
University of South Florida University of South Florida 

Digital Commons @ University of Digital Commons @ University of 

South Florida South Florida 

USF Tampa Graduate Theses and Dissertations USF Graduate Theses and Dissertations 

June 2018 

Assessing Bald Cypress (Taxodium distichum) Tree Dynamic Assessing Bald Cypress (Taxodium distichum) Tree Dynamic 

Change in USF Forest Preserve Area Using Mixture-Tuned Change in USF Forest Preserve Area Using Mixture-Tuned 

Matched Filtering and Multitemporal Satellite Imagery Matched Filtering and Multitemporal Satellite Imagery 

Yujia Wang 
University of South Florida, yujia2@mail.usf.edu 

Follow this and additional works at: https://digitalcommons.usf.edu/etd 

 Part of the Geology Commons 

Scholar Commons Citation Scholar Commons Citation 
Wang, Yujia, "Assessing Bald Cypress (Taxodium distichum) Tree Dynamic Change in USF Forest Preserve 
Area Using Mixture-Tuned Matched Filtering and Multitemporal Satellite Imagery" (2018). USF Tampa 
Graduate Theses and Dissertations. 
https://digitalcommons.usf.edu/etd/7375 

This Thesis is brought to you for free and open access by the USF Graduate Theses and Dissertations at Digital 
Commons @ University of South Florida. It has been accepted for inclusion in USF Tampa Graduate Theses and 
Dissertations by an authorized administrator of Digital Commons @ University of South Florida. For more 
information, please contact digitalcommons@usf.edu. 

https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/etd
https://digitalcommons.usf.edu/grad_etd
https://digitalcommons.usf.edu/etd?utm_source=digitalcommons.usf.edu%2Fetd%2F7375&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/156?utm_source=digitalcommons.usf.edu%2Fetd%2F7375&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usf.edu


 

 

Assessing Bald Cypress (Taxodium distichum) Tree Dynamic Change in USF 

 

 Forest Preserve Area Using Mixture-Tuned Matched Filtering and  

 

Multitemporal Satellite Imagery 

 

 
 

by 

 

 

 

Yujia Wang 

 

 

 

 

A thesis submitted in partial fulfillment 

of the requirement for the degree of 

Master of Science  

School of Geosciences 

College of Art and Science 

University of South Florida 

 

 

 

Co-Major Professor: Ping Wang, Ph.D. 

Co-Major Professor: Ruiliang Pu, Ph.D. 

Joni Downs, Ph.D. 

 

 

Date of Approval: 

June 26, 2018 

 

 

 

Keywords: Remote Sensing, bald cypress tree, Linear Spectral Unmixing, abundance 

 

Copyright © 2018, Yujia Wang 

 



i 
 

 

 

TABLE OF CONTENTS 

 

List of Tables ................................................................................................................................. iii 

 

List of Figures ................................................................................................................................ iv 

 

Abstract ......................................................................................................................................... vii 

 

Chapter One: Introduction .............................................................................................................. 1 

1.1 Wetlands .................................................................................................................................. 1 

1.2 Remote sensing technology ................................................................................................... 3 

 

Chapter Two: Research Objectives and Questions ......................................................................... 7 

 

Chapter Three: Background ............................................................................................................ 9 

3.1 Bald cypress landscape .......................................................................................................... 9 

3.2 Spectral characteristics of bald cypress ............................................................................. 10 

 

Chapter Four: Study Area and Data Sets ...................................................................................... 13 

4.1 Study area .............................................................................................................................. 13 

4.2 Data sets ................................................................................................................................. 15 

 

Chapter Five: Methodology .......................................................................................................... 18 



ii 
 

5.1 Data preprocessing ............................................................................................................... 18 

5.2 MTMF tool ............................................................................................................................ 21 

5.2.1 Minimum Noise Fraction Transformation (MNF) ........................................... 22 

5.2.2 Pixel Purity Index (PPI) ....................................................................................... 22 

5.2.3 n-Dimensional visualizer ..................................................................................... 23 

5.2.4 MF and MTMF ..................................................................................................... 23 

5.3 Linear Spectr Unmixing (LSU) .......................................................................................... 24 

5.4 Accuracy assessment ............................................................................................................ 24 

 

Chapter Six: Results ...................................................................................................................... 26 

6.1 Bald cypress trees abundance estimated using MTMF ................................................... 26 

6.2 Bald cypress trees abundance estimated using LSU ........................................................ 39 

6.3 The relationship between bald cypress tree and other features ...................................... 40 

6.4 Accuracy assessment ............................................................................................................ 42 

 

Chapter Seven: Discussion ........................................................................................................... 44 

 

Chapter Eight: Conclusions .......................................................................................................... 47 

 

References ..................................................................................................................................... 49 

 

 

 

 

 

 

 



iii 
 

 

 

LIST OF TABLES 

 

Table 1.     A summary of Landsat images used in this analysis. ................................................. 16 

 

Table 2.     The summary of spatial and spectral information for Landsat TM and OLI images . 17 

 

Table 3.     The eigenvalues and the associated variance of the MNF components derived            

from 1984 TM imagery. ...............................................................................................29 

 

Table 4.     Total estimated area of each land cover category (%) in the preserve area. ............... 38 

 

Table 5.     Land cover changes during the periods of 1984-1994, 1994-2005, 2005-2015              

and 1984-2015. ........................................................................................................... 38 

 

Table 6.     Accuracy assessment for the land cover type mapping results produced by 

MTMF with 2015 OLI image. .................................................................................... 42 

 

Table 7.     Accuracy assessment for the land cover type mapping results produced by 

LSU with 2015 OLI image. ........................................................................................ 43 

 

 

  

 

 

 



iv 
 

 

 

LIST OF FIGURES 

 

Figure 1.    A landscape of bald cypress trees in University of South Florida Forest 

Preserve Area, Florida, USA. ..................................................................................... 11 

 

Figure 2.    Bald Cypress reflectance of an in situ measurement in a spectral region 400-

2400 nm, taken from USF Forest Preserve Area ........................................................ 12 

 

Figure 3.    A study map covering the University of South Florida Forest Preserve Area ........... 15 

 

Figure 4.    Original color composite images using Landsat TM/OLI images 

(NIR/Red/Green bands vs. R/G/B color guns) acquired in 1984 (a), 1994 (b), 

2005 (c) and 2015 (d). ................................................................................................. 16 

 

Figure 5.    A general work flowchart for this thesis research. ..................................................... 20 

 

Figure 6.    Masking of the interesting area (i.e., the study area) from a sub-image area. 

(a) Whole area includes surrounding areas of the study area; and (b) a masked 

study area only. ........................................................................................................... 21 

 

Figure 7.    Eigenvalues calculated by the MNF transform analysis. ........................................... 27 

 

Figure 8.    The six MNF feature images derived from 1984 Landsat image.. ............................. 28 

 

Figure 9.    (a) Landsat color composite image acquired in 1984 (RGB vs. TM bands 4, 3, 

2), and (b) showing endmember pixels extracted by running a PPI tool. ................... 30 



v 
 

Figure 10.  Pixel Purity Index plots derived from Landsat image processing. These four 

images show the PPI results by iterations10000, 3000, 1000 and 200, 

respectively. ................................................................................................................ 30 

 

Figure 11.  Different endmembers (features) shown in different colors, created with the 

N-Dimensional Visualizer tool. .................................................................................. 31 

 

Figure 12.  Extracted endmember spectra from the Landsat image (1984). They were 

used as input to MTMF and LSU spectral unmixing algorithms................................ 32 

 

Figure 13.  MTMF mapping results: MF score image (a) and infeasibility image (b). ................ 33 

 

Figure 14.  A scatter plot of the matched filter scores versus infeasibility. .................................. 33 

 

Figure 15.  (a) MF score image highlighting the other trees (in green), (b) 2D Scatter-

plot of MF score (in green) and MT infeasibility image (in white) for the 

other trees .................................................................................................................... 34 

 

Figure 16. MTMF derived the bald cypress trees fractional abundance image, created 

from 1984 Landsat TM image.. .................................................................................. 35 

 

Figure 17.  MTMF fraction/abundance images for bald cypress trees. ........................................ 36 

 

Figure 18.  The dynamic change of bald cypress trees in different periods between 1984 

and 2015. From gray levels black to white, the values is -1 to 1. ............................... 37 

 

Figure 19.  Comparison of cover percentage of Bald cypress trees in different years from 

1984 to 2015, created with MTMF from the multitemporal Landsat images. ............ 39 

 

 



vi 
 

Figure 20.  LSU derived fraction images for bald cypress trees. The gray levels for the 

LSU fractions: black to white stand for 0 to 1. ........................................................... 40 

 

Figure 21.  The cover percentages of the five land cover types: bald cypress trees, other 

trees, grass, impervious surface and water from 1984 to 2015. .................................. 41 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vii 
 

 

 

ABSTRACT 

 

Wetlands are the most important and valuable ecosystems on Earth. They are called 

“kidneys of the Earth”. Vegetation change detection is necessary to understand the condition of 

a wetland and to support ecosystem sustainable management and utilization. It has been a great 

challenge to estimate vegetation (including bald cypress trees) coverage of the wetland because it 

is difficult to access directly. Satellite remote sensing technology can be one important feasible 

method to map and monitor changes of wetland forest vegetation and land cover over large areas. 

Remote sensing mapping techniques have been applied to detect and map vegetation changes in 

wetlands. To address spectral mixture issues associated with moderate resolution remote sensing 

images, many spectral mixture methods have been developed and applied to unmix the mixed 

pixels in order to accurately map endmembers (e.g., different land cover types and different 

materials within pixels) fractions or abundance. Of them, Mixture Tuned Matched Filtering 

(MTMF) is an advanced spectral unmixing method that has attracted many researchers to test it 

for mapping land cover types including mapping tree species with medium or coarse remote 

sensing image data. MTMF is a partial unmixing method that suppresses background noise and 

estimates the subpixel abundance of a single target material. In this study, to understand impacts 

of anthropogenic (e.g., urbanization) and natural forces/climate change on the bald cypress tree 

dynamic change, the bald cypress trees cover change in University of South Florida Forest 

Preserve Area was mapped and analysed by using MTMF tool and multitemporal Landsat 

imagery over 30 years from 1984 to 2015. To evaluate the MTMF’s performance, a tradition 
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spectral unmixing method, Linear Spectral Unmixing (LSU), was also tested. The experimental 

results indicate that (1) the bald cypress tree cover percentage in the study area has generally 

increased during the 30 years from 1984 to 2015, but over the time period from 1994 to 2005, the 

bald cypress tree cover percentage reduced; (2) MTMF tool outperformed the LSU method in 

mapping the change of the bald cypress trees over the 30 years to demonstrate its powerful 

capability; and (3) there potentially exists an impact of human activities on the change of the 

bald cypress trees although a further quantitative analysis is needed in the future research. 
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CHAPTER ONE: 

INTRODUCTION 

 

Wetlands play a vital role in global ecosystem and human life. Therefore, the 

conservation and sustainable utilization of wetlands resources is important. Precise monitoring of 

vegetation changes over time is necessary for achieving sustainable development goals in which 

remote sensing technology can be used to detect and monitor wetlands vegetation changes. 

Mixture-tuned matched filtering (MTMF) is a remote sensing data analysis method, which only 

requires that a target spectrum and background spectrum are known. It is a relatively convenient 

to detect and map single tree species with appropriate remote sensing data. 

 

1.1 Wetlands  

Wetlands are an integral part of a global ecosystem as they can improve water quality, 

protect shorelines, recharge groundwater, store flood water and maintain surface water flow 

during dry periods, and provide unique habitats for many plants and animals (Guo et al., 2017; 

Zhao et al., 2010). Wetlands often mean a land that shares a boundary between bodies of water 

and terrestrial zones. Although wetlands only cover about 6% of the Earth’s land surface, they 

play a vital role in the global ecosystem, and thus the conservation and sustainable use of 

wetlands and their biodiversity are important (Erwin, 2009; Finlayson et al., 1999). However, 

despite the importance of wetlands, about 50% of wetlands have been lost since the 1900s (Guo 
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et al., 2017). According to the research report (see Fish & Wildlife Service, 1999), a total of 14% 

wetland types in South Florida has been reduced from mid-1950s to mid-1980s. About 6600 km2 

of types was eliminated, which represented about 94 percent of the total wetland loss in the State. 

The primary cause of wetland loss was the drainage for agriculture, accounting for 79 percent of 

the total conversion. In addition to habitat loss and fragmentation, wetland habitat quality is also 

threatened.  

Changes in forest cover affect the delivery of important ecosystem services, including 

biodiversity richness, climate regulation, carbon storage, and water supplies (Hansen et al., 

2013). Because of this, many forested wetlands around the world are protected and monitored by 

various agencies and the importance of wetlands is recognized by international treaties such as 

the Ramsar Convention on Wetlands (Töyrä and Pietroniro, 2005). Vegetation is one of the 

major characteristics of wetlands. Destruction to the forest vegetation has led to deterioration of 

ecological environment and global environment change, such as soil degradation and water loss, 

local environment pollution caused by destroy, increasing of Carbon dioxide content in the 

atmosphere, global climate warming, decreasing of biodiversity, and so on. Decreasing of 

wetland forest vegetation and resources would not only cause soil degradation and climate 

change, but also bring about serious influence on the ecological balance over the whole global. 

Protection and restoring of forest vegetation and resources are of practical and long-standing 

significance (Qiao et al., 2004).  It has been a great challenge to estimate vegetation coverage of 

wetland because they are difficult to access. Given the importance of wetland vegetation in 

management of wetlands resources in the world, it is necessary to protect wetlands vegetation by 

detecting and monitoring the distribution and the change of wetland vegetation, and thus 

wetland-related studies are of great importance to protect wetlands and relieve climate change. 

javascript:void(0);
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1.2 Remote sensing technology  

The remote and inaccessible nature of many tropical forest regions limits the feasibility 

of filed surveying and monitoring methods for large areas, and this problem can be solved by 

remote sensing techniques (Mousazadeh et al., 2015; Sader et al., 2001). Access to remote 

forest regions by surface roads or rivers is often limited, and aerial photography is either 

nonexistent, outdated or infeasible to acquire for large regions (White et al., 2010). Initiatives to 

monitor land-cover and land-use change are increasingly reliant on information derived from 

remotely sensed data (Daniel and Steven, 2001). Remote sensing has become an attractive 

alternative to field surveys in forest inventory because of its lower total cost, greater coverage, 

and more regular data collection cycle (Mumby et al., 1999; Noujidina and Ustin, 2008; Zhang 

and Qiu, 2012). 

However, the classification of different types of wetlands by using remote sensing 

technology is difficult because of spectral confusion with other land cover classes (Ozesmi and 

Bauer, 2014). Multi-temporal remote sensing data can be used to improve the classification of 

wetlands. Classified satellite imagery and maps produced by aerial photography have been 

compared with a conclusion that both offer different but complementary information. Change 

detection studies have taken advantage of the repeat coverage and archival data provided by 

multitemporal satellite remote sensing. Wetland maps with more details can be acquired using 

multitemporal satellite imagery. Given a variety of spatial resolutions of satellite remote sensing 

systems, fuzzy classification, subpixel classification, spectral mixture analysis, and mixtures 

estimation can be used to provide more detailed information on wetlands (Ozesmi and Bauer, 

2014). Landsat remote sensing time-serial data have been the most common source of data for 
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land-cover classification and change detection due to its long-term data availability and low cost 

(Feng et al., 2017). 

Traditional classification methods, also called per-pixel classification methods, such as 

supervised method Maximum Likelihood Classification (MLC) or unsupervised method Iterative 

Self-Organizing Data Analysis (ISODATA), typically develop a signature by combining the 

spectra of all training set pixel for the research feature. Most of classification methods are based 

on per-pixel information which ignore the impact of mixed pixel. As a result, they assign one and 

only one class to each pixel without considering the impact of mixed pixels (Lu and Weng, 

2007). The presence of mixed pixels has been recognized as a major problem, influencing the 

effective use of remotely sensed data in per-pixel classifications. Subpixel classification 

approaches that consider variations within pixels have been developed to overcome the mixed 

pixel problem. Of the available subpixel classifiers, Spectral Mixture Analysis (SMA) is a well-

established and effective technique to address this mixture problem (Somers et al., 2011). SMA 

assumes that the spectral value of each pixel is a linear or nonlinear combination of defined 

spectrally pure materials called endmembers. The output of SMA is a set of fraction images, 

each of which represents the area proportions (fraction) of one of the endmembers within the 

pixel (Lu and Weng, 2007). SMA compares each potential end-member with a composite 

background spectra. These SMA techniques completely unmix each image and report the 

fractions of all materials present in each pixel. Thus, they require that all spectra would be 

known for all major background materials in the images, which can be challenging to obtain in a 

complex and heterogeneous environment (Brelsford and Shepherd, 2014). Somers et al. (2011) 

noted the challenges associated with endmember selection in nearly all SMA approaches, and 
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covered the wide variety of approaches that have been used to estimate subpixel fractions of the 

relevant end-members in an image.  

Spectral unmixing methods are valuable candidates for detection of plant species in a 

spectrally mixed context, such as, SAM (Spectral Angler Mapper) and LSU (Linear Spectral 

Unmixing). However, plant species detection using fully supervised spectral unmixing 

approaches may be hampered by the necessity to collect multiple endmembers. Such spectral 

unmixing approaches allow all targets a user choose to be mapped. Unlike complete unmixing, 

Partial unmixing methods, such as Mixture-Tuned Matched Filtering (MTMF) require only that 

the spectral endmembers of the target species are known, by suppressing mixed backgrounds and 

enhancing the target-to-background contrast (Boardman, 1998). This method represents an 

improved alternative to SMA or LSU analysis for cases where the number of similar spectra are 

large or where it is problematic to collect spectra of all potential endmember components within 

the scene. It performs a partial unmixing by finding only the pixels where user choose 

endmember spectrum is statistically distinct from the average background spectrum. Usually 

simple matched filtering results in a large number of false-positive errors. The MTMF unmixing 

approach has three primary analytical steps. First, the minimum noise fraction (MNF) 

transformation is applied to minimize and reduce noise in the images across all spectral bands. 

Second, the matched filtering (MF) is applied for abundance estimation. Final MF scores are 

normally distributed and have a mean of zero. The magnitude of the MF score is the projection 

of the target spectrum onto the original image after both have been transformed into MNF space, 

so that a perfect match will have a score of one. MF returns a mixture tuned (MT) score as the 

number of standard deviations from the mixing line which connects the background mean to the 

target spectrum. MT scores can be interpreted as unmixing infeasibility. High MT scores or 

javascript:void(0);
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infeasibility values, which mean a large separation from the signature of the target material, are 

used to identify false positives (Xu et al., 2017). The complete MTMF procedure is implemented 

in the Environment for Visualizing Images (ENVI, Exelis, 2017), a commercially available 

image analysis software package. William and Hunt (2002) used MTMF to estimate canopy 

cover of leafy spurge from hyperspectral AVIRIS data and get classification accuracies of 75-

95 % for large leafy spurge infestations. Glenn et al. (2005) also applied MTMF to map leafy 

spurge in riparian and mixed sagebrush communities in Idaho using HyMap imagery, with an 

overall accuracy of above 84%. Pontius et al. (2005) implemented MTMF to delineate eastern 

hemlock abundance and identify early tree decline using AVIRIS data. Besides, many 

researchers have demonstrated the advantages of MTMF method over other traditional spectral 

unmixing approaches for mapping vegetation abundances/fractions (e.g., Barbosa et al., 2016; 

Noujdina and Ustin, 2008; Williams and Hunt, 2002). 
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CHAPTER TWO: 

RESEARCH OBJECTIVES AND QUESTIONS 

 

The major objective of this study is to develop a method to determine and assess the 

dynamic change of bald cypress (Taxodium distichum) in University of South Florida (USF) 

Forest Preserve Area from 1984 to 2015 to understand impacts of anthropogenic (e.g., 

urbanization) and natural forces/climate change on the cypress tree dynamic (cover percentage) 

change. These results are intending to assist the Hillsborough County and her citizens to have a 

better understand and manage wetland forest resources. This research aims to test performance of 

Mixture Tuned Matched Filtering (MTMF) to estimate changes in distribution of bald cypress 

trees in USF Forest Preserve Area, Tampa, between 1984 and 2015 by utilizing multitemporal 

Landsat images. This study will also compare the performance of MTMF with a traditional 

spectral unmixing method to map bald cypress canopy change. Through this thesis research, we 

are able to identify an effective method for mapping bald cypress trees even when they are 

partially obscured from remote sensing measurements because of overstored trees. In order to 

understand the cypress tree dynamic change better, four questions will be addressed in this thesis 

research, which include: 

 Is the MTMF able to map the spatial distribution of bald cypress using miltitemporal 

Landsat imagery? 

 Does the MTMF have a better performance than other image spectral unmixing tools? 
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 How accurate for the remote sensing mapped result is when compared with the ground 

truth dataset? 

 What potential driving forces, which drive the bald cypress tree change, can be 

identified? 

Although most studies have demonstrated the performance of MTMF over some 

traditional spectral unmixing approaches, there still were a few cases that showed the poor 

performance of MTMF when mapping vegetation abundance. For example, per testing the 

performance of MTMF, Brelsford and Shepherd (2014) measured changes in subpixel vegetation 

by using MTMF, and they found that when MTMF abundance estimations have been compared 

with field estimates of target abundance, the results show clear positive correlations between the 

MF score and the field estimate, but the correlation values are low. The low values indicated that 

MF score might be a poor predictor of true target abundance. The general goal of this research is 

to further test whether MTMF has a better performance than a traditional method. 
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CHAPTER THREE: 

BACKGROUND 

 

3.1 Bald cypress landscape  

Bald cypress (Taxodium distichum) tree is a deciduous conifer, and it grows on saturated 

and seasonally flooded soils in the lowlands of the Southeastern and Gulf Coastal Plains of the 

United States. Figure 1 presents a bald cypress landscape in a wetland. 

Bald cypress trees always occurs in swamps along flowing river (Wang and Lang, 2009). 

They have a peculiarity of growth called cypress knees (the low tower-shaped things in Figure 

1). These are woody projections of the root system project above the ground or water. Their 

function was once thought to be to provide oxygen to the roots, which develop in the low 

dissolved oxygen waters typical of a swamp (Taxodium distichum, 2018). A bald cypress tree 

will feature an average height of 15.2 to 36.6 m and a spread of 7 to 10 m when mature 

(Cochran, 2016). It will grow an average of 0.3 to 0.6 m per year in most locations. Bald cypress 

trees provide habitat for many species. Wild turkey, wood ducks, evening grosbeak and squirrels 

eat the seeds. Branches provide nesting places for bald eagles and osprey. Rotting knees are used 

as nesting cavities by warblers. Catfish spawn beneath cypress logs. Bald cypress absorb and 

slow floodwaters, relieving flood damage to life and property (Taxodium distichum, 2018).         

The native range of bald cypress swamps contain a variety of wetland ecosystem 

throughout southeastern United States, extend from Florida along the eastern coast of the 

https://en.wikipedia.org/wiki/Southeastern_United_States
https://en.wikipedia.org/wiki/Gulf_coastal_plain
https://en.wikipedia.org/wiki/Cypress_knee
https://en.wikipedia.org/wiki/Oxygen
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Atlantic ocean to Delware, and along the Gulf Coast into Louisiana and Texas, and also inland 

up the Mississippi River ( Middleton and Mckee, 2004). The largest remaining old-growth stands 

are at Corkscrew Swamp Sanctuary, near Naples, Florida and in the Three Sisters tract along 

eastern North Carolina's Black River. In the northern and more inland part of its range from 

Delaware and Maryland to Virginia, it is found in groups growing in swamps and is 

accompanied by other hardwoods (Bald Cypress, 2018).  Although bald cypress grows best in 

warm climates, the natural northern limit of bald cypress tree is not due to the low temperature, 

but to specific reproductive requirements, and regeneration is limited by freeze damage to 

seedlings in further north area. Larger trees are able to stand much lower temperatures and lower 

humidity (Taxodium distichum, 2018).  

The single feature that all bald cypress trees share is their habitats with standing water for 

at least part time of the year. Their seedlings can only germinate on the dry land, so a fluctuating 

water level is necessary for a cypress system to survive over long periods. Mature bald cypress 

trees can stand continual flooding. Because cypress occurs in a wide range of wetland systems, it 

is possible to identify the hydrologic conditions by the trees that grow in association with the 

cypress. Bald cypress-hardwood associations are indicative of bottomland riverine forests and 

sloughs that experience a short hydro period (Mitsch and Ewel, 1979).  

 

3.2 Spectral characteristics of bald cypress 

The spectral signature is the reflectance characteristics of a certain cover type as a 

function of wavelength. Each material has a unique signature, and spectral signature can be used 

for material classification (Duong et al., 2015). In principle, a land cover type can be identified 

from its spectral reflectance signature if the sensing system has sufficient spectral resolution to 

https://en.wikipedia.org/wiki/Corkscrew_Swamp_Sanctuary
https://en.wikipedia.org/wiki/Naples,_Florida
https://en.wikipedia.org/wiki/Florida
https://en.wikipedia.org/wiki/Florida
https://en.wikipedia.org/wiki/Black_River_(North_Carolina)
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distinguish its spectrum from those of other materials. This premise provides the basis for 

multispectral remote sensing. 

 

 

Figure 1. A landscape of bald cypress trees in University of South Florida Forest Preserve Area, 

Florida, USA. 

 

Bald cypress tree has a spectral reflectance curve (Figure 2) similar to those of general 

plants/trees spectra. In the visual part of spectrum, from 400 to 700 nm, the reflectance is low, 

the reflectance increase rapidly in the infrared in the range 700 to 1300 nm, the gradually 

decreases to a low level at about 2700 nm because of strong absorption by water (Knipling, 

1970). Plant pigments, such as chlorophyll and carotene, and xanthophyll have important effects 
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upon the absorption and reflectance properties of leaves in the visible wavelengths (Gates et al., 

1965). The reflectance properties in the near infrared (NIR) wavelengths are influenced by the 

leaf structure of different species (Slaton et al., 2001).  However, these reflectance properties are 

not sufficient to describe the reflectance of vegetation canopies because a vegetation canopy is 

composed of a mosaic of leaves, background and shadow (Hurcom et al., 1996). Although the 

canopy reflectance is the main determinant of spectral values of vegetation, the biophysical and 

biochemical factors can influence plant canopy reflectance and their spectral values (Asner, 

1998). 

 

 

Figure 2. Bald Cypress reflectance of an in situ measurement in a spectral region 400-2400 nm, 

taken from USF Forest Preserve Area (Provided by Dr. Ruiliang Pu, University of South 

Florida). 
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CHAPTER FOUR: 

STUDY AREA AND DATA SETS 

 

4.1 Study area  

The study area covers the University of South Florida (USF) Forest Preserve Area, a 2 

km² tract of region located in Hillsborough County in west central Florida (28° 05'N, 82° 20'W) 

(Figure 3). More than 50% of the Forest Preserve Area is composed of riverine hardwood swamp 

forest (“wetland”) associated with the Hillsborough River (Wilson, 1998). Hillsborough River 

flows through the area from west to east within the USF Forest Preserve Area. The rest of the 

USF Forest Preserve Area is composed of sandhills (“uplands”). There are two kinds of uplands: 

natural and developed uplands. In the southern portion of the preserve area are uplands of well-

drained yellow sand deposits of the Lakeland series that support a xerophytic upland community 

(Henry, 1985). The sandhill is dominated by slash pine (Pinus elliottii), turkey oaks (Quercus 

laevis) and sand live oak (Quercus geminata), with a sparse saw palmetto (Serenoa repens). 

Sandhill ecosystems support a wide variety of wildlife. Sandhill habitats are considered to be 

threatened and endangered in the world.  More than 400 plant species are present in the area 

preserved, including 9 signed as endangered in Florida. These include clasping warea and bent 

golden aster both listed by the State of Florida as endangered (Cox, 1994). 

The USF Forest Preserve Area has a subtropical climate consisting of a 5 month hot and 

wet season that extends from late spring into the fall, a mild and dry season of 7 months that 

extends from late fall through spring (Obeysekera, 1999). South Florida’s latitude and location 
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on the eastern shore of a large land mass may lead a sub humid or arid climate, but the region is 

significantly influenced by the moisture from the Gulf of Mexico, Caribbean Sea. Seasonal high 

temperatures average about 90s °F (around 32 °C) and lows in the mid-70s °F (around 24 °C), 

accompanied by high humidity and an almost daily chance of thundershowers, especially in the 

afternoon. The dry season often begins in November and can last through April. The weather is 

normally sunny, mild, and quite dry. Highs during the season average around 70 °F (21 °C) with 

mostly sunny skies. June through November is hurricane season in the Atlantic Basin and 

Caribbean Sea, with the most tropical activity occurring between mid-august to mid-October. 

Rain caused by tropical systems is an important component of the area's annual precipitation and 

is vital for replenishing the water supply of communities around the area. Summers include a 

high frequency of thunderstorms and lightning, tropical storms, and periodic tornadoes and 

hurricanes. The cool and dry winters are often punctuated with cold and warm fronts preceded by 

winds and precipitation that bring brief periods of below or above average temperatures, 

respectively (Climate of Florida, 2018). 

  

https://en.wikipedia.org/wiki/Humidity
https://en.wikipedia.org/wiki/Thunderstorm
https://en.wikipedia.org/wiki/Tropical_cyclone#Times
https://en.wikipedia.org/wiki/Atlantic_Ocean
https://en.wikipedia.org/wiki/Caribbean_Sea
https://en.wikipedia.org/wiki/Rain
https://en.wikipedia.org/wiki/Tropical_cyclone
https://en.wikipedia.org/wiki/Precipitation_(meteorology)
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Figure 3. A study map covering the University of South Florida Forest Preserve Area (Provided 

by Dr. Ruiliang Pu, University of South Florida). 

 

4.2 Data sets  

Every five years between 1984 and 2015, the Landsat 5 Thematic Mapper (TM) and 

Landsat 8 Operational Land Imager (OLI) images were acquired on 1984-10-18, 1994-10-24, 

2005-11-23, and 2015-11-03. This is to avoid wet season and minimize the influence of 

seasonal and weather condition on research area. All processed Landsat images have been geo-

rectified within 3 m so that pixels represent the same point in space across all images and the 

solar irradiance has been normalized across all images. Table 1 summarizes the collection of 

Landsat images used in this analysis. Figure 4 shows four color composite images using 

Landsat TM/OLI images NIR/Red/Green bands vs R/G/B. 
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Table 1. A summary of Landsat images used in this analysis 

Path/Row Acquisition Date Scene Identifier 

17/41 2015-11-03 LC08_L1TP_017041_20151103_20170225_01_T1 

17/41 2005-11-23 LT05_L1TP_017041_20051123_20160911_01_T1 

17/41 1994-10-24 LT05_L1TP_017041_19941024_20160926_01_T1 

17/41 1984-10-18 LT05_L1TP_017041_19841018_20161004_01_T1 

Data source:  USGS/NASA Landsat Program 

 

 

Figure 4. Original color composite images using Landsat TM/OLI images (NIR/Red/Green 

bands vs. R/G/B color guns) acquired in 1984 (a), 1994 (b), 2005 (c) and 2015 (d).                  

Data source: USGS/NASA Landsat Program 
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Table 2. The summary of spatial and spectral information for Landsat TM and OLI images 

(Jensen, 2016). 

 

 

 

 

 

Landsat 4 & 5 

Thematic Mapper (TM) 

Landsat 8 

Operational Land Imager (OLI) 

Band Spectral 

Resolution(m ) 

Spatial 

Resolution 

(m) at Nadir 

Band Spectral 

Resolution(m ) 

Spatial 

Resolution 

(m) at 

Nadir 

1 Blue 0.45-0.52 30 × 30 1 Ultra-blue 

for 

coastal/aerosol 

0.433-0.453 30 × 30  

2 Green 0.52-0.60 30 × 30 2 Blue 0.450-0.515 30 × 30  

3 Red 0.63-0.69 30 × 30 3 Green 0.525-0.600 30 × 30  

4 Near-

infrared 

0.76-0.90 30 × 30 4 Red 0.630-0.680 30 × 30  

5 SWIR 1.55-1.75 30 × 30 5  Near-

infrared 

0.845-0.885 30 × 30  

6 Thermal 

infrared 

10.40-12.5 120 × 120 6 SWIR-1 1.56-1.66 30 × 30  

7 SWIR 2.08-2.35 30 × 30 7 SWI-2 2.1-2.3 30 × 30  

   8 

Panchromatic 

0.52-0.90 15 × 15  

   9 Cirrus 1.36-1.39 30 × 30  
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CHAPTER FIVE: 

METHODOLOGY 

 

In this study, a quantitative analysis method was used to conduct this thesis research. 

Figure 5 presents a general work flowchart for this study (see page 20). The major 

components/tasks presented in the flowchart will include: (1) Collect Landsat images for years 

1984, 1994, 2005 and 2015; (2) process images: radiometric/geometric correction/registration; 

(3) run MTMF tool to map bald cypress tree cover/abundance; (4) determine / assess the 

dynamic change of cypress trees (cover/abundance); and (5) analyze the possible impacts of 

anthropogenic and natural factors on the change.  

 

 5.1 Data preprocessing  

Vegetation extraction from remote sensing imagery is the process of extracting 

vegetation information by interpreting satellite images based on the interpretation elements such 

as the image color, texture, tone, pattern and association information, etc. Diverse methods have 

been developed to do this process. Those methods can be supervised or unsupervised depending 

on whether or not true ground data are inputted as references. General steps involved in 

vegetation mapping include image preprocessing and image classification. Image preprocessing 

deals with all preparatory steps necessary to improve the quality of original images, which then 
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results in the assignment of each pixel of the scene to one of the vegetation groups defined in a 

vegetation classification system or a membership matrix of the vegetation groups if fuzzy 

classification is adopted (Xie et al., 2008). Remote sensing signals are essentially the amount of 

energy received at the sensor from the target in a given spectral width. However, the signals we 

get directly the satellite are usually noisy. The noise is usually of two types: internal and external 

noise. Internal noise is from the sensor and external noise from the atmosphere and the areas 

adjacent to the target. Therefore, it is necessary for us to conduct image preprocessing. 

Atmospheric correction of satellite images is a critical image-preprocessing step, where the 

effects of the atmosphere are removed or markedly minimized. A variety of atmospheric-

correction algorithms are available. For geometric correction, there are two ways to correct the 

various types of geometric distortion present in digital image data. One is to model the nature 

and magnitude of the sources of distortion and use the model to establish correction formulas. 

That approach is effective when the types of distortion are well characterized, such as that caused 

by the Earth rotation. The second method depends on establishing mathematical relationships 

between the addresses of pixels in an image and the corresponding coordinates of those points on 

the ground. Those relationships can be used to correct image geometric errors irrespective of the 

analyst’s knowledge of the source and type of distortion. 

However for this study, Landsat images for years 1984, 1994, 2005 and 2015, provided 

by USGS, are already Surface Reflectance Level-2 products, which mean that the radiometric 

correction and geometric correction have been conducted by USGS. The Second Simulation of 

the Satellite Signal in the Solar Spectrum (6S) model was used for the radiometric correction by 

USGS to calibrate the Level-1 data to the Level 2 data. Clouds as well as cloud shadows were 

masked by using Fmask Algorithm (Zhu and Curtis, 2012). 
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Figure 5. A general work flowchart for this thesis research. 

 

In this study, Landsat image preprocessing also includes the creation of a mask of pixels 

that were of no interest. Thus, the last step of the image preprocessing in this part was removing 

any non-interest area around the region of interest (the study area) before conducting further 

analysis. Figure 6 (b) exactly shows the study area after masking out no interesting areas. 
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Figure 6.  Masking of the interesting area (i.e., the study area) from a sub-image area. (a) Whole 

area includes surrounding areas of the study area; and (b) a masked study area only. 

 

5.2 MTMF tool  

The analytical process of extracting bald cypress trees fractions in the study area is described as 

follows. 

1) Determine the inner dimensions of image data using the MNF rotation method, and 

isolate the noises from the data.  

2) Calculate the pixel purity index (PPI) to obtain most spectrally pure pixels of bald 

cypress trees. 

3) Input these spectrally pure pixels in the n-D Visualizer to extract endmember spectra. 

4) Extract bald cypress abundance of using the MTMF spectral unmixing method. 

5) Apply density-slicing method to obtain bald cypress trees fractions. 
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5.2.1 Minimum Noise Fraction Transformation (MNF) 

MNF transform is used to determine the dimensionality of image data and isolate the 

noises from the data to meet the computing requirements in the subsequent processing. The 

function of MNF transform in the ENVI software was adopted.  

The function of MNF transform is composed of two principal component analysis (PCA) 

rotations (Qu et al., 2014). The first rotation uses the estimation of noise covariance matrix to 

reduce and normalize the noise in the data, and generates a band sequence in which the noises 

have been whitened and their variance is 1, and there is no correlation among bands. The second 

rotation performs PCA on the band sequence gotten from the firs rotation to organize the 

components according to the signal-to noise ratio, so the data space will be divided into two 

parts, one associated with large eigenvalues and coherent Eigen images, and the other one 

associated with near-unity eigenvalues and noise-dominated images. Then, the coherent Eigen 

image are selected in the subsequent PPI calculation to separate the noises from the image and 

improve the processing efficiency. 

 

5.2.2 Pixel Purity Index (PPI) 

After MNF transformation, endmembers should be extracted from images as shown in 

the flowchart. According to the definition, an endmember is an idealized pure signature of a class 

(Chang and Plaza, 2006). In the above-mentioned method for creating a false-colour composite 

image, it is necessary to define endmembers. These can be defined by the following two 

methods: (1) automatic definition of training data and (2) selection of endmembers based on the 

user’s knowledge of the study area (Mehr et al., 2013) 



23 
 

Endmember extraction is one of the basic and crucial steps in image processing. It has 

received a considerable attention in recent years, with many researchers devoting their effort to 

develop algorithms for endmember extraction from Landsat image. The Pixel Purity Index (PPI) 

has been widely used in Landsat image analysis for endmember extraction because of publicity 

and availability in the Environment for Visualizing Images (ENVI) software.  

 

5.2.3 n-Dimensional visualizer  

After performing the pixel purity index process, the next step is to visualize those pixels 

in n-D Visualizer in order to estimate the number of spectral endmembers and their pure spectral 

signatures (Chuadhry et al., 2006). The n-D Visualizer constitutes a final step in the ENVI 

endmember-extraction process. The purest pixels obtained from PPI calculation are loaded in the 

ENVI n-D Visualizer. The selected bands are rotated in the n-D space. When multiple clusters of 

pixels or corner clusters appear in the view, one or multiple corner pixels are circled to determine 

the endmembers (Qu et al., 2014). 

 

5.2.4 MF and MTMF  

Matched filtering (MF) is a filtering process of input data matching the target spectrum 

and eliminates the remaining background spectra (Hassan, 2014). Thus, MF performs a partial 

unmixing of the spectra in each pixel from the analysis image. It distinguishes the target spectra 

from the background, but does not perform any further analysis on the content of the background 

materials. As a result of the partial unmixing, MF requires only a target spectrum, not the spectra 

for all land cover materials in the image, which is one of the major advantages of the MF 

approach. The mixture tuning (MT) filter has been developed to address cases where MF 
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generates false positive results; the combined method is called mixture-tuned matched filtering 

(MTMF) (Bresford and Shepherd, 2014).  

The output of MTMF is a set of rule images given as MF score and infeasibility index for 

each pixel related to each endmember. The MF score results help evaluate the relative 

consistency of the spectrum and the abundances of sub-pixels. A value of 1 stand for a very high 

degree of matching (William and Hunt, 2002). The infeasibility index, which is in noise-sigma 

units, indicates the feasibility of the MF results to be a target endmember. Pixels that have an MF 

score above the background value and a low infeasibility index are those considered to have a 

high probability of being identified correctly (Afshar and Saghafian, 2016). The method finds 

pixels in which the endmember signal is statistically distinct from the average background pixels 

(Noujdina and Ustin, 2008). 

 

5.3 Linear Spectr Unmixing (LSU) 

LSU method is also adopted to determine abundance of land cover classes based on their 

spectral characteristics. LSU is applied to each pixel using all endmember extracted from an 

image. The outputs of LSU are a series of fraction images, one for each endmember (Hosseinjani 

& Tagestani, 2011). A brighter pixel stands for a higher abundance of an endmember in the 

pixel. 

 

5.4 Accuracy assessment  

Theoretically, in order to assess the performance of MTMF, the agreement between 

results mapped from MTMF and the ground truth data should be determined. However, in this 

study, due to lacking ground truth data, the test samples of the five land cover types including 



25 
 

bald cypress trees were directly visually delineated from Landsat TM/OLI color composite 

images (e.g., TM bands 5, 4, 3 vs. R, G, B) via ENVI Region of Interest (ROI) tool. Recently, a 

visit to the preserve area could help understanding of pure pixels/patches of the five land cover 

types on the color composite images. Two accuracy indicators were used to evaluate the results 

of spectral unmixing mapping results. The first indicator is the overall accuracy, and it is total 

classification accuracy from MTMF. The second indicator is the kappa coefficient, which 

illustrates the agreement of the ground-surveyed vegetation coverage with the vegetation fraction 

inversed from MTMF (Qu et al., 2014). When the kappa value > 0.80, it represents a strong 

agreement and a better accuracy, while when 0.40-0.80, it is medium and when < 0.40, it is poor. 

In this study, when a pixel value on a fraction image (e.g., bald cypress tree) is greater than 0.8, 

the pixel is counted as a pure pixel (i.e., suppose 100% covered by only one land cover type). 
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CHAPTER SIX: 

RESULTS 

 

There are two sets of spectral unmixing results for mapping bald cypress 

cover/abundance extracted from multi-temporal Landsat TM images acquired in 1984, 1994, 

2005 and Landsat OLI image acquired in 2015. The two spectral unmixing mapping results of 

bald cypress trees include those created with MTMF method and those created with a traditional 

linear spectral unmixing (LSU) method. 

 

6.1 Bald cypress trees abundance estimated using MTMF 

The MNF transform is helpful to isolate noise and choose useful MNF components. 

Typically, the first MNF band represents most of the total variance. The higher-order bands with 

decreasing variances are not necessary to represent the majority of the original image. Bands 

with large eigenvalues (greater than 2) contain data, and bands with small eigenvalues contain 

noise.  The screen captures (Figure 7) are useful to distinguish between useful MNF components 

and noise components. MNF1 possessed the maximum Eigen value and variance (44%, Table 3) 

that can be considered to be most similar to the original image. Similarly the lower Eigen values 

and variance (< 6%) components (MNFs 5 and 6) represent too much noise in the images (Figure 

8). For this reason, MNFs 5 and 6 were deleted from this analysis. 
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The MNF results for the 1984 Landsat image are provided in Figure 8 (a)-(f), which 

demonstrate that higher-numbered bands contain more noise and significantly reduced image 

features, whereas the lower-numbered bands offer substantially higher information content. 

Lower numbered bands also correspond to higher eigenvalues. 

 

 

Figure 7. Eigenvalues calculated by the MNF transform analysis.  

 

MNF plot (a) was calculated from the 1984 Landsat image, whereas (b), (c), and (d) 

represent the MNF transformation results derived from 1994, 2005 and 2015 images, 

respectively. The first 4 Eigen images were used for further analysis and accounted for most of 

the useful image information from 1984, 1994, and 2005 Landsat images. The last plot derived 

from 2015 image shows that the first five bands should be considered. 
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Figure 8. The six MNF feature images derived from 1984 Landsat image. (a)- (f) Images stand 

for the resultant spectral features (MNFs 1, 2, 3, and 4) and noise (MNFs 5 and 6) components of 

the MNF transform. 
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Table 3. The eigenvalues and the associated variance of the MNF components derived from 

1984 TM imagery. 

Component Eigen value Cumulative variance (%) 

1 12.68 44.21 

2 7.80 66.64 

3 4.64 81.52 

4 2.39 89.20 

5 1.85 95.20 

6 1.50 100.00 

 

The PPI was implemented to find endmembers for the image scene in Figure 9 (a), using 

the same set of randomly generated initial skewers. Figure 9 (b) shows the endmember pixels 

extracted by the PPI in white. The iterative algorithm, which is the means of finding the most 

“spectrally pure” or extreme pixels in the multispectral and hyperspectral images, can be used to 

calculate PPI (Qu et al., 2014). When calculating PPI, the number of iterations is typically large. 

Therefore, 200, 1000, 3000, and 10 000 iterations were carried out separately. The results of 

these calculations were approximately same. Among them, the results from 200, 1000, and 3000 

iterations are almost same (Figure 10). In consideration of the cost of computing and system 

load, the result of 200 iterations was chosen for use in the next step. 
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Figure 9. (a) Landsat color composite image acquired in 1984 (RGB vs. TM bands 4, 3, 2), and 

(b) showing endmember pixels extracted by running a PPI tool. 

 

 

Figure 10. Pixel Purity Index plots derived from Landsat image processing. These four images 

show the PPI results by iterations10000, 3000, 1000 and 200, respectively. 
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After running the PPI tool above, an N-Dimensional Visualizer could finally help locate 

endmember pixels. Displayed on Figures 11 and 12, different endmembers were well separated 

and could be distinguished in the next analysis. By the simultaneous use of more than two MNF 

bands, it is possible interactively to view and rotate the endmembers in the n-dimensional 

spectral space on a screen. 

 

 

Figure 11. Different endmembers (features) shown in different colors, created with the N-

Dimensional Visualizer tool. 
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Figure 12. Extracted endmember spectra from the Landsat image (1984). They were used as 

input to MTMF and LSU spectral unmixing algorithms. 

 

The MTMF outputs consist of a gray-scale two-layer image: the MF score and an 

infeasibility index (Figure 13). The MF score reflects the relative abundance degree of match 

between the test (pixel) spectrum and the endmember reference spectrum (e.g., bald cypress). 

The infeasibility index, which is in noise-sigma units, indicates the infeasibility of the MF results 

to be a target endmember. Pixels that have an MF score above the background value and a low 

infeasibility index are those considered to have a high probability of being identified correctly. 

The pixels have a higher MF score and lower infeasibility index are chosen to shown in the 

Figure 14 (a) and the outcome is shown in Figure 14 (b), which shows a distribution of pixels 

with high abundance values of bald cypress trees (in red). The area of the other trees type 
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exhibited its abundance in the study area with high pixel values in its MF score image (in green 

in Figure 15a) and had low pixel values in the infeasibility image.

 

Figure 13. MTMF mapping results: MF score image (a) and infeasibility image (b). 

 

 

Figure 14. A scatter plot of the matched filter scores versus infeasibility shows that threshold 

can be used to choose presence target and absence target. The MF demonstrates abundance of 

bald cypress trees (in red) and the infeasibility value provides a measure of false positives. 
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Figure 15. (a) MF score image highlighting the other trees (in green), (b) 2D Scatter-plot of MF 

score (in green) and MT infeasibility image (in white) for the other trees. 

 

To conduct a dynamic change of bald cypress trees cover/abundance, MTMF derived 

fractional abundance images from Landsat images were created via an interactive stretching. 

Abundance estimates for bald cypress trees, other trees, impervious surface, grass and water 

endmembers are shown as grayscale images (e.g., one in Figure 16). Brighter pixels in the 

abundance images represent endmembers with higher fractional abundances.  
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Figure 16. MTMF derived the bald cypress trees fractional abundance image, created from 1984 

Landsat TM image. The white degree represents the abundance of an endmember in a pixel. 

 

Finally, MTMF was employed to each Landsat image, which allows false positive to be 

identified and eliminated from abundance results. The results created from MTMF were in 

fraction with the sub-pixel abundance values of bald cypress trees and feasibility images that 

ranging from 0 to 1.5. A pixel with a higher percentage of bald cypress trees in it had a lower 

infeasibility value, which usually is ≤ 5.00. This is because a low infeasibility value shows a 

significant MTMF fraction. Figure 17 presents spectral distributions of bald cypress trees in 

1984, 1994, 2005, and 2015, and represents the abundances of bald cypress trees in different 

years, extracted from corresponding Landsat images, respectively. In Figure 17, the black areas 

stand for no bald cypress tree areas and white areas stand for the areas where bald cypress tree 

density is extremely high. In Figure 18, a black area has a pixel value -1, which means that bald 
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cypress trees existed there before but now they are gone. Light color (values close to 1) means 

that there are more bald cypress trees currently than the before.   

 

 

Figure 17. MTMF fraction/abundance images for bald cypress trees. The gray levels for the 

MTMF fractions: black to white stands for 0 to 1.  

 

From 1984 to 2015 as shown in Figure 18, the bald cypress tree has increased in the 

research area, especially in the eastern part and western part of the area. Figure 19 clearly 

indicates that bald cypress trees increased from 26.35% in 1984 to 37.46% in 1994, then 

decreased to 32.52% in 2005 and then increased again to 37.73% in 2015. Tables 4 and 5 
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summarize the relative cover percentages of the five land cover types in the four different years 

and their changes between adjacent two years (i.e., 1984 & 1994, 1994 & 2005, and 2005 & 

2015) and 1984 & 2018. 

 

 

Figure 18.  The dynamic change of bald cypress trees in different periods between 1984 and 

2015. From gray levels black to white, the values is -1 to 1.  
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Table 4. Total estimated area of each land cover category (%) in the preserve area.   

Land cover 1984 1994 2005 2015 

category Area (%) Area (%) Area (%) Area (%) 

Bald cypress tree 26.35 37.46 32.52 37.73 

Other trees 35.07 33.04 33.30 30.32 

Water 11.30 12.13 11.21 12.43 

Impervious surface 13.78 13.82 17.81 15.42 

Grass 13.50 3.55 5.16 4.10 

 

Table 5. Land cover changes during the periods of 1984-1994, 1994-2005, 2005-2015 and 1984-

2015. 

Land cover 

type 

1984-1994 1994-2005 2005-2015 1984-2015 

Area (%) Area (%) Area (%) Area (%) 

Bald cypress tree 11.11 -4.94 5.21 11.38 

Other trees -2.07 0.30 -2.98 -4.75 

Water 0.83 -0.92 1.22 1.13 

Impervious surface 0.03 3.99 -2.39 1.64 

Grass -9.95 1.61 -1.06 -9.40 
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Figure 19. Comparison of cover percentage of Bald cypress trees in different years from 1984 to 

2015, created with MTMF from the multitemporal Landsat images. 

 

6.2 Bald cypress trees abundance estimated using LSU 

In this thesis research, the traditional LSU approach was also tested for mapping bald 

cypress tree abundance and its results were used to compare the results created using MTMF.  

When the same endmember spectra were used for training LSU for different year images as for 

MTMF, the result in Figure 20 shows bald cypress tree fractions/abundances increased 

continuously from 34.22% to 45.43% from 1984 to 2005, and then decreased to 40.46 in 2015. 

The results from LSU share the same trend with the results produced by MTMF, but the 

percentage of bald cypress trees of each period is higher than that created using the MTMF tool. 

Compared to those created with the MTMF tool, most uplands with other trees in the results 

created with the LSU approach were mapped into bald cypress trees.  This might be a major error 

source for LSU derived results compared to those created with the MTMF tool. 
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Figure 20. LSU derived fraction images for bald cypress trees. The gray levels for the LSU 

fractions: black to white stand for 0 to 1. 

 

6.3 The relationship between bald cypress tree and other features 

Based on the endmembers (i.e., land cover types in this study) mapping results created 

with MTMF, the results in Figure 21 indicate that forest (bald cypress trees/ other trees) could 

account for a large proportion of the study area and water had relatively stable and small 

proportion, and also impervious surface had a very small proportion of the study area. Overall, 

water slightly increased continuously from 11.30% to 12.13% from 1984 to 2015; bald cypress 
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trees increased from 26.35% to 37.46% from 1984 to 1994, then decreased to 32.52% in 2005 

and then increased again to 37.73% in 2015; other trees decreased from 35.07% to 33.04% from 

1984 to 1994, then increased slightly to 33.30% in 2005, but decreased back to 30.32% in 2015; 

grass dramatically decreased from 13.50% to 3.55% between 1984 and 1994, then retained a 

small area; impervious remained steady during the research period. The change of bald cypress 

trees has a positive correlation trend with water: when the water increased, the bald cypress tree 

also increased. However, the change of bald cypress trees has an apparent negative correlation 

trend with other trees, grass and impervious surface. 

 

 

 

Figure 21. The cover percentages of the five land cover types: bald cypress trees, other trees, 

grass, impervious surface and water from 1984 to 2015. 
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6.4 Accuracy assessment 

Based upon a total number of 198 test points visually delineated from 2015 OLI image, 

the accuracy of the five land cover types mapping of the year 1984 was estimated (Tables 6 and 

7).  Table 6 indicates that MTMF has performed better in distinguishing bald cypress tree, other 

trees and impervious surface compared to those created with LSU (Table 7). Table 7 presents the 

mapping results created with LSU. Since the major purpose for this study is mapping bald 

cypress tree dynamic change over time and testing the performance of the MTMF tool for the 

purpose, the mapping results listed in Tables 6 and 7 demonstrate that MTMF has showed a 

better performance compared to LSU and the both Producer’s and User’s accuracies in mapping 

the bald cypress trees by MTMF are acceptable in practice. 

 

Table 6. Accuracy assessment for the land cover type mapping results produced by MTMF with 

2015 OLI image. 

Land cover 

type 

Test result (%) 

Producer’s accuracy (%) User’s accuracy (%) 

Bald cypress trees 87.93 100.00 

Other trees 56.60 93.75 

Water 96.30 100.00 

Impervious surface 71.43 100.00 

Grass 66.67 100.00 

Overall accuracy (OA) = 75.00 %, kappa Coefficient= 0.6989. 
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Table 7. Accuracy assessment for the land cover type mapping results produced by LSU with 

2015 OLI image. 

Land cover 

type 

Test result (%) 

Producer’s accuracy (%) User’s accuracy (%) 

Bald cypress trees 70.69 85.42 

Other trees 59.57 87.50 

Water 55.56 75.00 

Impervious surface 47.83 84.62 

Grass 37.04 76.92 

Overall accuracy (OA) = 57.69 %, kappa Coefficient = 0.4931. 
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CHAPTER SEVEN: 

DICUSSION  

 

The results show the bald cypress trees increased from 26.35% to 37.46% from 1984 to 

1994, then decreased to 32.52% in 2005 and then increased again to 37.73% in 2015. There are 

various factors that might cause the fluctuation of bald cypress trees’ cover percentage, which 

has been found in previous research (e.g., Davis, 1997; Othman and Shazali, 2012; Raddi et al., 

1994). According to Othman and Shazali (2012), the wetland environments have been 

interrupted by non-ethical activities such as illegal logging and country development activities 

that decrease the benefits of the forest contribution. The rapid conversion or degradation of 

wetland ecosystem is thus of important international concern. Operational systems for 

monitoring and updating forest maps are thus needed for many applications such as wetland 

management and habitat monitoring (Desclée et al., 2006). In addition, a preserve area invaded 

by an exotic species can resulted in the decrease of original species (Cox and Allen, 2011; 

Makhabu and Marotsi, 2012). Besides, warming temperatures, changing precipitation regimes 

and diseases are also the causes that generate changes in bald cypress tree species distributions 

and increases in the duration and severity of pest/pathogen outbreaks. Stone and Finkl (1995) 

have noticed that bald cypress tree in south Florida is very resistant to hurricane damage. Few 

trees (4% of all trees sampled) were snapped by Hurricane Andrew happened in 1992 and only 

12% of small snapped trees died. Gresham et al. (1991) obtained the same result that they found 



45 
 

that cypress foliage was browning, as it does before leaf fall, just before the hurricane struck. 

The impact of climate on the cypress was also researched by Davis (1997). In the late February 

1989, a severe freeze occurred in the north part of the Big Cypress National Swamp, he found 

that many temperate species had begun new growth but cypress died. According to Manna and 

Rajchenberg (2004), widespread mortality of cypress occurs throughout its range in Argentina, 

locally known as ‘mal del ciprés’. It was detected about 55 years ago and its extension and 

importance have increased in the last several decades.  

Fire is a key feature of Florida ecosystems, and this is true in the USF forest preserve 

area. Part of the study area is routinely burned in order to conduct research on ecological 

succession. A series of plots have been burned at varying intervals since the 1970's, and it 

happened every year before 1999 (USF Forest Preserve. 2018). This might be the reason why the 

abundance of Bald cypress tree keep a low level at 1984. In addition, Wang and Lang (2009) 

found that cypress harvest has risen again because trees on many of the previously harvested old 

swamps have grown to merchantable size from 1990s. Different from before, landscape mulch 

has now become one of the main reasons for cypress harvest. This can be used to explain the 

rapid decrease of bald cypress tree from 1994 to 2005 in the study area. Freezes occurred in 

January 2001, and most of Florida were hard freezes (National Oceanic and Atmospheric 

Administration, 2001). Severe freeze may also cause cypress died and it might be the main 

reason why the bald cypress decreased so fast from 1994 to 2005 in the study area. Bald cypress 

tree grows well in the areas with lots of water, and the results (Figure 21) shows that the change 

of bald cypress trees has a positive correlation trend with water, so the change of water area 

should be another reason why the fluctuation of bald cypress trees area in different periods. Per 

bald cypress tree cover change over the 30 years (Figure 21, Tables 4 and 5), the reduced 
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impervious area over time, even small, was associated with surrounding anthropogenic impact on 

the change of bald cypress cover percentage. Moreover, when the bald cypress tree gradually 

grown up, the shadow of tree canopy may cover partial impervious surface, which might be a 

reason why impervious surface decreased from 2005 to 2015.  Besides, the difference of 

acquisition dates of multi-year Landsat images among different years might also slightly cause 

the change of the bald cypress tree coverage. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



47 
 

 

 

CHAPTER EIGHT: 

CONCLUSIONS 

 

To map bald cypress tree dynamic change over time, Landsat mage data collected from 

USGS data center and covering USF Forest Preserve Area in the fall and early winter in 1984, 

1994, 2005 and 2015 have been processed and analyzed with two spectral unmixing methods, 

MTMF and LSU. MNF transform, PPI image generation, and n-D Visualizer have been 

successfully performed to extract endmember spectra of the five land cover types over the study 

area. In this study, several preliminary conclusions could be derived from the experimental 

results: 

 The bald cypress tree cover percentage in the research area has generally increased 

during the 30 years from 1984 to 2015.  However, over the time period from 1994 to 

2005, the bald cypress tree cover percentage reduced. 

 The bald cypress trees has increased in the research area, especially in the eastern part 

and western part of the area.   

 The MTMF outperformed LSU and demonstrated its powerful capability in mapping the 

changes of bald cypress trees over time. 

 There potentially exists an impact of human activities on the change of the bald cypress 

trees although a further quantitative analysis is needed in the future research. 
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Wetlands vegetation distribution and its dynamic changes are of important information 

for making better decisions on wetlands planning and management. However, several challenges 

in timely and accurately mapping and monitoring the changes of wetlands vegetation and other 

features should be considered, such as, effects of climate change and human activities on the 

wetlands changes. Therefore, more research needs to be done to examine how wetland plants 

distribute spatially and change temporally and drive forces to drive the distribution and change as 

well. 
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