
University of South Florida University of South Florida

Digital Commons @ University of Digital Commons @ University of

South Florida South Florida

USF Tampa Graduate Theses and Dissertations USF Graduate Theses and Dissertations

November 2017

Graph-based Latent Embedding, Annotation and Representation Graph-based Latent Embedding, Annotation and Representation

Learning in Neural Networks for Semi-supervised and Learning in Neural Networks for Semi-supervised and

Unsupervised Settings Unsupervised Settings

Ismail Ozsel Kilinc
University of South Florida, ozsel@mail.usf.edu

Follow this and additional works at: https://digitalcommons.usf.edu/etd

 Part of the Artificial Intelligence and Robotics Commons, and the Electrical and Computer Engineering

Commons

Scholar Commons Citation Scholar Commons Citation
Kilinc, Ismail Ozsel, "Graph-based Latent Embedding, Annotation and Representation Learning in Neural
Networks for Semi-supervised and Unsupervised Settings" (2017). USF Tampa Graduate Theses and
Dissertations.
https://digitalcommons.usf.edu/etd/7415

This Dissertation is brought to you for free and open access by the USF Graduate Theses and Dissertations at
Digital Commons @ University of South Florida. It has been accepted for inclusion in USF Tampa Graduate Theses
and Dissertations by an authorized administrator of Digital Commons @ University of South Florida. For more
information, please contact digitalcommons@usf.edu.

https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/etd
https://digitalcommons.usf.edu/grad_etd
https://digitalcommons.usf.edu/etd?utm_source=digitalcommons.usf.edu%2Fetd%2F7415&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=digitalcommons.usf.edu%2Fetd%2F7415&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.usf.edu%2Fetd%2F7415&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.usf.edu%2Fetd%2F7415&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usf.edu

Graph-based Latent Embedding, Annotation and Representation Learning in Neural

Networks for Semi-supervised and Unsupervised Settings

by

Ismail Ozsel Kilinc

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
Department of Electrical Engineering

College of Engineering
University of South Florida

Major Professor: Ismail Uysal, Ph.D.
Sanjukta Bhanja, Ph.D.

Selcuk Kose, Ph.D.
Lawrence Hall, Ph.D.
Umut Ozertem, Ph.D.

Date of Approval:
November 30, 2017

Keywords: Machine Learning, Deep Learning, Graph-based Regularization, Clustering,
Auto-clustering Output Layer

Copyright c© 2017, Ismail Ozsel Kilinc

DEDICATION

To mom, dad and Sule.

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my major professor Dr. Ismail Uysal

for his guidance and support in my study. His inspiring suggestions and meticulous feedback

in every step of this dissertation enabled me to write it and made it an invaluable experience

for me. It has been a pleasure to write this dissertation under his guidance.

I would also wish to express my sincere gratitude to my dissertation committee

members Dr. Sanjukta Bhanja, Dr. Selcuk Kose, Dr. Larry Hall and Dr. Umut Ozertem as

they kindly accepted to share their invaluable comments and helpful suggestions with me. I

also thank to Dr. Kyle Reed as he kindly accepted to chair my dissertation defense meeting.

I express my dearest thanks to Sule Akdogan who did not leave me alone getting

through the hardest times. Her presence and her belief in me have been reassuring throughout

this study. I am deeply indebted to her for her understanding, patience, respect in what I

am doing and encouragement.

Last but not least, most special thanks and love go to my family, Nevin and Tacettin,

who have supported me in everything I have done in my life. It could have been impossible

to write this dissertation without their love and support. They are the true possessors of my

success.

TABLE OF CONTENTS

LIST OF TABLES iii

LIST OF FIGURES v

ABSTRACT vii

CHAPTER 1: INTRODUCTION 1
1.1 Dissertation Outline 5

1.1.1 GAR: An Efficient and Scalable Graph-based Activity Regu-
larization for Semi-supervised Learning 5

1.1.2 Auto-clustering Output Layer: Automatic Learning of Latent
Annotations in Neural Networks 5

1.1.3 Learning Latent Representations in Neural Networks for
Unsupervised Clustering through Pseudo Supervision and
Graph-based Activity Regularization 6

CHAPTER 2: GAR: AN EFFICIENT AND SCALABLE GRAPH-BASED AC-
TIVITY REGULARIZATION FOR SEMI-SUPERVISED LEARN-
ING 8

2.1 Related Work 10
2.2 Proposed Framework 12

2.2.1 Bipartite Graph Approach 12
2.2.2 Adaptive Adjacency 14
2.2.3 The Optimality of B 15
2.2.4 Activity Regularization 16
2.2.5 Training 18

2.3 Experiments 19
2.3.1 Datasets Used in the Experiments 20
2.3.2 Models Used in the Experiments 20
2.3.3 Results 22

2.3.3.1 MNIST 23
2.3.3.2 SVHN and NORB 26
2.3.3.3 Effects of Hyperparameters 28

i

CHAPTER 3: AUTO-CLUSTERING OUTPUT LAYER: AUTOMATIC LEARN-
ING OF LATENT ANNOTATIONS IN NEURAL NETWORKS 32

3.1 Related Work 35
3.2 Auto-clustering Output Layer 36

3.2.1 Output Layer Modification 36
3.2.2 Mathematical Description and GAR Integration 38
3.2.3 Training and Annotation Assignment 40
3.2.4 Graph Interpretation of the Proposed Framework 40

3.3 Experimental Results 42
3.3.1 MNIST 45
3.3.2 MNIST - Impact of the Provided Supervision on Performance 47
3.3.3 SVHN and CIFAR-100 51

CHAPTER 4: LEARNING LATENT REPRESENTATIONS IN NEURAL NET-
WORKS FOR UNSUPERVISED CLUSTERING THROUGH PSEUDO
SUPERVISION AND GRAPH-BASED ACTIVITY REGULAR-
IZATION 55

4.1 Background 58
4.2 Proposed Framework 60

4.2.1 Objective Function 60
4.2.2 Modified Affinity and Balance Terms 61
4.2.3 Training and Cluster Assignments 63

4.3 Experiments 63
4.3.1 Experimental Setup and Datasets 63
4.3.2 Quantitative Comparison 66
4.3.3 Representation Properties 68
4.3.4 Graph Interpretation of the Latent Information Propagation

through GAR 70
4.3.5 The Impact of the Number of Clusters k 72
4.3.6 The Impact of Transformations 73

CHAPTER 5: CONCLUSIONS 78

LIST OF REFERENCES 82

ii

LIST OF TABLES

Table 2.1 Datasets used in the experiments. 21

Table 2.2 Specifications of the models used in the experiments†. 22

Table 2.3 Benchmark results of the semi-supervised test accuracies on MNIST
for few labeled samples, mL ∈ {100, 600, 1000, 3000}. 27

Table 2.4 Benchmark results of the semi-supervised test accuracies on SVHN and
NORB. 28

Table 3.1 Datasets used in the experiments. 43

Table 3.2 Specifications of the CNN model used in the experiments†. 44

Table 3.3 Benchmark results for the two-parent case (whether a digit is smaller
or larger than 5) on MNIST. 47

Table 3.4 Benchmark results for the two-parent case on MNIST to observe the
inter-parent effect of the provided supervision. 51

Table 3.5 Test errors for worst, median and best cases among 74 non-repeating
two-parent supervision scenarios on MNIST. 52

Table 3.6 Benchmark error results for the two-parent case on SVHN. 53

Table 3.7 Benchmark error results for the twenty-parent case on CIFAR-100. 54

Table 4.1 Datasets used in the experiments. 64

Table 4.2 Specifications of the CNN model used in the experiments†. 66

Table 4.3 Quantitative unsupervised clustering performance (ACC) on MNIST,
USPS and SVHN datasets. 69

iii

Table 4.4 Quantitative unsupervised clustering performance (NMI) on MNIST,
USPS and SVHN datasets. 70

iv

LIST OF FIGURES

Figure 2.1 MNIST Dataset. 21

Figure 2.2 SVHN Dataset. 22

Figure 2.3 NORB Dataset. 23

Figure 2.4 Visualizations of the graphs G∗, GM and GN for a randomly chosen 250
test examples from MNIST for the mL = 100 case. 24

Figure 2.5 t-SNE visualization of the embedding spaces inferred by B for a
randomly chosen 2000 test examples for the mL = 100 case. 26

Figure 2.6 Test accuracies obtained using different models with respect to unsu-
pervised training epochs. 29

Figure 2.7 The effect of bL/bU ratio for MNIST and SVHN datasets. 30

Figure 2.8 The effects of a) on the left, choosing bL ≈ mL and b) on the right,
applying dropout during the unsupervised training on MNIST dataset. 31

Figure 2.9 The effects of a) cα/cβ and b) cF on MNIST dataset. 31

Figure 3.1 Particular semi-supervised setting discussed in this chapter. 34

Figure 3.2 Neural network structure with the ACOL. 37

Figure 3.3 After training, the pooling layer is simply disconnected. 41

Figure 3.4 CIFAR-100 Dataset. 43

Figure 3.5 Visualizations of the graph GY and its spanning subgraph GM for a
randomly chosen 250 test examples from MNIST. 46

Figure 3.6 t-SNE visualization of the latent space inferred by Z for a randomly
chosen 2000 test examples from MNIST. 48

v

Figure 3.7 t-SNE visualization of the latent spaces obtained using four different
approaches for a randomly chosen 2000 test examples from MNIST. 49

Figure 3.8 t-SNE visualization of the latent spaces obtained for the first parent-
class, {0, 1, 2, 3, 4}, showing the inter-parent effect of the provided
supervision. 50

Figure 3.9 Normalized histogram of the test accuracies obtained using ACOL for
a randomly chosen 74 non-repeating two-parent supervision scenarios
on MNIST. 52

Figure 4.1 Assume that we are given a dataset of hand-written digits such as
MNIST where the overall task is the complete categorization of each
digit. 59

Figure 4.2 USPS Dataset. 65

Figure 4.3 t-SNE visualization of the latent space F throughout the training for
a randomly selected 2000 untransformed test examples from MNIST. 67

Figure 4.4 The average value for each dimension of F , Z and softmax(Z) observed
with respect to untransformed test set examples and the norm of the
associated weights. 71

Figure 4.5 Comparison of t-SNE visualizations of the latent spaces F , Z and
softmax(Z) for 2000 test examples from MNIST. 72

Figure 4.6 Visualizations of the graph GY and its spanning subgraph GM for
randomly chosen 250 test examples from MNIST. 75

Figure 4.7 Illustration of a few examples of each cluster for two different k settings. 76

Figure 4.8 t-SNE visualizations of the representation spaces observed when differ-
ent sets of transformations are adopted. 77

vi

ABSTRACT

Machine learning has been immensely successful in supervised learning with out-

standing examples in major industrial applications such as voice and image recognition.

Following these developments, the most recent research has now begun to focus primarily

on algorithms which can exploit very large sets of unlabeled examples to reduce the amount

of manually labeled data required for existing models to perform well. In this dissertation,

we propose graph-based latent embedding/annotation/representation learning techniques in

neural networks tailored for semi-supervised and unsupervised learning problems. Specifically,

we propose a novel regularization technique called Graph-based Activity Regularization

(GAR) and a novel output layer modification called Auto-clustering Output Layer (ACOL)

which can be used separately or collaboratively to develop scalable and efficient learning

frameworks for semi-supervised and unsupervised settings.

First, singularly using the GAR technique, we develop a framework providing an

effective and scalable graph-based solution for semi-supervised settings in which there exists

a large number of observations but a small subset with ground-truth labels. The proposed

approach is natural for the classification framework on neural networks as it requires no

additional task calculating the reconstruction error (as in autoencoder based methods)

or implementing zero-sum game mechanism (as in adversarial training based methods).

We demonstrate that GAR effectively and accurately propagates the available labels to

unlabeled examples. Our results show comparable performance with state-of-the-art generative

approaches for this setting using an easier-to-train framework.

vii

Second, we explore a different type of semi-supervised setting where a coarse level of

labeling is available for all the observations but the model has to learn a fine, deeper level

of latent annotations for each one. Problems in this setting are likely to be encountered in

many domains such as text categorization, protein function prediction, image classification as

well as in exploratory scientific studies such as medical and genomics research. We consider

this setting as simultaneously performed supervised classification (per the available coarse

labels) and unsupervised clustering (within each one of the coarse labels) and propose a novel

framework combining GAR with ACOL, which enables the network to perform concurrent

classification and clustering. We demonstrate how the coarse label supervision impacts

performance and the classification task actually helps propagate useful clustering information

between sub-classes. Comparative tests on the most popular image datasets rigorously

demonstrate the effectiveness and competitiveness of the proposed approach.

The third and final setup builds on the prior framework to unlock fully unsupervised

learning where we propose to substitute real, yet unavailable, parent- class information

with pseudo class labels. In this novel unsupervised clustering approach the network can

exploit hidden information indirectly introduced through a pseudo classification objective.

We train an ACOL network through this pseudo supervision together with unsupervised

objective based on GAR and ultimately obtain a k-means friendly latent representation.

Furthermore, we demonstrate how the chosen transformation type impacts performance and

helps propagate the latent information that is useful in revealing unknown clusters. Our

results show state-of-the-art performance for unsupervised clustering tasks on MNIST, SVHN

and USPS datasets with the highest accuracies reported to date in the literature.

viii

CHAPTER 1: INTRODUCTION

Artificial intelligence (AI) is a flourishing field with many practical applications and

active research topics such as automating routine work, understanding and interpreting

speech, text and images, supporting basic scientific research and diagnosis in medicine [19].

In the early days of AI dominant approaches were rule-based systems where the knowledge

needed to solve the tasks is explicitly hard-coded by a programmer. These kinds of approaches

have been successful in solving problems that can be easily described by a small set of formal

rules but can require a lot of search, such as playing chess; however, they failed to solve those

that cannot be formally described, such as recognizing objects or speech, and those requiring

an immense amount of knowledge, such as playing Go. While there are approximately 400

possible next moves in chess, for Go this number goes up to 130,000 [13]. Also, it is impossible

for a programmer to hard-code the knowledge required to recognize faces through if-else

based rules. Therefore, researchers have reached a consensus that, in order to behave in an

intelligent way, AI systems need the ability to acquire their own knowledge from raw data,

which is known as the field of machine learning, just as human-beings learn from experience.

Neural networks, when first introduced as universal estimators, created wide spread

enthusiasm especially with innovative and bio-inspired machine learning methodologies such

as error back-propagation [54]. However, their potential wasn’t fully realized until greater

availability of computational power to simulate networks orders of magnitude larger than

their early counterparts and massive datasets to help train them. This approach to AI, called

deep learning with reference to deep structures with many layers, has been proposed to

mimic the operational and organizational behavior of the human brain, which works through

1

abstraction [3]. For example, objects or sounds are represented as electrical signals traveling

through different types of connections with different strengths between neurons in visual or

auditory cortexes respectively [46]. Deep learning takes inspiration from this and relies on

higher-level representations of features (or characteristics) embedded in the data instead of

human engineered characteristics.

One great example is in computer vision in regards to how methods have changed

transformatively over the last several years. For instance, a particular implementation of

deep learning called Convolutional Neural Networks (CNN) has been applied to the image

classification problem with remarkable success [31]. Besides pure performance numbers, the

most interesting finding was how expert human engineered features, such as textures and

contrasts, which have been used for decades were ultimately represented at the deeper and

hidden layers of the neural network without any explicit instructions. On the other hand, for

tasks involving temporal input such as speech and text, Recurrent Neural Networks (RNN)

are widely in use since they provide better prediction for the future elements thanks to the

architecture implicitly keeping the information about past elements, such as Long Short Term

Memory (LSTM) networks [34], [23].

Specifically in the last five year period, these models have successful produced many

practical industrial applications for supervised learning problems where the overall task is to

learn to map one vector (input) to another (label), given enough examples of the mapping.

To achieve good performance, algorithms used for these applications require large amounts of

labeled data whose labels are typically entered by a staff of human supervisors. However,

labeling is mostly a challenging task that sometimes requires expert knowledge and in fact,

especially in exploratory research, defines the scientific problem itself. Therefore, in recent

years, researchers have focused approaches that are able to exploit a large set of unlabeled

examples to reduce the amount of labeled data required for existing models to perform

well. These approaches adopt some form of unsupervised or semi-supervised learning. In a

2

semi-supervised setting, the goal is to take advantage of a large set of unlabeled examples

to improve the performance that is obtained using only labeled examples whose amount is

typically much smaller than that of unlabeled ones. On the other hand, in an unsupervised

setting, as there is no labeling available, the task is generally to determine the underlying

distribution generating the dataset and to discover the unknown labels.

In this dissertation, we propose graph-based latent embedding, annotation and represen-

tation learning in neural networks for semi-supervised and unsupervised settings. Specifically,

we propose a novel regularization technique called Graph-based Activity Regularization (GAR)

and a novel output layer modification called Auto-clustering Output Layer (ACOL) which

are separately and collaboratively used to develop scalable and efficient learning frameworks

for semi-supervised and unsupervised settings. More specifically, major contributions of this

dissertation are as follows:

• The first graph-based technique in literature which displays competitive performance

with deep generative approaches based on the test performances on mid-size image

datasets of digits, such as MNIST [35] and SVHN [44]

– 6.98%(±0.82)1 vs. 4.28% [41] error rate on SVHN using a randomly chosen 1000

labeled examples with stratification

– 1.56%(±0.09)1 vs. 0.93%(±0.07) [56] error rate on MNIST using a randomly

chosen 100 labeled examples with stratification

and statistically significantly outperforms all other graph-based methods

– 1.56%(±0.09)1 vs. 7.75%(±0.07) [67] error rate on MNIST using a randomly

chosen 100 labeled examples with stratification

for semi-supervised learning.
1± shows the 0.95 confidence interval

3

• The first model in literature which enables neural networks to learn previously unknown

annotations in observations for which coarse labeling is available with empirical

demonstrations of how inter-class differences can help explore subclasses of the provided

coarse labeling.

• Statistically significant and superior performance with respect to other methods modified

to operate in this particular setting based on the test performances on MNIST, i.e.

mid-size image dataset of hand-written digits

– 1.39%(±0.12)1 vs. 8.18% [25] error rate on MNIST when providing the coarse

labeling as whether a digit is smaller or greater than 5

• The first graph-based technique in literature which outperforms all other known

approaches for unsupervised clustering based on the test performances on mid-size

image datasets of digits, such as MNIST [35] and SVHN [44]

– 76.80%(±1.30)1 vs. 57.30%(±3.90) [24] clustering accuracy on SVHN

– 98.32%(±0.08)1 vs. 98.40%(±0.40) [24] and 96.10 [72] clustering accuracy on

MNIST

and defines the current state-of-the-art for unsupervised clustering for the SVHN dataset,

as observed through statistically significantly better result with a wide margin.

The following section describes the outline of the dissertation and briefly summarizes

the proposed framework in each chapter.

4

1.1 Dissertation Outline

1.1.1 GAR: An Efficient and Scalable Graph-based Activity Regularization for Semi-

supervised Learning

In Chapter 2, we propose a novel graph-based approach for the semi-supervised learning

setting in which there exist a large number of observations but only a small subset of them

have ground-truth labels. In this approach, the adjacency of the examples is inferred using

the predictions of a neural network model, which is first initialized by supervised training

using the small subset of labeled examples. Then, during the subsequent unsupervised

portion of the training that propagates the available labels toward the unlabeled examples,

the inferred adjacency matrix is simultaneously updated along with the predictions of the

network. However, unlike traditional graph-based methods propagating the labels using

an m ×m adjacency matrix of m examples, the proposed approach propagates the labels

through a scalable regularization objective defined on an n × n adjacency matrix of n

output classes, where typically n � m. Ultimately, the proposed framework provides an

effective and scalable graph-based solution which is natural for the classification framework

on neural networks as it requires no additional task calculating the reconstruction error (as

in autoencoder based methods) or implementing zero-sum game mechanism (as in adversarial

training based methods). Our results show comparable performance with state-of-the-art

generative approaches for semi-supervised learning using an easier-to-train framework.

1.1.2 Auto-clustering Output Layer: Automatic Learning of Latent Annotations in

Neural Networks

In Chapter 3, we discuss a different type of semi-supervised setting: a coarse level

of labeling is available for all observations but the model has to learn a fine level of latent

annotation for each one of them. Problems in this setting are likely to be encountered in

many domains such as text categorization, protein function prediction, image classification as

5

well as in exploratory scientific studies such as medical and genomics research. We consider

this setting as simultaneously performed supervised classification (per the available coarse

labels) and unsupervised clustering (within each one of the coarse labels) and propose a

novel output layer modification called auto-clustering output layer (ACOL) that allows

concurrent classification and clustering based on Graph-based Activity Regularization (GAR)

technique. As the proposed output layer modification duplicates the softmax nodes at the

output layer for each class, GAR allows for competitive learning between these duplicates on a

traditional error-correction learning framework to ultimately enable a neural network to learn

the latent annotations in this partially supervised setup. We demonstrate how the coarse label

supervision impacts performance and helps propagate useful clustering information between

sub-classes. Comparative tests on three image datasets MNIST, SVHN and CIFAR-100

rigorously demonstrate the effectiveness and competitiveness of the proposed approach.

1.1.3 Learning Latent Representations in Neural Networks for Unsupervised Cluster-

ing through Pseudo Supervision and Graph-based Activity Regularization

In Chapter 4, we propose a novel unsupervised clustering approach exploiting the

hidden information that is indirectly introduced through a pseudo classification objective.

Specifically, we randomly assign a pseudo parent-class label to each observation which is

then modified by applying the domain specific transformation associated with the assigned

label. Generated pseudo observation-label pairs are subsequently used to train a neural

network with Auto-clustering Output Layer (ACOL) that introduces multiple softmax nodes

for each pseudo parent-class. Due to the unsupervised objective based on Graph-based

Activity Regularization (GAR) terms, softmax duplicates of each parent-class are specialized

as the hidden information captured through the help of domain specific transformations is

propagated during training. Ultimately we obtain a k-means friendly latent representation.

Furthermore, we demonstrate how the chosen transformation type impacts performance and

6

helps propagate the latent information that is useful in revealing unknown clusters. Our

results show state-of-the-art performance for unsupervised clustering tasks on MNIST, SVHN

and USPS datasets, with the highest accuracies reported to date in the literature.

7

CHAPTER 2: GAR: AN EFFICIENT AND SCALABLE GRAPH-BASED

ACTIVITY REGULARIZATION FOR SEMI-SUPERVISED LEARNING1

The idea of utilizing an auxiliary unsupervised task to help supervised learning dates

back to 90s [59]. As an example to one of its numerous achievements, unsupervised pretraining

followed by supervised fine-tuning was the first method to succeed in the training of fully

connected architectures [22]. Although today it is known that unsupervised pretraining

is not a must for successful training, this particular accomplishment played an important

role enabling the current deep learning renaissance and has become a canonical example of

how a learning representation for one task can be useful for another one [19]. There exist

a variety of approaches to combine supervised and unsupervised learning in the literature.

More specifically, the term semi-supervised is commonly used to describe a particular type

of learning for applications in which there exists a large number of observations, where a

small subset of them has ground-truth labels. Proposed approaches aim to leverage the

unlabeled data to improve the generalization of the learned model and ultimately obtain a

better classification performance.

One approach is to introduce additional penalization into training based on the

reconstruction of the input through autoencoders [50]. Recently, there have been significant

improvements in this field following the introduction of a different generative modeling

technique which uses the variational equivalent of deep autoencoders integrating stochastic

latent variables into the conventional architecture [29] [53]. First, [28] have shown that such

modifications make generative approaches highly competitive for semi-supervised learning.
1This chapter has been submitted to peer-reviewed Elsevier Neurocomputing Journal and is now under

the second revision.

8

Later, [37] further improved the results obtained using variational autoencoders by introducing

auxiliary variables increasing the flexibility of the model. Furthermore, [52] has applied

Ladder networks [61], a layer-wise denoising autoencoder with skip connections from the

encoder to the decoder, for semi-supervised classification tasks.

On the other hand, these recent improvements have also motivated researchers to offer

radically novel solutions such as virtual adversarial training [42] motivated by Generative

Adversarial Nets [20] proposing a new framework corresponding to a minimax two-player

game. Alternatively, [73] revisited graph-based methods with new perspectives such as

invoking the embeddings to predict the context in the graph. Conventional graph-based

methods aim to construct a graph propagating the label information from labeled to unlabeled

observations and connecting similar ones using a graph Laplacian regularization in which the

key assumption is that nearby nodes are likely to have the same labels [74], [7]. However, the

requirement for eigenanalysis of the graph Laplacian severely limits the scalability of these

approaches. In a different work, [67] have shown that the idea of combining an embedding-

based regularizer with a supervised learner to perform semi-supervised learning can be

generalized to deep neural networks and the resulting models can be trained by stochastic

gradient descent. A possible bottleneck with this approach is that the optimization of the

unsupervised part of the loss function requires precomputation of the weight matrix specifying

the similarity or dissimilarity between the examples whose size grows quadratically with the

number of examples. For example, a common approach to computing the similarity matrix is

to use the k-nearest neighbor algorithm which is computationally very expensive for a large

number of samples. Therefore, it is approximated using sampling techniques.

In this chapter, we propose a novel framework for semi-supervised learning which can

be considered a variant of graph-based approach. This framework can be described as follows.

• Instead of a graph between examples, we consider a bipartite graph between examples

and output classes. To define this graph, we use the predictions of a neural network

9

model initialized by a supervised training process that uses a small subset of samples

with known labels.

• We use this bipartite graph to obtain two disjoint graphs, which are then employed to

interpret two adjacencies: One between the examples and another between the output

nodes. We introduce two regularization terms for the graph between the output nodes

and during the unsupervised portion of training, the predictions of the network are

updated only based on these two regularizers.

• These terms implicitly provide that the bipartite graph between the examples and

the output classes becomes a biregular graph and the inferred graph between the

examples becomes a disconnected graph of regular subgraphs. Ultimately, because of

this observation, the predictions of the network yield embeddings that we try to find.

The proposed framework is naturally inductive, where predictions can be generalized

to never-seen-before examples. More importantly, it is scalable and it can be applied to

datasets regardless of the sample size or the dimensionality of the feature set. Furthermore,

the entire framework operationally implements the same feedforward and backpropagation

mechanisms of the state of the art deep neural networks as the proposed regularization terms

are added to the loss function in the same way as adding standard L1, L2 regularizations

[45] and similarly optimized using stochastic gradient descent [12].

2.1 Related Work

Consider a semi-supervised learning problem where out of m observations, correspond-

ing ground-truth labels are only known for a subset of mL examples and the labels of the

complimentary subset of mU examples are unknown where m = mL + mU and typically

mL � mU . Let x1:m and y1:m denote the input feature vectors and the output predictions

respectively and t1:mL denote the available output labels. The main objective is to train a

10

classifier f : x → y using all m observations that is more accurate than another classifier

trained using only the labeled examples. Graph-based semi-supervised methods consider a

connected graph G = (V , E) of which vertices V correspond to all m examples and edges E are

specified by an m×m adjacency matrix A whose entries indicate the similarity between the

vertices. There have been many different approaches about the estimation of the adjacency

matrix A. [74] derived A according to simple Euclidean distances between the samples while

[67] precomputed A using a k-nearest neighbor algorithm. They also suggest that, in case

of a sequential data, one can presume consecutive instances are also neighbors in the graph.

[73], on the other hand, consider the specific case where A is explicitly given and represents

additional information. The most important common factor in all these graph-based methods

is the fact that A is a fixed matrix throughout the training procedure with the key assumption

that nearby samples on G, which is defined by A, are likely to have the same labels. Hence,

the generic form of the loss function for these approaches can be written as:

mL∑
i=1

L
(
f(xi), ti

)
+ λ

m∑
i,j=1

U
(
f(xi), f(xj), Aij

)
(2.1)

where L(.) is the supervised loss function such as log loss, hinge loss or squared loss, U(.) is

the unsupervised regularization (in which a multi-dimensional embedding g(xi) = zi can also

be replaced with one-dimensional f(xi)) and λ is a weighting coefficient between supervised

and unsupervised metrics of the training L(.) and U(.). One of the commonly employed

embedding algorithms in semi-supervised learning is Laplacian Eigenmaps [6] which describes

the distance between the samples in terms of the Laplacian L = D −A, where D is the

diagonal degree matrix such that Dii =
∑

j Aij. Then, unsupervised regularization becomes:

m∑
i,j=1

U
(
g(xi), g(xj), Aij

)
=

m∑
i,j=1

Aij||g(xi)− g(xj)||2 = Tr(ZTLZ) (2.2)

11

subject to the balancing constraint ZTDZ = I, where Z = [z1, ...,zm]T . [74] used this

regularization together with a nearest neighbor classifier while [7] integrates hinge loss to

train an SVM. Both methods impose regularization on labels f(xi). On the other hand, [67]

employ a margin-based regularization by [21] such that

U
(
f(xi), f(xj), Aij

)
=


||f(xi)− f(xj)||2 if Aij = 1

max(0, γ − ||f(xi)− f(xj)||2) if Aij = 0

(2.3)

to eliminate the balancing constraints and enable optimization using gradient descent. They

also propose to learn multi-dimensional embeddings on neural networks such that g(xi) =

f l(xi) = yli, where yli is the output of the lth hidden layer corresponding to the ith sample.

2.2 Proposed Framework

2.2.1 Bipartite Graph Approach

Instead of estimating the adjacency matrix A using an auxiliary algorithm such as

nearest neighbor or auxiliary external knowledge, we propose to use the actual predictions of

a neural network model initialized by a supervised training step using mL labeled examples.

Suppose that after supervised training, predictions of the network, B, for all m

examples are obtained as an m× n matrix, where n is the number of output classes and Bij

is the probability of the ith example belonging to jth class. We observe that these predictions,

indeed, define a bipartite graph G∗ = (V∗, E∗) whose vertices V∗ are m examples together

with n output nodes. However, V∗ can be divided into two disjoint sets M and N , such

that G∗ = (M,N , E∗), whereM is the set of examples, N is the set of output nodes and an

edge e ∈ E∗ connects an example m ∈M with an output node n ∈ N . As there is no lateral

connection between m examples and between n output nodes, (m+ n)× (m+ n) adjacency

12

matrix A∗ of graph G∗ has the following form

A∗ =

0m×m Bm×n

BT
n×m 0n×n

 (2.4)

where B corresponds to m× n biadjacency matrix of graph G∗ which is by itself unique and

sufficient to describe the entire E∗.

In graph G∗, the examples are connected with each other by even-length walks through

the output nodes whereas the same is true for the output nodes through the samples. In this

case, the square of the adjacency matrix A∗ represents the collection of two-walks (walks

with two edges) between the vertices. It also implements two disjoint graphs GM = (M, EM)

and GN = (N , EN) such that

A∗2 =

BBT
m×m 0m×n

0n×m BTBn×n

 =

M 0

0 N

 (2.5)

where M = BBT and N = BTB are the adjacency matrices specifying edges EM and EN ,

respectively. Unlike a simple graph G considered by conventional graph-based methods, GM

also involves self-loops. However, they have no effect on the graph Laplacian and thus on

the embeddings. Hence, one can estimate the adjacency of examples using the predictions

of the network, i.e. M = BBT , and then find the embeddings by applying a standard

unsupervised objective such as Laplacian Eigenmap minimizing Tr(ZTLMZ) as defined

in (2.2), where LM = DM −M . It is important to note that conventional graph-based

algorithms assume a fixed adjacency matrix during loss minimization whereas in the proposed

framework, we consider an adaptive adjacency which is updated throughout the unsupervised

training process as described in the following section.

13

2.2.2 Adaptive Adjacency

As derived adjacency M depends only on B, during the unsupervised training, B

needs to be well-constrained to preserve the learned latent embeddings. Otherwise, the idea

of updating the adjacency matrix throughout an unsupervised task might be catastrophic

and results in offsetting the effects of the supervised training step.

There are two constraints derived from the natural expectation of the specific form of

the B matrix for a classification problem: i) first, a sample is to be assigned to one class

with the probability of 1, while remaining n− 1 classes have 0 association probability, and ii)

second, for balanced classification tasks, each class is expected to involve approximately the

same number of the examples. Let us first consider the case where B assigns m/n examples

to each one of the n classes with the probability of 1. B in this particular form implies that

graph G∗ becomes (1,m/n)-biregular since

deg(mi) = 1,∀mi ∈M and deg(ni) = m/n, ∀ni ∈ N (2.6)

Subsequently graph GN turns into a disconnected graph including only self-loops and

its adjacency matrix N becomes a scaled identity matrix indicating mutually exclusive and

uniform distribution of the examples across the output nodes. Similarly, GM also becomes a

disconnected graph including n disjoint subgraphs. Each one of these subgraphs is m/n-regular,

where each vertex also has an additional self-loop. In this particular form, B becomes the

optimal embedding of M as it satisfies both BTLMB = 0 and BTDMB = I where LM is

the Laplacian and DM is the diagonal degree matrix of M (as shown in the Section 2.2.3).

As they all depend only on B, the relationships between G∗, GM and GN are biconditional,

which can be written as follows:

G∗ is (1,m/n)-biregular⇔ GM : argmin
ZTDMZ=I

Tr(ZTLMZ) = B ⇔ GN : N = m/nI (2.7)

14

Depending on this relation, we propose applying regularization during the unsupervised

task in order to ensure that N becomes the identity matrix. Regularizing N instead of M

enables us to devise a scalable framework as typically n� m. The first one of the proposed

two regularization terms constrains N to be a diagonal matrix, whereas the second one forces

it into becoming a scaled identity matrix by equalizing the value of the diagonal entries. The

second term ultimately corresponds to constraining B to obtain a uniform distribution of

samples across the output classes. Obviously, this condition is not valid for every dataset,

but a balancing constraint is required to prevent collapsing onto a subspace of dimension less

than n and it is analogous to the constraint of ZTDZ = I in [6].

2.2.3 The Optimality of B

Following [6], the optimal embedding that can be found on M = BBT can be written

as

argmin
ZTDMZ=I

Tr(ZTLMZ) (2.8)

where LM is the Laplacian and DM is the diagonal degree matrix of M such that LM =

DM −M . For any embedding Z, one can simply write that

ZTLMZ = ZTDMZ −ZTMZ (2.9)

Replacing M with BBT , then (2.9) becomes

ZTLMZ = ZTDMZ −ZTBBTZ (2.10)

If the regularization turns N = BTB into the identity matrix, using B as the embedding

yields that

BTLMB = BTDMB −BTBBTB (2.11)

15

BTLMB = BTDMB − I (2.12)

and this equality is satisfied when BTLMB = 0 and BTDMB = I. Then,

argmin
ZTDMZ=I

Tr(ZTLMZ) = B (2.13)

Assuming that the proposed regularization successfully turns N into the identity matrix, this

simply tells us that no additional step is necessary to find the optimal embedding of M and

B automatically becomes an optimal embedding.

2.2.4 Activity Regularization

Consider a neural network with L− 1 hidden layers where l denotes the individual

index for each hidden layer such that l ∈ {1, ..., L− 1}. Let Y (l) denote the output of the

nodes at layer l. Y (0) = X is the input and f(X) = f (L)(X) = Y (L) = Y is the output of

the entire network. W (l) and b(l) are the weights and biases of layer l, respectively. Then,

the feedforward operation of the neural networks can be written as

Y (l) = f (l)
(
X
)

= h(l)
(
Y (l−1)W (l) + b(l)

)
(2.14)

where h(l)(.) is the activation function applied at layer l.

In the proposed framework, instead of using the output probabilities of the softmax

nodes, we use the activations at their inputs to calculate the regularization. The intuition

here is that regularizing linear activations rather than nonlinear probabilities defines an easier

optimization task. Since the multiplication of two negative activations yields a positive (false)

adjacency in M , we rectify the activations first, i.e. f(x) = max(0, x). Then, B becomes

B = g
(
X
)

= max

(
0,
(
Y (L−1)W (L) + b(L)

))
(2.15)

16

Recall that N is an n × n symmetric matrix such that N := BTB and let v be a

1 × n vector representing the diagonal entries of N such that v :=

[
N11 N22 . . . Nnn

]
.

Then, let us define V as an n × n symmetric matrix such that V := vTv. Then, the two

proposed regularization terms can be written as

Affinity = α
(
B
)

:=

n∑
i 6=j

Nij

(n− 1)
n∑
i=j

Nij

(2.16)

and

Balance = β
(
B
)

:=

n∑
i 6=j

Vij

(n− 1)
n∑
i=j

Vij

(2.17)

While affinity penalizes the non-zero off-diagonal entries of N , balance attempts to

equalize diagonal entries. One might suggest minimizing the off-diagonal entries of N directly

without normalizing, however, normalization is required to bring both regularizers within

the same range for optimization and ultimately to ease hyperparameter adjustment. Unlike

regularizing N to simply become a diagonal matrix, equalizing the diagonal entries is not an

objective that we can reach directly by minimizing some entries of N . Hence, we propose to

use (2.17) that takes values between 0 and 1 where 1 represents the case where all diagonal

entries of N are equal. Respectively, we propose to minimize the normalized term (2.16)

instead of the direct summation of the off-diagonal entries. However, during the optimization,

denominators of these terms increase with the activations which may significantly diminish

the effects of both regularizers. To prevent this phenomenon, we apply the L2 norm to

penalize the increase of the sum of squared activities. Recall that the Frobenius norm for B,

||B||F , is analogous to the L2 norm of a vector and defined as

||B ||F =
√∑

B2
ij (2.18)

17

Hence, the proposed overall unsupervised regularization loss ultimately becomes

U
(
g
(
X
))

= U
(
B
)

= cαα
(
B
)

+ cβ
(
1− β

(
B
))

+ cF ||B||2F (2.19)

and can be written in terms of B as

U
(
B
)

= cα

2
n−1∑
i=1

n∑
j=i+1

m∑
k=1

BkiBkj

(n−1)
n∑
i=1

m∑
k=1

B2
ki

+ cβ

n−1∑
i=1

n∑
j=i+1

(
m∑
k=1

B2
ki−

m∑
k=1

B2
kj

)2

(n−1)
n∑
i=1

m∑
k=1

B4
ki

+ cF

(
n∑
i=1

m∑
k=1

B2
ki

)
(2.20)

2.2.5 Training

Training of the proposed framework consists of two sequential steps: Supervised

training using only the labeled examples and subsequent unsupervised regularization using

the entire dataset. We adopt stochastic gradient descent in the mini-batch mode [12] for

optimization of both steps. Indeed, mini-batch mode is required for the unsupervised task

since the proposed regularizers implicitly depend on the comparison of the examples with

each other. Algorithm 1 below describes the entire training procedure. The first stage of

the training is a typical supervised training task in which mL examples XL = [x1, ...,xmL]T

are introduced to the network with the corresponding ground-truth labels tL = [t1, ..., tmL]T

and the network parameters are updated to minimize the log loss L(.). After the supervised

training step is completed, this supervised objective is never revisited and the labels tL are

never reintroduced to the network in any part of the unsupervised task. Hence, the remaining

unsupervised objective is driven only by the proposed regularization loss U(.) defined in

(2.19). The examples XL used in the supervised training stage can also be batched together

with the upcoming unlabeled examples XU = [xmL+1, ...,xm]T in order to ensure a more

stable regularization. As the network is already introduced to them, bL examples randomly

chosen from XL can be used as guidance samples for the remaining bU examples of XU in

18

that batch. Such blended batches help the unsupervised task especially when the examples

in the dataset have high variance.

Algorithm 1: Model training
Supervised training:

Input :XL = [x1, ...,xmL]
T , tL = [t1, ..., tmL]

T , batch size b
repeat{

(X́1, t́1), ..., (X́mL/b, t́mL/b)
}
←− (XL, tL) // Shuffle and create batch

pairs, e.g. if mL = 1000 and b = 100, then 10 pairs vs. 100 for
batch size
for i← 1 to mL/b do

Take ith pair (X́i, t́i)
Take a gradient step for L

(
f
(
X́i

)
, t́i
)

until stopping criteria is met
return model

Unsupervised training:
Input :model, XL = [x1, ...,xmL]

T , XU = [xmL+1, ...,xm]
T , bL, bU

repeat{
X́1, ..., X́mU/bU

,
}
←−XU // Shuffle and create input batches

for i← 1 to mU/bU do
Take ith input batch X́i

Ẍ ←− random(XL, bL) // Randomly sample bL examples from XL

Take a gradient step for U
(
g
([

X́
T
i Ẍ

T
]T))

until stopping criteria is met

2.3 Experiments

The models have been implemented in Python using Keras [14] and Theano [60]. Open

source code is available at http://github.com/ozcell/LALNets that can be used to reproduce

the experimental results obtained on the three image datasets, MNIST [35], SVHN [44] and

NORB [36] have been used by previous researchers [18, 28, 33, 37, 41, 42, 52, 56, 65, 67]

publishing in the field of semi-supervised learning at NIPS and other similar venues.

19

2.3.1 Datasets Used in the Experiments

Figures 2.1, 2.2 and 2.3 respectively illustrate 200 examples from MNIST, SVHN

and NORB datasets and Table 2.1 summarizes the properties of these datasets used in

the experiments. The MNIST is a dataset of handwritten digits in which digits have been

size-normalized and centered in a fixed-size image [35]. SVHN is a real-world color image

dataset that can be seen as similar in flavor to MNIST, but comes from a significantly harder,

real world problem, i.e. recognizing digits and numbers in natural scene images [44]. NORB,

on the other hand, is a dataset of grayscale images of 50 toys belonging to 5 generic categories:

four-legged animals, human figures, airplanes, trucks, and cars. The objects were imaged by

two cameras under 6 lighting conditions, 9 elevations and 18 azimuths. Its training set is

composed of 5 instances of each category and test set of the remaining 5 instances [36]. The

following preprocessing steps have been applied to these datasets.

• MNIST: Images were normalized by dividing by 256.

• SVHN: We applied centering and normalization per each channel, i.e. we set each

sample mean to 0 and divided each input by its standard deviation.

• NORB: Following [37], images were downsampled to 32 × 32 using nearest-neighbor

interpolation. We added uniform noise between 0 and 1 to each pixel value. First,

we normalized the NORB dataset by dividing by 256, then applied centering and

normalization per each channel and also set input mean to 0 over the dataset and

divided inputs by standard deviation of the dataset.

2.3.2 Models Used in the Experiments

Table 2.2 summarizes all models used in the experiments. Reported MNIST results

have been obtained using the model named 6-layer CNN, whereas SVHN results were obtained

20

Figure 2.1: MNIST Dataset.

Table 2.1: Datasets used in the experiments.

Data type Number of examples Dimension Number of classes % of largest class

MNIST Image: Hand-written digits Train: 60000, Test: 10000 1× 28× 28 10 11%
SVHN Image: Street-view digits Train: 73257, Test: 26032, Extra: 531131 3× 32× 32 10 19%
NORB Image: Objects Train: 24300, Test: 24300 2× 96× 96 5 20%

using the 9-layer CNN-2 model and NORB results were obtained using the 9-layer CNN

model. The results obtained on different models are also presented in the following sections

to show the effect of the chosen model on the test accuracy. The ReLU activation function

[43], i.e. f(x) = max(0, x), has been used for all models. For both supervised training

and unsupervised regularization, models were trained using stochastic gradient descent with

following settings: learning rate= 0.01, decay= 1e−6, momentum= 0.95 with Nesterov

updates, where the momentum direction is first applied and then this direction is corrected

with a gradient update [8].

21

Figure 2.2: SVHN Dataset.

Table 2.2: Specifications of the models used in the experiments†.

Model name Specification

4-layer MLP FC(2048) - Drop(0.5) - FC(2048) - Drop(0.5) - FC(2048) - Drop(0.5) - FC(n)
6-layer CNN 2*Conv(32x3x3) - MP(2x2) - Drop(0.2) - 2*Conv(64x3x3) - MP(2x2) - Drop(0.3) - FC(2048) - Drop(0.5) - FC(n)
9-layer CNN 2*Conv(32x3x3) - MP(2x2) - Drop(0.2) - 2*Conv(64x3x3) - MP(2x2) - Drop(0.3) - 3*Conv(128x3x3) - MP(2x2) - Drop(0.4) - FC(2048) - Drop(0.5) - FC(n)
9-layer CNN-2 2*Conv(64x3x3) - MP(2x2) - Drop(0.2) - 2*Conv(128x3x3) - MP(2x2) - Drop(0.3) - 3*Conv(256x3x3) - MP(2x2) - Drop(0.4) - FC(2048) - Drop(0.5) - FC(n)

† Inputs of the models are determined according to the dimensions of the dataset being used for the training. n is the number of classes.
FC(i): Fully connected layer with i units
Drop(i): Applying dropout[58] where the probability of retaining a unit is 1− i
Conv(i× j × k): Convolution layer where i corresponds to the number of filters and j × k to the kernel size
MP(i× j): Max pooling with pool size of i× j, i.e. factors by which to downscale (vertical × horizontal)

2.3.3 Results

Coefficients of the proposed regularization term have been chosen as cα = 3, cβ = 1

and cF = 0.000001 in all of the experiments. For the sake of fairness, in the same manner as

followed by the models used for the comparison [42], a validation set of 1000 examples has

been chosen randomly without stratification among the training set examples to determine the

hyperparameters of the proposed approach (cα, cβ, cF , bL/bU), the specifications of the models

used for the experiments (given in Table 2.2) and the epoch to report the test accuracy. We

22

Figure 2.3: NORB Dataset.

used a batch size of 128 for both supervised training and unsupervised regularization steps.

For each dataset, the same strategy is applied to decide on the ratio of labeled and unlabeled

data in the unsupervised regularization batches, i.e. bL/bU : among a hyperparameter set of

{16, 32, 64, 96, 112}, bL is assigned as the setting closest to one tenth of the number of all

labeled examples mL, and then bU is chosen to complement the batch size up to 128, i.e.

bU = 128 − bL. Each experiment has been repeated for 10 times. For each repetition, to

assign XL, mL examples have been chosen through stratified random sampling to keep the

same ratio for each class.

2.3.3.1 MNIST

On the MNIST dataset, experiments have been performed using 4 different settings for

the number of labeled examples, i.e. mL = {100, 600, 1000, 3000} respectively corresponding

to {10, 60, 100, 300} labeled examples from each class, following the literature used for

23

comparative results [28, 41, 42, 52, 67]. Following the strategy described in the previous section,

the unsupervised regularization batches have been formed by choosing bL = 16 and bU = 112

for the mL = 100 case. However, we didn’t follow this strategy for mL = {600, 1000, 3000}

cases, but kept the same bL/bU ratio, i.e. 16/112, to reduce the runtime of the experiments as

we haven’t observed any statistically significant differences when further increasing bL ratio

for these 3 cases on MNIST.

Figure 2.4: Visualizations of the graphs G∗, GM and GN for a randomly chosen 250 test
examples from MNIST for the mL = 100 case. As implied through the relation defined in (2.7)
and discussed in detail in Section 2.2.3, when we regularize N to become the identity matrix:
i) G∗ becomes a biregular graph, ii) GM turns into a disconnected graph of n m/n-regular
subgraphs, iii) GN turns into a disconnected graph of n nodes having self-loops only (self-loops
are not displayed for the sake of clarity), and automatically iv) B becomes the optimal
embedding of M . Color codes denote the ground-truths for the examples. This figure is best
viewed in color.

Figure 2.4 shows a visualization of the realization of the graph-based approach described

in this chapter using real predictions for the MNIST dataset. After the supervised training,

in the bipartite graph G∗ (defined by B), most of the examples are connected to multiple

24

output nodes at the same time. In fact, the graph between the examples GM (inferred by

M = BBT) looks like a sea of edges. However, thanks to supervised training step, some

of these edges are actually quite close to the numerical probability value of 1. Through a

scalable regularization objective, which is defined on the graph between the output nodes

GN (inferred by N = BTB), stronger edges are implicitly propagated in graph GM. In

other words, as hypothesized, when N turns into the identity matrix, G∗ closes to be a

biregular graph and GM closes to be a disconnected graph of n m/n-regular subgraphs. As

implied through the relation defined in (2.7) and discussed in detail in Section 2.2.3, we

expect B to automatically become the optimal embedding of M . Figure 2.5 presents the

t-SNE [38] visualizations of the embedding spaces inferred by B. t-SNE is a popular method

creating two-dimensional maps from data with thousands of dimensions. Recently, it has

become widespread in the field of machine learning to explore high-dimensional data [66]. For

semi-supervised and unsupervised settings, well-separated clusters on these two-dimensional

maps indicate the quality of the obtained latent representation. However, the distances

between well-separated clusters in a t-SNE plot may have no further meaning [66]. As clearly

observed from Figure 2.5, as the unsupervised regularization exploits the unlabeled data,

clusters become well-separated and simultaneously the test accuracy increases.

Table 2.3 summarizes the semi-supervised test accuracies observed with four different

mL settings. Results of a broad range of recent existing solutions are also presented for

comparison. These solutions are grouped according to their approaches to semi-supervised

learning. While [28], [52], [37] employ autoencoder variants, [42], [41] and [56] adopt

adversarial training, [67] and [65] are another graph-based methods. To show the baseline of

the unsupervised regularization step in our framework, the performance of the network after

the supervised training is also given. For MNIST, GAR outperforms existing graph-based

methods and all the contemporary methods other than some cutting-edge approaches that

use generative models.

25

Figure 2.5: t-SNE visualization of the embedding spaces inferred by B for a randomly chosen
2000 test examples for the mL = 100 case. Color codes denote the ground-truths for the
examples. Note the separation of clusters from epoch 0 (right after supervised training step)
to epoch 100 of the unsupervised training. For reference, accuracy for the entire test set of
10000 examples is also plotted with respect to the unsupervised training epochs. This figure
is best viewed in color.

2.3.3.2 SVHN and NORB

SVHN and NORB datasets are both used frequently in recent literature on semi-

supervised classification benchmarks [18, 28, 33, 37, 41, 42, 56]. Either dataset represents a

significant jump in difficulty for classification when compared to the MNIST dataset. Table

2.4 summarizes the semi-supervised test accuracies observed on SVHN and NORB. For SVHN

experiments, 1000 labeled examples have been randomly chosen with stratification among

73,257 training examples. Two experiments are conducted where the SVHN extra set (an

additional training set including 531,131 more samples) is either omitted from the unsupervised

training or not. The same batch ratio has been used in both experiments as bL = 96, bU = 32.

26

Table 2.3: Benchmark results of the semi-supervised test accuracies on MNIST for few labeled
samples, mL ∈ {100, 600, 1000, 3000}. Results of a broad range of recent existing solutions
are also presented for comparison. The last row demonstrates the benchmark scores of the
proposed framework in this chapter.

mL = 100 mL = 600 mL = 1000 mL = 3000

M1+M2[28] 3.33%(±0.14) 2.59%(±0.05) 2.40%(±0.02) 2.18%(±0.04)

Ladder Network[52] 1.06%(±0.37) - 0.84%(±0.08) -
AGDM[37] 0.96%(±0.02) - - -

VAT[42] 2.12% 1.39% 1.36% 1.25%

Extended VAT[41] 1.36% - 1.27% -
Improved GAN[56] 0.93%(±0.07) - - -

EmbedCNN[67] 7.75% 3.82% 2.73% 2.07%

HAGR[65] 11.34%(±1.23) - - -
Supervised training (Baseline) 14.82%(±1.03) 4.16%(±0.26) 3.25%(±0.11) 1.73%(±0.08)

Supervised training + GAR 1.56%(±0.09) 1.15%(±0.07) 1.10%(±0.07) 0.93%(±0.05)

On the other hand, for NORB experiments, to follow the previously published works reporting

their results on the NORB dataset [28, 37] using 1000 labeled examples and to further create a

more challenging scenario using less number of labeled examples, 2 different settings have been

used for the number of labeled examples, i.e. mL = {300, 1000} with the same batch ratio

of bL = 32, bU = 96, where labeled examples have been randomly chosen with stratification.

Both results are included for comparative purposes.

Deep generative approaches [18, 28, 33, 37, 41, 42, 52, 56] have gained popularity

especially over the last two years for semi-supervised learning and achieved superior per-

formance for the problems in this setting in spite of the difficulties in their training. As

it requires no additional work in calculating the reconstruction error (as in autoencoder

based methods [28, 37, 52]) or implementing a zero-sum game mechanism (as in GAN based

methods [41, 42, 56]), GAR is natural for the classification framework on neural networks

and it is therefore a low-cost and efficient competitor for generative approaches and achieves

27

comparable performance with these state-of-the-art models while statistically significantly

outperforming all existing graph-based methods. Most importantly, GAR is open to further

improvements with standard data enhancement techniques such as augmentation, ensemble

learning.

Table 2.4: Benchmark results of the semi-supervised test accuracies on SVHN and NORB.
Results of a broad range of most recent existing solutions are also presented for comparison.
The last row demonstrates the benchmarks for the proposed framework in this chapter.

SVHN NORB

mL = 1000† mL = 1000 mL = 300 mL = 1000

M1+TSVM[28] 55.33%(±0.11) - - 18.79%(±0.05)

M1+M2[28] 36.02%(±0.10) - - -
SGDM[37] 29.82% 16.61%(±0.24) - 9.40%(±0.04)

VAT[42] 24.63% - - 9.88%

Extended VAT[41] 5.77% - - -
Extended VAT+EntMin[41] 4.28% - - -
Improved GAN[56] 8.11%(±1.30) - - -
ALI[18] - 7.42%(±0.65) - -

Π Model [33] 5.43%(±0.25) - - -

Supervised training (Baseline) 19.11%(±1.09) 19.11%(±1.09) 17.93%(±1.07) 10.22%(±1.00)

Supervised training + GAR 8.67%(±0.65) 6.98%(±0.82) 12.19%(±1.46) 7.10%(±0.57)
† This column presents the results obtained when SVHN extra set is omitted from the unsupervised training. Unless otherwise specified,
reported results for other approaches are assumed to represent this scenario.

2.3.3.3 Effects of Hyperparameters

Figure 2.6 presents the test accuracy curves with respect to the unsupervised training

epochs obtained using different models. The proposed unsupervised regularization improves

the test accuracy in all models. However, the best case depends on the chosen model

specifications.

28

0 50 100 150 200
Epochs

0.88

0.90

0.92

0.94

0.96

0.98

1.00
Te

st
 a

cc
ur

ac
y

a) MNIST: mL = 100, bL = 16, bU = 112

4-layer MLP
6-layer CNN
9-layer CNN

0 20 40 60 80 100
Epochs

0.80

0.82

0.84

0.86

0.88

0.90

0.92

Te
st

 a
cc

ur
ac

y

b) SVHN: mL = 1000, bL = 96, bU = 32

6-layer CNN
9-layer CNN
9-layer CNN-2

Figure 2.6: Test accuracies obtained using different models with respect to unsupervised
training epochs. a) On the left, MNIST results are given for the settings that mL = 100
and bL = 16, bU = 112 and b) On the right, SVHN results are given for the settings that
mL = 1000 and bL = 96, bU = 32. Model specifications are given in Table 2.2. Shaded regions
show the 0.95 confidence interval.

The labeled/unlabeled data ratio of unsupervised training batches is the most critical

hyperparameter of the proposed regularization. Figure 2.7 visualizes the effect of this ratio

for MNIST and SVHN datasets. These two datasets have different characteristics. MNIST

dataset has a lower variance among its samples with respect to SVHN. As a result, even

when the labeled examples introduced to the network during the supervised training are

not blended with the unsupervised training batches, i.e. bL = 0, this does not affect the

performance dramatically. However, for the SVHN dataset, reducing the bL proportion of the

unsupervised training batches significantly affects the accuracy and further decrease of bL

reduces the stability of the regularization.

One can also observe another phenomenon through the MNIST results in Figure 2.7.

That is, as bL approaches mL, the generalization of the model reduces. This effect can be

better observed in Figure 2.8 including a further step, i.e. bL = 96 when mL = 100. Since

the same examples start to dominate the batches of unsupervised regularization, overfitting

occurs and ultimately test accuracy significantly reduces. Figure 2.8 also presents the effect

29

0 50 100 150 200
Epochs

0.94

0.95

0.96

0.97

0.98

0.99

1.00
Te

st
 a

cc
ur

ac
y

a) MNIST: mL = 100 using 6-layer CNN

bL = 0, bU = 128

bL = 16, bU = 112

bL = 64, bU = 64

0 20 40 60 80 100
Epochs

0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92

Te
st

 a
cc

ur
ac

y

b) SVHN: mL = 1000 using 9-layer CNN

bL = 32, bU = 96

bL = 64, bU = 64

bL = 96, bU = 32

Figure 2.7: The effect of bL/bU ratio for MNIST and SVHN datasets. Shaded regions show
the 0.95 confidence interval.

of applying dropout during the unsupervised regularization. Dropping out the weights the

during unsupervised training dramatically affects the accuracy. This effect is more obvious

when bL is smaller. Hence, for the experiments, we removed the dropouts from the models

specified in Table 2.2 during the unsupervised training.

The effects of regularization coefficients are presented in Figure 2.9 for the MNIST

dataset. Part (a) of the figure visualizes the case when cF is held constant, but the ratio of

cα/cβ changes. And part (b) of the figure illustrates the case when cα/cβ is held constant, but

cF changes. We can say that as long as cα ≥ cβ, the ratio of cα/cβ does not affect the accuracy

significantly. Furthermore, the value of cF is not so critical (close performances both with

cF = 1e−6 and cF = 1e−15) unless it is too big to distort the regularization. Therefore, we can

say that the proposed unsupervised regularization term is considerably robust with respect

to the coefficients cα, cβ and cF . This can also be seen through the fact that we have applied

the same coefficients for the experiments of all three datasets.

30

0 20 40 60 80 100
Epochs

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Te
st

 a
cc

ur
ac

y

b) MNIST: mL = 100 using 6-layer CNN

bL = 16, bU = 112

bL = 16, bU = 112 with dropout
bL = 64, bU = 64

bL = 64, bU = 64 with dropout

0 50 100 150 200
Epochs

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Te
st

 a
cc

ur
ac

y

a) MNIST: mL = 100 using 6-layer CNN

bL = 16, bU = 112

bL = 64, bU = 64

bL = 96, bU = 32

Figure 2.8: The effects of a) on the left, choosing bL ≈ mL and b) on the right, applying
dropout during the unsupervised training on MNIST dataset. Note that the figures show
different ranges of training epochs, i.e. 200 vs. 100. Shaded regions show the 0.95 confidence
interval.

0 50 100 150 200
Epochs

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Te
st

 a
cc

ur
ac

y

a) MNIST: cF = 1e−6

cα = 3, cβ = 1

cα = 1, cβ = 1

cα = 1, cβ = 2

0 50 100 150 200
Epochs

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 a
cc

ur
ac

y

b) MNIST: cα = 3, cβ = 1

cF = 1e−15

cF = 1e−6

cF = 1e−5

Figure 2.9: The effects of a) cα/cβ and b) cF on MNIST dataset. Shaded regions show the
0.95 confidence interval. The size of green shaded regions implies the instability of the model
when using the specified settings as the obtained accuracy varies drastically per epoch.

31

CHAPTER 3: AUTO-CLUSTERING OUTPUT LAYER: AUTOMATIC

LEARNING OF LATENT ANNOTATIONS IN NEURAL NETWORKS1

Combinations of supervised and unsupervised learning have resulted in many fruitful

developments throughout the machine learning literature. Among many achievements,

unsupervised feature learning where unsupervised training is used as a pretraining stage for

initializing hidden layer parameters [22], was the first method to succeed in the training of

fully connected deep architectures and played a key role in igniting the third wave of machine

learning research by creating a paradigm shift we now call deep learning [19].

In current literature, different kinds of approaches exist to combine supervised and

unsupervised learning. In this context, semi-supervised is frequently used to specify certain

applications where a large number of observations exist with only a small subset having

ground-truth labels. Solutions suggested for these applications seek ways of exploiting the

unlabeled data to improve the model generalization. There have been significant developments

recently in this field. Following the introduction of Bayesian inference to the conventional

autoencoder architecture [29, 53], these variational autoencoders have been proven to make

deep generative models highly competitive for semi-supervised learning [28, 37]. Virtual

adversarial training [42] motivated by Generative Adversarial Nets [20] and the denoising

autoencoder variant named Ladder networks [61] have also been successfully employed for

semi-supervised learning problems [52]. On the other hand, in the previous chapter, we have

proposed a scalable and efficient graph-based method that is natural for the classification

framework on neural networks as it requires no additional work calculating the reconstruction
1This chapter has been submitted to peer-reviewed IEEE Transactions on Neural Networks and Learning

Systems and is now under the second revision.

32

error (as in autoencoder based methods) or implementing zero-sum game mechanism (as in

adversarial training based methods) and we reported competitive performance with respect

to other approaches.

In this chapter, we consider a different kind of semi-supervised setting in which a

coarse level of labeling (e.g. tree, flower) is available for all observations, but the model

still needs to learn a fine level of latent annotations, which are previously unknown to the

user (e.g. maple, rose), for each one of them. Provided labeling can be interpreted as

parent-class information and latent annotations to be explored can be conceived as the

sub-classes. Since partial supervision does not involve any explicit information, sub-class

exploration is considered an unsupervised task. Therefore, the overall learning procedure can

be considered semi-supervised. For clarification, let us assume that we are given a dataset of

hand-written digits such as MNIST [35] where the overall task is complete categorization of

each digit, but the only available supervision is whether a digit is smaller or greater than 5,

as visualized in Figure 3.1. While being trained to categorize each example as a member of

parent-classes, {0, 1, 2, 3, 4} or {5, 6, 7, 8, 9}, the model also needs to learn to distinguish the

digits, sub-classes under the same parent from each other. Since provided labeling involves no

explicit information about the difference between the samples of digit 0 and the samples of

digit 1, their separation is performed as an unsupervised task. As we use partial supervision

to help overall categorization, the entire procedure is semi-supervised.

Outside the neural network literature, the learning of latent variable models when

supervision for more general classes than those of interest is provided has previously been

studied. In the natural language processing (NLP) field, following the introduction of Latent

Dirichlet Allocation (LDA), a completely unsupervised algorithm that models each document

as a mixture of topics [11], several modifications have been proposed to incorporate supervision

[10, 32, 48, 49]. These ideas have also been extended for simultaneous image classification

and annotation [51, 64].

33

Classification
(Partial Supervision)

Clustering
(Latent Annotations)

Figure 3.1: Particular semi-supervised setting discussed in this chapter. That is, a coarse
level of labeling is available for all observations but the model has to learn a fine level of
latent annotation for each one of them. We propose a novel approach that considers these
problems as simultaneously performed supervised classification (per provided parent-classes)
and unsupervised clustering (within each parent) tasks and devise a framework to enable a
neural network to learn the latent annotations in this partially supervised setup.

From the viewpoint of parent/sub-class interpretation of the provided supervision

and latent annotations, an analogy can be established between the semi-supervised problems

discussed in this chapter and the hierarchical classification tasks in the literature. Hierarchical

classification has previously been studied in neural networks [68]; however, proposed ap-

proaches consider the completely supervised case where every observation in the dataset has a

parent-class label but only a few of them also have additional sub-class labels. The literature

about hierarchical classification is scattered across very different application domains such

as text categorization, protein function prediction, music genre classification and image

classification [26].

Given partial supervision, latent annotation learning is also a common problem in

these domains as well as in exploratory scientific research such as in medicine and genomics [5],

34

as the tasks in these domains naturally involve both already-explored (hence labeled) classes

and extraction of not-yet-explored (hence hidden) patterns. In this chapter, we propose

a novel approach that considers these problems as simultaneously performed supervised

classification (per provided parent-classes) and unsupervised clustering (within each parent)

tasks and devise a framework to enable a neural network to learn the latent annotations in this

partially supervised setup. This framework involves a novel output layer modification called

the auto-clustering output layer (ACOL) that allows concurrent classification and clustering

tasks where clustering is performed according to the Graph-based Activity Regularization

(GAR) technique proposed in the previous chapter. ACOL duplicates the softmax nodes

at the output layer and GAR allows for competitive learning between these duplicates in a

traditional error-correction learning framework.

This chapter is organized as follows. The next section briefly summarizes the activity

regularization proposed in the previous chapter which we adopt as the objective of the

unsupervised portion of the training. In the third section, we describe the proposed output

layer modification and its integration with the GAR technique and experimental results are

presented in the fourth section.

3.1 Related Work

GAR is a scalable and efficient graph-based approach which was originally proposed for

the classical type of semi-supervised learning problems where a large number of observations

with only a small subset of corresponding labels exist. In this chapter, we adopt the

same regularization terms and show that these terms can be employed to reveal the latent

annotations in a supervised setup through ACOL. After describing ACOL, Section 3.2.2

describes how ACOL is integrated with the GAR technique.

35

3.2 Auto-clustering Output Layer

3.2.1 Output Layer Modification

Neural networks define a family of functions parameterized by weights and biases

which define the relation between inputs and outputs. In multi-class categorization tasks,

outputs correspond to class labels, hence in a typical output layer structure there exists an

individual output node for each class. An activation function, such as softmax is then used to

calculate normalized exponentials to convert the previous hidden layer’s activities, i.e. scores,

into probabilities, such that f(xi) = exi/∑ exj .

Unlike a traditional output layer structure, ACOL defines more than one softmax

node (ks duplicates) per parent-class. Outputs of ks duplicated softmax nodes that belong

to the same parent are then combined in a subsequent pooling layer for the final prediction.

Training is performed in the configuration shown in Figure 3.2 where np is the number of

parent-classes. This might look like a classifier with redundant softmax nodes. However, the

duplicated softmax nodes of each parent are specialized using GAR throughout the training

in a way that each one of n = npks softmax nodes represent an individual sub-class of a

parent, i.e. annotation.

ACOL does not change feedforward and backpropagation mechanisms of the network

drastically. During feedforward operation of the network, the pooling layer calculates final

parent-class predictions through sub-class probabilities. Pooling does not affect backpropaga-

tion in terms of derivatives and ACOL behaves in a similar fashion to a traditional output

layer. However, labels are now implicitly applied to multiple softmax nodes each representing

an individual sub-class under the same parent. In other words, even if the labels are provided

as a one-hot encoded vector at the output, due to the pooling layer, it turns into ks-hot

encoded vector at the augmented softmax layer. ks softmax nodes simultaneously receive the

36

Softmax

Softmax

Linear
Parent 1

Linear
Parent np

.

.

.

.

.

.

.

.

.

.

Input Layer Hidden Layer(s)

Augmented Softmax Layer Pooling Layer

Auto-clustering Output Layer

np Linear nodesn Softmax nodes

Z: Activities Y: Probabilities

Figure 3.2: Neural network structure with the ACOL. Each softmax node corresponds to an
individual sub-class of a parent, i.e. annotation. During feedforward operation of the network,
the pooling layer calculates final parent-class predictions through sub-class probabilities.

error between the label and the prediction and then backpropagate it towards the previous

hidden layers.

This structure carries the ability to learn latent annotations as ACOL introduces

extra trainable weights between the previous hidden layer and itself. Each softmax node

is connected to the previous hidden layer through non-shared weights. Due to random

initialization, these weights may ultimately converge to different values at the end of training

and duplicated softmax nodes may be specialized for only a subset of the samples of that

parent-class. However, this mechanism is completely uncontrollable. Furthermore, during

the weight updates, if any one of the duplicated softmax nodes get activated to generate a

significantly lower error, through the pooling layer, this will also eliminate the backpropagated

error to other ks − 1 softmax nodes of that parent. Therefore, not only the one reducing the

error, but all ks duplicated softmax nodes diminish backpropagating the error to previous

37

layers. That is to say, without any additional mechanism, there is no actual competition

between the duplicated softmax nodes of a parent.

Therefore, we adopt the GAR objective defined in (2.19) as the unsupervised reg-

ularization term to create competition between the duplicates which ultimately results in

specialized but equally-active softmax nodes each representing a latent annotation within a

parent. The following subsection mathematically describes ACOL and its collaboration with

GAR.

3.2.2 Mathematical Description and GAR Integration

Using the same notation in Chapter 2, for traditional output layer structure, let us

define the activities at the input of softmax layer as Z such that

Z := Y (L−1)W (L) + b(L) (3.1)

In a neural network with ACOL, due to the subsequent pooling layer, (3.1) is modified as

Z := Y (L−2)W (L−1) + b(L−1) (3.2)

and now Z corresponds to anm×nmatrix representing the activities going into the augmented

softmax layer. Recall that n is the total number of all softmax nodes at the augmented

softmax layer such that n = npks, where np is the number of parent-classes and ks is the

number of softmax duplicates per each parent-class. Then, the output of the ACOL applied

network can be written in terms of Z as

f
(
X
)

= Y = h(L)
(
h(L−1)

(
Z
)
W (L) + b(L)

)
(3.3)

38

where Y is an m × np matrix whose cell Yij represents the probability of ith example

belonging to jth parent. Since h(L−1)(.) and h(L)(.) respectively correspond to softmax and

linear activation functions and b(L) := 0 for ACOL networks, then (3.3) further simplifies into

Y = softmax
(
Z
)
W (L) (3.4)

where W (L) (hereafter will be denoted as W for simplicity) is an n× np matrix representing

the constant weights between the augmented softmax layer and the pooling layer such that

W := W (L) =



Inp

Inp
...

Inp


(3.5)

and simply sums up the output probabilities of the softmax nodes belonging to the same

parent. Since the output of the augmented softmax layer is already normalized, no additional

averaging is needed at the pooling layer and summation alone is sufficient to calculate final

parent-class probabilities.

Recalling that GAR is applied to the positive part of activities going into the augmented

softmax layer, i.e. B := max (0,Z), the overall objective cost function of the training can be

written as

L
(
Y , t

)
+ cαα

(
B
)

+ cβ
(
1− β

(
B
))

+ cF ||B||2F (3.6)

where L(.) is the supervised log loss function and t = [t1, ..., tm]T is the vector of provided

parent-class labels such that ti ∈ {1, ..., np}. Also, recall that α(.) and β(.) are the

unsupervised regularization terms respectively defined in (2.16)-(2.17) and ||B||F corresponds

to the Frobenius norm for B.

39

Algorithm 2: Model training
Input :X = [x1, ...,xm]

T ,
t = [t1, ..., tm]

T such that ti ∈ {1, ..., np},
batch size b, weighing coefficients cα, cβ, cF

repeat{
(X́1, t́1), ..., (X́m/b, t́m/b)

}
←− (X, t)

// Shuffle and create batch pairs
for i← 1 to m/b do

Take ith pair (X́i, t́i)
Forward propagate for Ý i = f(X́i) and B́i = g(X́i)
Take a gradient step for L

(
Ý i, t́i

)
+ cαα

(
B́
)
+ cβ

(
1− β

(
B́
))

+ cF ||B́||2F
until stopping criteria is met

3.2.3 Training and Annotation Assignment

Training of the proposed framework is performed according to simultaneous supervised

and unsupervised updates resulting from the objective function given in (3.6). We adopt

stochastic gradient descent in mini-batch mode [12] for optimization. Algorithm 2 below

describes the entire training procedure.

After the training phase is completed, the network is simply truncated by completely

disconnecting the pooling layer as shown in Figure 3.3 and the rest of the network with

trained weights is used to assign the annotations to each example. This assignment can be

described as

yi := argmax
1≤j≤n

Zij (3.7)

where yi is the annotation assigned to the ith example such that yip := (yi − 1) mod np + 1

and yis := (yi−1)\np+1 are corresponding parent (learned through the provided supervision)

and sub-class (learned through the unsupervised exploration) indices, respectively.

3.2.4 Graph Interpretation of the Proposed Framework

GAR regularizers, affinity and balance, were originally proposed for the classical type

of semi-supervised learning problems where the number of labeled observations is much

40

Parent np

Sub k

Parent np

Sub j

Parent 1
Sub k

Parent 1
Sub j

Parent 1
Sub 1

Parent np

Sub 1

.

.

.

.

.

Input Layer Hidden Layer(s)

Augmented Softmax Layer

Auto-clustering Output Layer

n Softmax nodes

Figure 3.3: After training, the pooling layer is simply disconnected. The rest of the network
with trained weights is used to obtain the assigned annotations. This operation can be
described as yi := argmax1≤j≤n Zij where yip := (yi− 1) mod np + 1 and yis := (yi− 1)\np + 1
are corresponding parent and sub-class indices, respectively.

smaller than the number of unlabeled observations. These two terms are used to propagate

these labels to unlabeled observations across the graph GM which is defined by BBT . Unlike

these problems, in this chapter, we consider a different case in which a coarse level of labeling

is available for all observations but the model has to explore a fine level of latent annotations

using this partial supervision. Therefore, a graph interpretation of the proposed framework

in this chapter is rather different than the one described in the previous section.

To better understand how the provided partial supervision is propagated in order to

reveal latent annotations, let us first note that even though softmax(Z) produces probabilistic

output, it is an increasing function of Z similar to max
(
0,Z

)
. Assuming softmax(Z) ≈

max
(
0,Z

)
allows us to explicitly express Y in terms of B such that

Y ≈ BW (3.8)

41

Noting that WW T is an n× n symmetric matrix such that

WW T =



Inp Inp . . . Inp

Inp Inp . . . Inp
...

...

Inp Inp . . . Inp


(3.9)

this assumption helps us visualize graph GM (whose edges are described by BBT) as the

spanning subgraph of GY (whose edges are described by Y Y T = BWW TBT). In other

words, these two graphs are made up of the same vertices. However, while propagating the

supervised adjacency introduced by GY across GM, GAR regularizers eliminate some of the

edges of GY from GM in a way that GM ultimately becomes a disconnected graph of n disjoint

subgraphs. This propagation/elimination process is better explained in the following section

through empirical demonstration on real data along with the impact of provided supervision

on the exploration of latent annotations.

3.3 Experimental Results

The models have been implemented in Python using Keras [14] and Theano [60]. Open

source code is available at http://github.com/ozcell/lalnets that can be used to reproduce

the experimental results obtained on the three image datasets, MNIST [35], SVHN [44]

and CIFAR-100 [30] commonly used by previous researchers publishing in the field of semi-

supervised learning at NIPS, TNNLS and other similar venues. Figures 2.1, 2.2 and 3.4

respectively illustrate 200 examples from MNIST, SVHN and CIFAR-100 datasets and Table

3.1 summarizes the properties of these datasets used in the experiments. The CIFAR-100

dataset consists of 60000 32× 32 color images in 100 classes. These 100 classes are grouped

into 20 superclasses. Each image comes with a fine label, i.e. the class to which it belongs

and a coarse label, i.e. the superclasses to which it belongs.

42

Figure 3.4: CIFAR-100 Dataset.

Table 3.1: Datasets used in the experiments. Refer to Table 2.1 for MNIST and SVHN.

Data type Number of examples Dimension Number of classes % of largest class

CIFAR-100 Image: Objects Train: 50000, Test: 10000 3× 32× 32 Fine: 100, Coarse: 20 Fine: 1%, Coarse: 5%

All experiments have been performed using the 6-layer convolutional neural network

(CNN) model described in Table 3.2. For MNIST and SVHN experiments, coefficients of

GAR terms have been set as cα = 0.1, cβ = 0.1, cF = 0.0003 based on the experiments on a

validation set whose examples were randomly chosen from the training set and supervision is

introduced as a two parent-class classification problem, i.e. np = 2, as further explained in

the following sections. CIFAR-100 naturally involves two levels of labeling where np = 20.

For CIFAR-100, we use the same values for cα and cβ but change cF to 10−7 based on the

validation set experiments, which might possibly be caused due to the difference in np settings

of the datasets. For all experiments, we used a batch size of 128. Each experiment has been

43

repeated 10 times using different random initializations of the network. A validation set of

1000 examples has been chosen randomly among the training set examples to determine the

epoch to report the test performance, which is obtained by application to the examples not

introduced to the model during training, as is standard. For the sake of fairness, to obtain

the performances of the models used for comparison, all training examples of the datasets

are used for the pretraining of autoencoder-based models, and datasets are later pre-divided

into two subsets according to the created problem (e.g. whether a digit is smaller or larger

than 5) where two individual clusterings are performed within these subsets. The overall

performances are obtained by combining the results of these two clusterings. Following [25],

we evaluate test performance with unsupervised clustering accuracy given as

ACC = max
f∈F

∑m
i=1 1{t∗i = f(yi)}

m
(3.10)

where t∗i is the ground-truth label, yi is the annotation assigned in (3.7), and F is the set of

all possible one-to-one mappings between assignments and labels. In case of mixed clusters

between multiple classes, finding the best mapping maximizing (3.10) corresponds to assigning

a cluster to the class that occurs most in that cluster

Table 3.2: Specifications of the CNN model used in the experiments†.

Model name Specification

6-layer CNN 2*Conv(32x3x3) - MP(2x2) - Drop(0.2) - 2*Conv(64x3x3) - MP(2x2) - Drop(0.3) - FC(2048) - Drop(0.5) - ACOL(np, ks)

† Inputs of the models are determined according to the dimensions of the dataset being used for the training.
FC(i): Fully connected layer with i units
Drop(i): Applying dropout where the probability of retaining a unit is 1− i
Conv(i× j × k): Convolution layer where i corresponds to the number of filters and j × k to the kernel size
MP(i× j): Max pooling with pool size of i× j, i.e. factors by which to downscale (vertical × horizontal)
ACOL(np, ks): ACOL with np parent-classes where ks is the number of softmax duplicates per each parent-class

44

3.3.1 MNIST

To empirically demonstrate the label propagation process and compare the proposed

approach with other methods, we created a semi-supervised problem using MNIST by

providing parent-class supervision on whether a digit is smaller or larger than 5 such that

ti =


0 if digit < 5

1 otherwise
(3.11)

Figure 3.5 visualizes the realization of label propagation using the real predictions

obtained for the test set of 10000 examples. It’s worth noting that, for the sake of clarity,

Figure 3.5 visualizes only a randomly selected 250 examples out of the entire test set of

10000 examples. Colored circles denote the ground-truths for the vertices, i.e. examples, and

gray lines denote the edges, i.e. weighted connections between the examples representing

their similarity. Note that, for vertices in graph GY , there are two different colors indicating

true parent-class label assigned in (3.11), albeit ten different colors indicating the real digit

identity for vertices in graph GM. Graph GM = (M, E) shares the same verticesM with

graph GY = (M, EY), which is constructed per the provided supervision. However, E is

a subset of EY as some of the edges in graph GY , such as those between the examples of

digit 0 and 1, are eliminated in graph GM due to GAR regularization terms. As training

continues, the provided supervision turns graph GY into a disconnected graph of np = 2

disjoint subgraphs and implicitly propagates to its spanning subgraph GM in a way that GM

becomes a disconnected graph of n = 10 = npks disjoint subgraphs where ks = 5 for this

experiment.

Figure 3.6 presents the t-SNE [38] visualization of the latent space inferred by Z

for a randomly chosen 2000 test examples without stratification from MNIST, where the

portion of the largest class is 11%. It’s also worth noting that this reduction, which is due to

45

Figure 3.5: Visualizations of the graph GY and its spanning subgraph GM for a randomly
chosen 250 test examples from MNIST. Colored circles denote the ground-truths for the
vertices, i.e. examples, and gray lines denote the edges, i.e. weighted connections between
the examples representing their similarity. Note that, for vertices in graph GY , there are
two different colors indicating true parent-class label assigned in (3.11), albeit ten different
colors indicating the real digit identity for vertices in graph GM. As training continues,
provided supervision turns graph GY into a disconnected graph of np = 2 disjoint subgraphs
and implicitly propagates to graph GM in a way that GM becomes a disconnected graph of
n = 10 = npks disjoint subgraphs where ks = 5 for this experiment. This figure is best viewed
in color.

the computational complexity of the t-SNE technique, is performed only for visualization

purposes; however, all numeric performance metrics are calculated using the entire test sets.

From epoch 1 to epoch 300 of the training, clusters become well-separated and simultaneously

the test accuracy increases. As clearly observed from this figure, using the provided partial

supervision, the neural network also reveals some hidden patterns useful to distinguish the

examples of different digits under the same parent-class and ultimately learns to categorize

each one of the ten digits. Also for comparison, Figure 3.7 provides latent space visualizations

obtained using three other approaches along with ACOL. In order to introduce the same

two-parent supervision to other approaches, the dataset is first divided into two subsets

according to the provided supervision and then distinct latent spaces obtained for each one

of the subsets are combined for the final result. Table 3.3 summarizes the test error rates

calculated using the unsupervised clustering accuracy metric given in (3.10) for MNIST with

46

ks = 5. Results of a broad range of recent existing solutions are also presented for comparison.

VaDE [25], unsupervised generative clustering framework combining Variational Autoencoders

(VAE) and Gaussian Mixture Model (GMM) together, produces more competitive results with

respect to other approaches as it adopts variational inference during the reconstruction process

and enables the simultaneous updating of the GMM parameters and the network parameters.

On the other hand, unlike VaDE and other similar approaches based on the reconstruction of

the input, ACOL motivates neural networks to learn the latent space representation through

the provided partial supervision (e.g. whether a digit is smaller or larger than 5), which is

typically more general than the overall categorization interest (e.g. finding the real digit

identity {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}). This motivation yields a better separation of the clusters in

the latent space; however, its quality depends on the provided supervision as further explored

in the following section.

Table 3.3: Benchmark results for the two-parent case (whether a digit is smaller or larger than
5) on MNIST. The last row demonstrates the benchmark scores of the proposed framework
in this chapter. Note that given values represent the test error.

MNIST k = ks = 5

AE+k-means 21.80%

AE+GMM 23.80%

VaDE [25] 8.18%

ACOL 1.39%(±0.12)

3.3.2 MNIST - Impact of the Provided Supervision on Performance

We perform two experiments on MNIST in order to observe the impact of provided

supervision and whether useful information is propagated between parent-classes for better

47

Figure 3.6: t-SNE visualization of the latent space inferred by Z for a randomly chosen 2000
test examples from MNIST. Color codes denote the ground-truths for the examples. Note
the separation of clusters from epoch 1 to epoch 300 of the training. For reference, accuracy
for the entire test set is also plotted with respect to the training epochs. This figure is best
viewed in color.

sub-classification. In the first experiment, we used the same supervision described in (3.11)

by leaving the first parent-class unchanged throughout the experiment but discarding all

examples of a digit from the second parent-class in each new iteration. For all five iterations of

this experiment, Figure 3.8 presents the t-SNE visualization of the latent space representation

observed for a randomly chosen 2000 test examples only from the first parent-class, i.e.

{0,1,2,3,4}, and Table 3.4 summarizes the overall test errors calculated only over the classes

whose examples are included in the training. One might expect to observe better performance

when the clustering problem under one of the parent-classes is simplified. On the contrary, a

more challenging objective forces the network to reveal more latent patterns needed to better

differentiate each of the digits. More specifically, when the second parent-class consists only

48

Figure 3.7: t-SNE visualization of the latent spaces obtained using four different approaches
for a randomly chosen 2000 test examples from MNIST. In order to introduce the same
two-parent supervision to other approaches, the dataset is first divided into two subsets
according to the provided supervision and then distinct latent spaces obtained for each one
of the subsets are combined for the final result. Color codes denote the ground-truths for the
examples. Note the more definitive separation of clusters when using ACOL. This figure is
best viewed in color.

of the examples of the digit 5, the network learns only to distinguish its examples from those

of the first five digits. Adding the examples of digit 6, the network now has to extract more

hidden patterns identifying the unique differences between the set of the digits 5, 6 and the

set of digits 0, 1, 2, 3, 4. These extra hidden patterns also contribute to the differentiation

of the digits 0, 1, 2, 3, 4 from each other, which we identify as the inter-parent effect of the

provided supervision.

49

Figure 3.8: t-SNE visualization of the latent spaces obtained for the first parent-class,
{0, 1, 2, 3, 4}, showing the inter-parent effect of the provided supervision. In this scenario,
the first parent-class is left unchanged throughout the experiment but all examples of a digit
are discarded from the second parent-class in each new iteration. When the classification
objective becomes more challenging due to more distinct digits in the second parent-class, the
network is more capable of revealing the hidden patterns needed to better differentiate the
examples of the first parent. Color codes denote the ground-truths for the examples. This
figure is best viewed in color.

In the second experiment, rather than using the rule given in (3.11), we randomly

assign the parent-classes. That is, examples of a randomly chosen five digits are used to

construct the first parent-class and those of the remaining five digits form the second one.

The experiment is repeated 74 times with a new selection of parent-classes where combination

repetitions are prevented. Histogram of the test accuracies observed for these 74 repetitions is

given in Figure 3.9 and Table 3.5 summarizes the best, the median and the worst cases along

with the overall average. For reference, k-means results obtained for the same 74 scenarios are

also provided. For k-means, initialization was performed by following k-means++ technique

[4], which is based on the idea that spreading out the k initial cluster centers can prevent

arbitrarily bad clusterings. This method chooses cluster centers at random from the data

points, but weighs the data points according to their squared distance from the closest cluster

center already chosen [4]. One can observe that ACOL is less sensitive to variations in

the provided supervision as a majority of the iterations are concluded with a test accuracy

within 1.5% range. For k-means, provided supervision only determines the difficulty of the

50

Table 3.4: Benchmark results for the two-parent case on MNIST to observe the inter-parent
effect of the provided supervision. Reported overall test accuracies are calculated only over
the classes whose examples are included in the training.

1st Parent 2nd Parent Test Error

{0,1,2,3,4} {5,6,7,8,9} 1.39%(±0.12)

{0,1,2,3,4} {5,6,7,8} 3.83%(±2.09)

{0,1,2,3,4} {5,6,7} 4.04%(±0.92)

{0,1,2,3,4} {5,6} 16.44%(±3.33)

{0,1,2,3,4} {5} 26.55%(±2.64)

subsequent clustering tasks. As these clusterings are performed individually, they don’t

have any effect on performances of each other. However, in ACOL, there is a much more

complex relation between the provided supervision and the observed performance. Even

though the assigned parent-classes yield a more difficult unsupervised clustering task (e.g.

when digits 4 and 9 are under the same parent-class), ACOL can compensate this effect with

the help of latent patterns learned through inter-parent comparisons due to the classification

objective. Therefore, when a coarse level of labeling is available for a dataset, simultaneous

classification and clustering through ACOL produces better separated and more accurate

latent embeddings than individual clustering tasks within each of the known labels as ACOL

enables neural networks to exploit the provided supervision.

3.3.3 SVHN and CIFAR-100

We also test the proposed approach for more realistic and challenging scenarios using

the SVHN and CIFAR-100 datasets. For SVHN, we adopt the same supervision as defined in

(3.11). On the other hand, the CIFAR-100 dataset naturally defines two levels of labeling.

Each image has a coarse label indicating the superclass to which it belongs, such as trees

and also a fine label indicating the class to which it belongs, such as maple. The 100 classes

51

0.6 0.7 0.8 0.9 1.0
Test accuracy

0

10

20

30

40
ACOL
k-means

Figure 3.9: Normalized histogram of the test accuracies obtained using ACOL for a randomly
chosen 74 non-repeating two-parent supervision scenarios on MNIST. For comparison, the
same scenarios are also tested using the k-means algorithm.

Table 3.5: Test errors for worst, median and best cases among 74 non-repeating two-parent
supervision scenarios on MNIST. For k-means, k is set as 5, i.e. k = ks = 5, and initialization
is performed by the k-means++ technique based on the idea that spreading out the k initial
cluster centers can prevent arbitrarily bad clusterings [4].

Worst Median Best Mean

k-means 36.58% 24.99% 15.04% 24.94%(±1.23)

ACOL 24.98% 2.25% 0.85% 5.09%(±1.28)

in the CIFAR-100 are grouped into 20 superclasses. For the CIFAR-100 experiment, coarse

labels are provided as the supervision and fine labels are targeted as the annotations to be

observed. Tables 3.6 and 3.7 respectively summarize the test performances obtained for the

SVHN and CIFAR-100 datasets with two different ks settings. Results of a broad range of

other approaches in the current literature are also presented for comparison.

It is worth noting that, unlike MNIST and SVHN, the proposed approach suffers from a

limitation when using CIFAR-100 dataset. That is, the parent-wise classification performance

of the model affects the accuracy of assigned annotations. In the MNIST and SVHN datasets,

52

once trained with the provided parent-classes, the networks generalize well to the test sets

based on this supervision. Hence, when the sub-class annotations are obtained for training

and test examples, models yield approximately the same accuracy. However, in CIFAR-100,

training with 20 superclasses, the network cannot generalize well to the test examples as it

achieves 97.76% classification accuracy on the training set but cannot go beyond 70% on

the test set. In other words, generalization problem observed on the CIFAR-100 dataset is

not caused by the regularization but the supervised part of the training. To monitor this

effect, training set performances are also presented in Table 3.7. We would like to emphasize

that coarse labels (parent-classes) are introduced to the network only for the training set

examples, not for those in the test set. Fine labels, on the other hand, are never introduced

to the model in any part of the training for any example.

Table 3.6: Benchmark error results for the two-parent case on SVHN. The last row
demonstrates the benchmark scores of the proposed framework in this chapter. Note that
given values represent the test error.

SVHN k = ks = 5 SVHN k = ks = 10

AE+k-means 67.29% 62.42%

AE+GMM 69.38% 63.89%

ACOL 36.90%(±6.22) 21.66%(±1.49)

53

Table 3.7: Benchmark error results for the twenty-parent case on CIFAR-100. The last row
demonstrates the benchmark scores of the proposed framework in this chapter. Note that
given values represent the test error.

Training k = ks = 5 Test k = ks = 5 Training k = ks = 10 Test k = ks = 10

AE+k-means 64.60% 63.81% 61.17% 59.63%

AE+GMM 65.94% 65.45% 62.17% 61.20%

ACOL 44.64%(±0.79) 62.17%(±0.32) 37.41%(±0.42) 58.60%(±0.18)

54

CHAPTER 4: LEARNING LATENT REPRESENTATIONS IN NEURAL

NETWORKS FOR UNSUPERVISED CLUSTERING THROUGH PSEUDO

SUPERVISION AND GRAPH-BASED ACTIVITY REGULARIZATION1

Clustering, the unsupervised process of grouping similar examples together, is one of

the most fundamental challenges in machine learning research and has been studied extensively

in different aspects such as feature selection, distance functions, grouping methods, etc. [1].

k-means [39] and Gaussian Mixture Models (GMM) [9] are two well-known conventional

clustering algorithms that are applicable to a wide range of problems. Traditionally, these

methods are applied to low-level features such as gradient-orientation histograms (HOG) for

images. Therefore, their distance metrics are limited to local relations in the data space and

inadequate to represent hidden dependencies in latent spaces. On the other hand, spectral

clustering [63] is another conventional approach producing more flexible distance metrics than

k-means and GMM. However, these types of solutions are not scalable to large datasets as

they need to compute the full graph Laplacian matrix. Approximation approaches proposed

to trade off performance for speed can scale spectral clustering to large datasets [71].

In recent years, researchers have focused on the unsupervised learning of high-

level features on which to apply clustering and shown that learning good representations

is important for the accuracy and robustness of the clustering task. Deep Embedding

Clustering (DEC) [69] was proposed to simultaneously learn feature representations and

cluster assignments using deep neural networks (DNN). In this approach, first DNN parameters

are initialized with a layer-wise trained deep autoencoder [62] and then the initialized DNN
1This chapter has been submitted to 6th International Conference on Learning Representations (ICLR

2018) and is now under review.

55

is used to obtain the latent representation on which to perform k-means clustering for the

initialization of cluster centers. This complicated initialization is followed by a challenging

optimization process that minimizes the Kullback–Leibler (KL) divergence between the

centroid-based probability distribution and the auxiliary target distribution derived from

the soft cluster assignments. Similarly, Joint Unsupervised Learning (JULE) [72] combines

agglomerative clustering with convolutional neural networks (CNN) and formulates them as

a recurrent process. Although JULE proposes an end-to-end learning framework, it suffers

scalability issues due to its agglomerative clustering.

Novel deep generative models that can be trained via direct backpropagation have

recently been proposed avoiding the difficulties in preexisting generative models such as

Restricted Boltzmann Machines (RBM), Deep Belief Networks (DBN) and Deep Boltzmann

Machines (DBM) that are trained by MCMC-based algorithms [22, 55]. Among two canonical

examples of these models, Variational Autoencoders (VAE) [29, 53] integrate stochastic

latent variables into the conventional autoencoder architecture while Generative Adversarial

Networks (GAN) [20] propose an adversarial training procedure implementing a min-max

adversarial game between two neural networks: the discriminator and the generator. Following

these advances, researchers have started to study new hybrid models with the goal of

performing unsupervised clustering through deep generative models. For example, Variational

Deep Embedding (VaDE) [25] proposed a clustering framework combining VAE and GMM

together. Also, Gaussian Mixture Variational Autoencoder (GMVAE) [16] built upon the

semi-supervised model by [28] to perform unsupervised clustering within the VAE framework

with a Gaussian mixture as a prior distribution. GAN-based methods include: Categorical

Generative Adversarial Networks (CatGAN) [57], an approach incorporating neural network

classifiers with an adversarial generative model, and Adversarial Autoencoder (AAE) [40], a

probabilistic autoencoder variant integrating traditional reconstruction error with adversarial

training criterion of GANs. Besides, [47] proposes to fuse the disentangled features learned

56

by Information Maximizing Generative Adversarial Networks (InfoGAN), an extension to

GANs that uses mutual information to induce representation, with k-means clustering.

In this chapter, we propose a novel unsupervised clustering approach building upon

the previous study on learning of latent annotations in a particular semi-supervised setting

where a coarse level of supervision is available for all observations, i.e. parent-class labels, but

the model has to learn a fine level of latent annotations, i.e. sub-classes, under each one of

these parents. For clarification, as before assume that we are given a dataset of hand-written

digits such as MNIST [35] where the overall task is the complete categorization of each digit,

but the only available supervision is whether a digit is smaller or greater than 5. To study this

particular semi-supervised setting on neural networks, the previous chapter proposed a novel

output layer modification, Auto-clustering Output Layer (ACOL). ACOL allows simultaneous

supervised classification (per provided parent-classes) and unsupervised clustering (within

each parent) where clustering is performed through Graph-based Activity Regularization

(GAR) technique proposed in the second chapter. More specifically, as ACOL duplicates

the softmax nodes at the output layer for each class, GAR allows for competitive learning

between these duplicates on a traditional error-correction learning framework.

To learn latent annotations in a fully unsupervised setup, we substitute the real,

yet unavailable, parent-class information with a pseudo one. More specifically, we choose a

domain specific transformation to be applied to the observations in a dataset to generate

examples for a pseudo parent-class. The transformed dataset constitutes the examples of

that pseudo parent-class and every new transformation generates a new one. Regarding the

MNIST example for this fully unsupervised setting, now we simply augment the dataset by

applying a transformation to examples, e.g. rotating by 90o, and label transformed examples

as rotated and non-transformed examples as original. This new augmented dataset is provided

to the network as a two-class classification problem with pseudo classes labeled as original

and rotated as visualized in Figure 4.1. While being trained over this pseudo supervision,

57

through ACOL and GAR, the neural network learns the latent representation distinguishing

the real digit identities in an unsupervised manner.

The idea of employing an auxiliary task to learn a good data representation has

been previously studied for different domains [2, 15]. Most recent study, Exemplar CNN

[17], proposed to use a regularizer enforcing the feature representation to be approximately

invariant to the transformations while training the network to discriminate between a set

of pseudo parent-classes (“surrogate classes” with their definition). This approach requires

thousands of transformations to obtain a good representation and also it cannot exploit more

than 300 examples per “surrogate class” severely limiting its scalability. Furthermore, some

elementary transformations, such as rotation, have only a minor impact on the performance.

In comparison, in our approach, only 8 pseudo parent-classes generated by rotation-based

transformations, i.e. 0o, 90o, 180o, 270o rotations of original images and 0o, 90o, 180o,

270o rotations of horizontally flipped images, provide a rich latent representation to obtain

state-of-the-art unsupervised clustering performance.

4.1 Background

In the second chapter, GAR has been originally proposed for the classical type of

semi-supervised setting where the number of labeled observations is much smaller than

the number of unlabeled observations. We have shown that defining the objective of the

regularization over the matrix N yields a scalable and efficient graph-based solution and

that the entire operation corresponds to propagating the available labels across the graph

GM whose edges are specified by the m×m symmetric matrix M := BBT that infers the

adjacency of the examples based on the predictions of the neural network. More specifically,

it has been shown that as the matrix N turns into the identity matrix, GM becomes a

disconnected graph including n disjoint subgraphs each of which is m/n-regular. This indicates

58

Classification
(Pseudo Supervision)

Clustering
(Latent Annotations)

Dataset Augmentation
(Pseudo Parent-classes)

a set of
transformations

pseudo parent-class labels

Figure 4.1: Assume that we are given a dataset of hand-written digits such as MNIST where
the overall task is the complete categorization of each digit. Then, we simply augment the
dataset by applying a transformation to examples, e.g. rotating by 90o, and label each of them
either as original or as rotated. This new augmented dataset is provided to the network as a
two-class classification problem. While being trained over this pseudo supervision, through
ACOL and GAR, the neural network also learns the latent representation distinguishing the
real digit identities in unsupervised an manner.

that the strong adjacencies in the matrix M get stronger, weak ones diminish and each label

is propagated to m/n examples through the strong adjacencies.

On the other hand, in the particular semi-supervised setting considered in the third

chapter (i.e. a coarse level of labeling is available for all observations but the model still needs

to learn a fine level of latent annotation for each one of them), when applied to an ACOL

network, GAR provides that the latent information introduced by the coarse supervision

is propagated from the graph GY (whose edges are specified by m ×m symmetric matrix

Y Y T) to its spanning subgraph GM to reveal deeper latent annotations. In other words,

although these two graphs are made up of the same vertices (m examples) while propagating

the latent information that is captured through supervised adjacency introduced by GY across

59

GM, GAR terms eliminate some of the edges of GY from GM in a way that GM ultimately

becomes a disconnected graph of n disjoint subgraphs each of which now corresponds to a

latent annotation.

4.2 Proposed Framework

4.2.1 Objective Function

The unsupervised clustering approach proposed in this chapter adopts the same

framework introduced in the previous chapter. Since the real parent-class labels (a digit is

smaller or greater than 5) are unavailable in a fully unsupervised setting, we randomly assign

pseudo parent-class labels each of which is associated with a domain specific transformation

used to generate the examples of that pseudo parent-class.

In this setting, np now corresponds to the number of pseudo parent-classes and

t̃ = [t̃1 . . . t̃m]T is a vector of randomly assigned pseudo parent-class labels which are uniformly

distributed across np pseudo parent-classes such that t̃i ∈ {1, ..., np}. Also, there exists a set of

transformations ST = {T1, ..., Tnp} where transformation Tj is used to generate the examples

of the jth pseudo parent-class such that x̃i = Tj(xi). ST also includes non-transformation T1

providing x̃i = T1(xi) = xi to ensure that the original observations are introduced to the

network during training. t̃ is associated with a vector of transformations T = [T1 . . . Tm]T

such that Ti = Tt̃i .

Let � be an element-wise operation defined between the vector of transformations T

and the original input feature map X = [x1 . . .xm]T such that

X̃ =



x̃1

x̃2

...

x̃m


= T �X =



T1

T2
...

Tm


�



x1

x2

...

xm


=



T1(x1)

T2(x2)

...

Tm(xm)


=



Tt̃1(x1)

Tt̃2(x2)

...

Tt̃m(xm)


(4.1)

60

where X̃ corresponds to the modified input feature map by the vector of transformations T ,

which is associated with the randomly assigned pseudo labels t̃. The output of the entire

network and the positive part of the augmented softmax layer activities respectively become

Y = f(X̃) and B = g(X̃). Then, the objective function defined in (3.6) can simply be

adopted by substituting the real, yet unavailable, observation-label pair (X, t) with a pseudo

one (X̃, t̃) such that

L
(
f
(
X̃), t̃

)
+ U

(
g
(
X̃
))

= L
(
Y , t̃

)
+ cαα

(
B
)

+ cβ
(
1− β

(
B
))

+ cF ||B||2F (4.2)

4.2.2 Modified Affinity and Balance Terms

Recall that an n× n symmetric matrix N = BTB specifies the edges of the graph

between the softmax duplicates and that GAR terms have been proposed to regularize the

matrix N in a way that it turns into the identity matrix. While the objective of affinity,

i.e. penalizing the non-zero off-diagonal entries of N , corresponds to assigning an example

to only one softmax node with the probability of 1, the objective of balance, i.e. equalizing

diagonal entries of N , corresponds to preventing collapsing onto a subspace of dimension less

than n.

Among the off-diagonal entries of N determining the affinity cost, for each one of

n softmax nodes, there exist ks − 1 entries describing its relation with the other duplicates

of the same parent-class (let us define them as intra-parent entries) and (np − 1)ks entries

describing its relation with the softmax nodes belonging to other parent-classes (let us define

them as inter-parent entries). While inter-parent entries are explicitly affected by the pseudo

classification objective as well as the regularization, intra-parent entries do not experience

the classification directly. Therefore, the affinity cost due to inter-parent entries is minimized

at a different rate than the affinity cost due to intra-parent entries. On the other hand, as it

is calculated over the diagonal entries of N , the balance cost does not either experience the

61

pseudo classification objective explicitly. As a result, due to the direct impact of the pseudo

classification objective which is observed only on the affinity cost, the weighting between the

regularization terms actively alters during the training and needs to be re-tuned through the

hyperparameters cα and cβ. This effect can be observed more clearly as np, the number of

parent-classes, increases.

To ensure a more robust regularization we introduce a modification for the affinity

and balance terms: We discard all inter-parent entries of N and represent the remaining ones

as a three dimensional tensor Ñ . Thus, Ñ is a ks × ks × np tensor such that Ñ :,:,k specifies

the relations between ks softmax duplicates of the kth parent-class where k ∈ {1, ..., np}. Also,

Ṽ is another ks × ks × np tensor defined as

Ṽ :,:,k = [Ñ1,1,k . . . Ñks,ks,k]
T [Ñ1,1,k . . . Ñks,ks,k] (4.3)

Then, the modified affinity and balance terms can be respectively written as

α̃
(
B
)

:=
1

np

np∑
k=1

ks∑
i 6=j

Ñijk

(ks − 1)
ks∑
i=j

Ñijk

(4.4)

β̃
(
B
)

:=
1

np

np∑
k=1

ks∑
i 6=j

Ṽijk

(ks − 1)
ks∑
i=j

Ṽijk

(4.5)

and simply correspond to calculating the original terms given in (2.16), (2.17) on each 2-D

ks× ks× 1 slice of Ñ and Ṽ tensors and then averaging the results for np of them. Replacing

these modified terms in (4.2), the overall modified objective function becomes

L
(
f
(
X̃), t̃

)
+ U

(
g
(
X̃
))

= L
(
Y , t̃

)
+ cαα̃

(
B
)

+ cβ
(
1− β̃

(
B
))

+ cF ||B||2F (4.6)

62

4.2.3 Training and Cluster Assignments

Network parameters are trained by implementing the stochastic optimization method

Adam [27] based on the objective given in (4.6). After training, k-means clustering is

performed on the representation space observed in the hidden layer preceding the augmented

softmax layer such that

F = Y (L−2) = f (L−2)(X) (4.7)

Recalling that the original examples are already introduced to the network as the examples of

first pseudo parent-class through transformation T1, we obtain the latent space representation

only for the original examples to perform k-means clustering.

One might suggest performing k-means clustering on the representation observed in

the augmented softmax layer (Z or softmax(Z)) rather than F . Properties and respective

clustering performance of these representation spaces are empirically demonstrated in the

following sections.

Algorithm 3 below describes the entire training and cluster assignment procedure.

4.3 Experiments

4.3.1 Experimental Setup and Datasets

The models have been implemented in Python using Keras [14] and Theano [60]. Open

source code is available http://github.com/ozcell/lalnets that can be used to reproduce the

experimental results obtained on three benchmark image datasets, MNIST [35], SVHN [44]

and USPS. Figures 2.1, 2.2 and 4.2 respectively illustrate 200 examples from MNIST, SVHN

and USPS datasets and Table 4.1 summarizes the properties of these datasets used in the

experiments. The USPS dataset is a 16× 16 grayscale image dataset of handwritten digits in

which digits have been size-normalized. There are 7291 training observations and 2007 test

observations.

63

Algorithm 3: Model training and cluster assignments
Input :X = [x1 . . .xm]

T , np,
a set of transformations ST = {T1, ..., Tnp},
batch size b, weighing coefficients cα, cβ, cF , the number of clusters k

repeat
t̃←− random(np) // Randomly assign labels across np classes
T ←− [Tt̃1 , ..., Tt̃m] // Obtain the vector of transformations corresponding
to t̃

X̃ ←− T �X // Obtain the modified input{
(X́1, t́1), ..., (X́m/b, t́m/b)

}
←− (X̃, t̃) // Shuffle and create batch pairs

for i← 1 to m/b do
Take ith pair (X́i, t́i)
Forward propagate for Ý i = f(X́i) and B́i = g(X́i)
Take a gradient step for L

(
Ý i, t́i

)
+ cαα̃

(
B́i

)
+ cβ

(
1− β̃

(
B́i

))
+ cF ||B́i||2F

until stopping criteria is met
F ←− f (L−2)(X) // Obtain latent space representation F for the original
examples

y ←− kmeans(F , k) // Assign clusters by performing k-means on F
return :Cluster assignments y

Table 4.1: Datasets used in the experiments. Refer to Table 2.1 for MNIST and SVHN.

Data type Number of examples Dimension Number of classes % of largest class

USPS Image: Hand-written digits Train: 7291, Test: 2007 1× 16× 16 10 17%

All experiments have been performed on a 6-layer convolutional neural network (CNN)

model whose specifications are given in Table 4.2 where coefficients of GAR terms have been

set as ks = 20, cα = 0.1, cβ = 1, cF = 0.000001. Specifications of the 6-layer CNN model

and coefficients of GAR terms have been chosen based on experiments on the entire training

set. During training, pseudo supervised objective is introduced as an 8 pseudo parent-class

64

Figure 4.2: USPS Dataset.

classification problem, i.e. np = 8, through the following rotation-based transformations:

Ti =



i = 1 : No transformation

i = 2 : Rotate by 90o

i = 3 : Rotate by 180o

i = 4 : Rotate by 270o

i = 5 : Flip horizontally

i = 6 : Flip horizontally + Rotate by 90o

i = 7 : Flip horizontally + Rotate by 180o

i = 8 : Flip horizontally + Rotate by 270o

(4.8)

We used the same batch size of 400 for all experiments, but it’s worth noting that we didn’t

observe any significant difference during the experiments performed using different batch size

settings, i.e. {128, 400, 1000}. Each experiment has been repeated 10 times using different

random initializations of the network weights. To ensure that the representation obtained

65

through the proposed approach is well-generalized for never-seen-before data, we train the

neural network parameters using only the training set examples of each dataset and obtain

the clustering performances using k-means with k = 10 on the latent space representation F

of the untransformed test set examples (through T1).

Table 4.2: Specifications of the CNN model used in the experiments†.

Model name Specification

6-layer CNN 2*Conv(32x3x3) - MP(2x2) - Drop(0.2) - 2*Conv(64x3x3) - MP(2x2) - Drop(0.3) - FC(2048) - Drop(0.5) - ACOL(np, ks)

† Inputs of the models are determined according to the dimensions of the dataset being used for the training.
FC(i): Fully connected layer with i units
Drop(i): Applying dropout where the probability of retaining a unit is 1− i
Conv(i× j × k): Convolution layer where i corresponds to the number of filters and j × k to the kernel size
MP(i× j): Max pooling with pool size of i× j, i.e. factors by which to downscale (vertical × horizontal)
ACOL(np, ks): ACOL with np pseudo parent-classes where ks is the number of softmax duplicates per each pseudo parent-class

4.3.2 Quantitative Comparison

Following [25] and [72], we evaluate the test performances using normalized mutual

information (NMI) [70] and unsupervised clustering accuracy given in (3.10). Both metrics

range between [0, 1] where a larger value indicates more precise clustering results.

Figure 4.3 presents the t-SNE [38] visualizations of the latent space F throughout the

training for a randomly selected 2000 untransformed test examples without stratification

from MNIST, where the portion of the largest class is 11%. Each group corresponds to

a cluster (i.e. a digit) under the first pseudo parent-class (i.e. the class of untransformed

examples including all ten digits). Color codes denote the ground-truths for the digits. From

epoch 1 to epoch 400 of the unsupervised (but pseudo supervised) training, clusters become

well-separated and simultaneously the clustering accuracy increases. As clearly observed

from this figure, using the pseudo supervision, the neural network also reveals some hidden

patterns useful to distinguish the real digit identities and ultimately learns to categorize

66

each one of them. It is also worth noting that a high level of clustering accuracy is achieved

relatively quickly (after only 50 epochs) as seen both in the t-SNE and test accuracy plots.

Figure 4.3: t-SNE visualization of the latent space F throughout the training for a randomly
selected 2000 untransformed test examples from MNIST. Color codes denote the ground-truths
for the digits. Note the separation of clusters from epoch 1 to epoch 400 of the unsupervised
(but pseudo supervised) training. For reference, clustering accuracy for the entire test set is
also provided. This figure is best viewed in color.

Tables 4.3 and 4.4 summarize quantitative unsupervised clustering performances

observed on three datasets respectively in terms of accuracy (ACC) and normalized mutual

information (NMI). Results of a broad range of recent existing solutions are also presented

for comparison. These solutions are grouped according to their approaches to unsupervised

clustering. Following the very recent developments in deep generative models, VaDE [25] and

GMVAE [16] employ variational autoencoders while CatGAN [57], AAE [40] and IMSAT [24]

67

adopt adversarial training. DEC [69] simultaneously learns feature representations and cluster

assignments using DNNs. On the other hand, JULE [72] combines agglomerative clustering

with CNNs. Also, the performance of a conventional approach, applying k-means on the

autoencoder representation, is provided to establish a baseline for unsupervised clustering

performances. Our approach statistically significantly outperforms all the contemporary

methods that reported unsupervised clustering performance on MNIST except IMSAT

[24] displaying very competitive performance with our approach, i.e. 98.32%(±0.08) vs.

98.40%(±0.40). However, results obtained on the SVHN dataset show that our approach

statistically significantly outperforms IMSAT on this realistic dataset and defines the current

state-of-the-art for unsupervised clustering. Besides, the USPS dataset provides another

basis of comparison between our approach and JULE - one of the models reporting highest

unsupervised clustering accuracies on MNIST in the literature.

4.3.3 Representation Properties

Recall that, for the 6-layer CNN model employed in the experiments, F = Y (L−2)

corresponds to the output of the fully-connected layer of 2048 ReLU nodes, Z = FW L−1+bL−1

is the input of the augmented softmax layer of 160 nodes, i.e. n = npks, where 8 pseudo

parent-classes are represented by 20 softmax duplicates each.

Figure 4.4 provides the average value for each dimension of F , Z and softmax(Z)

observed with respect to untransformed test set examples and the norm of the associated

weights. Note that the representation on F is not distributed to the entire space but the

weights associated to these unused dimensions do not decay. On the other hand, due to the

pseudo supervision task, the output of the augmented softmax layer i.e. softmax(Z), becomes

a one-hot encoded representation of which 140 dimensions, i.e. (np − 1)ks, are inactive for

the untransformed examples; however, the representation at its input is distributed to all

dimensions. Figure 4.4 also summarizes how the dimension size of F , i.e. the number of

68

Table 4.3: Quantitative unsupervised clustering performance (ACC) on MNIST, USPS and
SVHN datasets. Results of a broad range of recent existing solutions are also presented for
comparison. The last row demonstrates the benchmark scores of the proposed framework in
this chapter. 95% confidence interval is also provided to show the statistical significance of
the obtained results.

k MNIST-test USPS-full † SVHN-test

VaDE [25] 10 94.06% - -
GMVAE [16] 10 82.31%(±3.75) - -
GMVAE [16] 16 87.82%(±5.33) - -
GMVAE [16] 30 92.77%(±1.60) - -

CatGAN [57] 20 90.30% - -
AAE [40] 16 90.45%(±2.05) - -
AAE [40] 30 95.90%(±1.13) - -
IMSAT [24] 10 98.40%(±0.40) - 57.30%(±3.90)

k-means [69] 10 53.49% - -
AE+k-means [69] 10 81.84% - -

DEC [69] 10 84.30% - 11.9%(±0.40)††

JULE [72] 10 96.10% 95.00% -

Our approach 10 98.32%(±0.08) 96.51%(±0.26) 76.80%(±1.30)

† Only for USPS dataset, following JULE [72], we reported unsupervised clustering performance over the full dataset for a fair comparison.
†† Excerpted from [24].

ReLU nodes in the fully-connected layer, affects the clustering performance. Decreasing

the number of dimensions of F up to a point, i.e. ≈ 1024, does not significantly affect the

clustering accuracy. However, further decrease beyond this point dramatically reduces the

performance.

For comparison, Figure 4.5 presents t-SNE visualizations of these latent representations

observed with respect to a randomly selected 2000 untransformed test examples without

stratification from MNIST, where the portion of the largest class is 11%. One can clearly see

that clusters are not well-separated on one-hot encoded softmax(Z); however, separations of

the clusters are quite similar and clear on the representation spaces F and Z. Hence, one can

69

Table 4.4: Quantitative unsupervised clustering performance (NMI) on MNIST, USPS and
SVHN datasets. The last row demonstrates the benchmark scores of the proposed framework
in this chapter.

k MNIST-test USPS-full † SVHN-test

JULE [72] 10 91.50% 91.30% -

Our approach 10 95.64%(±0.15) 92.76%(±0.30) 68.90%(±0.43)

† Only for USPS dataset, following JULE [72], we reported unsupervised clustering performance over the full dataset for a fair comparison.

also obtain similar clustering accuracy on the test set of 10000 examples, i.e. = 98.16%±(0.14),

by applying k-means on the representation space Z.

4.3.4 Graph Interpretation of the Latent Information Propagation through GAR

Recall that GAR terms have been originally proposed to propagate the available labels

towards the unlabeled examples in a semi-supervised setting and, in the previous chapter,

we have shown that these terms can also be adopted to propagate the hidden information

that is introduced by a coarse level of supervision and which is useful to discover a deeper

level of latent annotations. In the fully unsupervised setting considered in this chapter, as no

real supervision is available, hidden information useful to discover unknown clusters is now

captured through the help of domain specific transformations and propagated by GAR terms

as well.

Figure 4.6 visualizes the realization of this propagation using the real predictions

obtained on MNIST. Colored circles denote the ground-truths for the vertices, i.e. examples,

and gray lines denote the edges, i.e. non-zero weighted connections between the examples

representing their similarity. Note that, for vertices in graph GY , there are two different

colors indicating true pseudo parent-class labels assigned per the applied transformation (for

simplicity, out of 8, only the examples of the first two pseudo parent-classes are used for this

illustration), albeit ten different colors indicating the real digit identity for vertices in graph

70

0 512 1024 1536 2048
Latent dimension i

0.0

0.1

0.2

0.3

0.4
Average value of F : , i

Rescaled (outgoing) weight norm

0 40 80 120 160
Latent dimension i

0

1

2

3

4
Average value of norm of Z : , i

Rescaled (incoming) weight norm
Rescaled average value of softmax(Z : , i)

2048 1024 512 256 128 64 32
The number of dimensions of F

0.2

0.4

0.6

0.8

1.0
Clustering accuracy

Figure 4.4: The average value for each dimension of F , Z and softmax(Z) observed with
respect to untransformed test set examples and the norm of the associated weights. Note
that the representation on F is not distributed to the entire space but the weights associated
to these unused dimensions do not decay. On the other hand, due to the pseudo supervision
task, the output of the augmented softmax layer i.e. softmax(Z), becomes a one-hot encoded
representation of which 140 dimensions are inactive for the untransformed examples; however,
the representation at its input is distributed to all dimensions. The last plot shows how the
dimension size of F affects the clustering performance. This figure is best viewed in color.

GM. Recall that edges of these two graphs, EY and E , are respectively inferred by matrices

Y Y T and BBT where B = max(0,Z) and that GM is the spanning subgraph of GY . That

is, GM = (M, E) shares the same verticesM with graph GY = (M, EY), which is constructed

per the pseudo supervision; however, E is a subset of EY as some of the edges in graph GY ,

such as those between the examples of digit 0 and 1, are eliminated in graph GM due to GAR

regularization terms. As training continues, pseudo supervision eliminates the edges between

the examples of different pseudo parent-classes and turns graph GY into a disconnected graph

of np = 8 disjoint subgraphs (only two of them are illustrated). Simultaneously, GAR terms

eliminate the edges between the examples of the same parent-class in graph GM to discover

previously unknown clusters. Ultimately, GM becomes disconnected graphs of δ disjoint

subgraphs where np ≤ δ ≤ npks and each disjoint subgraph corresponds to a cluster.

71

Figure 4.5: Comparison of t-SNE visualizations of the latent spaces F , Z and softmax(Z)
for 2000 test examples from MNIST. Color codes denote the ground-truths for the examples.
Color codes denote the ground-truths for the digits. Clusters are not well-separated on
one-hot encoded softmax(Z); however, separations of the clusters are quite similar and clear
on the representation spaces F and Z. This figure is best viewed in color.

4.3.5 The Impact of the Number of Clusters k

For the quantitative clustering results, we set the number of clusters for the k-means

to the number of classes assuming a prior knowledge, i.e. k = 10. To demonstrate the

representation power of the proposed approach as an unsupervised clustering model, on

MNIST, we deliberately choose different k values for the k-means clustering applied on the

representation space F . For two different k settings i.e. 7 and 20, Figure 4.7 illustrates a

few examples of each cluster. One can see that when k is smaller than the actual number of

classes, digits with similar appearances are grouped together, such as digits 4 and 9, 5 and 8,

0 and 6. When k is set to a bigger value than the number of classes, some digits are divided

into subclasses based on visually identifiable image properties such as digit tilt, roundness,

etc. Note the differences between upright and oblique digit 1 as shown in clusters 2 and 20,

72

between two styles of digit 6 as shown in clusters 18 and 19, and between two styles of digit

2 as shown in clusters 7 and 12.

4.3.6 The Impact of Transformations

As the revealed unknown clusters are directly related with the captured latent

information through pseudo parent-classes, choosing the right set of transformations for

the clustering task of concern is crucial for the performance. Figure 4.8 presents t-SNE

visualizations of the representation spaces observed when different sets of transformations

are adopted.

The first row of Figure 4.8 illustrates the clustering results when one of four different

transformation types, i.e. scaling, shearing, translation and random permutation of the

pixels, is applied variably to generate 8 pseudo parent-classes. One can observe some level of

grouping with scaling and shearing-based transformations; however, the clusters defined by

these groupings do not represent real digit identities (as shown by the colored dots) and may

indicate other features of images. On the other hand, translating the images or randomly

permuting the pixel positions do not provide any useful knowledge to discover any well-defined

clustering.

The second row of Figure 4.8 presents the results obtained when rotation-based

transformations listed in (4.8) are adopted. One can easily observe that only two or four

pseudo parent-classes generated using rotation-based transformations are sufficient to obtain

decent clustering representing the real digit identities. Considering that, for MNIST, the

clustering accuracy obtained using all 8 transformations in (4.8) is 98.32%(±0.08), we have

achieved 97.80%(±0.18) accuracy using ST = {T1, T2, T3, T4}, 72.52%(±6.20) accuracy using

ST = {T1, T2} and 96.84%(±0.29) accuracy using ST = {T1, T3}. Recalling that T2 and T3

respectively correspond to rotating the images by 90o and 180o, one can say that comparing

the untransformed images with their 180o rotated versions is more effective in terms of

73

capturing the latent information that is useful to distinguish the real digit identities. In fact,

T3 alone is sufficient to achieve state-of-the-art clustering accuracy on MNIST. Adding more

rotation-based transformations to ST further improves the clustering performance. It’s worth

noting that max pooling layers of the CNN model used in the experiments provide basic

invariance to rotations and translations in images. This might be the reason of not being

able to obtain any well-defined clustering when using translation-based transformations as

shown in the first row of Figure 4.8. To prevent any similar effects when using rotation-based

transformations and also the need for interpolation, we applied the rotations in multiples of

90o. To summarize, the type of the transformation generating the pseudo parent-classes is

more important than their number and different transformations can reveal different clustering

patterns. Therefore, finding the right transformation type for the clustering task of concern

is crucial for the proposed approach in this chapter and it remains an important research

question how to identify the kind of transformation most optimized for the clustering task at

hand.

74

Figure 4.6: Visualizations of the graph GY and its spanning subgraph GM for randomly chosen
250 test examples from MNIST. Colored circles denote the ground-truths for the vertices,
i.e. examples, and gray lines denote the edges, i.e. non-zero weighted connections between
the examples representing their similarity. Note that, for vertices in graph GY , there are two
different colors indicating true pseudo parent-class labels assigned according to the applied
transformation (for simplicity, out of 8, only the examples of first two pseudo parent-classes
are used for this illustration), albeit ten different colors indicating the real digit identity for
vertices in graph GM. As training continues, pseudo supervision eliminates the edges between
the examples of different pseudo parent-classes and turns graph GY into a disconnected graph
of np = 8 disjoint subgraphs (only two of them are illustrated). Simultaneously, GAR terms
eliminate the edges between the examples of the same parent-class in graph GM to discover
previously unknown clusters. Ultimately, GM becomes disconnected graphs of δ disjoint
subgraphs where np ≤ δ ≤ npks and each disjoint subgraph corresponds to a cluster. This
figure is best viewed in color.

75

k= 7

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 5

Cluster 6

Cluster 7

k= 20

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 5

Cluster 6

Cluster 7

Cluster 8

Cluster 9

Cluster 10

Cluster 11

Cluster 12

Cluster 13

Cluster 14

Cluster 15

Cluster 16

Cluster 17

Cluster 18

Cluster 19

Cluster 20

Figure 4.7: Illustration of a few examples of each cluster for two different k settings. When
k is smaller than the actual number of classes, digits with similar appearances are grouped
together, such as digits 4 and 9, 5 and 8, 0 and 6. When k is set to a bigger value than the
number of classes, some digits are divided into subclasses based on visually identifiable image
properties such as digit tilt, roundness, etc. Note the differences between upright and oblique
digit 1 as shown in clusters 2 and 20, between two styles of digit 6 as shown in clusters 18
and 19, and between two styles of digit 2 as shown in clusters 7 and 12.

76

Figure 4.8: t-SNE visualizations of the representation spaces observed when different sets of
transformations are adopted. The first row illustrates the clustering results when one of four
different transformation types, i.e. scaling, shearing, translation and random permutation of
the pixels, is applied variably to generate 8 pseudo parent-classes. The second row presents
the results obtained when rotation-based transformations listed in (4.8) are adopted. To
summarize, the type of the transformation generating the pseudo parent-classes is more
important than their number and different transformations can reveal different clustering
patterns. Therefore, finding the right transformation type for the clustering task of concern
is crucial for the proposed approach in this chapter. Color codes denote the ground-truths
for the examples. This figure is best viewed in color.

77

CHAPTER 5: CONCLUSIONS

It is now a universally accepted fact that machine learning, especially in recent years,

has achieved tremendous success in practical industrial applications, specifically on supervised

learning problems with large amounts of properly labeled data. Requiring such large amounts

of supervised data to obtain good accuracy, these algorithms are difficult to adopt to domains

where labeling is a challenging task that needs expert knowledge. Therefore, in recent years,

machine learning research has had a focus on algorithms that are able to exploit a large set

of unlabeled examples to reduce the amount of labeled data required for existing models

to perform well. In this dissertation, we presented novel, scalable and efficient learning

frameworks for semi-supervised and unsupervised settings based on two ideas: Graph-based

Activity Regularization (GAR) and Auto-clustering Output Layer (ACOL).

The second chapter introduced Graph-based Activity Regularization (GAR) technique

for semi-supervised learning problems. Specifically, in Chapter 2, we proposed a novel

graph-based framework considering adaptive adjacency of the examples, M , which is inferred

using the predictions of a neural network model. When well-constrained, the adaptive

adjacency approach contributes to improved accuracy results and automatically yields that

the predictions of the network become the optimal embedding of M without requiring any

additional step. We satisfied these constraints by defining a regularization over the adjacency

of the output nodes, N , which is also inferred using the predictions of the network. Such

regularization helped us devise an efficient and scalable framework that is natural for the

classification framework on neural networks as it requires no additional task calculating the

reconstruction error or implementing zero-sum game mechanism unlike competing state-of-

78

the-art autoencoder or adversarial network based approaches. Through this low-cost and

easy-to-train framework, we obtained comparable performance with state-of-the-art generative

approaches for semi-supervised learning.

In the third chapter, we introduced Auto-clustering Output Layer (ACOL), a novel

modification to the output layer of a neural network, to automatically identify the latent

annotations via partial supervision of coarse class labels. We use GAR terms in training

the model to search for sub-classes under parent-classes without supervision. The proposed

learning framework can be used in many domains such as text categorization, protein function

prediction, image classification as well as in exploratory scientific studies such as medical and

genomics research. Our major contributions in Chapter 3 are four-fold: First, we explored

a different type of semi-supervised setting for neural networks. That is, every observation

in a dataset has a corresponding ground-truth label; however, this label is more general

than the main categorization interest. Hence, the aim of this particular semi-supervised

setting is to explore the more definite latent annotations when this general supervision

is provided as parent-class labels. Second, we propose a simple yet efficient output layer

modification, ACOL, which enables simultaneous supervised classification and unsupervised

clustering on neural networks. ACOL introduces duplicated softmax nodes for each one

of the parent-classes. Then, we adopted GAR terms for the unsupervised portion of the

objective function and showed that these terms efficiently guide the optimization in a way

that each softmax duplicate is specialized during the training to represent a proper latent

annotation. Most interestingly, we demonstrate that the neural network can learn from

existing differences between different parent-class labels and translate that knowledge to

better identify sub-classes within each parent-class. Finally the proposed approach was

validated on three popular image benchmark datasets, MNIST, SVHN and CIFAR-100,

through t-SNE visualizations and unsupervised clustering accuracy metrics compared to

79

well-accepted approaches implemented for the particular semi-supervised setting discussed in

Chapter 3.

In the fourth chapter, we introduced a novel unsupervised clustering approach building

upon ACOL and GAR. To discover unknown clusters in a fully unsupervised setup, we

substitute the real, yet unavailable, partial supervision with a pseudo one. More specifically,

we randomly assign pseudo parent-class labels each of which is associated with a different

domain specific transformation. Each observation is modified by applying the transformation

corresponding to the assigned pseudo label. Generated observation-label pairs are used to

train an ACOL network that introduces multiple softmax nodes for each pseudo parent-class.

Due to the unsupervised regularization based on GAR terms, each softmax duplicate under a

parent-class is specialized as the latent information captured with the help of domain specific

transformations is propagated throughout the training. Ultimately we obtain a k-means

friendly latent representation. Furthermore, we demonstrate that the neural network can

learn by comparing differently transformed examples and translate that knowledge to reveal

unknown clusters. The proposed approach is validated on three image benchmark datasets,

MNIST, SVHN and USPS, through t-SNE visualizations and unsupervised clustering accuracy

exceeds those reported by well-accepted approaches in the literature. Future work will extend

this approach to other domains such as sequential data. We will also explore how to optimize

domain specific transformations based on known or otherwise identifiable characteristics of

the dataset being considered for clustering.

In addition to competitive and state-of-the-art performance, compared to other

traditional graph-based approaches, the proposed frameworks in this dissertation are fully

scalable to very large datasets. Besides, unlike other state-of-the-art approaches based on

generative models recently proposed in the literature, i.e. Variational Autoencoders (VAEs)

and Generative Adversarial Networks (GANs), all three approaches provide easy-to-train

frameworks that are fit well with the operation of neural networks as i) GAR terms can readily

80

be added to the loss function as simply as adding standard L1, L2 regularizations and ii)

ACOL brings no additional overhead to the training. Ultimately, when their performance is

coupled with their simplicity and ease-of-implementation, the proposed approaches are strong

candidates to replace current state-of-the-art techniques in the literature for semi-supervised

and unsupervised settings.

81

LIST OF REFERENCES

[1] Aggarwal, C. C. and Reddy, C. K., editors (2014). Data Clustering: Algorithms and
Applications. CRC Press.

[2] Ahmed, A., Yu, K., Xu, W., Gong, Y., and Xing, E. P. (2008). Training hierarchical feed-
forward visual recognition models using transfer learning from pseudo-tasks. In Computer
Vision - ECCV 2008, 10th European Conference on Computer Vision, Marseille, France,
October 12-18, 2008, Proceedings, Part III, pages 69–82.

[3] Arel, I., Rose, D. C., and Karnowski, T. P. (2010). Deep machine learning-a new frontier
in artificial intelligence research [research frontier]. Computational Intelligence Magazine,
IEEE, 5(4):13–18.

[4] Arthur, D. and Vassilvitskii, S. (2007). k-means++: the advantages of careful seeding.
In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2007, New Orleans, Louisiana, USA, January 7-9, 2007, pages 1027–1035.

[5] Bair, E. (2013). Semi-supervised clustering methods. Wiley Interdisciplinary Reviews:
Computational Statistics, 5(5):349–361.

[6] Belkin, M. and Niyogi, P. (2003). Laplacian eigenmaps for dimensionality reduction and
data representation. Neural Computation, 15(6):1373–1396.

[7] Belkin, M., Niyogi, P., and Sindhwani, V. (2006). Manifold regularization: A geometric
framework for learning from labeled and unlabeled examples. Journal of Machine Learning
Research, 7:2399–2434.

[8] Bengio, Y., Boulanger-Lewandowski, N., and Pascanu, R. (2013). Advances in optimizing
recurrent networks. In IEEE International Conference on Acoustics, Speech and Signal
Processing, ICASSP 2013, Vancouver, BC, Canada, May 26-31, 2013, pages 8624–8628.

82

[9] Bishop, C. M. (2007). Pattern recognition and machine learning, 5th Edition. Information
science and statistics. Springer.

[10] Blei, D. M. and McAuliffe, J. D. (2007). Supervised topic models. In Advances in Neural
Information Processing Systems 20, Proceedings of the Twenty-First Annual Conference on
Neural Information Processing Systems, Vancouver, British Columbia, Canada, December
3-6, 2007, pages 121–128.

[11] Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent dirichlet allocation. Journal of
Machine Learning Research, 3:993–1022.

[12] Bottou, L. (2010). Large-scale machine learning with stochastic gradient descent. In
Proceedings of COMPSTAT’2010, pages 177–186. Springer.

[13] Burmeister, J. and Wiles, J. (1995). The challenge of go as a domain for ai research: a
comparison between go and chess. In Intelligent Information Systems, 1995. ANZIIS-95.
Proceedings of the Third Australian and New Zealand Conference on, pages 181–186. IEEE.

[14] Chollet, F. (2015). Keras. https://github.com/fchollet/keras.

[15] Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., and Kuksa, P. P.
(2011). Natural language processing (almost) from scratch. Journal of Machine Learning
Research, 12:2493–2537.

[16] Dilokthanakul, N., Mediano, P. A. M., Garnelo, M., Lee, M. C. H., Salimbeni, H.,
Arulkumaran, K., and Shanahan, M. (2016). Deep unsupervised clustering with gaussian
mixture variational autoencoders. CoRR, abs/1611.02648.

[17] Dosovitskiy, A., Fischer, P., Springenberg, J. T., Riedmiller, M. A., and Brox, T. (2016).
Discriminative unsupervised feature learning with exemplar convolutional neural networks.
IEEE Trans. Pattern Anal. Mach. Intell., 38(9):1734–1747.

[18] Dumoulin, V., Belghazi, I., Poole, B., Lamb, A., Arjovsky, M., Mastropietro, O., and
Courville, A. C. (2016). Adversarially learned inference. CoRR, abs/1606.00704.

83

[19] Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press.
http://www.deeplearningbook.org.

[20] Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A. C., and Bengio, Y. (2014). Generative adversarial nets. In Advances in Neural
Information Processing Systems 27: Annual Conference on Neural Information Processing
Systems 2014, December 8-13 2014, Montreal, Quebec, Canada, pages 2672–2680.

[21] Hadsell, R., Chopra, S., and LeCun, Y. (2006). Dimensionality reduction by learning
an invariant mapping. In 2006 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR 2006), 17-22 June 2006, New York, NY, USA, pages
1735–1742.

[22] Hinton, G. E., Osindero, S., and Teh, Y.-W. (2006). A fast learning algorithm for deep
belief nets. Neural computation, 18(7):1527–1554.

[23] Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural computation,
9(8):1735–1780.

[24] Hu, W., Miyato, T., Tokui, S., Matsumoto, E., and Sugiyama, M. (2017). Learning
discrete representations via information maximizing self-augmented training. In Proceedings
of the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW,
Australia, 6-11 August 2017, pages 1558–1567.

[25] Jiang, Z., Zheng, Y., Tan, H., Tang, B., and Zhou, H. (2017). Variational deep embedding:
An unsupervised and generative approach to clustering. In Proceedings of the Twenty-Sixth
International Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia,
August 19-25, 2017, pages 1965–1972.

[26] Jr., C. N. S. and Freitas, A. A. (2011). A survey of hierarchical classification across
different application domains. Data Min. Knowl. Discov., 22(1-2):31–72.

[27] Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. CoRR,
abs/1412.6980.

84

[28] Kingma, D. P., Mohamed, S., Rezende, D. J., and Welling, M. (2014). Semi-supervised
learning with deep generative models. In Advances in Neural Information Processing
Systems 27: Annual Conference on Neural Information Processing Systems 2014.

[29] Kingma, D. P. and Welling, M. (2013). Auto-encoding variational bayes. CoRR,
abs/1312.6114.

[30] Krizhevsky, A. and Hinton, G. (2009). Learning multiple layers of features from tiny
images.

[31] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with
deep convolutional neural networks. In Advances in neural information processing systems,
pages 1097–1105.

[32] Lacoste-Julien, S., Sha, F., and Jordan, M. I. (2008). Disclda: Discriminative learning for
dimensionality reduction and classification. In Advances in Neural Information Processing
Systems 21, Proceedings of the Twenty-Second Annual Conference on Neural Information
Processing Systems, Vancouver, British Columbia, Canada, December 8-11, 2008, pages
897–904.

[33] Laine, S. and Aila, T. (2016). Temporal ensembling for semi-supervised learning. CoRR,
abs/1610.02242.

[34] LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature, 521(7553):436–444.

[35] LeCun, Y., Cortes, C., and Burges, C. J. (1998). The mnist database of handwritten
digits.

[36] LeCun, Y., Huang, F. J., and Bottou, L. (2004). Learning methods for generic object
recognition with invariance to pose and lighting. In Computer Vision and Pattern
Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference
on, volume 2, pages II–104. IEEE.

[37] Maaløe, L., Sønderby, C. K., Sønderby, S. K., and Winther, O. (2016). Auxiliary
deep generative models. In Proceedings of the 33nd International Conference on Machine
Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016, pages 1445–1453.

85

[38] Maaten, L. v. d. and Hinton, G. (2008). Visualizing data using t-sne. Journal of Machine
Learning Research, 9(Nov):2579–2605.

[39] MacQueen, J. et al. (1967). Some methods for classification and analysis of multivariate
observations. In Proceedings of the fifth Berkeley symposium on mathematical statistics
and probability, volume 1, pages 281–297. Oakland, CA, USA.

[40] Makhzani, A., Shlens, J., Jaitly, N., and Goodfellow, I. J. (2015). Adversarial
autoencoders. CoRR, abs/1511.05644.

[41] Miyato, T., Maeda, S., Koyama, M., and Ishii, S. (2017). Virtual adversarial training: a
regularization method for supervised and semi-supervised learning. CoRR, abs/1704.03976.

[42] Miyato, T., Maeda, S., Koyama, M., Nakae, K., and Ishii, S. (2015). Distributional
smoothing by virtual adversarial examples. CoRR, abs/1507.00677.

[43] Nair, V. and Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann
machines. In Proceedings of the 27th International Conference on Machine Learning
(ICML-10), June 21-24, 2010, Haifa, Israel, pages 807–814.

[44] Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., and Ng, A. Y. (2011). Reading
digits in natural images with unsupervised feature learning. In NIPS workshop on deep
learning and unsupervised feature learning, volume 2011, page 5.

[45] Ng, A. Y. (2004). Feature selection, l 1 vs. l 2 regularization, and rotational invariance.
In Proceedings of the twenty-first international conference on Machine learning, page 78.
ACM.

[46] Patterson, K., Nestor, P. J., and Rogers, T. T. (2007). Where do you know what you
know? the representation of semantic knowledge in the human brain. Nature Reviews
Neuroscience, 8(12):976–987.

[47] Premachandran, V. and Yuille, A. L. (2016). Unsupervised learning using generative
adversarial training and clustering.

86

[48] Ramage, D., Hall, D. L. W., Nallapati, R., and Manning, C. D. (2009a). Labeled LDA:
A supervised topic model for credit attribution in multi-labeled corpora. In Proceedings of
the 2009 Conference on Empirical Methods in Natural Language Processing, EMNLP 2009,
6-7 August 2009, Singapore, A meeting of SIGDAT, a Special Interest Group of the ACL,
pages 248–256.

[49] Ramage, D., Heymann, P., Manning, C. D., and Garcia-Molina, H. (2009b). Clustering
the tagged web. In Proceedings of the Second International Conference on Web Search and
Web Data Mining, WSDM 2009, Barcelona, Spain, February 9-11, 2009, pages 54–63.

[50] Ranzato, M. and Szummer, M. (2008). Semi-supervised learning of compact document
representations with deep networks. In Machine Learning, Proceedings of the Twenty-Fifth
International Conference (ICML 2008), Helsinki, Finland, June 5-9, 2008, pages 792–799.

[51] Rasiwasia, N. and Vasconcelos, N. (2013). Latent dirichlet allocation models for image
classification. IEEE Trans. Pattern Anal. Mach. Intell., 35(11):2665–2679.

[52] Rasmus, A., Berglund, M., Honkala, M., Valpola, H., and Raiko, T. (2015). Semi-
supervised learning with ladder networks. In Advances in Neural Information Processing
Systems 28: Annual Conference on Neural Information Processing Systems 2015, December
7-12, 2015, Montreal, Quebec, Canada, pages 3546–3554.

[53] Rezende, D. J., Mohamed, S., and Wierstra, D. (2014). Stochastic backpropagation and
approximate inference in deep generative models. In Proceedings of the 31th International
Conference on Machine Learning, ICML 2014, Beijing, China, 21-26 June 2014, pages
1278–1286.

[54] Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1985). Learning internal
representations by error propagation. Technical report, DTIC Document.

[55] Salakhutdinov, R. and Hinton, G. E. (2009). Deep boltzmann machines. In International
conference on artificial intelligence and statistics, pages 448–455.

[56] Salimans, T., Goodfellow, I. J., Zaremba, W., Cheung, V., Radford, A., and Chen,
X. (2016). Improved techniques for training gans. In Advances in Neural Information
Processing Systems 29: Annual Conference on Neural Information Processing Systems
2016, December 5-10, 2016, Barcelona, Spain, pages 2226–2234.

87

[57] Springenberg, J. T. (2015). Unsupervised and semi-supervised learning with categorical
generative adversarial networks. CoRR, abs/1511.06390.

[58] Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014).
Dropout: a simple way to prevent neural networks from overfitting. Journal of Machine
Learning Research, 15(1):1929–1958.

[59] Suddarth, S. C. and Kergosien, Y. L. (1990). Rule-injection hints as a means of improving
network performance and learning time. In Neural Networks, EURASIP Workshop 1990,
Sesimbra, Portugal, February 15-17, 1990, Proceedings, pages 120–129.

[60] Theano Development Team (2016). Theano: A Python framework for fast computation
of mathematical expressions. arXiv e-prints, abs/1605.02688.

[61] Valpola, H. (2014). From neural PCA to deep unsupervised learning. CoRR,
abs/1411.7783.

[62] Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., and Manzagol, P. (2010). Stacked
denoising autoencoders: Learning useful representations in a deep network with a local
denoising criterion. Journal of Machine Learning Research, 11:3371–3408.

[63] von Luxburg, U. (2007). A tutorial on spectral clustering. Statistics and Computing,
17:395–416.

[64] Wang, C., Blei, D. M., and Li, F. (2009). Simultaneous image classification and
annotation. In 2009 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR 2009), 20-25 June 2009, Miami, Florida, USA, pages 1903–1910.

[65] Wang, M., Fu, W., Hao, S., Liu, H., and Wu, X. (2017). Learning on big graph:
Label inference and regularization with anchor hierarchy. IEEE Trans. Knowl. Data Eng.,
29(5):1101–1114.

[66] Wattenberg, M., Viégas, F., and Johnson, I. (2016). How to use t-sne effectively. Distill.

88

[67] Weston, J., Ratle, F., Mobahi, H., and Collobert, R. (2012). Deep learning via semi-
supervised embedding. In Neural Networks: Tricks of the Trade - Second Edition, pages
639–655.

[68] Xiao, Z., Dellandrea, E., Dou, W., and Chen, L. (2007). Automatic hierarchical
classification of emotional speech. In Multimedia Workshops, 2007. ISMW’07. Ninth IEEE
International Symposium on, pages 291–296. IEEE.

[69] Xie, J., Girshick, R. B., and Farhadi, A. (2016). Unsupervised deep embedding for
clustering analysis. In Proceedings of the 33nd International Conference on Machine
Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016, pages 478–487.

[70] Xu, W., Liu, X., and Gong, Y. (2003). Document clustering based on non-negative
matrix factorization. In SIGIR 2003: Proceedings of the 26th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval, July 28 - August
1, 2003, Toronto, Canada, pages 267–273.

[71] Yan, D., Huang, L., and Jordan, M. I. (2009). Fast approximate spectral clustering. In
Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, Paris, France, June 28 - July 1, 2009, pages 907–916.

[72] Yang, J., Parikh, D., and Batra, D. (2016a). Joint unsupervised learning of deep
representations and image clusters. In 2016 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pages 5147–5156.

[73] Yang, Z., Cohen, W. W., and Salakhutdinov, R. (2016b). Revisiting semi-supervised
learning with graph embeddings. In Proceedings of the 33nd International Conference on
Machine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016, pages 40–48.

[74] Zhu, X., Ghahramani, Z., and Lafferty, J. D. (2003). Semi-supervised learning using
gaussian fields and harmonic functions. In Machine Learning, Proceedings of the Twentieth
International Conference (ICML 2003), August 21-24, 2003, Washington, DC, USA, pages
912–919.

89

	Graph-based Latent Embedding, Annotation and Representation Learning in Neural Networks for Semi-supervised and Unsupervised Settings
	Scholar Commons Citation

	tmp.1546629497.pdf.DXG9Y

