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Abstract

In chapter 1, we present some background knowledge about random matrices, Coulomb gas, orthog-

onal polynomials, asymptotics of planar orthogonal polynomials and the Riemann-Hilbert problem.

In chapter 2, we consider the monic orthogonal polynomials, {Pn,N (z)}n=0,1,···, that satisfy the

orthogonality condition,

∫
C
Pn,N (z)Pm,N (z)e−NQ(z)dA(z) = hn,Nδnm (n,m = 0, 1, 2, · · · ),

where hn,N is a (positive) norming constant and the external potential is given by

Q(z) = |z|2 + 2c
N

log 1
|z − a|

, c > −1, a > 0.

The orthogonal polynomial is related to the interacting Coulomb particles with charge +1 for each,

in the presence of an extra particle with charge +c at a. For N large and a fixed “c” this can be a

small perturbation of the Gaussian weight. The polynomial Pn,N (z) can be characterized by a ma-

trix Riemann–Hilbert problem [2]. We then apply the standard nonlinear steepest descent method

[10, 11] to derive the strong asymptotics of Pn,N (z) when n and N go to ∞. From the asymptotic

behavior of Pn,N (z), we find that, as we vary c, the limiting distribution behaves discontinuously

at c = 0. We observe that the mother body (a kind of potential theoretic skeleton) also behaves

discontinuously at c = 0. The smooth interpolation of the discontinuity is obtained by further

scaling of c = e−ηN in terms of the parameter η ∈ [0,∞). To obtain the results for arbitrary values

of c, we used the “partial Schlesinger transform” method developed in [5] to derive an arbitrary

order correction in the Riemann–Hilbert analysis.

In chapter 3, we consider the case of multiple logarithmic singularities. The planar orthogonal

polynomials {pn(z)}n=0,1,··· with respect to the external potential that is given by

Q(z) = |z|2 + 2
l∑

j=1
cj log 1

|z − aj |
,

iii



where {a1, a2, · · · , al} is a set of nonzero complex numbers and {c1, c2, · · · , cl} is a set of positive real

numbers. We show that the planar orthogonal polynomials pn(z) with l logarithmic singularities in

the potential are the multiple orthogonal polynomials pn(z) (Hermite-Padé polynomials) of Type II

with l measures of degree |n| = n = κl+ r, n = (n1, · · · , nl) satisfying the orthogonality condition,

1
2i

∫
Γ
pn(z)zkχn−ej (z)dz = 0, 0 ≤ k ≤ nj − 1, 1 ≤ j ≤ l,

where Γ is a certain simple closed curve with counterclockwise orientation and

χn−ej (z) :=
l∏

i=1
(z − ai)ci

∫ z×∞

0

∏l
i=1(s− āi)ni+ci

(s− āj)ezs
ds.

Such equivalence allows us to formulate the (l + 1) × (l + 1) Riemann–Hilbert problem for pn(z).

We also find the ratio between the determinant of the moment matrix corresponding to the mul-

tiple orthogonal polynomials and the determinant of the moment matrix from the original planar

measure.
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Chapter 1

Introduction

1.1 Random Matrices

In 1930s, random matrices first appeared in mathematical statistics, however they did not draw

much attention at that time. In 1950s, random matrix theory was introduced to the theoretical

physics community as a subject of intensive study by Wigner in his work on nuclear physics [39].

Since that time, the random matrix theory has been developed by many authors, particularly,

Dyson, Gaudin, and Mehta [12, 32]. A random matrix is a matrix whose entries are random variables

corresponding to given probability distribution. As the entries are random, its eigenvalues and its

eigenvectors are also random. Understanding statistical properties of the random matrix will help

us to understand the probability distributions of its eigenvalues and its eigenvectors. As we know,

random matrix theory has reached an important place in many areas of physics and mathematics.

For example, number theory, integrable systems, asymptotics of orthogonal polynomials, infinite-

dimensional diffusions, communication technology, financial mathematics and so on. In the physical

models, the systems are characterized by their Hamiltonian, which are represented by Hermitian

matrices. For the simplest example, let us consider the particular Hermitian ensemble, the Gaussian

Unitary Ensemble (GUE) (see [10, 32]).

Theorem 1.1.1 Every n × n Hermitian matrix M can be diagonalized by a Unitary matrix U ∈

U(n) (i.e. U∗U = UU∗ = In) and its eigenvalues are real. (see [29])

Let M = {M,Mij = Mji} denote the space of n × n Hermitian matrices. Let the probability

distributions P (n) on M be given by

P (n)(M) dM = c e−F (M) dM = c e−F (M)
n∏
i=1

dMii

n∏
i<j

(dXijdYij) ,

where dM stands for the natural Lebesgue measure which is invariant under translations, Mij =

1



Xij + iYij denotes the entry Mij of M with Mij = Mji and c is a norming constant such that

c

∫
M

e−F (M)dM = 1.

Moreover, we require that

e−F (M̃)dM̃ = e−F (M)dM,

where M̃ = UMU−1 for any unitary matrix U. This formula means P (n)(M) dM is invariant under

every automorphism M → UMU−1 from M into itself. By the claim in [10], we have

dM̃ = dM. (1.1)

Therefore,

e−F (UMU−1) = e−F (M)

for all unitary matrices U and Hermitian matrices M . Choosing U to diagonalize M , it follows

that F (M) depends only on the eigenvalues of M and also that F (M) must depend symmetrically

on the eigenvalues. Particularly, our interest is in the case of

F (M) = trM2 =
n∑
j=1

λ2
j ,

which gives the probability distribution for the Gaussian Unitary Ensemble (GUE).

After integrating out the unitary conjugation, we expect measure on the matrices can be written

as the measure on the eigenvalues as follows,

c e−trM2dM → 1
Zn

e−
∑n

i=1 λ
2
i

∏
i<j

(λi − λj)2
n∏
i=1

dλi,

where

Zn =
∫
Rn

e−
∑n

i=1 λ
2
i

∏
i<j

(λi − λj)2
n∏
i=1

dλi.

As we will see in the next subsection, from the measure on the eigenvalues, the eigenvalues can be

considered Coulomb particles confined into a real axis.

Let M = {M,M∗M = MM∗} denote the space of n by n Normal matrices which is also

called Normal matrix ensemble, where M∗ is the conjugate transpose of M . Eigenvalues of normal
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matrices are complex. Similarly, the probability distributions on M is given by

1
Zn

∏
i<j

|λi − λj |2 · exp

− n∑
j=1

Q(λj)

 · n∏
j=1

dA(λj),

where

Zn =
∫
Cn

∏
i<j

|λi − λj |2 · exp

− n∑
j=1

Q(λj)

 · n∏
j=1

dA(λj)

and dA denotes the standard Lebesgue measure on the plane. This represents Coulomb gas on the

plane with respect to the external potential Q.

1.2 Coulomb Gas

In the 1950s, Wigner’s works presented the basic idea of the Coulomb gas model. And then, in

1960s, a series of papers by Dyson [12] showed the exact correspondence between the eigenvalue dis-

tributions of some random matrix models and the statistical mechanics of classical two-dimensional

Coulomb gas, which attracted the attention of physicists and mathematicians.

In the two-dimensional Coulomb gas model (or the one-component plasma model), we consider

n particles as a system of point charges with the same sign located at points {zj}nj=1 in the com-

plex plane, influenced by an external potential. The potential of interaction between zj and zk

(logarithmic repulsion) is

log 1
|zj − zk|2

, j 6= k, j, k ∈ {1, · · · , n},

while the external potential is denoted by Q(z). The function

Q : C→ R ∪ {+∞}

is lower semi-continuous and sufficiently large to force the particles to condensate in a scaling limit

on a certain finite portion of the plane, called the “droplet”, which is the support of the equilibrium

measure. The details will be described in the main Chapters. For the external potential Q(z), we

have the following theorem [36] to define the equilibrium measure:

Theorem 1.2.1 There is a unique probability measure dµ∗ in the plane that minimizes the func-

3



tional L(µ),

L(µ) =
∫
C
Q(z)dµ(z) +

∫
C2

log 1
|z − w|

dµ(z)dµ(w).

The minimizer dµ∗ can be characterized by

Q(z)− 2
∫
C

log |z − w|dµ∗(w) + l ≥ 0

for all z ∈ C with equality on the support of the measure µ∗. The constant l is called modified

Robin’s constant and the measure µ∗ is called the equilibrium measure.

The combined potential energy resulting from particle interaction and the external potential is

the function EQ : Cn → R ∪ {∞} given by

EQ(z) = 1
2

n∑
j 6=k

log 1
|zj − zk|2

+N
n∑
j=1

Q(zj), z = (z1, · · · , zn) ∈ Cn,

where the summation indices j, k are assumed confined to the set {1, · · · , n}. We are interested in

the scaling limit where n and N tend to infinity while n/N is a fixed positive number. The particles

are then distributed by Gibbs distribution,

1
Zn

e−
β
2 EQ(z)

n∏
j=1

dA(zj),

where

Zn =
∫
Cn

e−
β
2 EQ

n∏
j=1

dA(zj).

Here β is a positive parameter called inverse temperature and 0 < Zn <∞. In terms of the usual

Vandermonde expression

Vn(z1, · · · , zn) =
∏
j<k

(zk − zj),

we may write the Gibbs distribution in the form of

1
Zn
|Vn(z1, · · · , zn)|β e−

β
2N
∑

j
Q(zj)

n∏
j=1

dA(zj).

When we consider the case of β = 2, the probability measure on M matches the one for the

4



eigenvalues of normal matrices, which is given by

1
Zn

∏
i<j

|zi − zj |2 · exp

−N n∑
j=1

Q(zj)

 · n∏
j=1

dA(zj), (1.2)

where

Zn =
∫
Cn

∏
i<j

|zi − zj |2 · exp

−N n∑
j=1

Q(zj)

 · n∏
j=1

dA(zj).

1.3 Orthogonal Polynomials

For the probability measure in (1.2), a connection to orthogonal polynomials can be provided by

Heine’s formula. It says that the averaged characteristic polynomial of the n particles is the (monic)

orthogonal polynomial of degree n, i.e., pn(z) = E
∏n
j=1(z − zj),

pn(z) = 1
D̂n−1

det



M00 M10 · · · Mn0

M01 M11 · · · Mn1

...
...

...
...

M0,n−1 M1,n−1 · · · Mn,n−1

1 z · · · zn


, D̂n−1 = det



M00 M10 · · · Mn−1,0

M01 M11 · · · Mn−1,1

...
...

...
...

M0,n−1 M1,n−1 · · · Mn−1,n−1


,

satisfies the orthogonality condition,

∫
C
pn(z)pm(z)e−NQ(z)dA(z) = hnδnm (n,m = 0, 1, 2, . . .), (1.3)

where Mij is defined by

Mij =
∫
C
ziz̄je−NQ(z)dA(z)

and hn is a (positive) norming constant. Note the expectation (in Heine’s formula) is taken with

respect to the measure in (1.2).

For n ≥ 1, let us set Mn = [Mij ] 0≤i,j≤n−1 to be the matrix of moments in terms of the measure

e−NQ(z)dA(z). We define

D̂n = detMn.

For Q < ∞ almost everywhere, one can show that D̂n > 0 (or, equivalently that Mn is positive

5



definite). For an arbitrary nonzero vector (s1, · · · , sn) ∈ Cn, we have

0 <
∥∥∥∥∥
n∑
i=0

six
i

∥∥∥∥∥
2

L2
Q

=
∫
C

(
n∑
i=0

siz
i

) n∑
j=0

sj z̄
j

 e−NQ(z)dA(z) =
n∑
i=0

n∑
j=0

sisjMij .

1.4 Asymptotics of Planar Orthogonal Polynomial

The orthogonal polynomials with respect to a measure supported on the plane are called planar

orthogonal polynomials. Such polynomials have been of interest due to its connection to two–

dimensional Coulomb gas [1]. Moreover these polynomials appear [37] in the quantized version

of Hele-Shaw flow, a type of growth model in the two–dimensional plane. These connections

to physical system, Coulomb gas and Hele-Shaw flow, motivate one to study the large degree

behavior of the polynomials. We recommend the recent paper [23] for an important progress

in this regard and for the related history. Still lacking, until now, is the understanding of the

limiting zero distribution when the degree of the polynomial goes to infinity. Several studies

[2, 3, 7, 25, 27, 28] have shown that the zeros tend to certain one–dimensional set. In all of

these cases the planar orthogonal polynomials in question turn out to be either classical orthogonal

polynomials or multiple orthogonal polynomials [14, 24], whose asymptotic behavior is possible to

study [35] due to rich algebraic structure such as finite term recurrence relation.

The statistical behavior of the particles has been studied [1] for a large class of potentials in various

contexts including random normal matrices and two-dimensional Coulomb gas. For example, in the

scaling limit where n and N tend to infinity while n/N is fixed, it is known [22] that the counting

measure of the particles converges weakly,

E
1
N

n∑
j=1

δ(z − zj)→
∆Q
4π χK

where ∆Q = (∂2
x + ∂2

y)Q, χK is the characteristic function of the compact set K ⊂ C that we will

call a droplet following [22], and the expectation is taken with respect to the measure in (1.2).

As a connection between orthogonal polynomials and Coulomb gas can be provided by Heine’s

formula, one might wonder if the zero distribution of Pn would tend to the averaged distribution of

the particles. Though this is the case with the orthogonal polynomials on the real line (that corre-

sponds to the particles confined on the line), in the cases of two-dimensional orthogonal polynomials

so far studied [2, 3, 7, 25, 27, 28], the limiting zero distribution is observed to be concentrated on

6



a small subset of the droplet, on some kind of potential-theoretic skeleton of K.1

A skeleton of K will refer to a subset of (the polynomial hull of) K with zero area, such that there

exists a measure that is supported exactly on the skeleton and that generates the same logarithmic

potential in the exterior of (the polynomial hull of) K as the Lebesgue measure supported on K.

One characteristic of such skeleton is that it can be discontinuous under the continuous variation

of the droplet K. A simple example [19, 20] comes from the sequence of polygons converging to a

disk. The skeleton of the polygon, which is the set of rays connecting each vertex to the center,

does not converge to the skeleton of the disk, the single point at the center. Such discontinuity can

also occur, as we will see, when the perturbed droplets have real analytic boundary.

1.5 Riemann-Hilbert problem

We consider the following Riemann-Hilbert problem on the oriented contour (piecewise smooth) Γ,

which has a positive side and a negative side. Fix an integer n ≥ 0 and seek a 2×2 matrix function

Y = Yn(z) such that it satisfies the following conditions,



Y (z) is analytic in C \ Γ,

Y+(z) = Y−(z)

1 w(z)

0 1

 , z ∈ Γ,

Y (z) =
(
I +O

(
z−1

))zn 0

0 z−n

 , z →∞.

Here Y±(z) describe the limits of Y (z′) as z′ → z ∈ Γ from the + (respectively, negative) side of

Γ. If there exists Y such that it solves the above R-H problem, then we can prove Y is unique.

Indeed, if Y solves the R-H problem

detY+(z) = detY−(z) det

1 w(z)

0 1

 = detY−(z).

Hence, detY (z) is analytic in C. Moreover, detY (z) = 1+O
(
z−1) as z →∞. Therefore, detY (z) ≡

1, and so Y −1(z) is analytic in C \ Γ. Suppose Ỹ (z) is another solution to the R-H problem, then

1In some cases, the skeleton is also called “mother body” [19, 20].
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for any z ∈ Γ,

[
Ỹ Y −1

]
+

(z) = Ỹ+(z)Y −1
+ (z) = Ỹ−(z)

1 w(z)

0 1


Y−(z)

1 w(z)

0 1



−1

=
[
Ỹ Y −1

]
−

(z).

Hence, Ỹ Y −1 is analytic in C and Ỹ Y −1 → I as z →∞. Thus, by Liouville’s Theorem,

Y = Ỹ .

We will show that Y11(z) is the orthogonal polynomial corresponding to the measure w(z) dz on Γ.

By the jump condition of the Riemann-Hilbert problem, we have [Y11]+ = [Y11]−, therefore Y11(z)

is analytic in C. Moreover, by the asympototic behavior of Y (z),

Y (z) =

Y11(z) Y12(z)

Y21(z) Y22(z)

 =

zn +O
(
zn−1) O

(
z−n−1)

O
(
zn−1) z−n +O

(
z−n−1)

 ,
i.e., Y11(z) is a monic polynomial. Moreover,

[Y12(z)]+ = [Y12(z)]− + Y11(z)w(z)

with Y12(z) → 0 as z → ∞. Hence, by applying the Plemelj-Sokhotsky formula (see page 23 of

[18]),

Y12(z) = 1
2πi

∫
Γ

Y11(s)w(s)
s− z

ds.

Since

Y12(z) = − 1
2πi

∫
Γ
Y11(s)w(s)

(1
z

+ s

z2 + · · ·+ sn

zn+1 + · · ·
)

ds

and

Y12(z) = O
(
z−n−1

)
,

we obtain that ∫
Γ
Y11(s)sjw(s) ds = 0, 0 ≤ j ≤ n− 1.

Thus, Y11(s) is orthogonal to sj for 0 ≤ j ≤ n− 1 with respect to the measure w(s) ds.

Similarly, for the Riemann-Hilbert problem for Type II multiple orthogonal polynomials, we have

8



an analogous result. Let Γ be a simple closed oriented curve. The Riemann-Hilbert problem:



Y : is holomorphic matrix function in C \ Γ,

Y+(z) = Y−(z)



1 w1(z) · · · wl(z)

0 1 · · · 0
...

... . . . ...

0 0 · · · 1


on Γ,

Y (z) =
(
I +O

(
1
z

))


zn 0 · · · 0

0 z−n1 · · · 0
...

... . . . ...

0 0 · · · z−nl


, as z →∞,

where
∑l
j=1 nj = n and the subscript± in Y± represents the limiting value when approaching Γ from

the corresponding sides of the contour. We have Y11(z) is a Type II multiple orthogonal polynomial

satisfying the orthogonality condition:

∫
Γ
pn(z) zkwj(z) dz = 0, 0 ≤ k ≤ nj − 1, 1 ≤ j ≤ l.

Lastly, we will introduce the Small Norm Theorem[4, 21], which plays an important technical

role in the asymptotics analysis of the solutions to the Riemann-Hilbert problem.

Theorem 1.5.1 Suppose a Riemann-Hilbert problem is posed on the oriented contour Γ (piecewise

smooth) for a matrix function E(z),


E+(z) = E−(z) (I + δG(z)) , z ∈ Γ,

E(z) = I +O
(
z−1) , z →∞,

(1.4)

where det (I + δG(z)) = 1, the subscript ± in E±(z) represents the limiting value when approaching

Γ from the corresponding sides of the contour. Let Np be the norm in Lp(Γ, |dz|) of the matrix

function δG(z). Then there exists a constant CΓ such that if N∞ < 1
CΓ

the solution of the R-H
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problem exists and

‖E(z)− I‖ ≤ CΓN2
1− CΓN∞

, for z ∈ Γ.

‖E(z)− I‖ ≤ 1
2π dist(z,Γ)

(
N1 + CΓN

2
2

1− CΓN∞

)
, for z ∈ C \ Γ.

In the following proof, we will use the fact about the L2− boundedness of the Cauchy operators

(cf. to [31]). For any f ∈ Lp(Γ, |dz|) with 1 < p <∞,

‖C±f‖Lp(Γ) =
∥∥∥∥ lim
z′→z±

1
2πi

∫
Γ

f(s)
s− z′

ds
∥∥∥∥
Lp(Γ)

≤ CΓ‖f‖Lp(Γ)

for some constant CΓ. In other words, the Cauchy operators C+ and C− are bounded in the space

Lp(Γ) for all 1 < p <∞.

Proof. First of all, we will show the Riemann-Hilbert problem (1.4) is equivalent to the following

singular integral equation,

E(z) = I + 1
2πi

∫
Γ

E−(s)δG(s)
s− z

ds. (1.5)

By taking the boundary conditions from the + and − sides of Γ in the equation (1.5), we have

E+(z) = I + 1
2πi

∫
Γ

E−(s)δG(s)
s− z+

ds,

E−(z) = I + 1
2πi

∫
Γ

E−(s)δG(s)
s− z−

ds.

Therefore,

E+(z)− E−(z) = 1
2πi

∫
Γ

E−(s)δG(s)
s− z+

ds− 1
2πi

∫
Γ

E−(s)δG(s)
s− z−

ds = E−(z)δG(z),

which shows the identity (1.5) has the same jump condition of the Riemann-Hilbert problem (1.4),

thus the equivalence holds. Let us rewrite the euqation (1.5) as

E(z)− I = 1
2πi

∫
Γ

δG(s)
s− z

ds+ 1
2πi

∫
Γ

(E−(s)− I) δG(s)
s− z

ds.

By taking the boundary condition from the (−) side of Γ in the above identity, we have,

E−(z)− I = 1
2πi

∫
Γ

δG(s)
s− z−

ds+ 1
2πi

∫
Γ

(E−(s)− I) δG(s)
s− z−

ds.
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For convenience, let us denote E−(z) − I by f(z), denote 1
2πi

∫
Γ

δG(s)
s− z−

ds by δh and denote

1
2πi

∫
Γ

f(s)δG(s)
s− z−

ds by L(f), we have

(Id− L)(f) = δh, (1.6)

this can be considered as an equation in L2(Γ), which implies

f = (Id− L)−1δh =
∑∞
j=0 Lj(δh),

‖f‖L2 ≤ ‖δh‖L2

1− ‖L‖L2
.

(1.7)

The solution exists if the operator norm of L is less than 1. This is because: for any f1, f2 ∈ L2(Γ),

‖L(f1)− L(f2)‖L2 ≤ ‖L‖L2‖f1 − f2‖L2 .

If ‖L‖L2 < 1, then the mapping L is a contraction mapping. Hence, the solution to (1.6) exists.

Moreover, since L is multiplication on the right by δG, then

‖L‖L2 ≤ CΓ‖δG‖∞,

where CΓ is the norm of the Cauchy operator on Γ. Therefore, the solution of the Riemann-Hilbert

Problem exists when N∞ < 1
CΓ
. Since

δh = 1
2πi

∫
Γ

δG(s)
s− z

ds,

we obtain

‖δh‖L2 ≤ CΓ‖δG‖L2

such that

‖E−(z)− I‖L2 = ‖f‖L2 ≤
‖δh‖L2

1− ‖L‖L2
≤ CΓN2

1− CΓN∞
.
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Last, we will estimate E(z) for z /∈ Γ,

‖E(z)− I‖ ≤
∥∥∥∥ 1

2πi

∫
Γ

δG(s)
s− z

ds
∥∥∥∥
L2

+
∥∥∥∥ 1

2πi

∫
Γ

(E−(s)− I) δG(s)
s− z

ds
∥∥∥∥
L2

≤ 1
2π

N1
dist(z,Γ) + 1

2π
‖E−(z)− I‖L2N2

dist(z,Γ) = 1
2π dist(z,Γ)

(
N1 + CΓN

2
2

1− CΓN∞

)
.

(1.8)

�
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Chapter 2

Discontinuity in the asymptotic behavior of planar orthogonal polynomials under a

perturbation of the Gaussian weight

2.1 Introduction

In this chapter we consider the external potential given by

Q(z) = |z|2 + 2c
N

log 1
|z − a|

, c > −1, a > 0. (2.1)

When N is large and c � N , this represents a small perturbation of the Gaussian weight. It

corresponds to the interacting Coulomb particles with charge +1 for each, in the presence of an

extra particle with charge +c at a. By a simple rotation of the plane, the above Q covers the case

with any nonzero a ∈ C. Since one characteristic of the skeleton is that it can be discontinuous

under the continuous variation of the droplet K, we ask whether the zero distribution of the

corresponding orthogonal polynomial Pn also exhibits the similar discontinuity under the variation

of the underlying droplet or, equivalently, under the variation of the external potential.

We are interested in the scaling limit where N and n go to infinity while the ratio, n/N , is a

fixed positive number. Below we will set N = n without losing generality since the orthogonality

(1.3) gives the relation

Pn,N (z; a) =
(
n

N

)n/2
Pn, n

√N

n
z;

√
N

n
a

 ,
where Pn,N (z; a) = Pn,N (z) stands for orthogonal polynomials with respect to the external potential

given by (2.1). Though we will mostly use N , we will keep n whenever the expression holds true

for general n 6= N .

13



2.1.1 Limiting skeleton

The potential (2.1) has been studied in [2] with the slightly different notation. Let us define γ by

c/N (c in [2] is c/N in our notation). Then Q(z) can be written as

Q(z) = |z|2 + 2γ log 1
|z − a|

.

To state Theorem 2.1.1 let us introduce Kγ , µγ and Sγ , and define µ and S.

Let Kγ ⊂ C be the compact set, called a droplet, so that

µ(2D)
γ = 1

4πχKγ

is the unique probability measure that minimizes the energy functional,

I[µ] =
∫
Q dµ+ 1

2

∫∫
log 1
|z − w|

dµ(z)dµ(w).

Let Sγ = suppµγ be the skeleton of Kγ , that is, the compact subset of C with zero area such that

the probability measure µγ generates the same logarithmic potential as µ(2D)
γ :

Uµγ (z) = Uµ
(2D)
γ (z), z /∈ (polynomial convex hull of Kγ). (2.2)

Here we denote Um(z) = −
∫

log |z − w| dm(w) for a positive Borel measure m. We note that this

definition of skeleton is not conventional; C \ Sγ does not have to be connected. Such a skeleton

may not be unique in general. We give explicit definitions of Sγ and µγ in Section 2.2.

We define the limiting skeleton S by

S = {z ∈ C : Re(log z − az) = log β − aβ, Re z ≤ β} , (2.3)

where

β = min{a, 1/a}.

From the equivalent representation of S in the real coordinates by

S =
{

(x, y) ∈ R2 : x2 + y2 = β2e2a(x−β), x ≤ β
}
.

14



It is a simple exercise to show that, S ⊂ closD is a simple closed curve that encloses the origin and

intersects β, where D is the unit disk. We will denote the interior and the exterior of S by IntS

and ExtS respectively. See Figure 1 for some illustration of S.

We define µ to be the probability measure supported on S given by

dµ(z) = ρ(z)d`(z) = 1
2π

∣∣∣a− 1
z

∣∣∣d`(z), z ∈ S, (2.4)

where d` is the arclength measure on S. Alternatively, the same measure can be written in terms

of holomorphic differential by

dµ(z) = 1
2πi

(1
z
− a

)
dz.

This is because
(

1
z − a

)
dz = ±i

∣∣∣a − 1
z

∣∣∣d`(z), the sign is determined at the intersection of S with

the real axis.

Theorem 2.1.1 As γ → 0 we have the convergences:

Kγ → closD, µγ → µ, Sγ → S,

in the appropriate senses (i.e., respectively in Hausdorff metric, in weak-∗, and in Hausdorff met-

ric).

Remark 1. In Theorem 2.1.1, we define the Hausdorff metric dH(X,Y ) by

dH(X,Y ) = max{sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)}

for X and Y are two non-empty subsets of metric space (M,d), we choose the metric to be the

Euclidean metric. The proof is in Section 2.2.

Remark 2. In both examples, the one by Gustafsson [19] and the one from the above theorem –

the discontinuity occurs when the droplet becomes a disk. It is an interesting question whether the

discontinuity occurs with other shapes than disk.
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2.1.2 Strong asymptotics of PN and the location of zeros

Let us define

φA(z) = a(z − β)− log z
β
,

φ(z) =

 φA(z), z ∈ ExtS,

−φA(z), z ∈ IntS.

(2.5)

Note that Reφ ≡ 0 on S.

Let U be a certain neighborhood of S \ {β} where Reφ ≤ 0. See Figure 7 and the paragraph

below Lemma 2.3.1 for more details. Let Dβ be a disk neighborhood of β with a fixed radius such

that the map ζ : Dβ → C given below is univalent.

ζ(z) =


√

2NφA(z) = a
√
N(z − β)(1 +O(z − β)) for a > 1,

−NφA(z) = 1− a2

a
N(z − β) (1 +O(z − β)) for a < 1.

(2.6)

Theorem 2.1.2 For a > 1 and for any fixed nonzero c > −1, we have

PN (z) =



zN
(

z

z − β

)c (
1 +O

( 1
N

))
, z ∈ ExtS \ (U ∪Dβ),

−β
N
√

2π(a2 − 1)c

N1/2−caΓ(c)
eNa(z−β)

z − β

(
z − β
z − a

)c (
1 +O

( 1√
N

))
, z ∈ IntS \ (U ∪Dβ),

zN
(

z

z − β

)c (
1 +O

( 1
N

))

−β
N
√

2π(a2 − 1)c

N1/2−caΓ(c)
eNa(z−β)

z − β

(
z − β
z − a

)c (
1 +O

( 1√
N

))
, z ∈ U \Dβ

zN
((

zζ(z)
z − β

)c
e
ζ2(z)

4 D−c(ζ(z)) +O
( 1√

N

))
, z ∈ Dβ.

Here D−c be the parabolic cylinder function or Weber function and is defined by (see the identity

(12.5.6) in [34])

D−c(ζ) := e
ζ2
4

i
√

2π

∫ ε+i∞

ε−i∞
e−ζs+

s2
2 s−cds, ε > 0. (2.7)
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Theorem 2.1.3 For a < 1 and for any fixed nonzero c > −1, we have

PN (z) =



zN
(

z

z − a

)c (
1 +O

( 1
N∞

))
, z ∈ ExtS \ (U ∪Dβ),

−a
1+N (1− a2)c−1

N1−cΓ(c)
eNa(z−a)

z − a

(
1 +O

( 1
N

))
, z ∈ IntS \ (U ∪Dβ),

zN
(

z

z − a

)c (
1 +O

( 1
N∞

))

−a
1+N (1− a2)c−1

N1−cΓ(c)
eNa(z−a)

z − a

(
1 +O

( 1
N

))
, z ∈ U \Dβ,

zN
((

z

z − a

)c (
1 +O

( 1
N∞

))
−
(
zζ(z)
z − a

)c 1
eζ(z)

(
f̂(ζ(z)) +O

( 1
N

)))
, z ∈ Dβ.

(2.8)

Here,

f̂(ζ) = −1
2πi

∫
L

es

sc(s− ζ)ds,

where the contour L begins at −∞, circles the origin once in the counterclockwise direction, and

returns to −∞. The error bound O(1/N∞) means o(1/Nk) for an arbitrary integer k.

One can check that the branch cut discontinuity of (z/(z − a))c in the last equation of (2.8) is

canceled by the discontinuity of f̂ so that the asymptotic expression of PN in Dβ is analytic.

From Theorem 2.1.2 and 2.1.3, one can notice that the zeros of PN can appear when the two

terms in the asymptotic expressions of PN in U \Dβ cancel each other and hence must have the

same order with respect to N . Such cancellation may be expressed in terms of φA as we presently

explain below.

(
z

z − β

)c
= eNφA(z)

(
z − β
z − a

)c √
2π(a2 − 1)c

aΓ(c)N
1
2−c(z − β)

, for a > 1,

(
z

z − a

)c
= eNφA(z) a(1− a2)c−1

N1−cΓ(c)(z − a) , for a < 1.

Taking the logarithm of the absolute values on both sides and after simple calculations, we get

−ReφA(z) =
(
c− 1

2

) logN
N
− log Γ(c)

N
+ 1
N

log
∣∣∣∣∣
(
z − β
z − a

)c √2π(a2 − 1)c

a(z − β)1−czc

∣∣∣∣∣, a > 1, (2.9)

−ReφA(z) = (c− 1) logN
N

− log Γ(c)
N

+ 1
N

log
∣∣∣∣a(1− a2)c−1

(z − a)1−czc

∣∣∣∣, a < 1. (2.10)
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Figure 1.: The zeros of orthogonal polynomials with degrees 80 (blue) and 600 (red) for c = 1.
The left is for a =

√
2 and the right is for a = 1/

√
2. In both cases, zeros are close to the curves

representing S.

As we will show in Lemma 2.3.1, ReφA is positive (resp. negative) in U ∩ IntS (cf. to Fig. 8) (resp.

in U ∩ ExtS). For a > 1, since the dominant term in the right hand side of (2.9) is
(
c− 1

2

)
logN
N ,

the zeros will approach S from ExtS for c > 1
2 and from IntS for c < 1

2 . For a < 1, since the

dominant term in the right hand side of (2.10) is (c− 1) logN
N , the zeros will approach S from ExtS

for c > 1 and from IntS for c < 1. See Figure 1. We also remark, without proof, that the limiting

distribution of the zeros is given by µ which is explicitly given in (2.4). This can be proven, for

example, using the method in [36] (Chapter III) and [33] (Theorem 2.3).

We remark that the case −1 < c < 0 is essentially treated in [3]. We note that the limiting

locus of zeros remains the same for both the positive and negative c (which seems unexpected

according to Remark 1.2 in [3]). It turns out that, as the value of c gets bigger, we need higher

order corrections in the Riemann-Hilbert nonlinear steepest descent analysis [11]. To obtain the

result that works for an arbitrary value of c, therefore, we need an arbitrary order correction in

the nonlinear steepest descent analysis shown later. This is done in Section 2.5 using the method

developed in [5].

We found that the limiting support of the zeros does not depend on c. Even for c decaying as a

power of N (e.g., c = N−1000) the limiting support of the zeros converges to S. However, when c
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Figure 2.: Zeros of orthogonal polynomials when a =
√

2, c = 1 and N = 300. The red line is
S and the green line is the solution set of (2.9). The right figure is the enlarged view of the left
figure.

-0.4 -0.2 0.0 0.2 0.4 0.6

-0.4

-0.2

0.0

0.2

0.4

-0.340 -0.335 -0.330 -0.325 -0.320

-0.10

-0.05

0.00

0.05

0.10

Figure 3.: When a = 1/
√

2, c = 1 and N = 100. The red line is S and the green line is the
solution set of (2.10). The right figure is the enlarged view of the left figure.
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decays exponentially in N , say c = e−ηN , the right hand sides of both (2.9) and (2.10) converge to

−η = − lim
N→∞

log Γ(e−ηN )
N

, η > 0

and the zeros approach the curve in IntS given by the equation

ReφA(z) = η. (2.11)

A similar “sensitive behavior of zeros with respect to a parameter” has been observed in [26].

It is simple to observe that the family of curves given by (2.11) for 0 ≤ η < ∞ continuously

interpolates between the curve S and the origin. In Figure 11, we show the curves satisfying (2.11)

for η = 0.2 and η = 0.4, with the corresponding zeros.

To establish the behavior of zeros for scaling c, however, Theorem 2.1.2 and 2.1.3 are not enough

as the error bounds in the theorems are for fixed c. For c that scales to zero with N we will prove

Theorem 2.4.5 and 2.6.3 where the error bounds are uniform in c.

Remark 3. A simple way to understand the phenomenon is to recall the well–known instability

of roots of polynomials, for example, the zeros of Pn(z) = zn + a/nk still tend to the uniform

distribution on the unit circle as n → ∞ (for any fixed positive k) although the polynomial is a

O(n−k) perturbation of the monomial. This simple model example already shows that a pertur-

bation that interpolates between the two behaviors would require to have a = e−nη. From this

perspective it can be expected to see that the exponentially small perturbations of the potential Q

may interpolate the too different behaviors.

Remark 4. The main message of the paper is that the asymptotic zero locus can be quite sensitive

to the small perturbation of the underlying measure. In Figure 5 we give another numerical plot that

supports such statement. The example considers the orthogonal polynomials with the orthogonality

measure supported on the restricted domain (cutoff) as described by E (cf. to Fig. 5). Though the

cutoff may be considered as a “small perturbation” to the underlying Coulomb particle system, it

seems to affect the polynomials significantly.

In the next section we prove Theorem 2.1.1 about the limiting skeleton. In section 2.3 we prove

the asympototic result for a > 1 and c near 0. In section 2.4 we prove the similar result for an

arbitrary c. In section 2.5 we prove the asympototic result mostly following the arguments from

the previous two sections. In the section 2.7, we argue that the similar method will give the result
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Figure 4.: The zeros of orthogonal polynomials with degrees 60 (blue) and 80 (magenta) for
c = e−ηn, where η = 0.4 (blue) and η = 0.2 (magenta). The left is for a =

√
2 and the right is for

a = 1/
√

2. In both cases, zeros seem to converge to the curves given by (2.11) for the corresponding
values of a and c.

for the critical case of a ≈ 1, by showing that the local parametrix satisfies the Riemann-Hilbert

problem for Painlevé IV equation.

2.2 The proof of Theorem 2.1.1

For the convenience of the readers we reproduce the useful definitions from [2].

For a < 1 and a sufficiently small γ we define

Kγ = D
(
0,
√

1 + γ
)
\D(a,√γ), (2.12)

where D(a, r) stands for the disc with radius r centered at a.

For a < 1 we define Sγ to be the simple closed curve enclosing [0, a] and intersecting

βγ = a2 + 1−
√

(1− a2)2 − 4a2γ

2a > a,

such that the quadratic differential yγ(z)2dz2 is real and negative on Sγ where

yγ(z) := (−1)χIntSγ

[
a+ γ

z − a
− 1 + γ

z

]
.

Here, we denote the interior of a simple closed curve Sγ by IntSγ . (We recall that χ is the

characteristic function.)
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Figure 5.: The zeros of orthogonal polynomials with degrees {20, 40, 90} and with the orthog-
onality measure given by χEe−n|z|2dA(z) where E = (−∞,+∞) × [−3i/2,+i∞) ⊂ C. The plot
suggests that the limiting support of zeros is not the origin.

For a ≥ 1, the set Kγ is defined to be the closure of the interior of the real analytic Jordan curve

given by the image of the unit circle under fγ , where

fγ(ν) = ρν − κ

ν − α
− κ

α
,

and parameters ρ > 0, κ ≥ 0, and 0 < α ≤ 1/a are given in terms of a and γ below. First,

ρ = 1 + a2α2

2aα , κ = (1− α2)(1− a2α2)
2aα .

The parameter α is given by the unique solution of Pγ(α2) = 0 such that 0 < α ≤ 1/a where

Pγ(X) := X3 −
(
a2 + 4γ + 2

2a2

)
X2 + 1

2a4 .

The existence is easily seen since Pγ(0) > 0 and Pγ(1/a2) = −2γ/a6 < 0. Moreover, Pγ(X) is

monotonically decreasing on (0, 1/a], we can see the uniqueness of α. We note that, as γ goes to

zero, α goes to 1/a, κ goes to zero and ρ goes to 1.

For a ≥ 1 we define Sγ to be the smooth arc with the endpoints at

βγ := αρ− κ

α
+ 2i√κρ and βγ
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such that the quadratic differential yγ(z)2dz2 is real and negative on Sγ where

yγ(z) :=
a(z − bγ)

√
(z − βγ)(z − βγ)
z(z − a) , bγ = ρ

α
.1

For all values of a, we define the probability measure µγ supported on Sγ by

dµγ = 1
2π |yγ(z)|d`γ ,

where d`γ is the arclength measure of Sγ .

For all values of a, we define φγ by

φγ(z) =
∫ z

βγ
yγ(s) ds,

where the integration contour lies in the simply connected domain C \ ([0,∞) ∪ [βγ , βγ ]), where

[βγ , βγ ] stands for the vertical line segment connecting βγ and βγ (for a ≥ 1, [βγ , βγ ] is a point on

R+). One can consider φγ to be defined over the whole complex plane by analytic continuation over

[0,∞) ∪ [βγ , βγ ] consistently for all γ.

Lemma 2.2.1 As γ goes to 0, φγ converges to φ0 := φγ=0 uniformly over compact subsets in

C \ {0, a}.

Proof. It is simple to check that, as γ goes to zero, βγ converges to β and bγ converges to a.

Therefore yγ(z) converges to yγ=0(z), by choosing the branch cut of yγ at [βγ , βγ ] that converges

to β. This convergence is uniform away from the singularities of yγ at 0 and a. �

Lemma 2.2.2 Let I = {it : −2π ≤ t ≤ 0}. The mapping φγ : Sγ \ {βγ , βγ} → I \ {0,−2πi} is

invertible.

Proof. We prove this for a > 1 as the other case is similiar. We get φγ(βγ) = 0 by definition. We

have

φγ(βγ) =
∫ βγ

βγ
yγ(s) ds = 1

2

∮
yγ(s) ds,

where, in the first integral, the integration contour can be taken along Sγ and, in the second integral,

the integration contour goes around Sγ counterclockwise while the branch cut of yγ is placed at
1In [2] bγ = α/ρ, a typo.
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Sγ (instead of at [βγ , βγ ]). The latter integration contour can be deformed into three clockwise

contours around ∞, 0 and a, which leads to

φγ(βγ) = −2πi
2

(
Res
z=∞

yγ(z) + Res
z=0

yγ(z) + Res
z=a

yγ(z)
)
.

By Lemma 2.19 in [2], we have Resz=∞yγ(z) = 1,Resz=0yγ(z) = 1 +γ, and Resz=ayγ(z) = −γ and,

therefore, we have φγ(βγ) = −2πi. Since φγ is continuous on Sγ (here we again place the branch cut

of yγ at [βγ , βγ ]) we have I ⊂ φγ(Sγ). Since φγ has no critical point in Sγ except at the endpoints,

φγ is 1-to-1 and I = φγ(Sγ). �

Lemma 2.2.3 Let {Kj ⊂ C}∞j=1 be a bounded sequence of compact sets such that K∞, the set of

limit points of {Kj}∞j=1, is also compact. If Kj are connected, bj ∈ Kj and limj→∞ bj = b∞, then

b∞ ∈ K∞.

Proof. If not, there exist open sets O1 and O2 such that K∞ is the disjoint union of K∞
⋂
O1 and

K∞
⋂
O2. Since K∞ is compact and since both K∞

⋂
O1 and K∞

⋂
O2 are closed in the relative

topology of K∞, both K∞
⋂
O1 and K∞

⋂
O2 are compact and, therefore, there are disjoint open

neighborhoods of the two disjoint compact sets (a property of a Hausdorff space). Without loss of

generality, we can call the disjoint neighborhoods by O1 and O2. Suppose b∞ ∈ O2. For j large

enough we have Kj ⊂ O1
⋃
O2 and bj ∈ O2 and, therefore, Kj ⊂ O2 because Kj is connected. This

is a contradiction. �

Proof of Theorem 2.1.1. Assume Sγ does not converge to S in Hausdorff metric. Then there

exist a sequence {pj} ⊂ S and {γj} → 0 such that dist(pj ,Sγj ) > 2ε for some ε > 0. Taking a

limit point z ∈ S of {pj} and choosing a subsequence if necessary we can assume dist(z,Sγj ) > ε

for all j’s. Such z cannot be β ∈ S because {βγj ∈ Sγj} converges to β as j goes to ∞. Since

φγj : Sγj \ {βγj , βγj} → I \ {0,−2πi} is invertible by Lemma 2.2.2, we can define

zj := φ−1
γj ◦ φ0(z) ∈ Sγj .

Let z∞ be a limit point of {zj}, then z∞ /∈ {0, a} because Sγj is uniformly away from 0 and a for

sufficiently small γj . We also have z∞ 6= β (and similarly, z∞ 6= β) because, if not, |zj − βγj | would

go to zero while |φγj (zj)− φγj (βγj )| = |φ0(z)| > 0.
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Figure 6.: Illustration of the convergence, Sγ → S and Kγ → K, when a = 1/
√

2. For γ = 1/9
(left), Sγ is drawn with thick line and the rest of the set {z : Reφγ(z) = 0} is drawn with the thin
line; K is the shaded region. Same for γ = 0 (right).

Since (clos {zj}) ∩ {0, a} = ∅, Lemma 2.2.1 says that

|φ0(z)− φ0(zj)| = |φγj (zj)− φ0(zj)|
j→∞−→ 0.

Since a subsequence of {φ0(zj)} converges to φ0(z∞) by the continuity of φ0, we have

φ0(z) = φ0(z∞). (2.13)

Let S∞ be the set of limit points of {Sγj}. By Lemma 2.2.3, β ∈ S∞. Since S is the only

component of φ−1
0 (I) containing β, we have S∞ ⊂ S. From (2.13) and z∞ ∈ S \ {β, β}, we get

z = z∞ by Lemma 2.2.2. This is a contradiction because z∞ is a limit point of {Sγj} and, therefore,

dist(z, z∞) ≥ ε. This concludes the proof of Sγ → S.

For a < 1, the convergence of Kγ to closD follows from (2.12).

For a ≥ 1, we need to show that ∂Kγ = fγ(∂D) converges to ∂D. Recall that, as γ goes to

zero, α goes to 1/a, κ goes to zero and ρ goes to 1. It follows that limγ→0 fγ(v) = v, which means

Kγ → closD.

For all a, the convergence of µγ to µ follows from the facts Sγ → S and limγ→0 |yγ(z)| = 2πρ(z),

where ρ(z) is defined in (2.4).
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2.3 Matrix Riemann-Hilbert Problem

The following fact is from [2]: Let Γ be a simple closed curve enclosing the line segment [0, a] ⊂ C

and oriented counterclockwise. Let the analytic function ωn,N on C \ [0, a] be defined by

ωn,N (z) :=
(
z − a
z

)c e−Naz

zn
,

where we choose the principal branch, i.e.
(
z−a
z

)c goes to 1 as z →∞. Then the Riemann-Hilbert

problem, 

Y (z) is holomorphic in C \ Γ,

Y+(z) = Y−(z)

1 ωn,N (z)

0 1

 , z ∈ Γ,

Y (z) =
(
I +O

(1
z

))zn 0

0 z−n

 , z →∞,

has the unique solution given by

Y (z) =


Pn(z) 1

2πi

∫
Γ

Pn(w)ωn,N (w)
w − z

dw

Qn−1(z) 1
2πi

∫
Γ

Qn−1(w)ωn,N (w)
w − z

dw

 ,

where Qn−1(z) is the unique polynomial of degree n− 1 such that

1
2πi

∫
Γ

Qn−1(w)ωn,N (w)
w − z

dw = 1
zn

(
1 +O

(1
z

))
.

Lemma 2.3.1 For a < 1, there exists a neighborhood V of IntS such that Reφ(z) < 0 on V \ S

and the boundary of V is a smooth Jordan curve. For a ≥ 1, there exists a domain V such that it

contains IntS \ {β} and its boundary, ∂V , is a smooth Jordan curve that intersects β. Also S is

smooth except at β, where it makes a corner with the inner angle π/2 (i.e. towards IntS). Lastly,

Reφ > 0 on (β, a].

Proof. From the definition (2.5) of φ, Reφ is a harmonic function away from S and the origin.

Since Reφ(z) diverges to −∞ as z goes to 0, Reφ(z) has to be negative everywhere in IntS –
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Figure 7.: V and V0 for a > 1 (left) and a < 1 (right), S is the black curve, V is the interior of
the contour enclosing the shaded region, V0 is the interior of the contour enclosing the non–shaded
region. These domains are used to define the domain U at (2.14).

otherwise Reφ(z) has a local maximum in IntS, which is impossible. For a < 1, since the only

critical point, 1/a, of φ is away from S and since ReφA is harmonic in a neighborhood of S, Reφ

is negative in the vicinity of S. For a ≥ 1, since β is the only critical point of φA, the claim in the

lemma about the local shape of S near β and about ∂V being intersecting β follows by the local

analysis of the harmonic function ReφA(z). (By (2.6), we have φA(z) ∼ a2

2 (z − β)2. Moreover, by

(2.5), we choose different sign of φA(z) to φ(z) depending z is inside or outside of S.) Specifically,

ReφA(z) is positive along the real axis on (0,∞) \ {β}, and is negative near β in the vertical

direction (i.e. imaginary direction) from β. �

Using V from the above lemma, we define the domain U as

U = V \ V0. (2.14)

Here V0 is a small open neighborhood of [0, β] such that its boundary, ∂V0, is a smooth Jordan

curve that is arbitrarily close to [0, β], see Figure 7. The region U is simply connected (when

a ≥ 1) or doubly connected (when a < 1) open neighborhood of S \V0, disjoint from [0, a] and with

a (piecewise) smooth boundary. We assign the counterclockwise orientation on ∂U ∩ ExtS with

respect to the domain U and the counterclockwise orientation on ∂U ∩ IntS with respect to V0.

From now on we let Γ exactly match S inside U and away from a small neighborhood of β.

When a > 1, a part of the contour Γ goes outside U around the line segment [β, a], see Figure 8.

Near β the reader should not be concerned too much about the exact arrangement of Γ and U as it
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Figure 8.: Contours for the Riemann-Hilbert problem of Φ when a > 1 (left) and a < 1 (right).
Γ is the black curves and U is the shaded region bounded by the blue curves.

will become clear when we define the local parametrix, which is a series of transformations to the

Riemann-Hilbert problem.

We define the complex logarithmic potential of µ in (2.4) by

g(z) =
∫

log(z − w) dµ(w),

where the specific branch of the log is chosen below. As a function of z, this equals log z (modulo

2πi) when z ∈ ExtS by (2.2) and Theorem 2.1.1, and has continuous real part, since the jump of

g on S is purely imaginary. These properties and (2.3) determine the explicit expression of this

function as follows,

g(z) =


log z, z ∈ ExtS,

az + log β − aβ, z ∈ IntS.

From the g-function above, we can write

φ(z) = az + log z − 2g(z) + `, ` = log β − aβ,

so that Reφ(z) = 0 when z ∈ S.

Following the standard nonlinear steepest descent method [10, 11] applied to the matrix Riemann-
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Hilbert problem for Y , we define Z, as the final object after the multiple transforms of Y , by

Z(z) = e
−N`

2 σ3Y (z) e−Ng(z)σ3e
N`
2 σ3

 1 0

?
( z

z − a

)c
eNφ(z) 1

 , (2.15)

where

? =


1, when z ∈ U ∩ Ext Γ,

−1, when z ∈ U ∩ Int Γ,

0, when z /∈ U .

Then, Z solves the following Riemann-Hilbert problem:



Z+(z) = Z−(z)

 1 0(
z

z−a
)ceNφ(z) 1

 , z ∈ ∂U,

Z+(z) = Z−(z)

 0
(
z−a
z

)c
−
(

z
z−a

)c 0

 , z ∈ Γ ∩ U,

Z+(z) = Z−(z)

1
(
z−a
z

)ce−Nφ(z)

0 1

 , z ∈ Γ \ U.

Z(z) = I +O(z−1), z →∞.

(2.16)

We define

Φ(z) =




( z

z − β

)c
0

0
(z − β

z

)c
 , z ∈ Ext Γ,

 0
( z − a
z − β

)c
−
(z − β
z − a

)c
0

 , z ∈ Int Γ,

that satisfies the Riemann-Hilbert problem,


Φ+(z) = Φ−(z)

 0
(z − a

z

)c
−
( z

z − a

)c
0

 , z ∈ S,

Φ(z) = I +O
(1
z

)
, z →∞.

Note that, when a ≤ 1 and z ∈ IntS we have Φ(z) =
[

0 1
−1 0

]
. Also note that Φ is not the only
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solution to the above Riemann-Hilbert problem – for any rational matrix function R(z) with a pole

at β such that R(∞) = I, R(z)Φ(z) is a solution. We will use this fact in the next section.

2.4 a > 1: when c near 0

From the definition of φA in (2.5), we obtain

φA(z) = a2

2 (z − β)2 (1 +O(z − β)) .

Let Dβ be a disk centered at β such that there exists a univalent map ζ : Dβ → C as defined in

(2.6). Under the mapping ζ the contour S maps into [0, e3πi/4t] ∪ [0, e−3πi/4t]t∈[0,∞).

In this section we intend to find P : Dβ → C2×2 such that

Z∞(z) = Φ(z)
(
z − a
z

) c
2σ3

P(z)
(
z − a
z

)− c2σ3

, z ∈ Dβ (2.17)

satisfies the jump condition of Z at (2.16), i.e., we require P to satisfy in Dβ:



P+(z) = P−(z)

1 e−ζ(z)2/2

0 1

 , z ∈ Γ \ U,

P+(z) = P−(z)

 1 0

eζ(z)2/2 1

 , z ∈ ∂U ∩ Ext Γ,

P+(z) = P−(z)

 1 0

e−ζ(z)2/2 1

 , z ∈ ∂U ∩ Int Γ,

P+(z) =

0 −1

1 0

P−(z)

 0 1

−1 0

 , z ∈ Γ ∩ U,

P+(z) = e−cπiσ3P−(z)ecπiσ3 , z ∈ R,

(2.18)

and the boundary condition, P(z) ∼ I on ∂Dβ. The fourth equation of (2.18) comes from Φ in

(2.17) and the last equation comes from the (conjugating) factors
(
(z−a)/z

)±(c/2)σ3 in (2.17). The

jump contours Γ \ U and ∂U ∩ Int Γ can be pushed arbitrarily close to the real axis, so that the

jump contours of P consists of R, iR and {t e±i3π/4}0<t<∞. See Figure 9 for the illustration of the

jump contours in Dβ.
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Figure 9.: Jump contours of P (2.18) in Dβ (left) and the jump matrices of W (right)

We want to transform P into a new matrix function W that has only constant jump matrices

from the right. Such transform may be given by

W (z) := ζ(z)−cσ3S · P(z) · T (ζ(z))−1 S−1, (2.19)

using a diagonal matrix T and a piecewise constant matrix S defined below:

T (ζ) =


exp

(
ζ2

4 σ3

)
, | arg ζ| < 3π/4,

exp
(
−ζ

2

4 σ3

)
, otherwise,

(2.20)

and

S =



I, Im ζ < 0 ∩ | arg ζ| < 3π/4,

ecπiσ3 , Im ζ > 0 ∩ | arg ζ| < 3π/4, 0 1

−1 0

 , Im ζ < 0 ∩ | arg ζ| ≥ 3π/4,

ecπiσ3

 0 1

−1 0

 , Im ζ > 0 ∩ | arg ζ| ≥ 3π/4.

(2.21)
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Here we choose S such that S−1ζ(z)cσ3 satisfies all the left jumps of P, i.e.,

(
S−1ζcσ3

)
+

=

0 −1

1 0

(S−1ζcσ3
)
−
, z ∈ Γ ∩ U,

(
S−1ζcσ3

)
+

= e−cπiσ3
(
S−1ζcσ3

)
−
, z ∈ R,

so that W has the jump matrices only from the right. Furthermore, the jump matrices of W are

constant matrices because of the right multipliction of T−1 in (2.19). The jump on {t e±i3π/4}0<t<∞

disappears after the right multiplication by S−1. We summarize the jump matrices of W below,

W+(z) = W−(z)



1 1− e2icπ

0 1

 , ζ(z) ∈ R+,

 1 0

e−2icπ 1

 , ζ(z) ∈ iR+,

e2icπ e2icπ − 1

0 e−2icπ

 , ζ(z) ∈ R−,

 1 0

−1 1

 , ζ(z) ∈ iR−.

(2.22)

The following fact can be checked by a direct calculation.

Lemma 2.4.1 For z ∈ Dβ we have

Φ(z)
(
z − a
z

) c
2σ3

S−1ζcσ3 =
(
N c/2η(z)

)σ3
,

where η : Dβ → C ,

η(z) := e−icπ/2

N c/2

(
a− z
z

) c
2
(
z ζ(z)
z − β

)c
is a nonvanishing analytic function in Dβ independent of N .

32



Using the parabolic cylinder function (2.7) we define W : C \ (R ∪ iR)→ C2×2 as

W(ζ) =



 D−c(ζ) i
√

2πe
cπi
2

Γ(c) D−1+c(iζ)

− Γ(c+1)√
2πecπiD−1−c(ζ) e−

cπi
2 Dc(iζ)

 , −π
2 < arg(ζ) < 0,

 D−c(ζ) − i
√

2πe
3cπi

2
Γ(c) D−1+c(−iζ)

− Γ(c+1)√
2πecπiD−1−c(ζ) e

cπi
2 Dc(−iζ)

 , 0 < arg(ζ) < π
2 ,

 e−cπiD−c(−ζ) − i
√

2πe
3cπi

2
Γ(c) D−1+c(−iζ)

Γ(1+c)√
2πe2cπiD−1−c(−ζ) e

cπi
2 Dc(−iζ)

 , π
2 < arg(ζ) < π,

 ecπiD−c(−ζ) i
√

2πe
cπi
2

Γ(c) D−1+c(iζ)
Γ(1+c)√

2π D−1−c(−ζ) e−
cπi
2 Dc(iζ)

 , π < arg(ζ) < 3π
2 .

(2.23)

Lemma 2.4.2 There exists the asymptotic expansion of D−c(ζ) given by

D−c(ζ) = e−
ζ2
4 ζ−c

(
n−1∑
s=0

(−1)s (c)2s
s!(2ζ2)s + εn(ζ)

)
, |arg ζ| < π

2 . (2.24)

There exists a constant C > 0 independent of c so that

|εn(ζ)| ≤ C

∣∣∣∣∣∣
(
c
2
)
n

(
c+1

2

)
n

n!(ζ2)n

∣∣∣∣∣∣ , |arg ζ| < π

2 .

Here, (·)n is Pochhammer’s Symbol defined by (x)n = Γ(x+ n)
Γ(x) .

Proof. By the identities (12.7.14) and (13.7.4) in [34] we can write

D−c(ζ) = 2−c/2e−ζ2/4U

(
c

2 ,
1
2 ,
ζ2

2

)
,

where U has the following asymptotic expansion as |ζ| → ∞.

U

(
c

2 ,
1
2 ,
ζ2

2

)
=
(
ζ2

2

)− c2 n−1∑
s=0

(
−ζ

2

2

)−s ( c
2
)
s

(
c+1

2

)
s

s!(2ζ2)s + ε̂n

(
ζ2

2

)
, |arg ζ| < π

2 .

The error term ε̂n is bounded by

∣∣∣∣∣ε̂n
(
ζ2

2

)∣∣∣∣∣ ≤ 2
c
2 +n+1α

∣∣∣∣∣( c2)n( c+1
2 )n

n!(ζ2)n+ c
2

∣∣∣∣∣ exp
(4αρ
|ζ2|

)
,
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where

α = 1
1− σ , σ =

∣∣∣∣1− 2c
ζ2

∣∣∣∣ , ρ =
∣∣∣∣∣c2 − c+ 1

4

∣∣∣∣∣+ σ(1 + σ
4 )

(1− σ)2 .

We have

|εn(ζ)| = 2−
c
2 |ζ|c

∣∣∣∣∣ε̂n
(
ζ2

2

)∣∣∣∣∣ ≤ C
∣∣∣∣∣( c2)n( c+1

2 )n
n!(ζ2)n

∣∣∣∣∣ .
where

C = 2n+1|ζ2|
(|ζ2| − |1− 2c|) exp

(∣∣∣∣∣ c2 − c+ 1
4(|ζ2| − |1− 2c|)

∣∣∣∣∣+ |1− 2c|(|ζ2|+ |1−2c|
4 )

(|ζ2| − |1− 2c|)3

)
.

For |ζ2|
|1− 2c| big enough, we have C ≤ 2n+2. �

Though the lemma only concerns |arg ζ| < π/2, this turns out to cover every term that appears in

W(ζ) of (2.23) and leads to the following lemma.

Lemma 2.4.3 W(ζ(z)) satisfies (2.22) and the asymptotic behavior

F(ζ) :=W(ζ) ζcσ3e
ζ2
4 σ3 = I + C1

ζ
+ C2
ζ2 +O

( 1
ζ3

)
(2.25)

as |ζ| goes to ∞, where

C1 =


0

√
2πeiπc

Γ(c)
−Γ(c+ 1)√

2πeiπc 0

 and C2 =

−c(c+ 1)
2 0

0 c(c− 1)
2

 .

Moreover, as c→ 0 and |ζ| → ∞, we get

F(ζ)F1(ζ)−1 = I +

O
(
c ζ−2

)
O
(
c ζ−3

)
O
(
ζ−1

)
O
(
c ζ−2

)
 , (2.26)

F(ζ)F1(ζ)−1F2(ζ)−1 = I +O
(
ζ−3

)
, (2.27)
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where

F1(ζ) = I + 1
ζ

0
√

2πeiπc

Γ(c)
0 0

 , (2.28)

F2(ζ) = I +


−c(c+ 1)

2
1
ζ2

√
2πeiπcc2(c+ 1)2

4Γ(c+ 1)
1
ζ3

−Γ(c+ 1)√
2πeiπc

1
ζ

c(c+ 1)
2

1
ζ2

 . (2.29)

The error bound in (2.26) is uniform over c ∈ [−1/2, 1/2] as ζ tends to infinity, and the error

bound in (2.27) is for a fixed c.

Proof. The proof of that W satisfies (2.22) is straightforward if one uses the following identities

[9, 38]:

D−c(ζ) = Γ(1− c)√
2π

[
e
−cπi

2 Dc−1(iζ) + e
cπi
2 Dc−1(−iζ)

]
,

D−c(ζ) = e−cπiD−c(−ζ) +
√

2π
Γ(c) e

(1−c)πi
2 Dc−1(−iζ),

D−c(ζ) = ecπiD−c(−ζ) +
√

2π
Γ(c) e

(c−1)πi
2 Dc−1(iζ).

The proof of the asymptotic behavior is based on Lemma 2.4.2 regarding the asymptotic behavior

of the parabolic cylinder function. By Lemma 2.4.2, letting n = 1, we have

|ε1(ζ)| ≤ C
∣∣∣∣c(c+ 1)

ζ2

∣∣∣∣ , |arg ζ| < π

2 .

This leads to D−c(ζ) = e−ζ2/4ζ−c
(
1 +O

(
c(c+ 1)/ζ2)). Similarly, we can obtain the asymptotic

expression for D−1+c(iζ), D−1−c(ζ), and Dc(iζ) and we get

F(ζ) = F1(ζ) +

O
(
c(c+ 1)
ζ2

)
O
((c− 1)(c− 2)

ζ3Γ(c)

)
O
(Γ(c+ 1)

ζ

)
O
(
c(c− 1)
ζ2

)
 .

This leads to (2.26) using Γ(c) = c−1(1 + O(c)). Similarly, the equations (2.27) and (2.25) follow

from Lemma 2.4.2. �

Let H be a holomorphic matrix function on Dβ with determinant 1. We define W by

W (z) = H(z)W(ζ(z)), z ∈ Dβ. (2.30)
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Combining (2.19), (2.25) and (2.30), the expression in (2.17) can be written as

Φ(z)
(
z−a
z

) c
2σ3 P(z)

(
z−a
z

)− c2σ3

= Φ(z)
(
z − a
z

) c
2σ3

S−1ζcσ3H(z)W(z)ST (ζ(z))
(
z − a
z

)− c2σ3

= Φ(z)
(
z − a
z

) c
2σ3

S−1ζcσ3H(z)F(ζ(z)) ζ(z)−cσ3e−
ζ(z)2

4 σ3ST (ζ(z))
(
z − a
z

)− c2σ3

.

By (2.20), (2.21) and Lemma 2.4.1, we obtain

ζ−cσ3e
−ζ2

4 σ3ST (ζ(z))
(
z − a
z

)− c2σ3

= ζ−cσ3S

(
z − a
z

)− c2σ3

=
(
N c/2η(z)

)−σ3 Φ(z).

The above equations lead to the following Lemma.

Lemma 2.4.4 When z ∈ Dβ, we have

Φ(z)
(
z − a
z

) c
2σ3

P(z)
(
z − a
z

)− c2σ3

=
(
N c/2η(z)

)σ3
H(z)F(ζ(z))

(
N c/2η(z)

)−σ3 Φ(z). (2.31)

Theorem 2.4.5 For a > 1 and −1/2 ≤ c ≤ 1/2, we get

PN (z) =



zN
(

z

z − β

)c (
1 +O

( 1
N c+1/2

))
, z ∈ ExtS \ (U ∪Dβ),

zN
((

z

z − β

)c
−
√

2π(a2 − 1)c

N1/2−caΓ(c)
eNφA(z)

(z − β)

(
z − β
z − a

)c
+O

(
1

N c+1/2 ,
eNφA
N c+1/2

))
, z ∈ U \Dβ,

zN
((

zζ

z − β

)c
e
ζ2(z)

4 D−c(ζ(z)) +O
( 1
N1/2 ,

1
N2c+1/2

))
, z ∈ Dβ.

The error bounds are uniform in c ∈ [−1/2, 1/2]. The big O notation with multiple arguments is

defined by O(A,B) = O(A) +O(B).

This theorem is similar to Theorem 2.1.2 except that the range of c is restricted to [−1/2, 1/2]

and the error bounds are uniform in the range.

Proof. Using F1 in (2.28) we can define a meromorphic matrix function with determinant 1 and a

simple pole at β by
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R(z) = I +
√

2π
(
a2 − 1

)c
N1/2−caΓ(c)

1
z − β

0 1

0 0

 (2.32)

such that we can set

H(z) =
(
N c/2η(z)

)−σ3 R(z)
(
N c/2η(z)

)σ3
F1(ζ(z))−1, (2.33)

i.e., the above matrix has determinant 1 and is holomorphic at β.

Now we define the strong asymptotics of Z that we will denote by

Z∞(z) :=


R(z)Φ(z), z /∈ Dβ,

Φ(z)
(
z − a
z

) c
2σ3

P(z)
(
z − a
z

)− c2σ3

, z ∈ Dβ,

(2.34)

where the second line is given in Lemma 2.4.4. We get

Z∞+ (z)
(
Z∞− (z)

)−1 = Φ(z)
(
z − a
z

) c
2σ3

P(z)
(
z − a
z

)− c2σ3

Φ−1(z)R−1(z)

=
(
N c/2η(z)

)σ3
H(z)F(z)

(
N c/2η(z)

)−σ3 R−1(z)

=
(
N c/2η(z)

)σ3
H(z)F̂(ζ)H−1(z)

(
N c/2η(z)

)−σ3
,

(2.35)

where in the last line we set

F̂(ζ) = F(ζ)F1(ζ)−1.

Defining the error matrix by

E(z) := Z∞(z)Z−1(z),

we have

E+(z)E−1
− (z) = Z∞(z)+

(
Z∞− (z)

)−1

=
(
N c/2η(z)

)σ3
H(z)F̂(ζ)H−1(z)

(
N c/2η(z)

)−σ3

= I +

 O
(
c

N

)
O
(

c

N3/2−c

)
O
( 1
N1/2+c

)
O
(
c

N

)
 = I +O

( 1
N1/2+c

)
, z ∈ ∂Dβ,

(2.36)

where in the last equality we used the asymptotic behavior (2.26) for F̂(ζ) = F(ζ)F1(ζ)−1, and the
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asymptotic behavior of H given below:

H =

1 h(z)

0 1

 , h(z) =
√

2π
(
a2 − 1

)c
√
Nη2(z)aΓ(c)

1
z − β

− 1
ζ(z)

√
2πeiπc

Γ(c) = O
(

c√
N

)
. (2.37)

One can check that the jump of E is exponentially small in N away from ∂Dβ using Lemma 2.3.1

and (2.16). By the Small Norm Theorem (Theorem 1.5.1) we obtain E(z) = I + O
(
1/N c+1/2

)
and, therefore, Z∞(z)Z−1(z) = I + O

(
1/N c+1/2

)
. Note that the error bound is uniform over

c ∈ [−1/2, 1/2].

Using (2.15) we have (see (2.15) for the definition of (?)):

Y (z) = e
N`
2 σ3Z(z)

 1 0

(−?)
( z

z − a

)c
eNφ(z) 1

 e
−N`

2 σ3eNg(z)σ3

= e
N`
2 σ3

(
I +O

( 1
N1/2+c

))
Z∞(z)

 1 0

(−?)
( z

z − a

)c
eNφ(z) 1

 e
−N`

2 σ3eNg(z)σ3 .

Using (2.34), we calculate the strong asymptotics for z ∈ (ExtS ∩ U) \Dβ as an example.

PN (z) = [Y (z)]11 =

(I +O
( 1
N1/2+c

))
Z∞(z)

 1 0

(−?)
(

z
z−a

)c
eNφ(z) 1




11

eNg(z)

=

(I +O
( 1
N1/2+c

))
R(z)Φ(z)

 1 0

−
(

z
z−a

)c
eNφ(z) 1




11

eNg(z)

=

(I +O
( 1
N1/2+c

))1
√

2π(a2−1)c
N1/2−caΓ(c)

1
z−β

0 1


( z

z−β
)c 0

0
( z−β

z

)c

 1 0

−
(

z
z−a

)ceNφ(z) 1




11

zN

=
[(

1 +O
( 1
N1/2+c

))((
z

z − β

)c
−
(
z − β
z − a

)c √
2π(a2 − 1)c

aΓ(c)N1/2−c(z − β)
eNφ(z)

)
−O

( 1
N1/2+c

)(
z − β
z − a

)c
eNφ(z)

]
zN

= zN
((

z

z − β

)c
−
(
z − β
z − a

)c √
2π(a2 − 1)c

aΓ(c)N1/2−c(z − β)
eNφ(z) +O

( 1
N1/2+c

))
.

(2.38)
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A similar calculation will give the following for z ∈ (IntS ∩ U) \Dβ:

PN (z) = eNg(z)
((

z

z − β

)c
eNφ(z) −

(
z − β
z − a

)c √
2π(a2 − 1)c

aΓ(c)N1/2−c(z − β)
+O

( 1
N1/2+c

))
.

For z ∈ (ExtS \ U) ∩ Dβ we calculate the strong asymptotics using (2.34), (2.25) and Lemma

2.4.4 to represent P in terms of W in (2.23) and H(z) in (2.33):

PN (z) = [Y (z)]11 =

(I +O
( 1
N1/2+c

))
Z∞

 1 0

− ?
(

z
z−a

)c
eNφ(z) 1




11

eNg(z)

=
[(
I +O

( 1
N1/2+c

))
Φ(z)

(
z − a
z

) c
2σ3

P(z)
(
z − a
z

)− c2σ3
]

11
zN

=
[(
I +O

( 1
N1/2+c

))(
N c/2η(z)

)σ3
H(z)F(ζ(z))

(
N c/2η(z)

)−σ3 Φ(z)
]

11
zN

=
[(

I +O
( 1
N1/2+c

))(
N c/2η(z)

)σ3

1 h(z)

0 1


 D−c(ζ) i

√
2πe

cπi
2

Γ(c) D−1+c(iζ)

− Γ(c+1)√
2πecπiD−1−c(ζ) e−

cπi
2 Dc(iζ)


· ζcσ3e

ζ2
4 σ3

(
N c/2η(z)

)−σ3


(

z
z−β

)c
0

0
(
z−β
z

)c
 ]

11
zN

=
[(

z

z − β

)c
ζ(z)ce

ζ(z)2
4

(
D−c(ζ)− h(z)Γ(c+ 1)√

2πecπiD−1−c(ζ)
)(

1 +O
( 1
N1/2+c

))
+O

( 1
N1/2+2c

)]
zN

=
[(

z

z − β

)c
ζ(z)ce

ζ(z)2
4 D−c(ζ) +O

( 1√
N
,

1
N1/2+2c

)]
zN .

(2.39)

We used (2.37) in the last equality. Note that the above error bounds are uniform for c ∈ [−1/2, 1/2].

We skip the calculations for other regins since they are similar. �

2.5 a > 1: Proof of Theorem 2.1.2

The proof of Theorem 2.1.2 is identical to the above proof of Theorem 2.4.5 except that we use

different R and H (hence different P). The construction of R and H will be more involved and

will be useful for the next case of a < 1 and, therefore, we will describe the construction in a more

general setting.

Here we describe how to construct R and P inductively so that the jump, Z∞+ (Z∞− )−1, of Z∞ is
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close to the identity up to O(N−L) for any given L > 0. The inductive method that we describe

here involves only algebraic manipulations, e.g., taking the inverses of relatively small matrices.

We introduce several notations that we will use in this section.

Let us recall that ζ is a univalent function in Dβ such that ζ(β) = 0 and N−τaζ(z)/(z− β) is an

N -independent and non-vanishing holomorphic function, where (we include the case a < 1 later):

τa =
{ 1/2 for a > 1,

1 for a < 1.

The lemma below generalizes the definition of F̂ that we used in the previous section.

Lemma 2.5.1 Let F be a piecewise analytic matrix function with determinant 1 and its asymptotic

expansion around ∞ given by

F = I + C1
ζ

+ C2
ζ2 + · · · ,

where Cj’s are constant 2× 2 matrices. For any positive integer L, there exists a positive number

of k and a decomposition

F(ζ) = F̂(ζ)Fk(ζ) · · ·F1(ζ), (2.40)

such that, for all 1 ≤ j ≤ k, Fj is a rational function with its only singularity at the origin,

Fj(∞) = I, Fj(ζ)− I is nilpotent and

F̂(ζ) = I +O
(
ζ−L

)
.

Proof. Assume

F(ζ) = I + C0
ζm

+O
( 1
ζm+1

)
, C0 =

c11 c12

c21 c22

 .
Since detF = 1, we have c11 + c22 = 0. One can write C0 as the sum of three nilpotent matrices,

C0 = N1 +N2 +N3, where

N1 =

c11 −c2
11

1 −c11

 , N2 =

0 c12 − c2
11

0 0

 , N3 =

 0 0

c21 − 1 0

 .
We get

F(ζ)
(
I + N1

ζm

)−1 (
I + N2

ζm

)−1 (
I + N3

ζm

)−1
= I +O

( 1
ζm+1

)
.
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The straightforward induction finishes the proof of the lemma. �

Given {Fk}k=1,2,···, we will define {Hk} and {Rk} inductively. Let H0 = I. Assume that Hk−1 is

holomorphic and non-vanishing at β and Hk−1(z) = I +O(1/N τa). We define

F̃k(z) :=
(
N

c
2 η(z)

)σ3
Hk−1(z)Fk(ζ(z))H−1

k−1(z)
(
N

c
2 η(z)

)−σ3
. (2.41)

If Fk satisfies the property described in Lemma 2.5.1, we have the following truncated Laurent

series expansion near β,

F̃−1
k (z) = N

c
2σ3

I +
mk∑

j=−∞

Aj
(z − β)j

N− c2σ3 ,

for some positive integer mk and some constant matrices {Aj}. Given {Aj}, the lemma below

constructs {Rk} inductively.

Lemma 2.5.2 Given F̃k(z) as above, the unique rational matrix function Rk such that its only

singularity is at β, Rk(∞) = I and Rk(z)F̃−1
k (z) is holomorphic at β, is given by

Rk(z) = N
c
2σ3

I +
mk∑
j=1

Bj
(z − β)j

N− c2σ3 ,

where for a sufficiently large N Bj’s are given by

[Bmk , Bmk−1 , · · · , B1] = −[Amk , Amk−1 , · · · , A1]
(
I + M̃

)−1
.

The 2mk × 2mk matrix M̃ is given in block form by

M̃ =



A0 A−1 · · · A1−mk

A1 A0 · · · A2−mk
... . . . . . . ...

Amk−1 · · · A1 A0



and for a sufficiently large N , I + M̃ is invertible. Moreover, detRk ≡ 1.
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Proof. Let

M =



Amk Amk−1 · · · A1

Amk · · · A2
. . . ...

Amk


,

In order to make Rk(z)F̃−1
k (z) holomorphic at β, we require all the pole terms of Rk(z)F̃−1

k (z) to

vanish. We obtain

[Bmk , Bmk−1 , · · · , B1] ·M = 0, (2.42)

[Bmk , Bmk−1 , · · · , B1](I + M̃) + [Amk , Amk−1 , · · · , A1] = 0, (2.43)

where the first equation comes from the the poles of the orders 2mk, 2mk − 1, · · · ,mk + 1, and the

second equation comes from the poles orders mk,mk − 1, · · · , 1.

Let’s explain a useful bound on Aj ’s. If Fk(ζ) = I +O(ζ−mk), then Fk(ζ(z)) = I +O(N−mkτa)

on ∂Dβ. Therefore, we have Aj = O(N−mkτa) and ‖M̃‖ = O(N−mkτa). Hence I + M̃ is invertible

for a sufficiently large N so that, from (2.43), we can obtain

[Bmk , Bmk−1 , · · · , B1] = −[Amk , Amk−1 , · · · , A1]
(
I + M̃

)−1
.

Let us show that (2.42) is satisfied. Since Fk(ζ) − I is nilpotent, F̃−1
k (z) − I is nilpotent and

therefore,  mk∑
j=−∞

Aj
(z − β)j

2

= 0.

This implies M2 = 0 and MM̃ = −M̃M . Then,

[Bmk , Bmk−1 , · · · , B1] ·M = −[Amk , Amk−1 , · · · , A1]
(
I + M̃

)−1
·M

= −[M ]1st row
(
I − M̃ + M̃2 + · · ·

)
·M

= −
[
M ·

(
I − M̃ + M̃2 + · · ·

)
·M

]
1st row

= −
[
MM −MM̃M +MM̃2M + · · ·

]
1st row

= −
[
MM +M2M̃ +M2M̃2 + · · ·

]
1st row

= 0

The “1st row” means the 1st row in the 2× 2 block matrix. Since Rk(z)F̃−1
k (z) is holomorphic at
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β and det F̃−1
k (z) ≡ 1, detRk(z) is holomorphic at β. Since detRk(∞) = 1, we have detRk ≡ 1.

Now we show that Rk is unique. Assume R̃k also satisfies all the conditions satisfied by Rk

in the lemma. Then, RkR̃−1
k is holomorphic away from β, Rk(z)R̃k(z)−1 → I as z → ∞, and

RkR̃
−1
k = RkF̃

−1
k

(
R̃kF̃

−1
k

)−1 is holomorphic at β. Thus, Rk = R̃k. �

Corollary 2.5.3 If Fk(ζ) = I +O(ζ−m), then N−
c
2σ3Rk(z)N

c
2σ3 = I +O(N−τam) when z ∈ ∂Dβ.

Proof. From Aj = O(N−mτa), it follows that Bj = O(N−mτa) . By Lemma 2.5.2, this ends the

proof. �

Using Rk(z) from the above lemma, we define Hk(z) by

Hk(z) =
(
N

c
2 η(z)

)−σ3
Rk(z)F̃−1

k (z)
(
N

c
2 η(z)

)σ3
Hk−1(z). (2.44)

Since H0 = I, by induction, Hk(z) is holomorphic at β and has determinant 1. By Corollary 2.5.3

we get

Hk(z) = I +O(N−τa), z ∈ Dβ. (2.45)

Lemma 2.5.4 For z ∈ ∂Dβ, we have

Z∞+ (z)
(
Z∞− (z)

)−1 =
(
N c/2η(z)

)σ3
H(z)F̂(ζ)H−1(z)

(
N c/2η(z)

)−σ3
.

Proof. We have

Z∞+ (z)
(
Z∞− (z)

)−1 = Φ(z)
(
z − a
z

) c
2σ3

P(z)
(
z − a
z

)− c2σ3

Φ−1(z)R−1(z)

=
(
N c/2η(z)

)σ3
H(z)F(z)

(
N c/2η(z)

)−σ3 R−1(z)

=
(
N c/2η(z)

)σ3
H(z)F̂(ζ)H−1(z)

(
N c/2η(z)

)−σ3
.

(2.46)

The first equality is from (2.34), the second equality comes from Lemma 2.4.4, and the last equality

follows from (2.40) and

H = Hk =
(
N c/2η

)−σ3
Rk · · ·R1

(
N c/2η

)σ3
F−1

1 · · ·F−1
k , (2.47)

which follows from the inductive definition of Hk in (2.44) with H0 = I. The theorem is proved

using Lemma 2.5.1 and (2.45). �
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Proof of Theorem 2.1.2. Contrary to the proof of Theorem 2.4.5, all the error bounds will be for a

fixed c.

Here, we construct {Rj} and {Hj} inductively from the initial data R1 = R and H1 = H where

R and H given by (2.32) and (2.33).

By (2.29) with (2.41) a calculation of F̃2(z) leads to,

F̃2(z) =
(
N

c
2 η(z)

)σ3
H1(z)F2(ζ(z))H−1

1 (z)
(
N

c
2 η(z)

)−σ3

= N
c
2σ3

I +

 O
(

1
N

)
O
(

1
N3/2

)
O
(

1√
N

)
O
(

1
N

)

N− c2σ3 . z ∈ ∂Dβ.

Estimating F̃2(z) by using H1 = I +O(N−1/2) in (2.45) gives the same result except the bound at

(12)-entry above may be relaxed to O(N−1). Then, by Lemma 2.5.2, we have

R2(z) = N
c
2σ3

I +

 O
(

1
N

)
O
(

1
N

)
O
(

1√
N

)
O
(

1√
N

)

N− c2σ3 .

Using R1 = R with (2.32) we get

R2R1 = N
c
2σ3

I +

 O
(

1
N

) √
2π(a2−1)c√
NaΓ(c)

1
z−β +O

(
1
N

)
O
(

1√
N

)
O
(

1√
N

)

N− c2σ3 .

From (2.27), a further decompositions of F gives Fk = I +O
(
ζ−3) for k ≥ 3. Then, by Corollary

2.5.3, we get

Rk · · ·R3 = N
c
2σ3(I +O(N−3/2))N−

c
2σ3

and

Rk · · ·R1 = N
c
2σ3

I +

 O
(

1
N

) √
2π(a2−1)c√
NaΓ(c)

1
z−β +O

(
1
N

)
O
(

1√
N

)
O
(

1√
N

)

N− c2σ3 , z ∈ ∂Dβ.

Using Lemma 2.5.1, we can have F̂(ζ) = I +O
(
ζ−L

)
for an arbitrary L. Using Lemma 2.5.4 with

R = Rk · · ·R1 and H = Hk = I +O(N−1/2),

we get Z∞+
(
Z∞−

)−1 = I +O(N−L) on ∂Dβ. From the argument similar to one used in the proof of
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Figure 10.: Jump contours of P (2.48) in Dβ (left); the shaded region (everywhere except the
negative real axis) is U .

Theorem 2.4.5, we obtain

Y (z) = e
N`
2 σ3

(
I +O

( 1
NL

))
Z∞(z)

 1 0

− ?
( z

z − a

)c
eNφ(z) 1

 e
−N`

2 σ3eNg(z)σ3

uniformly on any compact set for an arbitrary positive integer L. The proof is finished by calcula-

tions similar to (2.38) and (2.39).

2.6 a < 1: c near 0 and Proof of Theorem 2.1.3

In this section, we consider the case a < 1 following closely the analysis of previous two sections

for the case a > 1.

From (2.5), we obtain

φA(z) = a2 − 1
a

(z − β) (1 +O(z − β)) .

We define ζ : Dβ → C by (2.6) where Dβ is a sufficiently small fixed disc centered at z = β such

that ζ is one-to-one. Under the mapping ζ the contour S maps to the imaginary axis.

Inside Dβ we want to find P such that

Z∞(z) = Φ(z)
(
z − a
z

) c
2σ3

P(z)
(
z − a
z

)− c2σ3
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satisfies the jump conditions of Z in (2.16), i.e.,



P+(z) = P−(z)

 1 0

eζ(z) 1

 , z ∈ ∂U ∩Dβ,

P+(z) =

0 −1

1 0

P−(z)

 0 1

−1 0

 , z ∈ Γ ∩Dβ,

P+(z) = e−cπiσ3P−(z)ecπiσ3 , z ∈ (−∞, a] ∩Dβ.

(2.48)

Let us define S by

S = S(ζ) =


I, | arg ζ| < π/2, 0 1

−1 0

 , otherwise.

Here we choose S so that S−1ζ(z)
c
2σ3 satisfies the left jump of P(z) from the second and the third

equations of (2.48). Then, the matrix function

W (z) = ζ(z)−
c
2σ3SP(z)S−1ζ(z)

c
2σ3 (2.49)

satisfies

W+(z) = W−(z)

1 −ζ(z)−ceζ(z)

0 1

 , z ∈ ∂U ∩Dβ.

Let H be a holomorphic matrix (that will be specified later). A solution to the above jump condition

can be written as W (z) = H(z)F(ζ(z)), where

F(ζ) :=

1 −1
2iπ

∫
L

es

sc(s− ζ)ds

0 1

 . (2.50)

Here the contour L is the image of ∂U under ζ. It begins at −∞, circles the origin once in the

counterclockwise direction, and returns to −∞.

Lemma 2.6.1 For z ∈ Dβ we have

Φ(z)
(
z − a
z

) c
2σ3

S−1ζ(z)
c
2σ3 =

(
N c/2η(z)

)σ3
,
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where η : Dβ → C and

η(z) := 1
N c/2

(
z ζ(z)
z − β

)c/2
,

is a nonvanishing N -independent analytic function in Dβ.

By Lemma 2.6.1, (2.49) and if W = HF we get

Φ(z)
(
z − a
z

) c
2σ3

P(z)
(
z − a
z

)− c2σ3

= Φ(z)
(
z − a
z

) c
2σ3

S−1ζ(c/2)σ3W (z) ζ−(c/2)σ3S

(
z − a
z

)− c2σ3

= Φ(z)
(
z − a
z

) c
2σ3

S−1ζ(c/2)σ3H(z)F(ζ(z)) ζ−(c/2)σ3S

(
z − a
z

)− c2σ3

=
(
N c/2η(z)

)σ3
H(z)F(ζ(z))

(
N c/2η(z)

)−σ3 Φ(z). (2.51)

This proves the same statement as in Lemma 2.4.4 for a < 1.

Lemma 2.6.2 When |ζ| goes to ∞, F in (2.50) satisfies

F(ζ)F1(ζ)−1 = I +O
( 1
|ζ2|

)
(2.52)

uniformly over c ∈ (−1, 2) and

F(ζ)F1(ζ)−1 · · ·Fk(ζ)−1 = I +O
( 1
|ζk+1|

)
, (2.53)

where

Fk(ζ) = I + ck
ζk

0 1

0 0

 , ck = 1
2iπ

∫
L

sk−1es

sc
ds = sin(cπ) Γ(k − c)

π(−1)k−1 . (2.54)

Proof. We only give the proof of (2.52) as the proof of (2.53) is similar. The only nonzero entry
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of
(
FF−1

1 − I
)

is the (12)−entry. For arg |ζ| < π/2, we have

∣∣(F(ζ)F1(ζ)−1)
12
∣∣ = 1

2π

∣∣∣∣∫
L

es

sc(s− ζ(z))ds+
∫
L

es

scζ(z)ds
∣∣∣∣

≤ 1
2π

∫
L

∣∣∣∣ ess
sc(ζ(z)− s)ζ(z)

∣∣∣∣ |ds|
≤ 1

2π

∫
L

∣∣∣∣ ess
scζ2

∣∣∣∣ |ds|
= 1

2π|ζ2|

∫
L

∣∣∣∣esssc
∣∣∣∣ |ds|.

In the second inequality, we use |ζ − s| ≥ |ζ| for Re ζ > 0 and s ∈ (−∞, 0]. One can prove that

the last integral is finite by deforming the contour away from the origin so that the integrant is

bounded from above.

When | arg ζ| ≥ π/2 a similar argument using the deformation of integration contour leads to the

proof of the lemma. Note that the branch cut (−∞, 0) of sc and the integration contour L can be

deformed, respectively, into {teiθ0}0<t<∞ for π/2 ≤ |θ0| ≤ π and the corresponding contour around

the new branch cut. We shall omit the further details. �

Theorem 2.6.3 For a < 1 we get

PN (z) =



zN
(

z

z − a

)c (
1 +O

( 1
N2−c

))
, z ∈ ExtS \ (U ∪Dβ),

zN
((

z

z − a

)c
− a(1− a2)c−1

N1−cΓ(c)
eNφA(z)

(z − a) +O
(

1
N2−c ,

eNφA
N2−c

))
, z ∈ U \Dβ,

zN
((

z

z − a

)c
−
(
zζ(z)
z − a

)c 1
eζ(z)

(
f̂(ζ(z)) +O

(
c

N

))
+O

( 1
N2−c

))
, z ∈ Dβ,

where

f̂(ζ) = −1
2iπ

∫
L

es

sc(s− ζ)ds.

Here the contour L is the image of ∂U under ζ, and it begins at −∞, circles the origin once in the

counterclockwise direction, and returns to −∞. The error bounds are uniform over −1 < c < 2.
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Proof. From F1 in (2.54) one can obtain R1 using Lemma 2.5.2 and obtain H1 by (2.47):

R1(z) = I + a(1− a2)c−1

N1−cΓ(c)
1

z − a

0 1

0 0

 ,
H1(z) =

(
N c/2η(z)

)−σ3
R1(z)

(
N c/2η(z)

)σ3
F1(ζ(z))−1 =

1 h(z)

0 1

 ,
(2.55)

where (using c1 = 1/Γ(c) that appears in F1)

h(z) =
(
z − a
zζ(z)

)c(a(1− a2)c−1

N1−cΓ(c)
1

z − a

)
− 1
ζ(z)Γ(c) = O

(
c

N

)
. (2.56)

Setting R = R1 and H = H1, we can define Z∞ by (2.31) and (2.34). Defining the error matrix by

E = Z∞Z−1, by the similar calculation as (2.36) with F̂ = FF−1
1 and (2.52), we get

E+(z)E−1
− (z) = I +O

( 1
N2−c

)
, z ∈ ∂Dβ,

uniformly over c ∈ (−1, 2). By the same argument as in the proof of Theorem 2.4.5 we obtain

Z(z) =
(
I +O

( 1
N2−c

))
Z∞(z).

The proof is finished by the calculations identical to those in (2.38) and (2.39). To add a little

more detail, inside Dβ we need to use (2.56) to obtain the final result. Below we write the strong

asymptotics before using (2.56) as an example.

((
z

z − a

)c
−
(
zζ(z)
z − a

)c (
f̂(ζ(z)) + h(z)

)
eNφ(z) +O

( 1
N2−c

))
eNg(z), z ∈ ExtS ∩Dβ.

We omit the computation. �

Proof of Theorem 2.1.3. The proof will be similar to the above proof and the proof of Theorem

2.1.2.

By (2.54), (2.55) and (2.41), we obtain

F̃2(z) =
(
N

c
2 η(z)

)σ3
H1(z)F2(ζ(z))H−1

1 (z)
(
N

c
2 η(z)

)−σ3

= N
c
2σ3

I +

0 O
(
N−2)

0 0


N− c2σ3 , z ∈ ∂Dβ.

(2.57)
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From Lemma 2.5.2 and (2.57), we have

R2(z) = N
c
2σ3

I +

0 O
(
N−2)

0 0


N− c2σ3 .

Combined with R1 in (2.55), we derive

R2R1 = N
c
2σ3

I +

0 a(1− a2)c−1

NΓ(c)
1

z − a
+O

( 1
N2

)
0 0


N− c2σ3 .

From (2.54) in Lemma 2.6.2, we have Fk = I +O
(
ζ−3) for k ≥ 3. By Corollary 2.5.3, we obtain

Rk · · ·R3 = N
c
2σ3(I +O(N−3))N−

c
2σ3 .

In fact, following the inductive construction of Rk and Hk in Section 2.5, one can find that Rk’s

are all upper triangular matrices. Therefore, we get

Rk · · ·R1 = N
c
2σ3

I +

0 a(1− a2)c−1

NΓ(c)
1

z − a
+O

( 1
N2

)
0 0


N− c2σ3 , z ∈ ∂Dβ.

Using Lemma 2.5.1, we can have F̂(ζ) = I +O
(
ζ−L

)
for an arbitrary L. Using Lemma 2.5.4 with

R = Rk · · ·R1 and H = Hk = I +O(N−1),

we get Z∞+
(
Z∞−

)−1 = I + O(N−L) on ∂Dβ. From the argument similar to that in the proof of

Theorem 2.4.5, we obtain

Y (z) = e
N`
2 σ3

(
I +O

( 1
NL

))
Z∞(z)

 1 0

− ?
( z

z − a

)c
eNφ(z) 1

 e
−N`

2 σ3eNg(z)σ3

for an arbitrary positive integer L. The proof is finished by calculations similar to those in (2.38)

and (2.39).
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Figure 11.: The zeros of orthogonal polynomials with degrees 40 (blue) and 300 (red), c = 1 and
a = 1. The solid line inside the disk is S.

Figure 12.: Contours for the Riemann-Hilbert problem of Φ when a ≈ 1. Γ is the black curves
and U is the shaded region bounded by the blue curves.
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2.7 Critical case: a = 1

In this section we consider a = 1 + O(1/
√
N). Here we only argue that the strong asymptotics

can be obtained through the parametrix of Painlevé IV equation (as suggested in [3]) following the

similar steps described previously.

There is a disk D1 centered at 1 such that there exists a univalent map ζ : D1 → C that satisfies

(ζ(z) + x)2 = NφA(z)−NφA (1/a) ,

where

x :=
√
NφA(a)−NφA(1/a) =

√
2N(a− 1)(1 +O(a− 1)).

Under the mapping ζ, we have ζ(a) = 0 and the critical point of φA is mapped to −x; note that

φ(1/a) is the critical value of φA.

Inside D1 we require that Φ(z)
(
z−a
z

) c
2σ3 P(z)

(
z−a
z

)− c2σ3 satisfies the jump conditions (2.16) for

Z. With the boundary condition of P on ∂D1 this leads to the following jumps of P inside D1:



P+(z) = P−(z)

 1 0

e−NφA(z) 1

 , z ∈ ∂U ∩ Int Γ,

P+(z) = P−(z)

 1 0

eNφA(z) 1

 , z ∈ ∂U ∩ Ext Γ,

P+(z) =

0 −1

1 0

P−(z)

 0 1

−1 0

 , z ∈ Γ ∩ U,

P+(z) = e−cπiσ3P−(z)ecπiσ3 , z ∈ (0, a],

P(z) = I + o (1) , z ∈ ∂D1.

Here U and Γ are defined similarly to those for a > 1 except the segment [β, a] becomes a point at

1, see Figure 12. We will show that such P can be written in terms of the solution of the Painlevé

IV equation. To achieve this, we want to transform P into a new matrix function, W , with only

constant jump matrices from the right. Such transform is given by

W (z) = e−
`x
2 σ3ζ(z)

c
2σ3S · P(z) · T (z)−1 S−1, z ∈ D1, (2.58)
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using a diagonal matrix T , a piecewise constant matrix S and a constant `x defined by

T (z) = exp
(
N

2 (−1)νφA(z)σ3

)
= exp

[(−1)ν

2
(
ζ(z)2 + 2xζ(z) + `x

)
σ3

]
,

`x = x2 +NφA(1/a), S = S(z) =

0 1

1 0

 ·
 0 1

−1 0


ν

,

where

ν =


0, z ∈ Ext Γ,

1, z ∈ Int Γ.

Here, we chose S such that S−1ζ(z)−
c
2σ3 satisfies all the left jumps of P, i.e.,

(
S−1ζ(z)−

c
2σ3
)

+
=

 0 1

−1 0

(S−1ζ(z)−
c
2σ3
)
−
, z ∈ Γ ∩ U,

(
S−1ζ−

c
2σ3
)

+
= e−cπiσ3

(
S−1ζ−

c
2σ3
)
−
, z ∈ [−∞, 0].

Consequently, W has the jump matrices only from the right. Furthermore, the jump matrices of

W are constant matrices because of the right multipliction of T in (2.58), and the jump on Γ

disappears by the right multiplication by S−1. We obtain the jump condition of W by

W+(z) = W−(z)



 1 0

s1 1

 , ζ(z) ∈ R+,

1 s2

0 1

 , ζ(z) ∈ iR+,

 1 0

s3 1

 , ζ(z) ∈ R−,

1 s4

0 1

 , ζ(z) ∈ iR−,

where s1 = 0, s2 = 1, s3 = e2icπ − 1 and s4 = −e−2icπ. The boundary condition on ∂D1 gives

W (z) = ζ(z)
c
2σ3 (I + o (1)) e

(
ζ(z)2

2 +xζ(z)
)
σ3 , z ∈ ∂Dβ.

Here we used that `x = O(1) for a = 1 + O(1/
√
N). According to page 34 of [9] (or page 182 of
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[15]) the Riemann-Hilbert problem for the Painlevé IV parametrix Ψ, following the notation in [9],

satisfies exactly the jump condition above and the boundary condition:

Ψ(ζ, x) =
(
I + Ψ−1(x)

ζ
+ Ψ−2(x)

ζ2 +O
( 1
ζ3

))
e
(
ζ2
2 +xζ

)
ζ−Θ∞σ3 , z →∞,

when

(1 + s2s3)e2iπΘ∞ + [s1s4 + (1 + s3s4)(1 + s1s2)]e−2iπΘ∞ = 2 cos 2πΘ.

In our case we get Θ = c/2, Θ∞ = −c/2. It means that, using the same strategy as in Sections

2.4 and 2.6, we could get a similar result regarding the asymptotics of orthogonal polynomials in

terms of Painlevé IV equation:

d2u

dx2 = 1
2u

(
du

dx

)2
+ 3

2u
3 + 4xu2 + (2 + 2x2 − 4Θ∞)u− 8Θ2

u
,

where the solution u is related to the Riemann-Hilbert problem by

u(x) = −2x− d

dx
log

(
(Ψ−1)(x)12

)
.

2.8 Lax pair: how the numerical calculation is done

Define Ỹ (z) by Ỹ (z) = Ỹn(z) = Y (z)

( z−az )c 1
eNaz 0

0 zn

 , then the Riemann-Hilbert problem for

Ỹ (z) is 

Ỹ (z) is holomorphic in C \ Γ,

Ỹ+(z) = Ỹ−(z)

1 1

0 1

 , z ∈ Γ,

Ỹ+(z) = Ỹ−(z)

e2cπi 0

0 1

 , z ∈ (0, a),

Ỹ (z) =
(
I +O

(1
z

))
(
z − a
z

)c zn

eNaz 0

0 1

 , z →∞.
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We observe that Ỹn(z) and Ỹn+1(z) have the same jump matrices. Since detY (z) ≡ 1, the inverse

of Ỹ (z) exists in C \ (Γ ∪ (0, a)), and we can define

An(z) = dỸn(z)
dz Ỹn(z)−1

.

The matrix function An(z) is meromorphic and can be determined by identifying the singularities.

For z →∞, writing (we know that cn below is not related to the charge “c” in the potential)

Ỹn(z) =

I + 1
z

an bn

cn dn

+ · · ·


( z−az )c zn

eNaz 0

0 1

 ,
we get

An(z) =

−Na 0

0 0

+ 1
z

 n Nabn

−Nacn 0

+O
(
z−2

)
.

Similarly we obtain the following for z → 0:

Ỹn(z) =

αn βn

γn ηn

 (I +O(z))

( z−az )c 1
eNaz 0

0 zn



An(z) = 1
z

−c− (c+ n)βnγn (c+ n)αnβn
−(c+ n)γnηn n+ (c+ n)βnγn

 .
Therefore,

An(z) =

−Na 0

0 0

+ 1
z

−c− (c+ n)βnγn (c+ n)αnβn
−(c+ n)γnηn n+ (c+ n)βnγn


+ 1
z − a

 (c+ n) (1 + βnγn) Nabn − (c+ n)αnβn
−Nacn + (c+ n)γnηn −n− (c+ n)βnγn

 .

Defining Mn(z) = Ỹn+1(z)Ỹn(z)−1 we obtain, by a similar procedure as above, that

Mn(z) =

z + an+1 − an −bn

cn+1 1

 .
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The compatibility of the Lax pair,

dỸn(z)
dz = An(z)Ỹn(z),

Ỹn+1(z) = Mn(z)Ỹn(z),

gives

An+1(z)Mn(z) = dMn(z)
dz +Mn(z)An(z).

This yields the following recurrence relation:

an+1 = an + bn (1 + βnγn)
αnβn

, αn+1 = bn
βn
, γn+1 = − 1

βn
,

bn+1 = (1 + n+ a2N)bn
aN

+ (c+ n)αnβn
N

+ b2n (1 + βnγn)
αnβn

,

βn+1 = c̃

(1 + c+ n) ((c+ n)αnβn − aNbn)α2
nβn

,

where

c̃ = a2N − c− a(1 + 2(c+ n))αnβn +
(
a2N − c− a(c+ n)αnβn

)
βnγn

+ (c+ n)(c+ n+ 1)α3
nβ

3
n + aN2b3n (1 + βnγn)2 ,

a0 = 0, b0 = a, α0 = 1, β0 = 1 + a2N, γ0 = 0.

The last line contains the initial conditions for the recurrence relation. We used the above relations

to generate the orthogonal polynomials numerically.
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Chapter 3

Planar Orthogonal Polynomials As Type II Multiple Orthogonal Polynomials

3.1 Introduction

In this chapter, we consider the external potential Q(z) given by

Q(z) = |z|2 + 2
l∑

j=1
cj log 1

|z − aj |
,

where {a1, a2, · · · , al} is a set of nonzero complex numbers and {c1, c2, · · · , cl} is a set of positive

real numbers. Let pn(z) be the monic polynomial of degree n satisfying the orthogonality:

∫
C
pn(z) pm(z) e−|z|2 |W (z)|2 dA(z) = hn δnm, n,m ≥ 0, (3.1)

where dA is the Lebesgue area measure of the complex plane and hn is the positive norming

constant. We define, for l ≥ 1, the multi-valued function W by

W (z) =
l∏

j=1
(z − aj)cj , z ∈ C, (3.2)

where {c1, · · · , cl} are positive real numbers and {a1, · · · , al} are distinct points in C.

The main result of this chapter is that our polynomials {pn} are multiple orthogonal polynomials

of Type II. To introduce the main theorem, let us prepare several notations. To remove the

unnecessary complication, we assume that aj ’s are all nonzero and the arguments of aj ’s are all

different. Without loss of generality, we may assume:

0 ≤ arg a1 < · · · < arg al < 2π. (3.3)
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To determine the branch of the multi-valued function W , we define the union of contours,

B =
l⋃

j=1
Bj , Bj = {ajt : t ≥ 1}, (3.4)

where the contours are directed towards the infinity. In the rest of the paper, we define W : C\B→

C to be an analytic branch of (3.2). Let B∗ and B∗j be the complex-conjugate images of B and Bj .

Let W : C \B∗ → C be defined by

W (z) = W (z̄) =
l∏

j=1
(z − āj)cj . (3.5)

Let k = (k1, · · · , kl) with non–negative integers kj ’s. When arg z /∈ {arg a1, · · · , arg al}, we define

χk(z) = W (z)
∫ z×∞

0

l∏
j=1

(s− āj)kjW (s)e−zs ds, (3.6)

where the represented integration contour is {z̄t| t ≥ 0}.

Definition 3.1.1 Let Γ be a simple closed curve with counterclockwise orientation, that connects

{a1, · · · , al}, encloses the origin, and does not intersect B\{a1, · · · , al}. Explicitly, we may choose

Γ = a1a2 ∪ · · · ∪ al−1al ∪ ala1 to be the union of l line segments.

Definition 3.1.2 Let n = (n1, · · · , nl), where nj’s are non–negative integers. We define pn(z) to

be the monic polynomial of degree |n| :=
l∑

j=1
nj = n satisfying the orthogonality condition:

∫
Γ
pn(z) zkχn−ej (z) dz = 0, 0 ≤ k ≤ nj − 1, 1 ≤ j ≤ l. (3.7)

Here, ej is the unit vector with one for the jth entry and zeros for all the other entries.

Definition 3.1.3 We define q
(i)
n (z) to be the monic polynomial of degree |n| − 1 satisfying the

orthogonality condition:

∫
Γ
q

(i)
n (z) zkχn−ej (z) dz = 0, 0 ≤ k ≤ nj − 1− δij , 1 ≤ i, j ≤ l.

Multiple orthogonal polynomials are related to Hermite–Padé approximation for a system of

Markov functions. For type II Hermite–Padé approximation, we look for rational functions approx-
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Figure 13.: Contours when l = 5. In the left are contours for B (black) and Γ (dotted red); In
the right are the complex conjugate image of the right, and the integration contour for χ̃k (dotted
blue).

imating Markov functions near infinity, which consists of finding a polynomial Pn of degree |n| and

polynomials Qn,j (j = 1, · · · , l) such that

Pn(z)fj(z)−Qn,j(z) = O
( 1
znj+1

)
, z →∞, j = 1, · · · , l,

where f1, · · · , fl are l Markov functions defined in our context by

fj(z) =
∫

Γ

χn−ej (s)
z − s

ds, z /∈ Γ, j = 1 · · · , l

while Qn,j(z) are defined by

Qn,j(z) =
∫

Γ

(Pn(z)− Pn(s))χn−ej (s)
z − s

ds.

In our context, Pn = pn. We now state the main results:

Theorem 3.1.4 Given positive integers n and l, we define a non–negative integer κ and a non–

negative integer 0 ≤ r < l such that n = κl + r. Then,

pn(z) = pn(z),
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where n = n(n, l) = (κ+ 1, · · · , κ+ 1︸ ︷︷ ︸
r

, κ, · · · , κ︸ ︷︷ ︸
l−r

).

The next theorem is an immediate consequence. (A more general version is proved in [24].)

Theorem 3.1.5 Let the (l + 1) by (l + 1) matrix function be given by

Y (z) =





pn(z) 1
2πi

∫
Γ

pn(w)χn−e1(w)
w − z

dw · · · 1
2πi

∫
Γ

pn(w)χn−el(w)
w − z

dw

...
...

...
...

γj q
(j)
n (z) γj

2πi

∫
Γ

q
(j)
n (w)χn−e1(w)

w − z
dw · · · γj

2πi

∫
Γ

q
(j)
n (w)χn−el(w)

w − z
dw ← (j + 1)th row,

...
...

...
...

where the constant γj in the (j + 1)th row is given by

γj = −
( 1

2πi

∫
Γ
q

(j)
n (w)wmχn−ej (w)dw

)−1
, m =


κ for 1 ≤ j ≤ r;

κ− 1 for r + 1 ≤ j ≤ l,

is the unique solution of the Riemann-Hilbert problem given below.



Y : C \ Γ→ C(l+1)×(l+1) is a holomorphic matrix function,

Y+(z) = Y−(z)J(z) on Γ,

Y (z) =
(
I +O

(1
z

))
zn 0 0

0 z−(κ+1)Ir×r 0

0 0 z−κI(l−r)×(l−r)

 , as z →∞,

the subscript ± in Y± above represents the limiting value when approaching Γ from the corresponding

sides of the directed contour, and

J(z) =



1 χn−e1(z) · · · χn−el(z)

0 1 · · · 0
...

... . . . ...

0 0 · · · 1


.
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Remark. For l = 1, the contour Γ is a closed curve around the origin passing through a1. Since

ωn,N is the analytic on C \ [0, a], one can see that the jump contour Γ can be deformed to enclose

the line segment [0, a1], to match the one in [2].

Let us define the moments

ν
(i)
jk := 1

2i

∫
Γ
zj+k χn−ei(z) dz = 1

2i

∫
Γ
zj+k χ̃n−ei(z) dz,

µjk := 1
2i

∫
Γ
zj χ∞k (z) dz =

∫
C
zj z̄k e−|z|2 |W (z)|2 dA(z).

(3.8)

Theorem 3.1.6 Let n, l, κ, r and n = (κ+ 1, · · · , κ+ 1︸ ︷︷ ︸
r

, κ, · · · , κ︸ ︷︷ ︸
l−r

) be given as in Theorem 2.1.1.

For ν(i)
jk and µjk given above, set the n× n matrices of moments dn and Dn to be

dn =



...

ν
(i)
0, 0 ν

(i)
1, 0 · · · ν

(i)
n−1, 0

...
...

...
...

ν
(i)
0, nj−1 ν

(i)
1, nj−1 · · · ν

(i)
n−1, nj−1

...


, Dn =



µ0, 0 µ1, 0 · · · µn−1, 0

µ0, 1 µ1, 1 · · · µn−1, 1
...

... . . . ...

µ0, n−1 µ1, n−1 · · · µn−1, n−1


,

where

nj =


κ+ 1 for 1 ≤ j ≤ r;

κ for r + 1 ≤ j ≤ l.

Then there exists a unique constant matrix An such that dn = AnDn. Moreover it satisfies

detAn = (−1)n(n−1)/2

 l∏
i=1

ni−1∏
j=1

(ci + j)j
∏
i<j

(āj − āi)ninj

= (−1)n(n−1)/2

 l∏
i=1

κ−1∏
j=1

(ci + j)j
( r∏

i=1
(ci + κ)κ

) ∏
1≤i<j≤ l

(āj − āi)κ
2

×
∏

1≤i<j≤ r
(āj − āi)2κ+1

l∏
j=r+1

r∏
i=1

(āj − āi)κ.

(3.9)

Theorem 3.1.5 provides a way to study such planar orthogonal polynomials by the nonlinear steepest

descent analysis of matrix Riemann–Hilbert problem, see [2, 7, 25, 28]. Theorem 3.1.6 suggests that

the partition function of the corresponding Coulomb Gas system (see [30] and the reference therein)

61



can be calculated using the tau–function from the Riemann-Hilbert problem [6]. This is currently

work in progress.

3.2 Proof of Theorem 3.1.4

3.2.1 Area Integral via Contour Integral

The following definitions will be useful.

χm(z) := W (z)
∫ z̄

0
smW (s) e−zsds,

χ∞m (z) := W (z)
∫ z×∞

0
smW (s) e−zsds.

(3.10)

Both are well defined if arg z 6= arg aj for all j. The following lemma holds.

Lemma 3.2.1 Let S =
⋃ l
j=1 Sj where Sj = {ajt : 0 ≤ t ≤ 1}. χ∞m (z) − χm(z) has continuous

extension to C \ S and, given k > 0, there exists C > 0 such that

|zk| |χ∞m (z)− χm(z)| ≤ C e−(|z|−1)2 (3.11)

for all z such that |z| > 2.

Proof. It is enough to check the continuity on B1 \ {a1}. The piecewise analytic functions, W and

W , satisfy the following jump conditions,

W+(z) = e−2πicjW−(z), z ∈ Bj ,

W+(z) = e−2πicjW−(z), z ∈ B∗j .
(3.12)

Here, the subscripts ± stand for the boundary values taken on ± sides of B; we assign ± sides at

each point of B \ {a1, a2, · · · , al} and B∗ \ {ā1, ā2, · · · , āl} in a standard way, see Figure 13.

Let p ∈ B1 \ {a1}. Note that when z approaches p from “ + ” side of B1, z approaches B∗1 from

“− ” side. Then, we have

[χ∞m (p)− χm(p)]+ = [W (p)]+
∫ p̄×∞

p̄
sm
[
W (s)

]
−

e−psds

= [W (p)]−
∫ p̄×∞
p̄ sm

[
W (s)

]
+

e−psds

= [χ∞m (p)− χm(p)]−,

(3.13)
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where we used (3.12) in the second equality. This proves the continuity statement. To prove the

statement about the bound, we use the elementary estimate that, given k > 0, there exists C > 0

such that

|zk| |W (z)| ≤ C e|z|

for all z ∈ C. Then, for some C > 0 and |z| > 2, we get

∣∣∣zk (χ∞m (z)− χm(z))
∣∣∣ =

∣∣∣∣zkW (z)
∫ z̄×∞

z̄
smW (s) e−zsds

∣∣∣∣ ≤ C e|z|
∫ z̄×∞

z̄
e|s| e−zs|ds|

≤ C e|z|
∣∣∣∣∣
∫ ∞
|z̄|

ex e−|z|xdx
∣∣∣∣∣ = C

e−|z|2+2|z|

|z| − 1 ≤ C̃ e−(|z|−1)2
.

(3.14)

�

Proposition 3.2.2 For an arbitrary polynomial p(z) we have the following identity:

∫
C
p(z) z̄m e−|z|2 |W (z)|2 dA(z) = 1

2i

∫
Γ
p(z)χ∞m (z) dz. (3.15)

Proof. We apply Green’s theorem to change the integral over C to the integral over a contour.

First we observe that

z̄m |W (z)|2e−|z|2 = ∂χm(z)
∂z

, z ∈ C \B. (3.16)

Therefore, defining DR := {z | |z| < R}, we get

∫
C
p(z) z̄m |W (z)|2e−|z|2 dA(z) = lim

R→∞

∫
DR

p(z) z̄m |W (z)|2e−|z|2 dA(z)

= lim
R→∞

∫
DR\B

p(z) ∂χm(z)
∂z̄

dA(z)

= lim
R→∞

1
2i

(∫
∂DR

p(z)χm(z) dz +
m∑
j=1

∫
Bj∩DR

p(z)
[
χm(z)

]+
−dz

)
,

(3.17)

where we used Green’s theorem in the last equality.

Since χ(∞)
m (z) is analytic in C \ (S ∪B), by a deformation of the contour, we get the identity

∫
Γ
p(z)χ∞m (z) dz =

∫
∂DR

p(z)χ∞m (z) dz +
m∑
j=1

∫
Bj∩DR

p(z)
[
χm(z)

]+
−dz (3.18)
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Using this identity, the right hand side of (3.17) becomes

lim
R→∞

1
2i

∫
∂DR

p(z) (χm(z)− χ∞m (z)) dz + 1
2i

∫
Γ
p(z)χ∞m (z) dz = 1

2i

∫
Γ
p(z)χ∞m (z) dz, (3.19)

where the last equality holds because of (3.11) in Lemma 3.2.1. This proves Proposition 3.2.2. �

3.2.2 Several Lemmas

Definition 3.2.3 All the vectors in this section have only non-negative entries. For two vectors,

k and s, we say k ≥ s if k − s has only non-negative entries. If, in addition, k 6= s then we say

k > s. The jth entry of k is denoted by [k]j . As before, the length of a vector |k| = [k]1 + · · ·+ [k]l.

Lemma 3.2.4 For any n ≥ 1, we have

span {χ∞j : 0 ≤ j < n} = span {χk : |k| < n}. (3.20)

Proof. For n = 0, the lemma holds because χ∞0 (z) = χ0(z). Assume that the lemma holds for

n = n0. If |k| = n0 + 1 we have

χk(z)− χ∞n0+1(z) = W (z)
∫ z̄×∞

0

l∏
j=1

(s− āj)kjW (s)e−zsds−W (z)
∫ z̄×∞

0
sn0+1W (s)e−zsds

= W (z)
∫ z̄×∞

0
{polynomial in s of degree ≤ n0} ×W (s)e−zsds.

(3.21)

Since the last term belongs to both spans in (3.20) for n = n0, χk belongs to the left span in (3.20)

with n = n0 + 1 and χ∞n0+1 belongs to the right span in (3.20) with n = n0 + 1. �

To prove pn = pn, one may try to show that

span {χ∞j (z)| 0 ≤ j < n} = span {zkχn−ej | 0 ≤ k < [n]j , 1 ≤ j ≤ l}. (3.22)

In fact, it is enough to show that the above equality up to functions ψ that satisfies 〈p, ψ〉 = 0 for

all polynomial p. For example, we have 〈p, ψ〉 = 0 for

ψ(z) = W (z)
∫ ā1

0

l∏
j=1

(s− āj)kjW (s)e−zsds. (3.23)

Since ψ is analytic in C \B and, therefore, the integration contour in
∫

Γ p(z)ψ(z)dz is contractible
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to a point. This allows us to consider, instead of χk in (3.22),

χ̃k := χk −W (z)
∫ ā1

0

l∏
j=1

(s− āj)kjW (s)e−zsds.

As a result, using Lemma 3.2.4, the proof of Theorem 2.1.1 is reduced to proving the following

Proposition.

Proposition 3.2.5 For any n ≥ 1 and l ≥ 1, let n be as in Theorem 2.1.1. Then the following

holds.

span {χ̃k(z) : |k| < n} = span {zkχ̃n−ej (z)
∣∣ 0 ≤ k < [n]j , 1 ≤ j ≤ l}. (3.24)

The proof of this proposition will be in the next subsection. The following Lemma justifies why it

is useful to use χ̃k instead of χk.

Lemma 3.2.6

zχ̃k(z) =
l∑

j=1
(cj + kj)χ̃k−ej (z). (3.25)

Proof. We have

0 = W (z)

 l∏
j=1

(s− āj)cj+kje−zs
∣∣∣∣∣∣
z×∞

ā1

= W (z)
∫ z×∞

ā1
∂s

 l∏
j=1

(s− āj)cj+kje−zs
 ds

= W (z)
∫ z×∞

ā1

 l∑
j=1

cj + kj
s− āj

− z

 l∏
j=1

(s− āj)cj+kje−zs ds

=
l∑

j=1
(cj + kj)χ̃k−ej (z)− zχ̃k(z).

�

Corollary 3.2.7 Let k = (k1, k2, · · · , kl) and s ≤ min{kj}lj=1 be a positive integer. Then zsχ̃k(z)

can be represented as a linear combination of {χ̃k−s(z)
∣∣ |s| = s}. Furthermore, the coefficient of

χ̃k−sem(z) is nonzero for all 1 ≤ m ≤ l.

Proof. The corollary is true when s = 1 by Lemma 3.2.6. Assume, for some 1 ≤ s < min{kj}lj=1,

that zsχ̃k(z) is a linear combination of χ̃k−s(z) for |s| = s and the coefficient of {χ̃k−sem(z)}lm=1

are all non-vanishing.
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Then zs+1χ̃k(z) is a linear combination of zχ̃k−s(z) and, therefore, of χ̃k−s−em(z) with |s| = s

and 1 ≤ m ≤ l. Since the term χ̃k−(s+1)em(z) comes only from zχ̃k−sem(z) and since the coefficient

of χ̃k−sem(z) is non-zero, the coefficient at χ̃k−(s+1)em(z) is non-zero. Note that all the coefficients

in the right hand side of (3.25) are non-zero. By induction, this ends the proof. �

Lemma 3.2.8 For n 6= m, we have

χ̃k+en(z)− χ̃k+em(z) + (ān − ām) χ̃k(z) = 0. (3.26)

Proof. Since

(s− ān)− (s− ām) + (ān − ām) = 0,

we obtain,

0 = W (z)
∫ z̄×∞

ā1
[(s− ān)− (s− ām) + (ān − ām)]

l∏
j=1

(s− āj)cj+kje−zsds.

By the definition of χ̃k(z), (3.26) holds. �

3.2.3 Proof of Proposition 3.2.5

By Corollary 3.2.7, we have ⊃ . To prove the opposite inclusion, we note that any vector k can be

uniquely represented as

k = n + m− s,

where [m]j [s]j = 0, i.e., m and s cannot be both non-vanishing in any of the entries. It is then

enough to show the following claim.

Claim: For all s ≤ n and m satisfying |n + m− s| < n,

χ̃n+m−s ∈ span {zkχ̃n−ej (z)
∣∣ 0 ≤ k < [n]j , 1 ≤ j ≤ l}.

We prove this claim in two steps.

Step 1: For all 0 < s ≤ n, χ̃n−s ∈ span {zkχ̃n−ej (z)
∣∣ 0 ≤ k < [n]j , 1 ≤ j ≤ l}. If |s| = 1 then the

inclusion is immediate. Let the inclusion hold for |s| ≤ m − 1, for some m < n. (If m ≥ n then
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there is nothing to prove.) Below we claim that the inclusion holds for |s| = m, which proves Step

1 by induction.

1. If s has more than one non-zero entries, i.e., [s]i 6= 0 and [s]j 6= 0,

χ̃n−s(z) = 1
āi − āj

(
χ̃n−s+ej (z)− χ̃n−s+ei(z)

)
.

The left hand side belongs to the span in Claim since the right hand side does so by assumption.

2. Assume s has exactly one non-zero entry, i.e., s = mej for some j. From s < n we have

m ≤ [n]j . Since zm−1χ̃n−ej (z) is a linear combination of {χ̃n−s̃ : |s̃| = m} where the term

χ̃n−mej appears with non-zero coefficient (see Corollary 3.2.7), and since all the other terms in

the linear combination belongs to the span in item 1, χ̃n−mej also belongs to the span in Claim.

Step 2: Step 1 showed Claim for |m| = 0. Assume that Claim is true when |m| ≤ k − 1. We will

show that Claim holds when |m| ≤ k, i.e. χ̃n+m−s belongs to the span in Claim for |m| = k. Let

m satisfy |m| = k ≥ 1. There exists j such that [m]j > 0. Then χ̃n+(m−ej)−s belongs to the span

in the claim by the assumption. Since |n + (m− ej)− s| < n− 1 we have |s| > 0 and there exists

i 6= j such that [s]i > 0. Then χ̃n+(m−ej)−(s−ei) also belongs to the span by the assumption. Since,

by Lemma 3.2.8, we have

χ̃n+m−s = χ̃n+(m−ej)−(s−ei) + (āi − āj)χ̃n+(m−ej)−s,

the left hand side belongs to the span. This ends the proof of Proposition 3.2.5 and Theorem 2.1.1.

3.3 Proof of Theorem 3.1.6

Proof. Since detDn =
∏n−1
j=0 hj > 0 where hj is defined in (3.1), Dn is an invertible matrix and

this proves the existence and the uniqueness of An. In the remainder of the proof, we will construct
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An using induction. Let us consider the jth column of dn,



ν
(1)
j, 0

ν
(1)
j, 1
...

ν
(1)
j, n1−1

...

ν
(l)
j, 0

ν
(l)
j, 1
...

ν
(l)
j, nl−1



= 1
2i

∫
Γ
zj Vn(z) dz, where Vn = Vn(z) =



χn−e1

zχn−e1

...

zn1−1 χn−e1

...

χn−el

zχn−el
...

znl−1 χn−el



.

We will find a constant (n+ 1)× (n+ 1) matrix Bn such that, for all z,

BnVn+er+1(z) =
[
χn(z)
Vn(z)

]
.

This means that

Bndn+1 =



ν0, 0 ν1, 0 · · · νn−1, 0 νn, 0

dn = AnDn

ν
(1)
n, 0

...

ν
(1)
n, n1−1

...

ν
(l)
n, 0

...

ν
(l)
n, nl−1



,

where νj, 0 is given by νj, 0 = 1
2i

∫
Γ
zj χn(z) dz. The matrix Bn can be obtained by three successive

68



linear transformations on Vn+er+1 that we describe below.



χn+er+1−e1

zχn+er+1−e1
...

zκχn+er+1−e1

...
χn+er+1−er
zχn+er+1−er

...
zκχn+er+1−er

χn
zχn

...
zκχn

χn+er+1−er+2

zχn+er+1−er+2
...

zκ−1χn+er+1−er+2

...
χn+er+1−el
zχn+er+1−el

...
zκ−1χn+er+1−el



(A)−−→



χn−e1

zχn−e1
...

zκχn−e1

...
χn−er
zχn−er

...
zκχn−er

χn
zχn

...
zκχn

χn−er+2

zχn−er+2
...

zκ−1χn−er+2

...
χn−el
zχn−el

...
zκ−1χn−el



(B)−−→



χn−e1

zχn−e1
...

zκχn−e1

...
χn−er
zχn−er

...
zκχn−er

χn
χn−er+1

...
zκ−1χn−er+1

χn−er+2

zχn−er+2
...

zκ−1χn−er+2

...
χn−el
zχn−el

...
zκ−1χn−el



(C)−−→



χn
χn−e1

zχn−e1
...

zκχn−e1

...
χn−er
zχn−er

...
zκχn−er

χn−er+1
...

zκ−1χn−er+1

χn−er+2

zχn−er+2
...

zκ−1χn−er+2

...
χn−el
zχn−el

...
zκ−1χn−el



,

Above, each arrow means the linear transformation given by

B
(1)
n LHS of (A) = RHS of (A),

B
(2)
n LHS of (B) = RHS of (B),

B
(3)
n LHS of (C) = RHS of (C),
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B
(1)
n =



Iκ+1
ā1 − ār+1

· · · 0

... . . . ...

0 · · · Iκ+1
ār − ār+1

− Iκ+1
ā1 − ār+1

...

− Iκ+1
ār − ār+1

0

0 Iκ+1 0

0

− Iκ
ār+2 − ār+1

...

− Iκ
āl − ār+1

Iκ
ār+2 − ār+1

· · · 0

... . . . ...

0 · · · Iκ
āl − ār+1



,

B
(2)
n =



I(κ+1)r+1 0 0

−c1 + κ+ 1
cr+1 + κ

Iκ 0κ×1 · · · −cr + κ+ 1
cr+1 + κ

Iκ 0κ×2
Iκ

cr+1 + κ
−cr+2 + κ

cr+1 + κ
Iκ · · · − cl + κ

cr+1 + κ
Iκ

0 0 Iκ(l−r−1)


,

B
(3)
n =


0 1 0

I(κ+1)r 0(κ+1)×1 0

0 0 Iκ(l−r)


,

where Im is the m by m identity matrix and 0j×k is the zero matrix of size j by k. We used Lemma

3.2.8 in the transformation (A) and Lemma 3.2.6 in (B). This gives Bn = B
(3)
n B

(2)
n B

(1)
n .

Using dn = AnDn we obtain that

Bndn+1 = BnAn+1Dn+1 =

 C0 · · · Cn−1 1

An 0

Dn+1. (3.27)

The identity at the first row follows from

νj, 0 = 1
2i

∫
Γ
zj χn(z) dz = 1

2i

∫
Γ
zj

n∑
k=0

Ckχ
∞
k (z) dz =

n∑
k=0

Ckµjk,
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where Ck is given by
l∏

i=1
(z−āi)nj =

n∑
k=0

Ckz
k. We also used that the upper n×n diagonal submatrix

of Dn+1 is Dn.

Calculating the determinant of (3.27) and using Bn = B
(3)
n B

(2)
n B

(1)
n , we arrive at

detAn+1 = (−1)(n+2)
(
detB(1)

n detB(2)
n detB(3)

n

)−1
detAn

= (−1)(n+2)+
∑

i≤r ni

 ∏
i<r+1

(āi − ār+1)ni
 ∏

j>r+1
(ār+1 − āj)nj

 (cr+1 + κ)κ detAn.
(3.28)

Now we can prove (3.9) by induction. When n = (1, 0 · · · , 0) (i.e. κ = 0 and r = 1), by the

definition of ν(i)
jk and µjk, we have ν(1)

0, 0 = µ0, 0. This proves d1 = D1 with detA1 = 1. If (3.9) holds

up to n ≤ N then (3.9) holds for n = N + 1 by (3.28). Recall that if n(N, l) = (n1, · · · , nl) and

N = κl + r then n(N + 1, l) = (n1, · · · , nr+1 + 1, · · · , nl), increasing only the (r + 1)th entry by

one. This ends the proof of Theorem 3.1.6. �
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