poisson and negative binomial regression models when using either

LASSO or Elastic Net.

Two primary parameters α and λ in glmnet need to be tuned. When α = 1, glmnet

only uses L1 regularization (LASSO) and when 0 < α < 1, glmnet uses a combination

of L1 and L2 regularization (ElasticNet). Thus we vary α from 0.1 to 1.0 with a step size

of 0.1. The parameter λ for both LASSO and ElasticNet is selected using 5-fold cross

validation. All other parameters in glmnet are set to its default values.

3.3.8 Models Used in this Chapter

Three distinct models Model 1, Model 2 and Model 3 are used in this chapter. In case

of daily and hourly dropoffs and pickups, Model 1 refers to the commonly used negative

binomial regression model in the literature. In case of hourly imbalance, Model 1 refers

to the linear regression model. Model 1 is valid only for Var Sets 1 and 2 as for Var Sets 3

and 4 the number of independent variables is greater than the number of observations.

The other two models Model 2 and Model 3 used in this chapter are two stage models. In

the first stage, a regularization strategy is used to select at most n statistically important

variables from the respective variable set. This is then followed by either negative bino-

mial regression for dropoffs and pickups or linear regression for imbalance on the set of

selected variables. The first stage in Model 2 and Model 3 is using LASSO (α = 1) and

ElasticNet (0 < α < 1) as the respective regularization strategy.

3.3.9 Model Selection

Various metrics can be used to measure the quality of a negative binomial regression

model. Two commonly used metrics are ρ2 and out of sample testing error. ρ2 statistic,

also sometimes referred to as the McFadden ρ2 is 1 − LL(β)

LL(0)
where LL(β) is the log-

likelihood at convergence and LL(0) is the initial log-likelihood. The ρ2 statistic for a

negative binomial regression model is always between zero and one. The closer it is to

67

one, the better the model is. Similarly, the two most commonly used metrics for selecting

linear regression models are Adjusted R2 and out of sample testing error. The Adjusted

R2 statistic for a linear regression model is always between zero and one. The closer it is

to one the better the model is.

Although ρ2 and Adjusted R2 statistics for negative binomial and linear regression are

commonly used and provide some valuable information about the quality of a model,

they fail to ascertain how well the model generalizes out of the training set. In other

words, these metrics are unable to detect overfitting as they measure the quality of the

model on the training set. Thus, the other measure, i.e., the root mean square error

(RMSE) of the models on the hold out / testing set will be used for selecting the final

models.

The dataset used in this chapter, is split into two sets, the training and the testing set.

The training set is used for estimating the models and comprises of trips from August 28,

2015 to February 28, 2017. The testing set is used for selecting the models. It measures

how well the models generalizes out of the training set. It comprises of trips from March

1, 2017 to March 30, 2016.

3.4 Experimental Results

This section summarizes the experimental results of the proposed methods on the

SABB FFBS dataset. Tables 3.5 and 3.6 summarizes the training and testing error measures

for all statistical models of dropoffs and pickups and of imbalance respectively. Tables

3.7 and 3.8 reports the total number of variables and the number of variables selected

corresponding to each model of dropoffs and pickups and of imbalance respectively. In

Tables 3.7 and 3.8, Vars Sel and SS Vars refers to number of variables selected and the

number of statistically significant variables (with 90% confidence intervals) among the

variables selected for the corresponding model respectively.

68

Table 3.5: Summary of Training and Testing Error Measures for All Models of Dropoffs
and Pickups

Variable Time-frame Var Set
Model Used

Model 1 Model 2 Model 3
ρ2 RMSE ρ2 RMSE ρ2 RMSE

Dropoffs

Daily

1 0.0438 256.9260 0.0362 189.5043 0.0366 188.2041
2 0.0470 253.3899 0.0439 152.6411 0.0378 150.3104
3 - 0.0702 224.1921 0.0617 231.6895
4 0.0854 148.4511 0.0873 186.2352

Pickups

1 0.0437 256.8616 0.0437 256.8616 0.0365 184.3904
2 0.0470 253.3143 0.0378 150.3913 0.0378 150.3913
3 - 0.0620 231.1562 0.0661 252.7010
4 0.0955 190.7476 0.0903 144.1414

Dropoffs

Hourly

1 0.1161 11.9317 0.1161 11.9317 0.1161 11.9317
2 0.1179 11.2325 0.1179 11.2325 0.1179 11.2325
3 - 0.1668 18.7437 0.1668 18.7437
4 0.1945 15.1279 0.1915 14.5176

Pickups

1 0.1159 11.9516 0.1159 11.9516 0.1159 11.9516
2 0.1178 11.2552 0.1178 11.2552 0.1178 11.2552
3 - 0.1667 17.2632 0.1667 17.2632
4 0.1982 14.5979 0.1940 14.0161

Table 3.6: Summary of Training and Testing Error Measures for All Models of Hourly
Imbalance

Variable Time-frame Var Set
Model Used

Model 1 Model 2 Model 3
Adjusted R2 RMSE Adjusted R2 RMSE Adjusted R2 RMSE

Imbalance Hourly

1 0.0422 0.6503 0.0442 0.6484 0.0441 0.6487
2 0.0420 0.6495 0.0444 0.6483 0.0444 0.6484
3 - 0.1250 0.7262 0.1259 0.7448
4 0.1857 0.7326 0.1857 0.7326

69

Table 3.7: Summary of Variable Selection for All Models of Dropoffs and Pickups

Variable Time-frame Var Set Total Vars
Model Used

Model 1 Model 2 Model 3
Vars Sel SS Vars Vars Sel SS Vars Vars Sel SS Vars

Dropoffs

Daily

1 27 27 19 12 6 16 6
2 44 44 19 33 16 18 11
3 928 - 100 36 70 23
4 8160 127 45 132 44

Pickups

1 27 27 19 27 19 14 7
2 44 44 19 18 11 18 11
3 928 - 75 23 89 26
4 8160 160 51 149 45

Dropoffs

Hourly

1 50 50 47 50 47 50 47
2 66 66 57 66 57 66 57
3 2146 - 922 378 922 378
4 31734 1348 617 1271 578

Pickups

1 50 50 46 50 46 50 46
2 66 66 57 66 56 66 56
3 2146 - 906 371 906 371
4 31734 1486 695 1350 617

Table 3.8: Summary of Variable Selection for All Models of Imbalance

Variable Time-frame Var Set Total Vars
Model Used

Model 1 Model 2 Model 3
Vars Sel SS Vars Vars Sel SS Vars Vars Sel SS Vars

Imbalance Hourly

1 50 50 12 18 14 19 14
2 66 66 19 24 16 23 15
3 2146 - 184 131 201 133
4 31734 170 137 170 136

Table 3.9: Selected Models

Variable Time-frame Selected Model
No Interactions With Interactions

Dropoffs Daily Model 3 with Var Set 2 Model 2 with Var Set 4
Pickups Model 3 with Var Set 2 Model 3 with Var Set 4
Dropoffs

Hourly
Model 3 with Var Set 2 Model 3 with Var Set 4

Pickups Model 3 with Var Set 2 Model 3 with Var Set 4
Imbalance Model 2 with Var Set 2 Model 2 with Var Set 3

70

Models in this chapter were selected based on their testing errors, because they are

a better indicator of how a model performs out of the training set, i.e., how well it gen-

eralizes out of the training set. Needless to say, the lower the testing error, the better

the model is. However, if two models have similar testing errors, their training error

measures can be used for breaking the tie. Unlike the testing error measure, the higher

the ρ2 or Adjusted R2 of a model the better it is. The best models for each category are

summarized in Table 3.9 based on the results from Tables 3.5 and 3.6.

From Tables 3.5 and 3.6, it is evident that Var Set 2 always performs better than Var Set

1 for all models on the SABB dataset. This indicates that it is advantageous to use Var Set

2 instead of Var Set 1 for training a model with no interactions on the SABB dataset, as

opposed to the current trend in the literature. We also observe that, Model 3 outperforms

Model 2 when the dependent variable is a count variable (dropoffs and pickups) except

for daily dropoffs. However, the reverse is true when the dependent variable is a real

number (imbalance). This indicates that 1) it is always advantageous to use either Model

2 or Model 3 instead of Model 1 for training a model on the SABB FFBS dataset and 2)

for training models related to dropoffs and pickups, Model 3 is the recommended option

whereas for training models related to imbalance, Model 2 is the recommended option.

Another interesting observation is that, the sparsest model is always performing the

best. By the sparsest model, we refer to the model whose Vars Sel is the lowest. This in a

way is an indication that the simpler the model is, the better it tends to perform. Hence,

we can conclude that two stage models proposed in this chapter, generates models that

are not only simple/sparse (models with fewer number of variables) but also closer to

the ground truth (as their testing errors are lower) than the baseline Model 1 with Var

Set 1, commonly used in the literature. It is interesting to note that, when interactions

are added to the model, it sometimes performs better than models with no interactions

and sometimes does not. However, it is almost always true that the quality of the model

improves when the order of the interactions is increased, except for hourly imbalance.

71

Although, we limit ourselves to third order interactions in this chapter, this indicates that

increasing the order of the interactions from third to fourth or even fifth may improve the

quality of the model, but it will come at a higher cost of computational complexity and

difficultly in interpreting the resulting model.

Adding interactions does not always improve the testing error of a model (it always

improve the training error). For example: from Table 3.5, it is evident that for daily time-

frame, the best models with interactions outperform the best models without interactions,

however the same cannot be said for hourly time-frames. This leads to some interesting

insights. For daily time-frame, Model 2 and Model 3 with Var Set 4 for dropoffs and for

pickups respectively, have some third order interactions (mentioned in Table 10) which

by themselves are not statistically significant in Model 3 with Var Set 2 for both dropoffs

and pickups. This is a clear indication that the best models with interactions are able to

capture information, which were missed by the corresponding best models with no in-

teractions. This characteristic of the best models with interactions being able to capture

information that the best models without interactions cannot becomes more evident in

Section 3.5.3. Thus, it important that instead of choosing a model with or without in-

teractions over another, both models are used in conjunction to complement each other

weaknesses with their strengths.

3.5 Discussion

In this section, we demonstrate how to interpret and draw inferences from visualiza-

tion of historical data, best models with no interactions, best models with interactions and

by combining all these methods. Then, we demonstrate how to provide appropriate rec-

ommendations to the operator, based on these respective inferences. In this chapter, we

use only pickups and imbalance for drawing inferences and providing recommendations.

The reason for this is two-fold: 1) to prevent repetition and 2) in the case of free-floating

systems, dropoffs have very little effect on the demand of system as they have no explicit

72

Table 3.10: Variables that Become Significant when Combined Together

Independent Variable Time-frame Dependent Variables
Variable 1 Variable 2 Variable 3

Dropoffs

Daily

Spring Wind Speed 2 Cloud Cover 3
September Tuesday Cloud Cover 3
February Tuesday Relative Humidity 4

Spring Temperature 2 Cloud Cover 2
Monday Cloud Cover 2 Relative Humidity 2

September Wind Speed 3 Cloud Cover 2
September Temperature 4 Wind Speed 2

Tuesday Cloud Cover 2 Relative Humidity 4
Tuesday Temperature 1 Wind Speed 3
February Monday Cloud Cover 4

Pickups

September Tuesday Cloud Cover 3
February Wind Speed 1 Cloud Cover 1

November Wind Speed 1 Cloud Cover 2
February Tuesday Relative Humidity 4
October Dew Point 2 Cloud Cover 4

September Temperature 4 Wind Speed 2
September Dew Point 3 Relative Humidity 4
February Monday Cloud Cover 4
Tuesday Cloud Cover 2 Relative Humidity 4

Apparent Temperature 3 Dew Point 3 Cloud Cover 1

(capacity) restriction, unlike in the case of station-based systems. Further, pickups for

both free-floating and station-based systems is a far better indicator of the approximate

demand of the system. In case of station-based systems, dropoffs may also be considered

in conjunction to pickups.

3.5.1 Data Visualization

Figures 4.9 through 3.1d visualize how daily pickups vary with season, month, day

and holiday respectively, in the SABB dataset. Figures 3.1e and 3.1f visualize how hourly

pickups and imbalance vary with hours in a day respectively, in the SABB dataset. From

Figures 4.9 and 3.1b, we can infer that there is significant variation in pickups owing to

both season and month. The two primary causes for this phenomenon, are the correlation

of both season and month with the timing of semesters at USF and weather conditions.

Most trips are reported in the Fall semester, when the weather is pleasant. There is a dip in

73

Autumn Summer Fall Spring

0

200

400

600

800

1000

1200

1400

(a) Variation of Daily Pickups with Season

Ja
nu

ar
y

Fe
br
ua

ry

M
ar
ch

Ap
ril

M
ay

Ju
ne Ju
ly

Au
gu

st

Se
pt
em

be
r

O
ct
ob

er

N
ov
em

be
r

D
ec
em

be
r

0

200

400

600

800

1000

1200

1400

(b) Variation of Daily Pickups with Month

M
on

da
y

Tu
es
da

y

W
ed

ne
sd
ay

Th
ur
sd
ay

Fr
id
ay

Sa
tu
rd
ay

Su
nd

ay

0

200

400

600

800

1000

1200

1400

(c) Variation of Daily Pickups with Day

Not a US Holiday US Holiday

0

200

400

600

800

1000

1200

1400

(d) Variation of Daily Pickups with Holiday

00
:0
0

01
:0
0

02
:0
0

03
:0
0

04
:0
0

05
:0
0

06
:0
0

07
:0
0

08
:0
0

09
:0
0

10
:0
0

11
:0
0

12
:0
0

13
:0
0

14
:0
0

15
:0
0

16
:0
0

17
:0
0

18
:0
0

19
:0
0

20
:0
0

21
:0
0

22
:0
0

23
:0
0

0

20

40

60

80

100

120

140

(e) Variation of Hourly Pickups with Hour

00
:0
0

01
:0
0

02
:0
0

03
:0
0

04
:0
0

05
:0
0

06
:0
0

07
:0
0

08
:0
0

09
:0
0

10
:0
0

11
:0
0

12
:0
0

13
:0
0

14
:0
0

15
:0
0

16
:0
0

17
:0
0

18
:0
0

19
:0
0

20
:0
0

21
:0
0

22
:0
0

23
:0
0

−15

−10

−5

0

5

10

15

(f) Variation of Hourly Imbalance with Hour

Figure 3.1: Variation of Dependent Variables with Temporal Variables

74

usage for both the Spring and Summer semesters because the weather in the beginning of

both of these semesters is a bit more severe compared to that in the fall semester. Further,

fewer students are present on campus during the Summer semester. From Figures 3.1c

and 3.1d, we can conclude that pickups are higher on weekdays than on weekends or

holidays. This is owing to more activity (inter class or dorm to class or class to dorm trips)

on campus on weekdays than on weekends. Pickups are maximum on Tuesday, followed

by Wednesday, Monday, Thursday and Friday. This is because, most USF classes are held

on Tuesday, followed by Wednesday, Monday, Thursday and Friday. From Figure 3.1e,

we can conclude that pickups start increasing at 7:00 AM (when classes start), and peak

around 1:00 PM. From Figure 3.1f, we can conclude that there is negative imbalance in

the system from 7:00 AM to 9:00 AM, 10:00 AM to 11:00 AM, 1:00 PM to 2:00 PM and 4:00

PM to 5:00 PM. This phenomenon is because of class timings and extracurricular activity

patterns of students and staff at USF. Based on Figures 4.9 through 3.1f, we recommend

to the operator of the SABB FFBS that, the best time-frame for static rebalancing or on-site

maintenance is 1:00 AM to 7:00 AM, because the pickups on average are almost close to

zero during this time period and the appropriate time-frames for dynamic rebalancing

are 9:00 AM to 10:00 AM, 11:00 AM to 1:00 PM and 2:00 PM to 4:00 PM.

3.5.2 Models with No Interactions

Figures 3.2 and 3.3, visualize the average marginal effects of statistically significant

variables for the best models with no interaction for daily and hourly pickups respec-

tively. From Figures 3.2 and 3.3, we can conclude that fall season (and its corresponding

months) has a significant positive impact on both daily and hourly pickups. On the con-

trary, for both Spring and Summer seasons and for their corresponding months, there is

a sudden dip for both daily and hourly pickups. From figure 3.3, it is clear that 11:00 AM

to 12:00 PM is the peak time frame, which is a bit different than that obtained from data

visualization. Further, the time frames 7:00 AM to 9:00 PM and 11:00 PM to 6:00 AM have

75

D
ec

em
be

r

H
ol

id
ay

Au
gu

s

Fa
ll

Sp
rin

g

R
el

a
iv

e
H

um
id

i y
 1

W
in

d
Sp

ee
d

3

M
ay

R
el

a
iv

e
H

um
id

i y
 3

W
in

d
Sp

ee
d

4

Ju
ly

Ju
ne

Fr
id

ay

−150

−100

−50

0

50

100

150

200

Av
er

ag
e

M
ar

gi
na

l E
ffe

c
s

Figure 3.2: Average Marginal Effects of Statistically Significant Variables for the Best
Model with No Interactions for Daily Pickups

Fa
ll

Fe
br
ua

ry

M
ar
ch

O
ct
ob

er

Ja
nu

ar
y

03
:0
0

Ap
ril

N
ov
em

be
r

04
:0
0

Se
pt
em

be
r

02
:0
0

05
:0
0

M
ay

Ju
ne

12
:0
0

Su
m
m
er

14
:0
0

11
:0
0

15
:0
0

13
:0
0

01
:0
0

16
:0
0

09
:0
0

Ju
ly

Au
tu
m
n

17
:0
0

H
ol
id
ay

10
:0
0

08
:0
0

18
:0
0

00
:0
0

19
:0
0

Au
gu

st

D
ew

 P
oi
nt
 1

D
ew

 P
oi
nt
 2

20
:0
0

23
:0
0

C
lo
ud

 C
ov
er

R
el
at
iv
e
H
um

id
ity

07
:0
0

−10

0

10

20

30

40

Av
er
ag

e
M
ar
gi
na

l E
ffe

ct
s

Figure 3.3: Average Marginal Effects of Statistically Significant Variables for the Best
Model with No Interactions for Hourly Pickups

76

09
:0
0

06
:0
0

15
:0
0

12
:0
0

16
:0
0

14
:0
0

07
:0
0

11
:0
0

18
:0
0

04
:0
0

05
:0
0

Te
m
pe

ra
tu
re
 2

08
:0
0

C
lo
ud

 C
ov

er
 3

23
:0
0

20
:0
0

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4
C
oe

ffi
ci
en

ts

Figure 3.4: Coefficients of Statistically Significant Variables for the Best Model with No
Interactions for Hourly Imbalance

a positive and a negative impact on hourly pickups respectively. It is not a surprise that

both daily and hourly pickups decrease on holidays. It is interesting to note that, even

though dew point and wind speed by themselves are not statistically significant, when the

dew point is 16.55− 66.0oF and when wind speed is between 5.66− 26.55 mph they not

only become statistically significant but also negatively impact hourly pickups. Further,

hourly pickups decrease as the sky becomes more clouded, because it is less likely for

users to commute using bikes when there is a high possibility of raining. Another inter-

esting phenomenon occurs in the case of relative humidity. Relative humidity by itself

negatively impacts hourly pickups, as it is a measure of extreme conditions. However,

when relative humidity is either 0.16− 0.62 or 0.79− 0.89, pickups increase significantly.

It is important to note that, we are able to identify these intervals for dew point, wind speed

and relative humidity because of our proposed variable decomposition strategy.

Figure 3.4, visualize the coefficients of statistically significant variables for the best

model with no interaction, for hourly imbalance. Figure 3.4 gives a clear indication of the

time-frames of interest when imbalance is negative, i.e., 6:00 AM to 10:00 AM, 12:00 PM

77

H
ol
id
ay

D
ec
em

be
r

Fa
ll

Au
gu

st

Ap
ril

−100

−50

0

50

100

Av
er
ag

e
M
ar
gi
na

l E
ffe

ct
s

Figure 3.5: Average Marginal Effects of First Order Statistically Significant Variables for
the Best Model with Interactions for Daily Pickups

to 1:00 PM and 3:00 PM to 4:00 PM. Thus, based on Figures 3.2, 3.3 and 3.4, we can pro-

vide the following three recommendations. First, (operator-based) static rebalancing and

on-site maintenance operations can be conducted between 11:00 PM - 6:00 AM on a de-

sired day. Second, dynamic rebalancing (both operator-based and user-based) if required

should be held between the hours of 7:00 AM to 8:00 AM, 10:00 AM to 12:00 PM and 1:00

PM to 3:00 PM. Finally, we recommend the operator to use a user-based dynamic rebal-

ancing / user incentives schemes in the Spring, in May, June, July, August and December,

on Fridays and on holidays.

3.5.3 Models with Interactions

Figures 3.5 and 3.6, visualizes the average marginal effects of first order statistically

significant variables for the best models with interactions, for both daily and hourly pick-

ups respectively. From figures 3.2 and 3.3, we can conclude that fall season has a sig-

nificant positive impact on both daily and hourly pickups. Similarly, December has a

negative impact on both daily and hourly pickups. This is because many students return

to their homes during this time after the semester has concluded. Thus there is a dip in

the number of users. March and April as well as, October have a positive and a negative

78

03
:0
0

04
:0
0

05
:0
0

02
:0
0

01
:0
0

00
:0
0

D
ec
em

be
r

Fa
ll

23
:0
0

H
ol
id
ay

M
ar
ch

Au
gu

st

22
:0
0

10
:0
0

11
:0
0

O
ct
ob

er

09
:0
0

15
:0
0

14
:0
0

−4

−2

0

2

4

Av
er
ag

e
M
ar
gi
na

l E
ffe

ct
s

Figure 3.6: Average Marginal Effects of First Order Statistically Significant Variables for
the Best Model with Interactions for Hourly Pickups

01
:0
0

02
:0
0

06
:0
0

07
:0
0

08
:0
0

09
:0
0

12
:0
0

14
:0
0

15
:0
0

21
:0
0

Monday

Tuesday

Wednesday

Thursday

Sunday −1.6

−0.8

0.0

0.8

1.6

Figure 3.7: Average Marginal Effects of Second Order Statistically Significant Variables
between Day, Holiday and Hour for the Best Model with Interactions for Hourly Pickups

79

Ap
pa

re
nt

 T
em

pe
 a

tu
 e

 4

D
ew

 P
oi

nt
 1

D
ew

 P
oi

nt
 3

D
ew

 P
oi

nt
 4

W
in

d
Sp

ee
d

1

W
in

d
Sp

ee
d

2

C
lo

ud
 C

ov
e

 3

Sp ing

Janua y

Feb ua y

Ma ch

May

August

Septembe

Octobe

Novembe
−2

0

2

4

6

Figure 3.8: Average Marginal Effects of Second Order Statistically Significant Variables
between Season, Month and Weather Variables for the Best Model with Interactions for
Hourly Pickups

07
:0
0

22
:0
0

Tuesday

Sunday
−0.8

0.0

0.8

1.6

2.4

(a) September

00
:0
0

06
:0
0

08
:0
0

Thursday

Saturday

0.0

0.6

1.2

1.8

2.4

3.0

(b) October

Figure 3.9: Average Marginal Effects of Third Order Statistically Significant Variables be-
tween September/October, Day, Holiday and Hour for the Best Model with Interactions
for Hourly Pickups

80

06
:0
0

07
:0
0

08
:0
0

09
:0
0

10
:0
0

12
:0
0

13
:0
0

14
:0
0

15
:0
0

16
:0
0

19
:0
0

20
:0
0

21
:0
0

Monday

Tuesday

Wednesday

Thursday

Friday

Sunday
−0.8

−0.4

0.0

0.4

0.8

Figure 3.10: Coefficients of Second Order Statistically Significant Variables between Day,
Holiday and Hour for the Best Model with Interactions for Hourly Imbalance

impact on pickups respectively. From figure 3.3, it is clear that 11:00 AM to 12:00 PM is the

peak time frame, with the time frame 9:00 AM to 3:00 PM and 11:00 PM to 6:00 AM hav-

ing a positive and a negative impact on hourly pickups respectively. It is not surprising

that both daily and hourly pickups decrease during holidays.

Figures 3.7 and 3.8, visualize the average marginal effects of second order statisti-

cally significant variables between day, holiday and hour variables and between season,

month and weather variables for the best model with interactions for hourly pickups re-

spectively. From figure 3.7, we can make some interesting conclusions. First, there is a

sudden drop in pickups on Mondays from 3:00 PM to 4:00 PM. Second, there is a sudden

increase in pickups on Tuesdays from 2:00 PM to 3:00 PM. Finally, on Thursdays there is

a sudden increase from 12:00 PM to 1:00 PM. Perhaps be on Thursdays the peak is from

12:00 PM to 1:00 PM instead of from 11:00 AM to 12:00 PM. From figure 3.8, we can make

some interesting conclusions. When the apparent temperature is 82.495− 107.23oF during

Spring, there is a decrease in hourly pickups. When the dew point is 16.55− 58.16oF dur-

ing March, there is a decrease in hourly pickups. When the dew point is 66.00− 73.08oF,

there is a decrease in hourly pickups during Spring and during September, whereas the

81

hourly pickups increases during the months of January and February. When the dew

point is 73.08− 82.14oF during November, there is an increase in hourly pickups. When

the wind speed is 0.00− 3.87 mph during October, hourly pickups increase. When the

wind speed is 3.87− 5.66 mph during May, hourly pickups decrease. When the cloud

cover is 0.1− 0.22 during August, hourly pickups decrease.

Figures 3.9a and 3.9b, visualize average marginal effects of third order statistically sig-

nificant variables between September/October, day, holiday, and hour for the best model

with interactions for hourly pickups respectively. From Figure 3.9a, we can conclude that

in September, Tuesdays have a slower start compared to other months and on Sundays,

there is an increase in pickups during 10:00 PM to 11:00 PM. From figure 3.9b, we can

conclude that in October, Thursdays have an early start at 6:00 AM instead of at 7:00 AM,

and on Saturdays there is a increase in pickups during 12:00 AM to 01:00 AM. The in-

crease in pickups from 10:00 PM to 11:00 PM on Sundays in September and from 12:00

AM to 01:00 AM on Saturdays during October, may be because of students engaging in

recreational activities during weekends in the middle of the fall semester.

Figure 3.10 visualizes the coefficients of second order statistically significant variables

between day, holiday and hour for the best model with interactions for hourly imbalance.

This figure provides a lot of valuable information. First, the trend of imbalance on a

Friday is quite different from that on the other weekdays. Clearly, during 6:00 AM to

7:00 AM, 9:00 AM to 10:00 AM and 3:00 PM to 4:00 PM on Monday to Thursday there is

negative imbalance in the system. On Friday, the negative imbalance is during 7:00 AM

to 8:00 AM, 1:00 PM to 2:00 PM and 4:00 PM to 5:00 PM. This phenomenon arises due to

the difference in class schedules on Friday compared to that on the other weekdays. On

Sunday, there is a negative imbalance from 9:00 PM to 10:00 PM, which may be because

of students engaging in recreational activities.

Based on the above inferences, we can provide the following three recommendations.

First, (operator-based) static rebalancing and on-site maintenance operations can be con-

82

ducted between 11:00 PM - 6:00 AM on a desired day, except for Tuesdays in September

when it may be extended until 8:00 AM. Second, dynamic rebalancing (both operator-

based and user-based), if required should be held from 10:00 AM to 3:00 PM on Monday

through Thursday and from 9:00 AM to 1:00 PM and 2:00 PM to 4:00 PM on Friday. Third,

we recommend the operator to use static rebalancing strategies in Fall, in April and Au-

gust and dynamic rebalancing strategies in December and on holidays.

3.5.4 All Vantage Points

In this section, we synthesize inferences and recommendations derived from three

vantage points, namely data visualization of historical data, best models with and with-

out interactions. An inference or a recommendation is strongest if it can be validated by

all of the above three methods, and weakest if only one of the above three methods val-

idates it. For example: based on data visualization and best models with and without

interactions, the best time for static rebalancing or onsite maintenance is from 1:00 AM

to 7:00 AM, 11:00 PM to 6:00 AM and 11:00 PM to 6:00 AM respectively. However, if all

three of these recommendations are combined, it is clear that 1:00 AM to 6:00 AM is a

time frame that is valid from all of these three methods. Similar approach is followed in

this section for inferences and recommendations.

Based on the above guidelines, we can draw the following conclusions about the mo-

bility patterns of the SABB FFBS:

1. Fall has a significant positive impact on pickups, whereas, both Spring and Summer

have a negative impact on pickups.

2. March and April have a positive impact, and October and December have a negative

impact on pickups respectively.

3. Pickups are higher on weekdays than on weekends or holidays, reaching a peak on

Tuesday, followed by Wednesday, Monday, Thursday and Friday.

83

4. Peak hours are from 11:00 AM to 12:00 PM (except for Thursdays when the peak is

12:00 PM to 1:00 PM), with the time frames 9:00 AM to 3:00 PM and 10:00 PM to 6:00

AM having a positive and a negative impact on pickups respectively.

5. There is a sudden decrease in pickups on Mondays from 3:00 PM to 4:00 PM and

a sudden increase in pickups from 10:00 PM to 11:00 PM on Sundays in September

and from 12:00 AM to 01:00 AM on Saturdays during October.

6. There is a decrease in pickups in Spring when the apparent temperature is 82.495−

107.23oF.

7. In October, pickups increase when wind speed is 0.00− 3.87 mph, however, pickups

decrease when wind speed is 3.87− 5.66 mph in May and between 5.66− 26.55 mph.

8. Pickups decrease when the dew point is 16.55− 66.0oF, or 66.00− 73.08oF in Spring

and September, however pickups increase when the dew point is between 66.00−

73.08oF in January and February and between 73.08− 82.14oF in November.

9. Pickups decrease with increase in cloud cover.

10. Relative humidity by itself negatively impacts pickups, however, when relative hu-

midity is either 0.16− 0.62 or 0.79− 0.89, pickups increase significantly.

Similarly, based on the above guidelines, it is clear that during 6:00 AM to 7:00 AM,

9:00 AM to 10:00 AM and 3:00 PM to 4:00 PM on Monday to Thursday there is negative

imbalance in the system. On Friday, the negative imbalance is during 7:00 AM to 8:00

AM, 1:00 PM to 2:00 PM and 4:00 PM to 5:00 PM. By combining insights and recommen-

dations from all vantage points, we can provide the following final recommendations to

the operator of the SABB FFBS. The best time for static rebalancing or on-site mainte-

nance is between 1:00 AM and 6:00 AM, except for Tuesdays in September when it may

be extended until 8:00 AM. Dynamic rebalancing (both operator-based and user-based),

84

if required should be held from 10:00 AM to 12:00 PM and 1:00 PM to 3:00 PM on Mon-

day through Thursday and from 9:00 AM to 1:00 PM and 2:00 PM to 4:00 PM on Friday.

Static rebalancing strategies be extensively used in Fall and in April. Dynamic rebalanc-

ing strategies should be used in May, June, July and December, and on holidays.

3.6 Final Remarks

In this chapter, we propose a method to extract operational management insights from

historical trip data of a shared mobility system, to help the operator make more informed

decisions. A significant amount of research has been conducted on gaining various forms

and types of insights with a broad range of motivation, from the historical data of the sys-

tem. However, none of these studies considered interaction between independent vari-

ables or study imbalance as a dependent variable. In this chapter, we take interactions

among independent variables into consideration and apply methods to remove unnec-

essary interactions. We also show that more insights about the mobility patterns and

imbalance of the SABB program can be obtained by considering such interactions. We

also propose a simple method to decompose continuous variables into binary variables

which improves the base model used in the literature. Our proposed methodology gives

a unique opportunity to study the system and make recommendations to the operator

from various vantage points. To extend our proposed method for station-based systems,

dropoffs can also be considered in conjunction to pickups.

Even though the two stage models perform better than baseline (quasi) Poisson re-

gression models, their testing error measure is not as low as one would expect. A possi-

ble explanation for this effect is that both the two stage and the baseline models are linear

models. Thus they are unable to capture possible non-linear relationships among the in-

dependent and the dependent variables. This effect is mitigated to some extent by adding

up to third order interactions, as they are able to capture unobserved heterogeneity in the

data. Adding fourth or even higher order interactions may improve the model, however

85

doing so may make the model difficult to interpret. Thus, it is our belief that interactions

higher than third order are unnecessary, instead nonlinear transformations and interac-

tions may be added to determine if the performance of the models improves or not. This

is a possible future research direction.

In future research, we will address how to use information from such an analysis to

compute optimal inventory levels, which can then be used by the operator as inputs to

their specific rebalancing strategies. Another possible research direction can be conduct-

ing this analysis for each station in case of station based bike sharing systems or each zone

in case of free floating bike sharing systems.

86

4 Strategies to Increase Usable Bikes in Free-Floating Bike Sharing Systems

4.1 Problem Description and Related Work

Usable bikes become unusable for two major reasons: 1) from over usage by a subset

of regular users and 2) from mishandling or vandalism by a subset of casual users. Once

a usable bike becomes unusable, a user is unable to use it until it is repaired, decreasing

his/her level of satisfaction. Now, the operator has to repair these unusable bikes either

on-site or at a remote location, both of which involve routing and labor costs. These

costs owing to the presence of unusable bikes can be minimized, if the operator employs

strategies to prevent usable bikes from being converted to unusable bikes owing to over

usage or mishandling and vandalism. In this chapter, we address several critical issues

related to preventing usable bikes from becoming unusable. First, develop a method

to identify and prevent over usage. Second, identifying users who are responsible for

breakdowns of bikes. Finally, developing strategies that the operator of a BSS can use,

once the above two informations have been obtained.

Cause of breakdown of a bike

Over usage

Subset of regular users

Mishandling

Subset of casual users

Figure 4.1: Causes of Damage of a Bike and Users Responsible for Them

87

There is lack of literature related to anomaly detection in bike sharing systems. To the

best of our knowledge, only Delassus et al. (2016) and Kaspi et al. (2016) propose methods

to detect unusable bikes in a station-based bike sharing systems. Delassus et al. (2016) use

a method based on K-Means clustering to identify unusable bikes. Kaspi et al. (2016) on

the other hand predicts the likelihood that a bike is unusable and the number of unusable

bikes in a station, using a Bayesian model. In Kaspi et al. (2016), the authors also propose

enhancements and extensions to their model, for approximating these probabilities in

real time and detecting locker failures. In Kaspi et al. (2017), the authors quantify user

dissatisfaction in the presence of unusable bikes as a function of the shortage of bikes

and lockers in a solitary station. They propose a method to estimate this function and

illustrate how it can be used in linear optimization models for operational and strategic

decision making in bike sharing systems. However, none of these studies propose any

data-driven method to detect over usage, identify users who are damaging bikes or how

such an information can be used by the operator of the system.

In order to study over usage, we use a (quasi) Poisson regression model to model the

relationship between the number of breakdowns of a bike to its total distance traveled,

total duration of travel and total number of pickups. The task of identifying users who

are responsible for damage is formulated as an unsupervised learning problem. We break

this task down into three steps, comprising of simple intuitive rules, penalized Poisson

regression and clustering. Finally, based on the above two outcomes, we provide strate-

gies that the operator of a FFBS can use to minimize damage done to bikes in the system.

In this study, we demonstrate the above mentioned methods using the Share-A-Bull BSS

(SABB), an FFBS on the Tampa campus of the University of South Florida (USF). It is

worth mentioning that our method is easy to implement and can be easily ported to other

bike sharing systems without much changes.

The remainder of the chapter is organized as follows. Section 4.2 describes the develop

a method to identify and prevent over usage. Section 4.3 describes the methodology

88

for identifying users who are responsible for breakdowns of bikes. Section 4.4 presents

strategies that the operator of a BSS can use, once the above two informations have been

obtained. Finally, Section 4.5 concludes the chapter with directions for future research.

4.2 Identifying and Preventing Over Usage

There are three independent variables of interest, total distance traveled in miles (con-

tinuous variable), total duration traveled in minutes (continuous variable) and total num-

ber of trips (count variable). For simplicity in the rest of the chapter, we will refer to total

distance traveled in miles, total duration traveled in minutes and total number of trips as Var

1, Var 2 and Var 3 respectively. Therefore, seven combination of these independent vari-

ables are possible (described in Table 4.1), each of which can be used to build a negative

binomial regression model.

Table 4.1: Different Variable Sets for Estimating Negative Binomial Regression Models

Variable Set Var 1 Var 2 Var 3
1 ✓ ✓ ✓
2 ✓ ✓
3 ✓ ✓
4 ✓ ✓
5 ✓
6 ✓
7 ✓

The data used to test our proposed methods in this study, is the historical trip, data

about the breakdown of bikes and other transaction data of Share-A-Bull Bikes (SABB)

FFBS system at the University of South Florida, Tampa. Phase I of the program was

launched in August 2015, providing 100 bikes to students, staff and faculty at no charge

if the users limited their cumulative usage time to less than two hours per day. An hourly

fee was imposed for the extra time beyond the daily two hour free quota. The program is

expected to be integrated with parking management and other multi-modal transporta-

tion initiatives on the campus. USF researchers collaborated with the bike sharing com-

89

pany and developed the program in 2015. Given it is a program operated and managed

internally, USF researchers had full access to the usage data, including trajectory data, of

the program.

With built-in GPS and the application developed by Social Bicycles (SoBI), the trip

data (trajectory of bikes) of each usage of the bikes is recorded in the operation man-

agement system. All trips have a unique ID. Further, each trip has a user ID, bike ID,

starting timestamps, starting latitude, starting longitude, ending timestamps, ending lat-

itude, ending longitude, trip duration (in minutes) and trip distance (in miles). The time

frame of this study was from August 28, 2015, the launch date of the program to April

14, 2017. During this time frame, a total of 189, 092 trips were recorded. However, many

of these trips were noise; hence, they had to be identified and subsequently removed be-

fore any further analysis could be conducted. Trips with the following properties were

removed:

• if trip duration ≤ 30 seconds, in such case, the user might be checking the bike

without using it.

• if trip distance ≤ .000621371 miles or 1 meter, in such case, the bike might be dam-

aged after short usage and the user may not able to complete his/her trip.

• if the trip was conducted for testing the system.

After removing trips with the above mentioned properties, there was a total of 171, 958

trips. From this cleaned trip data, Var 1, Var 2 and Var 3 were computed for each bike in

the system. At the time of collecting the data, the system had 99 operational bikes. The

number of breakdowns for each of these bikes were also collected from the SABB FFBS

management system.

For simplicity and ease of interpretability, we assume that the relationship between

number of breakdowns of a bike with its total trip distance traveled, total trip duration

traveled and total number of pickups is linear. Since, the number of breakdowns is a

90

non-negative count variable, we use (quasi) Poisson regression to model the above rela-

tionship. To be more specific, negative binomial regression is used as the mean (240.39) of

number of breakdowns is << than the variance (11649.91) of the number of breakdowns.

For an in depth study on Poisson, quasi-Poisson or negative binomial regression models,

refer to Washington et al. (2010).

Va
rs
et
 1

Va
rs
et
 2

Va
rs
et
 3

Va
rs
et
 4

Va
rs
et
 5

Va
rs
et
 6

Va
rs
et
 7

100

125

150

175

200

225

250

Te
sti
ng

 E
rr
or

Figure 4.2: Testing Errors (RMSE)

Figures 4.2, 4.3 and 4.4 are the testing errors (RMSE), training errors (ρ2) and inverse of

average marginal effects of Vars 1, 2 and 3 of the negative binomial regression models on

the SABB FFBS dataset using different Variable Sets (Varset). From Figure 4.2, it is evident

that Varsets 5, 6 and 7 perform significantly better than Varsets 1, 2, 3 and 4. One of the

possible explanation can the high correlation between Vars 1, 2 and 3. However, instead

of selecting any particular model among the top three models, we take advantage of all

three of them.

Average marginal effect of an independent variable in a negative binomial regression

model, is the amount of change in the dependent variable corresponding to 1 unit change

of that particular independent variable. Hence, inverse of average marginal effect of an

91

Va
rs
et
 1

Va
rs
et
 2

Va
rs
et
 3

Va
rs
et
 4

Va
rs
et
 5

Va
rs
et
 6

Va
rs
et
 7

0.04

0.05

0.06

0.07

Ps
eu

do
 R
2

Figure 4.3: Training Errors (ρ2)

D
ist
an

ce
 (m

ile
s)

D
ur
at
io
n
(h
ou

rs
)

N
um

be
r o

f t
rip

s

2

4

6

8

C
ut
of
f f
or
 m

ai
nt
en

an
ce
 c
he

ck
up

s

Figure 4.4: Inverse of Average Marginal Effects

92

independent variable, is the amount of change in that particular independent variable

corresponding to 1 unit change of the dependent variable. This is very interesting, as

inverse marginal effect of any the Vars with respect to the number of breakdowns gives

us the amount of change necessary for 1 breakdown. In Figure 4.4, inverse of average

marginal effects of Vars 1, 2 and 3 are reported based on the respective negative binomial

regression models using Varsets 5, 6 and 7 respectively.

From Figure 4.4, it is evident that approximately 6 miles of distance traveled or 2 hours

of usage or 9 pickups leads to 1 breakdown. Thus, a SABB bike riden for 6 or more miles,

used for close to 2 hours and picked up 9 or more times, is prone to a breakdown. To

prevent a potential breakdown, the system operator can schedule maintenance checks on

a bike, if that particular bike is close to being riden for 6 miles, close to being used for

2 hours and close to being picked up 9 times since the last time it was reported to be

broken. This will prevent damage to bikes owing to over usage. In a later section, we

demonstrate how to recover the cost incurred due to maintenance checks from the subset

of regular users responsible for damage.

4.3 Identifying Users Responsible for Damaging Bikes

In this section, we propose a method to identify users responsible for damaging bikes

in a FFBS. Our proposed method is simple and easy to implement. First, we decom-

pose the set of all users into mutually exclusive subsets and then identify subsets of users

responsible for breakdowns. Figure 4.5 outlines how the set of users is going to be de-

composed into mutually exclusive subsets. The subsets of interests are:

1. Set 1: subset of casual users mishandling bikes

2. Sets 2 and 6: subset of regular users overusing bikes

The primary challenge in solving this problem is that this is an unsupervised learning

problem, where no labels are available. On top of that we have a low sample (n = 99

93

Users

Potentially Responsible for Damaging Bikes

Yes

+ve correlation to breakdowns

Yes

Belongs to low usage cluster

Yes

Set 1

No

Set 2

No

Belongs to low usage cluster

Yes

Set 3

No

Set 4

No

+ve correlation to breakdowns

Yes

Belongs to low usage cluster

Yes

Set 5

No

Set 6

No

Belongs to low usage cluster

Yes

Set 7

No

Set 8

Figure 4.5: Decision Tree for Identifying Users Responsible for Damaging Bikes

bikes) high dimensional (p ≥ 6096 users) dataset. To tackle this problem we propose a

simple rule based method consisting of the following steps:

1. select a broad set of potential users who may be responsible for damage based on a

metric.

2. resampling from the original dataset: number of resamples = (
100
80
×|potential users|)−

n

3. using regularization to select users with a +ve correlation to breakdowns of bikes

4. cluster users into two groups based on usage

5. compute the Set 1-8 by combining all the above information

This method has the following underlying assumptions:

1. A potential user mishandling bikes must have used a bike at least once. This is be-

cause, an user who is not the part of the FFBS and causes harm to the bike would be

94

40.32%

59.68%

Non malevolent Potentially malevolent

Figure 4.6: Potential Users who May Be Responsible for Damage

difficult to identify as there would be no trip data registered for any such analysis.

The lack of data else wise, restricts our research to focus only on the registered users

who have used the bikes.

2. The set of regular users and the set of users mishandling bikes are mutually exclu-

sive because it is not in the interest of the regular users to mishandle bikes. We are

thus assuming that regular users are behaving rationally.

4.3.1 Stage 1: Selecting a Broad Set of Potential Users who may be Responsible for

Damage

In SABB FFBS, a positive charge imposed by the operator signifies that the user has

violated certain rules and regulations of the SABB FFBS. Similarly, a negative charge im-

posed by the operator signifies that the user has acted in such a manner (parking at low

supply high demand zones, etc) that improves the service level of SABB FFBS. Thus, any

user with a positive charge is selected as a potential user who may be responsible for

damage of bikes.

95

4.3.2 Stage 2: Selecting Users with a Positive Correlation to Breakdowns

In this stage, we select users whose usage have a statistically significant (positive) cor-

relation with the breakdown of bikes. Thus, we are trying to select users whose usage

increases the probability of breakdown of a bike. Like in earlier sections, the three in-

dependent variables of interest are total distance traveled in miles (continuous variable),

total duration traveled in minutes (continuous variable) and total number of trips (count

variable), also refered to as Var 1, Var 2 and Var 3. The dependent variable in this case

is the number of breakdowns of bikes. The three independent variables have seven pos-

sible combinations (described in Table 4.1) that can be used to build a statistical model.

However, the one that performs the best outside of the training set will be selected as the

final model. An user will be selected if the coefficient of any of its variables is the final

model is positive. From the cleaned trip data obtained in the earlier section, we compute

Var 1, Var 2, Var 3 for each user corresponding to each bike. The number of breakdowns

for each bike are also provided.

The statistical model used for selecting the users is regularized Poisson regression.

Two types of regularization, LASSO (Tibshirani (1996)) and ElasticNet have been consid-

ered. For details on LASSO, ElasticNet and other regularization strategies we refer the

readers to James et al. (2013) and Friedman et al. (2009). We use the glmnet (Friedman

et al., 2010) package in R to compute the regularization paths for both LASSO and Elastic-

Net for all the models. The parameters for both LASSO and ElasticNet are selected using

cross validation.

The primary disadvantage of this method is that number of users selected ≤ number

of observations in the training set (79), considering a 80-20 split of the training and testing

dataset. To overcome this problem, we propose a simple re-sampling technique to gen-

erate requisite number of observations without modifying the population characteristics,

like mean and variance.

96

0 200 400 600 800
0.000

0.001

0.002

0.003

0.004
Original Dataset

Resampled Dataset

Figure 4.7: Distribution of the Number of Breakdowns in the Original and the Re-sampled
Dataset

Figure 4.6 represents non malevolent and potentially malevolent users as a percentage

of all users. The number of potentially malevolent users is . Thus, the number of sam-

ples that needs to be drawn with replacement from the original dataset is . The dataset

that consists of the original dataset plus the additional samples drawn with replacement

from the original dataset will be refered to as the re-sampled dataset. Figure 4.7 is the his-

togram of the number of breakdowns in the original and re-sampled dataset. From Figure

4.7, it is evident that the distribution of the number of breakdowns from the re-sampled

dataset closely resembles that in the original dataset. Further, the mean and variance

of the number of breakdowns in the original dataset are and and that in the re-sampled

dataset are and respectively. Thus, the re-sampled dataset represents the original dataset

extremely well.

As the testing errors is almost the same in all of the above models, all users are ac-

cumulated into a group. Interesting fact, if re-sampled dataset is not used no users are

selected in any of these settings.

97

50 100 150 200 250

Varset 1 Alpha 0.05
Varset 1 Alpha 0.1
Varset 1 Alpha 0.2
Varset 1 Alpha 0.3
Varset 1 Alpha 0.4
Varset 1 Alpha 0.5
Varset 1 Alpha 0.6
Varset 1 Alpha 0.7
Varset 1 Alpha 0.8
Varset 1 Alpha 0.9
Varset 1 Alpha 1.0

Varset 2 Alpha 0.05
Varset 2 Alpha 0.1
Varset 2 Alpha 0.2
Varset 2 Alpha 0.3
Varset 2 Alpha 0.4
Varset 2 Alpha 0.5
Varset 2 Alpha 0.6
Varset 2 Alpha 0.7
Varset 2 Alpha 0.8
Varset 2 Alpha 0.9
Varset 2 Alpha 1.0

Varset 3 Alpha 0.05
Varset 3 Alpha 0.1
Varset 3 Alpha 0.2
Varset 3 Alpha 0.3
Varset 3 Alpha 0.4
Varset 3 Alpha 0.5
Varset 3 Alpha 0.6
Varset 3 Alpha 0.7
Varset 3 Alpha 0.8
Varset 3 Alpha 0.9
Varset 3 Alpha 1.0

Varset 4 Alpha 0.05
Varset 4 Alpha 0.1
Varset 4 Alpha 0.2
Varset 4 Alpha 0.3
Varset 4 Alpha 0.4
Varset 4 Alpha 0.5
Varset 4 Alpha 0.6
Varset 4 Alpha 0.7
Varset 4 Alpha 0.8
Varset 4 Alpha 0.9
Varset 4 Alpha 1.0

Varset 5 Alpha 0.05
Varset 5 Alpha 0.1
Varset 5 Alpha 0.2
Varset 5 Alpha 0.3
Varset 5 Alpha 0.4
Varset 5 Alpha 0.5
Varset 5 Alpha 0.6
Varset 5 Alpha 0.7
Varset 5 Alpha 0.8
Varset 5 Alpha 0.9
Varset 5 Alpha 1.0

Varset 6 Alpha 0.05
Varset 6 Alpha 0.1
Varset 6 Alpha 0.2
Varset 6 Alpha 0.3
Varset 6 Alpha 0.4
Varset 6 Alpha 0.5
Varset 6 Alpha 0.6
Varset 6 Alpha 0.7
Varset 6 Alpha 0.8
Varset 6 Alpha 0.9
Varset 6 Alpha 1.0

Varset 7 Alpha 0.05
Varset 7 Alpha 0.1
Varset 7 Alpha 0.2
Varset 7 Alpha 0.3
Varset 7 Alpha 0.4
Varset 7 Alpha 0.5
Varset 7 Alpha 0.6
Varset 7 Alpha 0.7
Varset 7 Alpha 0.8
Varset 7 Alpha 0.9
Varset 7 Alpha 1.0

Users with +ve correlation with breakdowns

Testing Error in RMSE

Figure 4.8: Number of Users with Positive Correlation to Breakdowns and Testing Errors
for All Models

98

5.47%

94.53%

Users with +ve correlation with breakdowns

Users without +ve correlation with breakdowns

Figure 4.9: Users with and without Positive Correlation to Breakdowns

99

4.3.3 Stage 3: Clustering Users into Regular and Casual Users

In this stage, we cluster users into two groups, regular (high usage) and casual (low

usage) users. There are three independent variables, Var 1, Var 2 and Var 3 which results

in seven possible combinations of variables (Table 4.1). Therefore, distance between two

users can be computed in seven possible ways for each of these seven combinations. For

each of these seven combinations, first K-Means and then Hierarchical clustering is used

to cluster users into two groups. Out of the two clusters, users belonging to the (high

usage) cluster with a higher mean of Var 1, Var 2 and Var 3 will be refered to as the

regular users. Whereas users belonging to the other (low usage) cluster will be refered

to as the casual users. For details on K-means and hierarchical clustering we refer the

readers to James et al. (2013) and Friedman et al. (2009). We use the scikit-learn (Pedregosa

et al., 2011) package in Python to compute the clusters using K-means and agglomerative

hierarchical clustering.

It is interesting to note that the objective function the clustering algorithms minimize

is the sum of squared distances from each observation being clustered to its cluster center.

However, our objective is to minimize the variance of Var 1, Var 2 and Var 3 in a cluster.

Thus out of the fourteen clusters, we select the best cluster to be the one whose sum of

variance of Var 1, Var 2 and Var 3 across both the clusters is the least. Var 1, Var 2 and Var

3 for each user is computed from the cleaned trip dataset of SABB FFBS.

4.4 Possible Strategies for Minimizing Damage done to Bikes

Previously, we provided certain metrics based on distance traveled, duration traveled

and number of pickups that helped in identifying whether a bike requires a maintenance

checkup before it can be used further. It is also important to note that this model can also

be modified to predict the number of breakdowns. Now, that we have identified users

who are either over using or mishandling bikes, customized strategies can be developed

100

101 102 103 104 105

Varset 1 with HierarchialClustering

Varset 1 with KMeans

Varset 2 with HierarchialClustering

Varset 2 with KMeans

Varset 3 with HierarchialClustering

Varset 3 with KMeans

Varset 4 with HierarchialClustering

Varset 4 with KMeans

Varset 5 with HierarchialClustering

Varset 5 with KMeans

Varset 6 with HierarchialClustering

Varset 6 with KMeans

Varset 7 with HierarchialClustering

Varset 7 with KMeans
Standard Deviation

Var 1 in HUC

Var 2 in HUC

Var 3 in HUC

Var 1 in LUC

Var 2 in LUC

Var 3 in LUC

Figure 4.10: Intra Cluster Standard Deviation of the 3 Variables for Different Varsets and
Clustering Method

101

101 102 103 104 105

Varset 1 with HierarchialClustering

Varset 1 with KMeans

Varset 2 with HierarchialClustering

Varset 2 with KMeans

Varset 3 with HierarchialClustering

Varset 3 with KMeans

Varset 4 with HierarchialClustering

Varset 4 with KMeans

Varset 5 with HierarchialClustering

Varset 5 with KMeans

Varset 6 with HierarchialClustering

Varset 6 with KMeans

Varset 7 with HierarchialClustering

Varset 7 with KMeans
Mean
Var 1 in HUC

Var 2 in HUC

Var 3 in HUC

Var 1 in LUC

Var 2 in LUC

Var 3 in LUC

Figure 4.11: Intra Cluster Mean of the 3 Variables for Different Varsets and Clustering
Method

102

0 1000 2000 3000 4000 5000 6000

Varset 1 with HierarchialClustering

Varset 1 with KMeans

Varset 2 with HierarchialClustering

Varset 2 with KMeans

Varset 3 with HierarchialClustering

Varset 3 with KMeans

Varset 4 with HierarchialClustering

Varset 4 with KMeans

Varset 5 with HierarchialClustering

Varset 5 with KMeans

Varset 6 with HierarchialClustering

Varset 6 with KMeans

Varset 7 with HierarchialClustering

Varset 7 with KMeans
Number of users

High Usage

Low Usage

Figure 4.12: Intra Cluster Number of Users for Different Varsets and Clustering Method

103

80.09%

19.91%

Users in low usage cluster

Users in high usage cluster

Figure 4.13: Number of Users for Selected Cluster

104

2.62%
0.62%

50.79%

5.64%

1.51%
1.02%

25.16%

12.63%

Set 1

Set 2

Set 3

Set 4

Set 5

Set 6

Set 7

Set 8

Figure 4.14: Decomposition of the Set of All Users into Mutually Exclusive Subsets

105

to deal with them. There are two broad strategies that the operator can use. First, prevent

these identified users from using the system or imposing a penalty on their service charge.

The first strategy is not applicable for the subset of regular users who are overusing the

bikes as they are a major source of revenue. So, the only viable strategy is to penalize

them inorder to recover the maintenance costs associated with over usage. However, for

the malevolent users the operator can use either of the two strategies or a combination of

both.

4.5 Final Remarks

In this chapter, we address several critical issues related to preventing usable bikes

from becoming unusable. First, develop a method to identify and prevent over usage.

Second, identifying users who are responsible for breakdowns of bikes. Finally, devel-

oping strategies that the operator of a BSS can use, once the above two informations

have been obtained. In order to study over usage, we used a (quasi) Poisson regres-

sion model to model the relationship between the number of breakdowns of a bike to

its total distance traveled, total duration of travel and total number of pickups. The task

of identifying users who are responsible for damage was formulated as an unsupervised

learning problem and broken into three steps, comprising of simple intuitive rules, pe-

nalized Poisson regression and clustering. Finally, based on the above two outcomes, we

provided strategies that the operator of a FFBS can use to minimize damage done to bikes

in the system. We also demonstrated the above mentioned methods using the Share-A-

Bull BSS (SABB), an FFBS on the Tampa campus of the University of South Florida (USF).

It is worth mentioning that our method is easy to implement and can be easily ported to

other bike sharing systems without much changes.

106

5 Conclusion

In this dissertation, we propose, implement and test three methods using tools from

operations research, statistical and machine learning to improve service level and de-

crease operating costs of free-floating bike sharing systems. In chapter 2, we propose a

novel MILP for formulating SCRP in FFBS and SBBS based on spacial decomposition.

The proposed formulation, can not only handle single and multiple vehicles, but also

allows for multiple visits to a node by the same vehicle. However, the proposed formula-

tion is computationally intractable even for small scale instances owing to the presence of

Big M, used for subtour elimination in the constraints. It makes the linear programming

relaxation of the formulation extremely weak. Another reason for the computational in-

tractability of the formulation is the significant increase in the number of decision vari-

ables owing to spacial decomposition.

A hybrid nested large neighborhood search with variable neighborhood descent algo-

rithm (NLNS+VND) for solving SCRP both effectively and efficiently for FFBS and SBBS

is also presented. Computational experiments on 1-PDTSP instances, previously used

the literature, demonstrate that NLNS+VND outperforms tabu search and is highly com-

petitive with exact algorithms reported in the literature. A future research direction can

be strengthening the linear programming relaxation of our proposed formulation by ex-

tending valid inequalities proposed in the literature for m-TSP, 1-PDTSP and Q-TSP to

our proposed formulation. To deal with increase in the number of variables, strategies

based on column generation can also be explored. Other interesting strategies can be us-

ing the high quality solution provided by NLNS+VND to warm start MIP solvers once

some mechanism for strengthening the formulation has been implemented.

107

In chapter 3, we propose a method to extract operational management insights from

historical trip data of a shared mobility system, to help the operator make more informed

decisions. Significant amount of research has been conducted on gaining various forms

and types of insights with a broad range of motivation, from the historical data of the

system. However, none of these studies considered interaction between independent

variables or study imbalance as a dependent variable. In this dissertation, we take inter-

actions among independent variables into consideration and apply methods to remove

unnecessary interactions. We also show that more insights about the mobility patterns

and imbalance of the SABB program can be obtained by considering such interactions.

We also propose a simple method to decompose continuous variables into binary vari-

ables which improves the base model used in the literature. Our proposed methodology

gives an unique opportunity to study the system and make recommendations to the op-

erator from various vantage points. To extend our proposed method for station-based

systems, dropoffs can also be considered in conjunction to pickups.

Another future research direction can be, how to use information from such an analy-

sis to compute optimal inventory levels, which can then be used by the operator as inputs

to their specific rebalancing strategies. Another possible research direction can conducted

this analysis for each station in case of station based bike sharing systems or each zone in

case of free floating bike sharing systems

108

References

(2015). mfx. https://cran.r-project.org/web/packages/mfx/mfx.pdf.

(2015). pscl. http://pscl.stanford.edu/.

(2017). BusinessDays.jl. https://github.com/felipenoris/BusinessDays.jl.

(2017a). Dark Sky Api. https://darksky.net/dev/docs/forecast.

(2017b). Dark Sky Data Sources. https://darksky.net/dev/docs/sources.

(2017). Julia Stdlib - Dates and Time. https://docs.julialang.org/en/stable/stdlib/dates/

#stdlib-dates-1.

Ahuja, R. K., Özlem Ergun, Orlin, J. B., and Punnen, A. P. (2002). A survey of very large-

scale neighborhood search techniques. Discrete Applied Mathematics, 123(13):75 – 102.

Alvarez-Valdes, R., Belenguer, J. M., Benavent, E., Bermudez, J. D., Muñoz, F., Vercher, E.,

and Verdejo, F. (2016). Optimizing the level of service quality of a bike-sharing system.

Omega, 62:163 – 175.

Anily, S. and Bramel, J. (1999). Approximation algorithms for the capacitated travel-

ing salesman problem with pickups and deliveries. Naval Research Logistics (NRL),

46(6):654–670.

Applegate, D., Cook, W., and Rohe, A. (2003). Chained lin-kernighan for large traveling

salesman problems. INFORMS J. on Computing, 15(1):82–92.

109

https://cran.r-project.org/web/packages/mfx/mfx.pdf
http://pscl.stanford.edu/
https://github.com/felipenoris/BusinessDays.jl
https://darksky.net/dev/docs/forecast
https://darksky.net/dev/docs/sources
https://docs.julialang.org/en/stable/stdlib/dates/#stdlib-dates-1
https://docs.julialang.org/en/stable/stdlib/dates/#stdlib-dates-1

Bektas, T. (2006). The multiple traveling salesman problem: an overview of formulations

and solution procedures. Omega, 34(3):209 – 219.

Bezanson, J., Karpinski, S., Shah, V. B., and Edelman, A. (2012). Julia: A fast dynamic

language for technical computing. arXiv preprint arXiv:1209.5145.

Borgnat, P., Abry, P., Flandrin, P., Robardet, C., Rouquier, J.-B., and Fleury, E. (2011).

Shared bicycles in a city: A signal processing and data analysis perspective. Advances

in Complex Systems, 14(03):415–438.

Boyacı, B., Zografos, K. G., and Geroliminis, N. (2015). An optimization framework for the

development of efficient one-way car-sharing systems. European Journal of Operational

Research, 240(3):718–733.

Caulfield, B., O’Mahony, M., Brazil, W., and Weldon, P. (2017). Examining usage patterns

of a bike-sharing scheme in a medium sized city. Transportation Research Part A: Policy

and Practice, 100:152 – 161.

Chalasani, P. and Motwani, R. (1999). Approximating capacitated routing and delivery

problems. SIAM Journal on Computing, 28(6):2133–2149.

Chemla, D., Meunier, F., and Calvo, R. W. (2013a). Bike sharing systems: Solving the static

rebalancing problem. Discrete Optimization, 10(2):120 – 146.

Chemla, D., Meunier, F., Pradeau, T., and Calvo, R. W. (2013b). Self-service bike sharing

systems: Simulation, repositioning, pricing.

Cheu, R., Xu, J., Kek, A., Lim, W., and Chen, W. (2006). Forecasting shared-use vehicle

trips with neural networks and support vector machines. Transportation Research Record:

Journal of the Transportation Research Board, (1968):40–46.

Contardo, C., Morency, C., and Rousseau, L.-M. (2012). Balancing a dynamic public bike-

sharing system, volume 4. CIRRELT.

110

de Chardon, C. M. and Caruso, G. (2015). Estimating bike-share trips using station level

data. Transportation Research Part B: Methodological, 78:260 – 279.

de Chardon, C. M., Caruso, G., and Thomas, I. (2017). Bicycle sharing system success

determinants. Transportation Research Part A: Policy and Practice, 100:202 – 214.

Delassus, R., Giot, R., Cherrier, R., Barbieri, G., and Mélançony, G. (2016). Broken bikes

detection using citibike bikeshare system open data. In 2016 IEEE Symposium Series on

Computational Intelligence (SSCI), pages 1–7.

Dell’Amico, M., Hadjicostantinou, E., Iori, M., and Novellani, S. (2014). The bike sharing

rebalancing problem: Mathematical formulations and benchmark instances. Omega,

45:7 – 19.

DellAmico, M., Iori, M., Novellani, S., and Stützle, T. (2016). A destroy and repair algo-

rithm for the bike sharing rebalancing problem. Computers & Operations Research, 71:149

– 162.

DeMaio, P. (2009). Bike-sharing: History, impacts, models of provision, and future. Journal

of Public Transportation, 12(4):3.

Erdoan, G., Battarra, M., and Calvo, R. W. (2015). An exact algorithm for the static re-

balancing problem arising in bicycle sharing systems. European Journal of Operational

Research, 245(3):667 – 679.

Erdoan, G., Laporte, G., and Calvo, R. W. (2014). The static bicycle relocation problem

with demand intervals. European Journal of Operational Research, 238(2):451 – 457.

Faghih-Imani, A., Anowar, S., Miller, E. J., and Eluru, N. (2017a). Hail a cab or ride a

bike? a travel time comparison of taxi and bicycle-sharing systems in new york city.

Transportation Research Part A: Policy and Practice, 101:11 – 21.

111

Faghih-Imani, A. and Eluru, N. (2016). Incorporating the impact of spatio-temporal inter-

actions on bicycle sharing system demand: A case study of new york citibike system.

Journal of Transport Geography, 54:218 – 227.

Faghih-Imani, A., Eluru, N., El-Geneidy, A. M., Rabbat, M., and Haq, U. (2014). How land-

use and urban form impact bicycle flows: evidence from the bicycle-sharing system

(bixi) in montreal. Journal of Transport Geography, 41:306 – 314.

Faghih-Imani, A., Hampshire, R., Marla, L., and Eluru, N. (2017b). An empirical analysis

of bike sharing usage and rebalancing: Evidence from barcelona and seville. Transporta-

tion Research Part A: Policy and Practice, 97:177 – 191.

Fishman, E., Washington, S., Haworth, N., and Watson, A. (2015). Factors influencing bike

share membership: An analysis of melbourne and brisbane. Transportation Research Part

A: Policy and Practice, 71:17 – 30.

Forma, I. A., Raviv, T., and Tzur, M. (2015). A 3-step math heuristic for the static reposi-

tioning problem in bike-sharing systems. Transportation Research Part B: Methodological,

71:230 – 247.

Friedman, J., Hastie, T., and Tibshirani, R. (2009). The Elements of Statistical Learning, vol-

ume 1. Springer.

Friedman, J., Hastie, T., and Tibshirani, R. (2010). Regularization paths for generalized

linear models via coordinate descent. Journal of Statistical Software, 33(1):1–22.

Gebhart, K. and Noland, R. B. (2014). The impact of weather conditions on bikeshare trips

in washington, dc. Transportation, 41(6):1205–1225.

Ghilas, V., Demir, E., and Woensel, T. V. (2016). An adaptive large neighborhood search

heuristic for the pickup and delivery problem with time windows and scheduled lines.

Computers & Operations Research, 72:12 – 30.

112

Helsgaun, K. (2000). An effective implementation of the linkernighan traveling salesman

heuristic. European Journal of Operational Research, 126(1):106 – 130.

Helsgaun, K. (2009). General k-opt submoves for the lin–kernighan tsp heuristic. Mathe-

matical Programming Computation, 1(2):119–163.

Hernández-Pérez, H. and Salazar-González, J.-J. (2004). A branch-and-cut algorithm for

a traveling salesman problem with pickup and delivery. Discrete Applied Mathematics,

145(1):126 – 139. Graph Optimization {IV}.

Ho, S. C. and Szeto, W. (2014). Solving a static repositioning problem in bike-sharing

systems using iterated tabu search. Transportation Research Part E: Logistics and Trans-

portation Review, 69:180 – 198.

Ho, S. C. and Szeto, W. (2017). A hybrid large neighborhood search for the static

multi-vehicle bike-repositioning problem. Transportation Research Part B: Methodologi-

cal, 95:340 – 363.

James, G., Witten, D., Hastie, T., and Tibshirani, R. (2013). An Introduction to Statistical

Learning, volume 112. Springer.

Kaltenbrunner, A., Meza, R., Grivolla, J., Codina, J., and Banchs, R. (2010). Urban cy-

cles and mobility patterns: Exploring and predicting trends in a bicycle-based public

transport system. Pervasive and Mobile Computing, 6(4):455 – 466.

Kaspi, M., Raviv, T., and Tzur, M. (2016). Detection of unusable bicycles in bike-sharing

systems. Omega, 65:10 – 16.

Kaspi, M., Raviv, T., and Tzur, M. (2017). Bike-sharing systems: User dissatisfaction in the

presence of unusable bicycles. IISE Transactions, 49(2):144–158.

113

Kloimüllner, C., Papazek, P., Hu, B., and Raidl, G. R. (2014). Balancing bicycle sharing

systems: An approach for the dynamic case. In Blum, C. and Ochoa, G., editors, Evo-

lutionary Computation in Combinatorial Optimisation: 14th European Conference, EvoCOP

2014, Granada, Spain, April 23-25, 2014, Revised Selected Papers, pages 73–84. Springer

Berlin Heidelberg, Berlin, Heidelberg.

Laporte, G., Meunier, F., and Wolfler Calvo, R. (2015). Shared mobility systems. 4OR,

13(4):341–360.

Laporte, G. and Nobert, Y. (1980). A cutting planes algorithm for the m-salesmen problem.

Journal of the Operational Research Society, 31(11):1017–1023.

OBrien, O., Cheshire, J., and Batty, M. (2014). Mining bicycle sharing data for generating

insights into sustainable transport systems. Journal of Transport Geography, 34:262 – 273.

Pal, A. and Zhang, Y. (2017). Free-floating bike sharing: Solving real-life large-scale static

rebalancing problems. Transportation Research Part C: Emerging Technologies, 80:92 – 116.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,

M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D.,

Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine learning in

Python. Journal of Machine Learning Research, 12:2825–2830.

Pfrommer, J., Warrington, J., Schildbach, G., and Morari, M. (2014). Dynamic vehicle

redistribution and online price incentives in shared mobility systems. IEEE Transactions

on Intelligent Transportation Systems, 15(4):1567–1578.

Rainer-Harbach, M., Papazek, P., Raidl, G. R., Hu, B., and Kloimüllner, C. (2015). Pilot,

grasp, and vns approaches for the static balancing of bicycle sharing systems. Journal

of Global Optimization, 63(3):597–629.

114

Raviv, T., Tzur, M., and Forma, I. A. (2013). Static repositioning in a bike-sharing system:

models and solution approaches. EURO Journal on Transportation and Logistics, 2(3):187–

229.

Regue, R. and Recker, W. (2014). Proactive vehicle routing with inferred demand to solve

the bikesharing rebalancing problem. Transportation Research Part E: Logistics and Trans-

portation Review, 72:192 – 209.

Reiss, S. and Bogenberger, K. (2015). Gps-data analysis of munich’s free-floating bike

sharing system and application of an operator-based relocation strategy. In Proceedings

of the 2015 IEEE 18th International Conference on Intelligent Transportation Systems, ITSC

’15, pages 584–589, Washington, DC, USA. IEEE Computer Society.

Schuijbroek, J., Hampshire, R., and van Hoeve, W.-J. (2017). Inventory rebalancing and ve-

hicle routing in bike sharing systems. European Journal of Operational Research, 257(3):992

– 1004.

Singla, A., Santoni, M., Bartók, G., Mukerji, P., Meenen, M., and Krause, A. (2015). In-

centivizing users for balancing bike sharing systems. In Proceedings of the Twenty-Ninth

AAAI Conference on Artificial Intelligence, AAAI’15, pages 723–729. AAAI Press.

Szeto, W., Liu, Y., and Ho, S. C. (2016). Chemical reaction optimization for solving a static

bike repositioning problem. Transportation Research Part D: Transport and Environment,

47:104 – 135.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal

Statistical Society. Series B (Methodological), 58(1):267–288.

Toth, P. and Vigo, D. (2003). The granular tabu search and its application to the vehicle-

routing problem. INFORMS J. on Computing, 15(4):333–346.

115

Wagner, S., Brandt, T., and Neumann, D. (2016). In free float: Developing business ana-

lytics support for carsharing providers. Omega, 59:4 – 14. Business Analytics.

Washington, S. P., Karlaftis, M. G., and Mannering, F. (2010). Statistical and econometric

methods for transportation data analysis. CRC press.

Weikl, S. and Bogenberger, K. (2013). Relocation strategies and algorithms for free-floating

car sharing systems. IEEE Intelligent Transportation Systems Magazine, 5(4):100–111.

Zhang, Y., Thomas, T., Brussel, M. J. G., and van Maarseveen, M. F. A. M. (2016). Expand-

ing bicycle-sharing systems: Lessons learnt from an analysis of usage. PLOS ONE,

11(12):1–25.

Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net.

Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67(2):301–320.

116

Appendix A Copyright Permissions

A.1 Reprint Permissions for Chapter 2

11/5/2017 University of South Florida Mail - Permit for including published article in Transportation Research: Part C in doctoral dissertati…

https://mail.google.com/mail/u/0/?ui=2&ik=8d5e512c0d&jsver=ZOgYGgvFjfY.en.&view=pt&q=yafeng%40umich.edu&qs=true&sear… 1/2

Aritra Pal <aritra1@mail.usf.edu>

Permit for including published article in Transportation Research: Part C in doctoral
dissertation
3 messages

Aritra Pal <aritra1@mail.usf.edu> Wed, Sep 27, 2017 at 4:23 PM
To: yafeng@umich.edu, "Zhang, Yu [yuzhang]" <yuzhang@usf.edu>

Dr. Yin

I am Aritra Pal, fifth year PhD candidate in the Industrial Engineering department at USF, Tampa. Our article "Free-

floating bike sharing: Solving real-life large-scale static rebalancing problems" was published in Transportation

Research Part C. I am interested in including this article in my doctoral dissertation. Can you please tell me the

procedure for obtaining the copyright permit for including this article in my doctoral dissertation?

Sincerely,

Aritra Pal

Doctoral Candidate

Industrial and Management Systems Engineering

University of South Florida

Office Location: ENG 302

Mobile: +1 813-466-2938

Homepage
LinkedIn

GitHub

Yafeng Yin <yafeng@umich.edu> Wed, Sep 27, 2017 at 5:20 PM
To: Aritra Pal <aritra1@mail.usf.edu>
Cc: "Zhang, Yu [yuzhang]" <yuzhang@usf.edu>

As an author, you have the right to include a published paper in your desperation or thesis. There is no need to ask for
permission.

Good luck,

Yafeng Yin

--
Yafeng Yin, Ph.D.
Professor
Department of Civil and Environmental Engineering
University of Michigan, Ann Arbor

Editor-in-Chief
Transportation Research Part C: Emerging Technologies

Tel: (734) 764-8249
Fax: (734) 764-4292
Email: yafeng@umich.edu
Web: http://cee.engin.umich.edu/yafeng-yin
--
[Quoted text hidden]

Aritra Pal <aritra1@mail.usf.edu> Wed, Sep 27, 2017 at 5:36 PM
To: Yafeng Yin <yafeng@umich.edu>

117

	Improving Service Level of Free-Floating Bike Sharing Systems
	Scholar Commons Citation

	List of Tables
	List of Figures
	Abstract
	Introduction
	Solving Large-Scale Static Rebalancing Problems in Free-Floating Bike Sharing Systems
	Note to Reader
	Introduction
	Problem Description and Related Work
	Mathematical Formulation of SCRP
	Proposed Heuristic
	Initial Solution
	Single Vehicle
	Multiple Vehicles

	Variable Neighborhood Descent (VND)
	Local Search Operators for Single Vehicle
	Local Search Operators for Multiple Vehicles

	Large Neighborhood Search (LNS)
	Repairing Operators
	Perturbation Operators
	Perturbation Operators 1 and 2
	Perturbation Operators 3 and 4

	NLNS+VND

	Recommended Solution Strategies
	Instances with Zero Imbalance at the Depot
	Instances with Non-zero Imbalance at the Depot

	Case Study 1: 1-PDTSP Instances
	Case Study 2: Share-A-Bull (SABB) FFBS
	Case Study 3: Divvy SBBS
	Final Remarks

	Analyzing Mobility Patterns and Imbalance of Free Floating Bike Sharing Systems
	Problem Description
	Literature Review
	Methodology
	Variables
	Data Descriptions
	Decomposing Continuous Independent Variables
	Interactions between Binary Independent Variables
	Variable Sets Used in this Chapter
	Baseline Models
	Regularization
	Models Used in this Chapter
	Model Selection

	Experimental Results
	Discussion
	Data Visualization
	Models with No Interactions
	Models with Interactions
	All Vantage Points

	Final Remarks

	Strategies to Increase Usable Bikes in Free-Floating Bike Sharing Systems
	Problem Description and Related Work
	Identifying and Preventing Over Usage
	Identifying Users Responsible for Damaging Bikes
	Stage 1: Selecting a Broad Set of Potential Users who may be Responsible for Damage
	Stage 2: Selecting Users with a Positive Correlation to Breakdowns
	Stage 3: Clustering Users into Regular and Casual Users

	Possible Strategies for Minimizing Damage done to Bikes
	Final Remarks

	Conclusion
	References
	Appendix Copyright Permissions
	Reprint Permissions for Chapter 2

