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Abstract 

 

The objective of this study is to address some important questions associated with stomach 

cancer patients using the data from the Surveillance Epidemiology and End Results (SEER) 

program of the United States. To better understand the behavior of stomach cancer, we first 

perform parametric analysis for each patient group (white male, white female, African American 

male, African American female, other male and female) to identify the probability distribution 

function which can best characterize the behavior of the malignant stomach tumor sizes. We 

evaluate the effects of patients’ age, gender and race on the malignant stomach tumor sizes by 

using quantile regression models, which gives us a better understanding of the behavior of the 

malignant stomach tumors. 

 

We also developed statistical models with respect to patients’ malignant stomach tumor size as a 

function of age for different races and gender group, respectively. The developed models were 

evaluated to attest their prediction quality. Furthermore, we have identified the rate of change of 

the malignant tumor size as a function of age, for gender and race. 

 

We evaluated the routine treatment of stomach cancer using parametric and nonparametric 

survival analysis. We have found that stomach cancer patients who receive surgery with 

radiation together have a better survival probability than the patients who receive only radiation. 



x 

 

We performed decision tree analysis to assist the physician in recommending to his patients the 

most effective treatment that is a function of their characteristics. 
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Chapter 1 

Introduction 

1.1 Cancer 

 

In medical research, the tumor refers to the cells’ changing abnormality that is not 

necessarily meaning the body tumor. Some body parts of the cells will result in 

uncontrolled proliferation by the disease (www.wikipedia.org). In 2017 in USA, there 

will be an estimated 1,688,780 new cancer cases and 600,920 cancer deaths. That is 

approximately 4,630 new cases and 1,650 deaths per day. From 1991 to 2014, the total 

cancer death rate was reduced 25% than the expected (www.cancer.org). Such progress 

benefitted from treatment improvements and earlier diagnoses. 

 

1.2 Stomach Cancer 

 

According to the American Cancer Society, stomach cancer is the fifth leading cause of 

cancer and third leading cause of death from stomach cancer. Stomach cancer, also called 

gastric cancer, is a cancer that starts in stomach. Some people like to use “stomach” to 

mention the body parts between the pelvic and the chest. The medical term for this area is 

called “Abdomen”. Stomach cancer should not be puzzled with other cancers that can 

http://www.wikipedia.org/
http://www.cancer.org/
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exist in the abdomen, like colon cancer, liver cancer because those different cancers  have 

different treatments, different symptoms, and different outlooks. 

 

In 2017, there are about 28,000 cases of stomach cancer will be diagnosed (17,750 men 

and 10250 women) and about 10,960 people will die from this type of cancer (6,720 men 

and 4240 women) that was estimated by American Cancer Society. If the physicians find 

the stomach tumor while only in the stomach, the 5-year survival rate is about 65%. If 

they find the stomach tumor spread to areas near your stomach or lymph nodes, the 5-

year survival rate is about 30%. If they find the stomach cancer spread far away from the 

stomach, the 5-year survival rate will be reduced to about 5%. Thus, the overall 5-year 

survival rate of all people with stomach cancer in the United States is about 29%. The 5-

year relative survival probability compares the observed survival of patient with stomach 

cancer to what is expected for the person without stomach cancer. Since some people 

may die from other disease or other types of cancer, this is a better way to see the impact 

of cancer on survival. This survival rate has improved over the past 30 years. The most 

important reason that the total survival probability is pretty low in the United States is 

that most of stomach cancer patients are diagnosed at a later stage. The stage of the 

cancer plays a major role of the survival rate. The stage of a cancer is a description of 

how far the cancer has extend. The stomach cancer’s stage is very important for the 

physicians to choose the best treatment for their patients. There are two types of stages 

for stomach cancer patients. The clinical stage of the stomach cancer is the best time for 

the doctors to treat the cancer of their patients based on the results of physical exams, 

endoscopy, biopsies, and any imaging tests such as CT scans, etc. Once the surgery is 
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done, the pathologic stage can be determined using the same results from the clinical 

stage.  

 

A risk factor will affect patients’ chance of getting a cancer. Different cancers always 

have different risk factors. There are several risk factors for stomach cancer. As shown in 

Figure 1.1, Gender, age, Ethnicity, Geography, Helicobacter pylori infection, Tobacco 

use, diet seem to play a role in raising the risk of a stomach cancer. 

 

 

Figure 1.1: potential risk factors of stomach cancer 

 

Stomach cancer is a very common cancer among East Asian people, especially in Japan. 

Averagely, the stomach cancer incidence is about 60 per 100,000 people. In 2007, Japan 

Cancer Society reports that one third of deaths were related to stomach cancer. Almost 70 

to 90 percent of all stomach cancers begin with Helicobacter pylori, or H. pylori 

infection. The H. pylori bacteria spread by unwashed or undercooked foods. The 
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Japanese diet is characteristically high in seasoned foods. Salted food consumption is one 

of the most important causes of increased stomach cancer risk. In Japan, there about 30 

out of 100,000 people will develop stomach cancer in their whole life. The Japanese 

government encourages their people to take screen test for stomach every year once they 

older than age 40. That is the best way to find stomach cancer and detect it during the 

earliest stage. 

 

There is no sure way to prevent stomach cancer, but as the stomach tumors grow, the 

patients may have more serious symptoms as shown in Figure 1.2 below. The best 

treatment options for stomach cancer patients are Surgery, Chemotherapy, Targeted 

Therapy, and Radiation Therapy. The doctors often suggest their patients to use two or 

more of those treatment methods. But they do not know which treatment is the best for 

their patients. Thus, we will also want to weight the benefits from each different 

treatment and their potential side effects. The treatment selection depends on many 

factors. The location of the tumor and the stage are very important for the doctors and 

patients to consider. The physicians would also take the patients’ age, gender, body 

situation, and other factors into account. 
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Figure 1.2: more serious symptoms as stomach tumors grow 

 

Researchers have reported parametric models that are similar to the Cox regression 

(Moghimi-Dehkordi, Bijan, et al. 2008) method. Patients aged 60-75 and >75 years at 

diagnosis had an increased risk for death. Although the hazard ratio in the Cox model and 

other parametric models are approximately similar from the AIC criteria. The 

Exponential and Weibull probability distributions are the most favorable distributions for 

determine survival analysis. The survival probability and the risk of stomach cancer death 

among the patients with screen-detected cancer and patients with interval cancer were not 

significantly different in the annual endoscopic screening (Hamashima, Chisato, et al. 

2015). These results suggest that the potential of endoscopic screening in reducing 

mortality from gastric cancer. Missing value imputation is increasing the estimate of 

precision and accuracy (Moghimbeigi, Abbas, et al. 2014).  The survival rate in Japan 

was clearly higher than those in the other countries (Matsuda, Tomohiro, and Kumiko 

stomach 
tumors 
grow

stomach 
pain

Blood in 
your stool

Vomiting

Weight loss 
for no 
reason

Weakness or 
feeling tired

Heartburn

Constipation 
or diarrhea

Swelling in 
your 

stomach

Yellowish 
eyes or skin

Trouble 
Swallowing



6 

 

Saika, 2013). The high survival rate for Japanese patients could be related to the stomach 

cancer screening and abundant experience in treatment according to the high incidence 

rate. Patients who survive from gastric and gastroesophageal junction more than 3 years 

after diagnosis have demographic and pathologic characteristics distinct from those who 

do not survive (Kunz, Pamela L., et al. 2012). The survival of stomach cancer patient 

diagnosis appears to be increasing (Hansson, Lars-Erik, Pär Sparén, and Olof Nyrén, 

1999). The reasons for this are probably multifactorial and are likely to include 

improvements in anesthesiologic and surgical management. Research scientists have 

shown that patients’ age, gender, and tumor location are significantly independent 

prognostic factors for overall survival in patients with metastatic gastric cancer (Yang, 

Dongyun, et al. 2011). 

 

1.3 Research Data 

In 1973, the National Cancer Institute funded the Surveillance, Epidemiology, and End 

Results program (SEER). The SEER program provides national leadership in the health 

science of cancer surveillance as well as analytical tools and methodological expertise in 

interpreting, analyzing, collecting, and disseminating reliable population-based statistics. 

The SEER database is a premier source for various types of cancers in the United States. 

The SEER program collects population-based cancer registries from 20 different 

locations across the United States which are Alaska Native Tumor Registry, Arizona 

Indians, Cherokee Nation, Connecticut, Detroit, Atlanta, Greater Georgia, Rural Georgia, 

San Francisco-Oakland, San Jose-Monterey, Greater California, Hawaii, Iowa, Kentucky, 

Los Angeles, Louisiana, New Jersey, New Mexico, Seattle-Puget Sound and Utah. The 
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information about cancer registries covers 28% of the population in the United States by 

collecting complete and accurate data on all kinds of cancers that have been diagnosed. 

The SEER cancer statistics review, which is a report of the most recent cancer incidence, 

mortality, survival, prevalence, and lifetime risk statistics, are published by the 

Surveillance research program of National Cancer Institute. In the present study, there is 

a total of 11,462 records of stomach cancer patients from the year 2004 to 2013 were 

obtained from the SEER program. There are 7,149 males (7,115 malignant) and 4,313 

females (4,279 malignant) stomach patients. The probability of tumor in stomach not to 

be malignant is 0.0048 for male and 0.0078 for female. Our research will focus on the 

malignant stomach patients. 

 

1.4 Parametric Analysis 

The basic idea of parametric analysis of a given set of data is to identify, if possible, the 

probability distribution function that characterizes the phenomenon that is represented by 

the given data. Based on the specific probability distribution, we can obtain the important 

approximate estimates from the parameters such as expected mean, standard deviation, 

and confidence limits, etc. In Chapter 2, our objective is to find if there is a well-known 

probability distribution that can be used effectively to characterize the behavior of the 

stomach cancer patients’ tumor size. We first test if there is a significant difference of the 

average malignant tumor size between the patients’ gender and race. We found that the 

average malignant tumor size is different by patients’ gender and race, respectively. In 

addition, we utilized three goodness of fit tests, Kolmogorove-Smirnov, Anderson-

Darling, Chi-Square, to identify the best probability distribution function which can 



8 

 

characterize the stomach patients’ malignant tumor size.  We found that expected average 

stomach tumor size of males is higher than that of females and African American patients 

have the largest expected average stomach tumor sizes. The useful information such as 

expected malignant tumor size along with its variance and confidence limits will assist 

physicians to make appropriate decisions with a given degree of assurance. Furthermore, 

there is an exponential growing behavior between the size of a tumor and the probability 

of the tumor being malignant. When the tumor size is 10 millimeters or above, it has a 

99.6% or higher chance that the tumor is malignant. Such findings and the graphical 

figures of the probability density functions and the cumulative distribution curves could 

provide assistance for physicians to understand the probabilistic behavior of the stomach 

tumor size. 

 

1.5 Quantile Regression Model 

The average malignant stomach tumor size is often insufficient to explain the 

probabilistic behavior of malignant stomach tumor size. Standard least square estimates 

only provide a summary of the risk factors on the average malignant stomach tumor 

sizes, which may hide important elements of the underlying relationships. In Chapter 2, 

we found the best probability distributions are highly skewed Wakeby probability 

distribution, three parameters Weibull probability distribution and Dagum probability 

distribution, which means the standard least squares assumption of normally distributed 

errors fails to hold. The quantile regression can exhibit a comprehensive picture when 

both upper and lower quantiles of the distributions of response are our interests. In 

Chapter 3, we developed a statistical quantile regression model to describe the effects of 
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patients’ race, gender, and age on the sizes of malignant stomach tumors. Based on the 

results of our statistical quantile regression model, we have identified there is a 

significant difference between male and female patients. For instance, for the 60th 

quantile, the malignant tumor size of male patients is 7.89 millimeters larger than females 

when the other covariates hold the same level. Such information is important to medical 

doctors to address the procedural and clinical strategies for their patients. Moreover, our 

statistical quantile model reveals a significant difference of stomach tumor size between 

patients’ race. For instance, for the 45th quantile, African American patients’ malignant 

tumor size is 9.49 millimeter bigger than other race patients’. In addition, we found the 

patients’ age also is a significantly contribution factor for estimating the malignant tumor 

size. For the 25th quantile, the malignant tumor size increases 0.125 millimeters for one-

year increase in patients’ age. Our developed statistical quantile regression model gives a 

more comprehensive comparison of malignant tumor size. Such findings are extremely 

important for medical doctors to improve their treatments for their patients. 

 

1.6 Statistical Modeling 

Statistical modeling is a simplified, mathematically formalized way to approximate 

reality and optionally to make predictions from this approximation. Under a set of 

assumptions, we develop the statistical model based on the sample data. A good 

statistical model can be used to identify the attributable variables to the response variable 

and to identify the significant interactions among those explanatory variables which 

contributes to the response significantly. Once we have a good statistical model, we can 

use it for prediction and forecasting. In addition, we can do surface response analysis. An 
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easy way to estimate a first-degree polynomial model is to use a factorial experiment or 

a fractional factorial design. This is sufficient to determine which explanatory variables 

affect the response variable(s) of interest. Once it is suspected that only significant 

explanatory variables are left, then a more complicated design, such as a central 

composite design, can be implemented to estimate a second-degree polynomial model, 

which is still only an approximation at best. However, the second-degree model can be 

used to optimize (maximize, minimize, etc). Furthermore, a good statistical model can be 

used to identify how the responses vary for different categories. Moreover, a good 

statistical model can be used to investigate the relationships between explanatory 

variables and the response variable. The main objective of Chapter 4 is to identify the 

stomach cancer tumor size as a function of patient’s age. The statistical analysis research 

was performed under different race and gender groups, respectively. We developed a 

nonlinear statistical model to fit the observed data and the residual analysis was 

performed to help us identify the appropriate fit. The differential equation guides us to 

figure out how the rate of changing mean size of malignant tumor when the patients 

increase the age. 

 

1.7 Decision Tree Analysis 

Decision making always plays a very important role in many fields of research, especially 

in cancer research. The important idea of survival tree analysis is to split the given 

sample into subgroups by continuous spiting of the initial node into child nodes based on 

the uniformity of within-node instances or separation of between-node instances with 

respect to our risk factors. For each node, risk factors are tested based on the splitting 

https://en.wikipedia.org/wiki/Factorial_experiment
https://en.wikipedia.org/wiki/Fractional_factorial_design
https://en.wikipedia.org/wiki/Central_composite_design
https://en.wikipedia.org/wiki/Central_composite_design
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criterion. After the node is divided into two child nodes according to the value of the 

attribute variable, we repeated the process for each child node. The whole process of a 

decision tree is shown below in Figure 1.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3: Illustration of the Decision Tree 
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In Chapter 5, the objective is to identify the stomach patients who could potentially 

benefit from surgery and those who could be very risk to take the surgery treatment, 

because the radiation or surgery may cause some side effect for the patients. We first 

perform the nonparametric and parametric survival analysis for comparing the two 

treatments’ effect for male and female stomach cancer patients, respectively. Our result 

identified that the stomach patients who receive the combination of radiation and surgery 

have the most significant effect than the patients who receive only the radiation treatment 

with respect to the survival time. However, the decision tree model gives us the more 

powerful result. Based on the decision tree analysis, we found the more detailed 

treatment difference between different subgroups of the stomach cancer patients. For 

instance, a male stomach patient aged 70 to 76 years old with malignant tumor size 

between 40 and 58 millimeters, the combination of radiation and surgery shows the better 

effects on the survival time. Such important information could assist stomach cancer 

physicians to choose the suitable treatment for stomach cancer patients. 
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Chapter 2 

Parametric Analysis of Malignant Stomach Tumor Size 

2.1 Introduction 

In medical research, the tumor refers to the cells’ changing abnormality that is not 

necessarily meaning the body tumor. Some body parts of the cells will result in 

uncontrolled proliferation by the disease. Benign and malignant tumors are two types of 

tumors. 

 

Benign tumors grow slowly and have smooth surface. They do not inbreak the normal 

tissue cells. A membrane usually envelops around the tumor body, so that it distinguishes 

between normal and abnormal cells. Normally, benign tumors will not lead to death and 

most of them can be completely removed. 

 

Malignant tumors are cancerous and made up of cells that grow out of control. They 

break nearby tissues and spread to other parts of the body and distinguishes themselves 

from benign tumors. Sometimes cells move away from the primary cancer site to other 

organs and bones where they continue to grow and form another tumor at that site.  

 

There is extensive research about the tumors of the stomach, especially cancer tumors. 

The research only provides descriptive information but doesn’t clearly explain the 
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changes in the disease rates, among others. This studies objective is exploring the causes 

for stomach cancer, among others. It is important to understand the natural history of the 

stomach cancer. In respect to this objective, we chose the malignant tumor sizes as the 

response variable and identified a statistical behavior of the tumor size. In the present 

study, we performed parametric analysis on the malignant tumor size of stomach cancer 

datasets obtained from the Surveillance, Epidemiology and End Results (SEER) database 

from 2004 up to 2013. We proceeded to identify the probability distribution functions 

that characterize the probabilistic behavior of malignant tumor size as a function of 

gender.   

 

2.2 Data Description 

A total of 11,462 records of stomach cancer patients from the year of 2004 to 2013 were 

obtained from SEER program. The SEER database is a premier source for various types 

of cancers in the United States. The information about cancer registries covers 28% of the 

population in the USA by collecting the data on all cancers that have been diagnosed. The 

SEER cancer statistics, which is a report of the most recent cancer incidence, mortality, 

survival, prevalence, and lifetime risk statistics, is published by the Surveillance research 

program of National Cancer Institute. The scope and purpose of this work are consistent 

with a report to the Senate Appropriations Committee (Breslow, 1988), which 

recommends that a broad profile of cancer can be presented to the American public on a 

routine basis. 
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Figure 2.1, given below, gives a characteristic network and presentation of the data that 

we will be working in the present study. This data is broken down to malignant and 

benign stomach cancer patients and as a function of gender and race. 

 

 Figure 2.1: Schematic diagram of stomach cancer patients with malignant and benign tumor sizes for 

males and females. 

 

In this study, we analyzed data on malignant primary stomach tumors diagnosed from 

2004 to 2013 for the following registries: San Francisco-Oakland, Connecticut, 

Metropolitan Detroit, Hawaii, Iowa, New Mexico, Seattle, Utah and Metropolitan 

Atlanta. The dataset includes 11,394 primary malignant stomach tumor records and 68 
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benign stomach tumor records. This analysis focuses only on the malignant tumors 

measured in millimeters. 

 

Using the information from the given data, we address the following questions: 

1. What is the probability distribution function that characterizes the behavior of the 

malignant tumor sizes for each patient group? 

2. Is there a significant difference in the mean cancerous tumor sizes between male 

and female patients? 

3. If the answer to the second question is “yes”, is there still a significant difference 

of the mean tumor sizes for male and female among different race groups (White, 

African American, Other)? 

The answers to the above questions are important on how we proceed with inferential 

statistical analysis and modeling of the data. 

 

2.3 Statistical Analysis of Gender and Race 

Although Figure 2.2 below shows that the frequencies histogram plots of male and 

female are very similar, we still performed the parametric two-sample t-test and the 

nonparametric Kruskal-Wallis test to test for significant difference between the two 

genders. Based on the extremely small values, we rejected the null hypothesis at a level 

of significance of 0.0001 and concluded that there is a significant different between the 

mean malignant tumor sizes of male and female stomach cancer patients. 
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Figure 2.2: Frequencies Histogram plots of malignant tumor size for Female (left) and Male (right) 

patients.  

 

Furthermore, we tested the mean of the malignant tumor size for males and females in 

different race groups (White, African American, Other), respectively. The extremely 

small values indicate that there is a significant difference among race groups at a 

significance level of 0.0001. In the next section, we introduce the best-fitted probability 

distribution functions for each different race group and by gender, respectively. 

 

2.4 Probabilistic Behavior of Malignant Stomach Tumor Sizes 

Parametric analysis is performed to determine the best fitted probability distribution 

function that characterizes the malignant tumor size behavior by gender and race.   
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The most important point of the parametric method is that we can use a small set of 

parameters to represent a large amount of information for the data. We can also get useful 

information from the estimated parameters. Therefore, we can use probabilistic models of 

malignant tumor sizes to explain the biological interpretation, among others. 

Furthermore, the useful information can be directly drawn from the estimated parameters 

for different subgroups, provided that the differences in the estimated parameters have a 

clear biological interpretation. Thus, one of the certain properties required for the 

probabilistic models of distributions of malignant tumor sizes is their biological 

interpretation. To better performing the analysis, we have partitioned the data set with 

regard to races of White, African American and the other races as well as the patient 

gender. 

 

After about 50 different classical parametric probability distributions were used to fit the 

data, we obtained the best-fitted probability distributions. We applied three commonly 

used goodness-of-fit tests, i.e., Kolmogorov-Smirnov (Stephens, 1974) test, Anderson-

Darling (T.W. Anderson, 1952) test and Chi-Square (H. Chenoff, 1954) test to determine 

the best probability distribution functions that characterize the malignant tumor sizes for 

male and female patients in different race groups. Finally, we identified that the best-

fitted probability distribution functions that characterize the malignant tumor sizes are the 

Wakeby (Houghton, 1978) probability distribution for white female, African American 

female and other female race, the three-parameter Weibull (Cohen, 1965) probability 
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distribution for white male and African American male, and the Dagum (Kleiber, 2008) 

probability distribution for other male race patients, respectively.  

 

2.5 Parametric Analysis of Malignant Tumor Sizes for Female 

2.5.1 Parametric Analysis of Malignant Tumor Sizes for White Female 

We have found that the Wakeby probability distribution is the best-fitted probability 

distribution function that characterizes the malignant tumor size for white female patients 

with stomach cancer. The Wakeby probability distribution function is given by  

 

                                    𝑓(𝑥) =
(1−𝐹(𝑥))

𝛿+1

𝛼𝑡+𝛾
+ 𝜉, 0 < 𝑥 < ∞                                      (2.1) 

 

where 𝛽, 𝛾 and 𝛿  are continuous shape parameters, 𝜉 and 𝛼 are location parameters, F is 

the cumulative probability distribution function given by 𝑡 = (1 − 𝐹(𝑥))
𝛽+𝛿

. 

. The following conditions are imposed: 

1. 𝛼 ≠ 0 or 𝛾 ≠ 0, 

2. 𝛽 + 𝛿 > 0 or 𝛽 = 𝛾 = 𝛿 = 0, 

3. If 𝛼 = 0, then 𝛽 = 0, 

4. If 𝛾 = 0, then 𝛿 = 0, 

5. 𝛾 ≥ 0 and 𝛼 + 𝛾 ≥ 0. 

By using the maximum likelihood estimation, we found that the approximate maximum 

likelihood estimators of the parameters are,  
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𝛼̂=58.697, 𝛽̂=3.826, 𝛾=39.374, 𝛿=-0.28324 and 𝜉=-0.36842. 

 

The identified Wakeby probability density function and quantile probability distribution 

function for white female patients are as follows: 

 

                                    𝑓(𝑥) =
(1−𝐹(𝑥))

−0.28324+1

58.697𝑡+39.374
− 0.36842,                                   (2.2) 

 

where F is the cumulative probability distribution function and 𝑡 = (1 −

𝐹(𝑥))
3.826−0.28324

. The quantile function 𝑥(𝐹) is given by 

 

𝑥(𝐹) = −0.36842 +
58.697

3.826
(1 − (1 − 𝐹)3.826) 

                                      −
39.374

−0.28324
(1 − (1 − 𝐹)0.28314).                                (2.3) 

    

We utilized the maximum likelihood estimates from Wakeby probability distribution to 

plot the estimated probability density curve of malignant tumor sizes for white female 

patients. Figure 2.3 illustrates that the identified distribution curve has a long right tail 

and most of the malignant tumor sizes are within the range of 0 to 120 millimeters. We 

plotted the estimated cumulative probability distribution function for white female 

patients as shown in Figure 2.4. The cumulative probability distribution function is 

explaining the characterize behavior of malignant tumor size. It assists us to find out the 

probability of the quantiles of the random variables, among others. For example, we can 
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easily find that about 80% of white female patients have malignant tumor sizes less than 

or equal to 65 millimeters, etc. 

 

 

Figure 2.3: Fitted Wakeby Probability Distribution Function of Malignant Tumor Size for White Female 

 

From Figure 2.3, we can see that the approximate probability of a white female patient 

has 32 millimeters malignant tumor size is 0.0142. And the approximate probability of a 

white female patient has the malignant tumor size between 40 millimeters and 60 

millimeters is 0.235 that is 𝑝(40 < 𝑥 < 60) = 0.235. And the probability of a white 

female patient has the malignant tumor size is greater than 40 millimeters is about 0.495. 
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Figure 2.4: Fitted Cumulative Wakeby Distribution Function (CDF) of Malignant Tumor Size for White 

Female 

 

The important statistical information using the Wakeby probability distribution are, the 

expected malignant tumor size, 

 

                                     𝐸(𝑥) =
 𝛼 ̂

1+𝛽 ̂
+

𝛾 ̂

1−𝛿 ̂
+ 𝜇 ̂, 𝑤ℎ𝑒𝑛 𝛿 < 1.                                 (2.4) 

 

and the variance of the malignant tumor size, 

 

𝑉(𝑥) =
𝛼̂2

(1 + 𝛽̂)
2

(1 + 2𝛽̂)
−

2𝛼̂𝛾

(1 + 𝛽̂)(1 + 𝛽̂ − 𝛿)(−1 + 𝛿)
 

                                            −
𝛾 ̂2

(−1+𝛿 ̂)2(−1+2𝛿 ̂)
, 𝑤ℎ𝑒𝑛 𝛿 ̂ < 0.5.                                (2.5) 
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and the 95% confidence interval of the true malignant tumor sizes is given by 

 

                                𝑃(𝑎 < 𝑡𝑟𝑢𝑒 𝑡𝑢𝑚𝑜𝑟 𝑠𝑖𝑧𝑒 < 𝑏) ≥ 0.95.                                      (2.6) 

 

We have obtained the expected mean of the malignant tumor size to be 42.48 millimeters 

for white female patients with a standard deviation of 27.64 millimeters. Moreover, we 

are at least 95% confident that to the true malignant tumor sizes for white female 

patients’ to be between 2.041 millimeters and 105.09 millimeters with at least 95% 

confidence. 

 

2.5.2 Parametric Analysis of Malignant Tumor Sizes for African American Female 

 

After a very extensive search, we have identified that the Wakeby probability distribution 

is the best-fitted probability distribution function that characterizes the malignant tumor 

size for African American female patients with stomach cancer. The theoretical Wakeby 

probability distribution was introduced in section 2.4.1. The approximate maximum 

likelihood estimates of the five parameters are 

 

𝛼̂=128.48, 𝛽̂=8.3385, 𝛾=46.569, 𝛿=-0.34268 and 𝜉=-0.91885. 

 

Thus, the Wakeby probability density function that characterize the probabilistic behavior 

of the malignant tumor size of African American female patients is given by 
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                                    𝑓(𝑥) =
(1−𝐹(𝑥))

−0.34268+1

128.48𝑡+46.569
− 0.91885, < x                              (2.7) 

 

where F is the cumulative distribution function and 𝑡 = (1 − 𝐹(𝑥))
8.3385−0.34268

. A 

graph of the estimated Wakeby probability distribution function for African American 

female patients with malignant stomach tumor size is given below by Figure 2.5. 

 

 

Figure 2.5: Fitted Wakeby Probability Distribution Function of Malignant Tumor Size for African 

American Female 

 

The expected mean of the malignant tumor size was calculated to be 47.51 millimeters 

and the standard deviation to be 28.66 millimeters for African American female patients 

based on functions (2.4) and (2.5). This graph illustrates that the approximate probability 
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of an African American female patient has 31 millimeters malignant tumor size is 0.0146. 

And the approximate probability of an African American female patient has the 

malignant tumor size between 40 millimeters and 60 millimeters is 0.243 that is 𝑝(40 <

𝑥 < 60) = 0.243. And the probability of an African American female patient has the 

malignant tumor size is greater than 40 millimeters is about 0.558. 

 

Figure 2.6 shows that about 80% of African American female patients have malignant 

tumor sizes less than or equal to 73 millimeters. Furthermore, we are at least 95% 

confidence to conclude that African American female patients’ malignant tumor size fall 

in the interval (4.51 millimeters, 110.01 millimeters) by using the function (2.6). 

 

Furthermore, the Wakeby cumulative probability distribution function is given by 

     

𝑥(𝐹) = −0.91885 +
128.48

8.3385
(1 − (1 − 𝐹)8.3385) 

                                          −
46.569

−0.34268
(1 − (1 − 𝐹)0.34268).                           (2.8) 

 

Thus, a graphical form of F(x) is given below by Figure 2.6. 
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Figure 2.6: Fitted Cumulative Wakeby Distribution Function (CDF) of Malignant Tumor Size for African 

American Female 

 

2.5.3 Parametric Analysis of Malignant Tumor Sizes for Other Female 

Using the three popular goodness-of-fit tests that is, the Chi-square test, the Kolmogorov 

Smirnov test and the Anderson Darling test, we have identified that the Wakeby 

probability distribution also fits the malignant tumor size data for all other female race 

patients. The approximate estimates of the five parameters that are given by  

 

𝛼̂=108.16, 𝛽̂=9.5265, 𝛾=48.728, 𝛿=-0.38916 and 𝜉=-0.27848. 

 

Thus, the identified Wakeby probability density function and quantile probability 

distribution function for other female race patients are as follows: 
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                                    𝑓(𝑥) =
(1−𝐹(𝑥))

−0.38916+1

108.16𝑡+48.728
− 0.27848                                        (2.9) 

 

where F(x) is a cumulative probability distribution function and 𝑡 = (1 −

𝐹(𝑥))
9.5265−0.38916

. The quantile probability distribution function is given by 

 

𝑥(𝐹) = −0.27848 +
108.16

9.5265
(1 − (1 − 𝐹)9.5265) 

                                           −
48.728

−0.38916
(1 − (1 − 𝐹)0.38916)                                      (2.10) 

 

The graphical form of (2.9) and (2.10) are given by Figures 2.7 and 2.8, respectively. 

 

Figure 2.7 below illustrates that the approximate probability of an other race female 

patient has 27 millimeters malignant tumor size is 0.0152. And the approximate 

probability of an other race female patient has the malignant tumor size between 40 

millimeters and 60 millimeters is 0.231 that is 𝑝(40 < 𝑥 < 60) = 0.231. And the 

probability of an other race female patient has the malignant tumor size is greater than 40 

millimeters is about 0.516. 
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Figure 2.7: Fitted Wakeby Probability Distribution Function of Malignant Tumor Size for Other Female 

 

Figure 2.8: Fitted Cumulative Wakeby Distribution Function (CDF) of Malignant Tumor Size for Other 

Female 

From Figure 2.8 above, we can estimate that about 80% of other female race patients 

have a malignant stomach tumor sizes less than or equal to 70 millimeters. 
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We also calculated the estimated expected mean of the malignant tumor size to be 45.56 

millimeters and the standard deviation to be 27.96 millimeters for other female race 

patients. Furthermore, we are at least 95% confident that the true mean of the other 

female race patients’ stomach malignant tumor size fall in the interval (5.27 millimeters, 

110.85 millimeters) by using E.q (2.6). 

 

2.5.4 Comparison of the Malignant Tumor Sizes for Female Patients 

In this section, we are comparing the malignant tumor size for female patients by 

different race group. Table 2.1 below displays the best-fitted distributions that 

characterize the malignant tumor size for different race groups and the estimated 

malignant mean tumor size for female patients in each race group. We found the Wakeby 

probability distribution is the best fitted distribution that can characterize the behavior of 

the malignant tumor size for female patients in different race group. When we test the 

average malignant tumor size under different races (white, African American and other), 

we reject the null hypothesis that they are equal. The African American female patients 

have the largest expected malignant tumor size, which is 47.51mm. The white female 

stomach cancer patients have the smallest expected malignant tumor size, which is 

42.48mm. Confidence intervals both provide the probabilistic behavior of the malignant 

tumors for each race group. This information will assist physicians to make appropriate 

decisions with a given degrees of assurance. Also, additional information such as 

confidence limits on the true size of the malignant tumor size will be useful to the 

physicians. For example, for a white female patient we are at least 95% confident her 
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malignant tumor size is within the range from 2.04mm to 105.09mm and her expected 

malignant tumor size is 42.48mm. 

 

Table 2.1: statistics of the malignant tumor sizes and confidence intervals for female patients 

 PDF Expected 

Mean 

Standard 

Deviation 

95% Confidence Intervals 

White Wakeby 

pdf 

42.48 27.64 (2.041,105.09) 

African 

American 

Wakeby 

pdf 

47.51 28.66 (4.51, 110.01) 

Other 

Race 

Wakeby 

pdf 

45.56 27.96 (5.27, 110.85) 

 

We plotted the estimated probability distribution curves of malignant tumor size of 

female patients for different race groups as shown in Figure 2.9 below. When the 

malignant tumor size is less than 20 millimeters, the white female patients have higher 

probability than the African American female and other female race patients do. When 

the malignant tumor size is between 20 millimeters and 40 millimeters, the other female 

race patients have higher probability. When the malignant tumor size is greater than 40 

millimeters, the three race groups of patients have almost the same probability 

distributions. And the approximate expected true malignant tumor size for white female, 

African American and other female race patients are 42.48mm, 47.51mm and 45.56mm, 

respectively. 
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Figure 2.9: Fitted Distribution Curves of Malignant Tumor Size for Female Patients 

 

Figure 2.10 below depicts the cumulative probability distribution curves of malignant 

tumor size for different female race groups. The orange (white female) curve is slightly 

higher than the other two lines. The green (other female race) line locates in the middle, 

which means that for a fixed value of malignant tumor size, the cumulative probability of 

white female patients is always greater than that of the other two race patients, and the 

cumulative probability of other female race patients is between that of white female and 

other female race. Moreover, the expected means of the malignant tumor size of female 

patients are 42.48 millimeters for white female, 47.51 millimeters for African American 

female and 45.56 millimeters for the other female race patients. The 95% confidence 

intervals are (2.041, 105.09) for white female, (4.51, 110.01) for African American 

female and (5.27, 110.85) for the other female race patients. These information is useful 

for doctor to convey to their patients. 
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Figure 2.10: Fitted Cumulative Distribution Curves of Malignant Tumor Size for Female Patients 

 

The above graph shows that the probability of the malignant tumor size is greater than 

84mm are 0.089, 0.124 and 0.109 for white female, African American female and other 

female race patients, respectively. Furthermore, there are 40% of the stomach cancer 

patients have the tumor size less than 31mm, 36mm and 34mm for white female, African 

American female and other female race patients, respectively. 

 

2.6 Parametric Analysis of Malignant Tumor Sizes for Male 

2.6.1 Parametric Analysis of Malignant Tumor Sizes for White Male 

The Weibull probability distribution is one of the most commonly used probability 

distributions in health science studies. The Weibull probability distribution has the best 
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fit of the malignant tumor sizes data for white male patients. The 3-parameter Weibull 

probability distribution and cumulative probability distribution functions are given by 

 

                                     𝑓(𝑥) =
𝛼

𝛽
(

𝑥−𝛾

𝛽
)

𝛼−1

𝑒𝑥𝑝 (− (
𝑥−𝛾

𝛽
)

𝛼

) , 0 < 𝑥                         (2.11)           

And 

 

                                           𝐹(𝑥) = 1 − 𝑒𝑥𝑝 (− (
𝑥−𝛾

𝛽
)

𝛼

) , 0 < 𝑥                               (2.12)        

             

where 𝛼, 𝛽, 𝛾 are the shape, scale and location parameters. When 𝛾 = 0, results in the 

commonly used two-parameter Weibull probability distribution. 

      

Based on the Chi-square, Komogorov Smirnov and Anderson Darling tests, we identified 

the Weibull probability distribution be the best fitted probability distribution for white 

male patients. The approximate maximum likelihood estimates of the parameters that 

drive the Weibull probability distribution function are 𝛼̂=1.7966, 𝛽̂=51.362, 𝛾=-1.1904. 

Thus, the probability density function (pdf) and the corresponding cumulative probability 

distribution function (CDF) for the three-parameter Weibull probability distribution are 

respectively given by: 

 

                    𝑓(𝑥) =
1.7966

51.362
(

𝑥+1.1904

51.362
)

1.7966−1

𝑒𝑥𝑝 (− (
𝑥+1.1904

51.362
)

1.7966

)                (2.13)           

And 

                    𝐹(𝑥) = 1 − 𝑒𝑥𝑝 (− (
𝑥+1.1904

51.362
)

1.7966

).                                                (2.14)          
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The expected mean and variance of the malignant tumor size for white male patients are 

as follows: 

 

                               𝐸(𝑥) = 𝛾 ̂ + 𝛽 ̂𝛤 (
1

𝛼 ̂
+ 1)                                                        (2.15) 

                                         = 44.48𝑚𝑚 

and 

                               𝑉(𝑥) = 𝛽 ̂2 (𝛤 (
2

𝛼 ̂
+ 1) −𝛤 (

1

𝛼 ̂
+ 1)

2
)                         (2.16) 

                                         = 26.30 

The graphs of 𝑓(𝑥) and 𝐹(𝑥) are given by Figures 2.11 and 2.12, respectively.  

Figure 2.11 below shows that the probability of a white male patient has 20mm and 

40mm tumor sizes are 0.0137 and 0.01514, respectively. And the probability of a white 

male patients has the tumor size between 20mm and 40mm is 0.304 that is  

 

𝑝(20𝑚𝑚 < 𝑥 < 40𝑚𝑚) = 0.304. 
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Figure 2.11: Fitted Weibull Probability Distribution Function of Malignant Tumor Size for White Male 

Figure 2.12: Fitted Cumulative Weibull Distribution Function (CDF) of Malignant Tumor Size for White 

Male 
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Thus, we calculated the expected mean of the malignant tumor size is 44.48 millimeters 

and the standard deviation for white male patients is 26.30 millimeters. We also obtained 

the confidence interval based on E.q (2.6), that is, we are at least 95% confident that 

white male patients’ the true malignant tumor size is in the range from 3.17 millimeters to 

104.66 millimeters, that is  

 

𝑝(3.17𝑚𝑚 < 𝑡𝑟𝑢𝑒 𝑡𝑢𝑚𝑜𝑟 𝑠𝑖𝑧𝑒 < 104.66) ≥ 0.95 

 

From Figure 2.12 above. It illustrates that around 80% of the white male patients have the 

malignant tumor size less than or equal to 66 millimeters. That is 

 

𝑝(𝑋 ≤ 66𝑚𝑚) ≈ 0.80. 

 

2.6.2 Parametric Analysis of Malignant Tumor Sizes for African American Male 

 

The results of the goodness-of-fit tests that is Chi-square test, Kolmogorov Smirnov and 

Anderson Darling test allow us to identify the best-fitted probability distribution function 

for African American male patients with stomach malignant tumor is the three-parameter 

Weibull probability distribution. We obtained the approximate maximum likelihood 

estimates of the three parameters are 𝛼̂=1.9248, 𝛽̂=57.193, 𝛾=-1.2722. Thus, the fitted 

probability density function (pdf) and the corresponding cumulative distribution function 

(CDF) for African American Male patients are respectively given by: 
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                    𝑓(𝑥) =
1.9248

57.193
(

𝑥+1.2722

57.193
)

1.9248−1

𝑒𝑥𝑝 (− (
𝑥+1.2722

57.193
)

1.9248

) , 0 < 𝑥      (2.17)           

and 

                            𝐹(𝑥) = 1 − 𝑒𝑥𝑝 (− (
𝑥+1.2722

57.193
)

1.9248

) , 0 < 𝑥                              (2.18)          

 

The graphs of the identified three-parameter Weibull probability distribution function 

(2.17) and cumulative probability distribution function (2.18) are given by Figures 2.13 

and 2.14, respectively.  

 

Figure 2.13: Fitted Weibull Probability Distribution Function of Malignant Tumor Size for African 

American Male 
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Figure 2.14: Fitted Cumulative Weibull Distribution Function (CDF) of Malignant Tumor Size for African 

American Male 

From Figure 2.14 above, we can obtain that around 80% of African American male 

patients have malignant tumor sizes less than or equal to 72 millimeters. Also, 

𝑝(20𝑚𝑚 < 𝑥 < 60𝑚𝑚) = 0.542. 

 

We also calculated the estimated expected mean of the malignant tumor size is 49.46 

millimeters and the standard deviation for African American male patients is 27.45 

millimeters. Furthermore, we are at least 95% confident that the true mean of the African 

American male patients’ malignant tumor size is in the range from 7.2 millimeters to 

111.41 millimeters. That is, 

 

𝑝(7.2𝑚𝑚 < 𝑡𝑟𝑢𝑒 𝑡𝑢𝑚𝑜𝑟 𝑠𝑖𝑧𝑒 < 111.41𝑚𝑚) ≥ 0.95. 
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2.6.3 Parametric Analysis of Malignant Tumor Sizes for Other Male 

Similarly, the results of goodness-of-fit tests, that is, Kolmogorov-Smirnov test 

(Stephens, 1974), Anderson-Darling test (T.W. Anderson, 1952) and Chi-Square test (H. 

Chenoff, 1954), we have identified that the best-fitted probability distribution function 

that characterizes the malignant tumor sizes for the other male race patients is the three 

parameter Dagum probability distribution.  

 

Dagum probability distribution is a continuous probability distribution. It is named after 

Camilo Dagum, who proposed it in a series of papers in the 1970’s. The Dagum 

probability distribution function and cumulative probability distribution function are 

shown by equation 2.19 and 2.20, respectively.  

 

                                                        f(x; α, 𝑘, β) =
α𝑘(

𝑥

β
)

αk−1

β(1+(
𝑥

β
)

α
)

k+1                               (2.19) 

and 

                                                       F(x) = (1 + (
x

β
)

− α

)
−k

                                     (2.20) 

 

Where k, α, β > 0 and 𝛾 < 𝑥 < ∞.  α and k are the shape parameters, β is the scale 

parameter and 𝛾 is the location parameter. When 𝛾=0, the four-parameter Dagum 

probability distribution reduce to the three-parameter Dagum probability distribution.  
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The approximate maximum likelihood estimates of the parameters that derive the 

probability distribution function are given by 𝛼̂=5.363, 𝛽̂=71.69, 𝑘̂=0.25867. Thus, the 

Dagum probability distribution function and its cumulative probability distribution are 

given below: 

 

                                     f(x) =
5.363∗0.25867(

𝑥

71.69
)

5.363∗0.25867−1

71.69(1+(
𝑥

71.69
)

5.363
)

0.25867+1 , 0 < 𝑥                        (2.23) 

 

                                     F(x) = (1 + (
x

71.69
)

−5.363

)
−0.25867

, 0 < 𝑥                          (2.24) 

 

The expected mean and variance of the malignant tumor size for other male race patients 

are as follows: 

                                             𝐸(𝑋) = −
𝛽

α
𝛤(−

1

𝛼
)𝛤(

1

𝛼
+𝑘)

𝛤(𝑘)
, (α > 1)                                   (2.21) 

                                                       = 46.88𝑚𝑚 

And 

 

           𝑉(𝑋) = −
𝛽2

α2 ( 2α
𝛤(−

2

𝛼
)𝛤(

2

𝛼
+𝑘)

𝛤(𝑘)
+ (

𝛤(−
1

𝛼
)𝛤(

1

𝛼
+𝑘)

𝛤(𝑘)
)

2

), (α > 2)       (2.2) 

                     = 789.04 

 

The graphical form of the Dagum probability distribution function 𝑓(𝑥) and its 

cumulative distribution function 𝐹(𝑥) are given by Figures 2.15 and 2.16, respectively. 
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Figure 2.15: Fitted Dagum Probability Distribution Function of Malignant Tumor Size for Other Male 

 

Figure 2.16: Fitted Cumulative Dagum Distribution Function (CDF) of Malignant Tumor Size for Other 

Male 
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From Figure 2.16 above. We can see that about 80% of the other male race patients have 

the stomach malignant tumor size less than or equal to 68 millimeters. Also, 𝑝(𝑥 ≥

𝐸(𝑥) = 46.88) = 0.459, the probability that the malignant tumor size will be larger than 

the expected tumor size.  

 

We also calculated the expected mean of the stomach malignant tumor size is 46.88 

millimeters and the variance for other male race patients is 789.04 millimeters. We can 

use equation (2.6) to obtain confidence limits as the true size of the malignant tumor. 

That is, 

𝑝(5.02𝑚𝑚 ≤ 𝑡𝑟𝑢𝑒 𝑠𝑖𝑧𝑒 ≤ 109.56𝑚𝑚) ≥ 0.95. 

 

2.6.4 Comparison of the Malignant Tumor Sizes for Male Patients 

 

In this section, we compared the malignant tumor size for male patients by different race 

group. Table 2.2 below displays the best-fitted distributions that characterize the 

malignant tumor size for different race groups and the estimated malignant mean tumor 

size for male patients in each race group. We found the Weibull probability distributions 

are the best fitted distributions that can characterize the behavior of the malignant tumor 

size for white and African American male patients, while the Dagum probability 

distribution for other male race patients. When we compare the average malignant tumor 

size under different races (white, African American and other), we reject the null 

hypothesis that they are all the same. The African American male patients have the 
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largest expected malignant tumor size, which is 49.46mm, while the white male stomach 

cancer patients have the smallest expected malignant tumor size, which is 44.48mm. We 

obtained confidence intervals for the true malignant tumor size for all the cases. The 

confidence range is 101.49mm, 104.21 and 104.51mm for white male, African American 

male and other male, respectively. Such information is useful for the physicians. 

 

Table2.2: statistics of the malignant tumor sizes and confidence intervals for male patients 

 PDF Expected 

Mean 

Standard 

Deviation 

95% Confidence Intervals 

White Weibull 

pdf 

44.48 26.30 (3.17,104.66) 

African 

American 

Weibull 

pdf 

49.46 27.45 (7.20, 111.41) 

Other 

Race 

Dagum 

pdf 

46.88 28.09 (5.02, 109.56) 

 

We plotted the estimated probability distribution curve of the three-parameter Weibull 

probability distribution for white male patients and African American male patients and 

the probability distribution curve of Dagum probability distribution for the other male 

race patients as shown by Figure 2.17 below. We can conclude that when the malignant 

tumor size is below 15 millimeters, the probabilities of white male and other male races 

are almost the same and they both are greater than that of African American male. When 

the malignant tumor size is between 15 millimeters and 45 millimeters, the probabilities 

of African American male and other male race are almost the same, and they have 
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probability less than that of white male patients. When the malignant tumor size is greater 

than 45 millimeters, white male patients have lower probabilities and the other two 

groups cross each other. 

 

Figure 2.17: Fitted Probability Distribution Curves of Malignant Tumor Size for Male Patients 

 

We plotted the cumulative probability distribution curves of malignant tumor size for the 

three different race groups for male patients as shown in Figure 2.18 below. When we 

fixed malignant tumor size, the white male patients always have higher cumulative 

probability than the other two groups. African American male patients have the smallest 

cumulative probability of malignant tumor size. The probability of the malignant tumor 

size is greater than 84mm are 0.089, 0.123 and 0.088 for white male, African American 

male and other male race patients, respectively. Furthermore, there are 40% of the 
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stomach cancer patients have the tumor size less than 35mm, 40mm and 37mm for white 

male, African American male and other male race patients, respectively. 

 

 

Figure 2.18: Fitted Cumulative Probability Distribution Curves of Malignant Tumor Size for Male Patients 

 

The previous Table 2.2 demonstrates that the expected mean malignant tumor sizes are 

44.48 millimeters for white male patients, 49.46 millimeters for African American male 

patients and 46.88 millimeters for the other male race patients. The corresponding 95% 

confidence intervals are (3.17, 104.66) for white male, (7.2, 111.41) for African 

American male and (5.02, 109.56) for other male race patients.  

 

2.7 Relationship between Malignant/Non-Malignant Tumor and Tumor Size 

In order to investigate the relationship between the malignancy of the tumor and the 

tumor size, we need to find out the chance that a stomach tumor becomes malignant. To 
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better achieve this objective, we conducted a plot to exhibit the probability of a malignant 

tumor given a function of the tumor size. The details of the relationship are addressed in 

Figure 2.19 below. 

 

Figure 2.19: Probability of Malignant Tumor as a Function of Tumor Size 

 

Figure 2.19 shows an increasing trend between the size of a tumor and the probability of 

the tumor to be malignant. When the tumor size is 10 millimeters, it has a 99.6% chance 

that the tumor is malignant. Furthermore, we could conclude that it has nearly a 99.99% 

chance that the tumor is malignant when the patient has a tumor size of 60 millimeters or 

bigger. The plot illustrates that a patient has an extremely high chance to have a 

malignant tumor although the size of the tumor is small. 
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2.8 Contributions 

Table2.3: statistics of the malignant tumor sizes and confidence intervals for stomach cancer patients 

 PDF Expected Value Standard 

Deviation 

95% Confidence Intervals 

 F M F M F M F M 

White Wakeby Weibull 42.48 44.48 27.64 26.30 (2.041,105.09) (3.17,104.66) 

African 

American 

Wakeby Weibull 47.51 49.46 28.66 27.45 (4.51, 110.01) (7.20,111.41) 

Other Race Wakeby Dagum 45.56 46.88 27.96 28.09 (5.27, 110.85) (5.02,109.56) 

 

We have developed parametric analysis by defining the probability distributions of 

malignant tumor size for different race groups in the United States from 2004 to 2013. 

Table 2.3 above summarize the results of the parametric analysis from which we can 

obtain the following useful information. 

1. We have demonstrated that the mean of cancerous tumor size is different for 

gender and race groups. 

2. The best fitted probability distribution function for white female patients is 

Wakeby probability distribution with mean 42.48 mm and standard deviation 

27.64 mm. 

3. The best fitted probability distribution function for African American female 

patients is Wakeby probability distribution with mean 47.51 mm and standard 

deviation 28.66 mm. 
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4. The best fitted probability distribution function for other female race patients is 

Wakeby probability distribution with mean 45.56 mm and standard deviation 

27.96 mm. 

5. The best fitted probability distribution function for white male patients is Weibull 

probability distribution with mean 44.48 mm and standard deviation 26.30 mm. 

6. The best fitted probability distribution function for African American male 

patients is the three parameter Weibull probability distribution with mean 49.46 

mm and standard deviation 27.45 mm. 

7. The best fitted probability distribution function for other race male patients is 

Dagum probability distribution with mean 46.88 mm and standard deviation 28.09 

mm. 

8. The fitted probability distribution functions are essential to develop statistical 

inference on the malignant tumor size. 

9. The graphical figures of the probability density functions and the cumulative 

distribution curves could provide assistances for physicians understand the 

probabilistic behavior of the tumor size. 
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Chapter 3 

Statistical Quantile Regression Model for Malignant Stomach Tumor 

 

3.1 Introduction 

The average malignant stomach tumor size is often insufficient to explain the 

probabilistic behavior of malignant stomach tumor size. Standard least square estimates 

only shows an average effect of the covariates on the average malignant stomach tumor 

sizes. Thus, it is desirable to investigate the best-fitted statistical model that will describe 

the effects of malignant stomach tumor sizes by using the covariates of race, gender, age 

and their interaction terms. As demonstrated in the parametric analysis (Chapter 2) of 

malignant stomach tumor size study, we found the more appropriate probability 

distributions to describe the probabilistic behavior of the malignant stomach tumor sizes 

are highly skewed and follow the Wakeby probability distribution for White female, 

African American female and other female race patients; the three-parameter Weibull 

probability distribution fits best for White male and African American male patients; and 

the Dagum probability distribution for all other male race patients. Besides the fact that 

regression curves can provide the summary of the average of the probability distribution, 

regression curves with different percentages are able to depict a more complete picture of 

the malignant tumor size. This chapter describes the effects of race, gender and age on 
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the sizes of malignant stomach tumor by developing a statistical quantile regression 

model (R. Koenker, 1978).  

 

The proposed statistical quantile regression model comprehensively describes the effects 

of the predictors on the response variable by modeling the relationship between a set of 

risk variables (i.e., age, gender, race and their interaction terms) and the specific 

percentiles of the response variable (i.e., malignant tumor size). For example, the 50th 

percentile of malignant stomach tumor size on patients’ age, gender and race specifies the 

changes in the median malignant tumor size as a function of patients’ race, gender, age 

and their interaction terms. The effect of the specific predictors (race, gender, age and 

their interaction terms) on the median malignant tumor sizes can be compared with its 

effect on the other quantiles of malignant tumor size. Statistical median regression is 

more robust to outliers than least squares regression, and it is semi parametric because it 

avoids assumptions for the parametric distribution of the error process. Statistical quantile 

regression models are widely used in many fields such as environmental sciences, 

econometrics, survival analysis, among others. 

 

3.2 Data Description 

 

In the formulation of the quantile statistical regression model for the stomach cancer data 

was obtained from Surveillance, Epidemiology, and End Results database (SEER). 

Figure 3.1 below shows a schematic diagram of the actual data that we used along with 

the appropriate covariates. We considered the races of white, African American and 
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other; the gender of female and male and the age of the stomach cancer patients as risk 

factors, with the quantiles of the malignant stomach tumor sizes as the response variable. 

The malignant tumor size is measured in millimeters, and the total number of patients 

with malignant tumor size is 11,394. For the patients with the stomach malignant tumor, 

there are 7,115 males and 4,279 female patients. Moreover, there are 7,607 white 

patients, 1,522 African American patients along with 2,265 other race patients. 

 Figure 3.1: Schematic diagram of stomach cancer patients 

 

Stomach 
Cancer

11,394

Race

11,394

White

7,607

African 
American

1,522

Other

2,265

Gender

11,394

Male

7,115

Female

4,279
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3.3 Stomach Tumor Sizes and Quantile Regression Model 

3.3.1 Quantiles and Optimization 

The quantile regression model is a conditional quantile given by the predictors. For a 

random variable 𝑌 with a cumulative probability distribution function given by 

 

                                                 𝐹(𝑦) = 𝑃𝑟𝑜𝑏 (𝑌 ≤ 𝑦).                                                 (3.1) 

The 𝜏𝑡ℎ quantile of 𝑌 is denoted as the inverse function (Koenker 2005), that is, 

 

                                         𝐹−1(𝜏) = 𝑄(𝜏) = inf{𝑦: 𝐹(𝑦) ≥ 𝜏},                                   (3.2) 

 

where 0 < 𝜏 < 1. More specifically, the median regression quantile is given by  

 

                                                     𝑄(0.5)  = inf{𝑦: 𝐹(𝑦) ≥ 0.5}.                                  (3.3) 

 

Fox and Rubin (1964) used the piece-wise linear loss function to estimate the quantile 

estimators. They also used the ordered sample observations to verify the 𝜏𝑡ℎ quantile. 

 

For a random sample {𝑦1, 𝑦2, … , 𝑦𝑛} of 𝑌, the sample median can be computed by 

minimizing the following equation which is the sum of the absolute deviations, that is, 

 

                     Sample median=𝑚𝑖𝑛𝜀∈𝑅 ∑ |𝑦𝑖 − 𝜀|𝑛
𝑖=1 .                                        (3.4) 
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Similarly, the 𝜏𝑡ℎ sample quantile 𝜀(𝜏) = 𝑄(𝜏) can be computed as a solution of the 

optimization problem, that is, 

 

                                           𝑄(𝜏)  = 𝑚𝑖𝑛𝜀∈𝑅 ∑ 𝜌𝜏(𝑦𝑖 − 𝜀)𝑛
𝑖=1 ,                                   (3.5) 

 

where 𝜌𝜏(𝑢) = 𝑢(𝜏 − 𝐼(𝑢 < 0)), 0 < 𝜏 < 1, and 𝐼(. ) is the indicator function.  

We proceed to minimize the following sum of squared residuals, 

 

                         Sample mean= 𝜇̂ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑣∈𝑅 ∑ (𝑦𝑖 − 𝜇)2𝑛
𝑖=1 .                              (3.6) 

 

By solving  

                                                𝛽̂ =  𝑎𝑟𝑔𝑚𝑖𝑛𝛽∈𝑅𝑝 ∑ (𝑦𝑖 − 𝑥′𝑖𝛽)2𝑛
𝑖=1 ,                       (3.7) 

 

we can extend (3.6) to conditional expectation 𝐸(𝑌 = 𝑋 = 𝑥) = 𝑥′𝛽. 

Similarly, we can solve the following equation  

 

                                      𝛽̂ =  𝑎𝑟𝑔𝑚𝑖𝑛𝛽∈𝑅𝑝 ∑ 𝜌𝜏(𝑦𝑖 − 𝑥′𝑖𝛽)𝑛
𝑖=1 ,                          (3.8) 

 

to estimate the linear conditional quantile function 𝑄(𝜏|𝑋 = 𝑥) = 𝑥𝑇𝛽(𝜏), 

 

where 𝛽̂(𝜏) is denoted an estimate as the 𝜏𝑡ℎ regression quantile for any quantile 𝜏 ∈

(0,1). There is a special case when 𝜏 = 0.5 which minimizes the sum of absolute 

residuals. 
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3.3.2 Regression Quantile Estimates 

 

Let 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑛) be a random variable and 𝑌 = (𝑦1, 𝑦2, … , 𝑦𝑛) be the 

corresponding 𝑛 observed responses. The statistical quantile regression model is then 

defined by 

 

                                                     𝑦 = 𝑋𝑇𝛽𝜏 + 𝜀𝜏,                                                   (3.9) 

 

where 𝛽 = (𝛽1, 𝛽2, … , 𝛽𝑝)𝑇 denotes an unknown vector of parameters and 𝜀 =

(𝜀1, 𝜀2, … , 𝜀𝑛)𝑇 represents a vector of unknown errors terms. The 𝜏𝑡ℎ regression quantile 

can be computed as a solution of  

 

              𝑚𝑖𝑛𝛽∈𝑅 [∑ 𝜏|𝑦𝑖 − 𝑥𝑖
𝑇𝛽| + ∑ (1 − 𝜏)|𝑦𝑖 − 𝑥𝑖

𝑇𝛽|𝑦𝑖<𝑥𝑖
𝑇𝛽𝑦𝑖≥𝑥𝑖

𝑇𝛽 ],      (3.10) 

 

and we can obtain the median regression by solving the following function, 

 

              𝑚𝑖𝑛𝛽∈𝑅 [∑
|𝑦𝑖−𝑥𝑖

𝑇𝛽|

2
+ ∑

|𝑦𝑖−𝑥𝑖
𝑇𝛽|

2𝑦𝑖<𝑥𝑖
𝑇𝛽𝑦𝑖≥𝑥𝑖

𝑇𝛽 ],                                (3.11) 

 

which is a special case of (3.10). 

 

In the literature, statisticians are able to estimate the coefficients of the median regression 

as a linear programming problem by solving special forms of the simplex algorithm 

(Barrodale and Roberts 1973). The simplex algorithm is widely used in many statistical 
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scientific areas. Although the computation loops exponentially increase as the sample 

size increases, scientists commonly apply the simplex algorithm to the data with sample 

size less than 10,000. Alternative approaches have been developed for large data sets. 

The interior point approach (Karmarkar 1984) is widely used to solve median regression 

problems in which the relevant interior of a constraint set is approximated by an ellipsoid. 

The interior point approach has been proven to be better than the simplex algorithm as 

well as dealing with large data sets. Excluding the simplex algorithm and interior point 

method, there are several heuristic estimations that have been developed to explore the 

median quantile regression solutions. The most powerful method is the finite smoothing 

algorithm (Madsen and Nelsen 1993). The Newton-Ralphon algorithm utilizes the finite 

number of loops to find the parameter coefficients since its smoothing algorithm 

approximates the objective regression function with a smoothing function. 

 

To measure the effects of the patients’ age, gender, race and their interaction terms on the 

malignant stomach tumor sizes, we have developed statistical quantile regression models 

for different quantiles of the distributions of malignant tumor sizes. In this section, we 

give a brief introduction for the proposed model and apply the proposed model to the 

SEER stomach cancer data set.  

 

The standard least square regression models only compute the average mean effect of 

independent variables on the tumor size. Standard least squares assumption of normally 

distributed errors does not hold for stomach cancer data base because the malignant 

tumor sizes follow Dagum, Weibull and Wakeby probability distributions. Thus, to focus 
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only on the average malignant tumor size, we use the standard least square regression 

models that probably hide some important elements of the underlying relationship. 

Statistical quantile regression has been used most commonly to model the skewed data in 

the literature.  

 

In medicine, reference charts provide a collection of the useful quantiles. Comparing with 

a simple reference range, quantile curves have merits when the measurement strongly 

depends on a covariate such as patient’s age (Cole and Green 1992, Royston and Altman 

1994). In survival analysis, a given covariate may have different effects at different 

quantile levels. Such effects can be solved by using statistical quantile functions on 

survival time (Koenker and Geling, 2001). Statistical quantile regression model can also 

be applied in the field of economics (Buchinsky 1998, Machado and Mata 2005). Pokhrel 

(2013) discussed the effect of brain tumor sizes by quantile regression model. 

Unfortunately, there is no such statistics analysis for stomach cancer until the present 

study. 

 

There are several merits that lead us to choose the statistical quantile regression model 

rather than the ordinary least squares estimation: 

a. The ordinary least squares are inefficient when the errors are highly non-normally 

distributed. Since the stomach malignant tumor sizes follow the Dagum, Wakeby 

and Weibull probability distributions, the standard least squares assumption of 

normally distributed errors fails to hold. 
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b. Statistical quantile regression model is invariant to monotonic transformations 

and the coefficients 𝛽̂𝜏 are invariant to outliers of dependent variable (Buchinsky, 

1994). 

c. Quantile regression models can comprehensively describe the conditional 

probability distribution of dependent variables (Alex Coad and Rekha Rao, 2008). 

d. The probability distribution of malignant stomach tumor sizes is skewed as 

revealed in our previous study. Statistical quantile regression model is robust to 

the highly skewed probability distributions. 

 

Thus, we proposed the statistical quantile regression methods to model the relationship 

between a set of risk factors (i.e., race, gender, age and their interaction terms) and 

particular quantiles of the response variable (i.e., malignant stomach tumor size) by 

specifying the changes in the quantiles of malignant stomach tumor size. For example, a 

median quantile regression of malignant tumor size diagnosed on the malignant stomach 

tumor patients specifies the changes in the median tumor size as a function of the 

predictors. Similarly, the 25th quantile regression of malignant tumor size diagnosed on 

patients specifies the changes in the 25th quantile of tumor size as a function of the 

covariates. The effect of patients’ age on the 75th quantile malignant stomach tumor sizes 

of white patients can be compared with that of African American patients. Such 

information exhibits a more comprehensive picture of the race effect on age and the race 

effect on the upper or lower side of the distribution of malignant tumor sizes. 

Furthermore, in linear regression models, the regression coefficients represent the mean 

change in the response variable for one unit of change in the predictor variable while 



58 

 

holding the other predictors fixed. By modeling the estimates with a particular quantile of 

the response variable for one unit of change in the risk factor, quantile regression allows 

us to find the percentiles of malignant stomach tumor size that are affected more by the 

specific characteristics of patients.  

 

We proceeded to calculate the coefficient estimates at 19 different quantiles of the 

conditional probability distribution through the following statistical quantile regression 

model: 

 

 

𝑄𝜏 = 𝛼 + 𝛽1𝑅𝑎𝑐𝑒 + 𝛽2𝑆𝑒𝑥 + 𝛽3𝐴𝑔𝑒 + 𝛽4𝐴𝑔𝑒 ∗ 𝑆𝑒𝑥 + 

                                           𝛽5𝐴𝑔𝑒 ∗ 𝑅𝑎𝑐𝑒 + 𝛽6𝑆𝑒𝑥 ∗ 𝑅𝑎𝑐𝑒 + 𝜀,                            (3.12) 

 

where 𝛼 is the model intercept, 𝛽𝑖’s are the coefficients and 𝜀 is the error term. 

The ordinary least squares estimates require restrictive assumptions of the error terms, 

which are identically distributed from normal distribution. By avoiding that, we proceed 

to use the statistical quantile regression model on the stomach cancer data which we 

obtained from SEER database.  

The 𝜏𝑡ℎ sample quantile can be obtained by solving the following minimization problem 

 

          𝑄𝜏̂ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑞∈𝑅[(1 − 𝜏) ∑ (𝑞 − 𝑦𝑖) + 𝜏 ∑ (𝑦𝑖 − 𝑞)𝑦𝑖≥𝑞𝑦𝑖<𝑞 ],             (3.13) 

Where q is an initial guess for 𝜏th quantile of the sample data (𝑄𝜏). 
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Based on the point estimate 𝑄𝜏̂, we would also want to introduce a 95% confidence 

interval for the desired population quantile. In the literature, the interpolated order 

statistic approach suggested by Hettmansperger and Sheather (1986) and Nyblom (1992). 

The distribution free method has the advantage of robustness against studentization 

method because it does not need to assume the normality of the error terms (Kenneth, 

Zhou, 1996). The interval should fulfill the following condition: 

 

𝑝(𝑥(𝑑) ≤ 𝑥𝑝 ≤ 𝑥(𝑒)) ≥ 1 − 𝛼. 

 

Then we need to try out all possible (𝑑, 𝑒) combinations where 𝑑, 𝑒 satisfy the following 

conditions: 

𝑝(𝑥(𝑑) ≤ 𝑥𝑝) ≥ 1 −
𝛼

2
, 

and 

𝑝(𝑥𝑝 ≤ 𝑥(𝑒)) ≥ 1 −
𝛼

2
. 

If several combinations achieve our criterion, we need to calculate the length of each 

intervals and then take the minimal length. 

 

Figures 3.2-3.5 display the results of our statistical quantile regression for the stomach 

cancer data set. In each plot, we utilized 5th to 95th quantiles for the regression 

coefficients, which indicate the effect on the malignant stomach tumor size with one unit 

change in that variable while other covariates remain the same. The shade regions are 

bands of the point wise with at least 95% confidence intervals. For example, Figure 3.2 

below represents the estimated conditional quantile function of the malignant stomach 
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tumor size of “other” female race. If the other race female patient has 40 millimeters 

malignant tumor size then she will be fall in the 50th quantile. On the other side, if we 

know the other race female patient falls in the 75th quantile, then we have at least 95% 

confident to conclude that she may have the malignant tumor size between 56 millimeters 

and 61 millimeters.  

 

 

Figure 3.2: The estimated intercept parameter by quantile regression for malignant tumor size. The shaded area 

depicts at least 95% point-wise confidence band 

Figure 3.3 below displays the estimated difference of malignant stomach tumor size 

between white patients and other race stomach cancer patients. It shows the negative 

effect of malignant stomach tumor size when comparing with other race patients. For 

instance, for 60th quantile, we have at least 95% confident that the white patients will 
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have the tumor size less than that of other race patients, the difference will between 0 and 

13 millimeters. 

 

 

Figure 3.3: The estimated difference of malignant tumor size between white and other race patients. The shaded area 

depicts at least 95% point-wise confidence band 

 

Figure 3.4 below displays the estimated difference of malignant tumor size between 

African American patients and other race patients by using our proposed quantile 

regression model. It shows the negative effect of malignant stomach tumor size for low 

quantiles when comparing with other race patients, as well as a positive effect for upper 

quantiles. For instance, for 20th quantile, the African American patients will have the 

smaller tumor size than that of other race patients and we have at least 95% confident that 

the difference will between 1.5 and 16 millimeters. 
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Figure 3.4: The estimated difference of malignant tumor size between African American and other race patients. The 

shaded area depicts at least 95% point-wise confidence band 

 

Figure 3.5 below shows the estimated difference of malignant stomach tumor size 

between male and female patients, which matches the results obtained from Chapter 2. It 

proves that the malignant stomach tumor size for male patients is bigger than that for 

females. For example, for 50th quantile, the male patients will have the bigger malignant 

stomach tumor size than that of female and we have at least confidence to conclude that 

the difference will be 7 and 19 millimeters. 
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Figure 3.5: The estimated difference of malignant tumor size between male and female patients. The shaded area 

depicts at least 95% point-wise confidence band 

 

The following equations supports the statistical visualization of the first quantile, median 

quantile and third quantile regression models with the appropriate estimates of the 

coefficients. 

 

 

 

 

 

The 25th quantile: 
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𝑄0.25 = 15.5 − 13.6 ∗ 𝐼(𝑤ℎ𝑖𝑡𝑒) − 8.17 ∗ 𝐼(𝑏𝑙𝑎𝑐𝑘) + 

21.9 ∗ 𝐼(𝑚𝑎𝑙𝑒) + 0.125 ∗ 𝑎𝑔𝑒 − 0.27 ∗ 𝑎𝑔𝑒 ∗ 𝐼(𝑚𝑎𝑙𝑒) 

                              +0.14 ∗ 𝑎𝑔𝑒 ∗ 𝐼(𝑤ℎ𝑖𝑡𝑒) + 0.14 ∗ 𝑎𝑔𝑒 ∗ 𝐼(𝑏𝑙𝑎𝑐𝑘).                 (3.14) 

 

The median quantile: 

 

𝑄0.50 = 40 − 7.71 ∗ 𝐼(𝑤ℎ𝑖𝑡𝑒) − 3.16 ∗ 𝐼(𝑏𝑙𝑎𝑐𝑘) + 

12.72 ∗ 𝐼(𝑚𝑎𝑙𝑒) + 0.003 ∗ 𝑎𝑔𝑒 − 0.136 ∗ 𝑎𝑔𝑒 ∗ 𝐼(𝑚𝑎𝑙𝑒) 

                               +0.092 ∗ 𝑎𝑔𝑒 ∗ 𝐼(𝑤ℎ𝑖𝑡𝑒) + 0.08 ∗ 𝑎𝑔𝑒 ∗ 𝐼(𝑏𝑙𝑎𝑐𝑘)              (3.15) 

 

The 75th quantile: 

 

𝑄0.75 = 60.83 − 0.83 ∗ 𝐼(𝑤ℎ𝑖𝑡𝑒) + 4.16 ∗ 𝐼(𝑏𝑙𝑎𝑐𝑘) − 

0.83 ∗ 𝐼(𝑚𝑎𝑙𝑒) + 0.04 ∗ 𝑎𝑔𝑒 − 0.04 ∗ 𝑎𝑔𝑒 ∗ 𝐼(𝑚𝑎𝑙𝑒) 

−0.04 ∗ 𝑎𝑔𝑒 ∗ 𝐼(𝑤ℎ𝑖𝑡𝑒) − 0.04 ∗ 𝑎𝑔𝑒 ∗ 𝐼(𝑏𝑙𝑎𝑐𝑘) 

                                    +3.83 ∗ 𝐼(𝑚𝑎𝑙𝑒) ∗ 𝐼(𝑤ℎ𝑖𝑡𝑒)                                            (3.16) 
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Table 3.1:Ordinary and Quantile regression estimates: the coefficients on “malignant tumor size” are reported for 19 

quantiles.  

 Intercept Race1     Race2 Sex 1 Age Age*Sex1 Age*Race1 Age*Race2 Sex1*Race1 Sex1*Race2 

OLS 39.288 -3.41 0.5630 13.67 0.092 -0.186 0.0027 0.0225 1.1503 0.6134 

Quantile Regression from 5th to 95th quantiles: 

5 1.292 -2.12 -0.153 1.571 0.097 -0.011 -0.010 -0.0022 1.505 2.289 

10 2.142 -6.23 1.035 10.49 0.1428 -0.115 0.0476 -0.0045 1.3214 -0.0928 

15 7.2490 -10.5 -1.345 14.025 0.1432 -0.168 0.0875 -0.025 2.969 -0.070 

20 14.090 -14.7 -8.51 19.78 0.091 -0.2522 0.161 0.1612 0.9002 -0.3607 

25 15.50 -13.6 -8.171 21.907 0.125 -0.2731 0.14815 0.148 1.2037 0.76389 

30 16.875 -10.9 1.90 21.22 0.156 -0.2702 0.1140 0.0114 2.833 -0.9966 

35 27.21 -13.1 -2.788 16.845 0.042 -0.198 0.156 0.1006 -0.9722 -1.496 

40 28.5 -5.92 -5.27 16.15 0.0833 -0.1996 0.0422 0.1162 0.7913 0.6221 

45 25.178 -0.17 9.494 15.52 0.1785 -0.1883 -0.0357 -0.0101 1.795 -0.6403 

50 40.0 -7.71 -3.167 12.727 0 -0.136 0.0952 0.0833 -1.764 -0.1240 

55 40.07 -3.99 -7.272 16.59 0.086 -0.219 -0.0095 0.11355 2.186 1.852 

60 45.41 -6.30 4.588 7.890 0.0588 -0.1034 0.0446 -0.0588 3.006 1.5233 

65 49.123 0.876 -0.423 11.26 0.046 -0.1538 -0.0461 0.0538 0.738 0.4307 

70 51.4328 3.567 0.3947 13.619 0.104 -0.2051 -0.1044 -0.001 1.4320 1.5859 

75 60.833 -0.83 4.1667 -0.833 0.0416 -0.0416 -0.0416 -0.0416 3.833 3.75 

80 66.85 -1.85 3.070 9.578 0.05 -0.1785 -0.05 -0.0479 2.7428 4.5012 

85 80 -6.6 0 -0.583 0 -0.0833 -0.1667 0 5.2833 5.9166 

90 89.85 -0.98 0.1428 -1.714 -0.071 0 0.0714 0.0714 1.714 1.714 

95 100 7.12 0 1.374 0 -0.0218 -0.16 0 0.5963 0.0872 

 

 

Table 3.1 above provides the estimated coefficients of our statistical quantile regression 

model from 5th to 95th quantiles. The results include the estimates coefficients for gender, 

race, age and their interaction terms. The red numbers denote the significant effect of 
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tumor size on that covariate at significant level 0.05. Table 3.1 shows that the variable 

age appears to be a statistically significant factor that affects the change in malignant 

tumor size for lower quantile regression models. When the other covariates remain at the 

same level, for each year increase in age, the statistically significant effects on the 

stomach tumor sizes are 0.097, 0.142, 0.143, 0.09, 0.125, 0.156, 0.083 and 0.178, 

respectively for the quantile regressions of 5th, 10th, 15th, 20th, 25th, 30th, 40th, 45th. For the 

higher quantiles, the patient’s age effect of the conditional probability on the tumor size 

is not very significant. The standard ordinary least squares estimation shows that the 

stomach tumor size increases 0.092 when the age increases by one unit. 

 

We also found that the interaction term between age and gender always indicates the 

significant effects in stomach malignant tumor size from 5th to 80th quantiles. We also 

identified that the covariate gender provides significant effect on the tumor size except 

the upper quantiles. Since covariate female is the controlling variable, estimated quantile 

regression coefficients of gender represent the difference of the malignant tumor size 

between male and female patients while the other factors age and race are fixed. 

 

 

3.4 Discussion 

 

Malignant Tumor size is strongly related to prognosis in the medical research area. In 

general, the smaller the tumor, the higher the chances are for long-term survival. The goal 

of this study is to find out the importance of the covariate age, gender and race on the 
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effect of the malignant stomach tumor size. It is desirable to utilize the relationship 

between patients’ demographic information and malignant stomach tumor size in order to 

help researchers postulate histology specific etiologic risk factors. We have applied both 

the statistical ordinary least squares and statistical quantile regression models to 

investigate the effects of the risk factors age, gender, race and their interaction terms on 

the malignant stomach tumor size.  

 

The stomach tumor registry data was provided by SEER program. We demonstrated that 

patients’ histology classification could lead the differences in the tumor size. We 

explored the statistical model of malignant stomach tumor sizes using statistical quantile 

regression models that assist to identify the effects of patients’ demographic information 

associated with changing tumor size. For example, the probability distribution of stomach 

tumor sizes for male patients is always higher than that of female patients.  

The estimates of coefficients for the probability distribution of malignant tumor size of 

African American patients are lower than those of other race patients for low quantiles, 

whereas the middle and higher quantiles are significantly higher. When the covariates 

gender and race remain fixed, the predictor age will show a positive effect on the 

malignant stomach tumor size for low quantiles.  

 

3.5 Contributions 

In this study, we have developed a statistical quantile regression model that include the 

effect of gender, age, race and their interaction terms. Having developed this statistical 

quantile regression model, we obtained the following useful information: 
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1. We demonstrated the effect of patients’ gender, age, race on the malignant stomach 

tumor sizes, that will be helpful to the physicians to make their decisions. 

2. Based on the results of our statistical quantile regression model, we found that the 

malignant stomach tumor size is different between male and female patients. For 

instance, for 50th quantile, the malignant tumor size of male patients is 12.7 mm 

larger than that of female patients when other covariates hold constant. Such 

information allows the medical physicians to treat female and male patients 

differently. 

3. Our study reveals a significant difference of malignant tumor size for patients among 

different groups of races. For example, for 35th quantile, white patients’ malignant 

tumor size is 13.1 mm smaller than other race patients’ malignant tumor size. 

However, for 45th quantile of African American patients’ malignant tumor size is 

9.49 mm bigger than other race patients’ malignant tumor size. 

4. Moreover, our work shows that the patients’ age is a significantly contributing factor 

for estimating the malignant stomach tumor size. For 25th quantile, the malignant 

tumor size increases 0.125 mm for one-year increase in patients’ age. 

5. We also have found that a significant interaction exists between age and gender. 

6. The developed statistical quantile regression model provides a more flexible and 

comprehensive comparison of malignant stomach tumor size. Such information is 

essential for medical scientists to improve the treatments for their patients. 
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Chapter 4 

Statistical Modeling of Malignant Stomach Tumor Size as Function of Age 

4.1 Introduction 

According to the American Cancer Society, stomach cancer is the fifth leading cause of 

cancer and the third leading cause of death from cancer. The exact causes of stomach 

cancer are still unknown. There is a total of 11,462 records of stomach patients that were 

diagnosed with non-malignant and malignant tumors in United States from 2004 to 2013. 

The data was obtained from the Surveillance, Epidemiology and End Results program 

(SEER).  

 

Our previous study has shown that malignant stomach tumor sizes significantly differ on 

genders and races. The statistical quantile regression model shows that the patients’ age is 

an additional significant variable on the size of malignant tumors.  

 

In the present study, we aim to investigate the effect of age on stomach cancer tumor size 

for different types of genders and races. 
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4.2 White Male Malignant Stomach Tumor Size and Age 

 

From the SEER database, there are 4,945 white male patients with malignant stomach 

tumors and about 83% of the cases were aged from 40 to 80 years. Our statistical models 

will focus on the majority part of the patients age. Figure 4.1 below shows a scatter plot 

of white male stomach patients with malignant tumor sizes in millimeters. 

 

Figure 4.1: Raw data of White Male patients with stomach tumor size in millimeters 

 

The raw data plot doesn’t display any pattern. Therefore, we averaged the patients’ 

malignant tumor size at each age level. Figure 4.2 below shows the scatter diagram of 

averaging malignant stomach cancer tumor sizes as a function of age for white male 

patients.  
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Figure 4.2: Mean of Malignant Stomach Tumor size for White Male in millimeters 

 

Figure 4.2 above indicates that the curve has an inflexion point almost every three or four 

years of age, which makes it difficult to determine a function that characterize the mean 

behavior of malignant tumor sizes as a function of age (Kottabi, 2012). In order to 

address this issue, we averaged the malignant tumor size within each four-year interval. 

That is, we have 10 intervals of 4 years in length.  

 

We denote stomach cancer patients’ age with 𝑎. The corresponding malignant tumor size 

as a function of age is denoted by 𝑇(𝑎) in millimeters. The rate of the tumor size 𝑇′(𝑎) is 

the derivative of the function 𝑇(𝑎). 

 

The best statistical model that characterizes white male cancer patients with stomach 

tumor size is given by the following equation: 
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𝑇(𝑎) = 1.49 ∗ 106 + 2.35 ∗ 103𝑎 − 13.56 ∗ 𝑎2 + 3.84 ∗ 10−2𝑎3 

                                −1.209 ∗ 106𝑒
1

𝑎 − 8.908 ∗ 104 log(𝑎) , 40 ≤ 𝑎 ≤ 80.            (4.1)                                                 

 

The evaluation of the quality of the proposed model with respect to 𝑅2, 𝑅2 adjusted and 

residual analysis are given in Table 4.1 below: 

 

Table 4.1: White Male Residual Analysis of Stomach Cancer Tumor Size 

Sum of Residuals 

Sum of Squared Residuals 

R-square 

Adjusted- R square 

-0.01018 

0.69756 

0.87 

0.84 

 

 

Thus, the proposed statistical model shows a very good quality to predict the malignant 

tumor size as a function of age. Given below is a graph of the model along with an 

approximate 95% confidence limits. Thus, from Figure 4.3 we can obtain the following 

information such that if a white male patient, 60 years old, the approximate expected 

malignant tumor size will be about 44.26 millimeters and we are 95% confident that his 

tumor size will be between 43.18 and 45.34 millimeters. And on the other hand, if a white 

male patient has a 45 millimeters malignant tumor size then his age is almost 52 years 

old. 

 

 



73 

 

 

Figure 4.3: Estimated predicted model with a 95% confidence interval for white male in millimeters 

 

The derivative of Equation 4.1 estimates a measure of the change of the mean malignant 

tumor size as a function of age. That is,  

 

𝑇′(𝑎) = 2.35 ∗ 103 − 27.12𝑎 + 11.52 ∗ 10−2𝑎2 

                                           +1.209 ∗
106𝑒

1
𝑎

𝑎2 − 8.908 ∗
104

𝑎
, 40 ≤ 𝑎 ≤ 80                 (4.2) 

 

Thus, if one wants to find the rate of the malignant tumor size at a particular age, they can 

use the above function to predict the changing rate of the malignant tumor size. For 

instance, if a 61 years old patient, we can conclude that his changing rate of the malignant 

tumor size will be 𝑇′(61) = 0.1047 millimeters. 
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The classical rate of change (CRC) of mean malignant tumor sizes with respect to age is 

given by the following function (Bonsu, 2013, Kottabi, 2012, Chan, 2013) 

 

                                             𝐶𝑅𝐶 =
𝑇(𝑎) 𝑖𝑛 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑎𝑔𝑒−𝑇(𝑎) 𝑖𝑛 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑎𝑔𝑒

𝑇(𝑎) 𝑖𝑛 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑎𝑔𝑒
                  (4.3) 

 

We repeated some age of the white male stomach cancer patients and we calculated the 

tumor size, Equation 4.1, the rate of changing, Equation 4.2, and the classical rate of 

change, CRC, Equation 4.3, the results are given in Table 4.2 below: 

 

     Table 4.2: Residual Analysis of Rate Change of Mean tumor size for White male 

Age Tumor Rate of Change(CRC) Rate=𝑇′(𝑎) Rate of Residual 

48 46.97 -0.0285 -0.7066 0.6781 

49 46.50 -0.01 -0.6978 0.6878 

50 44.98 -0.0326 -0.655 0.6224 

51 45.60 0.0136 -0.5871 0.6007 

…. …………. ……………………… ……………….. …………………………. 

60 44.26 -0.0047 0.0934 -0.0981 

61 44.19 -0.0017 0.1047 -0.1064 

Mean of Residual Rate -0.032 

Standard Deviation of Residual 0.6544 

 

Table 4.2 reveals that the residual is quite small as well as the standard deviation, which 

indicates that the proposed model is of good quality to characterize the behavior of the 

tumor size as a function of age. 
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Figure 4.4 below shows how the rate of the mean of the malignant tumor sizes changes as 

a function of the patients’ age increases as one would expect. For instance, if a patient 60 

years old we can conclude that his changing rate of the malignant tumor size will be 

𝑇′(61) = 0.0934 millimeters. 

 

 

Figure 4.4: Changing Rate of stomach tumor size for white male 

 

4.3 African American Male Malignant Stomach Tumor Size and Age 

 

In this section, we will propose a statistical model of the African American Male stomach 

tumor size as a function of age. Figure 4.5 below shows that the curve has a turning point 

almost every three or four years of age, thus we focus on the behavior of the average size 

of the malignant tumors within a three-year interval.  
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Figure 4.5: Mean of Malignant Stomach Tumor size for African American Male 

After searching many kinds of nonlinear statistical model, we could not find an 

appropriate statistical model to describe the behavior of the malignant tumor size as a 

function of age for all the patients. Then we clustered the patients into two groups, 40 to 

55 years old and older than 55 years old.  

 

The statistical function that characterizes the stomach cancer tumor size as a function of 

age for African American male patients is expressed in the following Equation 4.4 for 

patients from 40 years old to 55 years old. 

 

𝑇(𝑎) = 3.849 ∗ 104 + 776.4𝑎 − 4.422𝑎2 − 1.692 ∗ 104 log(𝑎) 

                                         +5.439 ∗ 10−23𝑒𝑎, 40 ≤ 𝑎 ≤ 55                               (4.4) 
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This model that characterizes the malignant tumor size as a function of age for African 

American male patients from age 40 to 55 is a good model. It has an 𝑅2 of 0.86 with 𝑅2 

adjusted of 0.82 and a very insignificant residual mean. A summary of this information is 

given in Table 4.3 below: 

 

Table 4.3: African American Male Residual Analysis of Stomach Cancer Tumor Size from 40 to 55 years old 

Sum of Residuals 

Sum of Squared Residuals 

R-square 

Adjusted- R square 

0.00002 

0.8252 

0.86 

0.82 

 

 

Figure 4.6 below shows the predicted curve of the mean malignant tumor size as a 

function of age along with at least 95% confidence interval for African American male 

patients from 40 to 55 years old. Thus, we can obtain the following information such that 

if an African American male patient, 50 years old, the approximate expected malignant 

tumor size will be about 55.81 millimeters and we are 95% confident that his tumor size 

will be between 51.62 and 60 millimeters. And on the other hand, if an African American 

male patient has a 50 millimeters malignant tumor size then his age is almost 43 years 

old. 
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Figure 4.6: Estimated predicted model with a 95% confidence interval for African American male from 40 to 55 

 

The derivative of Equation 4.4 estimates a measure of the change of the mean malignant 

tumor size as a function of age for African American male patients between 40 and 55 

years old. That is, 

 

       𝑇′(𝑎) = 776.4 − 8.844𝑎 −
16920

𝑎
+ 5.439 ∗ 10−23𝑒𝑎, 40 ≤ 𝑎 ≤ 55.                 (4.5) 

 

Thus, if one wants to estimate the changing rate of the malignant tumor size at a 

particular age, they can use the above function to predict the changing rate of the 

malignant tumor size. For example, if an African American male stomach cancer patient, 
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48 years old, we can conclude that his changing rate of the malignant tumor size will be 

𝑇′(48) = 0.746 millimeters.  

 

Next, we will use the similar process to obtain the statistical model respect to the 

malignant tumor size as a function of age for African American male older than 55 years 

old. That is, 

 

𝑇(𝑎) = 1.324 ∗ 107 + 3.75 ∗ 105𝑎 − 4.214 ∗ 103𝑎2 + 27.94𝑎3 

                                −6.26 ∗ 106 log(𝑎) + 2.791 ∗ 10−33𝑒𝑎, 55 < 𝑎 ≤ 80               (4.6) 

 

This model that characterizes the malignant tumor size as a function of age for African 

American male patients older than 55 is a good model. It has an 𝑅2 of 0.86 with 𝑅2 

adjusted of 0.83 and a very insignificant residual mean. A summary of this information is 

given in Table 4.4 below: 

 

Table 4.4: African American Male Residual Analysis of Stomach Cancer Tumor Size older than 55 years  

Sum of Residuals 

Sum of Squared Residuals 

R-square 

Adjusted- R square 

0.00 

1.153 

0.86 

0.83 

 

Thus, the proposed statistical model shows a very good quality to predict the malignant 

tumor size as a function of age for African American male patients older than 55 years. 
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Figure 4.7 below shows the predicted curve of the mean malignant tumor size as a 

function of age along with at least 95% confidence interval for African American male 

patients older than 55 years old. 

 

 Figure 4.7: Estimated predicted model with a 95% confidence interval for African American male older than 55 

 

Thus, we can obtain the following information such that if an African American male 

patient, 60 years old, the approximate expected malignant tumor size will be about 46.84 

millimeters and we are 95% confident that his tumor size will be between 41.56 and 

52.12 millimeters. And on the other hand, if an African American male patient has a 

48.72 millimeters malignant tumor size then his age is almost 62 years old. 
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Then the derivative of Equation 4.6 indicates a measure of the change of the mean 

malignant tumor size as a function of age for African American male older than 55 years 

old. That is, 

 

𝑇′(𝑎) = 3.75 ∗ 105 − 8.4 ∗ 103𝑎 + 83.82𝑎2 

                                        −6.26 ∗
106

a
+ 2.791 ∗ 10−33𝑒𝑎, 55 < 𝑎 ≤ 80                    (4.7) 

 

Thus, we can use the above function to predict the changing rate of the malignant tumor 

size for African American male patients older than 55 years old. For instance, if the 

stomach cancer patient 60 years old, we can conclude that his changing rate of the 

malignant tumor size will be 𝑇′(60) = 0.2636 millimeters.  

 

In order to evaluate the accuracy of the proposed model, we calculated the classical rate 

of change of mean tumor size with respect to age by using Equation 4.3, then compared 

with the result from Equations 4.5 and 4.7. The results of the residual analysis are shown 

in Table 4.5 below:    
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        Table 4.5: Residual Analysis of Rate Change of Mean tumor size for African American male 

Age Tumor Rate of 

Change(CRC) 

Rate=𝑇′(𝑎) Rate of Residual 

53 43.03 0.0086 -0.0979 0.1065 

54 46.439 -0.0077 -0.074 0.0663 

55 45.36 0.0016 -0.035 0.0366 

56 50.30 -0.0177 0.0165 -0.0342 

57 54.26 -0.0067 0.0769 0.0836 

58 51.89 -0.0034 0.1419 0.1453 

59 51.32 -0.0063 0.2061 -0.2124 

60 46.84 0.0168 0.2636 -0.2468 

61 48.22 0.0079 0.3075 0.2996 

62 48.72 0.0022 0.3301 -0.3279 

63 44.26 0.0057 0.3429 -0.3372 

64 44.19 -0.0366 0.3864 -0.423 

Mean of Residual Rate -0.0703 

Standard Deviation of Residual 0.2302 

 

 

Table 4.5 reveals that the residual is small as well as the standard deviation, which 

indicates that the proposed model is of good quality to characterize the behavior of the 

tumor size as a function of age.  
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Figure 4.8 below depicts the trend of the changing rate of the malignant stomach tumor as 

a function of African American male patients’ age increases as one would expect. 

 

Figure 4.8: Changing Rate of stomach tumor size for African American male 

 

4.4 Other Male Malignant Stomach Tumor Size and Age 

 

In this section, we will propose a statistical model of all other male races stomach cancer 

tumor size as a function of age. Figure 4.9 below suggests that experiencing a change in 

the mean malignant tumor size every three or four years. Thus, we focus on taking the 

average size of the tumors within each three-year interval.  
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Figure 4.9: Mean of Malignant Stomach Tumor size for other Male 

 

Then the nonlinear regression function that characterized the stomach cancer tumor size 

as the function of age for other male race patients is given by Equation 4.8: 

 

         𝑇(𝑎) = 2829 + 34.83𝑎 − 0.1405𝑎2 − 1066 ∗ log(𝑎) , 40 ≤ 𝑎 ≤ 80.           (4.8) 

 

The evaluation of the quality of the proposed model with respect to 𝑅2, 𝑅2 adjusted and 

residual analysis are given in Table 4.6, below:     

 

 

 

 



85 

 

 

Table 4.6: Other Race Male Residual Analysis of Stomach Cancer Tumor Size 

Sum of Residuals 

Sum of Squared Residuals 

R-square 

Adjusted- R square 

-2.7755e-17 

0.7797 

0.88 

0.86 

 

Thus, the proposed model has a 𝑅2 of 0.88, 𝑅2 adjusted of 0.86, and the very small sum 

of residuals, which shows a very good quality to predict the malignant tumor size as a 

function of age. 

 

 

Figure 4.10: Estimated predicted model with 95% confidence interval for other male 
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Figure 4.10 above displays the predicted curve of mean malignant tumor size as a 

function of age with an approximate 95% confidence limits for other race male patients 

with stomach tumor. Thus, we can obtain the useful information such that a 55 years old 

other male race patient, the approximate expected malignant tumor size will be about 

44.92 millimeters and we are 95% confident that his tumor size will be 42.1 and 47.74 

millimeters. And on the other hand, if a patient has a 48 millimeters malignant tumor size 

then his age is almost 58 years old. 

 

The following Equation 4.9 is the derivative function of other race male malignant tumor 

size as a function of age. That is, 

 

                         𝑇′(𝑎) = 34.83 − 0.2810𝑎 −
1066

𝑎
, 40 ≤ 𝑎 ≤ 80.                               (4.9) 

 

Thus, if the physician wants to find the changing rate of the malignant tumor size at a 

particular age of his patients, he can use the above function to predict the changing rate of 

his patients’ malignant tumor size.  

 

We calculated the tumor size, Equation 4.8, the rate of changing, Equation 4.9, and the 

classical rate of change, CRC, Equation 4.3, the results are given in Table 4.7 below: 
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                   Table 4.7: Residual Analysis of Rate Change of Mean tumor size for Other male 

Age Tumor Rate of Change 

(CRC) 

Rate=𝑇′(𝑎) Rate of Residual 

50 48.2718 -0.0284 -0.54 0.5115 

51 45.6306 -0.0547 -0.4029 0.3482 

52 44.1222 -0.0330 -0.282 0.2489 

53 41.9277 -0.0497 -0.1762 0.1264 

54 43.9192 0.0475 -0.0847 0.1322 

55 44.9266 0.0229 -0.0068 0.0297 

56 46.2984 0.0305 0.0582 -0.0277 

57 46.1938 -0.0022 0.1112 -0.1135 

58 48.1448 0.0422 0.1526 -0.1104 

59 47.2388 -0.0188 0.1832 -0.2020 

60 45.8488 -0.0294 0.2033 -0.2327 

61 45.1314 -0.0156 0.2135 -0.2292 

Mean of Residual Rate 0.07378 

Standard Deviation of Residual 0.2310 

 

 

Table 4.7 above reveals that the residual is small as well as the standard deviation, and 

such results indicate a good quality of the proposed model to characterize the behavior of 

the malignant tumor size as a function of age.  
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Figure 4.11: Changing Rate of stomach tumor size for other male 

Figure 4.11 above depicts the trend of the changing size of the malignant stomach tumor 

for all other male race patients. For instance, if a 57 years old other male race patient, we 

can conclude that his changing rate of the malignant tumor size will be 𝑇′(57) = 0.111 

millimeters. 

 

4.5 White Female Malignant Stomach Tumor Size and Age 

 

In this section, we will propose a statistical model of the white Female malignant 

stomach tumor size as a function of age. Figure 4.12 below assists us to find that the 

curve has an inflexion point almost every three or four years of age. Therefore, we focus 

on the average size of the malignant tumor within each three-year interval.  
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Figure 4.12: Mean of Malignant Stomach Tumor size for white female 

 

The nonlinear regression function that characterizes the behavior of the stomach cancer 

tumor size as the function of age is given by the following Equation 4.10. That is, 

 

𝑇(𝑎) = 1.535 ∗ 105 + 111.9𝑎 − 6726 log(𝑎) 

                                        −1.294 ∗ 105𝑒
1

𝑎 − 0.303𝑎2, 40 ≤ 𝑎 ≤ 80.               (4.10) 

 

The evaluation of the quality of the proposed model with respect to 𝑅2, 𝑅2 adjusted and 

residual analysis are given in Table 4.8, below: 
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Table 4.8: White Female Residual Analysis of Stomach Cancer Tumor Size 

Sum of Residuals 

Sum of Squared Residuals 

R-square 

Adjusted- R square 

0.0012e-25 

0.949 

0.80 

0.78 

 

Thus, the 𝑅2 is 0.80, the 𝑅2 adjusted is 0.78 and the sum of residuals is small which 

indicates the proposed model shows a very good quality to predict the malignant tumor 

size as a function of age. 

 

 

Figure 4.13: Estimated predicted model with a 95% confidence interval for white female 

Figure 4.13 above is a graph of the model along with an approximate 95% confidence 

limits. Thus, we can obtain the important information such that a white female patient, 64 
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years old, the approximate expected malignant tumor size will be about 40.33 millimeters 

and we are 95% sure that her tumor size will be between 39.19 and 41.47 millimeters. 

And from the other side, if a white female patient with 41 millimeters malignant tumor 

size, then her age is almost 65 years old. 

 

The following Equation 4.11 measures the change of the mean malignant tumor size as a 

function of age. That is, 

 

            𝑇′(𝑎) = 111.9 −
6726

a
+ 1.294 ∗

105

𝑎2𝑒
1
𝑎

− 0.606𝑎, 40 ≤ 𝑎 ≤ 80.              (4.11) 

 

In order to evaluate the accuracy of our proposed model, we calculated the tumor size, 

Equation 4.10, the rate of change of mean tumor size, Equation 4.11, and the classical 

rate of change, CRC, Equation 4.3, and the results of the residual mean are given in Table 

4.9 below: 

 

 

 

 

 

                         

                   Table 4.9: Residual Analysis of Rate Change of Mean tumor size for White female 

Age Tumor Rate of Change Rate=𝑇′(𝑎) Rate of Residual 
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53 40.321 -0.0260 -0.1800 0.15398 

54 42.776 0.0608 -0.1742 0.23515 

55 40.823 -0.0456 -0.1591 0.11350 

56 40.201 -0.0152 -0.1369 0.12170 

57 37.194 -0.0747 -0.1094 0.03467 

58 38.176 0.0263 -0.0784 0.10483 

59 39.548 0.0359 -0.0453 0.08128 

60 42.094 0.0643 -0.0114 0.07583 

61 41.852 -0.0057 0.0220 -0.02783 

62 41.318 -0.0127 0.0543 -0.06708 

63 41.286 -0.0007 0.0843 -0.08516 

64 40.331 -0.0231 0.1115 -0.13468 

65 40.952 0.0154 0.1351 -0.11970 

66 40.991 0.0009 0.1545 -0.15364 

67 41.211 0.0053 0.1694 -0.16404 

68 40.771 -0.0106 0.1792 -0.18993 

69 39.833 -0.0229 0.1836 0.20666 

Mean of Residual Rate -0.0134 

Standard Deviation of Residual 0.1375 
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In Table 4.9 above, the residual is small as well as the standard deviation, which indicates 

that the proposed model is of good quality to characterize the behavior of the malignant 

tumor size as a function of age. 

 

Figure 4.14 below shows how the rate of the mean of the malignant tumor sizes changes 

as a function of the patients’ age increases as one would expect. For instance, if a white 

female patient, 61 years old, we can conclude that her changing rate of the malignant 

tumor size will be 𝑇′(61) = 0.022 millimeters. 

 

 

Figure 4.14: Changing Rate of stomach tumor size for white female 
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4.6 African American Female Malignant Stomach Tumor Size and Age 

 

In this section, we will propose a statistical model of African American female stomach 

tumor size as a function of age. Figure 4.15 below points out that the curve has a change 

in the mean malignant tumor size almost every three or four years. Thus, we focus on the 

average size of the tumor within each three-years interval. 

 

Figure 4.15: Mean of Malignant Stomach Tumor size for African American female 

 

The best fitted nonlinear regression function that characterized the stomach cancer tumor 

size as a function of age for African American female patients with stomach tumor is 

expressed in the following Equation 4.12: 

 

    

    𝑇(𝑎) = −2821 − 41.84𝑎 + 1151 ∗ log(𝑎) + 0.1846𝑎2, 40 ≤ 𝑎 ≤ 80         (4.12) 
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This model that characterizes the malignant tumor size as a function of age for African 

American female patients is a good model. It has an 𝑅2 of 0.90 with 𝑅2 adjusted of 0.87 

and a very insignificant residual mean. A summary of this information is given in Table 

4.10 below: 

 

Table 4.10: African American Female Residual Analysis of Stomach Cancer Tumor Size 

Sum of Residuals 

Sum of Squared Residuals 

R-square 

Adjusted- R square 

1.587e-17 

0.768 

0.90 

0.87 

 

 

Figure 4.16 below displays the predicted statistical regression curve of mean malignant 

tumor size as a function of age with an approximate 95% confidence interval for African 

American female patients with malignant stomach tumor. Thus, we could obtain the 

following information such that if an African American female patient, 43 years old, the 

approximate expected malignant tumor size will be about 51.12 millimeters and we are 

95% confident to conclude that her tumor size will be between 50.08 and 52.16 

millimeters. And on the other side, if an African American female with 54 millimeters, 

then her age is almost 79 years old.  
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Figure 4.16: Estimated predicted model with 95% confidence interval for African American female 

 

The following Equation 4.13 measures the change of the mean malignant tumor size as a 

function of age. That is, 

 

                           𝑇′(𝑎) = −41.84 +
1151

𝑎
+ 0.3692𝑎, 40 ≤ 𝑎 ≤ 80.              (4.13)  

 

Thus, we can use the above function to predict the changing rate of the malignant tumor 

size. For example, if a 68 years old patient, we can conclude that her changing rate of the 

malignant tumor size will be 𝑇′(68) = 0.192 millimeters. 

 

                  Table 4.11: Residual Analysis of Rate Change of Mean tumor size for African American female 

Age Tumor Rate of Change Rate=𝑇′(𝑎) Rate of Residual 
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56 51.255 0.0468 -0.611 0.658 

57 50.071 -0.023 -0.602 0.579 

58 46.199 -0.077 -0.581 0.504 

59 51.007 0.104 -0.548 0.652 

60 45.454 -0.108 -0.504 0.395 

61 46.937 0.032 -0.449 0.482 

62 42.874 -0.155 -0.385 0.229 

63 45.299 0.1422 -0.310 0.453 

64 41.670 -0.080 -0.226 0.146 

65 42.381 0.017 -0.134 0.151 

66 44.75 -0.179 -0.033 -0.146 

67 41.325 0.188 0.075 0.113 

68 42.761 0.034 0.192 -0.157 

69 49.727 0.162 0.315 -0.153 

70 48.577 -0.023 0.446 -0.469 

71 53.645 -0.104 0.584 -0.480 

72 51.295 -0.043 0.728 -0.772 

73 48.925 -0.046 0.878 -0.924 

74 43.092 -0.119 1.034 -1.154 

75 43.995 0.020 1.196 -1.175 

76 44.328 0.007 1.363 -1.356 

77 46.121 0.040 1.536 -1.496 

78 49.647 0.076 1.714 -1.637 

79 54.763 0.103 1.896 -1.793 

80 54.552 -0.003 2.083 -2.087 

Mean of Residual Rate -0.077 

Standard Deviation of Residual 0.8566 

 

In order to evaluate the accuracy of the proposed model, we calculated the classical rate 

of change of mean tumor size, CRC, by using equation 4.3, then compared it with the rate 
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of change, Equation 4.13. The results of the residual analysis are displayed in Table 4.11 

above. Table 4.11 reveals that the residual is quite small as well as the standard error. 

Such results indicate a good quality of the proposed model for the size of malignant 

tumor as a function of age. 

 Figure 4.17: Changing Rate of stomach tumor size for African American female 

 

Figure 4.17 above shows how the rate of the mean of the malignant tumor sizes changes 

as a function of the patients’ age increases as one would expect. For instance, a 70 years 

old African American female, we can conclude that her changing rate of the malignant 

tumor size will be 𝑇′(70) = 0.446 millimeters. 
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4.7 Other Female Malignant Stomach Tumor Size and Age 

 

In this section, we will propose a statistical model of all other race female malignant 

stomach tumor size as a function of age. Figure 4.18 below shows that the curve has a 

turning point for about every three or four years of age, and such result shifts our 

attention to average size of the tumor within each three-years interval. 

 

Figure 4.18: Mean of Malignant Stomach Tumor size for other female 

 

The nonlinear regression function that characterized the malignant stomach cancer tumor 

size as a function of age for other female patients is given by the following Equation 

4.14: 

 

 

𝑇(𝑎) = 29540 + 139.9𝑎 − 0.3870𝑎2 − 8262 ∗ log(𝑎) 
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                                        −1.594 ∗
105

𝑎
, 40 ≤ 𝑎 ≤ 80.                             (4.14) 

 

This model that characterizes the malignant tumor size as a function of age for other 

female race patients is a good model. It has an 𝑅2 = 0.84 with 𝑅2 adjusted of 0.80 and a 

very small residual mean. A summary of this information is given in Table 4.12 below. 

 

Table 4.12: Other Race Female Residual Analysis of Stomach Cancer Tumor Size 

Sum of Residuals 

Sum of Squared Residuals 

R-square 

Adjusted- R square 

-4.5598e-17 

0.5796 

0.84 

0.80 

 

 

Figure 4.19 below displays the predicted statistical regression curve of the mean 

malignant tumor size as a function of age with an approximate 95% confidence interval 

for other race female patients. For instance, if a 55 years old stomach cancer patient, the 

approximate expected malignant tumor size will be about 46.51 millimeters and we are 

95% confident that her malignant tumor size will be between 45.78 and 47.24 

millimeters.  
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Figure 4.19: Estimated predicted model with 95% confidence interval for other female 

 

The following Equation 4.15 shows the change of the mean malignant tumor size as a 

function of age. That is, 

 

         𝑇′(𝑎) = 139.904 − 0.7740𝑎 −
8262

𝑎
+ 1.594 ∗

105

𝑎2 , 40 ≤ 𝑎 ≤ 80.         (4.15) 

 

In order to evaluate the accuracy of the results, we calculated the classical rate of change 

of mean tumor size with respect to age by using equation 4.3, then compared with the 

result from equation 4.15. The results of the residual analysis are displayed in Table 4.13 

below. 
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                   Table 4.13: Residual Analysis of Rate Change of Mean tumor size for Other female 

Age Tumor Rate of Change 

(CRC) 

Rate=𝑇′(𝑎) Rate of Residual 

51 46.282 -0.0001 -0.2858 0.28577 

52 46.427 0.0031 -0.2789 0.28201 

53 44.380 -0.0440 -0.2586 0.21461 

54 45.388 0.0227 -0.2280 0.25077 

55 46.514 0.0248 -0.1899 0.21476 

56 46.133 -0.0081 -0.1466 0.13853 

57 45.967 -0.003 -0.1001 0.09711 

58 45.866 -0.0022 -0.0522 0.05000 

59 44.982 -0.0193 -0.0044 -0.01484 

60 47.585 0.0578 0.0417 0.01602 

61 46.208 -0.0289 0.0853 -0.11422 

62 46.216 0.0001 0.1251 -0.12505 

63 45.507 -0.0153 0.1603 -0.17569 

64 46.098 0.0130 0.1902 -0.17726 

65 45.733 -0.0079 0.2141 -0.22201 

66 44.995 -0.0170 0.2313 -0.24831 

67 45.889 0.0198 0.2415 -0.22178 

68 45.867 -0.0004 0.2443 -0.24831 

Mean of Residual Rate 0.00011 

Standard Deviation of Residual 0.19714 
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Table 4.13 reveals that the residual is quite small as well as the standard error. The results 

indicate that the proposed model has a good quality to describe the behavior of the mean 

malignant tumor size as a function of age. Figure 4.20 below shows the trend of the 

changing size of the stomach tumor as a function of patients’ age increases as one would 

expect. For instance, if a 64 years old patient, we can conclude that her changing rate of 

the malignant tumor size will be 𝑇′(64) = 0.1902 millimeters. 

 

 Figure 4.20: Changing Rate of stomach tumor size for other female 

 

4.8 Contributions 

 

In this chapter, we have developed the statistical models for the malignant stomach tumor 

size as a function of patient’s age for different types of race and gender, respectively.  
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 Statistical models of stomach cancer tumor size for different groups of race and 

gender are quite different, and these models consist of linear and nonlinear functions. 

We are able to estimate the rate of change in stomach cancer tumor size based on the 

proposed statistical models. 

 We have shown that the rate of mean stomach cancer tumor size, 𝑇′(𝑎), grows faster 

as the patients’ age increases based on all the proposed statistical models. 

Both of the residual analysis of the statistical models indicate that we have found 

high-quality models of stomach cancer tumor size as the function of patients’ age. Such 

outstanding results could assist the stomach physicians to make more accurate decisions. 
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Chapter 5 

Stomach Cancer Treatment Effectiveness 

 

5.1 Introduction 

There are not so many studies that are related to the stomach cancer treatment effects. But 

we know that some studies can be found related to whether radiation or surgery shows a 

good effect to other cancer patients like breast cancer patients with respect to relapse time 

(Cong, 2010). However, the side effects including fatigue, mild skin reactions, upset 

stomach, and loose bowel movements from radiation therapy or surgery make it desirable 

to avoid surgery or radiation unless it is necessary. Therefore, it is very important for the 

physicians to identify the patients who could get benefit from surgery or radiation and 

those who could be at the very risk level to receive those treatments. In our study, we 

perform the nonparametric, parametric, and decision tree survival analysis to address this 

important question. Our parametric and nonparametric analysis identified that the overall 

advantage of combined radiation and surgery over radiation only in respect to the 

probability of survival times. With the utilization of the decision tree analysis in 

conjunction with survival analysis of survival time of stomach cancer patients, we have 

concluded that the subgroups of the two treatment groups affect the decision-making 

process in choosing the suitable treatment for stomach cancer patients. 
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5.2 Stomach Cancer Data 

From 2004 to 2013, a total of 2786 patients were diagnosed, of which 2004 are male and 

782 are female patients. For male patients, 595 patients received radiation only and 1409 

received both radiation and surgery. For female patients, 183 patients received radiation 

only and 599 received both treatments. 

 

This censored data consists of 538 uncensored observations for male patients and 286 

uncensored observations for female patients. On the other hand, it has 1466 censored 

observations for male and 496 censored observations for female patients as shown in 

Figure 5.1. The censored survival times are most likely due to two reasons: 1. The 

stomach cancer patients moved out of the study area; 2. The individual survived after the 

end of the study period. For male patients, 595 patients had the radiation alone and 1409 

took a combination of radiation and surgery. For female patients, 183 took radiation only 

Figure 5.1: Patient treatments data 

patients

(2786)

Male

(2004)

Radiation only

(595)

Uncensored

(171)

Censored

(424)

Radiation and 
Surgery

(1409)

Uncensored

(367)

Censored

(1042)

Female

(782)

Radiation only

(183)

Uncensored

(83)

Censored

(100)

Radiation and 
Surgery

(599)

Uncensored

(203)

Censored

(396)
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and 599 took both radiation and surgery. Since nearly 70% of the data are censored 

observations, we take into consideration two datasets for later analysis. 

 

5.3 Nonparametric Survival Analysis 

The Kaplan-Meier estimator is probably the most popular approach. We can use the 

empirical survival function: when there is no censoring, the general formula is: 

 

Ŝ(t) =
# individuals with T > t

total sample size
=

1

n
∑ I(Ti > t)

n

i=1

. 

If there is censoring, the method is based on the ideas of conditional probability.so that  

 

Ŝ(t) = ∏ (1 −
dj

rj
) ,

rj<t

 

where dj is the number of deaths at time tj and rj is the number of risk at time tj. We can 

use the most common method Greenwood’s formula to calculate the variance of the KM 

estimator: 

var (Ŝ(t)) = (Ŝ(t))2 ∑
dj

(rj − dj)rj
rj<t

. 
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Figure 5.2: Survival curves of two treatments for male patients 

 

Figure 5.3: Survival curves of two treatments for female patients 
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Kaplan-Meier estimates of the survival curves of survival time for the two treatment 

groups for male and female patients are shown in Figure 5.2 and 5.3, respectively. In 

Figure 5.2 and 5.3, the two curves show they are significantly different and do not cross 

each other. Thus, it shows the patients who have surgery and radiation always have the 

better survival rate than that of patients who only receive radiation treatment. 

 

An important advantage of the Kaplan–Meier curve is that it can take into account some 

types of censored dataset, which exists if a patient withdraws from a study, is lost to 

follow-up, or is alive without event occurrence at last follow-up. On the plot, small 

vertical tick-marks indicate individual patients whose survival times have been right-

censored. When no truncation or censoring occurs, the Kaplan–Meier curve is the 

complement of the empirical distribution function. The Kaplan-Meier curve is the most 

common method to describe survival characteristics. The probability of surviving to any 

point is estimated from the cumulative probability of surviving each of the preceding 

time intervals. Although the probability calculated at any given interval is not very 

accurate because of the small number of events, the overall probability of surviving to 

each point is more accurate. However, Kaplan-Meier plot is not commonly used to 

compare the true mean effectiveness of the two treatments. In the present study, we 

perform actual nonparametric analysis utilizing Wilcoxon (Wilcoxon, 1963) rank sum 

test and Peto & Peto (Peto, 1972) modification of the Gehan-Wilcoxon test (Gross and 

Clark, 1975). By utilizing the two different nonparametric tests, we found the information 

in Table 5.1 below, which shows that the combination of the two treatments (radiation 
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and surgery) is more effective than using the single treatment (radiation) which is 

consistent with Figure 5.2 and 5.3. 

 

Table 5.1: Test the difference of means of two treatments for male and female patients 

 Male Female Male Female Male Female 

 Chi-Square Degree of freedom P-value 

Log-Rank 92 96.5 1 1 7.963e-22 8.805e-23 

Peto & Peto 104 111 1 1 1.967e-24 6.130e-26 

 

 

5.4 Parametric Survival Analysis 

In a parametric model, we assume the distribution of the survival curve to be known and 

the model are specified. Then the hazard function and the effect of any covariates can be 

obtained. First, we analyzed the censored dataset and found the generalized gamma 

distribution can be best characterized the behavior of survival time for male and female 

patients in different treatment groups, and the corresponding maximum likelihood 

estimator (MLE) is shown in Table 5.2. A graphical presentation of the cumulative 

distribution function (CDF) for male and female patients in radiation treatment group are 

shown by Figure 5.4 and 5.5 where the Kaplan-Meier curve and its 95% confidence band, 

as well as CDF of the fitted generalized gamma distribution, are plotted. 
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Table 5.2: Estimated parameters and log-likelihood of Generalized Gamma Distribution 

 Male Female Male Female Male Female Male Female 

 mu Sigma Q Log-Likelihood 

Total 3.977 3.482 2.139 1.932 0.850 0.970 -2981 -1507.9 

Radiation 2.893 2.271 2.002 1.545 1.083 0.862 -805.5 -340.8 

Radiation 

and Surgery 

3.851 3.277 1.897 1.562 1.374 1.812 -2108 -1109.5 

 

 

 

 

Figure 5.4: Fitted General Gamma Distribution of Radiation group for male patients 
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Figure 5.5: Fitted General Gamma Distribution of Radiation group for female patients 

 

From Figures 5.4 and 5.5 above, the generalized gamma probability distribution seems to 

be a good fit for the survival time of male and female stomach cancer patients in the 

radiation treatment group. The fitted survival plots of the generalized gamma probability 

distribution are very close to the Kaplan-Meier survival plots and they are inside the 95% 

confidence limits of Kaplan-Meier survival plots. 
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Figure 5.6: Fitted Distribution curve of Radiation and Surgery group for male 

 

Similarly, we perform the same parametric analysis for male and female patients in the 

combination of radiation and surgery treatment group, and based on the goodness-of-fit 

test results, we have identified the generalized gamma distribution is the best fitted 

probability density function for the patients in both radiation and surgery treatment group. 

The corresponding maximum likelihood estimators are given in Table 5.2 and the plots of 

the cumulative distribution function are shown in Figure 5.6 and 5.7.  
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Figure 5.7: Fitted Distribution curve of Radiation and Surgery group for female 

 

From Table 5.2, we know the survival time of the two treatment groups are both from the 

generalized gamma probability distribution. Then the log-likelihood ratio test could be 

performed to test the hypothesis, that is, 

𝐻0: 𝜇1 = 𝜇2 = 𝜇  𝑣𝑠.   𝐻1: 𝜇1 ≠ 𝜇2. 

And the log-likelihood ratio test statistics is given below, That is, 

𝑇 = −2[𝑙(𝜇,𝜇) − 𝑙(𝜇1 − 𝜇2)]. 

 

After the calculation, we found the test statistics are 𝑇1,𝑑𝑓=1 = 14.07 (male) and 

𝑇2,𝑑𝑓=1 = 12.27 (female), and from the Chi-square distribution we found that the p-value 

are 0.0001 and 0.0004 for male and female patients respectively. Therefore, we can 

conclude that there is a significant difference between the two treatment groups for male 
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and female patients, which is consistent with the previous conclusion when using the 

nonparametric test.  

 

On the other side, for the uncensored dataset, we have 171 male patients in radiation 

treatment only and 367 male patients in radiation and surgery group. For female patients, 

we have 83 patients with radiation only and 203 patients are treated with the combination 

of radiation and surgery. Through goodness-of-fit tests which included Chi-Square, 

Kolmogorov-Smirnov and Anderson-Darling tests, we have identified that the best fitted 

parametric distribution function are general Pareto probability distribution for male 

patients with radiation only, log-logistic probability distribution for male patients with 

both radiation and surgery, Weibull distribution for female patients treated with radiation 

only and lognormal probability distribution for female patients in both radiation and 

surgery group. We have already identified the consistent results from the parametric and 

nonparametric test for censored database. Then we were only considering the censored 

data for further analysis. 

 

5.5 Decision Tree Analysis 

We are applying the decision tree analysis to partition the subject data as a function of the 

malignant tumor size and age of the patient. Decision tree analysis can be used to 

homogenize the information by separating the database into several different sub-groups 

based on similarity of survival time to treatment. Decision trees are helpful, not only 

because they are graphics that help you “visualize” what you are thinking, but also 

because making a decision tree requires a systematic, documented thought process. For 
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instance, survival decision analysis provide the natural identification of predictive groups 

among stomach cancer patients, and the representation tree plots can help physicians to 

make early decisions regarding the treatments. 

 

We performed the exponential decision tree analysis (Bacchetti, 1995) to reduce the 

impurity within nodes by partitioning based on the risk factors using a specified loss 

function. We denote the hazard rate within a given node as ℎ(𝑦) = 𝜆𝑗 for all 𝑦 in group 𝑗, 

thus the survival function within each node will be an exponential function. The loss 

function for the node 𝑡 is shown by the following function, that is, 

 

𝑅(𝑡) = −𝐿̂(𝑡) = 𝐷𝑡 − 𝐷𝑡 log (
𝐷𝑡

𝑌𝑇
) 

 

Where 𝐷𝑡 = ∑ 𝑑𝑖𝑖  is the number of complete observations and 𝑌𝑡 = ∑ 𝑦𝑖𝑖  is the total 

observed event time. 

 

Our goal is to compare the two different treatments together instead of single treatment 

only. We let the maximum tree depth to 3 and the complexity parameter 0.02. The trees 

of radiation only and both radiation and surgery treatment for male are shown in Figure 

5.8 and Figure 5.9, respectively. 
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Figure 5.8: the trees of male patients in radiation group 
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Figure 5.9: the trees of male patients in radiation with surgery group 

 

From Figure 5.8 and 5.9, we can see that the radiation treatment group of male patients is 

divided into 6 subgroups from left to right, which are denoted by R1, R2, …, R6 for 

future analysis and both the radiation and surgery treatment group patients are divided 

into 4 subgroups from left to right, which are denoted by RS1, RS2, RS3, RS4. For 

instance, R1 group means the male patients who are aged above 76 and whose tumor size 
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are bigger than 44 millimeters take the radiation treatment only. And R5 group indicates 

that the male patients who are aged below 76 and whose tumor size between 28 and 58 

millimeters. Also for the patients took both radiation and surgery, the RS1 group means 

the male patients who are aged above 70 and tumor size are bigger than 40 millimeters. 

As well in Figure 5.10 and 5.11, for female patients, the radiation treatment group is 

divided into 7 subgroups, R1, …, R7, and the radiation and surgery group is split to 6 

subgroups, RS1, …, RS6. 

 

Figure 5.10: the trees of female patients in radiation group 
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For instance, from Figure 5.10 above, R3 group means the female patients who aged 

above 84 and whose tumor size between 34 and 56 millimeters take the radiation only. 

And R6 group means the female patients who aged less than 74 and whose tumor size 

between 24 and 34 millimeters.   

 

Figure 5.11: the trees of female patients in radiation with surgery group 
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From Figure 5.11 above, we could know that the RS1 group means the female patients 

who aged above 68 and with the tumor size bigger than 48 millimeters took the radiation 

and surgery together. And the RS5 group means the female patients who aged less than 

62 with tumor size between 40 and 48 millimeters. 

 

Figure 5.12: Survival curves of male patients in different subgroups 

 

In Figure 5.12 above, we plot the Kaplan-Meier survival curves of different subgroups 

together to compare the treatment effect for different subgroup patients. Using the 

decision tree analysis, we can clear to see the survival probability for each different 

subgroup patients. For example, a male patient whose age is below 76 and tumor size is 
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between 58 and 60 millimeters with radiation treatment only would have the lowest 

survival probability since the patients in R4 are the lowest line in Figure 5.12. 

 

Therefore, we could group the male stomach cancer patients into three different 

subgroups which identify the effectiveness of treatment with radiation versus radiation 

and surgery by using the results of the decision tree analysis. For instance, the survival 

plot of RS1 is very close to R5, which suggests us that for male patients whose age is 

between 70 and 76 with tumor size between 40 and 58 millimeters, the combination of 

radiation and surgery shows no advantage over radiation only. Thus, the physicians 

should guide the patients not to consider receiving surgery. From Figure 5.12, we 

summarize below when the treatment with radiation only and radiation with surgery are 

almost equally effective: 

 

(1). RS4, RS3 

 (2). R2, R3, R5, R6, RS1, RS2 

 (3). R4, R1  

Thus, we found very important results which can recommend stomach doctors to give 

information to their patients whether they can receive radiation only instead of receiving 

radiation with surgery when they are equally effective to stomach cancer patients in the 

same age level with certain size of tumor. 

 

Similarly, we plot the survival curves of each subgroup for female patients in Figure 5.13 

by using the decision tree analysis results from Figure 5.10 and 5.11. We also group 
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female stomach cancer patients into three clusters for identifying the effectiveness of 

treatment with radiation versus radiation and surgery. Below are the three clusters: 

(1). RS5, RS6 

(2). R6, R7, RS1, RS2, RS3, RS4 

(3). R1, R2, R3, R4, R5  

During each cluster, they have almost the same treatment effect for female patients, our 

results would help the physicians to make the decision for stomach cancer patients who 

could only do treatment with radiation when the patients are in the appropriate age and 

tumor size intervals. 

 

Figure 5.13: Survival curves of female patients in different subgroups 
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5.6 Contributions 

 

In this study, we perform the nonparametric and parametric analysis for comparing the 

treatment effect for male and female stomach cancer patients, respectively. Our result 

shows that the patients who receive the combination of radiation and surgery have a 

significant effect than the patients who receive the radiation treatment alone regarding the 

survival time of stomach cancer patients. However, the decision tree analysis gives us the 

more powerful result. Based on the decision tree analysis, we found a more detailed 

treatment difference between the subgroups. For instance, for male patients whose age is 

between 70 and 76 with tumor size between 40 and 58 millimeters, the combination of 

radiation and surgery shows no advantage over radiation only, which can help the 

physicians to choose the suitable treatment for stomach cancer patients. 
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Chapter 6 

Future Research 

 

Stomach cancer, the third leading cause of death in the world, not much research has 

been done in comparing to Breast cancer, Lung cancer, Colon cancer, among others. The 

study in this dissertation opens up several directions for future research. One direction 

concerns the involvement of identifying the risk factors. What causes stomach cancer? 

We need to identify the risk factors that cause stomach cancer.  Unfortunately, we do not 

have the necessary data to develop such a model to statistically identify the significant 

risk factors, interactions, so that we will be able to predict if a patient is a potential 

candidate for stomach cancer. Once such data is available we will pursuit the 

development of such an analytic model. 

 

In addition to parametric analysis, we believe that Bayesian analysis is applicable in the 

behavior of the malignant tumor size in the stomach. Preliminary studies of the present 

data indicate a small significance difference in the approximate maximum likelihood 

estimates of the parameters that drive the probability distribution function. With the 

applicability of Bayesian analysis, we will improve the estimates of the malignant tumor 

size. For instance, we found the three-parameter Weibull probability distribution can be 

best describe the behavior of malignant tumor size for white male stomach patients. First, 

we could use bootstrapping method to select the random sample. For each sample set, we 
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will have appropriate approximate estimates for each of the three parameters. Then, we 

can calculate the mean, standard deviation, variance, kurtosis, among others. Next, we 

can identify the one with largest variance, to be a random variable. Parametric analysis of 

the approximate estimates of the chosen parameter that is treated as random variable 

could help us to identify the prior probability distribution. For the loss function, we could 

use the most commonly used mean square error loss function, Higgins-Tsokos (Higgins 

and Tsokos, 1981) loss function. Then we proceed with Bayesian analysis to obtain 

Bayesian estimates of the reject parameter that will better than the parametric estimates.  

 

Another direction concerns the modeling approach to survival analysis. Since our SEER 

dataset only contains patients’ age, tumor size, race, gender and treatment, which is very 

difficult for us to apply the Cox proportional hazard model due to the strong assumptions 

that need to be verified. Thus, we could develop a statistical model, 𝑅𝑡 = 𝑓(𝑥1, 𝑥2, … 𝑥𝑛), 

with the response being the time of death of a stomach cancer patient and the independent 

variables are the cause of him/her death. Thus, having such a statistical model, we would 

predict the time of death of a given patient as a function of the patients’ information. 

Moreover, utilizing surface analysis controls the significant variables and enables us to 

maximize the survival time for stomach cancer patients. 
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