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ABSTRACT 

The objective of the present study is to investigate key aspects of ovarian and breast 

cancers, which are two main causes of mortality among women. Identification of the true 

behavior of survivorship and influential risk factors is essential in designing treatment protocols, 

increasing disease awareness and preventing possible causes of disease. There is a commonly 

held belief that African Americans have a higher risk of cancer mortality. We studied racial 

disparities of women diagnosed with ovarian cancer on overall and disease-free survival and 

found out that there is no significant difference in the survival experience among the three races: 

Whites, African Americans and Other races. Tumor sizes at diagnosis among the races were 

significantly different, as African American women tend to have larger ovarian tumor sizes at the 

diagnosis. Prognostic models play a major role in health data research. They can be used to 

estimate adjusted survival probabilities and absolute and relative risks, and to determine 

significantly contributing risk factors. A prognostic model will be a valuable tool only if it is 

developed carefully, evaluating the underlying model assumptions and inadequacies and 

determining if the most relevant model to address the study objectives is selected. In the present 

study we developed such statistical models for survival data of ovarian and breast cancers. We 

found that the histology of ovarian cancer had risk ratios that vary over time. We built two types 

of parametric models to estimate absolute risks and survival probabilities and to adjust the time 

dependency of the relative risk of Histology. One parametric model is based on classical 

probability distributions and the other is a more flexible parametric model that estimates the 
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baseline cumulative hazard function using spline functions. In contrast to women diagnosed with 

ovarian cancer, women with breast cancer showed significantly different survivorship among 

races where Whites had a poorer overall survival rate compared to African Americans and Other 

races. In the breast cancer study, we identified that age and progesterone receptor status have 

time dependent hazard ratios and age and tumor size display non-linear effects on the hazard. We 

adjusted those non-proportional hazards and non-linear effects by using an extended Cox 

regression model in order to generate more meaningful interpretations of the data. 
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CHAPTER 1 

INTRODUCTION 

We begin with an overview of ovarian and breast cancer along with the past statistical 

analysis done on the subject matter. Then we discuss the commonly used survival analysis 

methods in cancer research. Finally, we introduce the main focus of this dissertation: cancer 

survival analysis with emphasize to flexible statistical modeling of time-to-event data.  This 

focus is critical to treatment protocol decisions, disease awareness, etc. but is not addressed 

generally in health data research.  

1.1 What is Cancer? 

In our bodies, normal cells divide in a systematic way. They die when they are worn out 

or damaged, and new cells take their place. Cancer starts when cells grow in an uncontrolled 

behavior and crowd out normal cells. This makes it difficult for the body to work in the typical 

way. These cancer cells can travel through blood or the lymph system and spread to other areas 

of the body [1]. Cancer can start any place in the body and it is usually named for the body part 

in which it started.  This is called the primary site. Most cancers form a lump called a tumor. 

Pathologists take a sample of these lumps to test whether it is cancer (malignant tumors) or not 

(benign lumps). 

1.2 Ovarian Cancer 

According to statistics currently cited by the American Cancer Society, about 22,440 

women will receive a new diagnosis of ovarian cancer in 2017 and about 14,080 women will die 
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from ovarian cancer during 2017. Ovarian cancer ranks fifth in cancer deaths among women, 

accounting for more deaths than any other cancer of the female reproductive system [1]. Even 

with advances in treatment options for ovarian cancer during the past three decades, 

improvement in survival for women with ovarian cancer remains challenging [2]. It is difficult to 

detect early stage ovarian cancer as it doesn’t have clear symptoms and most of the time they are 

mistakenly identified as other conditions such as constipation or irritable bowel syndrome. 

However, if it is found earlier, ovarian cancer can be treated successfully using surgery or 

radiation. In advanced stage ovarian cancer, symptoms such as abdominal pain, bloating, weight 

loss and constipation may occur. Ovarian cancer can start from one of the three tissue types that 

comprise the organ. Epithelium tumors begin in the thin layer of tissue that covers the outside of 

the ovaries and accounts for the majority of ovarian cancers. Stromal tumors arise from 

connective tissue cells that hold the ovary together and produce female hormones. Germ cell 

tumors start on the tissues that produce eggs on the inside of the ovary. Initially, diagnosis of 

ovarian cancer is usually done with a physical exam followed up by imaging and blood tests. 

Surgery may be recommended by the physician. Similar to other common cancer types, ovarian 

cancer has four stages, namely, I: cancer is in one or both ovaries, II: cancer has spread to other 

parts of the pelvis, III: cancer has spread into the abdomen and IV: cancer has spread to the 

outside of the abdomen. Typically, treatment for ovarian cancer is surgery to remove the ovaries 

and other affected tissue. Chemotherapy is mostly used after surgery. Some of the risk factors of 

ovarian cancer are age, inheritance, race, fertility treatment, and the presence of polycystic 

ovarian syndrome [3], [4]. A group of researchers who have studied overall survival and 

recurrence-free survival of early stage ovarian cancer patients have identified age, tumor grade 

and stage as important pathological prognostic factors. Also, they have found that race and 
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histology were not significantly associated with survival [5].  Another group of researchers who 

studied distant metastases of ovarian cancer have found that stage, grade and lymph node 

involvement are associated with ovarian cancer [6]. A study on young women who have been 

diagnosed with ovarian cancer found that tumor size and grade significantly contribute to 

disease-free survival of ovarian cancer [7]. 

1.3 Breast Cancer 

Breast cancer is the second leading cause of cancer death in women. According to the 

statistics currently cited by the American Cancer Society, about 252,710 women will receive a 

new diagnosis of breast cancer and about 40,610 women will die from breast cancer. Breast 

cancer has been studied worldwide to improve survival by focusing on finding causes, reducing 

risks, developing new diagnostic tests and creating new treatment protocols [8]. The risk factors 

for breast cancer include age, inheritance and lifestyle behaviors such as diet and exercise. 

Researchers have constructed statistical models to predict a woman’s risk of getting breast 

cancer. These models give a rough estimate of breast cancer risk based on the factors that are 

used to develop the model. Among the breast cancer studies that focused on risks of various 

factors on survival, [9] shows that incidence of breast cancer in Caucasian women is higher than 

African-American women. However, mortality rates for African-Americans are higher than for 

Caucasian women. A review study of them reveals that mortality rate adjusted for other factors 

explains these racial disparities. They found that African American women diagnosed at similar 

disease stage and treated comparatively to Caucasian women, likely to experience similar breast 

cancer risks and survival. It is known that stage alone will not estimate the risk of different 

outcomes related to cancer, and other biological factors related to the tumor should be used to 

assess the risks. Presence of hormone receptors is an important in prognosis nd can help in 
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determining appropriate treatments for breast cancer patients [10]. Age is also an important risk 

factor in breast cancer survival rates. The effect of age on mortality may not be linear; other 

patterns may occur. According to [11] who compared two age groups (less than 40 years and 

greater than equal to 40 years),the younger age group has poorer survival than the older age 

group. [11] found that higher proportions of African American and single patients, as well as 

those diagnosed at later stages and treated by mastectomy occurred in the younger age group 

compared to the older age group. 

1.4 Survival Analysis 

Survival analysis focuses on time-to-event data, commonly called survival times. In the 

healthcare field, survival times can typically be defined as time to death, time to relapse, time to 

a side effect, etc. in studies such as clinical trials, retrospective cohort studies, and prospective 

cohort studies. Methods other than standard regression analysis are needed to analyze survival 

times because they consist of incomplete survival time data sets. That is, for some subjects, the 

exact survival time is unknown but some information is available. In survival analysis this is 

called censoring. Censoring occurs when a subject doesn’t experience the event before the 

follow-up period ends, a person is lost to follow-up during the study period or a subject 

withdraws from the study. When true survival time is equal to or greater than observed survival 

time, it is called right censored. Most censored data are right censored. When true survival time 

is less than the observed survival time it is called left censored. 

Let the survival time denoted by the random variable T (≥ 0). Then the probability that a 

given subject will have a survival time less than or equal to some given value t is denoted by 

                                                                    𝐹(𝑡) = 𝑃(𝑇 ≤ 𝑡). (1.1) 
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The probability of surviving a time greater than t is given by 

𝑆(𝑡) = 𝑃(𝑇 > 𝑡) = 1 − 𝐹(𝑡).                                       (1.2) 

Another quantity of interest in survival analysis is the hazard function, ℎ(𝑡).  This denotes the 

instantaneous potential per unit time for the event to occur, given that the subject has survived up 

to time t.  

                                                           ℎ(𝑡) = lim∆𝑡→0
𝑃(𝑡<𝑇≤𝑡+∆𝑡|𝑇>𝑡)

∆𝑡
.         (1.3) 

Relationship between S(t) and h(t): 

ℎ(𝑡) = lim
∆𝑡→0

𝑃(𝑡 < 𝑇 ≤ 𝑡 + ∆𝑡|𝑇 > 𝑡)

∆𝑡
 

= lim
∆𝑡→0

𝑃(𝑡 < 𝑇 ≤ 𝑡 + ∆𝑡)/𝑃(𝑇 > 𝑡)

∆𝑡
 

= lim
∆𝑡→0

𝑃(𝑡 < 𝑇 ≤ 𝑡 + ∆𝑡)/∆𝑡

𝑃(𝑇 > 𝑡)
 

                                        ℎ(𝑡) = 
𝑓(𝑡)

𝑆(𝑡)
, (1.4) 

where f(t) is the probability density function of T. 

Since 

ℎ(𝑡) = 
𝑓(𝑡)

𝑆(𝑡)
= 

𝜕𝑆(𝑡)/𝜕𝑡

𝑆(𝑡)
= −

𝜕𝑙𝑜𝑔𝑆(𝑡)

𝜕𝑡
,  

the cumulative hazard function H(t) can be written as 

                                                     𝐻(𝑡) = ∫ ℎ(𝑢)𝑑𝑢 = −𝑙𝑜𝑔𝑆(𝑡).
𝑡

0
 (1.5) 

It follows that 
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                                                               𝑆(𝑡) = exp [−𝐻(𝑡)]. (1.6) 

The next step is to estimate the survival function, 𝑆(𝑡). This can be done in different ways. First, 

we’ll present a commonly used non-parametric method called product-limit estimator. In Chapter 

3, we’ll discuss how it can be estimated using probability distribution functions.  

1.4.1 Product-Limit Estimator of the Survival Function 

Product limit estimator is used to measure the proportion of patients living for a certain 

amount of time after diagnosis. The importance of this estimator is that it takes censoring into 

account. Let k denote the total number of failures in the sample and 𝑡1 ≤ 𝑡2 ≤ ⋯ ≤ 𝑡𝑘  denote 

the ordered failure times.  

Let di be the number of failures at time ti and ni be the number of subjects at risk at time ti. (ni = 

number of failure or censoring times greater than ti). Then the product-limit estimator of the 

survival function is estimated by 

                                                              𝑆(𝑡)̂ = ∏
𝑛𝑖−𝑑𝑖

𝑛𝑖
𝑡𝑖≤𝑡 . (1.7) 

1.4.2 Cox Proportional Hazard Model 

One of the goals of survival analysis is to assess the relationship between explanatory 

variables and survival/hazard. The Cox Proportional Hazard (Cox PH) model [12] is the most 

commonly used method of statistical modeling of survival data. It models the hazard of a subject 

at time t with a given set of covariate values. 

Let ti be the failure time for subject i, where i = 1, 2, ..., n. Then according to the Cox PH model, 

the hazard function for subject i at time ti (> 0) conditional on the set of covariates  

𝒁𝒊 = (𝑍1𝑖, … . , 𝑍𝑝𝑖) is given by 
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                                             ℎ𝑖(𝑡𝑖|𝒁𝒊) =  ℎ0(𝑡)exp (𝛽1𝑍1𝑖, + ⋯ . + 𝛽𝑝𝑍𝑝𝑖). (1.8) 

where ℎ0(𝑡) is the baseline hazard function and denotes the hazard function when all covariate 

values take zero (reference values) and 𝜷 = (𝛽1, … . , 𝛽𝑝) are the corresponding regression 

coefficients for Z, the given covariates.  

The reason that this model is appealing is that the knowledge about the baseline hazard function 

is not required. The main outcome of this model is the estimated hazard ratios. Since baseline 

hazard is unknown, this model is called a semi-parametric model.  

Proportional hazards assumption: Let the model given in Equation (1.8) consists of one 

explanatory variable Z which takes values 1(say, treatment) and 0 (say, control). Then the hazard 

rate ratio for a subject with covariate value 1 versus a subject with covariate value 0 at time t is 

given by 

𝐻𝑅(𝑡) =  
 ℎ(𝑡|𝑍 = 1)

 ℎ(𝑡|𝑍 = 0)
 

=
 ℎ0(𝑡)exp (𝛽)

 ℎ0(𝑡)
 

                                                            = exp (𝛽).          (1.9)                                                      

This implies that the ratio of the two hazards is a constant which does not depend on time, t. That 

is, the hazards of the two groups remain proportional over time. This is the main assumption in 

the Cox PH model.  

Parameter estimation of the Cox PH model is done by partial likelihood function [12] given by 

𝐿(𝜷) = ∏ [
exp (𝛽1𝑍1𝑖 , + ⋯ . + 𝛽𝑝𝑍𝑝𝑖)

∑ exp (𝛽1𝑍1𝑗, + ⋯ . + 𝛽𝑝𝑍𝑝𝑗)𝑗∈𝑅(𝜏𝑖)
]

𝛿𝑖
𝑛

𝑖=1
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                                                   = ∏ [
exp (𝛽1𝑍1𝑖,+ ⋯.+ 𝛽𝑝𝑍𝑝𝑖)

∑ exp (𝛽1𝑍1𝑗+⋯.+ 𝛽𝑝𝑍𝑝𝑗)𝑗∈𝑅(𝜏𝑖)
]𝑘

𝑖=1  (1.10) 

where 𝑅(𝜏𝑖) is the risk set at the failure time of subject i and 𝛿𝑖 is an event indicator which is one 

if failure time is observed (uncensored) and zero otherwise (censored failure time). n is the 

number of individuals and k is the number of distinct failure times. This is independent of the 

baseline hazard function. Inferences can be made by treating this as regular likelihood. The log 

partial likelihood is given by 

         𝑙(𝜷) = 𝑙𝑜𝑔 {∏ [
exp (𝛽1𝑍1𝑗,+ ⋯.+ 𝛽𝑝𝑍𝑝𝑖)

∑ exp (𝛽1𝑍1𝑗+⋯.+ 𝛽𝑝𝑍𝑝𝑗)𝑗∈𝑅(𝜏𝑖)
]𝑘

𝑖=1 } 

                 = ∑ {(𝛽1𝑍1𝑖, + ⋯ . + 𝛽𝑝𝑍𝑝𝑖) − 𝑙𝑜𝑔[∑ exp (𝛽1𝑍1𝑗, + ⋯ . + 𝛽𝑝𝑍𝑝𝑗)𝑗∈𝑅(𝜏𝑖) ]}𝑘
𝑖=1  

                 = ∑ 𝑙𝑗(𝜷)𝑘
𝑖=1 , (1.11) 

where 𝑙𝑖(𝜷) is the log partial likelihood contribution at the i
th

 ordered failure time. 

The partial likelihood score equations are given by  

                                                                  𝑈(𝜷) =
𝜕

𝜕𝜷
𝑙(𝜷), (1.12) 

and the maximum partial likelihood estimates can be found by solving 𝑈(𝜷) = 0.  

1.4.3 Assessing the Adequacy of Cox PH Model 

In some cases, the data will not satisfy the PH assumption and hence use of this model to 

describe the data will be misleading. Therefore, once we fit this model to the data we need to 

verify the proportional hazards assumption before proceeding to the model interpretations. There 

are a few residual-based methods that can be used to evaluate this assumption which we will 
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present in the next section. Similar to standard regression models, the linearity assumption of 

continuous covariates and the existence of extreme values should be assessed, too. Figure 1.1 

shows the general schematic diagram of statistical model building of survival data. The setting of 

the Cox PH model makes it difficult to define a residual that is similar to observed-fitted type 

residual as in standard regression models. This has led to development of different types of 

residuals which addresses various model features and assumptions. These methods are based on 

four residuals, namely Martingale residuals, Schoenfeld residuals, Cox-Snell residuals and score 

residuals.  

Figure 1.1 Process of Model Building for Survival Data 
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1.4.3.1 Overall Model Adequacy  

First, overall goodness-of-fit of the model was assessed using the Cox -Snell residual plot 

[13]. The idea is to plot Cox -Snell residuals versus the cumulative hazard function of the Cox-

Snell residuals. Let 𝑟𝐶𝑖 be the Cox-Snell residuals for the i
th

 individual. If 𝑟𝐶𝑖 ~exponential(1) 

then the survival function of 𝑟𝐶𝑖 is  

𝑆(𝑟𝐶𝑖) = 𝑒−𝑟𝐶𝑖 

and the cumulative hazard function is 

𝐻(𝑟𝐶𝑖) = −𝑙𝑜𝑔𝑆(𝑟𝐶𝑖). 

The is implies 

𝐻(𝑟𝐶𝑖) = 𝑟𝐶𝑖  . 

Hence, the plot of 𝑟𝐶𝑖 vs. 𝐻(𝑟𝐶𝑖) should yield a straight line with unit slope if the assumption of 

𝑟𝐶𝑖 ~exponential(1) is satisfied. Cox-Snell residual for i
th

 individual can be estimated by 

                                                  𝑟𝐶𝑖̂ = 𝐻(𝑡|𝒁𝒊)̂ =  𝐻0(𝑡)̂ exp (𝜷̂′𝒁𝒊).                                       (1.13) 

where   𝐻0(𝑡) can be approximated by Nelson-Aalen estimate [14] of the baseline cumulative 

hazard function.  

However, the final decision on the suitability of the model shouldn’t be taken solely on 

this plot. In practice it has been found that the Cox-Snell plot is not sensitive to small model 

inadequacies and not reliable in small sample sizes. Therefore, along with this overall goodness 

of fit test we should proceed to check separately for the situations where model inadequacies can 

occur in a Cox PH model. The three main areas are to check for influential observations, non-

linear effects of the continuous covariates and non-proportional hazards of the covariates.  
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1.4.3.2 Assessing Unusual and Influential Data Values  

Identification of unusual data values and influential data values on the parameter 

estimates can be done using statistics similar to leverage and dfbeta in a standard linear 

regression model. Score residuals have properties similar to leverage values in standard 

regression. For continuous predictors, the further the value is from the mean, the larger the 

absolute value of the score residual is. Graphs of the score residuals and covariates aid in 

identifying any subjects with unusual data values. A statistic that is similar to dfbeta that 

approximately measures the difference between a particular coefficient value and the new 

coefficient if a value is removed from the sample can be computed for Cox PH model using 

score residuals and the covariance matrix of the estimated coefficients [15]. This value is 

sometimes called scaled score residual and plots of these residuals and continuous covariates are 

useful to examine any subjects that influence the parameter estimates.  

1.4.3.3 Checking the Functional Form of Continuous Covariates  

Assessing the correct functional form of the continuous predictor variables is essential in 

developing an accurate predictive model using the Cox PH method. Different methodologies, 

including graphical evaluation of residuals plots and formal model-based significance tests can 

be used to understand the true form of the relationship between the continuous covariates and the 

hazard ratio. Therneau et al. [16] suggests that plotting Martingale residuals against the covariate 

of interest may be useful to identify the correct functional form of the covariate. A non-linear 

pattern in the graph indicates that a linearity assumption for the covariate is not suitable. Another 

method of checking the functional form of continuous covariates is to compare the observed and 

expected cumulative Martingale residuals [17]. If the covariate is correctly specified in the 

model, then cumulative Martingale residuals should randomly fluctuate around zero and can be 
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approximated by zero mean Gaussian process. Therefore, observed cumulative Martingale 

residuals can be compared with the simulations of zero mean Gaussian processes to check any 

significant departures and hence to assess the correctness of the linear continuous covariate in the 

model. 

1.4.3.4 Testing the Proportional Hazards Assumption  

As mentioned earlier, proportional hazard assumption is the main assumption behind the 

Cox PH model that is used extensively in time-to-event data analysis. We describe two methods 

that can be used to identify any violations of proportional hazards; Scaled Schoenfeld residuals 

[18] and simulated Score residual paths [17]. Recall the form of proportional hazards model 

 ℎ𝑖(𝑡𝑖|𝒁𝒊) =  ℎ0(𝑡)exp (𝛽1𝑍1𝑖, + ⋯ . + 𝛽𝑝𝑍𝑝𝑖). 

As suggested by [18], for covariate Zj, instead of constant coefficient, 𝛽𝑗, include a coefficient of 

the form  

𝛽𝑗(𝑡) = 𝛽𝑗 + 𝛾𝑗𝑔𝑗(𝑡) 

that varies with time to the model. 𝑔𝑗(𝑡) is a function of time that the user has to specify. 

Approximated scaled Schoenfeld residuals have a mean at time t given by 

𝐸[𝑟𝑗
∗] ≡ 𝛾𝑗𝑔𝑗(𝑡). 

As a result, the plot of scaled Schoenfeld residuals vs. time can be used to assess whether 𝛾𝑗 is 

zero or not. That is, if slope is zero then 𝛽𝑗(𝑡) doesn’t depend on time, and hence the hazard ratio 

is also constant with respect to time. In addition, a formal test to check whether 𝛾𝑗 is zero has 

been proposed by [18].  

Another method that can be utilized is to use a transformation of Martingale residuals 

which is called Score process [17]. Under the assumption of proportional hazards this process 
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can be approximated by zero mean Gaussian process. Hence, a comparison of observed score 

process and simulated score processes under the Cox PH assumption would reveal any 

departures from the assumption. The idea is to use one thousand simulations of the score process 

and compute the proportion of times that the maximum absolute values of the simulated 

processes exceeds the maximum absolute value of the observed score process. This value serves 

as the p-value for a supremum type of formal test of PH assumption. If the simulated processes 

exceed the observed process relatively few times then it is an indication of the violation of the 

assumption. In addition, graphs of these observed and simulated processes can be used to 

identify the departures from the proportional hazards.  

1.5 Motivation for the current study 

When reviewing the literature on breast and ovarian cancer data we found some 

limitations in the statistical analyses that were performed. Most of the studies have used non-

parametric methodologies when estimating and comparing survival probabilities and 

categorizations of continuous variables [5], [7]. When statistically modeling the survival data a 

vast majority of the studies use Cox PH model; however not many of those studies report 

whether they evaluated model adequacy, particularly proportional hazard assumption [5] [6], [7], 

[11]. Therefore, our main objective was to explore methods to evaluate model adequacy of the 

Cox PH model, correct/adjust if there are any inadequacies present and utilize alternative models 

that can be used in survival data modeling. We perform these using ovarian and breast cancer 

data extracted from Surveillance, Epidemiology and End Results (SEER) program of the 

National Cancer Institute. Further details about the selected data are described in the relevant 

chapters.  
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The flow of this dissertation is as follows: Chapter 2 performs parametric analysis of 

tumor sizes of ovarian cancer by fitting parametric probability distributions. Chapter 3 presents a 

parametric analysis of survival times with a comparison of the probability distribution function 

among the races. Chapter 4 is devoted to statistical modeling of ovarian cancer data where focus 

is given to the flexible parametric model. Chapter 5 is about the statistical modeling of breast 

cancer though an extended Cox PH model which takes non-linear effects and non-proportional 

hazards into account.  
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CHAPTER 2 

PARAMETRIC ANALYSIS OF OVARIAN CANCER 

Malignant tumor size is an important factor in all cancers. It is used to evaluate the 

severity of the cancer which is helpful to determine the prognosis and help to identify the correct 

treatment methods. The main objective of the present study is to perform parametric analysis of 

the malignant tumor size of ovarian cancer using data extracted from the Surveillance 

Epidemiology and End Results (SEER) database. Further, we assess whether there are any racial 

differences that exist among Whites, African Americans and other races. 

2.1 Background and Data 

According to American Cancer Society, about 22,440 women will receive a new 

diagnosis of ovarian cancer and about 14,080 women will die from ovarian cancer in year 2017. 

Ovarian cancer ranks fifth in cancer deaths among women, accounting for more deaths than any 

other cancer of the female reproductive system [1]. Malignant tumor size is highly related to 

prognosis. In most cases, the smaller the tumor, the better the chances are for long-term survival 

[19]. 

Ovarian cancer data extracted from Surveillance Epidemiology and End Results (SEER) 

database of the patients diagnosed with ovarian cancer between 2007 and 2010 were used in this 

study. We considered a random sample of 1000 patients diagnosed with malignant epithelial 

tumors which accounts for about 90% of the ovarian cancer cases. A schematic diagram of the 

data used in this study with additional details is shown in Figure 2.1, below. 
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Figure 2.1 Ovarian Cancer Data Diagram by Race 

In the present study, we address the following questions with respect to ovarian cancer: (i) Are 

there any significant differences in the cancerous tumor size distributions among races? (ii) What 

is the probability distribution function that characterizes the probabilistic behavior of the 

malignant tumor sizes? and (iii) What are the key statistical estimates of the ovarian cancer 

patients?. 

 

2.2 Testing Significant Differences in Tumor Sizes among Races 

It is commonly known that African American women are more likely to die from ovarian 

cancer [20], [21]. As mentioned in section 1, tumor size is one of the main risk factors in ovarian 

cancer. Hence, we anticipated to find significant differences among tumor size behaviors the 

races. Initially, descriptive statistics were computed and shown in Table 2.1. African Americans 

have the highest mean and median tumor size of about 120.5mm and 102.5mm respectively. 

Whites have the lowest mean and median tumor size of about 101mm and 90mm respectively. 

Mean tumor sizes between African Americans and Other races differ by 12mm while their 

medians differ only by 2.5mm. Standard deviations between African Americans and Other races 

are approximately equal while standard deviation of Whites is slightly lower than other two 

Ovarian Cancer Patients 

Sample Size  

n = 1500 

Other 

nO = 194(12.9%) 

African Americans 

nAA = 64(4.3%) 

Whites 

nw = 1242(82.8%) 
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races. From the descriptive statistics it appears that the distributions of tumor sizes are different 

among races. To check whether these differences are significant, Kruskal-Wallis test was 

performed. It gave a p-value of 0.025 giving evidence to reject the null hypothesis that the tumor 

sizes of the individuals diagnosed with malignant ovarian cancer distributions are significantly 

different at least between one pair of races. Hence, it will not be appropriate to find one 

underlying probability distribution for all tumor sizes irrespective of the race. Therefore, we 

proceed to search the best fitted probability distribution for tumor sizes separately for each race. 

       Table 2.1 Descriptive Statistics for Tumor Size Distribution Comparisons among Races 

Race White African American Other Races 

Mean 101.11 120.42 108.93 

Standard Deviation   62.24  66.50   66.02 

Median   90.00 102.50 100.00 

 

2.3 Parametric Analysis 

Parametric analysis of malignant tumor sizes was performed to identify the underlying 

probability distribution which characterizes the probabilistic behavior of the malignant tumor 

sizes of ovarian cancer. In order to find the best fitted probability distribution, a number of 

classical distributions were fitted to the subject data. The three commonly used goodness-of-fit 

tests, Kolmogorov-Smirnov test, Anderson-Darling test and Chi-Square fitness test, were used to 

identify the best probability distribution function that characterizes the behavior of the tumor 

sizes. In addition, we estimated the expected value of tumor sizes under each identified 

probability distribution function along with 95% confidence intervals. 
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2.3.1 Confidence Interval for Expected Value of Tumor Size  

Let X be a random variable which follows a location-scale distribution with parameters 

𝜇(location) and 𝜎(scale). Then an approximate confidence interval for the expected value can be 

obtained as follows using the delta method. Assume that the expected value of X is a function of 

𝜇 and 𝜎, let it denoted by g(𝜇,𝜎). 

Then an approximate (1 − 𝛼)100% confidence interval for the expected value of X can be 

estimated by  

                                                g(𝜇̂,  𝜎̂) ± 𝑧𝛼
2⁄ 𝑆𝐸g(𝜇̂, 𝜎̂),                                             (2.1) 

where 

𝑆𝐸g(𝜇̂, 𝜎̂) = √(
𝜕𝑔

𝜕𝜇
)

2

𝑉𝑎𝑟(𝜇̂) + 2
𝜕𝑔

𝜕𝜇

𝜕𝑔

𝜕𝜎
𝐶𝑜𝑣(𝜇̂, 𝜎̂) + (

𝜕𝑔

𝜕𝜎
)

2

𝑉𝑎𝑟(𝜎̂). 

Estimates of the 𝑉𝑎𝑟(𝜇̂), 𝐶𝑜𝑣(𝜇̂, 𝜎̂) and 𝑉𝑎𝑟(𝜎̂) are obtained by the variance-covariance 

matrix.  

For the log-location-scale probability distributions such as Weibull and lognormal, an 

approximate (1 − 𝛼)100% confidence interval can be obtained by exponentiating the limits 

given in equation 2.1, such that,  

(𝐿𝑜𝑤𝑒𝑟 𝐶𝑙𝑎𝑠𝑠 𝐿𝑖𝑚𝑖𝑡 =  𝑒
g(𝜇̂, 𝜎̂)−𝑧𝛼

2⁄ 𝑆𝐸g(𝜇̂, 𝜎̂) , 𝑈𝑝𝑝𝑒𝑟 𝐶𝑙𝑎𝑠𝑠 𝐿𝑖𝑚𝑖𝑡 = 𝑒
g(𝜇̂, 𝜎̂)+𝑧𝛼

2⁄ 𝑆𝐸g(𝜇̂, 𝜎̂))      (2.2)                       

2.3.2 Probability Distribution for the Tumor Sizes of Whites 

The best fitted probability distribution function that characterizes the malignant tumor 

sizes for Whites is the Weibull probability distribution. Let X be a random variable which 

follows a Weibull probability distribution with scale parameter (𝛼 > 0) and shape 

parameter(𝛽 > 0). Then the analytical form of the probability density function is given by  
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𝑓(𝑥) =
𝛽

𝛼
(

𝑥

𝛼
)

𝛽−1

𝑒𝑥𝑝 [(−
𝑥

𝛼
)

𝛽

];  0 ≤ 𝑥 < ∞. 

The maximum likelihood estimates of the corresponding distribution parameters are 

scale(𝛼̂)=106.9230 and shape(𝛽̂)=1.5469. Figure 2.2 shows the fitted Weibull probability density 

function and cumulative probability distribution function for tumor sizes of White patients. The 

cumulative probability distribution function is useful in finding the probability associated with 

different tumor sizes. For example, for a White woman the probability of having a tumor size of 

200mm or less is about 0.9. 

 

Figure 2.2 Fitted Weibull Probability Density Function and Cumulative Distribution Function for 

Tumor Sizes for Whites 

The expected value of a Weibull random variable is given by 𝐸(𝑋) = 𝛼Г (1 +
1

𝛽
), where 

Г (1 +
1

𝛽
) is the gamma function evaluated at (1 +

1

𝛽
).  By transforming the Weibull probability 

distribution to location-scale probability distribution, expected value of tumor size can be 

obtained by 𝑒𝜇Г(1 + 𝜎), where 𝜇 = log (𝛼) and 𝜎 = 1 𝛽⁄ .  

Probability Distribution Function 
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Let 𝑔 = log[𝑒𝜇Г(1 + 𝜎)] = 𝜇 + log [Г(1 + 𝜎)]. Then, according to equation (2.2) an 

approximate (1 − 𝛼)100% confidence interval for the expected value of the tumor sizes with the 

underlying Weibull probability distribution can be estimated by  

(𝐿𝑜𝑤𝑒𝑟 𝐶𝑙𝑎𝑠𝑠 𝐿𝑖𝑚𝑖𝑡 =  𝑒
log[𝑒𝜇̂Г(1+𝜎̂)]−𝑧𝛼

2⁄ 𝑆𝐸𝑔̂ , 𝑈𝑝𝑝𝑒𝑟 𝐶𝑙𝑎𝑠𝑠 𝐿𝑖𝑚𝑖𝑡 = 𝑒
log[𝑒 𝜇̂̂Г(1+𝜎̂)]+𝑧𝛼

2⁄ 𝑆𝐸𝑔̂ ). 

According to our analysis, a white woman in our study is expected to have a tumor size of 

96.1867mm. Furthermore, it can be said that with at least 95% confidence, the expected tumor 

size for a given White women is between 94.04mm and 98.38mm. That is,  

𝑃(94.04 ≤ 𝜇 ≤ 98.38) ≥ 0.95 

where 𝜇 =Expected value of the tumor size of White women. 

2.3.3 Probability Distribution for Tumor Sizes of African Americans 

The best fitted probability distribution function that characterizes the malignant tumor 

sizes for African Americans is the lognormal probability distribution function. Let X be a 

random variable which follows a lognormal probability distribution with location parameter (𝜇), 

scale parameter (𝜎 > 0) and threshold parameter (𝛾). Then the analytical form of the probability 

density function is given by  

𝑓(𝑥) =
1

√2𝜋(𝑥−𝛾)𝜎
𝑒𝑥𝑝 (−

[ln(𝑥−𝛾)−𝜇]2

2𝜎2 ) ;  0 ≤ 𝑥 < ∞. 

The maximum likelihood estimates of the corresponding distribution parameters are location (𝜇̂) 

= 5.1776, scale (𝜎̂) = 0.3703 and threshold (𝛾) = 75.0362. Figure 2.3 shows the fitted lognormal 

probability density and cumulative probability distribution function for tumor sizes of African 
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American women. According to the cumulative distribution function, the probability of having a 

tumor size of 230mm or less is about 0.9 for African American women with ovarian cancer. 

  

 

 

 

 

 

Figure 2.3: Fitted lognormal Probability Density Function and Cumulative Distribution Function 

for Tumor Sizes of African American Patients 

The expected value of a lognormal random variable is given by  

E(𝑋) = 𝛾 + 𝑒𝜇+
𝜎2

2  . 

According to equation (2.2), an approximate (1 − 𝛼)100% confidence interval for the expected 

value of tumor sizes that follows a three parameter lognormal distribution is given by 

(𝐿𝑜𝑤𝑒𝑟 𝐶𝑙𝑎𝑠𝑠 𝐿𝑖𝑚𝑖𝑡 = 𝛾 + 𝑒
𝜇̂+

𝜎̂2

2
−𝑧𝛼

2⁄ 𝑆𝐸𝑔̂ , 𝑈𝑝𝑝𝑒𝑟 𝐶𝑙𝑎𝑠𝑠 𝐿𝑖𝑚𝑖𝑡 =  𝛾 + 𝑒
𝜇̂+

𝜎̂2

2
+𝑧𝛼

2⁄ 𝑆𝐸𝑔̂). 

We have found that an African American woman in our study is expected to have a tumor size of 

114.816mm. Furthermore, it can be said that with at least 95% confidence, the expected tumor 

size for a given African American women is between 103.872mm and 125.759mm. That is,  

𝑃(103.87 ≤ 𝜇 ≤ 125.76) ≥ 0.95, 

Probability 
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where 𝜇 =Expected value of tumor size of African American women. 

2.3.4 Probability Distribution for Tumor Sizes of Other Races 

The best fitted probability distribution function that characterizes the malignant tumor sizes for 

other races is the Weibull probability distribution. Figure 2.4 shows the fitted Weibull 

probability density and cumulative probability distribution function for tumor sizes of others 

patients. The maximum likelihood estimates of the corresponding distribution parameters are  

scale (𝛼̂) = 110.096 and shape (𝛽̂) = 1.7128. According to the cumulative distribution function, 

the probability of having a tumor size of 180mm or less is about 0.9 for patients of other race 

with ovarian cancer. 

According to our analysis, the expected tumor size for an ovarian cancer patient is about 

98.1829mm. Further, it can be said that, with at least 95% confidence, the expected tumor size 

for a subject of other race in this study, is between 93.2414mm and 103.386mm. That is,  

𝑃(93.24 ≤ 𝜇 ≤ 103.39) ≥ 0.95 

where 𝜇 =Expected value of tumor size of women in other races. 
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Figure 2.4 Fitted Weibull Probability Density Function and Cumulative Distribution Function for 

Tumor Sizes of Other Races 

 

2.4 Comparison of the Results 

The best fitted probability distributions with their parameter estimates for each of the 

races are given in Table 2.2 below. The basic statistics along with 95% confidence limits of the 

true malignant tumor size for each race is given below in Table 2.3.  

Table 2.2 Fitted Probability Density with Parameter Estimates of the Tumor Sizes for each of the 

Three Races 

Race Probability Density Function 

Whites: 

Weibull(𝛼̂=106.9230, 𝛽̂=1.5469) 
𝑓(𝑥) =

1.5469

106.923
(

𝑥

106.923
)

0.5469

𝑒𝑥𝑝 [(−
𝑥

106.923
)

1.5469

] 

African Americans:  

Lognormal(𝜇̂=5.1776,  

𝜎̂ = 0.3703, 𝛾̂ = 75.0362) 

𝑓(𝑥) =
1

√2𝜋(𝑥 − 75.036)0.370
𝑒𝑥𝑝 (−

[ln(𝑥 − 75.036) − 5.177]2

2(0.370)2
) 

Other Races:  

Weibull(𝛼̂ =110.096, 𝛽̂ = 1.7128) 
𝑓(𝑥) =

1.7128

110.096
(

𝑥

110.096
)

0.7128

𝑒𝑥𝑝 [(−
𝑥

110.096
)

1.7128

] 

Probability 

Distribution Function 
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Table 2.3 Expected Values and Confidence Intervals for Tumor Size for each Race under each 

Fitted Probability Distribution 

Race 
Expected 

Value 

Standard 

Error 

95% Confidence 

Interval 

Whites: 

Weibull(𝛼̂=106.9230, 𝛽̂=1.5469) 

96.1867 1.1077 (94.0399, 98.3826) 

African Americans:  

Lognormal(𝜇̂=5.1776, 𝜎̂ = 0.3703, 𝛾̂ = 75.0362) 

114.816 5.5835 (103.872, 125.759) 

Other Races:  

Weibull(𝛼̂ =110.096, 𝛽̂ = 1.7128) 

98.1829 2.5868 (93.2414, 103.386) 

 

It can be seen that tumor size of African Americans has the highest expected value of the 

tumor size (114mm) among the three races with a 95% confidence interval of (103.872mm, 

125.759mm). It is interesting to see that tumor sizes of African Americans have the largest 

standard error among the three races and hence the widest confidence range of 22mm. The other 

races have an expected tumor size of about 98mm which is comparable to the expected value of 

the Whites (96mm). However, other races have a relatively high standard error and a wide 

confidence range (12mm) than Whites. Whites have the smallest confidence range of about 4mm 

as a result of a low standard error of about 1mm.  

Figure 2.5 shows the fitted probability density function and cumulative distribution functions of 

all three races. It can be clearly seen that probabilistic behavior of tumor sizes of African 

Americans behave differently than the other two races such that there is a higher chance of 

having a larger tumor size for African Americans than for other two races. For example, for 

Whites or other race, the probability of having a tumor size of 100mm or less is about 0.5. 
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However, for African Americans the probability of having a tumor size of 200mm is about 0.5. 

Also, by looking at the expected values of the other two races and their best fitted probability 

distributions it agrees and explains the significant results of the Kruskal-Wallis test (section 2.2) 

between the races which suggests that at least one race is significantly different with respect to 

the underlying probability distribution of tumor sizes. 

Figure 2.5 Comparisons of Fitted Probability Distribution Functions and Cumulative Density 

Functions for Tumor Size for Each Race 

 

2.5 Conclusions 

In the parametric analysis of ovarian cancer, we have identified the probabilistic behavior 

of the tumor sizes for Whites, African Americans and Other races. We constructed 95% 

confidence intervals for the expected value of the tumor sizes under each identified probability 

distributions. Tumor sizes of Whites and other races have similar characteristics. However, 

African Americans’ tumor sizes behave differently and their expected tumor size are higher than 

Whites’ and other races’ tumor sizes. Importance of identifying the racial disparities among 
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underlying probability distributions of tumor sizes is that those differences can be further 

examined clinically and socioeconomically so that patients can be catered with better treatments 

and care.  

2.6 Contributions 

In the present chapter we found some important aspects concerning ovarian cancer tumor sizes. 

 The appropriate probability distribution function that characterizes the behaviors of the 

malignant tumor sizes for Whites, African-Americans and other races. 

 The mean and median of cancerous tumor size for African Americans is significant larger 

than Whites 

 Probabilistic behavior of tumor sizes of African Americans is different from Whites and 

other races. 

 Probabilistic behavior of tumor sizes of Whites and other races are similar. 
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CHAPTER 3 

PARAMETRIC SURVIVAL ANALYSIS OF OVARIAN CANCER 

The objective of the present study is to perform parametric survival analysis to compare 

the survivorship of ovarian cancer patients among their races. Emphasis is given to both overall 

survival and disease specific survival. We examine the existence of racial differences among 

Whites, African Americans and other races using probabilistic analysis.  

3.1 Background and Data 

It is commonly known that African Americans have poor survival in ovarian cancer [20], 

[21]. The present study is to investigate whether there are any significant differences in the 

survival times among the different races. Survival time data of 1500 women diagnosed with 

ovarian cancer during the years 2007 to 2010 was extracted from the Surveillance Epidemiology 

and End Results (SEER) database for this study. We analyzed patients diagnosed with malignant 

epithelial tumors which accounts for about 90% of the ovarian cancer cases. The survival times 

were calculated using the date of diagnosis and either the date of the event or the follow up 

cutoff date (if the patient survived at the end of the study) or the date last known to be alive. The 

follow-up cutoff date used in this study was December 31, 2012. Two types of events were 

considered, death from any cause (overall survival) or death from ovarian cancer (disease-free 

survival), were investigated separately in this study. The schematic diagram of the data with 

additional details is shown in Figure 3.1, below. For all three races percentage of ovarian cancer 

subjects ranges between 19% and 26%. About 4% to 5% are non-cancer deaths for each race. 
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About 70% of whites and others races have not experienced death until the follow–up cut-off 

date or have lost to follow-up. About 76% of African Americans were alive or lost to follow-up 

when the study follow-up period ended. 

Figure 3.1 Ovarian Cancer Survival Time Data Diagram 

In the present study, we address the following questions with respect to ovarian cancer.  

 Are there any differences in the underlying probability distributions of overall survival times 

among races? 

 Are there any differences in the underlying probability distributions of disease-free survival 

times among races? 

Ovarian Cancer Pateints 

n=1500 

Whites 

nw=1242  

(82.8%) 

Censored=854 

(68.7%) 

Other Causes of 
Death=59 

(4.8%) 

Ovarian Cancer 
Deaths=329 

(26.5%) 

African Americans 

nAA=64 

(4.3%) 

Censored=49 

(76.5%) 

Other Causes of 
death=3 

(4.7%) 

Ovarian Cancer 
Deaths=12 

(18.8%) 

Other 

no=194 

(12.9%) 

Censored=137 

(70.6%) 

Other Causes of 
death=8 

(4.1%) 

Ovarian Cancer 
Deaths=49 

(25.3%) 
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 What are the probability distribution functions that characterize the behavior of the overall 

and disease-free survival times for Whites, African Americans and other races? 

 Are there any differences in overall and disease-free survival probabilities? 

 

3.2 Parametric Analysis of Overall Survival Times  

Parametric analysis was performed to determine the best fitted probability distribution 

function that characterizes the survival times among races. Over thirty different classical 

distributions were fitted to the data. The three goodness-of-fit tests, Kolmogorov-Smirnov, 

Anderson-Darling, and Chi-Square were used to determine the best probability distribution 

function that characterizes each race. Significance level of 5% was used in all the goodness-of-fit 

tests in this section. 

3.2.1 Probabilistic Behavior of the Overall Survival Times of Whites 

After fitting a number of probability distributions to the subject data to identify the best 

fitted probability distribution for the overall survival times of Whites, for each distribution, 

goodness-of-fit tests were performed under the null hypothesis that the data fits specific 

probability distribution. It has been found that the Weibull probability distribution fits the data 

well. The results of the goodness-of-fit tests used to decide the most appropriate probability 

distribution are given in Table 3.1. None of the tests have significant evidence to reject the null 

hypothesis which suggests that the selected Weibull probability distribution explains the 

underlying probabilistic behavior of the survival time of the White women in the study. 
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Table 3.1 Results of Goodness of Fit Tests for the Selected Probability Density Function for 

Overall Survival Times of Whites 

Test Statistic p-value 

Kolmogorov-Smirnov 0.0363 0.1834 

Anderson-Darling 1.8625          0.1< p < 0.2 

Chi-Square           11.7170   0.2297 

 

Let T be a random variable which follows a Weibull probability distribution with 

parameters scale (𝛼) and shape (𝛽). The probability density function 𝑓(𝑡) and the cumulative 

distribution function 𝐹(𝑡) are given by 

                                                    𝑓(𝑡) =
1

𝛼𝛽 𝑡𝛽−1𝑒𝑥𝑝 {− (
𝑡

𝛼
)

𝛽

}                                     (3.2) 

and  

                                                  𝐹(𝑡) = 1 − 𝑒𝑥𝑝 {− (
𝑡

𝛼
)

𝛽

}                                            (3.3) 

respectively. 

This yields the survival function 

                  𝑆(𝑡) = 𝑃(𝑇 > 𝑡) = 1 − 𝐹(𝑡) = 𝑒𝑥𝑝 {− (
𝑡

𝛼
)

𝛽

}                                          (3.4) 

and the hazard function  

                                                      ℎ(𝑡) =
1−𝑓(𝑡)

𝐹(𝑡)
=

𝛽

𝛼
(

𝑡

𝛼
)

𝛽−1

.                                      (3.5) 
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The approximate maximum likelihood estimates of the scale parameter (𝛼̂) is 7.9554 and the 

shape parameter (𝛽̂) is 1.2108. Accordingly, the estimated probability density function and the 

cumulative distribution function for Whites are given by 

𝑓(𝑡) =
1

7.95541.2108 𝑡1.2108−1𝑒𝑥𝑝 {− (
𝑡

7.9554
)

1.2108

}  

and                                  𝐹(𝑡) = 1 − 𝑒𝑥𝑝 {− (
𝑡

7.9554
)

1.2108

}  

respectively. 

In addition, the estimated survival function and the hazard function for the overall survival times 

of White women can be given by 

𝑆(𝑡) = 𝑒𝑥𝑝 {− (
𝑡

7.9554
)

1.2108

}  

and                                                    ℎ(𝑡) =
1.2108

7.9554
(

𝑡

7.9554
)

1.2108−1

  

respectively. 

The expected time to death along with the 95% confidence intervals were computed with respect 

to the Weibull probability distribution as given above. White women with ovarian cancer have 

an estimated expected overall survival time of about 7.5 years. We are at least 95% confident 

that the true expected overall survival time lies between 7 years to 8 years for White patients. 

That is,  

𝑃(7 ≤ 𝜇 ≤ 8) ≥ 0.95, 

where 𝜇 = Expected survival time for White women. 

3.2.2 Probabilistic Behavior of the Overall Survival Times of African Americans 

Similarly, to the analysis of survival times of Whites, different probability distributions 

were used to identify the best fitted probability distribution for the overall survival times of 
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African Americans. Goodness-of-fit tests were performed under the null hypothesis that the data 

fits subject probability distribution. It has been found that the Weibull probability distribution fits 

the data well. The results of the goodness of fit tests used to decide the most appropriate 

probability distribution are given in Table 3.2. None of the tests have significant evidence to 

reject the null hypothesis which suggests that the selected Weibull probability distribution 

explains the underlying probabilistic behavior of the survival times of African American women 

in the study. 

Table 3.2 Results of Goodness of Fit Tests for the selected Probability Density Function for the 

Overall Survival Times of African Americans 

Test Statistic p-value 

Kolmogorov-Smirnov 0.0975 0.6266 

Anderson-Darling 0.3941 >0.2000 

Chi-Square 7.7959 0.1678 

 

The approximate maximum likelihood estimates of the corresponding Weibull scale parameter 

(𝛼̂) is 6.5443 and the shape parameter (𝛽̂) is 1.2160. Accordingly, the estimated probability 

density function and the cumulative distribution function for the African Americans are given by  

𝑓(𝑡) =
1

6.5443 𝛽
𝑡1.2160−1𝑒𝑥𝑝 {− (

𝑡

6.5443 
)

1.2160

} 

and  𝐹(𝑡) = 1 − 𝑒𝑥𝑝 {− (
𝑡

6.5443 
)

1.2160

}, 

respectively. 

In addition, the estimated survival function and the hazard function for the overall survival times 

of African American women can be given by 



33 

 

𝑆(𝑡) = 𝑒𝑥𝑝 {− (
𝑡

6.5443
)

1.2160

}  

and                                                   ℎ(𝑡) =
1.2160

6.5443
(

𝑡

6.5443
)

1.2160−1

  

respectively. 

According to the estimated probabilistic behavior, expected overall survival time of African 

American women is about 6 years with at least 95% confidence interval of 4.8 years to 7.9 years. 

That is,  

𝑃(4.8 ≤ 𝜇 ≤ 7.9) ≥ 0.95, 

where 𝜇 = Expected survival time for African American women. 

 

3.2.3 Probabilistic Behavior of the Overall Survival Times of Other Races 

A number of different probability distributions were used to identify the best fitted 

probability distribution for the overall survival times of other races. Goodness-of-fit tests were 

performed under the null hypothesis that data fits subject probability distribution. It has been 

found that the best fitted probability distribution for other races is also the Weibull probability 

distribution but with different parameters than for Whites and African Americans. The results of 

the goodness-of-fit tests used to decide the most appropriate probability distribution are given in 

Table 3.3. None of the tests have significant evidence to reject the null hypothesis which 

suggests that the selected Weibull probability distribution explains the underlying probabilistic 

behavior of the overall survival time of women in other races in the study. 

 



34 

 

Table 3.3 Results of Goodness of Fit Tests for the selected Probability Density Function for the 

Overall Survival Times of Other Races 

Test Statistic p-value 

Kolmogorov-Smirnov 0.05184 0.8540 

Anderson-Darling 0.2431 0.2431 

Chi-Square 2.4726 0.9291 

 

The approximate maximum likelihood estimates of the corresponding Weibull scale parameter 

(𝛼̂) is 9.1748 and the shape parameter (𝛽̂) is 1.1656.  

Accordingly, the estimated probability density function and the cumulative distribution function 

for the African Americans are given by  

𝑓(𝑡) =
1

9.1748 1.1656 𝑡1.1656−1𝑒𝑥𝑝 {− (
𝑡

9.1748 
)

1.1656

}  

and                                               𝐹(𝑡) = 1 − 𝑒𝑥𝑝 {− (
𝑡

9.1748 
)

1.1656

} 

respectively. 

In addition, the estimated survival function and the hazard function for the overall survival times 

of African American women can be given by  

𝑆(𝑡) = 𝑒𝑥𝑝 {− (
𝑡

9.1748
)

1.1656

} and 

ℎ(𝑡) =
1.1656

9.1748
(

𝑡

9.1748
)

1.1656−1

   

respectively. 
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According to the probabilistic behavior of the women in other races, estimated expected overall 

survival time of the women in other races is 8.7 years. In addition, it can be said with at least 

95% confidence that the corresponding true overall survival time lies between 7.2 years to 10.5 

years. That is, 

𝑃(7.2 ≤ 𝜇 ≤ 10.5) ≥ 0.95, 

where 𝜇 = Expected survival time for Other race women. 

 

3.3 Comparison of Overall Survival Times by Race 

Parameter estimates of fitted probability distribution and expected overall survival time 

with confidence intervals for each of the races is given in Table 3.4. It can be seen that African 

American women have the lowest expected overall survival time of about 6 years compared to 

other races. Women other than White or African American have the highest overall survival 

time. African American women with ovarian cancer have the highest confidence range of about 

3 years while White women have the lowest confidence range of about 1 year. Estimates of the 

shape parameter of the fitted distributions for each race are approximately the same for Whites 

and African Americans and slightly different for other races. However, scale parameter estimates 

are different for each race.  

It can be seen from the Figure 3.2 that the estimated survival functions for the three races are not 

significantly different from each other. The five-year overall survival probability for African 

American is about 0.60 and for Whites and other races are about 0.70. The ten-year overall 

survival probability for African Americans is about 0.30 and for Whites and other races about 

0.35.  
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Table 3.4 Parameter Estimates of Fitted Probability Distribution and Expected Overall Survival 

Time with Confidence Intervals for each Race 

Race Probability Distribution 

Expected 

Survival 

Time (Years) 

95% 

Confidence Interval  

White  Weibull(𝛼̂ = 7.9554, 𝛽̂ = 1.2108) 7.4663 (7.0060, 7.9567) 

African 

Americans 
Weibull(𝛼̂ = 6.5443, 𝛽̂ = 1.2160) 6.1354 (4.7829, 7.8702) 

Other races Weibull(𝛼̂ = 9.1748, 𝛽̂ = 1.1656) 8.6982 (7.2327, 10.4605) 

 

  

Figure 3.2 Survival Plot for Overall Survival Times by Race 

Chi-square tests for equality of shape and scale parameters were performed and it revealed that 

there is no significant difference between shape parameters (p-value=0.857) and between scale 

parameters (p-value=0.055) at 5% significance level. Hence, we decided to consider a single 

underlying distribution for the three races of interest in this study. Since three races have very 
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similar survival experience, we can estimate a common probability distribution that describes the 

overall survival pattern of the women with ovarian cancer. Table 3.5 shows the summary of 

estimated parameters. 

Table 3.5 Parameter Estimates of Fitted Probability Distribution and Expected Survival Time 

with Confidence Intervals for Overall Survival Times of all races 

Race Parameter Estimates 
Expected 

Survival Time 

95% Confidence 

Interval 

All Weibull(𝛼̂ = 8.1016, 𝛽̂ = 1.2465)       7.5505 (6.7712  8.4195) 

 

3.4 Parametric Analysis of Disease-Free Survival Times 

We fitted different probability distributions to the disease-free survival times and 

evaluated the fit similarly as in the previous section using the three goodness-of-fit tests, 

Kolmogorov-Smirnov, Anderson-Darling, and Chi-Square. It has been found that the best fitted 

probability distribution function that characterizes the behavior of the disease-free survival times 

for White, African American, and other races is log-logistic probability distribution. Estimated 

survival curves for each race are shown in Figure 3.3. It is clear from the graph that survival 

curves for Whites and other races is almost the same while for African Americans survival 

experience is slightly higher. We found that parameter estimates for each of these three 

distributions were similar. Test of equality for the parameters of each distribution revealed that 

there is no significant difference in the location parameters (p-value=0.782) and scale parameters 

(p-value=0.183) between each race. Hence, it is appropriate to characterize the behavior of the 

disease-free survival times of all races using a single probability distribution. We found that the 

best fitted probability distribution for disease-free survival time is log-logistic distribution.  

Goodness-of-fit tests were performed under the null hypothesis that data fits subject probability 
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distribution. The results of the goodness of fit tests used to decide the most appropriate 

probability distribution are given in Table 3.6. None of the tests have significant evidence to 

reject the null hypothesis which suggests that the selected log-logistic probability distribution 

explains the underlying probabilistic behavior of the disease-free survival time of women in all 

races in the study. Therefore, we estimated a common probability distribution function (log-

logistic) for disease-free survival times. 

Table 3.6 Results of Goodness of Fit Tests for the Selected Probability Density Function for 

Disease-Free Survival Times of all the Races 

Test Statistic p-value 

Kolmogorov-Smirnov 0.0325 0.1983 

Anderson-Darling 1.1537           >0.2000 

Chi-Square 14.691 0.1437 

 

Let T be a random variable which follows a log-logistic distribution with parameters location (𝜇) 

and scale (𝜎). The probability density function, 𝑓(𝑡) and the cumulative density function 𝐹(𝑡) is 

given by 

𝑓(𝑡) =
exp [(𝑙𝑛𝑡−𝜇)/𝜎]

𝑡𝜎{1+exp [(𝑙𝑛𝑡−𝜇)/𝜎]}2   

and                                                       𝐹(𝑡) =
1

1+exp [−(𝑙𝑛𝑡−𝜇)/𝜎]
. 

This yields the survival function 

𝑆(𝑡) =
exp [(𝑙𝑛𝑡 − 𝜇)/𝜎]

1 + exp [(𝑙𝑛𝑡 − 𝜇)/𝜎]
 

and the hazard function  

ℎ(𝑡) =
1

𝑡𝜎{1+exp [(𝑙𝑛𝑡−𝜇)/𝜎]}
. 



39 

 

 

Figure 3.3 Estimated Survival Functions for Disease-free Survival Times by Race 

 

The approximate maximum likelihood estimates of the parameters of the fitted distribution for 

the disease-free survival times, the expected time to death along with the 95% confidence 

intervals for all races are given in Table 3.7. The expected disease-free survival time for the 

women with ovarian cancer is estimated to be 26 years. Further, it can be said with 95% 

confidence that the true expected disease-free survival range is between 21-32 years old. 

Table 3.7 Parameter Estimates of Fitted Probability Distribution and Expected Survival Time 

with Confidence Intervals for Disease-free Survival of all races 

Race Parameter Estimates 
Expected  

Survival Time 

95% 

Confidence Interval 

      All Log-logistic(𝜇̂= 2.0213, 𝜎̂= 0.7564) 25.8921 (20.8690, 32.1241) 
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3.5 Conclusions 

In this chapter we have studied the overall survival and disease-free survival of ovarian 

cancer patients focusing on racial disparities. We have identified the probabilistic behavior of the 

survival times along with the 95% confidence intervals for the expected value of the survival 

time under the identified probability distributions. Whites and other races have very similar 

overall survival pattern. African Americans have a slightly higher overall survival among the 

three races. However, evidence has been found that differences between races with respect to the 

overall survival probabilities, in particular, African American and White, and African American 

and other races are not statistically significant. Also, we have found that there is no significant 

difference between the probabilistic behaviors of disease-free survival between races. That is, 

race doesn’t play a major role in the probabilistic nature of survival times with respect to death 

from ovarian cancer. According to our analysis, some racial disparities with respect to overall 

and disease-free survival were observed in the population of women diagnosed with ovarian 

cancer that were considered in this study. However, we found that those differences were not 

statistically significant. 

 

3.6 Contributions 

In the present chapter, we have answered some important questions regarding the survival times 

of ovarian cancer patients as below. 

 Probability distribution functions of overall survival times for Whites, African American and 

other races are not significantly different. 
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 The most appropriate probability distribution functions that characterize the probabilistic 

behavior of the overall survival times of all races irrespective of the race. 

 The expected value with 95% confidence interval for the overall survival times for Whites, 

African American and other races. 

 Probability distribution functions of disease-free survival times for Whites, African 

American and other races are not significantly different. 

 The most appropriate probability distribution function that characterizes the probabilistic 

behavior of the disease-free survival times for all races irrespective of the race. 

 The expected value with 95% confidence interval of the disease-free survival times for all 

races irrespective of the race. 
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CHAPTER 4 

STATISTICAL MODELING OF OVARIAN CANCER SURVIVAL TIME 

4.1 Introduction 

After finding the probabilistic behavior of the disease-specific survival time of ovarian 

cancer and comparison with respective to the race in chapter 3, we proceed to investigate the 

relationship between survival time and other potential predictor variables. It is important to study 

how the various prognostic factors affect the survival probabilities of ovarian cancer in order to 

improve the survival of women diagnosed with ovarian cancer. Survival time can be measured 

from the diagnosis to death, time from a treatment to relapse of the cancer, etc. Sometimes, the 

interested event is not observed or patient drops out before the follow-up time ends where those 

cases are considered as the censored times. These censored survival times give rise to the need of 

special statistical methodologies to analyze the data other than commonly used linear regression 

methods. The purpose of this chapter is to develop a survival model to disease-specific survival 

times of ovarian cancer and related risk factors. We utilize standard survival analysis methods as 

well as newly developed improved survival analysis techniques on the data of interest to obtain a 

better predictive model. Section 4.2 of this chapter presents general characteristics of the data 

under study. Section 4.3 is about Cox regression models and section 4.5 presents a parametric 

statistical model to survival data. Section 4.6 introduces and applies an advanced but more 

flexible parametric survival model which takes spline functions into account.  
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4.2 Description of the Data 

Data for this study was extracted from Surveillance Epidemiology and End Results 

(SEER) database. Women identified with epithelial histology type were included in this study. 

This histology type which accounts for about 90% of the ovarian cancer cases, consists of tumors 

which begin in the thin layer of tissue that covers the outside of the ovaries. Women diagnosed 

between years 2007 to 2010, age between 20 to 90 years old at the diagnosis, which has 

undergone tumor resection and tumor sizes between 10mm to 500mm were included in this 

study. Other covariates used in this study are Race, Tumor Grade, Stage, Lymph Node Status. 

Race is categorized into Whites, African Americans and Other races. Tumor grade indicates the 

cell differentiation (well, moderate and poor/undifferentiated). American Joint Committee on 

Cancer (AJCC) staging system was used as the stage variable. Lymph node status describes 

whether regional lymph nodes examined by the pathologist found to contain metastases 

(positive) or not (negative). The survival times were calculated using the date of diagnosis and 

either the date of the event (i.e. if patient died before the end of the study due to ovarian cancer) 

or the follow up cutoff date (if the patient survived at the end of the study) or the date last known 

to be alive. The follow-up cutoff date used in this study was December 31, 2012. Table 4.1 

characterizes the sample of 1500 individuals used in this study. Mean survival time of this study 

population is 3.12 years with a standard deviation and a median survival time of 3 years. Largest 

and smallest disease specific survival time is about five and half years and about one month. 

Table 4.1 displays the ovarian cancer data that we will be studying in the present study. 
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Table 4.1 Characteristics of the Ovarian Cancer Data under Study 

Characteristic Count Percentage 

Race   

White 1242 82.80 

Black 64 4.27 

Other 194 12.93 

Histology   

            AAC 633 42.20 

            CMS 867 57.80 

Grade   

Well Differentiated 190 12.67 

Moderately Differentiated 275 18.33 

Poorly/Undifferentiated 1035 69.00 

Stage   

I 507 33.80 

II 176 11.73 

III 588 39.20 

IV 229 15.27 

Lymph Node Status   

Negative 748 49.87 

Positive 285 19.00 

No Exam 467 31.13 

 Mean (SD) Median. 

Age at Diagnosis (years) 58.92 (12.13) 58 

Tumor Size (cm) 
102.95 

(63.04) 
95 

        Adenomas & Adenocarcinoma (AAC), Cystic, mucinous and serous neoplasm (CMS) 

 

4.3 Cox Proportional Hazard Model for Ovarian Cancer Survival Data 

Cox proportional hazards (Cox PH) model is used to estimate the hazard ratios with 

respect to the risk factors associated with the disease. The main advantage of Cox PH regression 

is that the survival models can be fitted without knowing the underlying distribution of survival 
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times.  This feature makes it a semi-parametric statistical model and most commonly used 

survival analysis method in literature. The key underlying assumption of Cox PH model is that 

hazard ratio between two levels of a predictor variable is constant with respect to the time. In 

addition, generally in practice standard Cox PH model uses linear forms for continuous 

predictors and only main effects in the model. Therefore, in the process of the development of a 

better predictive model for the survival data, we have to evaluate the underlying assumptions of 

the Cox PH model with respect to the data and adjust or correct the model if any violations of the 

assumptions were found. More details about the Cox PH model and corresponding methods to 

assess the underlying assumptions are given in Chapter 1.  

Initial Cox PH model for the data was built using backward elimination method and the 

summary results are given in Table 4.2. According to this model, adjusted hazard ratios can be 

interpreted as follows. There is 1.6% increase of risk of ovarian cancer death for a particular 

subject compared to a subject who is one year younger.  A person who has histology-CMS has a 

lower risk of ovarian cancer death compared to a person who is in histology-AAC The risk of a 

subject who has moderately differentiated grade is 1.76 times of the risk of a subject who has 

well differentiated grade. Similarly, a subject who has poorly or undifferentiated grade has about 

2.6 higher risk of ovarian cancer death compared to a person with a well differentiated grade. 

Also, it can be seen that risks of ovarian cancer death compared to stage-I get higher when the 

stage increases. These model interpretations are usable only if this model adequately describes 

the data. In the next sections, we present the adequacy checks for the model.  

4.3.1 Checking the Functional Form of the Continuous Predictors 

We utilized methods of smoothed martingale residual plot and cumulative martingale 

residual plot with simulated paths to assess the functional form of the continuous variables in our 
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study. Figure 4.1 shows the smoothed Martingale residual plot that was used to capture the 

relationship between age at diagnosis and the log hazard rate. It appears that overall relationship 

of log hazard ratio and age is linear.  

Table 4.2 A Summary of Initial Cox Proportional Hazards Model Results 

Variable 
Parameter 

Estimate 

(𝛽̂) 

Standard 

Error 

Hazard 

Ratio 

95% Hazard Ratio 

Confidence Limits 

Age 0.01593 0.00400 1.016 1.007 1.025 

Histology-CMS - 0.28142 0.13437 0.755 0.580 0.982 

Grade-moderately differentiated 0.56769 0.35966 1.764 0.872 3.570 

Grade-poorly/un differentiated 0.96023 0.33840 2.612 1.346 5.071 

Lymph node status-positive 0.22394 0.14726 1.251 0.937 1.670 

Lymph node status-negative 0.38177 0.13523 1.465 1.124 1.909 

Stage II 0.51410 0.28912 1.672 0.949 2.947 

Stage III 1.68879 0.21860 5.413 3.527 8.308 

Stage IV 2.31746 0.22787   10.150 6.494  15.864 

 

 

Figure 4.1 Smoothed Martingale Residual Plots for Age (smooth=0.6) 
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Another method to evaluate the functional form of continuous variables is to use the 

observed cumulative Martingale residuals with simulated residuals [17]. The corresponding plots 

for our data are shown in Figure 4.2 for age. It can be seen that the observed cumulative 

Martingale residual paths in the plot lie inside the cloud of the simulated paths which suggests 

that the linear age term in the model is appropriate. Test of the null hypothesis that the observed 

pattern of martingale residuals is not different from the expected pattern reveals that more than 

638 simulated paths out of 1000 have maximum cumulative residual larger than the observed 

maximum cumulative residual. This test also suggests that there are no significant departures 

from linearity in age.  

 

Figure 4.2 Cumulative Martingale Residual Plot for Age at Diagnosis – Observed Path (Solid 

Line) and Simulated Paths (Dashed Lines) 
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4.3.2 Assessing the Proportional Hazards Assumption 

After assessing the correct functional form of the continuous variables we proceeded to 

evaluate the main assumption of Cox PH model, the proportional hazards assumption.  Graphical 

methods as well as formal tests were applied to assess the PH assumption of the predictors in our 

study. Initially, parallelism of the estimated log-negative-log survival curves was examined with 

respect to the categorical predictor variables and the resulting graphs are shown in Figure 4.3. 

Estimated log log-negative-log survival curves for histology clearly crosses each other 

suggesting non-proportional hazards in the histology type. In contrast, it can be seen that the 

estimated log-negative-log survival curves for stage and grade display an approximately parallel 

pattern which indicates no evidence of violation of proportional hazards. However, it is not clear 

from the curves that lymph node status follows the proportional hazards assumption.  

We proceed with alternative tests of proportional hazards to confirm and to further assess 

the proportional hazards assumption. As mentioned in Chapter 1, scaled Schoenfeld residual plot 

along with Grambsch and Therneau test of proportional hazards was applied on our data. Figure 

4.4 shows the smoothed Schoenfeld residual plot for Histology. If the covariate follows 

proportional hazard assumption, the smoothed curve should be a horizontal line. As seen from 

Figure 4.4 Histology has a non-linear pattern for smoothed residuals which again suggests non-

proportional hazards with respect to time. Results of the corresponding tests for all the variables 

are given in Table 4.3. It can be seen that only Histology has significant p-value. It suggests that 

there is no significant evidence of non-proportional hazards for other covariates.   

 



49 

 

Figure 4.3 Log-negative-log Survival Curves for Histology, Grade, Stage and Lymph 

node Status 
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Figure 4.4 Smoothed Schoenfeld Residual Plot for Histology (smooth=0.75) 

 

Table 4.3 Results of the Grambsch and Therneau Proportional Hazards Test [18] 

Variable rho Chi-square P-value 

Age -0.01093 0.0474 0.827709 

Histology 0.19017 14.9656 0.000109 

Grade-moderately differentiated -0.03597 0.4964 0.481108 

Grade-poorly/un differentiated -0.03076 0.3705 0.542721 

Lymph node status-positive -0.00813 0.0256 0.872844 

Lymph node status-negative -0.04982 1.0014 0.316973 

Stage II 0.01883 0.1372 0.71109 

Stage III -0.00818 0.0253 0.873606 

Stage IV -0.03393 0.4537 0.50056 

 

 We also used score process plots and the corresponding proportional hazards tests 

to evaluate to the proportional hazards assumption. The score process plot for Histology is 



51 

 

shown in Figure 4.5. It can be clearly seen that observed score residual path deviates far from the 

simulated score residual paths suggesting non-proportional hazards for Histology. The 

corresponding test results for all the variables shown in Table 4.4 is consistent with the Grambsh 

and Therneau test results shown in Table 4.3 giving evidence for proportional hazards violation 

for only Histology. 

 

Figure 4.5 Score Process Plot for Histology 
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Table 4.4 Test of Proportional Hazards by Lin, Wei and Ying [17] 

Variable Maximum Absolute Value Pr >Max.Abs.Value 

Age 0.7846 0.4190 

Histology 2.2331 <.0001 

Grade-moderately differentiated 2.1374 0.1630 

Grade-poorly/un differentiated 1.7833 0.3990 

Lymph node status-positive 1.0095 0.4660 

Lymph node status-negative 1.1186 0.3450 

Stage II 0.6657 0.8320 

Stage III 2.1492 0.1750 

Stage IV 2.0372 0.2120 

 

4.3.3 Checking for Unusual or Influential Values 

As described in Chapter 1, for continuous predictors, the further the value is from the 

mean, the larger the absolute value of the score residual is. Hence, graphs of the score residuals 

versus covariates aid in identifying any subjects with unusual data values. Scaled score residuals 

approximately measures the difference between a particular coefficient value and the new 

coefficient if a value is removed from the sample and it is similar to dfbeta in standard regression 

models. Plot of these residuals and continuous covariates are useful in examining any subjects 

that influences the parameter estimates. Graph of score residuals and graph of scaled score 

residuals are shown in Figure 4.6 and Figure 4.7 respectively. We identified few extreme values 

in these graphs, removed them and performed a sensitivity analysis on the parameter estimates. 

A noticeable change in the estimates was not observed. Hence, we decided to keep those data 

records in further analysis.  



53 

 

 

Figure 4.6 Plot of Score Residuals versus Age 

 

Figure 4.7 Plot of Scaled Score Residuals versus Age 
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4.4 How to Handle the Model Inadequacies? 

Because we have identified that our initial Cox PH model is not adequate for the data, 

next step is to correct the model for inadequacies or apply alternative models. The simplest 

method to correct for the violations of the proportional hazards is to use the stratified Cox model. 

Stratified Cox model is the same Cox PH model stratified by the levels of the covariate with non-

proportional hazards and with all the covariates that satisfy the model assumption. That is, for 

our data there will be two models for the two histology levels with same covariates and same 

parameter estimates and the two models differs by their baseline hazard function. One major 

limitation of this model is that risks cannot be estimated for the stratifying covariate. Also, if the 

non-proportional hazards exist in a continuous variable, it needed to be categorized before 

stratifying. Another limitation is, if most of the variables violate the assumption there will be too 

many stratification levels and model interpretations will not be very useful.  

Another approach to address non-proportional hazards in Cox model is to extend the 

model to have time varying effects so that they will capture the how the hazard ratios change 

with time. Time varying effects can be modeled as piecewise constant or continuous functions of 

time which is more appropriate to the data. A practical issue is identifying the correct function of 

time to include in the time varying effect. Sometimes, smoothed Schoenfeld residual plot may 

suggest the time varying nature of the effect or the hazard ratio. As the main focus of this chapter 

is parametric survival modeling, stratified or extended Cox models are not presented here. 

Parametric survival models assume specific probability distribution functions for survival times. 

If the assumed probability distribution is fits well to the data then these parametric survival 

models will give more precise inferences about the survival experiences than the semi-parametric 

Cox PH model. In particular, it would give relative hazards and median survival time estimates 
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with smaller standard errors. In the following two sections 4.5 and 4.6, such two types of 

parametric models, Accelerated Failure Time (AFT) models and flexible parametric models will 

be presented for the ovarian cancer survival data of interest. 

4.5 The AFT Model 

The accelerated failure time model is a regression model for survival data, in which 

explanatory variables measured on an individual, are assumed to act multiplicatively on the time 

[22]. The parameters in the accelerated failure time models are interpreted as effects of time 

which makes it more intuitively appealing to those who are not familiar with survival analysis. 

This model works to measure the effect of covariate to “accelerate” or to “decelerate” survival 

time. Suppose that we are interested in evaluating the effect of a covariate (with two levels) on 

the survival time. Let the survival function for individuals in level 1 and level 2 at time t be 𝑆1(𝑡) 

and 𝑆2(𝑡) respectively. Then, under the AFT model, 

                                                                     𝑆1(𝑡) = 𝑆2(𝜙𝑡) (4.1) 

where 𝜙 is the acceleration factor (or deceleration factor depending on the value it takes). 

One can interpret that survival time of an individual in level 2 is 𝜙 times of the survival time of 

an individual in level 1. In the case where event of interest is “death”, then 𝜙 less than one means 

that an individual in level 2 has a shorter lifespan than an individual in level 1.  

Let T denote a continuous non-negative random variable representing the survival time. 

Then we can characterize the distribution of survival time as a function of covariates as given 

below. 

                 𝑇 = 𝑒𝑥𝑝{𝛽0 + 𝛽1𝑋1 + ⋯ + 𝛽𝑝𝑋𝑝} × 𝜀,                       (4.2) 
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where 𝛽1, . . . , 𝛽𝑝 are unknown coefficients of the p covariates 𝑋1, … , 𝑋𝑝 and they reflect the 

effect that each variable has on the survival time. The systematic component,  

𝑒𝑥𝑝{𝛽0 + 𝛽1𝑋 + ⋯ + 𝛽𝑝𝑋𝑝}, 

is written in this form make it positive and the error term also takes positive values.  

Equation (4.2) leads to the log-linear form of the model given below.         

                                               ln(t) = μ + 𝛽1𝑋1 + ⋯ +  𝛽𝑝𝑋𝑝 + 𝜎 × 𝜀∗.   (4.3) 

Parameters 𝜇 and 𝜎 are associated with the probability distribution of survival time T. The 

random variable, 𝜀∗, also follows a particular probability distribution which can be related to the 

underlying probability distribution of survival time, T. 

4.5.1 Identifying a Suitable Probability Distribution for AFT Model 

An exploratory analysis was carried out prior to the model fitting to get guidance on 

choosing a suitable probability distribution for the disease specific survival times of interest. One 

of the approaches that can be used to identify the underlying distribution of survival times is to 

use survival function with some transformation which leads to a straight line plot against log of 

time. After examining the transformed survival function plots under several distributions on the 

survival times, one can narrow down the potential probability distributions for further analysis. 

The underlying methodologies of obtaining the subject plots under Weibull, log-logistic and 

lognormal probability distributions are given below. Let T be a random variable that represents 

survival time. 

Weibull probability distribution: Suppose T follows a Weibull distribution with parameters, 𝜆 

and 𝛾. Then the survival function is given by  
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𝑺(𝒕) = 𝒆𝒙𝒑{−(𝝀𝒕)𝜸}. 

Rearranging the survival function to obtain a straight line equation will lead the following 

                                               𝑙𝑛{−ln(𝑆(𝑡)} = 𝛾 ln(𝜆) + 𝛾ln (𝑡).                             (4.4)  

If the points on the plot of 𝑙𝑛{−𝑙𝑛𝑆(𝑡)} against ln (𝑡) fall on an approximate straight line then it 

indicates that a Weibull distribution is appropriate for the survival time data.   

Log-logistic probability distribution: Suppose T follows a log-logistic distribution with 

parameters, 𝜃 and 𝜅. Then the survival function is given by  

𝑆(𝑡) = {1 + exp(𝜃) 𝑡𝜅}−1. 

Rearranging the survival function yields the equation shown below which represents a straight 

line.  

                                                     𝑙𝑛 (
𝑆(𝑡)

1−𝑆(𝑡)
) = −𝜃 − 𝜅ln (𝑡).                                              (4.5) 

If we observe an approximate straight line for the plot of 𝑙𝑛[𝑆(𝑡) (1 − 𝑆(𝑡)⁄ ] against ln (𝑡) then 

it recommends a log-logistic probability distribution for survival time.  

Lognormal probability distribution: Suppose T follows a lognormal distribution with parameters, 

𝜇 and 𝜎. Then the survival function is given by  

𝑆(𝑡) = 1 − 𝜙 (
ln(t)−μ

𝜎
), 

where 𝜙(. ) is the standard normal cumulative distribution function.   Rearranging the survival 

function yields the equation shown below which represents a straight line. 

                                                             𝜙−1[1 − 𝑆(𝑡)] =
1

𝜎
ln (𝑡) −

𝜇

𝜎
 .    (4.6)                                                
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If it results in an approximate straight line for the plot of 𝜙−1[1 − 𝑆(𝑡)] against ln (𝑡) then it is 

recommended that a lognormal probability distribution for survival time.  

After examining the transformed survival function plots under several distributions on 

ovarian cancer survival times, we narrowed down our analysis to Weibull, log-logistic and 

lognormal distributions. Plots of transformations of survival functions represented by Equations 

(4.4), (4.5) and (4.6) are shown in Figures 4.8(a), 4.8(b) and 4.8(c) respectively. It can be seen 

that Weibull and log-logistic distributions fit well to survival time data. Also, lognormal 

distribution seems fairly fitting the survival time data. Therefore, we decided to consider all three 

of these probability distributions for further analysis of the models. 

 

Figure 4.8(a). Plot of Transformations of Survival Functions for Weibull Distribution 
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Figure 4.8(b). Plot of Transformations of Survival Functions for Log-logistic Distribution 

 

 

Figure 4.8(c). Plot of Transformations of Survival Functions for Lognormal Distribution 
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4.5.2 Model Selection and Goodness-of-Fit of the AFT Model 

Accelerated failure time models are fitted by maximum likelihood procedure using 

iterative methods. AFT models under Equation 4.3 were fitted under Weibull, lognormal and 

log-logistic probability distributions. Initial models consisted of all the covariates including two 

way interactions. Backward elimination procedure with removal probability 0.05 was performed 

based on likelihood ratio tests to obtain the most appropriate model under each probability 

distribution of interest.  

One of the approaches that can be used to select between candidate AFT models is 

Akaike’s Information Criteria (AIC). AIC is a goodness of fit statistic that is used compare 

statistical models by trading off the complexity of the model against the how well the model fits 

the data. The AIC for an AFT model is defined as  

                                                         𝐴𝐼𝐶 = −2𝐿𝐿 + 2(𝑝 + 𝑘) ,                                          (4.7) 

where LL is the logarithm of the likelihood of the model, p is the number of coefficients in the 

model (excluding the intercept) and k is the number of ancillary parameters (that is, number of 

parameters in the underlying probability distribution of survival time). A lower AIC value 

indicates a better model compared to the other models of interest. 

Cox and Snell residuals [13] described in Chapter 1 can also be used to evaluate the 

goodness-of-fit of AFT models. This method assesses whether the data support the particular 

parametric form of the hazard function. This method computes cumulative hazard function based 

on the fitted model to build Cox-Snell residuals. The Cox and Snell residual, 𝑟𝑗, is defined by  

                                                                      𝑟𝑗 = 𝐻̂(𝑇𝑗|𝒁𝑗),                                                   (4.8)  
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where 𝐻̂ is the fitted model. According to [13], if the model fits the data well then the 𝑟𝑗’s can be 

considered as a censored sample from exponential distribution with parameter equals to one. 

Non-parametric estimators can be applied on the model based estimated cumulative hazards 

(𝑟𝑗′𝑠) at each observed time the using the censoring indicator from the original survival time 

variable. Plot of these non-parametric estimates and model based estimates of cumulative 

hazards should follow a straight line with a slope one if the estimated AFT model fits the data 

well. The candidate AFT models under each probability distribution of interest were obtained by 

backward elimination method. Goodness-of-fit of these final models were checked using AIC 

values. AIC values for Weibull, log-logistic and lognormal models are 1997.167, 1988.535 and 

2012.102 respectively. Log-logistic AFT model having the lowest AIC value indicates that it is 

the better model for the subject ovarian cancer data. In addition, we computed Cox-Snell 

residuals as described in Equation 4.8. Plots of Cox-Snell residuals are shown in Figures 4.9(a), 

4.9(b) and 4.9(c). 

 

Figure 4.9(a). Cox-Snell Residual Plot for Weibull AFT Model 
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Figure 4.9(b) Cox-Snell Residual Plot for Log-logistic AFT Model 

 

Figure 4.9(c). Cox-Snell Residual Plot for Lognormal AFT Model 

It can be observed that the plotted points in Figures 4.9(a), (b) and (c) deviate from the straight 

line with unit slope and zero intercept under all three AFT models. However, compared to 

lognormal and Weibull, Cox-Snell residual plot for log-logistic AFT model follow the reference 
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straight line more closely. Hence, this approach also, suggests that the log-logistic AFT model 

provides the best fit for the ovarian cancer survival data of interest. 

Another methodology that can be used to assess the adequacy of the AFT model is 

described below. 

Suppose a model has covariates 𝑥1, 𝑥2, … . , 𝑥𝑝 and estimated coefficients, 𝑏1, 𝑏2, … . , 𝑏𝑝. Then, 

the prognostic index (PI) can be computed as 

                                                       𝑃𝐼 = 𝑏1𝑥1 + 𝑏2 𝑥2+. … + 𝑏𝑝 𝑥𝑝.   (4.9) 

After PI’s are computed for each patient, risk groups can be formed by categorizing the ranked 

PIs. As suggested by [23], number of risk groups can be determined by 

                            𝐺 = 𝑖𝑛𝑡{𝑚𝑎𝑥[2, 𝑚𝑖𝑛(10, 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑣𝑒𝑛𝑡𝑠 𝑑𝑖𝑣𝑖𝑒𝑑 𝑏𝑦 40)]}.                 (4.10) 

Then observed and expected counts in each risk group are compared and a score test is applied to 

the differences in the counts. We applied this method to our final AFT model based on log-

logistic probability distribution and the results obtained are shown in Table 4.5. It can be seen 

that observed and expected counts are close in all the risk groups except for one group. This 

evidence also supports that there’s no major problems in the fit of the selected log-logistic AFT 

model. Validation by discrimination [24] results that our model has a c-index of 77%. This 

provides that this AFT model has good prediction accuracy.   

Results from the most appropriate AFT model for ovarian cancer data is shown in Table 

4.6. Age was centered at their means for their baseline hazard function to be meaningful. We 

found that age at diagnosis has significant interactions with the grade and histology. 
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Table 4.5 Risk Groups with Observed and Estimated Number of Events 

Risk 

Group 

Observed 

Number of 

Events 

Estimated 

Number of 

Events 

z p-value 

1 7 5.48 0.65 0.51 

2 6 7.22 -0.45 0.65 

3 8 7.77 0.08 0.93 

4 6 8.24 -0.78 0.44 

5 3 8.40 -1.86 0.06 

6 6 5.47 0.22 0.82 

7 5 4.30 0.34 0.73 

8 5 5.90 -0.37 0.71 

9 6 7.46 -0.53 0.59 

10         338 325.86 0.67 0.50 

Total         390 386.08   

 

Table 4.6 Results of the Selected AFT Model 

AAC = Adenomas and adenocarcinomas, CMS = Cystic, mucinous and serous   neoplasms 

      Variable Estimate p-value 95% Confidence Limits 

Intercept 3.4489 <.0001  2.9613 3.9364 

Age at diagnosis -0.0321 0.0563 -0.0650 0.0009 

Histology- AAC Reference    

Histology- CMS  1.4730 0.0086 0.3739 2.5721 

Grade-Well Reference    

Grade-Moderate -1.4507 0.2105 -3.7216 0.8201 

Grade-Poor -2.9288 0.0062 -5.0254 -0.8321 

Stage I Reference    

Stage II -0.4510 <.0001 -2.6474 -1.7249 

Stage III -1.0779 <.0001 -1.4835 -0.6723 

Stage IV -2.1861 <.0001 -2.6474 -1.7249 

Lymph Node Status-Negative Reference    

Lymph Node Status-No Exam -0.2926 0.0045 -0.4946 -0.0905 

Lymph Node Status-Positive -0.1774 0.1225 -0.4025 0.0478 

Age*Histology-AAC Reference    

Age*Histology-CMS -0.0221 0.0065 -0.0379 -0.0062 

Age*Grade-Well Reference    

Age*Grade-Moderate 0.0390 0.0268 0.0045 0.0735 

Age*Grade-Poor 0.0193 0.3092 -0.0179 0.0565 

Scale 0.6248  0.5730 0.6812 
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Also, age at diagnosis and grade of the cancer has a significant impact on the ovarian cancer 

survival. The main effect of lymph node status is significantly contributing to the model. Race 

was not a significant factor in this model. Size is also not significant, may be due to stage being 

highly significant in this model and size information are included in stage.  

In AFT model, exponent of coefficients provides the effect of a covariate on the time 

scale rather than on the hazard as in Cox proportional hazard model. This quantity is called 

“acceleration/decelerations factor” and gives more easily understood interpretations. For 

example, the estimated acceleration factor for lymph node status-positive compared to negative 

is 0.84 (= 𝑒−0.1774). That is, controlling for other variables, the expected time to death by 

ovarian cancer whose lymph node status positive is about 16% lower than those who have 

negative lymph node status. However, this effect is not statistically significant (p-value=0.1225). 

Similarly, controlling for other variables, the expected time to death by ovarian cancer is 

accelerated by 25% (𝑒(−0.2926) = 0.75) for an individual with lymph node status-not examined 

compared to an  individual with lymph node status-negative. Estimated time ratio for individuals 

in grade-moderate relative to individuals in grade-well is given by, 𝑒𝑥𝑝(−1.4507) = 0.25 

adjusted for other covariates at their baseline levels (age 58.92 years, histology- AAC,  stage-I 

and lymph node status-negative). This means that, survival times of individuals in grade-

moderate are 0.25 times those of individuals in grade-well, adjusted for other covariates at their 

baseline levels. Since, we centered age at mean (58.92 years), the coefficient of the age*grade-

moderate term is not counted in this effect computation. 
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4.6 Flexible Parametric Survival Model 

This section introduces a more flexible survival model which addresses limitations found 

in Cox proportional hazard or parametric accelerated failure time models. Starting point of 

statistical modeling of survival data is Cox regression which doesn’t require the knowledge of 

the underlying probability distribution function of the survival times more specifically baseline 

hazard function. It is mainly focused on hazard ratios rather than the hazard function or survival 

function. When the survival predictions or hazard function are more of interest under the study, 

underlying probability distribution function can be estimated or assumed and then a parametric 

statistical model can be developed for survival data. However, it is always not the case that a 

standard probability distribution will capture the underlying probability distribution of the data 

well. In such cases, spline functions can be used to estimate the behavior of the survival data and 

a more flexible parametric model can be developed. Methodology given in this section follows 

the work of [25] and [26]. Before moving on to the model formulation, an introduction to the 

spline functions that is to be used in the parametric model is given below. 

Restricted cubic splines are spline functions consist of set of piecewise polynomials. The 

places where these polynomials are connected are called knots. Mostly used splines in practice 

are third degree polynomials that are called cubic splines. Since cubic splines can behave poorly 

in tails, it is recommended to constrain at and beyond the lower and upper boundary to be 

straight lines. The complexity of the spline function is depends on the number of knots and their 

locations. 

The restricted cubic spline function on x scale with k knots takes the form 

                                           𝑠(𝑥; 𝛾) = 𝛾0 + 𝛾1𝑊1 + 𝛾2𝑊2 + ⋯ + 𝛾𝑘−1𝑊𝑘−1,           (4.11) 
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where W’s are basis functions and are defined as 

𝑊𝑗 = 𝑥 ; 𝑗 = 1 , 

𝑊𝑗 = (𝑥 − 𝑘𝑗)+
3 − 𝜆𝑗(𝑥 − 𝑘𝑗)

+

3
− (1 − 𝜆𝑗)(𝑥 − 𝑘𝑗)

+

3
;  𝑗 = 2, … , 𝑘 − 1 

and                           (𝑥 − 𝑘𝑗)
+

3
= 𝑚𝑎𝑥 [0, (𝑥 − 𝑘𝑗)

3
] and  𝜆𝑗 =  

𝑘𝑘−𝑘𝑗

𝑘𝑘−𝑘1
. 

 

4.6.1 Flexible Parametric Model Formulation 

We start by the widely used parametric model, the Weibull model for survival times (t). 

Then the survival distribution function, 𝑆(𝑡) and the hazard function, ℎ(𝑡) is given by 

𝑆(𝑡) = exp (−𝜆𝑡𝛾)  

and                                                               ℎ(𝑡) = 𝜆𝛾𝑡𝛾−1  

respectively, 

where 𝛾 is the shape parameter, and hazard function is monotonically decreasing if 𝛾 < 1, 

monotonically increasing  if 𝛾 > 1 and constant when 𝛾 = 1. 

Log cumulative hazard function with respect to the Weibull parametric survival model is given 

by 

                                                       𝑙𝑛𝐻(𝑡) = 𝑙𝑛𝜆 + 𝛾𝑙𝑛𝑡. (4.12) 

Equation 4.12 corresponds to a monotonic function which is fitted to log cumulative hazard. 

However, in practice monotonically increasing or decreasing function may not capture the true 

nature of the cumulative hazard function. In those cases, restricted cubic spline functions defined 

in Equation 4.11 will be more suitable and useful in modeling the log cumulative hazard function 
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of the data. Let’s denote right hand side of the Equation 4.12 using a restricted cubic spline 

function as shown in Equation 4.11 using scale 𝑙𝑛 𝑡. Then,  

𝑙𝑛𝐻(𝑡) = 𝑠(𝑙𝑛 𝑡; 𝛾). 

Now incorporating the covariate vector, Z and the corresponding regression parameter vector, 𝜷 

we have cumulative hazard form the flexible parametric survival model 

                                                              𝑙𝑛𝐻(𝑡; 𝒁) = 𝑠(𝑙𝑛 𝑡; 𝛾) + 𝒁 𝜷,  (4.13) 

where 𝑠(𝑙𝑛 𝑡; 𝛾) is the flexible log cumulative baseline function, modeled by a spline function. 

 

Differentiation and some rearrangements of Equation 4.13 will give the hazard function form of 

the flexible parametric model 

                                                      𝑙𝑛(𝑡; 𝒁) = 𝑙𝑛ℎ0(𝑡) + 𝒁 𝜷,                                         (4.14) 

where it can be shown that  

𝑙𝑛ℎ0(𝑡) = − ln 𝑡 + ln(𝛾1 + 𝛾2𝑊2
′ + ⋯ + 𝛾𝑘−1𝑊𝑘−1

′ ) + 𝛾0 + 𝛾1𝑊1 + 𝛾2𝑊2 + ⋯ + 𝛾𝑘−1𝑊𝑘−1. 

 

4.6.2 Flexible Parametric Model with Time Dependent Effects 

When there are covariates with non-proportional hazards then flexible parametric model 

in Equation 4.14 have to be adjusted for it as this model is a special case of general class of 

proportional hazards (PH) models. These non-proportional hazards can be incorporated to the 

flexible parametric model in terms of piecewise or continuous time dependent effects. Suppose 

we are denoting time dependent effect by continuous function using splines. Then interaction 
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terms formed with a spline function and the non-proportional hazard covariates can be used to 

model the time dependent effects in the model.  

The general flexible parametric model with ‘d’ number of time dependent effects can be given as  

                              𝑙𝑛𝐻(𝑡; 𝒁) = 𝑠(𝑙𝑛 𝑡; 𝛾) + ∑ 𝑠(𝑙𝑛 𝑡; 𝛿𝑗)𝑍𝑗 +𝑑
𝑗=1 𝒁 𝜷.                         (4.15) 

This approach computes different sets of spline functions one set for the baseline hazard and the 

other set for the time dependent effects. Number of knots differs between the two spline 

functions.  

Parameters of the flexible parametric model are estimated using maximum likelihood 

method. Selection of this subject model can be done using the appearance of the fitted 

survival/hazard function along with the Akaike’s Information Criteria (AIC).  When developing 

the flexible parametric model, the following aspects need to be considered. (i) baseline 

complexity, (ii) mostly contributing variables along with their correct functional forms and (iii) 

time varying effects if exists. It is known that, significance of the covariates in the flexible 

parametric model and the Cox PH model are robust [26]. Also, we have found non-proportional 

hazards when building Cox PH model. Hence, we will use those known characteristics of the 

data, in building the flexible parametric model. That is, we start the initial flexible parametric 

model with the covariates found to be mostly contributing and time varying effect for Histology 

(an interaction with ln t). 

Model selection: We started with finding the appropriate number of knots and the corresponding 

spline function which estimates the behavior of the hazard. We explored different knot positions 

at percentiles of the uncensored log survival times. AIC along with the estimated hazard 

functions graphs was used to select the best model. Table 4.7 shows the AIC values for several 
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flexible parametric models with different knot positions. The model with 4 knots has the 

minimum AIC of 1971.4808 which suggests that it is the best model out of the models 

considered here. However, a simpler model with a one knot has slightly higher AIC value, 

1972.068. Therefore, both of these models were considered as candidate models. Since, one knot 

and four knot models give small comparable AIC values, we examined the smoothed hazard 

function and the hazard functions by the two candidate models. Figures 4.10, Figure 4.11 and 

Figure 4.12 show the corresponding estimated hazard function plots respectively. It can be seen 

that the baseline hazard estimated by the four knot model is more close to the empirically 

estimated smoothed hazard function. Therefore, we selected four knot flexible parametric model 

for the data. In all the models that we compared here, we included a time varying effect for 

Histology as a function of ln t. Next, we fitted spline functions to capture the time varying nature 

of the hazard of the Histology. We found that ln t function was sufficient to capture the time 

dependency of the hazard and spline function for time dependent effect of Histology was not 

needed.  

 

Table 4.7: The Number and the Pre-Specified Position of Knots for Several Flexible Parametric 

Models and their Corresponding AIC values 

Number of 

Knots 

Knot Position 

(Centiles) 

Time Scale 
AIC 

1 50 1.9167 1972.0680 

2 33, 67 1.5, 2.4167 1974.8338 

3 25, 50, 75 1.1042, 1.9167, 2.9167 1979.4120 

4 20, 40, 60, 80 1, 1.6667, 2.2, 3.1667 1971.4808 

5 17, 33, 50, 67, 83 0.9167, 1.5, 1.9167, 2.4167, 3.4167 1977.4538 

6 14, 29, 43, 57, 71, 86 0.7883, 1.3333, 1,75, 2.0833, 2.6667, 3.5833 1978.9774 
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Figure 4.10 Smoothed Baseline Hazard Function 

 

 
Figure 4.11 Estimated Baseline Hazard Function from One Knot Spline Model 
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Figure 4.12 Estimated Baseline Hazard Function from Four Knot Spline Model 

Next, we present a comparison between observed survival probabilities and the selected 

model based survival probabilities. First, we computed prognostic index using linear predictor of 

the model and created four groups based on the centiles of the prognostic index. After that we 

computed model based survival curve and observed survival probabilities for each of the groups. 

The results are presented in Figure 4.13. It can be seen that both types of survival curves agree 

well within the prognosis groups apart from small differences. This is an indication that the fitted 

flexible parametric model is adequate for data. 
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Figure 4.13 Observed Survival Probabilities and the Flexible Parametric Model Based 

Survival Probabilities (smooth lines) 

Parameter estimates of the covariates from selected flexible parametric model are shown 

in Table 4.8. The general interpretation of the parameter estimates (𝛽̂)  is that they are equal to 

log hazard ratio of the corresponding covariate. If one wants to know the absolute behavior of 

the hazard rates it can be computed from using the spline estimates for baseline cumulative 

hazard and substituting in Equation 4.15 since this model contains a time varying effect for 

Histology otherwise Equation 4.13 can be used. Hazard rates computed for each stage is shown 

in Figure 4.14. As expected for early stages hazard rates are low and when stage gets advanced 

hazard rates are higher. In addition, survival curves, hazard differences can be computed for the 

variable stage. Figure 4.15 presents the differences in hazard rates for Histology-CMS and 

Histology-AAC which shows an overall increasing trend. Also, we present the hazard ratios for 

the variable Histology estimated from the initial Cox model in Section 4.3 and from the flexible 

parametric model (Figure 4.16). It can be seen that if the standard model was used we would 
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force the Histology variable to have a constant hazard ratio. In contrast, we are able to estimate 

the time varying nature of the hazard ratio from the flexible parametric model that we have 

developed. Similarly, effects of the other covariates can be computed from this model where 

additional estimates than the standard Cox regression could be obtained.  

Table 4.8 Summary Results of the Flexible Parametric Model 

Variable 
Estimate 

(𝛽̂) 
p-value 95% Confidence Limits 

Age at diagnosis 0.0163 0.6160 -0.0473 0.0799 

Histology- AAC Ref    

Histology- CMS  -1.7547 0.0060 -2.9972 -0.5123 

Grade-Well Ref    

Grade-Moderate 2.3887 0.1710 -1.0315 5.8088 

Grade-Poor 4.2454 0.0080 1.0862 7.4047 

Stage I Ref    

Stage II 0.5707 0.0500 0.0012 1.1401 

Stage III 1.7311 0.0000 1.2999 2.1623 

Stage IV 2.3711 0.0000 1.9210 2.8211 

Lymph Node Status-Negative Ref    

Lymph Node Status-No Exam 0.3637 0.0070 0.0996 0.6279 

Lymph Node Status-Positive 0.2142 0.1440 -0.0730 0.5014 

Age*Histology-AAC Ref    

Age*Histology-CMS 0.0074 0.0310 0.0007 0.0141 

Age*Grade-Well Ref    

Age*Grade-Moderate -0.0165 0.2440 -0.0444 0.0113 

Age*Grade-Poor -0.0192 0.0290 -0.0364 -0.0019 

Histology*ln(time) 0.1241 0.0000 0.0696 0.1786 

AAC = Adenomas and adenocarcinomas, CMS = Cystic, mucinous and serous   neoplasms 
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Figure 4.14 Estimated Hazard Rates for Stage under the Flexible Parametric Model 

 

 

Figure 4.15 Estimated Differences of Hazard Rates for Histology (CMS-AAC) under the 

Flexible Parametric Model  
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Figure 4.16 Comparison of Hazard Ratios from Standard Cox PH Model and the Flexible 

Parametric Model with Time Varying Effects 
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some identified predictor variables, age, tumor size, histology, grade, stage and lymph node 
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follow-up time. Therefore, Cox PH model was not appropriate for this data. Also, another 
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information about the survival experience. One of the parametric models is the accelerated 

failure time model presented in section 4.5. 

AFT model provides the effects of covariate on time scale which can be easily 

understood by anyone. The effect of covariate can be interpreted as the acceleration/deceleration 

of the time to an event of interest.  Relevance of the selected log-logistic AFT model is that 

given an individual who satisfies the inclusion criteria and has information about the age, 

histology, grade, stage and the lymph node status, we can use our model to predict survival time 

or survival probability at specified times. A disadvantage of an AFT model is that we have to 

identify the underlying probability distribution for the survival time and it is always not possible 

to find the correct distribution as survival experiences in real life could be complex. Therefore, it 

is worth of exploring more flexible parametric model which can capture true survival patterns of 

data more closely. The flexible parametric survival model that we presented in section 4.6 is 

such a model. 

Flexible parametric model can be presented as an extension to the standard Cox PH 

model. The main difference is that in flexible parametric model, baseline hazard is estimated by 

a set of cubic polynomials while in Cox PH model it is unspecified. Also, this model can 

accommodate time varying effects to address the non-proportionalities. This flexible parametric 

model has more advantages than the Cox PH model and even than the AFT model if the 

underlying probability distribution is not properly approximated. We computed Harrell’s c-index 

value for the flexible parametric model without time varying effects and it gave an estimate 76% 

which is comparable to the AFT model. Due to some computational difficulty it couldn’t be 

computed for the time varying model. We believe that predictive ability of the time varying 

flexible parametric model would be higher than 76%. 
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4.8 Contributions 

In the present chapter, we have identified and estimated some important aspects regarding 

ovarian cancer survival time data as below. 

 Significantly contributing prognostic factors for disease-free survival of ovarian cancer 

 Histology types Adenomas and adenocarcinoma and Cystic, mucinous and serous neoplasms 

has risk ratios that vary with follow up time. 

 Age has a linear effect on the risk of death by ovarian cancer. 

 A parametric model that gives effects of risk factors on the time scale than on risk scale 

 A flexible parametric model which provides more information about data than the standard 

Cox regression model. 

 Absolute hazard and survival functions with respect to the significant risk factors. 
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CHAPTER 5 

EXTENDED COX REGRESSION MODEL TO ADDRESS NON-LINEAR 

EFFECTS AND NON-PROPORTIONAL HAZARDS WITH AN APPLICATION TO 

BREAST CANCER DATA 

5.1 Introduction 

Cox proportional hazard (CPH) model [27] is a popular method that is being used in studying the 

relationship between survival times and explanatory variables. A careful development of a model 

and the assessment of model adequacy can result in a powerful, numerically stable and easily 

generalizable model. The identification of inadequacies of a model is an important step towards 

the development of more reliable and accurate survival time models. The assessment of the 

adequacy of statistical models is only possible through the combination of several statistical 

analyses and proper investigation regarding the purposes for which the statistical model was 

initially conceptualized and developed for [28]. Even though there are many model adequacy 

methods that have been developed for the CPH model, usage of these methods does not seem to 

be very popular in applications of this model in real life data. Therefore, the goal of this study is 

to explore certain methods of assessing the fit of CPH models and to discuss the effects of the 

CPH model inadequacies. In the present study of breast cancer data from Surveillance, 

Epidemiology, and End Results (SEER) program, we discuss and explore the methods that can 

be used to assess non-proportionalities of the covariates and proposes a data driven method to 

adjust the Cox model for non-proportionalities. Also, we discuss the methods that can be used to 
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assess the linearity of the continuous covariates and how to include non-linear effects in the CPH 

model appropriately.   

Female breast cancer patients of age 20 years and above who were diagnosed with 

invasive ductal carcinoma during the years 1990 to 2000 were extracted from the SEER breast 

cancer database for the present study.  Invasive ductal carcinoma means that cancer has grown 

out from milk ducts into the nearby breast tissue, and maybe to the lymph nodes and/or other 

parts of the body.  This is the most common type of breast cancer and accounts for about 70% 

breast cancer incidence. The selected study data consists of a random sample of 1000 patients. 

Potential prognostic factors, including race and age of the patient, tumor size, lymph node status, 

extension of the tumor, tumor stage and outcome of progesterone receptor assay (PRA) were 

selected according to the current knowledge about the risks of cancer. Race of the patient is 

categorized to white, black and other. Age was measured at the diagnosis. Tumor size is the 

largest dimension or diameter of the primary tumor and it is measured at the diagnosis in mm at 

the diagnosis. The variable lymph node status represents whether regional lymph nodes 

examined pathologically contain metastases (spread of cancer to lymph nodes). Lymph node-

negative means the lymph nodes do not contain cancer and lymph node-positive means the 

lymph nodes contain cancer. Cancer cells in regional lymph nodes may mean that cancer is more 

likely to spread to other parts of the body. This item codes the farthest documented extension of 

tumor away from the primary site, either by contiguous extension or distant metastases [29]. 

Stage variable in our study represents AJCC stage 3rd edition (1988-2003) and has been derived 

by algorithm from extent of disease. It is known that some breast cancer cells need hormones to 

grow. These cancer cells have hormone receptors inside which are special proteins that when 

hormones attach to those, the cancer cells grow. A pathologist examines the cancer cells and 
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determines whether they have many hormone receptors (hormone receptor-positive) or few or no 

hormone receptors (hormone receptor-negative). These hormones are estrogen and progesterone. 

Breast cancers that are estrogen-positive also tend to be progesterone positive, vice versa [30]. 

Our data supports this statement. Hence, we studied only progesterone receptor status (PRA).  

Survival time until cancer related death is the response variable of interest and death by other 

causes, lost to follow up or alive at the end of the recording period is considered as censored. 

5.2 Assessing the Model Adequacy  

After an initial model has been developed using backward elimination method at a 

removal significance rate of 5%, we moved on to evaluating the model. A detailed theoretical 

description of the model adequacy techniques of the CPH model is given in Chapter 1. We used 

three types of residuals that can be calculated for the Cox model, namely Cox-Snell, Martingale 

and Schoenfeld residuals, to assess the model adequacy, namely overall goodness-of-fit, unusual 

and influential data values, correct functional form of the continuous covariates and the 

proportional hazard assumption.  

First, overall goodness of fit of the model was assessed using Cox-Snell residual plot. 

The concept behind this method is to examine whether it is reasonable to accept that Cox-Snell 

residuals come from a unit exponential distribution which is true for a well fitted model. As 

shown in Chapter 1, the idea is to plot Cox-Snell residuals (𝑟𝐶𝑖) versus cumulative hazard 

function of the residuals (𝐻(𝑟𝐶𝑖)). Plot of 𝑟𝐶𝑖 vs. 𝐻(𝑟𝐶𝑖) should yield a straight line with unit 

slope if the assumption of 𝑟𝐶𝑖~exp (1) is satisfied, that is if the model fits data well. However, 

the final decision of the model shouldn’t be taken solely on this plot. In practice it has been 

found that Cox-Snell plot is not sensitive to small model inadequacies and not reliable in small 
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sample sizes. Therefore, along with this overall goodness of check we should proceed to check 

separately for the situations where model inadequacies can occur in a CPH model. The three 

main areas are to check for influential observations, non-linear effects of the continuous 

covariates and non-proportional hazards of the covariates.  

Identification of unusual data values and influential data values on the parameter 

estimates can be done using statistics similar to leverage and dfbeta in standard linear regression 

models. As shown in Chapter 1, score residuals have similar properties as leverage values. For 

continuous predictors, the further the value is from the mean, the larger the absolute value of the 

score residual is. Graphs of the score residuals and covariates aid in identifying any subjects with 

unusual data values. A statistic that is similar to dfbeta that approximately measures the 

difference between a particular coefficient value and the new coefficient if a value is removed 

from the sample can be computed for CPH model using score residuals and covariance matrix of 

the estimated coefficients [15]. This value is sometimes called scaled score residual and plots of 

these residuals and continuous covariates are useful to examine any subjects that influence the 

parameter estimates.  

Identifying the correct functional form of the continuous covariates is a crucial step in 

model development even though it is not practiced much in health data analysis. Cumulative 

Martingale residual plots with the interested covariates are useful in assessing the linearity of the 

variables. The smoothed curve to the plot indicates whether the effect of the variable is linear or 

non-linear. In addition, this smoothed curve gives a hint on the functional form of the 

relationship of the covariate to the hazard. The smoothing procedure used in these graphs are 

developed by [31], [32] Cleveland and [33]. Smoothing parameter is optimized by fitting 

multiple models and AICC criterion is used to balance fit of the model between tight and 
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complex. The next two sections describe methods to adjust the Cox model for the non-linear 

effects, namely fractional polynomial method [34] and restricted cubic spline method. Also, 

these methods can be used to assess the significance of the apparent non-linearity in the 

smoothed Martingale residual plots.   

As mentioned in Chapter 1, proportional hazard assumption is the main assumption 

behind the Cox proportional hazard model that is used extensively in time-to-event data analysis. 

We discuss two methods that can be used to identify any violations of proportional hazards: 

Scaled Schoenfeld residuals [18] and Simulated Score residual paths [17]. Recall the form of 

proportional hazards model 

ℎ𝑖(𝑡𝑖|𝒁𝒊) =  ℎ0(𝑡)exp (𝛽1𝑍1𝑖, + ⋯ . + 𝛽𝑝𝑍𝑝𝑖). 

As suggested by [18], instead of constant coefficient, 𝛽, include a coefficient of the form  

𝛽𝑗(𝑡) = 𝛽𝑗 + 𝛾𝑗𝑔𝑗(𝑡) 

that varies with time to the model. 𝑔𝑗(𝑡) is a function of time that the user has to specify. 

Approximated scaled Schoenfeld residuals have a mean at time t given by 𝛾𝑗𝑔𝑗(𝑡). As a result, 

the plot of scaled Schoenfeld residuals vs. time can be used to assess whether 𝛾𝑗 zero is or not. 

That is, if slope is zero then 𝛽𝑗(𝑡) doesn’t depend on time and hence the hazard ratio is also 

constant with respect to time. In addition, a formal test to check whether 𝛾𝑗 is zero has been 

proposed by [18].  

Another method that can be used is to use a transformation of Martingale residuals which 

is called Score process [17]. Under the assumption of proportional hazards this process can be 

approximated by zero mean Gaussian process. Hence, a comparison of observes score process 
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and simulated score processes under the PH assumption would reveal any departures from the 

assumption. The idea is to use one thousand simulations of the score process and compute the 

proportion of times that the maximum absolute values of the simulated processes exceeds the 

maximum absolute value of the observed score process. This value serves as the p-value for a 

supremum type of formal test of PH assumption. If the simulated processes exceed the observed 

process relatively few times then it is an indication of the violation of the assumption. In 

addition, graphs of these observed and simulated processes can be used to identify the departures 

from the proportional hazards.  

5.3 Adjusting Non-linear Effects of the Covariates  

When continuous predictors are present, the common and convenient practice is to 

include them as categorical predictors or as linear predictors in the model being studied. 

Categorization of a continuous covariate might lead to subjective categorizations and loss of 

information. Also, if a continuous predictor is incorrectly included as a linear effect then it might 

lead to misleading conclusions from the model. When non-linear effects are detected, we should 

attempt to find the correct functional form of the effect or a function that closely follows the non-

linear effect. In practice, most of the time non-linear effects are not parabolic nature. Therefore, 

more advanced transformations are needed to approximate the functional form of the covariates. 

5.3.1 Fractional Polynomials 

Fractional polynomial method can be used to describe the complex relationship between 

the outcome and continuous covariates. The procedure is to use one polynomial term model 

(FP1) and a two-term polynomial (FP2) to capture the pattern of the relationship between the 

covariate and the outcome and through a deviance difference test compare and choose the best 
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model. Assume we have two continuous covariates (X1 and X2) that needed to be included in the 

model. The best fractional polynomial model selection procedure is described as below [25]. 

1. Initially, the best fitting polynomial function for the most significant continuous variable is 

found (say, X1) assuming X2 is linear.  

a. That is, fit FP2 for X1 and then compare it with the null model on 4 degrees of 

freedom significance test (say, at significance level 5%). If the test is not significant 

drop X1; otherwise continue to the next step. 

b. Compare FP2 model with the linear model with 3 degrees of freedom significance 

test. If the test is not significant then keep X1 as a linear term in the model; otherwise 

continue to the next step. 

c. Compare FP2 with FP1 on 2 degrees of freedom test. If the test is significant, then FP2 

is the best fitting polynomial function for X1 otherwise FP1 is chosen as the best 

fitting fractional polynomial.  

                  FP1 model for X1:  ℎ(𝑿, 𝑡) = ℎ0(𝑡)𝑒𝑥𝑝{𝛽1𝑋1
𝑝1 + 𝛽3𝑋2}                                         (5.1) 

                  FP2 model for X1: ℎ(𝑿, 𝑡) = ℎ0(𝑡)𝑒𝑥𝑝{𝛽1𝑋1
𝑝1 + 𝛽2𝑋1

𝑝2 + 𝛽3𝑋2}                          (5.2) 

By default, polynomial transformations p1 and p2 are estimated from the set {−2, −1, 

−0.5, 0, 0.5, 1, 2, 3} (where 0 corresponds to log(X)). 

2. Next, the selected functional form for X1 is kept and the same procedure (a-c) at the step 1 is 

repeated for X2. Once the best functional polynomial term for X2 is found, the iteration 1 

ends.  
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3. The second iteration starts by repeating step 1 for X1 while keeping the selected functional 

form for X2. If this results in the same functional form for X1 as in step 1, the procedure has 

entered into convergence and selected polynomial functions for X1 and X2 are included in the 

model. Otherwise, repeat step 2 for X2 retaining the newly found polynomial function for X2. 

4. This procedure continues until the functional forms converge for X1 and X2. 

Default order of entering covariates to this procedure is based on the statistical significance with 

respect to p-value. Optionally, we can choose the order that variables enter. Also, we can specify 

certain continuous variables of interest in the model to be linear.  

5.3.2 Restricted Cubic Splines 

Spline functions are piecewise polynomials connected across intervals of a given 

continuous covariate. The joint points where these piecewise polynomials are connected are 

called knots. The simplest form of the polynomial that can be used is linear function. However, 

piecewise linear functions are not effective in modeling sharply curved relationships as they are 

not smooth. It has been found that cubic spline functions can approximate functions with 

complex shapes. Because restricted cubic splines can behave poorly in the tails, [35]  have 

proposed constraining the function to be linear before the first knot and after the last knot. We 

are applying their proposed method called restricted cubic spline function to estimate the non-

linear relationship between continuous covariates and the hazard function. 

Assume we have one continuous covariate (X) we wish to estimate through restricted 

cubic splines. Initially, we partition X scale into sections separated by k knots at t1, t2,…., tk. The 

relationship between hazard function and partitions of X is then estimated by cubic spline 

functions. Then, these functions are joined at k knots. Two more knots are placed at the 
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boundaries of the X scale called tmin and tmax. In restricted cubic splines, the relationship between 

X and the hazard function at the section tmin to t1 and tk to tmax are constrained to be linear. 

The model takes the form 

ℎ(𝑋, 𝑡) = ℎ0(𝑡)𝑒𝑥𝑝{𝛽1𝑋 + ∑ 𝛽𝑗
𝑘
𝑗=1 [(𝑋 − 𝑡𝑗)+

3 − 𝛾𝑗(𝑋 − 𝑡𝑚𝑖𝑛)+
3 − (1 − 𝛾𝑗)(𝑋 − 𝑡𝑚𝑎𝑥)+

3 ]}, (5.3) 

where  

(𝑋 − 𝑡)+
3 = {

(𝑋 − 𝑡)3 ; 𝑖𝑓 𝑋 ≥ 𝑡
0 ; 𝑖𝑓 𝑋 < 𝑡

   and  𝛾𝑗 =
𝑡𝑚𝑎𝑥−𝑡𝑗

𝑡𝑚𝑎𝑥−𝑡𝑚𝑖𝑛
. 

It has been shown that, in practice 3, 4 or 5 knots placed at percentiles are sufficient to 

approximate the relationship of the covariate and outcome well [35]. Therefore, we considered  

k = 3, 4 and 5 number of knots placed at percentiles for our analysis. 

5.4 Adjusting Non-proportional Hazards - Time Varying Effects Model 

The common method that is used to account for non-proportionality in a covariate is 

stratification, that is, use of the proportional hazard violated variable as a grouping variable 

rather than a regressor in the model. Even though this method is simple and easy to understand it 

has some drawbacks. When stratified Cox model is fitted, it is not possible to estimate hazard 

ratios associated with the stratifying variable (non-PH variable). This will be a major limitation if 

the stratification variable is an important characteristic under the study. In addition, this method 

is more suitable for qualitative covariates as there will be loss of information. Also, when the 

number of predictor variables that violates the proportional hazard assumption are large, 

stratified Cox model is not very useful. Given the limitations of the stratified Cox model, we 

want to introduce an extended Cox model with time varying coefficients which can be used to 

address those limitations.   
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The idea is to create a time dependent coefficient, 𝛽(𝑡), for the covariate which violates 

the proportional hazard assumption. That is, 𝛽(𝑡) = 𝛽𝑓(𝑡); where 𝑓(𝑡) is a function of time to 

reflect the time varying nature of the hazard ratio under study. 𝑓(𝑡) could be based on the 

theoretical knowledge about the covariate or scaled Schoenfeld residuals with smoothed curves.  

The Cox model with time varying coefficients for i
th

  individual (i = 1, 2, …, n) can be written in 

the form 

                                                  ℎ𝑖(𝑡) = ℎ𝑜(𝑡)𝑒𝑥𝑝{∑ 𝛽𝑗(𝑡)𝑍𝑖𝑗
𝑝
𝑗=1 };                                        (5.4) 

where ℎ𝑜(𝑡) is the baseline hazard function, i.e. hazard function when all covariates (Zj;  j =1, 2, 

…, p) takes the reference values at time = 0 (time at origin). Recall that in the Cox PH model 

hazard ratio, 
ℎ𝑖(𝑡)

ℎ𝑜(𝑡)
  can be obtained by exp (𝛽𝑗) which is constant over the time. In contrast, in the 

time varying coefficient Cox model, the hazard ratio is time dependent. That is, exp (𝛽𝑗(𝑡)) is the 

relative hazard of two individuals at time t whose Xj variable differs by one unit and the 

remaining variables take the same values. 

Extending the partial log likelihood function for the Cox PH model given in Chapter 1, for the 

time varying coefficient model, it is given by 

                                  ∑ {∑ 𝛽𝑗(𝑡𝑖)𝑍𝑗𝑖
𝑝
𝑗=1 − 𝑙𝑜𝑔 ∑ 𝑒𝑥𝑝(∑ 𝛽𝑗(𝑡𝑖)𝑍𝑗𝑙

𝑝
𝑗=1 )𝑙𝜖𝑅(𝜏𝑖) }𝑘

𝑖=1                      (5.5) 

where 𝑅(𝜏𝑖) is the risk set at time 𝑡𝑖, the death time of the i
th

 individual in the study and  is an 

event indicator that is zero if the survival time of the i
th

 individual is censored and unity 

otherwise. This partial log-likelihood is maximized to get the estimates for 𝛽(𝑡). 

             ∑ { (𝛽1𝑍1𝑖, + ⋯ . + 𝛽𝑝𝑍𝑝𝑖) − 𝑙𝑜𝑔[∑ exp (𝛽1𝑍1𝑗, + ⋯ . + 𝛽𝑝𝑍𝑝𝑗)𝑗∈𝑅(𝜏𝑖) ]}𝑘
𝑖=1            (5.6) 
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5.5 Application to Breast Cancer Survival Data 

The data for the present study was taken from the Surveillance, Epidemiology, and End 

Results (SEER) program, 2009. The aim was to find an appropriate model which describes the 

survival probability of the patients with malignant breast cancer with the use of some important 

attributable variables. Special attention was given for the evaluation of model assumptions and 

for correction of model assumption violations. Female breast cancer patients of age 20 years and 

above who were diagnosed with invasive ductal carcinoma during a decade starting from 1990 

were considered from the SEER breast cancer database for the present study.  The selected study 

data consists of a random sample of 1000 patients. Potential prognostic factors, including age at 

diagnosis, race of the patient, tumor size at diagnosis, extension, lymph node status and outcome 

of progesterone receptor assay (PRA) were selected according to the current knowledge about 

the risk of cancer deaths.  

The mean and standard deviation of follow up times of the patients are 10.5 years and 5.2 

years respectively and median survival time is 11 years. Sixty five percent of the study sample 

were censored observations; that is, alive at the end of the follow up period, lost to follow up or 

death by other cause. Overall 5 years and 10 years survival probabilities are 80% and 70% 

respectively. Tumor size at diagnosis had a mean of 22mm with a standard deviation of 18.4mm 

and age at diagnosis had a mean of 58.2 years with a standard deviation of 13.5 years. Age at 

diagnosis was centered at the average for meaningful interpretations for the baseline survival 

probability. Table 5.1 displays a summary of the categorical variables of interest along with the 

corresponding log-rank test results. Initial evaluation of the covariates was done using the 

univariate Cox regression model and all the covariates were significant at 5% significance level.  
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As the initial step of model building, multivariate Cox proportional hazard model was 

developed using backward elimination process (removal p-value = 0.05). Only the variable 

extension was not significant in the model. This served as the initial model where summary of 

the estimates are shown in Table 5.2.  

Table 5.1 Univariate Analysis of the Breast Cancer Data 

Variable Count (%) 

Race  

White 734(87) 

Black 48(6) 

Other 65(7) 

Lymph node status  

Negative 477(56) 

Positive 256(30) 

Unknown 114(14) 

Extension  

Localized 776(92) 

Regional 44(5) 

Distant 27(3) 

Stage  

I 401(47) 

II 330(39) 

III 93(11) 

IV 23(3) 

PRA  

Negative 379(45) 

Positive 468(55) 

 

 

 

 



91 

 

Table 5.2 Results of the Initial Cox Proportional Hazards Model 

Variable 
Parameter 

Estimate 
p-value 

Hazard 

Ratio 

95% Hazard Ratio 

Confidence Limits 

Race-black 0.59654 0.0013 1.816 1.261 2.615 

Race-other -0.47493 0.1310 0.622 0.336 1.152 

Lymphnode-positive 0.72224 <.0001 2.059 1.463 2.898 

Lymphnode-unknown 0.79662 <.0001 2.218 1.504 3.271 

Stage II 0.59220 0.0018 1.808 1.248 2.620 

Stage III 0.84954 0.0003 2.339 1.481 3.692 

Stage IV 1.88322 <.0001 6.575 3.709 11.654 

PRA-positive 0.42802 0.0004 1.534 1.211 1.943 

Age
 

0.03798 <.0001 1.039 1.029 1.048 

Tumor Size 0.00692 0.0065 1.007 1.002 1.012 

 

The next step is to evaluate the adequacy of this initial model in the aim of improving the 

model if there are any inadequacies present. First, overall model adequacy was assessed using 

Cox-Snell residuals calculated for the initial model. Cox-Snell residual plot is shown in Figure 

5.1 where the graph deviates from the reference line which goes through the origin.  This 

indicates that the model might not fit the data well and it could be improved. Model evaluation 

was started with checking the assumption of linearity of the continuous covariates on the log 

hazard. It can be seen that the graph does not follow the straight line closely. This suggests that 

the model doesn’t adequately fit the data. Since there are some evidence for overall model 

inadequacy, the next step was to explore what makes the model inadequate. Three main aspects 

of the model were assessed; namely linearity of the continuous covariates, influential data points 

and finally the main assumption behind the Cox proportional hazard model, the proportional 

hazard assumption.  
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Figure 5.1 Cox-Snell Residual Plot for the Initial Model 

First, any unusual values and/or influential values on the parameter estimates were identified. 

Score residuals were computed for the initial model and plotted against age and tumor size to 

identify whether there are any records that have values that deviate from the rest of the data to a 

great degree. Figure 5.2a and Figure 5.2b display the score residual plots for age at diagnosis and 

tumor size at diagnosis. It can be seen that there are two values far apart from the other values on 

the top right of the score residual plot for age. Also, there are four values that differ from the 

other values on the score residual plot for tumor size. Dfbeta and each continuous covariate were 

plotted and shown in Figure 5.2c and Figure 5.2d to identify any strong influential values on the 

parameter estimates. It appears that two data points in the plot for age and five data points on the 

plot for tumor size differ from the rest of data points to a great extent. These identified values 

were further assessed to check what subjects correspond to these unusual behaviors and how they 
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affect the parameter estimates. A model without these six identified extreme values was fitted 

and there was 53% reduction of the coefficient estimate for race-other term. Tumor size change 

was more than a 100% change (0.007 to 0.016) which is expected because five of the identified 

records had larger tumor sizes, greater than 130mm. Breast tumor sizes are typically less than 

50mm and sometimes they can be more than 50mm. However, observance of a tumor size that is 

greater than 130mm clinically is possible but it is rare [19]. Also, some inconsistencies of the 

values for tumor size, lymph node status and stage can be found in these five data points. For 

example, there is a record with negative lymph node status and stage II but with tumor size 

151mm. There was another data point identified as a poorly fit record with a distant metastasis 

where our knowledge was limited to find the reason for this behavior. Even though it is clinically 

plausible we decided to disregard the identified data points from the further analysis as they are 

unusual in the study data. The next step was to evaluate whether the effects of the continuous 

covariates are linear.  
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Figure 5.2 Score Residual Plots and dfbeta Plots for Age and Tumor Size at Diagnosis 

There are two continuous covariates that we aim to identify the correct functional form for the 

Cox proportional hazards model, namely age and tumor size at diagnosis. Martingale residuals 

for the null model without the predictors were computed and plotted with age and tumor size 

along with smoothed curve. Figure 5.3a and Figure 5.3b represent the corresponding smoothed 

residual plots for age and tumor size respectively. It is clear that age and tumor size have a non-

linear relationship with estimated log hazard. Both covariates appear to have higher estimated 

log hazard as the covariate values increase. We further assessed the non-linear nature of these 
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relationships in the aim of finding the best form of function that describes effects of age and 

tumor size on log hazard.  

 

Figure 5.3a Smoothed Martingale Plot for Age (smooth= 0.615) 

 

M
ar

ti
n
g
al

e 
R

es
id

u
al

s

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

1.25

Age (Years)

20 30 40 50 60 70 80 90 100



96 

 

 

Figure 5.3b Smoothed Martingale Plot for Tumor Size (smooth=0.529) 

The first method that we used to capture the non-linear effects is the method of fractional 

polynomials. Both age and tumor size revealed significant transformations which confirm the 

observation we obtained from Figure 5.3a and Figure 5.3b. The most appropriate transformation 

for age is 

𝐹𝑃𝑎𝑔𝑒 = (
𝑎𝑔𝑒 𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑

10
)

2

 

and for tumor size is 

𝐹𝑃𝑠𝑖𝑧𝑒 = ln (
𝑠𝑖𝑧𝑒

100
). 
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We compared the initial model with the fractional polynomial model with non-linear terms for 

age and tumor size. Partial likelihood ratio test revealed test statistic of G = 3461.324 - 3380.917 

= 80.407 with 2 degrees of freedom    p-value of 2.68x10
-18

. Hence, the model with fractional 

polynomials for the non-linear effects is significantly different from the initial model with linear 

terms. To understand how well these identified functional forms describe the true form of age 

and tumor size, we used the method suggested by [23], [36] and the corresponding plots are 

shown in Figure 5.4a and Figure 5.4b. Except for a small deviation at the end, cubic function for 

age seems to describe the relationship with log hazard well. However, the natural logarithm 

function doesn’t appear to approximate the functional form of the tumor size well. It follows the 

basic shape but seems to overestimate the log hazard with respect to tumor size. We consider this 

fractional polynomial model with non-linear effects as a candidate model and explore another 

method which would better describe both non-linear effects.    

 
Figure 5.4a Smoothed Martingale Plot and the Estimated Fractional Polynomial Model for for 

Age  
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Figure 5.4b Smoothed Martingale Plot and the Estimated Fractional Polynomial Model for 

Tumor Size 

Restricted cubic spline functions are another method that can be used to describe non-

linear relationship between a response and a covariate. We applied it to age and tumor size to 

assess whether we can obtain a better fit than the fractional polynomial method. Non-linear 

relationships of age and tumor size were transformed using restricted cubic splines with 3, 4 and 

5 knots. The best transformation was decided by the minimum Akaike’s Information Criteria. 

Three knots were the best for both covariates where the resulting model had the minimum AIC 

of 3398.341 among the other candidate models considered. Partial likelihood ratio test 

comparing the initial linear model to this spline fitted non-linear model resulted G = 3461.324 - 

3374.341=86.9 with a p-value of 1.29 x10
-19

.on an increase of 2 degrees of freedom.  

Figure 5.5a and Figure 5.5b show the Martingale residual plot for age and tumor size 

respectively with smoothed plot and restricted cubic spline fit. In Figure 5.5a, residuals were 

modelled using age transformed with restricted cubic spline with four knots. It can be seen that 
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smooth fit and spline fit closely follows. When tumor size was represented with a restricted cubic 

spline with 3 knots, predicted values are close to smooth fit with slight under estimation. This 

supports our decision that these spline transformations approximate the non-linear behavior of 

age and tumor size well.  

 
Figure 5.5a Restricted Cubic Spline Fit with four Knots for Age 
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Figure 5.5b Restricted Cubic Spline Fit with Four Knots for Tumor Size 

Since we have two competing non-linear models for our data, we compared those two models 

with respect to the AIC of the model and the analytical simplicity. Fractional polynomial model 

has an AIC value of 3400.9167 and the restricted cubic spline model has a value of 3398.341. 

Therefore, AIC suggests that restricted cubic spline model is slightly better. However, if the 

simplicity of the analytical form of these competing models was considered, fractional 

polynomial model is preferred as it was found that the non-linear effects of age and tumor size 

are well described by the quadratic and logarithm functions. Therefore, we decided to proceed 

further with fractional polynomial model. 
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Next step of model adequacy was to check the non-proportional hazards of the model 

covariates. We used scaled Schoenfeld residual plots and simulated score residual plots to 

graphically assess the proportional hazards assumption of the Cox proportional hazards model 

adjusted for non-linear effects using the method fractional polynomials. Figures 5.6(a)-(j) show 

the scaled Schoenfeld residuals with smoothed plot. Except for race-other, lymphnode-positive, 

age
2
 and PRA-positive all the other plots don’t display any noticeable deviations from the 

horizontal line which supports proportional hazards. Age
2
 seems to have an upward trend/non-

linear. Almost all of the points in race-other plot lie around the horizontal line. There are isolated 

some points on top which might be the reason for the slight upward trend. Lymph node-unknown 

and stage III don’t seem to have a big trend or deviation from the horizontal line. The plot of 

PRA-positive shows a clear downward trend. Non-linearly it seems like an exponential decay 

and then leveling off as time increases. 

 

Figure 5.6(a) Scaled Schoenfeld Residual Plot for Race-Black 
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Figure 5.6(b) Scaled Schoenfeld Residual Plot for Race-other 

 

 
Figure 5.6(c) Scaled Schoenfeld Residual Plot for Lymphnode-positive 



103 

 

 

Figure 5.6(d) Scaled Schoenfeld Residual Plot for Lymphnode-unknown 

 

 

Figure 5.6(e) Scaled Schoenfeld Residual Plot for Stage II 
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Figure 5.6(f) Scaled Schoenfeld Residual Plot for Stage III 

 

 

Figure 5.6(g) Scaled Schoenfeld Residual Plot for Stage IV 
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Figure 5.6(h) Scaled Schoenfeld Residual Plot for PRA-positive 

 

 

Figure 5.6(i) Scaled Schoenfeld Residual Plot for Age 
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Figure 5.6(j) Scaled Schoenfeld Residual Plot for Tumor Size 

 

Table 5.3 Test of Proportional Hazards by Grambsch & Therneau, (1994) 

Variable rho Chi.Sq. p-value 

Race-black -0.01735 0.09 0.6130 

Race-other 0.12678 4.88 0.0274 

Lymphnode-positive 0.0599 0.99 0.2300 

Lymphnode-unknown -0.03146 0.3 0.6030 

Stage II -0.0412 0.46 0.3470 

Stage III -0.113 3.38 0.0160 

Stage IV -0.05397 0.79 0.1800 

PRA-positive -0.20563 12.28 0.0000 

Age
2 

0.13425 5.24 0.0487 

ln(Tumor Size) -0.08725 1.94 0.1390 
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We performed the test of proportional hazards by [18] on the covariates with and results 

are summarized in Table 5.3. Comparison of the observations from these plots with the test gives 

evidence for significant departures from proportional hazards for the variables, race-other, PRA-

postive and age
2
. Even though we didn’t observe from the smoothed scaled Schoenfeld residual 

plots, the test gives a significant result of proportional hazard assumption violation by stage III. 

Observed and simulated score residuals plots that also can be used to assess the 

proportional hazard assumption are shown in Figure 5.7.  Observed paths for PRA-positive and 

tumor size clearly deviate from the cloud of simulated paths. Stage III also shows some slight 

deviations from the simulated paths. As we can observe only ten simulated paths in the graph 

compared to the thousand simulations done for each graph, it is difficult to make strong 

observations from these plots. Supremum tests of non-proportionality which consider all the 

simulated paths would give more accurate findings. The corresponding supremum test results are 

given in Table 5.4. These results confirms the non-proportional hazards observed under scaled 

Schoenfeld residuals and plots for PRA and age variable. In addition, this supremum test 

suggests that stage III and lymph node-unknown variables do not satisfy the proportional hazards 

assumption.  
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Figure 5.7(a) Observed and Simulated Score Residual Paths for Race-black 
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Figure 5.7(b) Observed and Simulated Score Residual Paths for Race-other 
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Figure 5.7(c) Observed and Simulated Score Residual Paths for Lymphnode-positive 
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Figure 5.7(d) Observed and Simulated Score Residual Paths for Lymphnode-unknown 
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Figure 5.7(e) Observed and Simulated Score Residual Paths for Stage II 
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Figure 5.7(f) Observed and Simulated Score Residual Paths for Stage III 
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Figure 5.7(g) Observed and Simulated Score Residual Paths for Stage IV 
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Figure 5.7(h) Observed and Simulated Score Residual Paths for PRA-positive 
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Figure 5.7(i) Observed and Simulated Score Residual Paths for Age 
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Figure 5.7(j) Observed and Simulated Score Residual Paths for Tumor Size 

 

The next most important step in the model building is to adjust for any possible non-

proportionalities observed in the covariates. Evidence for proportional hazards assumption 

violation was clearly visible in the plots that we examined and tests that we performed for age
2 

and PRA. Age
2
 seemed to have a log hazard that has a linear upward trend and PRA-positive 

shows an exponential type decay. 
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Table 5.4 Test of Proportional Hazards by Lin et al. (1993) 

Variable 
Maximum Absolute 

Value 
Pr. >Max.Abs. Value 

Race-black 0.7521 0.4790 

Race-other 1.1417 0.1720 

Lymphnode-positive 1.1650 0.3880 

Lymphnode-unknown 1.8189 0.0690 

Stage II 1.2435 0.4890 

Stage III 2.4043 0.0080 

Stage IV 1.0565 0.2860 

PRA-positive 2.0891           <0.0001 

Age
2 

1.4477 0.0010 

ln(Tumor Size) 2.2399 0.4190 

 

In order to develop a model that accounts for these varying hazard ratios, we decided to 

incorporate time varying coefficients to age
2
 and PRA. We included an interaction term for 

coefficient of the age
2
 to vary with time linearly, β𝑎𝑔𝑒(t) = β𝑎𝑔𝑒t. PRA was allowed to vary in 

time in two ways, continuously and discretely; we named them model A and model B 

respectively. The vector x includes all the time fixed, linear variables including race, lymph node 

status and stage and 𝜷 is the corresponding vector of model coefficients. Recall that non-linear 

effects of age and tumor size are represented by 

𝐹𝑃𝑎𝑔𝑒 = (
𝑎𝑔𝑒 𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑

10
)

2

      

and                                                             𝐹𝑃𝑠𝑖𝑧𝑒 = ln (
𝑠𝑖𝑧𝑒

100
). 
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Model A: Exponentially decaying effect for PRA where rate of decay (k) was estimated from the 

scaled Schoenfeld smoothed residual plots. β𝑃𝑅𝐴(t) = β𝑃𝑅𝐴e−kt. The model takes the form 

ℎ(𝑡, 𝒁(𝑡)) = ℎ0(𝑡){𝑒𝑥𝑝( β𝑎𝑔𝑒(t) × 𝐹𝑃𝑎𝑔𝑒 + β𝑃𝑅𝐴(t) × PRA + 𝜷′𝒁)} 

Model B: In addition to the exponential decay form of the non-proportionality of the hazard of 

PRA, we developed a piecewise hazard function for PRA. That is, hazard ratio of PRA to vary 

discretely with time. That is, time scale was partitioned into 2 year intervals and five dummy 

variables were created to represent the piecewise effects of PRA. (See Table 5.5).  

Model B takes the form 

ℎ(𝑡, 𝒁(𝑡)) = ℎ0(𝑡){𝑒𝑥𝑝( β𝑎𝑔𝑒(t) × 𝑎𝑔𝑒𝐹𝑃 + β𝑃𝑅𝐴1(t) × PRA + β𝑃𝑅𝐴2(t) × PRA + β𝑃𝑅𝐴3(t) × PRA

+ β𝑃𝑅𝐴4(t) × PRA + 𝜷′𝒁)} 

Table 5.5 Dummy variables for PRA in model B (piecewise Cox model) 

Piecewise time 

dependent PRA 

0 ≤ 𝑡 < 2 2 ≤ 𝑡 < 4 4 ≤ 𝑡 < 6 6 ≤ 𝑡 < 8 8 ≤ 𝑡 

β𝑃𝑅𝐴1(t) 1   0 0 0 0 

β𝑃𝑅𝐴2(t) 0 1 0 0 0 

β𝑃𝑅𝐴3(t) 0 0 1 0 0 

β𝑃𝑅𝐴4(t) 0 0 0 1 0 

 

As mentioned before, ln(tumor size), race-other, lymphnode-unknown and stage III 

shows slight pattern as suggested by the residual plots and significance tests. However, these 

patterns have very little fluctuations around a horizontal line. Nevertheless, we included these 

terms in the both non-proportional hazards models with time varying coefficients (Model A & 
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Model B) that we assessed. We found that time varying coefficients of only age
2
 and PRA were 

statistically significant in both models A and B.  

Estimated hazard ratios for PRA from the Model B are given in Table 5.6. It can be seen 

that after 4 years hazard ratio for PRA-positive is approximately 1 compared to PRA-negative. 

That is the estimated risk for PRA-positive and PRA-negative individuals is the same after 4 

years. By observing the p-values, it can be seen that hazard ratios for time intervals 0-2 years and 

2- 4 years are statistically significant. Hence, we decided to create three time intervals 0-2, 2 - 4 

and >4 years instead of five intervals and refit the piecewise Cox model.  

Table 5.6 Estimated hazard ratios for PRA in model B (piecewise Cox model) 

Time Interval 

(Years) 
p-value Hazard Ratio 

95% Confidence 

Interval 

0-2 <0.0001 3.725 2.034 6.823 

2-4 0.0023 2.051 1.292 3.254 

4-6 0.5513 1.191 0.670 2.119 

6-8 0.9504 1.021 0.524 1.989 

>8 0.9631 0.989 0.611 1.600 

 

Modified Model B: New dummy variables for PRA are defined with two time interaction terms 

as below. 

β𝑃𝑅𝐴1(t) = {
1 ; 0 ≤ 𝑡 < 2

0 ; 𝑡 ≥ 2
 

and                                           β𝑃𝑅𝐴2(t) = {
1 ;  2 ≤ 𝑡 < 4

0 ;  0 ≤ 𝑡 < 2 𝑎𝑛𝑑 𝑡 ≥ 4
 

Modified model B takes the form 

ℎ(𝑡, 𝒁(𝑡)) = ℎ0(𝑡){𝑒𝑥𝑝( β𝑎𝑔𝑒(t) × 𝐹𝑃𝑎𝑔𝑒 +  β𝑃𝑅𝐴1(t) × PRA +  β𝑃𝑅𝐴2(t) × PRA +  𝜷′𝒁)} 
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We compared the AIC values of the two time varying coefficient models that we fitted where it 

was 3386.739 for Model A and 3387.685 for modified Model B. Therefore, according to the 

Akaike’s information criteria, both models fits are similar. Hence, both of these models were 

considered for our next step. 

As the final step in model building we checked the significance of all possible two way 

interactions in both Model A and modified Model B. We added all the interaction terms to the 

non-linear and non-PH adjusted model and used backward elimination method to remove the 

nonsignificant interaction terms. Only PRA(postive) × lymphnode(unknown) term was left 

significant in Model A. To compare whether interaction model makes a significant improvement, 

we performed likelihood ratio test. 

Partial likelihood ratio test statistic is 

Model A:  

G = −2[− 1681.37 − (−1678.464)] = 2.906 

with a p-value of 0.0886 from chi-square distribution with 1 degree of freedom. 

Time varying piecewise model with interactions resulted interactions of lymphnode-unknown 

with race-other, stage II, PRA-positive and tumor size and also interaction of age with race-

other. 

Modified Model B:  

G = −2[−1681.37 − (− 1672.95)] = 8.42 

with a p-value of 0.2970 from chi-square distribution with 5 degrees of freedom. The 

improvement made by the interaction model is not significant at 5% significance level. Hence, 
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considering law of parsimony, we decided to proceed with the models with non-linear terms and 

time varying coefficients but without covariate interactions.  

A summary of parameter estimates for these two models and the initial Cox PH model is given in 

Table 5.7. Estimated coefficients for race and lymphnode are similar in all three models. For the 

covariate stage, the parameter estimates are higher in the initial Cox model than in the two 

extended Cox models. As seen from the log-likelihood and the AIC values, both extended 

models fit the data similarly resulting similar parameter estimates for all the linear and PH 

satisfied covariates. Hazard ratios for these linear and PH satisfying covariates can be estimated 

as exp (𝛽̂). Under the piecewise Cox model, hazard of cancer death for a subject in race-black is 

about 1.7 times higher than a subject in race-white. In contrast, hazard for a subject in race-other 

compared to a subject in race-white is 0.5. That is, race-white breast cancer patient is two times 

likely to have a death from cancer than a patient in race-other. Risk of cancer death for breast 

cancer patients gets larger as the stage of the disease gets higher as seen from our model where 

hazard ratios for stage II, III and IV relative to stage I are 1.3, 1.8 and 6.2 respectively. All these 

estimates for the time-fixed variables are close to the estimates of the initial model except for 

stage II and III. 

For a continuous variable with a linear effect, hazard ratio is interpreted as the relative 

risk between two individuals with a unit difference of covariate values and it doesn’t depend on 

the actual values that the variables take. When we consider tumor size effect under the initial 

Cox model, the estimated hazard ratio for a unit change in tumor size can be obtained as below. 

𝜷̂𝐳 represents the linear predictor for the covariate values that  are being held constant (at reference 

levels).
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Table 5.7 A Comparison of initial and the extended Cox proportional hazards models on breast cancer data 

Variable 

Initial Cox PH model 
Cox model with continuous time varying 

effects (Model A) 

Cox model with piecewise time varying 

effects (Modified model B) 

𝛽̂ 
Hazard 

Ratio 

95% Confidence 

Interval 
𝛽̂ 

Hazard 

Ratio 

95% Confidence 

Interval 
𝛽̂ 

Hazard 

Ratio 

95% Confidence 

Interval 

Race-black 
0.600 1.816 1.261 2.615 0.517 1.677 1.162 2.420 0.518 1.678 1.163 2.423 

Race-other 
-0.476 0.622 0.336 1.152 -0.677 0.508 0.272 0.950 -0.673 0.510 0.273 0.954 

Lymphnode-positive 
0.723 2.059 1.463 2.898 0.759 2.136 1.521 3.000 0.759 2.138 1.522 3.004 

Lymphnode-unknown 
0.799 2.218 1.504 3.271 0.821 2.272 1.525 3.384 0.819 2.269 1.523 3.381 

Stage II 
0.593 1.808 1.248 2.620 0.279 1.322 0.895 1.951 0.278 1.321 0.894 1.951 

Stage III 
0.852 2.339 1.481 3.692 0.574 1.776 1.099 2.870 0.571 1.770 1.095 2.862 

Stage IV 
1.891 6.575 3.709 11.654 1.818 6.157 3.354 11.303 1.821 6.177 3.363 11.348 

Tumor size 
0.007 1.007 1.002 1.012         

FPsize     0.621 1.860 1.489 2.324 0.618 1.854 1.484 2.317 

Age 
0.038 1.039 1.029 1.048         

FPage     0.042 1.043 1.025 1.062 0.042 1.043 1.024 1.062 

FPage x time 
    0.004 

1.004 1.001 1.007 
0.004 1.004 1.001 1.007 

PRA-positive 
0.430 1.534 1.211 1.943     0.054 1.056 0.763 1.461 

PRA x β𝑃𝑅𝐴e−kt     1.373 3.946 2.336 6.666     

PRA x β𝑃𝑅𝐴1(t) 
        1.315 3.725 2.034 6.824 

PRA x β𝑃𝑅𝐴2(t) 
        0.718 2.051 1.292 3.254 
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Then the hazard function at tumor size = 10mm is,  

ℎ(𝑡, 𝑠𝑖𝑧𝑒 = 10)̂ = ℎ0(t) × exp (0.6176 × 10 + 𝜷̂𝐳), 

and for tumor size = 11mm, 

ℎ(𝑡, 𝑠𝑖𝑧𝑒 = 11)̂ = ℎ0(t) × exp (0.6176 × 11 + 𝜷̂𝐳). 

Now, the ratio of the two hazards are 

ℎ(𝑡, 𝑠𝑖𝑧𝑒 = 11)

ℎ(𝑡, 𝑠𝑖𝑧𝑒 = 10)̂

̂
=

ℎ0(t) × exp(0.6176 × 11 + 𝜷̂𝐳)

ℎ0(t) × exp(0.6176 × 10 + 𝜷̂𝐳)
 

= exp(0.6176 × (11 − 10)) 

= 1.007 

Hence, the for 1mm unit difference in tumor size result in only 0.7% increase in the risk of 

cancer death. To obtain a more interpretable hazard ratio, let’s consider a 10 unit difference in 

tumor size. This will result in a hazard ratio of 

ℎ(𝑡, 𝑠𝑖𝑧𝑒 = 20)

ℎ(𝑡, 𝑠𝑖𝑧𝑒 = 10)̂

̂
=

ℎ0(t) × exp(0.6176 × 20 + 𝜷̂𝐳)

ℎ0(t) × exp(0.6176 × 10 + 𝜷̂𝐳)
 

= exp(0.6176 × (20 − 10)) 

= 1.07 

which indicates a 7% increase in hazard. Under the initial Cox model this ratio stays the same for 

any 10 unit increase in tumor size. 

In contrast, when there is a non-linear effect present, hazard ratio depend on the covariate values 

that we are interested in and not only on the difference. We show below how hazard ratio is 
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computed for the non-linear effect of tumor size under the piecewise Cox model that we have 

developed.  

The parameter estimate for the ln(tumor size) from the piecewise Cox model is 0.6176. Say we 

need to estimate the hazard ratio between two individuals with tumor size 10mm and 20mm 

given that other covariate values are the same for both of them. Then the hazard function at 

tumor size = 10mm is,  

ℎ(𝑡, 𝑠𝑖𝑧𝑒 = 10)̂ = ℎ0(t) × exp (0.6176 × ln(10) + 𝜷̂𝐳) 

and for tumor size = 20mm, 

ℎ(𝑡, 𝑠𝑖𝑧𝑒 = 11)̂ = ℎ0(t) × exp (0.6176 × ln(20) + 𝜷̂𝐳). 

Now, the ratio of the two hazards are 

ℎ(𝑡, 𝑠𝑖𝑧𝑒 = 20)

ℎ(𝑡, 𝑠𝑖𝑧𝑒 = 10)̂

̂
=

ℎ0(t) × exp(0.6176 × ln(20) + 𝜷̂𝐳)

ℎ0(t) × exp(0.6176 × ln(10) + 𝜷̂𝐳)
 

= exp (0.6176 × 𝑙𝑛 (
20

10
)) 

= 1.53 

That means for a 10 unit increase in tumor size from 10mm, the risk of cancer death increases by 

about 50%. Unlike the hazard ratio estimated by the initial Cox model, the non-linear effect of 

tumor size results different hazard ratios for different tumor sizes that are being compared. It can 

be shown that hazard ratio for a 10 unit increase in tumor size from 20mm to 30mm is 1.28 and 

from 30mm to 40mm, it is 1.19.  

We identified that PRA violates the PH assumption. Therefore, it doesn’t have a hazard ratio 

constant over time. For the variable which satisfies the PH assumption, then the hazard ratio can 
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be computed as exp (𝛽̂) given that it satisfies the linearity assumption if it is a continuous 

covariate. 

In the initial Cox model where we assumed PH satisfied for PRA, the hazard ratio for an 

individual with PRA-positive compared to an individual with PRA-negative is exp(1.3726) =

3.94. We found statistically significant evidence that PRA-positive violated the PH assumption. 

Also, according to the literature on PRA status of women with breast cancer, this observation can 

be clinically justified [37], [38]. 

In model A, we fitted a continuous function of time for the effect of PRA. That means at each 

point of time it results a different hazard ratio for PRA-positive relative to PRA-negative. 

According to Model A, estimated hazard ratio at time t is given by 

HR𝑃𝑅𝐴−𝑝𝑜𝑠𝑡𝑖𝑣𝑒 = exp(1.3726 × exp (−0.23 ∗ 𝑡)) 

In modified model B, we modeled the effect of PRA in a piecewise time varying manner. 

For, each 2 year interval from the start, we let the model estimate different coefficient for PRA-

positive. After 4 years the hazards for PRA-positive and PRA-negative was not significantly 

different where it was near 1. Using the parameter estimates from Table 5.7, the hazard ratio for 

PRA-positive at time t is given by 

HR𝑃𝑅𝐴−𝑝𝑜𝑠𝑡𝑖𝑣𝑒 = {

exp(0.0543 + 1.3152) ; 0 ≤ 𝑡 < 2

𝑒𝑥𝑝(0.0543 + 0.7182); 2 ≤ 𝑡 < 4

𝑒𝑥𝑝(0.0543); 4 ≤ 𝑡 < 2.

 

Table 5.8 presents the estimated time varying hazard ratios for PRA-positive. At the start time, 

both models seem to estimate the relative risk similarly. Overall, model A estimates are higher 

than the modified Model B estimates. As time increases, the difference between the risks 
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diminishes under both models. Piecewise Cox model approaches to HR=1 faster than the 

continuous time varying Cox model. Initially, an individual with PRA-positive has a risk of 

cancer death four times higher than an individual with PRA-negative. At time equals to 2 years, 

the risk of cancer death for a PRA-positive individual is little more than twice of a PRA-negative 

person. 

Table 5.8 Estimated time-varying hazard ratios for PRA-positive 

Time (t) 

Hazard Ratio 

Cox model with continuous time 

varying effects (Model A) 

Cox model with piecewise time 

varying effects (Modified model B) 

0 3.95 3.93 

2 2.38            2.17 

4 1.73                           1.06 

6 1.41                           1.06 

8 1.24             1.06 

 

Because age has a non-linear effect and non-PH effect, a special attention should be given when 

obtaining hazard ratios for age. We present the corresponding computations below for the 

piecewise Cox model. Computations and estimates are similar for the continuous time varying 

model, so we don’t present it here. Say we need to estimate the hazard ratio between a 68.2 year 

old individual and 58.2 year old (mean age) individual given that other covariate values are same 

for both of them. Then the hazard function at age=58.2 years is 

ℎ((𝑡, 𝑎𝑔𝑒 = 58.2))̂ = ℎ0(t)exp {0.0422 × (
58.2 − 58.2

10
)

2

+ 0.0038 (
58.2 − 58.2

10
)

2

× 𝑡 + 𝜷̂𝐳}  

= ℎ0(t)𝑒𝑥𝑝{𝜷̂𝐳} 

and at age=68.2 years is 
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ℎ((𝑡, 𝑎𝑔𝑒 = 68.2))̂ = ℎ0(t)exp {0.0422 × (
68.2 − 58.2

10
)

2

+ 0.0038 (
68.2 − 58.2

10
)

2

× 𝑡 + 𝜷̂𝐳} 

Now, the ratio of the two hazards is 

ℎ(𝑡, 𝑎𝑔𝑒 = 68.2)

ℎ(𝑡, 𝑎𝑔𝑒 = 58.2)̂

̂
=

ℎ0(t) × exp {0.0422 × (
68.2 − 58.2

10 )
2

+ 0.0038 (
68.2 − 58.2

10 )
2

× 𝑡 + 𝜷̂𝐳}

ℎ0(t) × 𝑒𝑥𝑝{𝜷̂𝐳}

= exp {0.0422 × (
68.2 − 58.2

10
)

2

+ 0.0038 (
68.2 − 58.2

10
)

2

× 𝑡} 

                        = exp{0.0422 + 0.0038 × 𝑡} 

Therefore, we get a time dependent expression for the relative hazard for two individuals for a 10 

year increase in age from the mean age. Using this expression we computed relative hazards for 

different times and the results are given in Table 5.9. It can be seen that as time increases the 

hazard ratios are increasing at a slower rate. However, under the initial Cox model, relative risk 

for age increase of 10 years from mean age is exp(0.0381 ∗ 10) = 1.46 irrespective of the time. 

Therefore, when the model is adjusted for non-linear and non-PH effects we get different risk 

ratios than we would get from unadjusted Cox model. To further visualize how the adjustments 

to the Cox model make the hazard estimations different, we graph hazard ratios with respect to 

the age increments and time as shown in Figure 5.8.  
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Table 5.9 Estimated hazard ratios for the Cox model with piecewise time varying effects 

(Modified model B) 

Time (t) 

Hazard Ratio 

10 year increase from 

mean age 

20 year increase from 

mean age 

0 1.09 1.18 

2 1.10 1.21 

4 1.10 1.25 

6 1.11 1.28 

8 1.12 1.31 

 

 

Figure 5.8 Hazard Ratio plot for age adjusted for non-linearity and non-proportionality  
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Figure 5.8 shows that at time=0 hazard ratios for age are increased with age. However, 

approximately from time = 5 years, lower ages have higher risk than the mean age 58.2 years 

(baseline). When age is higher than the mean age, risks are increasing rapidly. Figure 5.8 clearly 

shows how hazard ratios for age changes linearly with time and quadratically with age. 

Therefore, if we had used the initial model to estimate the hazard ratios for age, it would not 

provide a flexible hazard ratio function as our extended Cox model which could explain the risk 

of cancer deaths more closely to the true pattern.  

5.6  Discussion 

The aim of this analysis was to explore how to assess and address model inadequacies 

present in Cox proportional hazard model which is used extensively in time-to-event data 

analysis. We used two methods to adjust the non-linearities and two methods to address non-

proportionalities present in the data. In addition, our goal was to investigate the effects of the 

standard Cox PH model assumption violations using breast cancer survival data. We started the 

model development by fitting the standard Cox model to the data and then checked for the model 

inadequacies: influential values, non-linear effects and non-proportional hazards. Assumption of 

proportional hazards is the major aspect of the Cox PH model which is not an easy task to 

evaluate correctly. In some situations, the presence of other model inadequacies such as 

influential values and non-linear effects may cause proportional hazards tests to reveal 

significant non-proportionalities when actually they are proportional. Therefore, one first should 

assess and adjust the model for other inadequacies before performing proportional hazards tests. 

Graphical procedures suggested few data points to be possible unusual and influential values 

(Table A1). We performed a sensitivity analysis of the parameter estimates with and without 

these points and found out that removal of these points changes the estimates of race-other and 
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tumor size by more than 50%. Also, there were some inconsistent values taken by lymph node, 

extension and stage variables among the data points in this identified list. Therefore, these data 

points were not considered for further analysis of the current study. 

Our model building process revealed non-linear effects in both of the continuous 

covariates that we considered. The method of fractional polynomials proposed a logarithm effect 

for tumor size at diagnosis and quadratic effect for age at diagnosis. The restricted cubic spline 

method suggested three knot spline functions for both of the continuous variables. Both models 

had nearly equal AIC values and due to the simplicity and interpretability of the functions, we 

chose the fractional polynomial model to proceed with. Our finding of a quadratic effect was 

consistent with findings of a similar study of breast cancer [39]. This effect suggests higher risk 

of cancer death for younger females and older female than middle aged females. We compared 

our results with the middle aged women of age 58.2 years which was the average age of the 

individuals of the study and also approximately the minimum of the quadratic effect curve. 

PRA and age were found to be violating the proportional hazards assumption under all 

the evaluation methods that were considered. Non-proportionality of the PRA was modelled 

through a continuous time dependent function guided by scaled Schoenfeld residual plot. Also, a 

piecewise time dependent function was used to model the time dependency of the PRA effect. In 

both of these models effect of age was modelled through a time dependent quadratic effect. Both 

of these extended Cox models had very close log-likelihood values and AIC values. However, 

the estimated hazard ratios were fairly different for PRA under these two competing models. Up 

to 4 years both models gave relative risks of 3.9 and ~2.3 at time = 0 and time = 2. In fact, we 

found that under the piecewise Cox model that risk of PRA-positive relative to PRA-negative is 

not significant after around 4 years. This finding is consistent with the results of similar studies 
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on breast cancer [37], [40] where they discuss that the difference of the effects of PRA-positive 

and PRA-negative diminishes after around 5 years. According to our continuous time model, it 

seemed the differences in the risk decrease but at a lower rate and it approach 1 approximately 

13 years from the date of diagnosis. Considering this fact, our decision is to prefer the piecewise 

Cox model for the data being studied given that estimated effects of all the other covariates are 

similar in both models. The effect that we found for age is interesting in that it contained both 

non-linear and non-proportional hazards. According to our extended Cox model, age had a linear 

effect on hazard ratio up to around 3 years and after that it shows a quadratic effect (Figure 5.8). 

It shows that an individual as young as 28.2 years old has a risk of breast cancer of at least the 

same risk of an individual 68.2 years old given that time that considered the risk at is more than 6 

years from the diagnosis. This result is consistent with similar discussion had in where they 

suggested higher risk of breast cancer for younger and older female than the middle aged females 

[39].  

In conclusion, we have identified that effects of age and tumor size at diagnosis on the 

hazard function are quadratic and logarithmic respectively. Also, we found that age and PRA-

positive violate the assumption of proportionality. To address all these inadequacies of the 

standard Cox model, we have developed a more flexible extended Cox model with non-linear 

effects for age and tumor size and with non-PH effects of PRA and age described by a piecewise 

time dependent coefficient and linear time dependent coefficient respectively. This model gives 

improved and more accurate estimates of the risks of cancer specific death for women diagnosed 

with breast cancer. 
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5.7 Contributions 

In the present chapter, we have identified and estimated some important aspects regarding breast 

cancer survival data as below. 

 Significantly contributing prognostic factors for overall survival of breast cancer 

 The effects of age at diagnosis and tumor size at diagnosis are not linear on the relative risks  

 The effect of PRA is not constant with respect to the follow-up time 

 An improved model that takes non-linear and non-proportional hazards in to account and 

estimates relative risks 
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CHAPTER 6 

FUTURE RESEARCH 

The SEER database doesn’t consist of many demographic and life-style variables of the 

women diagnosed with cancer. We believe that in the presence of more attributable variables the 

predictive accuracy of the developed models can be improved more. For example, we were 

interested in exploring and quantifying relationship between survival probabilities, tumor size 

and other non-clinical characteristics of patients such as weight, family history of cancer. If we 

can quantify such relationships then it would greatly helpful in cancer preventive care. In 

addition, the methods applied in the present study can be applied to cancers that have not been 

widely studied such as stomach cancer, head, and neck cancers. 

Internal and external validation of the models presented here should be performed before 

we make generalizations using the developed models. There are computational difficulties in 

using the currently available validation and predictive accuracy measurement when there are 

time dependent effects present in the model. Addressing this issue and modifying the standard 

methods in order to address the time dependent effects would attract health researchers to use 

these extended and flexible versions of standard survival analysis and modeling techniques.   
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APPENDIX 

Table A1 Identified Extreme Values for Breast Cancer Data 

ID Race Lymph 

Node Status 

Tumor 

Extension 

Stage Progesterone 

Receptor Test 

Age at 

diagnosis 

Tumor Size 

at diagnosis 

62 White Negative Regional II Negative 47 151 

121 Black Unknown Regional III Negative 42 161 

149 White Positive Distant IV Negative 83 66 

206 White Negative Regional III Negative 60 156 

237 White Unknown Localized II Positive 61 131 

819 Black Unknown Regional III Negative 87 151 
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