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ABSTRACT 
 

The biological diversity of reef-fish in the Florida Keys National Marine Sanctuary 

(FKNMS) from 1999 – 2016 was evaluated in terms of abundance, biomass, species richness, 

evenness, Shannon diversity, Simpson diversity, and functional diversity, using observations 

collected by multiple agencies and institutions under the Reef Visual Census (RVC) program. To 

compare the different diversity indices species richness, Shannon diversity, Simpson diversity, and 

functional diversity were converted into effective number of species. I examined the seven indices 

by no-take marine zones, in seven benthic habitat strata, and across the three-distinct geographic 

subregions in the Florida Keys domain (Upper, Middle, and Lower Keys). The objective was to 

describe changes in reef fish community responses through time and space in the Florida Keys, 

and to determine whether patterns in reef fish diversity indices were attributable to levels of 

protection, benthic habitat strata, or geographic subregion. The goal was to develop a framework 

for reef fish biodiversity assessments that can inform management and policy in the FKNMS, and 

support updates to the periodic Condition Reports generated by the Sanctuary. 

Diversity indices (with the exception of evenness) were significantly higher in no-take 

marine zones compared to areas open to fishing. All indices were significantly different by strata 

type. High Relief Reef habitats had the highest abundance, biomass, richness, Simpson diversity, 

Shannon diversity, and functional diversity, but had moderate evenness values. The biodiversity 

metrics for the Upper Keys and Lower Keys were not significantly different, but both of these 

areas were significantly different from the Middle Keys for all indices except species richness, 
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which did not vary by subregion. Generalized additive models revealed that the principal driver 

across indices was habitat structure (strata and depth). Time (year), space (latitude, longitude), and 

no-take marine zones (0, unprotected and 1, protected) explained roughly similar proportions of 

deviance across all indices. 

Simpson diversity, Shannon diversity, and functional diversity showed similar trends in 

no-take marine zones, strata, and subregion through time. The Florida Keys is characterized as 

having relatively low functional diversity due to a few common traits shared by many individuals 

and many rare traits shared by a few individuals. This suggests that the Florida Keys reef fish are 

less vulnerable to functional loss due to high functional redundancy among species. However, 

functionally rare traits, those possessed by few individuals, are vulnerable to functional loss and 

will have a larger impact on ecosystem functioning than species that share similar traits. Low 

functional diversity also suggests lower adaptability to environmental perturbations. Given the 

minimal robustness of traits, the ecosystem is less likely to possess functions that can withstand 

disturbances.   

The impacts of two types of perturbations were examined in a qualitative manner: 

hurricanes and cold-temperature events. Disturbance by hurricanes in 2004 and 2005 and the 

extreme cold event of January 2010 had a high impact on reef fish community composition. 

Between 2004 and 2006, following two consecutive years of hurricanes, abundance of reef fish 

declined 31%, biomass declined 53%, species richness declined 18%, Simpson diversity declined 

12%, Shannon diversity declined 14%, and functional diversity declined 8%. Following a year 

without hurricanes in 2007 abundance of reef fish increased 11%, biomass increased 13%, richness 

increased 14%, Simpson and Shannon diversity increased 10%, and functional diversity increased 

6%. After the January 2010 extreme cold event, reef fish abundance and biomass also declined 
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17%, richness declined 10%, Simpson diversity and Shannon diversity declined 5% and 6%, and 

functional diversity declined 2%. All matrices increased the following year, where abundance 

increased 13%, biomass increased 31%, richness increased 13%, Simpson diversity increased 7%, 

Shannon diversity increased 10%, and functional diversity increased 8%. 

Based on my findings and literature review, to better preserve biodiversity and enhance 

ecosystem functioning, I recommend prioritizing conservation efforts in source habitats (e.g., High 

Relief Reefs) and habitats with varying complexity by implementing corridor reserves that 

facilitate the natural migration of organisms between different habitat types. I also recommend 

prioritizing preservation of species that possess functionally rare traits with few individuals (e.g.,

cleaner species) by preserving areas with greater functional diversity (e.g., Higher Relief Reefs 

and Forereef Deep Linear Reefs). 

1 
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Introduction 
 

1. Background 

Biodiversity as defined by the United Nations Convention on Biological Diversity is the 

variability among living organisms, including diversity within species, between species, and of 

ecosystems (Norse, 1986; Congress, 1987; Glowka et al., 1994). Biodiversity is an essential 

indicator of ecosystem structure, stability, resilience, and functioning (Bengtsson, 1997; 

Magurran, 1988; Sala & Knowlton, 2006). Greater biological diversity within and across a broad 

range of trophic levels is considered to facilitate biogeochemical and biological processes and 

increased ecosystem resistance to disturbance, species invasion, and disease (McNaughton, 1977; 

Schulze & Mooney, 1994). Over time, a plethora of diversity measures and indices have been 

developed to try to quantify biodiversity and ecosystem resilience, but no single metric manages 

to encapsulate all the elements of biological and habitat diversity.  

An alternative approach to conceptualize biodiversity is by composition, structure, and 

function of organisms in a particular region (Franklin et al., 1981; Duelli & Obrist, 2003). 

Composition is the array and relative abundance of species; structure describes the spatial 

arrangement and habitat complexity; and function incorporates species traits that influence 

ecological processes such as energy flow and nutrient cycling. Noss (1990) nests these attributes 

into a hierarchy: genetic, population-species, community-ecosystem, and regional landscape. The 

hierarchy concept emphasizes that biodiversity should be measured at multiple levels of 

organization and multiple spatial and temporal scales. 
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The consensus among ecologists indicates monitoring biodiversity requires a multifaceted 

approach. The components of biodiversity highlighted in the thesis are species richness, species 

evenness, species diversity, and functional diversity. Each measure has its benefits and limitations 

and is interconnected to the different components of biodiversity (Figure 1). A summary of the 

various indices used in this study of the Florida Keys reef fishes is presented below. 

 

2. Species richness  

Species richness, the number of species in a habitat sampled, is the most fundamental and 

traditional measure of biodiversity. Species richness does not include abundance values, and thus 

it gives rare species the same weight as dominant species. Species richness provides a snapshot of 

a biome’s diversity. It has been used to identify hotspots of life and regions with high degrees of 

endemism for conservation (Fleishman et al., 2006). Traditional biodiversity indices assume and 

imply that each species plays a de facto functional role in a habitat or ecosystem (Bengtsson, 1998; 

Cadotte et al., 2011). Extensive evidence shows there is indeed a positive relationship between 

species richness and complexity of ecosystem function (Tilman et al., 1997; Schwartz et al., 2000; 

Hooper et al., 2005; Cardinale et al., 2006; Duffy et al., 2017). However, to better target policy 

and management decisions for ecosystem resilience and sustainable use of marine resources, it is 

also necessary to better understand how individual species and species assemblages are changing 

in composition, and how these species contribute to particular ecosystem functions. In many cases, 

there is redundancy in the function that different fish species provide (Micheli et al., 2005; 

Chabanet et al., 2010; Guillemot et al., 2011; Micheli et al., 2014). Identifying these cases may be 

useful for maintaining ecosystem functions as particular species and assemblages decline, or if 

they are replaced by others with similar functional roles. 
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Species richness also is limited in that it does not track species rarity, which is an important 

characteristic of a community. Species richness fails to capture changes in community composition 

by not accounting for changes in species abundances (Chao et al., 2014). Thus, in addition to 

understanding a community’s taxonomic diversity, it is important to understand the species 

assemblage and the functional role of individual species (Duncan et al., 2015). 

 

3. Species evenness  

In order to provide an accurate reflection of the community dynamics in a habitat, 

biodiversity measures should incorporate both species richness and relative abundance or density 

(Peet, 1974; Magurran, 2013). Accounting for the number of individuals in different populations 

reflects the community’s evenness (how similar species are in abundances) and dominance (the 

most common species; Smith & Wilson, 1996). Evenness is high when the all species have equal 

abundances and evenness is low when a community has many rare species.  

Complementary to richness, species evenness is the proportion of individuals across 

species. If a community is perfectly even, each species has the same abundance. The degree of 

evenness can help us understand the processes that shape a community’s structure and 

composition. Smith & Wilson (1996) developed a list of 14 criteria that an evenness measure 

should meet. For example, an evenness index must be independent of species richness (Heip, 

1974). However, Jost (2010) shows it is impossible for evenness and richness to be mathematically 

independent of one another. He argues that evenness should be depicted relative to the number of 

species in a community.  
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The relative logarithmic evenness can be measured by dividing the log form of Simpson 

by the number of species (Jost, 2010): 

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒	𝑙𝑜𝑔𝑎𝑟𝑖𝑡ℎ𝑚𝑖𝑐	𝑒𝑣𝑒𝑛𝑛𝑒𝑠𝑠 = 	
ln(𝑆𝑖𝑚𝑝𝑠𝑜𝑛	𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦)

ln 𝑆  

Relative logarithmic evenness is analogous to Pielou’s evenness measure (Pielou, 1966). Evenness 

ranges from 0 (only a single species present) to 1 (all species with the same abundance). The more 

similar species abundances are, the greater the evenness of the community.  

 

4. Species diversity  

Species diversity is defined for this work as a measure of heterogeneity that incorporates 

both richness and evenness (Good, 1953). The Simpson diversity index (also referred to as the 

Gini-Simpson index) is one of the more popular diversity indices (Jost, 2006; Magurran, 2013; 

Chao et al., 2014a). It measures the probability that two individuals randomly selected from a 

sample will belong to the same species (Simpson, 1949): 

𝑆𝑖𝑚𝑝𝑠𝑜𝑛	𝑑𝑖v𝑒𝑟𝑠𝑖𝑡𝑦	(𝐷) = 	 𝑝;<
=

;

 

Where D is Simpson diversity, S is the number of species (richness) and pi is the proportion of 

individuals in the ith species (Jost, 2006). However, the Simpson diversity index is usually 

expressed as the reciprocal (1/D) or complement (1-D) so that it ranges from 0-1, where 1 is more 

diverse. 

Simpson diversity is preferred over other diversity indices because it provides a measure 

of dominance, by emphasizing the most abundant species and is not sensitive to rare species (Jost, 
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2006). Species diversity indices that incorporate abundance, like Simpson’s index, outperform 

species richness at discriminating between communities (Morris et al., 2014).  

 Another common measure of species diversity is Shannon diversity (also known as the 

Shannon-Wiener index or Shannon-Weaver index). Similar to Simpson diversity, the Shannon 

index incorporates both species richness and relative abundance (Shannon & Weaver, 1949). 

However, while Simpson diversity disproportionately favors the most common species (i.e., the 

species with higher populations), Shannon diversity does not disproportionately favor either rare 

or common species (Keylock, 2005; Jost, 2007). The Shannon diversity index is a measure of 

entropy (Hill, 1973); it is the uncertainty in the species identity of a sample. It is calculated as:  

𝑆ℎ𝑎𝑛𝑛𝑜𝑛	𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦	(𝐻?) = – 𝑝;

A

;BC

	ln 𝑝;	  

Where H’ is Shannon diversity, S is the number of species (richness) and pi is the proportion of 

individuals in the ith species (Jost, 2006). 

Despite its popularity as a benchmark for measuring biodiversity, the Shannon index has 

received a lot of criticism (May, 1975; Magurran, 1988; Lande, 1996). The index assumes the 

species are randomly sampled from an infinitely large population, and that all the species in the 

population are represented in the sample (Pielou, 1975). Although species may not be detected in 

a study because of the sampling method or seasonal effects or diel activity patterns or because they 

are rare. The index is also sensitive to sample size. Usually the index falls between 1.5 and 3.5 

(Margalef, 1972). In order to receive an index of 5.0 or greater, given typical a log normal patterns 

of species abundance, it would require a sample with 1,000,000 species (May, 1975). This is rarely 
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accomplished in any survey. Given Shannon diversity’s strong effect on sample size, the index can 

be difficult to interpret between different sample sizes.   

Yet the Shannon index is still often preferred over Simpson diversity because it doesn’t 

favor rare or common species but weighs all species by their frequencies (Jost, 2006). The Shannon 

index is also the only diversity index that can measure independent alpha and beta from multiple 

unequal-sized communities (Jost, 2007), where alpha diversity is the mean diversity within an 

assemblage/site and beta diversity is the compositional heterogeneity and/or dissimilarity between 

sites/assemblages (Tuomisto, 2010). 

Measures of species richness, evenness, and diversity are all powerful tools for measuring 

biodiversity. However, the utility of the indices is limited in terms of providing information on 

functional diversity, as each species is considered distinct even if two or more species have similar 

functions.  

 

5. Functional diversity  

Functional diversity measures the dissimilarity among species based on morphological and 

behavioral traits. For example, species can be grouped by trophic group or partitioning of resources 

(e.g., habitat preferences). It is therefore used as an indicator of ecosystem functioning. 

Traditionally, terrestrial ecologists have applied functional diversity to morphological traits of 

plants as a predictor of nutrient cycling and productivity (Hooper et al., 2005). In the last decade, 

marine ecologists have implemented the trait-based approach to better characterize the ecosystem 

stability and functioning (Halpern & Floeter, 2008; Guillemont et al., 2011; Stuart-Smith et al., 
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2013; Bates et al., 2014; Mouuillot et al., 2014; Coleman et al., 2015; Duffy et al., 2016; Plass-

Johnson et al., 2016) 

Functional diversity indices, for example, can reflect subtle changes resulting from the 

implementation of marine zones, while traditional biodiversity indices seem to be less sensitive 

(Babcock et al., 2010). Coleman et al. (2015) detected changes in individual trait values within 

four years of the implementation of new enforcement measures in a marine reserve, whereas 

traditional species diversity indices detected little or no response. Species traits also provide a 

means to evaluate ecosystem vulnerability to functional loss and disturbances (Guillemot et al., 

2011; Mouillot et al., 2014; Wiedmann et al., 2014). When several species share similar functional 

traits, it provides a level of functional redundancy or “functional insurance" against the loss of 

ecosystem functioning (Yachi & Loreau, 1999; Bellwood et al., 2003; Guillemot et al., 2011; 

Mouillot et al., 2013a). If one species were to be lost, another species that performs similar 

functions can compensate for it so that the integrity of the ecosystem would, in principle, not be 

compromised to the extent to which it would if such redundancy was not present (Purvis et al., 

2000; Petchey et al., 2007).  

Functional diversity has been calculated using Rao’s Quadratic entropy. Functional 

diversity is then the mean functional dissimilarity between two randomly selected individuals 

within a community weighted by their relative abundances. It is calculated as: 

𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙	𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦	 𝑅𝑎𝑜?𝑠	𝑄 = 	 𝑑;H𝑝;𝑝H

A

HB;IC

AJC

;BC

	 

where S is the number of species (richness), pi is the relative abundance of species i, pj is the 

relative abundance of species j, and dij is the functional distance between species i and j (dij = dji 
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and dii = 0; Figure A1). Functional distance is the difference between the i-th and j-th species, and 

is calculated using a distance function and ranges between zero and one (Gower, 1971; Legendre 

& Legendre 1998; Podani, 2000). If the functional distance between all species is one (e.g., dij = 1 

for all i	≠	j) then all species are functionally equivalent and functional diversity reduces to the 

complement of Simpson diversity (Rao, 1982; Botta-Dukat, 2005).   

 Functional diversity is influenced by species diversity (Simpson diversity), the univariate 

trait distribution, and the covariance between traits (unless all species have the same abundance in 

which case the covariance is zero; Botta-Dukat, 2005). It is unique in that functional diversity may 

decrease if species richness increases. Introduction of new species into a community increases 

species diversity (e.g., Simpson diversity and Shannon diversity), but it may decrease functional 

diversity if the new species decreases the average dissimilarity among species (Botta-Dukat, 

2005).  

Ecosystems with high functional diversity are characterized as having low redundancy 

between species and traits. These communities tend to result from strong inter-specific competition 

or environmental heterogeneity (Mouillot et al., 2007; Wiedmann et al., 2014). Communities with 

high functional diversity also tend to have a greater adaptability to disturbances due to a large 

number of different traits, but are also more vulnerable to functional loss since since there is less 

redundancy.  

In contrast, ecosystems with low functional diversity, are characterized as having high 

functional redundancy, where many species share similar functional traits. Communities with high 

functional redundancy are often a result of environmental (e.g., abiotic stressors). For example, 

the species may be required to have similar functional traits to the survive in the environment (e.g., 
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temperature, physical disturbances). Communities with high functional redundancy also implies 

lower vulnerability to functional loss. However, it also implies lower adaptability to some types 

of disturbance. 

Functional diversity and the designation of functional groups have a degree of arbitrariness. 

There is no defined or standard way to assign functional traits. In reality, no species are perfectly 

functionally identical, and each species can be regarded as having a unique function. Costello et 

al. (2015), for example, prioritized ten traits for the inclusion of the open access database World 

Register of Marine Species (WoRMS). These traits included taxonomic classification, 

environment, geography, depth, substratum, mobility, skeleton, diet, body size, and reproduction. 

The traits I selected were based on criteria of applicability across taxa, data availability, and 

potential usage. Unfortunately, a limiting factor for trait-based studies is the lack of traits available 

for a lot of species in large databases (e.g., FishBase, BIOTIC). Applicability of trait-based studies 

would benefit from further literature review and studies on species traits.  

 

6. Diversity as "effective number of species" 

Indices based on proportional abundances of species help capture the evenness of a 

community. However, the diversity indices in their current form are not intuitive, and can lead to 

misinterpretation because they do not follow the doubling property (aka replication principal; 

Jost et al., 2010). Meaning if we have two equally distinct communities (e.g., equal number of 

individuals and equal number of species), with no overlap in species, each with a diversity of X 

that when pooled together the diversity becomes 2X.  For example, given a community with four 

equally common species of reef fish, such that the species richness is four and Simpson diversity 
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is 0.75, and another community with four different, but equally common species, also with a 

species richness of four and Simpson diversity of 0.75, when combined you would expect 

species richness and Simpson diversity to double (Figure 2). However, the combined community 

results in a Simpson diversity of 0.875 and does not follow the doubling property. The same 

concept applies for Shannon diversity.   

Some biologists are not concerned about this since they use the indices to derive 

statistical significance and not changes in magnitude. However, the argument remains that 

diversity indices should behave more intuitively by satisfying the doubling property and this can 

be established by converting the indices into an "effective number of species", also referred to as 

a Hill number (Hill, 1973; Ellison, 2010; Jost, 2006). 

The effective number of species is the number of equally common species needed to 

produce the observed value of a diversity index (MacArthur, 1965; Jost, 2006; Jost et al., 2010). 

The indices converted to effective numbers behave more intuitively by following the doubling 

property. Hill numbers can be applied to multiple diversity indices including Simpson, Shannon, 

and functional diversity. This provides a unified framework for computing biodiversity (Table 1). 

Species richness already obeys the replication principal and is in and of itself in units of effective 

number of species. Simpson diversity and Rao’s Q are converted by subtracting these indices from 

unity and taking the reciprocal, and Shannon diversity is converted by taking its natural 

exponential (MacArthur 1965; Jost 2006). In a community with equally common species 

(completely even) the species diversity indices (e.g., Simpson diversity, Shannon diversity) would 

be equal to the number of species (species richness). All "true" diversity indices must be equal to 

or less than species richness. The conversion also allows for the diversity indices to be in the same 

units of effective number of species (Jost, 2006; Chao et al., 2014a).   
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CHAPTER ONE: 
PATTERNS AND DRIVERS OF DEMERSAL REEF FISH COMMUNITY IN THE FLORIDA 

KEYS NATIONAL MARINE SANCTUARY FROM 1999 – 2016 
 

1. Introduction  

Biodiversity is essential to maintaining ecosystem functions and services critical for human 

life. The realization that coastal and marine living resources are under increasing pressures from 

humans, climate change, and invasive species (e.g., Jackson et al., 2001) has led to an increased 

attention to the preservation, conservation, and restoration of biodiversity on the global agenda 

(Pimm et al., 1995; Sala & Knowlton, 2006; Cheung et al., 2009; Fautin et al., 2010; Barnosky et 

al., 2011; Lafferty & Eckerberg, 2013; Secretariat, 2013). The Group on Earth Observation’s 

Biodiversity Observation Network (GEO BON), for example, developed a series of Essential 

Biodiversity Variables to help organize efforts to study and monitor biodiversity change (Pereira 

et al., 2013; Paganini et al., 2016; Proneca et al., 2016; Turak et al., 2016). The United Nations 

developed a series of Sustainable Development Goals, which include the conservation and 

sustainable use of ocean spaces and marine resources through biodiversity monitoring (UN, 2015). 

Furthermore, the Convention on Biological Diversity developed a list of Aichi Biodiversity 

Targets to improve the status of biodiversity and promote sustainable use (CBD, 2013). As part of 

the global initiative, the Marine Biodiversity Observation Network (MBON), a theme within GEO 

BON, seeks to develop a community of practice to monitor changes in biodiversity and ecosystem 

function (Duffy et al., 2013; Muller-Karger et al., 2014).  

My thesis complements the MBON objectives by assessing the status and trends of reef-

fish abundance, biomass, and biodiversity within the Florida Keys National Marine Sanctuary 
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(FKNMS). Here, I characterize the spatial and temporal patterns in reef-fish abundance, biomass, 

evenness, richness, Simpson diversity, Shannon diversity, and functional diversity over 17 years 

(1999-2016) in the FKNMS. 

There is a known relationship between the number of species present and ecosystem 

functioning (Tilman et al., 1997; Cardinale et al., 2006). However, an increase in species richness 

does not always match a monotonic increase of ecosystem functioning. Species do not contribute 

equally to the various ecosystem processes. Keystone species, foundation species, and ecosystem 

engineers may be considered more ecologically important than other species because of their traits 

or characteristics that influence ecosystem functions (Bengtsson, 1998). Species richness also 

doesn't incorporate measures of species relative abundance (population size), weighing rare 

species with small populations equally to common species, i.e. those with high population sizes. 

Evenness indices and species diversity indices, like Gini-Simpson and Shannon entropy, are more 

informative measures of a community’s diversity by incorporating the number of individuals.  

To better understand the variability in ecosystem functioning requires measuring changes 

in species richness, evenness, and diversity, and changes in the diversity and composition of traits. 

Functional diversity incorporates the relative abundance of species as well as their traits as an 

indicator of ecosystem functioning (Mouillot et al., 2013; Wiedmann et al., 2014; Duncan et al., 

2015; Duffy et al., 2016; Plass-Johnson et al, 2016).  

Reef fish communities in the FKNMS have been routinely surveyed since the late 1970’s 

(Bohnsack & Meester, 1998; Bohnsack et al., 1999). Prior to that, reef fish assessments focused 

on single species of economic importance (Bohnsack & Meester, 1998). Since the turn of the 21st 

century, regional and federal resource management agencies have shifted toward implementing 

ecosystem-based management approaches to conserve and manage the sustainable use of marine 



	

13 

resources (Bohnsack & Bannerot, 1986; Cook et al., 2014). Part of this effort included designing 

and carrying out multispecies assessments and developing ecosystem models that take into account 

biological interactions and environmental parameters (Ault et al., 2005; Keller & Causey, 2005; 

Kelble et al., 2013; Nuttle & Fletcher, 2013). Reef fish community observations have since been 

evaluated in terms of richness, abundance, density, biomass, and population and community size 

structure to better understand species assemblages, composition, and spatial distributions 

throughout the Florida Keys (Jeffrey et al., 2001; Kramer & Heck, 2007; Bartholomew et al., 2008; 

Ault et al., 2013). However, our understanding of changes in species diversity and functional 

diversity of reef fish communities in the FKNMS has remained limited. 

This study was guided by the Florida Keys National Marine Sanctuary (FKNMS) 

Condition Report question: What are the status and trends of biodiversity and how is it changing? 

(ONMS, 2011). Specifically, we sought to analyze and compare changes in seven community 

variables: 1) abundance, 2) biomass, 3) species evenness, 4) species richness, 5) Simpson diversity, 

6) Shannon diversity, and 7) functional diversity. These indices were examined as "response 

variables" to temporal, spatial, habitat structure, and no-take marine zones from 1999 – 2016 

throughout the Florida Keys domain. The observations were evaluated for different levels of 

protection, and were also segmented across seven distinct habitat strata, and three geographic 

subregions.  

The ultimate objective of this research is to better inform management and policy with 

practical tools to evaluate the integrity of coral reef fish and the level of resilience of these 

communities in the face of growing pressures from environmental change and human uses of 

resources. The hypotheses that guided the study were as follows: 
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1) Biodiversity is greater inside no-take marine zones than outside these zones. Marine 

Protected Areas that are closed to all fishing and extraction uses have a span of benefits including 

enhancing marine ecosystem biodiversity (Bohnsack and Ault 1996, Bohnsack et al., 2004).  

2) The indices are positively correlated to strata, where more complex habitats have greater 

diversity. Species richness and abundance are known to increase with habitat complexity providing 

reef fish with shelter and foraging grounds (Luckhurst & Luckhurst, 1978; Gratwicke & Speight, 

2005).  

3) The indices differ by subregion, where the Upper Keys and Lower Keys have greater 

diversity than the Middle Keys. The rationale is that the Upper Keys and Lower Keys shield the 

reef tract from more extreme seasonal changes that occur in Florida Bay relative to the Atlantic 

Ocean near the Keys. The Upper and Lower Keys therefore have more abundant and diverse coral 

reefs known to inhabit more reef fish. 

 

2. Methods 

2.1 Study Site  

The FKNMS encompasses 2,896 square nautical miles from Miami to the Dry Tortugas 

(Figure 3). The Sanctuary includes a shallow (<10m) and narrow (7-10 km) reef tract (Lee & 

Williams, 1999). The sanctuary was designated by the United States Congress in 1990 and 

expanded in 1999 to conserve, protect, and enhance marine biodiversity, ecological integrity, and 

the cultural legacy of the nation’s only shallow water continental barrier reef and is the third largest 

barrier reef in the world (Kruczynski and Fletcher, 2012). The study area consists of the Florida 

Keys domain from Key Largo to Marquesas Key (Upper, Middle, and Lower Keys). The Dry 
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Tortugas region was omitted because of limited data and differences in habitat strata relative to the 

rest of the Keys.  

The Florida Keys domain is composed of 23 no-take marine zones established in 1997. The 

no-take zones include 18 Sanctuary Preservations Areas (SPA), four Special Use/Research Only 

Areas (SU/RO; each on average 0.85 km2), and one larger Ecological Reserve (ER; 18.7 km2; US 

DOC 1996; Kruczynski & Fletcher, 2012). Collectively, the zones account for less than 1% of the 

surface area of the sanctuary (NOAA, 2007; Keller & Wilmot, 2008). I treated all the no-take 

marine zones as equal (0, unprotected and 1, protected) in the analysis and did not differentiate 

between reserve size and location.  

The Florida Keys are inhabited by a diverse marine fauna and flora that includes species 

common to the tropical Caribbean region, subtropical waters of the Gulf of Mexico, and the East 

Coast of North America (Kruczynski & Fletcher, 2012). Habitats include mangroves, seagrass 

beds, patch reefs, bank reefs, and other hard bottom and sand habitats (ONMS, 2011). The coral 

reef ecosystem is characterized by cross-shelf reef strata determined by reef structures and habitat 

characteristics, and spatial distribution of low to high variance of reef fish density (Smith et al., 

2011; Harford et al., 2016). The three primary types of reef structures found in the Florida Keys 

are linear reefs, patch reefs, and spur and groove reefs (Shinn et al., 1989). Linear reefs are oriented 

parallel to the shoreline, patch reefs are isolated coral boulders formed on the shelf, and spur and 

groove reefs have shallow ridges (spurs) separated by deep channels (grooves) that are oriented 

perpendicular to the shoreline (Walker et al., 2008).  

Geographic variables and environmental conditions divide the Florida Keys reef tract into 

four geographical subregions: Upper Keys, Middle Keys, Lower Keys, and Dry Tortugas (Figure 

3; Ginsburg & Shinn, 1995; FMRI, 1998). The Upper Keys, defined as the area from Key Largo 
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to Upper Matecumbe Key, is the largest region and has the largest land mass. This land barrier 

separates Florida Bay and the Gulf of Mexico from the reef tract, which is located on the east side 

of the Keys, and from Atlantic Ocean waters. The Upper Keys have the greatest abundance of 

patch reefs, followed by the Lower Keys and Dry Tortugas (FMRI, 1998). The Middle Keys, from 

Upper Matecumbe Key to Pigeon Key, have several wide channels that allow large volumes of 

water to be exchanged between Florida Bay, and the Florida Straits in the Atlantic Ocean (Jaap et 

al., 2008). The Middle Keys reef tract has the lowest abundance of reefs likely due to extreme 

changes in temperature, salinity, nutrients, and turbidity associated with waters from Florida Bay 

(FMRI, 1998). This variability impedes coral growth (Ginsburg and Shinn, 1964; Jaap et al., 2008). 

The Lower Keys, from Pigeon Key to Marquesas Key, has the widest land mass and several narrow 

channels. Similar to the Upper Keys, the land mass shields the reef tract from the seasonal 

variations in shallower areas of the eastern Gulf of Mexico and Florida Bay. Such shielding has 

allowed for spur and groove reef formations in the Lower and Upper Keys (Jaap 1984).  

 

2.2 Reef Fish Surveys 

Reef fish community data used in this study were collected as part of the multi-agency Reef 

Visual Census (RVC; Ault et al., 2002; Brandt et al., 2009; Brandt et al., 2010; Smith et al., 2011). 

Fish communities were visually surveyed by trained SCUBA-divers annually in the mainland 

Florida Keys from 1999 to 2012, and then every other year (biennially) from 2012 to 2016. Most 

sampling (90%) occurred between May and October. The survey applied a habitat-based, two-

stage randomly stratified survey design to sample reef fish communities along the Florida Keys 

reef tract. In its current form, the Florida Keys domain is partitioned into 7 cross-shelf habitat strata 

(Figure 3). The strata include Forereef Deep Linear Reef (FDLR; 18 – 33 m), Forereef Medium 
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Linear Reef (FMLR; 6 -18 m), Forereef Shallow Linear Reef (FSLR; <6 m), High Relief Reef 

(HRRF; >2m vertical relief), Inshore Patch Reef (INPR), Midchannel Patch Reef (MCPR), and 

Offshore Patch Reef (OFPR; Brandt et al., 2009). The strata were defined by environmental 

characteristics such as bottom depth, reef morphology, and topography, because they were 

expected to be drivers of variance of fish density (Luckhurst & Luckhurst, 1978; Gratwicke & 

Speight, 2005; Smith et al., 2011). The majority of no-take marine zones occur within the High 

Relief Reef spur and groove reefs and no protected areas occur in the stratum Forereef Deep Linear 

Reef. 

The first stage of the survey design consists of a primary sampling unit (PSU). The PSU is 

defined as a 200 m x 200 m map grid (40,000 km2). A secondary sampling unit (SSU) is defined 

as a 15 m (177 m2) diameter circular plot (Figure 3). Increased habitat mapping of the coral reef 

tract has allowed the survey method to implement a 100 m x 100 m map grid (20,000 km2) in 2014 

and 2016. Each PSU was randomly selected by stratum. At each SSU two divers used a stationary 

point count method, listing all species observed in the first five minutes, followed by recording the 

abundances and fork length.  The species data and environmental characteristics recorded at each 

SSU are averaged to produce the PSU-level variables.  

The number of PSUs sampled varied among years and strata (Table 2). Sampling typically 

focused on hard-bottom reef habitats located between 1 and 30 m depth. A greater proportion of 

sites was sampled in higher complexity habitats because these are known to have higher fish 

densities (Smith et al., 2011). The increased sampling effort here is intended to characterize real 

variability in populations and uncertainty in the methods. The survey is designed to optimize the 

observation of conspicuous and diurnally active reef fish, specifically economically and 

ecologically important reef fish species (Bohnsack and Bannerot, 1986). Crevice-dwelling and 
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cryptic species are not as effectively sampled. See Brandt et al. (2009) for more information on 

the RVC sampling method.  

 

2.3 Calculation of indices 

Reef fish abundance and biomass for every sampling event between 1999 and 2016 were 

obtained from NOAA’s National Marine Fisheries Service Southeast Fisheries Science Center. 

The data were extracted using the functions GetPSUAbundance and GetPSUBiomass in the rvc 

package (Ganz, 2015).  The abundance is defined as count per SSU extrapolated for an entire PSU. 

The estimated abundance does not take into consideration detectability and therefore likely yields 

an underestimation of abundance.  Because the effort does not vary across years, ignoring the level 

of detectability should not be a problem, as the bias is consistent across time (Buckland et al., 

2011). Biomass was computed from abundance per PSU and species growth parameters in g/mm 

(NOAA, n.d.). Growth parameters were available for 308 (97%) species; the remaining species 

were omitted from the biomass calculations.  

To detect variability in diversity through time and space (habitat and region), indices were 

computed for each year and primary sampling unit. We omitted any taxa that were not identified 

to the species level (7% of the dataset). This allowed the computation of diversity indices based 

on 64 families with a total of 316 species (Table A1; Table A2). PSU’s with zero or one species 

present were removed from the analysis (0.04%) to enable diversity calculations. In total 5,238 

sampling events across all years were used to calculate indices.  

Species richness was calculated as the number of species detected at a given station. The 

evenness index was calculated as per Jost (2010) and is equivalent to Pielou’s evenness. Evenness 
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can be between zero (one species present) and one (all species with equal abundances). Species 

diversity was calculated as the complement of Simpson (1-D) and Shannon diversity in units of 

effective number of species. Where Simpson diversity is the probability that two individuals 

randomly selected from a sample belong to different species. Simpson diversity is a measure of 

dominance, as it emphasizes the more abundant species (Simpson, 1949). Shannon diversity 

incorporates both species richness and abundance. The Shannon index weighs all species equally 

(Shannon & Weaver, 1949; Magurran, 2013). Species richness, Simpson diversity, and Shannon 

diversity were computed with species abundances using functions specnumber and diversity in the 

VEGAN package (Oksanen et al., 2017) and were converted into units of effective number of 

species following Jost (2006) conversions.  

A species-trait matrix was developed using eight traits for the 316 species detected along 

the FKNMS reef tract. The eight functional traits selected have been used in previous studies to 

analyze temperate and tropical reef fish functional diversity and are known to influence their 

functional roles (Bates et al., 2013; Stuart-Smith et al., 2013; Coleman et al., 2015; Duffy et al., 

2016; Plass-Johnson et al., 2016). Functional traits influence fish assemblage through the life 

history of each species (average maximum length), trophic position (trophic group, trophic 

breadth), behavior (water column position, diel activity pattern, gregariousness), and habitat 

associations (preferred substrate, habitat complexity; Table 3). Traits influence ecosystem 

processes through resource partitioning and competition. The species-trait matrix was obtained 

from Stuart-Smith et al. (2013) for 200 reef fish species. The traits for all remaining species were 

obtained from Fishbase, literature search, and expert opinion (Humann & DeLoach, 1989; Froese 

& Pauly, 2016).  



	

20 

Functional distances were derived following Lefcheck et al. (2014). Because the traits 

included both continuous and categorical values, Gower distances (Gower, 1971) were calculated 

using the Podani (1999) correction for ordered traits (using gowdis in the FD package; Laliberté 

et al., 2014). I employed hierarchical cluster analysis on the dissimilarities (Petchey & Gaston, 

2002) and then converted the distances to an ultrametric dendrogram, using the function 

cl_ultrametric in the clue package (Hornik, 2017). Because the dendrogram is sensitive to the 

clustering algorithms, I used multiple algorithms as suggested by Mouchet et al. (2008) to 

determine the algorithm that best preserved the non-ultrametric distances (Mérigot et al., 2010). 

Finally, I extracted the pairwise distances from the unweighted arithmetic average clustering 

functional dendrogram that best preserved the original distances using cl_dissimilarity in the clue 

package and scaled the maximum value so that all values were between 0 and 1 (Devictor et al., 

2010). The complete functional dendrogram is presented in Figure A1. Functional diversity was 

subsequently calculated using Rao’s quadratic entropy formula in units of effective number of 

species. This is a measure of pairwise functional differences between species weighted by their 

relative abundances (Botta-Dukat, 2005).  

To explore the contributions of the eight traits to functional diversity in the Florida Keys, 

I removed each of the traits from the full matrix and recomputed Rao’s Q eight times. I then 

compared the functional diversity estimates to the functional diversity calculated from the full 

trait-matrix using linear regression. The traits with higher contribution to the full functional 

diversity, when dropped, resulted in low R2 values (Table A3).  
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2.4 Statistical Analysis  

To visualize the spatial trends in the fish community I mapped each index from 1999-2016 

using a kriging interpolation technique with ArcGIS (Figure 5; ESRI, 2014). This approach has 

been applied in other studies to assess the spatial distribution of diversity (Devictor et al., 2010; 

Lefcheck et al., 2014b). To examine the differences between protected and unprotected areas, I 

plotted the mean (+/- Standard Error or SE) of each index by level of protection across years 

(Figure 6). To examine the differences among strata across years, I plotted the mean (+/- SE) of 

each index for each stratum across years (Figure 7). To examine the differences among subregions 

across years, I combined data across strata and plotted the mean (+/- SE) of each index by 

subregion across years (Figure 8).  

To examine spatial and temporal trends in the reef fish indices I first checked the indices 

for normality and homoscedasticity to determine whether to use parametric or non-parametric 

statistical procedures. The abundance and biomass transformed data did not meet assumptions of 

normal distribution, and had unequal variances. The transformed diversity matrices had normal 

distributions but unequal variances, so I proceeded with non-parametric tests.  

I performed non-parametric Kruskal-Wallis analysis of variance (ANOA) on Ranks to test 

significance of each index against level of protection, strata, and geographic subregion (Kruskal 

and Wallis, 1952). Where significance was detected (p = <0.01), I proceeded with post-hoc 

analysis using Dunn’s test for multiple comparisons, to determine which variables differ from each 

other (Dunn, 1964). Dunn test allows for unequal number of groups (Zar, 2010) and was calculated 

with function dunnTest in the FSA package (Ogle, 2017). I also performed generalized additive 

models (GAMs) to determine the drivers of the different indices (Wood, 2006; Zuur et al., 2009).  



	

22 

I evaluated four main components that have been found to influence temperate and tropical 

reef fish composition: temporal (year), spatial (latitude and longitude), habitat structure (strata type 

and depth), and NTMR (whether the sampling area was in an unprotected area or protected, 

characterized as a 0 or 1; Luckhurst & Luckhurst, 1978; Bohnsack and Ault, 1996; Bohnsack et 

al., 2004; Gratwicke & Speight, 2005; Bohnsack et al., 2009). The explanatory variables included 

categorized factors that were modeled parametrically to determine their mean effect sizes and 

continuous covariates that were modeled using non-parametric smoothing functions. The full 

GAM was defined as: 

𝑦; = 𝑎 + 𝛼C 𝑌𝑒𝑎𝑟 +	𝛼< 𝑁𝑇𝑀𝑅 +	𝛼< 𝑆𝑡𝑟𝑎𝑡𝑎 +	𝑔C(𝑑𝑒𝑝𝑡ℎ) +	𝑔C 𝐿𝑎𝑡, 𝐿𝑜𝑛𝑔 	𝑥	 𝑌𝑒𝑎𝑟

+ 𝜀; 

where yi is the response variable (the index) for sample i, 𝛼′𝑠 are the estimated mean effects for 

each year, strata, and no-take marine zones, and g’s are the nonparametric smoothing functions for 

the continuous covariates depth, and latitude and longitude. Following Lefcheck et al. (2014) I 

incorporated a smoother to account for potential interactions between space and time (i.e., separate 

latitude smoothers for each year). Thin plate regression spines were applied to all continuous 

covariates. The intercept, a, scales the model prediction back to the level of the response variable 

because each smooth estimate (g) is constrained to average to zero over the entire dataset. The 𝜀 

is the residual error at PSU i, and is assumed to be independent and identically distributed with a 

mean of zero and common variance.   

The full model was fitted to richness using Poisson distribution and a log link. Evenness 

was arcsine-square root transformed. All other indices were log-transformed to better meet the 

assumptions of normality. To assess the explanatory power of each variable following Lefcheck 

et al. (2014), I calculated partial deviances by sequentially removing each predictor from the full 
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model for all possible permutations. I then averaged the deviances for all models for which the 

predictor variable appeared and calculated the standard error. Essentially, the partial deviances are 

the proportion of total explained deviances of the model explained by each predictor time, space, 

environment, and management. This approach is analogous to variance partitioning in linear 

regression models (Legendre & Legendre, 1998).  

 All analyses were performed in R (R core team, 2017). Maps were developed in ArcGIS 

(ESRI, 2014).  

 

3. Results   

3.1 Patterns in indices by protection level across years  

Across all years, the indices (except evenness) were consistently higher inside no-take 

marine zones than in unprotected areas (Figure 6). Marine protected areas had on average 22% 

more individuals, 50% more biomass, 10% more species, 6% greater Simpson diversity, 7% 

greater Shannon diversity, and 4% greater functional diversity. There was no significant difference 

between evenness inside and outside no-take marine zones (Table A4). 

I detected similar trends in indices in reserves and fished areas over short periods during 

the timeframe examined. For example, abundance declined 31%, biomass declined 53%, richness 

declined 18%, Simpson diversity declined 11%, Shannon diversity declined 14%, and functional 

diversity declined 8% between 2004 and 2006. The indices than increased the following a year, 

where abundance increased 11%, biomass increased 31%, richness increased 14%, Simpson 

diversity and Shannon diversity increased 10% and functional diversity increased 6%.  

I also detected marked declines in 2010, when abundance and biomass declined 17%, 

richness declined 10%, Simpson diversity and Shannon diversity declined 5% and 6%, and 
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functional diversity declined 2%. The following year abundance increased 13%, biomass increased 

31%, richness increased 13%, Simpson diversity increased 7%, Shannon diversity increased 10%, 

and functional diversity increased 8%.  

 

3.2 Patterns in indices by strata across years  

3.2.1 Abundance 

All indices were significantly different by strata type (Table A5). Across all samples and 

years, I found mean abundance to be greatest in the following habitat strata: Forereef Deep Linear 

Reef (peaks in 2005 – 2012) and High Relief Reef (peaks in 1999-2001, 2014, and 2016; Figure 

7). Mean abundance peaked in 2001 in stratum High Relief Reef with 915 individuals. Mean 

abundance was lowest in Inshore Patch Reef (minimal in 2000-2001, 2003-2005, 2007-2008, and 

2014), Midchannel Patch Reef (minimal in 1999, 2002, 2006, and 2011-2012) and Forereef 

Shallow Linear Reef (minimal in 2009-2010 and 2016).  

Mean abundance was large in Inshore Patch Reef in 2002, Offshore Patch Reef in 2003, 

and Midchannel Patch Reef in 2004 compared to other years because of schools of fish detected 

in each of the strata at one of the sample sites. At a single PSU in Inshore Patch Reef in 2002, 

divers detected a school of 10,000 Reef Silverside (Hypoathernia harringtonensis). In Offshore 

Patch Reef in 2003, divers detected a school of 5,000 Round Scad (Decapterus punctatus). In 

Midchannel Patch Reef in 2004, divers detected a school of 5,000 Reef Silverside. The schools 

caused the PSU’s mean abundances to be 26-39 times greater than the mean abundance for the 

given year and for strata without such observations. Removing the above PSU’s the mean 

abundances are respectively 269, 222, and 188 species.  
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Dunn’s test of multiple comparisons also revealed there was no significant difference in 

abundance between: Forereef Deep Linear Reef and High Relief Reef, Inshore Patch Reef and 

Midchannel Patch Reef, Forereef Shallow Linear Reef and Midchannel Patch Reef, and Forereef 

Shallow Linear Reef and Offshore Patch Reef (Table A7).  

 

3.2.2 Biomass 

Mean biomass was greatest in High Relief Reef for 14 years and peaked in 2001 with 58 

kilograms per 40,000 km2. In 2009 and 2010, High Relief Reef had the second greatest mean 

biomass behind Inshore Patch Reef. Mean biomass was most often lowest in Forereef Shallow 

Linear Reef (minimal in 2002, 2006-2010, 2012, and 2014) and Inshore Patch Reef (minimal in 

2000-2001 and 2004-2005; Figure 7). Dunn’s test of multiple comparisons revealed biomass in 

Inshore Patch Reef and Midchannel Patch Reef, Inshore Patch Reef and Forereef Medium Linear 

Reef, Inshore Patch Reef and Offshore Patch Reef, and Forereef Medium Linear Reef and 

Midchannel Patch Reef were not significantly different (Table A8). 

 

3.2.3 Evenness 

Mean evenness was commonly greatest in Offshore Patch Reef with an average of 0.59 

(peaks in 1999-2003, 2005, 2010, 2014, and 2016) and lowest in Forereef Deep Linear Reef with 

an average of 0.48 (minimal in 2001-2016; Figure 7).  Here, 1 is maximally even and 0 is 

maximally uneven (one species present). For all strata across all sampling years, the mean 

evenness did not vary much among strata and ranged from 0.45 to 0.67 for all strata, except for 

Forereef Deep Linear Reef, which ranged from 0.34 to 0.54. Dunn’s test of multiple comparisons 
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also revealed evenness was not significantly different in six of the 21 strata permutations (Table 

A9).  

 

3.2.4 Richness 

Across all sampling years I found mean richness to be greatest in strata High Relief Reef, 

except 2008 where Forereef Deep Linear Reef was greatest followed by High Relief Reef. Mean 

richness peaked in 2016 in High Relief Reef with an average of 54 species detected and a 

maximum of 73 species detected at a single PSU. Mean richness was smallest in Inshore Patch 

Reef (minimal in 1999-2005, 2007, 2010, 2012, 2014, and 2016) and Forereef Shallow Linear 

Reef (minimal in 2006, 2008-2009, and 2011; Figure 7). Richness was significantly different for 

all strata types except Forereef Medium Linear Reef and Offshore Patch Reef (Table A10). 

 

3.2.5 Simpson diversity and Shannon diversity  

Simpson and Shannon diversity, which incorporated both richness and evenness, showed 

largely identical patterns through time (Figures 7). Mean Simpson and Shannon diversity were 

greatest in Offshore Patch Reef and High Relief Reef environments and lowest in Inshore Patch 

Reef and Forereef Deep Linear Reef.  On average, Simpson diversity and Shannon diversity were 

1.5 times greater in High Relief Reef and Offshore Patch Reef than in Inshore Patch Reef. 

However, Inshore Patch Reef increased between 2005 and 2007 and then decreased between 2007 

and 2010. Species richness was on average across years and strata 5 times greater than Simpson 

diversity and 3 times greater than Shannon diversity. Given a perfectly even community Simpson 

diversity and Shannon diversity would be equal to species richness.   
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Simpson diversity was not significantly different in Forereef Medium Linear Reef and 

Forereef Shallow Linear Reef, High Relief Reef and Offshore Patch Reef, and Forereef Deep 

Linear Reef and Inshore Patch Reef (Table A11). Shannon diversity was not significantly different 

in Forereef Medium Linear Reef and Midchannel Patch Reef, and Forereef Deep Linear Reef and 

Forereef Shallow Linear Reef (Table A12).  

 

3.2.6 Functional diversity  

Functional diversity, which incorporated species richness, evenness, and functional traits, 

was on average greatest in High Relief Reef (peaks in 2000-2002, 2004, 2006, 2010-2012, 2014, 

and 2016) followed by Forereef Deep Linear Reef (peaks in 2003, 2005, and 2008-2009) and 

Offshore Patch Reef (with peaks in 1999 and 2007), and lowest in Forereef Shallow Linear Reef 

(minimal in 2000-2011, 2014, and 2016), Forereef Medium Linear Reef (minimal in 1999 and 

2004), and Inshore Patch Reef (minimal in 2012; Figure 7). The Dunn’s test revealed functional 

diversity was not significantly different between High Relief Reef and Forereef Deep Linear Reef, 

Forereef Medium Linear Reef and Inshore Patch Reef, and Midchannel Patch Reef and Offshore 

Patch Reef (Table A13). 

Overall, functional diversity, across strata, was one third of Simpson diversity. If all 

species were completely distinct (no functional redundancy) then functional diversity would be 

equivalent to Simpson diversity. Of the eight traits trophic group, diel activity pattern, and 

preferred substrate contributed the most to functional diversity, and preferred habitat complexity 

and gregariousness contributed the least to functional diversity (Table A3).  
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3.3 Patterns in indices by subregion  

 Dunn’s test for multiple comparison revealed species abundance, evenness, Simpson 

diversity, Shannon diversity, and functional diversity were not significantly different between the 

Upper and Lower Keys, but the Upper and Lower Keys were significantly higher from the Middle 

Keys (Table A14 and A16-A19). Species richness was not significantly different between all three 

subregions (Table A15) and species biomass was significantly different between all three 

subregions (Table A15).  

To better visualize the differences between subregions I examined the Upper Keys, Middle 

Keys, and Lower Keys across years combined with strata (Figure 8). With all strata combined, I 

detected slightly (7%-12%) greater biodiversity indices in the Upper Keys and Lower Keys than 

the Middle Keys.  

 

3.4 Potential drivers of observed patterns in indices  

 Using the generalized additive models, habitat structure (strata and depth) accounted for 

the largest proportion of the total explained deviance for all the community response variables 

(10% of abundance, 14% of biomass, 9% of evenness, 20% of richness, 9% of Simpson diversity, 

9% of Shannon diversity and 14% of functional diversity; Figure 9). Time (year of survey) 

accounted for the smallest proportion of the total explained deviance for all the community 

response variables (2% of abundance, 2% of biomass. 1% of evenness, 2% of richness, 1% of 

Simpson diversity, and 1% of Shannon diversity). Functional diversity was an exception, for which 

the smallest proportion was explained by space (latitude and longitude) at 1.2% compared to time 

at 1.4%. Space, no-take zones (0, unprotected and 1, protected), and time were similar in 

magnitude for biomass, evenness, Simpson, Shannon, and functional diversity indicating that these 
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variables influence each of the indices more or less equally. However, space explained a larger 

proportion of the deviance in abundance, approximately 10%. 

 

4. Discussion  

4.1 No-take marine zones and habitat characteristics  

The 23 no-take marine zones make up a small portion of the Florida Keys surface area 

(<1%). Yet reef fish abundance, biomass, richness, Simpson, Shannon, and functional diversity 

were significantly greater in no-take marine zones compared to the rest of the Sanctuary. This 

finding supported my first hypothesis. The Florida Keys reserves are known to increase density 

and size of exploited fish within the no-take boundaries (Bohnsack, 1997; Ault et al., 2006; 

Bohnsack et al., 2009; Harford et al., 2016). However, whether an area was fully protected or not 

only accounted for 1-3% of the total explained deviance for all indices. Variability in the results 

may be attributed to reserve size and placement.  

Of the 23 no-take marine zones in the Florida Keys study area 18 are sanctuary preservation 

areas, primarily implemented to prevent user conflicts in heavily used areas. The sanctuary 

preservation areas allow non-consumptive activities like SCUBA diving and snorkeling. These 

areas are small and are not believed to provide greater ecosystem protection than open areas 

(NOAA, 2017). The four special use/research only areas (Looe Key, Eastern Sambo, Tennessee 

Reef and Conch Reef) are also small, but were designed for research and education, and to help 

restore degraded living resources. These sites are designated no-take and no-entry without a 

research permit (NOAA, 2011). The Western Sambo Ecological Reserve is nine square nautical 

miles and was established to protect biodiversity and encompass large, contiguous, diverse habitats 

to protect and enhance spawning, nurseries, and permanent-residence areas for fish and other 
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marine life. Since they are all “no-take,” reserves I treated them equally and did not address the 

potential differences in biodiversity between the different types and sizes of marine reserves. 

However, there is conflicting evidence in landscape ecology as to whether it is better to 

have one large or several small no-take marine reserves (Roberts and Hawkins, 1997; Edgar and 

Barret, 1999; Halpern, 2003). The size and placement of reserves are influenced by species 

movements. Exploited reef fish with large home ranges may benefit from larger marine reserves 

(Edgar and Barrett, 1999) whereas site-attached sedentary adult reef fish may benefit from smaller 

reserves (Friedlander, 2001).  

Bartholomew et al. (2008) evaluated changes in exploited fish density in the Florida Keys 

between the different sizes of marine reserves and to nearby reference reefs located outside of the 

reserves. The study indicated marine reserves exhibited greater fish density for exploitable fish 

than nearby nonprotected sites, but that the size of the marine reserve was not the main factor 

influencing fish recovery. Bartholomew et al. (2008) suggested the reserves which boundaries 

corresponded to natural reef habitat boundaries may have larger recovery rates than the reserves 

in which the boundaries intersected reef habitats. Future studies should examine if there is a 

relationship between reserve size and reef fish biodiversity in the Florida Keys to better inform 

managers when designing marine reserves. 

The Florida Keys marine reserves may also not have been the main predictor of diversity 

because of spillover effects or larval export. Areas open to fishing often benefit from no-take 

marine zones as species emigrate from reserves to the surrounding open fishing grounds (Roberts 

et al., 2001; Gell and Roberts, 2003; Sale et al., 2005). The no-take marine reserves are also 

minimally enforced (Davis and Moretti, 2005). The Sanctuary relies heavily on voluntary 

compliance with the reserves regulations.  
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  The marine reserves may also have exhibited significantly greater abundance, biomass 

and diversity because of their placement relative to the underlying habitat. Upon further 

investigation, of the 1,393 sampling events in no-take zones, a third were in stratum High Relief 

Reef (Table A20), which are characterized as complex habitats with a vertical relief of at least two 

meters. My results indicate abundance, biomass, and diversity indices are significantly greater in 

the stratum High Relief Reef. The GAM also indicated habitat structure (strata and depth) was the 

largest contributor of all the community response variables. These findings supported my 

hypothesis that reef fish abundance, biomass, and diversity indices are greater in more complex 

and rugose habitats.  

The average number of fish species and individuals in the study area are known to be 

dependent on habitat complexity (Bohnsack and Bannerot, 1986). Studies in the region detected 

greater densities of herbivorous fishes (Paddack et al., 2006) as well as Yellowtail snapper 

(Ocyurus chrysurus), Gray Snapper (Lutjanus griesus), and Black Grouper (Mycteroperca bonaci) 

in high relief habitats (Bohnsack et al., 2009). Reef fish often prefer more complex habitats because 

they provide refuge sites as well as foraging grounds (Luckhurst and Luckhurst, 1978; Ohman and 

Rajasuriya, 1998). Of the 316-species detected in the Reef Visual Census survey, I classified 192 

species in the species-trait matrix as preferring medium or high habitat complexity.  

Although, not all reef fish preferentially select high relief reefs. For instance, Harford et al. 

(2016) study determined occurrence probability of Red Grouper (Epinephelus morio) in the Keys 

was higher in nearshore patch reef habitats than in offshore forereef habitats. My results also 

indicated habitat strata with varying degrees of complexity can have high species composition and 

diversity values. Next to High Relief Reef habitats, evenness, Simpson diversity, and Shannon 

diversity were on average across all years greatest in Offshore Patch Reefs environments. Species 
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abundance, richness, and functional diversity were on average across all years greatest in Forereef 

Deep Linear Reefs following the stratum High Relief Reef. This has strong management 

implications. Using traditional species diversity indices, a manager may prioritize conservation in 

High Relief Reef and Offshore Patch Reef habitats and place little emphasis on Forereef Deep 

Linear Reef habitats. However, integrating functional traits suggests preserving High Relief Reef 

and Forereef Deep Linear Reef will result in greater functional diversity and therefore greater 

ecosystem processing and stability.  Future studies should incorporate components of functional 

diversity when selecting areas for marine protection as well as consider comparing species 

composition and biodiversity by habitat characteristics. 

Although I compared the indices among the different strata which are determined by 

different habitat characteristics, I did not directly compare components of habitat complexity 

within or between stratum that may influence reef fish abundance, biomass, and diversity. Habitat 

complexity varies by substrate rugosity, vertical relief, variety of refuge hole sizes and percent live 

coral (Gratwicke and Speight, 2005).  Future studies should especially consider comparing indices 

in reference to live coral cover where there have been conflicting results.  

Some studies indicate there is a positive relationship between species richness and live 

coral cover (Bell and Galzin, 1984; Lewis 1997) whereas others do not (Luckhurst and Luckhurst, 

1978; Roberts and Ormond, 1987). Percent coral cover has been declining in the Florida Keys 

since 1980s (Jaap et al., 1988; Shinn, 1989; Hughes, 1994; Miller et al., 2002). Deterioration of 

the coral reefs are due to a combination of diseases (Aronson and Precht, 2001), hurricanes 

(Gardner et al, 2003), nutrient loading (Ginsburg and Shinn 1994; Leichter et al., 2003), herbivore 

reduction (Carpenter, 1990; Jackson et al., 2001; Pandolfi et al., 2003) and climate change 

(Walther et al., 2002; Hughes et al., 2003). The Florida Keys coral reef ecosystem has undergone 
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a phase-shift from coral-dominated to macroalgal-dominate communities (Dustan 1977; Hughes 

1994; Garner et al., 2005; Maliao et al., 2008). To better inform management how to select sites 

for preservation in the face of a changing ecosystem, we need to better understand how reef fish 

composition and diversity changes between sites with different degrees of complexity, including 

percent live coral cover.  

My results further supports that the reef fish composition and diversity may be more 

heavily influenced by habitat type (i.e., strata) than by the hydrography or connections to Florida 

Bay in each of the subregions in which the same type of habitat is located. When comparing indices 

by subregion across years, the Upper Keys and Lower Keys were significantly greater in 

abundance, evenness, Simpson diversity, Shannon diversity, and functional diversity than the 

Middle Keys. The regional variation in reef structure is influenced by the Florida Bay. The Upper 

Keys has the most abundant and diverse reefs, followed by the Lower Keys, in which the few 

narrow channels connecting to the Bay may impede coral growth and coral diversity, followed by 

the Middle Keys which has several wide channels connecting to the Bay that limits coral growth, 

complexity, and diversity. It is likely that reef fish abundances, and therefore species diversity 

indices, are limited by availability of habitat structures in the Middle Keys for shelter and foraging. 

The importance of habitat characteristics in controlling reef fish composition and diversity 

indicates the need to investigate the relationship between habitat complexity within and between 

strata types and subregions to diversity indices.  

Other processes that may be influencing reef fish species composition and diversity in the 

Florida Keys is proximity of coral reef habitats to other reef habitats as well as seagrass beds and 

mangroves. Although many Caribbean reef fish in their adult stage are known to be sedentary and 

display high reef residency and site fidelity (Chapman and Kramer, 2000; Gell and Roberts, 2003; 
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Lindholm et al., 2005; Tamburello and Cote, 2015), many of the exploited reef fish are also known 

to immigrate between reef habitats (Hixon and Carr, 1997; Harford et al., 2016). The low diversity 

habitats, such as Inshore Patch Reefs and Forereef Shallow linear reefs, may also serve as sources 

to the high diversity habitats, such as High Relief Reefs and Forereef Deep Linear Reefs, that may 

be ecological sinks. Source-sink population theory is based on the concept that source habits have 

greater birth rates than death rates, but exhibit no net population growth overtime, whereas sink 

habitats have greater death rates than birth rates, but exhibit net population growth overtime due 

to immigration of individuals from the source habitats (Pulliam, 1988). Crowder et al. (2000) 

emphasizes the importance of understanding source-sink populations to better select no-take 

marine reserves when there are greater socioeconomic concerns at play, like the establishment of 

the FKNMS. Crowder et al. argues that because of social pressures, especially from local 

fisherman, the FKNMS management plan settled for several smaller reserves placed relatively 

haphazardly throughout the Keys. He believes that if there were greater scientific evidence 

supporting the reasons behind the placement of the reserves, like source-sink habits, than there 

may have been more public support for the sanctuary and the no-take marine reserves.  

Lastly, high densities of juvenile reef fish are found in seagrass beds and mangroves, which 

function as nursery grounds (Lay et al., 1999; Nagelkerken et al., 2000; Nagelkerken et al., 2001; 

Mumby et al., 2003; Dorensbosh et al., 2007). Many of these reef fish exhibit ontogenetic habitat 

shifts, utilizing different habitats between juveniles and adults (Lindeman et al., 1998). The 

distance of the coral reefs habitats from the nursery grounds as well as to other nearby reef sites 

that serve as sources likely influences species richness, species diversity, and functional diversity. 

Based on the results of this study as well as results of other studies described above, managers 
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should preserve a variety of habitats to enhance species composition and diversity, specifically the 

connected corridors that facilitate the natural migration of species.  

The biological and physical components of the marine ecosystem work in unison to 

develop the complexity and heterogeneity of coral reef ecosystems. To maintain biodiversity and 

ecosystem functioning it is important to monitor and preserve a representative number of the 

habitats within an ecosystem (Crowder and Norse, 2008). Originally, Wilson and Willis (1975) 

proposed protecting corridors based on the equilibrium theory of island geography. It has since 

been extended to the metapopulation paradigm (Levins, 1970). The corridor concept employs the 

underlying connectivity matrix between species and habitats to select areas for preservation 

(Crowder et al., 2000; Siitonen et al., 2002; Mumby, 2006). Thus, it may maximize biodiversity, 

by not only preserving source habitats and aggregation sites, but also habitats which species utilize 

throughout the ecosystem (Ong et al., 2002).  

 

4.2 Species diversity and functional diversity  

This study also determined the Florida Keys coral reef ecosystem can be characterized as 

having low Simpson and Shannon diversity in comparison to species richness. Across all years by 

level of protection, strata, and subregion Simpson and Shannon diversity were significantly lower 

than species richness. This may be attributed to the Florida Keys coral reef ecosystem being 

dominated by a few species with large populations and many rare species. Of the 316 species 

detected 293 species accounted for less than 1% of the total abundance data across years. Low 

species diversity is also often a result of intense competition (Levins, 1968; Huston, 1979). When 

species compete for resources, one species may out compete the others there by decreasing species 

evenness and eventually number of species resulting in a community with low species diversity. 
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The combined species diversity and functional diversity (incorporating all level of 

protections, strata, and subregion) also appeared to remain relatively constant overtime (Figure 

12). This may be because the species are in a state of fluctuating competitive equilibrium 

(reduction and exclusion of some species). Huston (1979) hypothesis that species diversity may 

be stable when a dynamic balance is established between rate of competition displacement and the 

frequency of population reduction. Although natural ecosystems rarely exhibit competitive 

equilibrium because of changes in the physical environment, recruitment, predation, and 

anthropogenic pressures, ecosystems can still result in a stable diversity. Huston (1979) explains 

this by comparing the rates of competitive displacement. If one species is dominant and if all other 

competing species populations are increasing at a very low rate than the rate of competitive 

displacement for that community would be low and allow for longer periods of coexistence among 

competitors and therefore maintaining diversity levels.  

Another reason Simpson diversity, Shannon diversity, and functional diversity appeared to 

be relatively stable through time may be because the coral reef ecosystem was significantly 

degraded prior to the start of the survey. Overfishing has been evident in the Florida Keys since 

the late 1970’s (Ault et al., 1998; Ault et al., 2001) coupled with degrading coral reef habitats 

(Gardner et al., 2003; Palandro et al., 2012). The Florida Keys were considered an “ecosystem-at-

risk,” by the National Oceanic and Atmospheric Administration (NMFS, 1996). Long-term 

monitoring of reef fish populations and habitat assessments is critical to assess temporal trends in 

biodiversity and to better determine if the status of biodiversity is within its natural range of 

variation (Fischer et al., 2010).  

The Florida Keys ecosystem can also be characterized as having low functional diversity 

in comparison to Simpson diversity. If all species were functionally distinct (no traits in common) 
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than functional diversity would be equal to Simpson diversity. However, Simpson diversity was 

on average three times greater than functional diversity across all years by level of protection, 

strata, and subregion. This may be due to the Florida Keys being dominated by a few species with 

large population sizes and similar functional traits, and many species with small population sizes 

and dissimilar functional traits (Table A1, Figure A2).  

For example, Redband Parrotfish (Sparisoma aurofrenatum), Striped Parrotfish (Scarus 

iseri), Doctorfish (Acanthurus chirurgus), Blue Tang (Acanthurus coeruleus), and Ocean Surgeon 

(Acanthurus bahianus) are functionally similar with an average functional dissimilarity of 0.25 

(where 0 the species are not dissimilar and 1 the species are completely dissimilar) and accounted 

for 11% of species abundance data across all years. Additionally, Sergeant Major (Abudefduf 

saxatilis), Creole wrasse (Clepticus parrae), and Brown Chromis (Chromis multilineata) make up 

5% of total species abundance data across years and had an average functional dissimilarity of 

0.24.  

Ecosystems with low functional diversity, like the Florida Keys, are characterized as 

“underdispersed”, or having high functional redundancy between species and traits (Wiedmann et 

al., 2014; Mouillot et al., 2007). The redundancy hypothesis states that the loss of a species may 

not necessarily have negative impacts on ecosystem functioning because it may be compensated 

by other species with similar functional roles (Lawton & Brown 1993, Ehrlich & Walker 1998). 

The high functional redundancy observed indicates that the Florida Keys coral reef ecosystem may 

be relatively insensitive to species loss. Species redundancy provides a level of functional 

insurance and is an important component that contributes to ecosystem resilience.  

Complementary to functional redundancy is functional rarity, or the extent to which species 

are functionally distinct and taxonomically scarce. Violle et al. (2017) identifies functionally rare 
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species as ecological outliers. There is contrasting evidence on the importance of rare species for 

ecosystem functioning. Efforts to better conserve biodiversity and ecosystem functions should 

focus on protecting functionally rare species (few individuals that possess rare traits), that are more 

vulnerable to being loss by preserving their habitats (e.g., High Relief Reefs and Forereef Deep 

Linear Reef). For instance, Sharknose Goby (Elacatinus evelynae) and Neon Goby (Elacatinus 

oceanops) were the only species in the species-trait matrix that were classified as cleaners and 

accounted for less than 1% of the abundance data. These fish are ecologically important on reefs 

for removing ectoparasites off higher carnivorous fish (Arnal and Cote, 1998; Cheney and Cote, 

2001; Grutter and Lester, 2002; Sikkel et al., 2004; Cheney and Cote, 2005).  

Additionally, functional diversity and functional redundancy has a level of inherited 

antagonism. Low functional diversity ecosystems, like the Florida Keys, has many species with 

functionally redundant traits providing a level of functional insurance, but the ecosystems are also 

less likely to possess functions that can withstand a disturbance. The greater the functional 

diversity, the more complex, productive, and resilient the ecosystem will be to disturbances (e.g., 

climate change; Cadotte et al., 2012; Cadotte, 2013; Monaco and Prouzet, 2015) In other words, a 

new species in an ecosystem may either increase the functional redundancy and therefore 

functional insurance, or a new function is created and therefore may enhance the resiliency of the 

ecosystem to withstand a disturbance (Manaco and Prouzet, 2015).  

In contrast to the observed high functional redundancy observed in the FKNMS, Micheli 

et al. (2014) observed low functional redundancy for a suite of Caribbean tropical and temperate 

reef fish. His study analyzed functional groups based on three functional traits including diet, 

maximum length, and habitat use (all of these were part of the trait-based matrix used in my study). 

Micheli et al. (2014) found that a few functional groups contained the majority of species, and that 
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a large fraction of the functional groups contained 1-2 species of reef fish. According to the 

Mouillot et al. (2014) definition of functional diversity, Micheli et al. (2014) results show that the 

Caribbean coral reef ecosystem is functionally over-redundant, with the overall level of 

redundancy is disproportionately distributed into a few functional groups or entities. The 

differences between my results and those of Micheli et al. (2014) for the Caribbean may be 

attributed to the fact that I incorporated eight functional traits.  

The relationship between species diversity and functional diversity is largely based on the 

functional classification scheme. If you assign too many functional traits to the point where each 

species is functionally unique than the relationship between functional diversity and species 

diversity will be linear with a slope of one. In contrast, if you assign too few functional traits to 

the point where each species is functionally redundant than the relationship between species 

diversity and functional diversity would quickly result in a flat asymptote (Guillemot et al., 2011). 

Thus, all scenarios between species diversity and functional diversity is a result of the functional 

classification scheme. The ambiguity of selecting traits is a major limitation for trait-based 

approach studies and is why it is essential to select traits that have important implications for 

ecosystem functioning.  

The majority of reef fish functional diversity studies to date included components of fish 

diets and fish length (Halpern and Floeter, 2008; Guillemont et al, 2011; Stuart-Smith et al, 2013; 

Wiedman et al, 2014; Bates et al, 2014; Coleman et al, 2015; Costello et al, 2015; Plass-Johnson 

et al, 2016; Duffy et al, 2016). Dietary groups or trophic groups are a key component of ecological 

interactions and is a proxy for susceptibility to predation (Sale, 1997; Holmlund and Hammer, 

1999; Kulbicki et al., 2005; Bellwood et al., 2006). Trophic groups generally consist of piscivores, 

carnivores, herbivore, omnivores and planktivores. These groups can further be broken down by 
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specific groups. For example, herbivores can further be classified as scrapers, browsers, and 

grazers (Cheal et al., 2012). Size largely defines the predator-prey interactions and determines the 

energy required for metabolism (Costa, 2009; Fisher et al., 2010). Species size also influences 

population abundances, geographic distributions, and life history adaptations (Schaffer and Elson, 

1975; Leggett and Carscadded, 1978, Blackburn and Gaston, 1994; Hildrew et al., 2007)  

Other important fish traits include water column position, schooling behavior (e.g., level 

of gregariousness), and diel activity patterns (Stuart-Smith et al., 2013; Mouillot et al., 2014; Bates 

et al., 2014; Coleman et al., 2015; Duffy et al., 2016). Water column position is an indicator of 

energy flow from benthic to pelagic areas (Schuhmacher and Zibrowius, 1985). School behavior 

or gregariousness influences how nutrients are transferred within an ecosystem (Robertson et al., 

1976; Meyer and Schultz, 1985). The diel activity patterns reflect competition for resources since 

diurnal species and nocturnal species do not feed on the same prey (Fox and Bellwood, 2011). 

Furthermore, the differences between my results and those of Micheli et al. (2014) for the 

Caribbean reef fish functional diversity may be attributed to the methods of how functional 

diversity was calculated. Micheli et al. (2014) compared species in functional groups whereas I 

looked at overall dissimilarities between species. Assigning species to functional groups implies 

there is no functional overlap between groups. Intuitively a functional group of mid-water 

herbivores and another functional group consisting only of benthic herbivores has some level of 

functional similarity, however when computing functional diversity based on groups or entities 

you risk overestimating how functionally dissimilar the species are. I encourage future studies to 

first calculate the overall functional dissimilarity between species based on their selected traits and 

then incorporate species abundances using Rao’s Q to get a more accurate reflection of the 

ecosystems functional diversity and redundancy.  
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4.3 Disturbances  

All indices decreased by level of protection and by strata type in 2005 and 2006 and 

increased in 2007. The decrease in diversity index values may be due to a total of seven tropical 

cyclones directly impacting the region in 2004 and 2005, with index values increasing following 

a year without hurricane disturbances (Table 5; Figure 11; Unisys, 2017). Because sampling 

occurred primarily between May and August, prior to the hurricane events of 2004 and 2005, the 

effects on the reef fish population is not reflected until the following sampling years (2005 and 

2006).  

Tropical cyclones, characterized by their wind intensity as hurricanes, tropical storms, and 

tropical depressions (McAdie et al., 2009) cause reef fish mortality and affect behavior and 

distribution (Robins 1957; Bohnsack et al., 2009). Reef fish mortality can be associated with fish 

strandings from storm surges or suffocation due to high suspended matter load in the water column 

(Conner et al., 1989; Tabb and Jones, 1962). Changes in reef fish behavior and distribution can be 

associated with changes in atmospheric pressures (Heupel et al., 2003), or changes in water quality 

and habitat availability (Kaufman, 1983; Patterson et al., 2001; Walsh, 1983; Watterson et al., 

1998). Due to high turbidity and storm surge, hurricanes can cause fish to become disoriented and 

displaced. Fish may be redistributed to other sites (Patterson et al., 2001). This results in more 

homogenous reef fish populations and may explain why I detected an increase in Simpson, 

Shannon, and functional diversity on Inshore Patch Reefs and Midchannel Patch Reefs in 2006 

and 2007 and a decrease in High Relief Reef habitats following two consecutive years of intense 

hurricanes. These trends in reef fish composition after the 2004 and 2005 hurricanes were also 

detected in the region by Ault et al. (2013), Smith et al. (2011), and Bohnsack et al. (2009). 
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Additionally, the record breaking cold temperatures (<16 ℃), spanning 13 days in January 

2010, caused significant mortality in corals (Lirman et al., 2011; Kemp et al., 2011; Colella et al., 

2012) and many reef fish (Boucek & Rehage, 2014; Adams et al., 2012). Percent coral mortality 

was 20 times higher than normal following the 2010 cold event (Lirman et al., 2013). Adams et al. 

(2012) reported common snook abundance in 2010 was 75.6% below 2008 levels and 41.8% below 

2009 levels. Boucek and Rehage (2014) applied a trait-based approach using temperature and 

salinity lethal limits to characterize the functional traits of the reef fish community, and found the 

2010 cold front virtually eliminated the tropical species (large-bodied snook, mojarra species, and 

stripped mullet) but had little effect on the temperate fishes, which could withstand the abnormally 

cold waters. To better determine reef fish resilience to environmental changes including 

temperature, salinity, and nutrients, future studies should investigate reef fish environmental 

maximum and minimum limits to the functional traits.   

Lastly, introduction of the invasive Indo Pacific lionfish (Pterois volitans and Pterois miles) 

are impacting reef fish populations and richness in the Florida Keys (REF). Lionfish were first 

released off the southeast coast of Florida in the mid 1980’s (Albins and Hixon, 2013; Green and 

Côté, 2009; Schofield, 2010). Lionfish were first sighted in the FKNMS Reef Visual Survey near 

Key Largo in January 2009 (Table A), with abundances and frequency of occurrence increasing 

three to six-fold throughout the sanctuary by 2011 (Ruttenberg et al., 2012; Schofield, 2010).  

At present there are frequent sightings of abundant lionfish throughout the western 

Atlantic, Caribbean, and Gulf of Mexico (Albins & Hixon, 2008; Morris & Akins, 2009). Lionfish 

densities continue to increase rapidly and the species is considered a threat to native coral reef fish 

communities (Albins, 2013; Côté & Maljković, 2010; Green et al., 2012a). However, this study 

did not detect a noticeable difference in any of the biodiversity indices between before and after 
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invasive lionfish detection in 2009. This is possibly a result of the design of the Reef Visual Census 

method. The survey applies a stationary point count, which is not optimal for detecting small and 

cryptic species, like gobbies and blennies, which account for a large portion of lionfish diet (Morris 

& Akins, 2009). Lionfish are known to primarily prey on solitary, small, and shallow-bodied reef 

fish (Green et al., 2012b; Arias-Gonzalez et al., 2011; Morris & Akins, 2009). 

Studies that have found significant negative effects of lionfish on coral reef fish 

communities throughout the Caribbean used roving visual census techniques, which also target 

cryptic prey fish less than 10cm in total length (Côté & Maljković, 2010; Green et al., 2012b; 

Munoz et al., 2011). The FKNMS has also implemented control measures to mitigate regional 

lionfish impacts, including allowing removal of lionfish from no-take marine zones, targeted 

removals, lionfish derbies, and public education (Johnston et al., 2015). The FKNMS management 

controls may have reduced the types of impacts documented in other areas of the Caribbean and 

may explain in part why there are no significant differences in indices after the lionfish invasion.  
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SUMMARY 

 

Abundance, biomass, evenness, richness, and Simpson, Shannon, and functional diversity 

of reef fish of the Florida Keys were used to assess community response through space and time 

over 17 years in the FKNMS. The study revealed habitat type was the greatest driver in 

determining patterns in diversity. High Relief Reef habitats have the greatest abundance, biomass, 

richness, species diversity, and functional diversity, but have moderate evenness values. The study 

also detected abundance, biomass, and diversity indices (except evenness) were significantly 

greater inside no-take marine zones than areas open to fishing. This may be attributed to the 

underlying habitat since a majority of marine zones are in High Relief Reef habitats that harbor a 

greater diversity of reef fish. However, the no take marine zones only explained a small proportion 

of total percent deviance in all the indices, this may be a result of the reserve sizes and placement, 

spillover effect, larval export, and minimum enforcement.  

The data also revealed no significant differences in the indices between the Upper Keys 

and Lower Keys. The study documented slightly greater abundance and diversity in the Upper 

Keys and Lower Keys verses the Middle Keys. This can be attributed to similar habitat types as a 

result of the fewer tidal passages and exchange of the nutrient rich Florida Bay.  

The coral reef ecosystem of the Florida Keys is also characterized as having low functional 

diversity due to few dominant species with similar functional traits and many rare species with 

dissimilar functional traits. Low functional diversity and high trait redundancy indicates the coral 

reef ecosystem is more susceptible to environmental changes like pollution, nitrification, turbidity, 
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temperature, and salinity, but is less susceptible to functional loss due to high functional 

redundancy. I encourage future research to include species traits that influence ecosystem 

functioning to shed further light on marine ecosystem functioning and processes. Particularly, 

future trait-based studies should include reef fish environmental range limits to better determine 

which reef fish are most vulnerable to climate events and human perturbations.  

The thesis results may aid in setting priorities for conservation and management. In efforts 

to increase functional diversity, I recommend managers prioritize protection for species that 

possess unique traits (e.g cleaning species) by protecting areas of greater functional diversity (e.g., 

High Relief Reef and Forereef Deep Linear Reef). To promote biodiversity and ecosystem 

functioning in the Florida Keys I believe the key is to develop reserves that correspond to source 

habitats as well as encompass a diverse number of habitats within the region that adhere to reef 

fish ontogenetic shifts by implementing reserve corridors.  

This study also highlighted the impacts on reef fish composition of intense hurricanes in 

2004 and 2005 as well as an extreme cold event in 2010. To further gauge the coral reef ecosystem 

integrity and resilience, in addition to monitoring functional diversity, future studies should 

monitor changes in trophic structure, keystone species and foundation species. Studying functional 

groups and individual species that regulate essential ecosystem functions can better inform 

conservation biologist and managers on ecosystem process and stability.  
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TABLES AND FIGURES 

Table 1. Conversion of common indices to true diversities (Jost, 2006). 

Index x: Diversity in terms of x: Diversity in terms of pi: 

Species	richness	x ≡ 	 𝑝;a
A

;BC
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;BC

 

𝑆ℎ𝑎𝑛𝑛𝑜𝑛	𝑒𝑛𝑡𝑟𝑜𝑝𝑦

≡ 	− 𝑝; ln 𝑝;

A

;BC

 

 
 
 

exp(x) 
 
 
 

exp − 𝑝; ln 𝑝;

A

;BC

 

Gini	Simpson	x ≡ 	1 − 𝑝;<
A

;BC

 

 
 
 

1/(1-x) 
 
 
 

1
𝑝;<A

;BC
 

  



	

	 47 

Table 2.  Reef Visual Census by number of Primary Sampling Units per year and stratum in the 
Florida Keys domain. Strata not sampled in a given year are denoted by ‘-’. 

YEAR FDLR FMLR FSLR HRRF INPR MCPR OFPR Total  
1999 - 71 14 39 8 21 8 161 
2000 - 97 27 41 17 30 16 228 
2001 14 86 44 79 12 54 15 304 
2002 18 179 19 53 18 45 24 356 
2003 13 70 32 59 15 33 15 237 
2004 9 33 17 42 3 11 12 127 
2005 25 81 32 47 8 43 20 256 
2006 22 115 52 51 12 50 25 326 
2007 24 124 37 48 10 56 18 317 
2008 23 146 54 44 14 58 37 376 
2009 48 201 60 57 23 73 54 516 
2010 32 166 62 23 10 47 39 379 
2011 73 146 62 32 14 40 35 402 
2012 40 172 51 26 9 72 46 416 
2014 35 134 67 40 17 87 52 432 
2016 31 111 64 52 16 75 55 404 
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Table 3. Functional traits of reef fish used to characterize functional niche (from Stuart Smith et 
al., 2013). 
 
Functional Trait Category Type Units 
    
Maximum 
length 

Body size – resource 
partitioning  

Numeric  Total length (cm), continuous  

    
Trophic breadth Trophic niche – 

resource partitioning   
Numeric  Number of prey phyla consumed. 

Range from 1-8  
    
Trophic group Trophic niche – 

resource partitioning  
Factor  Browsing herbivore, scraping 

herbivore, benthic invertivore, 
planktivore, higher carnivore 

    
Water column 
position 

Behavior – space and 
habitat partitioning  

Factor  Benthic, demersal, site-attached 
pelagic, roaming pelagic 

    
Gregariousness Behavior – space and 

habitat partitioning  
Ordered 
Factor  

Index 1-3, representing singleton, 
paired to sometimes forming small 
schools, always schooling  

    
Diel activity 
pattern 

Behavior – resource 
partitioning, predator 
avoidance  

Factor  Diurnal, Nocturnal 

    
Preferred 
substrate 

Habitat use – resource 
partitioning, predator 
avoidance 

Factor  Hard substrate, soft substrate  

    
Habitat 
Complexity  

Habitat use – space and 
habitat partitioning  

Factor  Typically associated with habitats 
characterized by low, medium, high 
structural complexity  
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Table 4. Disturbances between 1999 – 2016 in the Florida Keys. All hurricanes occurred within 
100 nautical miles of the Florida Keys (Office for Coastal Management, 2017). 
 
Year Disturbance events between 1999 – 2016  Dates 
1997   

1998 Hurricane Georges (Category 2) 
Hurricane Mitch (Category 2) 

September 25th   
October 24th  

1999 Data collected before Tropical Storm Harvey  
Data collected before Hurricane Irene (Category 1) 

September 22nd  
October 15th  

2000   
2001   
2002   
2003   

2004 
Data collected before Hurricane Charley (Category 2) 
Data collected before Hurricane Frances (Category 2) 
Data collected before Tropical Storm Ivan   

August 13th  
September 4th   
September 21st   

2005 

Data collected before Hurricane Dennis (Category 2) 
Data collected before Hurricane Katrine (Category 2) 
Data collected before Hurricane Rita (Category 2) 
Data collected before Hurricane Wilma (Category 3)  

July 9th  
August 27th  
September 21th  
October 24th  

2006 Data collected before and after Tropical Storm Ernesto August 30th  
2007   
2008 Data collected before and after Tropical Storm Fay  August 18th  
2009 First invasive lionfish sighting January 6th  

2010 Data collected after extreme cold-water event  
Data collected before and after Tropical Storm Bonnie  

January 12th  
July 23rd   

2011   
2012 Data collected before and after Tropical Storm Isaac  August 27th  
2013   
2014   
2015    
2016 Data collected before and after Tropical Storm Hermine August 28th  
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Figure 1. Biodiversity as a multifaceted conceptual framework. Rectangular boxes with a solid 
border are the “standard” components of biodiversity, the round-corner rectangles are related 
concepts, and the rectangles with a dashed border represent an alternative approach. In italics is a 
brief description of each component (Modified from Duelli et al., 2003).  
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Figure 2. Example of two communities with the same number of species (but no overlap in species) 
and equally abundant species. When the two communities are combined species richness doubles 
following the doubling property, but Simpson diversity does not.   
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Figure 3. Map of the Florida Keys domain by geographic subregion (Upper Keys, Middle 
Keys, Lower Keys) and classified by habitat strata: Forereef Deep Linear Reef (FDLR), 
Forereef Medium Linear Reef (FMLR), Forereef Shallow Linear Reef (FSLR), High Relief 
Reef (HRRF), Inshore Patch Reef (INPR), Midchannel Patch Reef (MCPR) and Offshore 
Patch Reef (OFPR). 
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Figure 4. Spatial layout of the primary and secondary sampling units. 
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Figure 5. Kriging interpolation of reef fish abundance, biomass, and each diversity index along the 
Florida reef tract using data from all years combined. Warm colors indicate high values of 
abundance, biomass, or diversity and cool colors indicate low values. The scale for panel A is 
abundance (number of individuals), panel B is kilograms per 40,000 km2, panel C is units ranging 
from 0 (maximally uneven) to 1 (maximally even), and panels D-G are in units of effective number 
of species.   
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Figure 6. Plots of reef fish indices inside (protected) and outside (not protected) no take marine 
zones across years in the Florida Keys. The units for panel A are abundance (number of 
individuals), panel B is kilograms per 40,000 km2, panel C is units ranging from 0 (maximally 
uneven) to 1 (maximally even), and panels D-G are in units of effective number of species.  
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Figure 7. Plots of reef fish abundance, biomass, and evenness by strata and across years in the 
Florida Keys. The strata correspond to the partitioned habitat classes in the sampling design. The 
units for panel A are abundance (number of individuals), panel B is kilograms per 40,000 km2, and 
panel C is units ranging from 0 (maximally uneven) to 1 (maximally even).  
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Figure 8. Plots of reef fish richness, Simpson diversity, Shannon diversity, and functional diversity 
by strata and across years in the Florida Keys. The strata correspond to the partitioned habitat 
classes in the sampling design. The units for panels D-G are in units of effective number of species.  

5

15

25

35

45

55

2000 2004 2008 2012 2016
Year

M
ea

n 
ef

fe
ct

ive
 

nu
m

be
r o

f s
pe

ci
es

 (±
 S

E)
D) Richness

5

15

25

35

45

55

2000 2004 2008 2012 2016
Year

4

6

8

10

12

2000 2004 2008 2012 2016
Year

M
ea

n 
ef

fe
ct

ive
 

nu
m

be
r o

f s
pe

ci
es

 (±
 S

E)

E) Simpson

4

6

8

10

12

2000 2004 2008 2012 2016
Year

6
8

10
12
14
16
18
20

2000 2004 2008 2012 2016
Year

M
ea

n 
ef

fe
ct

ive
 

nu
m

be
r o

f s
pe

ci
es

 (±
 S

E)

F) Shannon

6
8

10
12
14
16
18
20

2000 2004 2008 2012 2016
Year

2

2.5

3

2000 2004 2008 2012 2016
Year

M
ea

n 
ef

fe
ct

ive
 

nu
m

be
r o

f s
pe

ci
es

 (±
 S

E)

G) Functional

2

2.5

3

2000 2004 2008 2012 2016
Year

Forereef Deep Linear Reef
Forereef Medium Linear Reef

Forereef Shallow Linear Reef
High Relief Reef

Inshore Patch Reef
Midchannel Patch Reef

Offshore Patch Reef



	

	 61 

 
Figure 9. Plots of reef fish indices by subregion across years with strata combined.  The units for 
panel A is abundance (number of individuals), panel B is kilograms per 40,000 km2, panel C is 
units ranging from 0 (maximally uneven) to 1 (maximally even), and panels D-G are in units of 
effective number of species.  
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Figure 10. The partial contributions of habitat structure, no-take marine zones, space, and time to 
the total explained deviance from generalized additive models fit to abundance, biomass, evenness, 
richness, Simpson diversity, Shannon diversity, and functional diversity. Space was smoothed by 
latitude and longitude by year and environment was smoothed by depth. Units are in percentage 
of total explained deviance, and error bars denote ± SE on partial deviance estimates.  
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Figure 11. Six tropical cyclones that occurred within 75 nautical miles of the Florida Keys study 
domain in 2004 and 2005. The color depicts the category of the storm: green (tropical storm), blue 
(tropical depression), grey (extratropical storm), yellow (hurricane category 1), orange (hurricane 
category 2), peach (hurricane category 3), magenta (hurricane category 4), and purple (hurricane 
category 5). Modified from the Office of Coastal Management, 2017.    
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Figure 12. Species richness, Shannon diversity, Simpson diversity, and functional diversity across 
years. The data correspond to all sampling events in a given year including all levels of protection, 
strata, and subregion. The units are in mean effective number of species and error bars denote ± 
SE.  
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APPENDIX 

 

Table A1. Listing of families ranked by percent of total abundance observed in the reef visual 
census from the Florida Keys domain between 1999 – 2016. Between 1999 and 2016, 5 families 
accounted for 75% of all observed fish taxa: Labridae (20.5%), Pomacentridae (17.3%), 
Haemulidae (16.9%), Gobiidae (10.7%) and Scaridae (9.2%), and 55 families accounted for <1% 
of all observed fish taxa. 
 

 Family  Percent  33 Exocoetidae 0.05423 
1 Labridae 20.45848  34 Ephippidae 0.04844 
2 Pomacentridae 17.34617  35 Priacanthidae 0.02413 
3 Haemulidae 16.86045  36 Urolophidae 0.01979 
4 Gobiidae 10.73944  37 Gerreidae 0.01915 
5 Scaridae 9.23075  38 Malacanthidae 0.01866 
6 Atherinidae 5.69998  39 Diodontidae 0.01813 
7 Lutjanidae 5.14526  40 Muraenidae 0.01733 
8 Acanthuridae 4.56436  41 Scorpaenidae 0.01534 
9 Carangidae 3.12332  42 Chaenopsidae 0.01408 

10 Chaetodontidae 0.93839  43 Ginglymostomatidae 0.01402 
11 Serranidae 0.92811  44 Apogonidae 0.01297 
12 Pomacanthidae 0.87301  45 Echeneidae 0.00957 
13 Kyphosidae 0.63886  46 Elopidae 0.00857 
14 Mullidae 0.58545  47 Synodontidae 0.00542 
15 Clupeidae 0.40968  48 Belonidae 0.00531 
16 Tetraodontidae 0.36024  49 Myliobatidae 0.00371 
17 Engraulidae 0.27049  50 Dasyatidae 0.00342 
18 Sparidae 0.25775  51 Cirrhitidae 0.00237 
19 Pempheridae 0.16889  52 Centropomidae 0.00234 
20 Holocentridae 0.12913  53 Congridae 0.00234 
21 Opistognathidae 0.12010  54 Carcharhinidae 0.00097 
22 Sphyraenidae 0.10822  55 Tripterygiidae 0.00050 
23 Sciaenidae 0.10235  56 Callionymidae 0.00048 
24 Inermiidae 0.09228  57 Fistulariidae 0.00045 
25 Ptereleotridae 0.09056  58 Hemiramphidae 0.00045 
26 Labrisomidae 0.07920  59 Bothidae 0.00035 
27 Aulostomidae 0.06358  60 Grammatidae 0.00033 
28 Ostraciidae 0.06052  61 Sphyrnidae 0.00018 
29 Balistidae 0.06032  62 Paralichthyidae 0.00017 
30 Blenniidae 0.05842  63 Ophichthidae 0.00012 
31 Monacanthidae 0.05785  64 Antennariidae 0.00005 
32 Scombridae 0.05439    
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Table A2. Listing of species ranked by percent of total abundance observed in reef visual 
census from the Florida Keys domain between 1999 – 2016. 

 Common Name Scientific Name 
Total 
abundance Percent  

1 Bicolor Damselfish Stegastes partitus 240754 11.37 
2 Bluehead Thalassoma bifasciatum 224874 10.62 
3 Masked Goby Coryphopterus personatus 198573 9.38 
4 Tomtate Haemulon aurolineatum 121891 5.76 
5 White Grunt Haemulon plumierii 93382 4.41 
6 Striped Parrotfish Scarus iseri 86022 4.06 
7 Reef Silverside Hypoatherina harringtonensis 81552 3.85 
8 Slippery Dick Halichoeres bivittatus 70797 3.34 
9 Yellowtail Snapper Ocyurus chrysurus 61990 2.93 

10 Redband Parrotfish Sparisoma aurofrenatum 51623 2.44 
11 French Grunt Haemulon flavolineatum 49123 2.32 
12 Bluestriped Grunt Haemulon sciurus 47395 2.24 
13 Yellowhead Wrasse Halichoeres garnoti 41785 1.97 
14 Ocean Surgeon Acanthurus bahianus 39518 1.87 
15 Hardhead Silverside Atherinomorus stipes 39112 1.85 
16 Clown Wrasse Halichoeres maculipinna 38041 1.80 
17 Sergeant Major Abudefduf saxatilis 37482 1.77 
18 Bar Jack Caranx ruber 36493 1.72 
19 Blue Tang Acanthurus coeruleus 35927 1.70 
20 Brown Chromis Chromis multilineata 31941 1.51 
21 Creole Wrasse Clepticus parrae 30619 1.45 
22 Gray Snapper Lutjanus griseus 24400 1.15 
23 Doctorfish Acanthurus chirurgus 21179 1.00 
24 Bridled Goby Coryphopterus glaucofraenum 19819 9.36E-01 
25 Blue Chromis Chromis cyanea 19034 8.99E-01 
26 Stoplight Parrotfish Sparisoma viride 17887 8.45E-01 
27 Smallmouth Grunt Haemulon chrysargyreum 13969 6.60E-01 
28 Bermuda Chub Kyphosus sectatrix 13524 6.39E-01 
29 Round Scad Decapterus punctatus 13272 6.27E-01 
30 Schoolmaster Lutjanus apodus 13105 6.19E-01 
31 Greenblotch Parrotfish Sparisoma atomarium 11958 5.65E-01 
32 Hogfish Lachnolaimus maximus 11209 5.30E-01 
33 Porkfish Anisotremus virginicus 11127 5.26E-01 
34 Cocoa Damselfish Stegastes variabilis 10452 4.94E-01 
35 Foureye Butterflyfish Chaetodon capistratus 7901 3.73E-01 
36 Mackerel Scad Decapterus macarellus 7709 3.64E-01 
37 Scaled Sardine Harengula jaguana 7666 3.62E-01 
38 Cottonwick Haemulon melanurum 7633 3.61E-01 
39 Sharpnose Puffer Canthigaster rostrata 7442 3.52E-01 
40 Gray Angelfish Pomacanthus arcuatus 7431 3.51E-01 
41 Yellow Goatfish Mulloidichthys martinicus 6454 3.05E-01 
42 Spotted Goatfish Pseudupeneus maculatus 5940 2.81E-01 
43 Spotfin Butterflyfish Chaetodon ocellatus 5817 2.75E-01 
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Table A2 continued. Listing of species ranked by percent of total abundance observed in 
reef visual census from the Florida Keys domain between 1999 – 2016.  

 Common Name Scientific Name 
Total 
abundance Percent  

 44 Dusky Anchovy Anchoa lyolepis 5726 2.70E-01 
45 Purple Reeffish Chromis scotti 5514 2.60E-01 
46 Redtail Parrotfish Sparisoma chrysopterum 5505 2.60E-01 
47 Princess Parrotfish Scarus taeniopterus 5430 2.56E-01 
48 Threespot Damselfish Stegastes planifrons 5212 2.46E-01 
49 Lane Snapper Lutjanus synagris 5036 2.38E-01 
50 Yellowtail Parrotfish Sparisoma rubripinne 4897 2.31E-01 
51 Saucereye Porgy Calamus calamus 4841 2.29E-01 
52 Dusky Damselfish Stegastes adustus 4820 2.28E-01 
53 Reef Butterflyfish Chaetodon sedentarius 4501 2.13E-01 
54 Neon Goby Elacatinus oceanops 4426 2.09E-01 
55 Rock Beauty Holacanthus tricolor 4395 2.08E-01 
56 Caesar Grunt Haemulon carbonarium 4380 2.07E-01 
57 Green Razorfish Xyrichtys splendens 4379 2.07E-01 
58 Graysby Cephalopholis cruentata 4308 2.04E-01 
59 Yellowtail Damselfish Microspathodon chrysurus 4135 1.95E-01 
60 Butter Hamlet Hypoplectrus unicolor 3982 1.88E-01 
61 Harlequin Bass Serranus tigrinus 3970 1.88E-01 
62 Blue Runner Caranx crysos 3938 1.86E-01 
63 Puddingwife Halichoeres radiatus 3904 1.84E-01 
64 Sunshinefish Chromis insolata 3586 1.69E-01 
65 Glassy Sweeper Pempheris schomburgkii 3575 1.69E-01 
66 Spanish Hogfish Bodianus rufus 3464 1.64E-01 
67 Yellow Jack Caranx bartholomaei 3435 1.62E-01 
68 Sailors Choice Haemulon parra 3213 1.52E-01 
69 Beaugregory Stegastes leucostictus 3177 1.50E-01 
70 Goldspot Goby Gnatholepis thompsoni 3031 1.43E-01 
71 Queen Angelfish Holacanthus ciliaris 2884 1.36E-01 
72 Striped Grunt Haemulon striatum 2855 1.35E-01 
73 Blackear Wrasse Halichoeres poeyi 2573 1.22E-01 
74 Yellowhead Jawfish Opistognathus aurifrons 2502 1.18E-01 
75 Blue Parrotfish Scarus coeruleus 2410 1.14E-01 
76 Mahogany Snapper Lutjanus mahogoni 2166 1.02E-01 
77 French Angelfish Pomacanthus paru 2087 9.86E-02 
78 Bluelip Parrotfish Cryptotomus roseus 2005 9.47E-02 
79 Rainbow Parrotfish Scarus guacamaia 1983 9.37E-02 
80 Boga Inermia vittata 1954 9.23E-02 
81 Mutton Snapper Lutjanus analis 1870 8.83E-02 
82 Midnight Parrotfish Scarus coelestinus 1857 8.77E-02 
83 Queen Parrotfish Scarus vetula 1829 8.64E-02 
84 Bucktooth Parrotfish Sparisoma radians 1810 8.55E-02 
85 Squirrelfish Holocentrus adscensionis 1809 8.54E-02 
86 Blue Dartfish Ptereleotris calliura 1728 8.16E-02 
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Table A2 continued. Listing of species ranked by percent of total abundance observed in 
reef visual census from the Florida Keys domain between 1999 – 2016. 

 Common Name Scientific Name 
Total 
abundance Percent  

87 Banded Butterflyfish Chaetodon striatus 1635 7.72E-02 
88 Black Grouper Mycteroperca bonaci 1601 7.56E-02 
89 Great Barracuda Sphyraena barracuda 1584 7.48E-02 
90 Blue Angelfish Holacanthus bermudensis 1507 7.12E-02 
91 Atlantic Trumpetfish Aulostomus maculatus 1346 6.36E-02 
92 Red Grouper Epinephelus morio 1218 5.75E-02 
93 Ballyhoo Hemiramphus brasiliensis 1148 5.42E-02 
94 Saddled Blenny Malacoctenus triangulatus 1083 5.12E-02 
95 High Hat Pareques acuminatus 1076 5.09E-02 
96 Atlantic Spadefish Chaetodipterus faber 1025 4.84E-02 
97 Cero Scomberomorus regalis 1007 4.76E-02 
98 Spanish Grunt Haemulon macrostomum 1005 4.75E-02 
99 Reef Croaker Odontoscion dentex 899 4.24E-02 

100 Longfin Damselfish Stegastes diencaeus 894 4.23E-02 
101 Seaweed Blenny Parablennius marmoreus 862 4.07E-02 
102 Colon Goby Coryphopterus dicrus 812 3.84E-02 
103 Smooth Trunkfish Lactophrys triqueter 764 3.61E-02 
104 Tobaccofish Serranus tabacarius 743 3.51E-02 
105 Rosy Razorfish Xyrichtys martinicensis 738 3.49E-02 
106 Gray Triggerfish Balistes capriscus 732 3.46E-02 
107 Scrawled Filefish Aluterus scriptus 730 3.45E-02 
108 Longspine Squirrelfish Holocentrus rufus 720 3.40E-02 
109 Southern Sennet Sphyraena picudilla 691 3.26E-02 
110 Lantern Bass Serranus baldwini 612 2.89E-02 
111 Horse Eye Jack Caranx latus 588 2.78E-02 
112 Rosy Blenny Malacoctenus macropus 564 2.66E-02 
113 Spanish Sardine Sardinella aurita 507 2.39E-02 
114 Redear Sardine Harengula humeralis 500 2.36E-02 
115 Black Margate Anisotremus surinamensis 499 2.36E-02 
116 Blue Hamlet Hypoplectrus gemma 448 2.12E-02 
117 Margate Haemulon album 446 2.11E-02 
118 Yellow Stingray Urobatis jamaicensis 419 1.98E-02 
119 Coney Cephalopholis fulva 407 1.92E-02 
120 Yellowfin Mojarra Gerres cinereus 396 1.87E-02 
121 Sand Tilefish Malacanthus plumieri 395 1.87E-02 
122 Ocean Triggerfish Canthidermis sufflamen 386 1.83E-02 
123 Rock Hind Epinephelus adscensionis 375 1.77E-02 
124 Barred Hamlet Hypoplectrus puella 341 1.61E-02 
125 Chalk Bass Serranus tortugarum 324 1.53E-02 
126 Glasseye Snapper Heteropriacanthus cruentatus 308 1.45E-02 
127 Nurse Shark Ginglymostoma cirratum 297 1.40E-02 
128 Red Lionfish Pterois volitans 259 1.22E-02 
129 Slender Filefish Monacanthus tuckeri 250 1.18E-02 
130 Redlip Blenny Ophioblennius macclurei 245 1.16E-02 
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Table A2 continued. Listing of species ranked by percent of total abundance observed in 
reef visual census from the Florida Keys domain between 1999 – 2016. 

 Common Name Scientific Name 
Total 
abundance Percent  

131 Scrawled Cowfish Acanthostracion quadricornis 240 1.13E-02 
132 Gag Mycteroperca microlepis 225 1.06E-02 
133 Rainbow Runner Elagatis bipinnulata 216 1.02E-02 
134 Spotfin Hogfish Bodianus pulchellus 213 1.00E-02 
135 Bigeye Priacanthus arenatus 203 9.59E-03 
136 Pallid Goby Coryphopterus eidolon 197 9.31E-03 
137 Emerald Parrotfish Nicholsina usta 193 9.11E-03 
138 Dash Goby Ctenogobius saepepallens 192 9.05E-03 
139 Hovering Dartfish Ptereleotris helenae 190 8.95E-03 
140 Sea Bream Archosargus rhomboidalis 189 8.93E-03 
141 Yellowtail Reeffish Chromis enchrysura 186 8.79E-03 
142 Dog Snapper Lutjanus jocu 184 8.70E-03 
143 Spotted Moray Gymnothorax moringa 183 8.66E-03 
144 Bandtail Puffer Sphoeroides spengleri 181 8.57E-03 
145 Tarpon Megalops atlanticus 179 8.43E-03 
146 Balloonfish Diodon holocanthus 178 8.41E-03 
147 Townsend Angelfish Holocanthus sp. 177 8.37E-03 
148 Red Hind Epinephelus guttatus 177 8.36E-03 
149 Scamp Mycteroperca phenax 177 8.35E-03 
150 Wrasse Blenny Hemiemblemaria simula 168 7.94E-03 
151 Sharksucker Echeneis naucrates 167 7.87E-03 
152 Nassau Grouper Epinephelus striatus 153 7.25E-03 
153 Yellowcheek Wrasse Halichoeres cyanocephalus 143 6.76E-03 
154 Seminole Goby Microgobius carri 141 6.66E-03 
155 Blackfin Snapper Lutjanus buccanella 137 6.46E-03 
156 Queen Triggerfish Balistes vetula 133 6.27E-03 
157 Twospot Cardinalfish Apogon pseudomaculatus 132 6.24E-03 
158 Pearly Razorfish Xyrichtys novacula 129 6.09E-03 
159 Spotted Drum Equetus punctatus 128 6.05E-03 
160 Orangespotted Filefish Cantherhines pullus 126 5.97E-03 
161 Jolthead Porgy Calamus bajonado 123 5.80E-03 
162 Blackbar Soldierfish Myripristis jacobus 123 5.79E-03 
163 Green Moray Gymnothorax funebris 118 5.59E-03 
164 Porcupinefish Diodon hystrix 118 5.56E-03 
165 Molly Miller Scartella cristata 110 5.20E-03 
166 Permit Trachinotus falcatus 109 5.16E-03 
167 Crevalle Jack Caranx hippos 109 5.13E-03 
168 Rainbow Wrasse Halichoeres pictus 107 5.04E-03 
169 Spotted Trunkfish Lactophrys bicaudalis 103 4.87E-03 
170 Trunkfish Lactophrys trigonus 101 4.77E-03 
171 Little Tunny Euthynnus alletteratus 96 4.51E-03 
172 Painted Wrasse Halichoeres caudalis 93 4.37E-03 
173 Black Hamlet Hypoplectrus nigricans 92 4.37E-03 
174 Sand Diver Synodus intermedius 91 4.29E-03 
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Table A2. Listing of species ranked by percent of total abundance observed in reef visual 
census from the Florida Keys domain between 1999 – 2016. 

 Common Name Scientific Name 
Total 
abundance Percent  

175 Banner Goby Microgobius microlepis 90 4.25E-03 
176 Spottail Pinfish Diplodus holbrookii 82 3.87E-03 
177 Littlehead Porgy Calamus proridens 81 3.83E-03 
178 School Bass Schultzea beta 81 3.83E-03 
179 Lookdown Selene vomer 81 3.80E-03 
180 Spotted Eagle Ray Aetobatus narinari 78 3.68E-03 
181 Roughhead Blenny Acanthemblemaria aspera 78 3.66E-03 
182 Houndfish Tylosurus crocodilus 75 3.52E-03 
183 Honeycomb Cowfish Acanthostracion polygonia 73 3.43E-03 
184 Southern Stingray Dasyatis americana 72 3.42E-03 
185 Greater Amberjack Seriola dumerili 64 3.02E-03 
186 Greater Soapfish Rypticus saponaceus 64 3.02E-03 
187 Striped Burrfish Chilomycterus schoepfii 64 3.00E-03 
188 Spotted Scorpionfish Scorpaena plumieri 62 2.92E-03 
189 Flamefish Apogon maculatus 61 2.88E-03 
190 Tan Hamlet Hypoplectrus tann 59 2.79E-03 
191 Sand Perch Diplectrum formosum 59 2.76E-03 
192 Orange Filefish Aluterus schoepfii 55 2.59E-03 
193 Redspotted Hawkfish Amblycirrhitus pinos 50 2.37E-03 
194 Brown Garden Eel Centropomus undecimalis 50 2.34E-03 
195 Common Snook Heteroconger longissimus 50 2.34E-03 
196 Goldentail Moray Gymnothorax miliaris 49 2.30E-03 
197 Goliath Grouper Epinephelus itajara 49 2.29E-03 
198 Dusky Squirrelfish Sargocentron vexillarium 46 2.19E-03 
199 Almaco Jack Lagodon rhomboides 45 2.13E-03 
200 Pinfish Seriola rivoliana 45 2.13E-03 
201 Yellowfin Grouper Mycteroperca venenosa 44 2.08E-03 
202 Sheepshead Porgy Calamus penna 44 2.05E-03 
203 Yellowmouth Grouper Mycteroperca interstitialis 42 1.98E-03 
204 Leatherjack Oligoplites saurus 41 1.94E-03 
205 Jackknife Fish Equetus lanceolatus 38 1.80E-03 
206 Barred Cardinalfish Apogon binotatus 36 1.70E-03 
207 Redfin Needlefish Strongylura notata 36 1.68E-03 
208 Whitespotted Filefish Cantherhines macrocerus 33 1.57E-03 
209 Belted Cardinalfish Apogon townsendi 33 1.54E-03 
210 Cubera Snapper Lutjanus cyanopterus 32 1.49E-03 
211 Spanish Mackerel Scomberomorus maculatus 30 1.39E-03 
212 Remora Remora remora 28 1.32E-03 
213 Dusky Jawfish Opistognathus whitehursti 27 1.28E-03 
214 Black Durgon Melichthys niger 26 1.21E-03 
215 Cubbyu Pareques umbrosus 26 1.20E-03 
216 Bridled Burrfish Chilomycterus antennatus 25 1.16E-03 
217 Inshore Lizardfish Synodus foetens 24 1.13E-03 
218 Sharknose Goby Elacatinus evelynae 24 1.11E-03 
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Table A2. Listing of species ranked by percent of total abundance observed in reef visual 
census from the Florida Keys domain between 1999 – 2016. 

 Common Name Scientific Name 
Total 
abundance Percent  

219 Sheepshead Archosargus probatocephalus 23 1.06E-03 
220 Dwarf Wrasse Doratonotus megalepis 21 9.68E-04 
221 King Mackerel Scomberomorus cavalla 20 9.29E-04 
222 Atlantic Creolefish Alphestes afer 20 9.21E-04 
223 Mutton Hamlet Paranthias furcifer 20 9.21E-04 
224 Reef Squirrelfish Sargocentron coruscum 19 8.98E-04 
225 Barred Blenny Hypleurochilus bermudensis 18 8.50E-04 
226 Blackhead Blenny Emblemariopsis bahamensis 18 8.27E-04 
227 Cherubfish Centropyge argi 17 8.03E-04 
228 Longjaw Squirrelfish Neoniphon marianus 17 7.79E-04 
229 Guaguanche Emblemaria pandionis 16 7.32E-04 
230 Sailfin Blenny Sphyraena guachancho 16 7.32E-04 
231 Planehead Filefish Stephanolepis hispidus 15 6.85E-04 
232 African Pompano Alectis ciliaris 14 6.38E-04 
233 Banded Jawfish Opistognathus macrognathus 14 6.38E-04 
234 Fringed Filefish Monacanthus ciliatus 13 6.14E-04 
235 Orangespotted Goby Nes longus 13 6.14E-04 
236 Shy Hamlet Hypoplectrus guttavarius 12 5.67E-04 
237 Purplemouth Moray Carcharhinus perezii 12 5.43E-04 
238 Reef Shark Gymnothorax vicinus 12 5.43E-04 
239 Knobbed Porgy Calamus nodosus 11 5.43E-04 
240 Tiger Grouper Mycteroperca tigris 11 5.35E-04 
241 Red Porgy Acanthemblemaria maria 11 5.20E-04 
242 Secretary Blenny Pagrus pagrus 11 5.20E-04 
243 Indigo Hamlet Enneanectes boehlkei 11 4.96E-04 

244 
Longsnout 
Butterflyfish Hypoplectrus indigo 11 4.96E-04 

245 Roughhead Triplefin Prognathodes aculeatus 11 4.96E-04 
246 Lancer Dragonet Paradiplogrammus bairdi 10 4.80E-04 

247 
Bluespotted 
Cornetfish Chriodorus atherinoides 10 4.49E-04 

248 Hardhead Halfbeak Fistularia tabacaria 10 4.49E-04 
249 Palehead Blenny Labrisomus gobio 10 4.49E-04 
250 Spotfin Mojarra Eucinostomus argenteus 9 4.41E-04 
251 Whitefin Sharksucker Echeneis neucratoides 8 3.78E-04 
252 Papillose Blenny Acanthemblemaria chaplini 8 3.54E-04 
253 Fairy Basslet Gramma loreto 7 3.31E-04 
254 Silver Porgy Diplodus argenteus 7 3.07E-04 
255 Barfin Blenny Elacatinus macrodon 6 2.83E-04 
256 Hairy Blenny Labrisomus nuchipinnis 6 2.83E-04 
257 Sponge Cardinalfish Malacoctenus versicolor 6 2.83E-04 
258 Tiger Goby Phaeoptyx xenus 6 2.83E-04 
259 Black Jack Bothus lunatus 5 2.36E-04 
260 Peacock Flounder Caranx lugubris 5 2.36E-04 
261 Rusty Goby Priolepis hipoliti 5 2.36E-04 
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Table A2. Listing of species ranked by percent of total abundance observed in reef visual 
census from the Florida Keys domain between 1999 – 2016. 

 Common Name Scientific Name 
Total 
abundance Percent  

262 Whitespotted Soapfish Rypticus maculatus 5 2.36E-04 
263 Bridle Cardinalfish Apogon aurolineatus 5 2.13E-04 
264 Bull Shark Carcharhinus leucas 5 2.13E-04 
265 Pigfish Liopropoma eukrines 5 2.13E-04 
266 Wrasse Basslet Orthopristis chrysoptera 5 2.13E-04 
267 Hybrid Hamlet Epinephelus flavolimbatus 4 1.89E-04 
268 Orangeside Goby Gobiosoma dilepis 4 1.89E-04 
269 Reef Scorpionfish Hypoplectrus hybrid 4 1.89E-04 
270 Yellowedge Grouper Scorpaenodes caribbaeus 4 1.89E-04 
271 Atlantic Bumper Carcharhinus limbatus 4 1.65E-04 
272 Blacktip Shark Chloroscombus chrysurus 4 1.65E-04 
273 Goldline Blenny Liopropoma rubre 4 1.65E-04 
274 Gulf Flounder Malacoctenus aurolineatus 4 1.65E-04 
275 Orangeback Bass Oxyurichthys stigmalophius 4 1.65E-04 
276 Peppermint Basslet Paralichthys albigutta 4 1.65E-04 
277 Spotfin Goby Serranus annularis 4 1.65E-04 
278 Dusky Blenny Coryphopterus lipernes 3 1.42E-04 

279 Ladyfish 
Coryphopterus 
punctipectophorus 3 1.42E-04 

280 Peppermint Goby Elops saurus 3 1.42E-04 
281 Spotted Goby Malacoctenus gilli 3 1.42E-04 
282 Vermilion Snapper Rhomboplites aurorubens 3 1.42E-04 
283 Checkered Puffer Aluterus monoceros 3 1.18E-04 
284 Leopard Goby Dermatolepis inermis 3 1.18E-04 
285 Marbled Grouper Elacatinus saucrum 3 1.18E-04 
286 Timucu Enchelycore nigricans 3 1.18E-04 
287 Unicorn Filefish Sphoeroides testudineus 3 1.18E-04 
288 Viper Moray Strongylura timucu 3 1.18E-04 
289 Eyed Flounder Bothus ocellatus 2 1.10E-04 
290 Great Hammerhead Sphyrna mokarran 2 9.45E-05 
291 Bonnethead Apogon quadrisquamatus 2 7.09E-05 
292 Honeycomb Moray Chilomycterus atinga 2 7.09E-05 
293 Marbled Blenny Gymnothorax saxicola 2 7.09E-05 

294 
Sawcheek 
Cardinalfish Paraclinus marmoratus 2 7.09E-05 

295 Spotted Burrfish Sphyrna tiburo 2 7.09E-05 
296 Bandtail Searobin Ahlia egmontis 1 4.72E-05 
297 Conchfish Antennarius ocellatus 1 4.72E-05 
298 Goldspotted Eel Astrapogon stellatus 1 4.72E-05 
299 Key Worm Eel Astroscopus guttatus 1 4.72E-05 
300 Lesser Electric Ray Carcharhinus falciformis 1 4.72E-05 
301 Northern Stargazer Chaenopsis limbaughi 1 4.72E-05 
302 Ocellated Frogfish Elacatinus horsti 1 4.72E-05 
303 Quillfin Blenny Elacatinus xanthiprora 1 4.72E-05 
304 Red Lizardfish Hypoplectrus chlorurus 1 4.72E-05 
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Table A2. Listing of species ranked by percent of total abundance observed in reef visual 
census from the Florida Keys domain between 1999 – 2016. 

 Common Name Scientific Name 
Total 
abundance Percent  

305 Reticulate Moray Labrisomus filamentosus 1 4.72E-05 
306 Silky Shark Muraena retifera 1 4.72E-05 

307 
Yellowface 
Pikeblenny Myrichthys ocellatus 1 4.72E-05 

308 Yellowline Goby Narcine bancroftii 1 4.72E-05 
309 Yellowprow Goby Prionotus ophryas 1 4.72E-05 
310 Yellowtail Hamlet Synodus synodus 1 4.72E-05 
311 Belted Sandfish Eucinostomus gula 1 2.36E-05 
312 Giant Manta Labrisomus bucciferus 1 2.36E-05 
313 Puffcheek Blenny Manta birostris 1 2.36E-05 
314 Sharptail Eel Myrichthys breviceps 1 2.36E-05 
315 Silver Jenny Serranus subligarius 1 2.36E-05 

316 
Scalloped 
Hammerhead Sphyrna lewini 0.5 1.57E-05 
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Table A3. Contributions of individual traits to patterns in functional diversity in the Florida 
Keys.  
 
Trait R2  
Trophic group  0.594 
Diel activity pattern 0.722 
Preferred substrate  0.755 
Trophic level 0.880 
Water column position  0.929 
Max length  0.932 
Habitat complexity  0.978 
Gregariousness  0.988 

 
Table A4: Tested for differences between level of protection using the nonparametric Kruskal-
Wallis rank sum test. * denotes not significantly different.  
 
Metric  chi-squared df p-value 
Abundance  83.908 1 2.2E-16 
Biomass 172.69 1 2.2E-16 
Evenness 1.2309 1 2.7E-01* 
Richness 109.16 1 2.2E-16 
Simpson 22.569 1 2.0E-06 
Shannon 29.719 1 5.0E-08 
Functional  15.991 1 6.4E-05 

 
Table A5: Tested for differences across strata using the nonparametric Kruskal-Wallis rank sum 
test * denotes not significantly different.  
 
Metric  chi-squared df p-value 
Abundance  663.25 6 2.2E-16 
Biomass 655.02 6 2.2E-16 
Evenness 324.62 6 2.2E-16 
Richness 1192.5 6 2.2E-16 
Simpson 352.49 6 2.2E-16 
Shannon 446.17 6 2.2E-16 
Functional  663.1 6 2.2E-16 

 
Table A6: Tested for differences across geographic subregion using the nonparametric Kruskal-
Wallis rank sum test. * denotes not significantly different. 
  
Metric  chi-squared df p-value 
Abundance  17.443 2 1.6E-04 
Biomass 28.286 2 7.2E-07 
Evenness 17.196 2 1.8E-04 
Richness 0.20689 2 9.0E-01* 
Simpson 15.834 2 3.6E-04 
Shannon 24.915 2 3.9E-06 
Functional  15.587 2 4.1E-04 
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Table A7: Dunn (1964) Kruskal-Wallis multiple comparison of abundance by strata. Inshore Patch 
Reef (INPR); Midchannel Patch Reef (MCPR); Offshore Patch Reef (OFPR); Forereef Shallow 
Linear Reef (FSLR); Forereef Medium Linear Reef (FMLR); Forereef Deep Linear Reef (FDLR); 
and High Relief Reef (HRRF). * denotes the strata are not significantly different.  
 
Comparison Z P.unadj P.adj 
FMLR - OFPR 1.13E+00 2.59E-01 5.18E-01* 
INPR - MCPR -1.47E+00 1.43E-01 4.28E-01* 
FDLR - HRRF 1.03E+00 3.05E-01 3.05E-01* 
FSLR - MCPR 2.34E+00 1.90E-02 7.62E-02* 
FSLR - OFPR -2.89E+00 3.88E-03 1.94E-02 
FSLR - INPR 2.98E+00 2.88E-03 1.73E-02 
INPR - OFPR -4.89E+00 9.87E-07 6.91E-06 
MCPR - OFPR -5.06E+00 4.21E-07 3.37E-06 
FMLR - FSLR 5.21E+00 1.93E-07 1.74E-06 
FMLR - INPR 6.37E+00 1.90E-10 1.90E-09 
FMLR - MCPR 8.36E+00 6.38E-17 7.02E-16 
FDLR - OFPR 1.11E+01 1.09E-28 1.31E-27 
HRRF - OFPR 1.17E+01 2.00E-31 2.60E-30 
FDLR - FMLR 1.27E+01 4.24E-37 5.94E-36 
FDLR - INPR 1.36E+01 5.51E-42 8.27E-41 
HRRF - INPR 1.39E+01 4.97E-44 7.95E-43 
FMLR - HRRF -1.45E+01 6.91E-48 1.17E-46 
FDLR - FSLR 1.48E+01 1.32E-49 2.38E-48 
FSLR - HRRF -1.63E+01 1.98E-59 3.76E-58 
FDLR - MCPR 1.72E+01 4.80E-66 9.59E-65 
HRRF - MCPR 1.92E+01 4.16E-82 8.74E-81 
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Table A8: Dunn (1964) Kruskal-Wallis multiple comparison of biomass by strata. Inshore Patch 
Reef (INPR); Midchannel Patch Reef (MCPR); Offshore Patch Reef (OFPR); Forereef Shallow 
Linear Reef (FSLR); Forereef Medium Linear Reef (FMLR); Forereef Deep Linear Reef (FDLR); 
and High Relief Reef (HRRF).  * denotes the strata are not significantly different.  
 
Comparison Z P.unadj P.adj 
INPR - MCPR -4.55E-01 6.49E-01 1.00E+00* 
FMLR – INPR -2.08E-01 8.35E-01 8.35E-01* 
FMLR - MCPR -1.21E+00 2.28E-01 6.85E-01* 
INPR – OFPR -2.22E+00 2.61E-02 1.05E-01* 
MCPR - OFPR -2.58E+00 9.78E-03 4.89E-02 
FMLR - OFPR -3.91E+00 9.17E-05 5.50E-04 
FDLR – OFPR 4.70E+00 2.58E-06 2.06E-05 
FSLR – INPR -4.70E+00 2.65E-06 1.86E-05 
FDLR – HRRF -5.45E+00 5.13E-08 4.62E-07 
FDLR – INPR 5.89E+00 3.77E-09 3.77E-08 
FDLR - MCPR 7.69E+00 1.52E-14 1.68E-13 
FSLR – MCPR -7.86E+00 3.96E-15 4.75E-14 
FMLR – FSLR 8.07E+00 6.75E-16 8.78E-15 
FSLR – OFPR -9.35E+00 8.53E-21 1.19E-19 
FDLR – FMLR 9.52E+00 1.73E-21 2.60E-20 
HRRF – INPR 1.07E+01 1.56E-26 2.49E-25 
HRRF - OFPR 1.11E+01 1.41E-28 2.39E-27 
FDLR – FSLR 1.40E+01 8.87E-45 1.60E-43 
HRRF - MCPR 1.57E+01 1.05E-55 2.00E-54 
FMLR - HRRF -1.97E+01 1.19E-86 2.38E-85 
FSLR – HRRF -2.29E+01 3.94E-116 8.27E-115 
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Table A9: Dunn (1964) Kruskal-Wallis multiple comparison of evenness by strata. Inshore Patch 
Reef (INPR); Midchannel Patch Reef (MCPR); Offshore Patch Reef (OFPR); Forereef Shallow 
Linear Reef (FSLR); Forereef Medium Linear Reef (FMLR); Forereef Deep Linear Reef (FDLR); 
and High Relief Reef (HRRF).  * denotes the strata are not significantly different.  
 
Comparison Z P.unadj P.adj 
HRRF - INPR 4.84E-01 6.29E-01 1.00E+00* 
FMLR - INPR -1.02E+00 3.08E-01 9.24E-01* 
FSLR - MCPR 2.02E-01 8.40E-01 8.40E-01* 
INPR - MCPR -2.39E+00 1.69E-02 6.75E-02* 
FSLR - INPR 2.49E+00 1.29E-02 6.45E-02* 
FMLR - HRRF -2.60E+00 9.26E-03 5.56E-02* 
FSLR - OFPR -2.83E+00 4.58E-03 3.21E-02 
HRRF - MCPR -2.90E+00 3.70E-03 2.96E-02 
FSLR - HRRF 3.00E+00 2.66E-03 2.40E-02 
MCPR - OFPR -3.09E+00 1.99E-03 1.99E-02 
INPR - OFPR -4.39E+00 1.15E-05 1.26E-04 
HRRF - OFPR -5.56E+00 2.69E-08 3.23E-07 
FMLR - FSLR -6.15E+00 7.93E-10 1.03E-08 
FMLR - MCPR -6.21E+00 5.42E-10 7.59E-09 
FDLR - INPR -8.10E+00 5.32E-16 7.98E-15 
FMLR - OFPR -8.59E+00 8.96E-18 1.43E-16 
FDLR - FMLR -1.13E+01 8.81E-30 1.50E-28 
FDLR - HRRF -1.18E+01 2.84E-32 5.11E-31 
FDLR - FSLR -1.43E+01 3.96E-46 7.53E-45 
FDLR - MCPR -1.44E+01 3.18E-47 6.36E-46 
FDLR - OFPR -1.57E+01 3.09E-55 6.49E-54 
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Table A10: Dunn (1964) Kruskal-Wallis multiple comparison of richness by strata. Inshore Patch 
Reef (INPR); Midchannel Patch Reef (MCPR); Offshore Patch Reef (OFPR); Forereef Shallow 
Linear Reef (FSLR); Forereef Medium Linear Reef (FMLR); Forereef Deep Linear Reef (FDLR); 
and High Relief Reef (HRRF).  * denotes the strata are not significantly different.  
 
Comparison Z P.unadj P.adj 
FMLR - OFPR -3.57E-01 7.21E-01 7.21E-01* 
FSLR - INPR 2.25E+00 2.47E-02 4.95E-02 
FDLR - HRRF -4.42E+00 9.94E-06 2.98E-05 
FSLR - MCPR -4.52E+00 6.24E-06 2.50E-05 
INPR - MCPR -5.28E+00 1.29E-07 6.43E-07 
MCPR - OFPR -6.39E+00 1.68E-10 1.01E-09 
FMLR - MCPR 8.38E+00 5.29E-17 3.70E-16 
FDLR - OFPR 8.83E+00 1.08E-18 8.67E-18 
INPR - OFPR -9.39E+00 6.03E-21 5.43E-20 
FSLR - OFPR -1.02E+01 3.20E-24 3.20E-23 
FMLR - INPR 1.05E+01 1.45E-25 1.60E-24 
FDLR - FMLR 1.13E+01 1.50E-29 1.80E-28 
FMLR - FSLR 1.33E+01 2.92E-40 3.80E-39 
HRRF - OFPR 1.47E+01 3.56E-49 4.99E-48 
FDLR - MCPR 1.59E+01 6.89E-57 1.03E-55 
FDLR - INPR 1.62E+01 9.93E-59 1.59E-57 
FDLR - FSLR 1.93E+01 8.48E-83 1.44E-81 
FMLR - HRRF -2.05E+01 2.71E-93 4.89E-92 
HRRF - INPR 2.10E+01 9.15E-98 1.74E-96 
HRRF - MCPR 2.43E+01 6.15E-130 1.23E-128 
FSLR - HRRF -2.79E+01 4.68E-171 9.83E-170 
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Table A11: Dunn (1964) Kruskal-Wallis multiple comparison of Simpson diversity by strata. 
Inshore Patch Reef (INPR); Midchannel Patch Reef (MCPR); Offshore Patch Reef (OFPR); 
Forereef Shallow Linear Reef (FSLR); Forereef Medium Linear Reef (FMLR); Forereef Deep 
Linear Reef (FDLR); and High Relief Reef (HRRF). * denotes the strata are not significantly 
different.  
 
Comparison Z P.unadj P.adj 
FMLR - FSLR 4.95E-01 6.20E-01 1.00E+00* 
HRRF - OFPR 3.06E-01 7.59E-01 7.59E-01* 
FDLR - INPR -1.17E+00 2.43E-01 7.28E-01* 
FSLR - MCPR -3.06E+00 2.25E-03 9.00E-03 
FMLR - MCPR -3.25E+00 1.17E-03 5.84E-03 
FSLR - INPR 4.40E+00 1.06E-05 6.35E-05 
FMLR - INPR 5.07E+00 4.03E-07 2.82E-06 
MCPR - OFPR -5.20E+00 1.97E-07 1.57E-06 
HRRF - MCPR 6.26E+00 3.83E-10 3.45E-09 
INPR - MCPR -6.50E+00 8.02E-11 8.02E-10 
FDLR - FSLR -7.20E+00 6.13E-13 6.74E-12 
FSLR - OFPR -7.73E+00 1.12E-14 1.34E-13 
FMLR - OFPR -8.55E+00 1.25E-17 1.62E-16 
FDLR - FMLR -8.64E+00 5.56E-18 7.79E-17 
FSLR - HRRF -9.05E+00 1.44E-19 2.15E-18 
INPR - OFPR -9.71E+00 2.86E-22 4.58E-21 
FDLR - MCPR -9.98E+00 1.93E-23 3.28E-22 
HRRF - INPR 1.05E+01 7.78E-26 1.40E-24 
FMLR - HRRF -1.05E+01 5.44E-26 1.03E-24 
FDLR - OFPR -1.35E+01 2.89E-41 5.77E-40 
FDLR - HRRF -1.50E+01 5.18E-51 1.09E-49 
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Table A12: Dunn (1964) Kruskal-Wallis multiple comparison of Shannon diversity by strata. 
Inshore Patch Reef (INPR); Midchannel Patch Reef (MCPR); Offshore Patch Reef (OFPR); 
Forereef Shallow Linear Reef (FSLR); Forereef Medium Linear Reef (FMLR); Forereef Deep 
Linear Reef (FDLR); and High Relief Reef (HRRF). * denotes the strata are not significantly 
different.  
 
Comparison Z P.unadj P.adj 
FMLR - MCPR -1.60E+00 1.10E-01 2.20E-01* 
FDLR - FSLR -1.23E+00 2.17E-01 2.17E-01* 
FDLR - INPR 2.70E+00 6.91E-03 2.07E-02 
HRRF - OFPR 3.40E+00 6.83E-04 2.73E-03 
FSLR - INPR 3.88E+00 1.04E-04 5.18E-04 
MCPR - OFPR -5.37E+00 7.73E-08 5.41E-07 
FMLR - FSLR 5.35E+00 8.95E-08 5.37E-07 
FDLR - FMLR -5.75E+00 8.85E-09 7.08E-08 
FSLR - MCPR -5.85E+00 4.86E-09 4.38E-08 
FDLR - MCPR -6.25E+00 4.05E-10 4.05E-09 
FMLR - OFPR -7.39E+00 1.46E-13 1.60E-12 
FMLR - INPR 7.43E+00 1.08E-13 1.29E-12 
INPR - MCPR -7.83E+00 4.95E-15 6.43E-14 
HRRF - MCPR 1.00E+01 1.27E-23 1.78E-22 
FDLR - OFPR -1.02E+01 1.22E-24 1.83E-23 
FSLR - OFPR -1.03E+01 5.39E-25 8.63E-24 
INPR - OFPR -1.11E+01 1.81E-28 3.08E-27 
FMLR - HRRF -1.34E+01 8.06E-41 1.45E-39 
HRRF - INPR 1.43E+01 3.55E-46 6.75E-45 
FDLR - HRRF -1.45E+01 2.07E-47 4.15E-46 
FSLR - HRRF -1.54E+01 1.10E-53 2.31E-52 
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Table A13: Dunn (1964) Kruskal-Wallis multiple comparison of functional diversity by strata. 
Inshore Patch Reef (INPR); Midchannel Patch Reef (MCPR); Offshore Patch Reef (OFPR); 
Forereef Shallow Linear Reef (FSLR); Forereef Medium Linear Reef (FMLR); Forereef Deep 
Linear Reef (FDLR); and High Relief Reef (HRRF). * denotes the strata are not significantly 
different.  
 
Comparison Z P.unadj P.adj 
FDLR - HRRF 1.06E-01 9.15E-01 9.15E-01* 
FMLR - INPR -1.67E+00 9.55E-02 1.91E-01* 
MCPR - OFPR 2.35E+00 1.90E-02 5.71E-02* 
FDLR - MCPR 2.61E+00 9.15E-03 3.66E-02 
HRRF - MCPR 2.97E+00 2.94E-03 1.76E-02 
INPR - OFPR -2.92E+00 3.47E-03 1.73E-02 
FDLR - OFPR 4.36E+00 1.29E-05 9.01E-05 
HRRF - OFPR 4.89E+00 1.02E-06 9.18E-06 
INPR - MCPR -4.87E+00 1.13E-06 9.06E-06 
FDLR - INPR 6.31E+00 2.83E-10 2.83E-09 
FSLR - INPR -6.74E+00 1.61E-11 1.77E-10 
HRRF - INPR 6.76E+00 1.41E-11 1.70E-10 
FMLR - OFPR -7.13E+00 1.01E-12 1.32E-11 
FMLR - FSLR 9.32E+00 1.18E-20 1.65E-19 
FMLR - MCPR -1.19E+01 8.22E-33 1.23E-31 
FDLR - FMLR 1.21E+01 7.35E-34 1.18E-32 
FSLR - OFPR -1.30E+01 6.84E-39 1.16E-37 
FMLR - HRRF -1.51E+01 1.65E-51 2.98E-50 
FDLR - FSLR 1.72E+01 2.58E-66 4.89E-65 
FSLR - MCPR -1.76E+01 1.88E-69 3.76E-68 
FSLR - HRRF -2.02E+01 2.52E-90 5.30E-89 

 
Table A14: Dunn (1964) Kruskal-Wallis multiple comparison of abundance by subregion (Upper 
Keys, Middle Keys, and Lower Keys). * denotes the subregions are not significantly different.  
 
Comparison Z P.unadj P.adj 
Lower - Upper -0.44759 0.654449 0.654449* 
Middle - Upper 3.844107 1.21E-04 2.42E-04 
Lower - Middle -4.04764 5.17E-05 1.55E-04 

 
Table A15: Dunn (1964) Kruskal-Wallis multiple comparison of biomass by subregion (Upper 
Keys, Middle Keys, and Lower Keys). * denotes the subregions are not significantly different.  
 
Comparison Z P.unadj P.adj 
Lower - Middle 1.980602 0.047636 0.047636 
Lower - Upper -3.93466 8.33E-05 1.67E-04 
Middle - Upper -4.56579 4.98E-06 1.49E-05 

 
Table A16: Dunn (1964) Kruskal-Wallis multiple comparison of evenness by subregion (Upper 
Keys, Middle Keys, and Lower Keys). * denotes the subregions are not significantly different.  
 
Comparison Z P.unadj P.adj 
Lower - Upper 0.020291 0.983812 0.983812* 
Middle - Upper -3.96257 7.41E-05 2.22E-04 
Lower - Middle 3.893189 9.89E-05 1.98E-04 
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Table A17: Dunn (1964) Kruskal-Wallis multiple comparison of Simpson diversity by subregion, 
Upper Keys, Middle Keys, and Lower Keys. * denotes the subregions are not significantly 
different.  
 
Comparison Z P.unadj P.adj 
Lower - Upper 0.6314 0.527779 0.527779* 
Middle - Upper -3.57671 3.48E-04 6.96E-04 
Lower - Middle 3.902137 9.53E-05 2.86E-04 

 
Table A18: Dunn (1964) Kruskal-Wallis multiple comparison of Shannon diversity by subregion, 
Upper Keys, Middle Keys, and Lower Keys. * denotes the subregions are not significantly 
different.  
 
Comparison Z P.unadj P.adj 
Lower - Upper 1.551028 0.120895 0.120895* 
Middle - Upper -4.09053 4.30E-05 8.61E-05 
Lower - Middle 4.987365 6.12E-07 1.84E-06 

 
Table A19: Dunn (1964) Kruskal-Wallis multiple comparison of functional diversity by subregion, 
Upper Keys, Middle Keys, and Lower Keys. * denotes the subregions are not significantly 
different.  
 
Comparison Z P.unadj P.adj 
Middle - Upper -0.09993 0.920398 0.920398* 
Lower - Middle 2.470237 0.013502 0.027005 
Lower - Upper 3.748134 1.78E-04 5.34E-04 

 
Table A20: Percent of sampling events in no-take marine zones across years by habitat strata.  
 

Forereef Medium Linear Reef 33% 

High Relief Reef 31% 

Forereef Shallow Linear Reef 18% 

Inshore Patch Reef 7% 

Midchannel Patch Reef 7% 

Offshore Patch Reef 4% 

Forereef Deep Linear Reef 0% 
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Figure A1. Functional distance matrix example. dij = 1, when species i and species j are 
functionally distinct, and dij = 0 when species i and species j are functionally similar (top). 
Abundance matrix example. pjc is the relative abundance of species j in community c (bottom).  
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I also plotted each index by subregion and grouped strata across years (Figure A2-A4). I 

grouped the strata into three main habitat classes: high relief reef or spur and groove (HRRF), 

forereef linear reef (FSLR, FMLR & FDLR) and patch reef (INPR, MCPR & OFPR) to better 

visualize differences among similar strata types. To better visualize the differences by strata across 

years, I also plotted the grouped strata for the Florida Keys domain across all years for each index 

(Figure A5).  
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Figure A2. Plots of reef fish indices by subregion and grouped strata High Relief reef across years. 
The geographical subregions of the Florida Keys domain are Lower Keys, Middle Keys, and Upper 
Keys. The grouped strata High Relief reef correspond to the partitioned habitat classes grouped by 
High Relief reef (HRRF). The units for panel A is abundance, panel B is kilograms per 40,000 
km2, panel C is units ranging from 0 (maximally uneven) to 1 (maximally even), and panels D-G 
are in units of effective number of species. Error bars are ±	 SE.  
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Figure A3. Plot of reef fish indices for each subregion and grouped strata Linear reef of the Florida 
Keys. The geographical subregions of the Florida Keys domain are Lower Keys, Middle Keys, 
and Upper Keys. The grouped strata Linear reef correspond to the partitioned habitat classes 
grouped by Forereef Deep Linear Reef (FDLR), Forereef Midchannel Linear Reef (FMLR), and 
Forereef Shallow Linear Reef (FSLR). The units for panel A is abundance, panel B is kilograms 
per 40,000 km2, panel C is units ranging from 0 (maximally uneven) to 1 (maximally even), and 
panels D-G are in units of effective number of species. Error bars are ±	SE.  
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Figure A4. Plot of reef fish diversity for each subregion and grouped strata Patch reef of the Florida 
Keys. The geographical subregions of the Florida Keys domain are Lower Keys, Middle Keys, 
and Upper Keys. The grouped strata Patch reef correspond to the partitioned habitat classes 
grouped by Inshore Patch Reef (INPR), Midchannel Patch Reef (MCPR), and Offshore Patch Reef 
(OFPR). The units for panel A is abundance, panel B is kilograms per 40,000 km2, panel C is units 
ranging from 0 (maximally uneven) to 1 (maximally even), and panels D-G are in units of effective 
number of species. Error bars are ±	SE. 
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Figure A5. Plot of reef fish of the Florida Keys by grouped strata. The grouped strata correspond 
to the habitat classes grouped into High reef (High Relief Reef), Linear reef (Forereef Deep Linear 
Reef, Forereef Midchannel Linear Reef, Forereef Shallow Linear Reef), and Patch reef (Inshore 
Patch Reef; Midchannel Patch Reef; Offshore Patch Reef). The units for panel A is abundance, 
panel B is kilograms per 40,000 km2, panel C is units ranging from 0 (maximally uneven) to 1 
(maximally even), and panels D-G are in units of effective number of species. Error bars are ±	SE. 
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Figure A6. Total number of lionfish detected with the Reef Visual Census (RVC) from 2010 – 
2016. 
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